1 | //===------- VectorCombine.cpp - Optimize partial vector operations -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass optimizes scalar/vector interactions using target cost models. The |
10 | // transforms implemented here may not fit in traditional loop-based or SLP |
11 | // vectorization passes. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/Vectorize/VectorCombine.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/ScopeExit.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/Analysis/AssumptionCache.h" |
21 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
22 | #include "llvm/Analysis/GlobalsModRef.h" |
23 | #include "llvm/Analysis/Loads.h" |
24 | #include "llvm/Analysis/TargetTransformInfo.h" |
25 | #include "llvm/Analysis/ValueTracking.h" |
26 | #include "llvm/Analysis/VectorUtils.h" |
27 | #include "llvm/IR/Dominators.h" |
28 | #include "llvm/IR/Function.h" |
29 | #include "llvm/IR/IRBuilder.h" |
30 | #include "llvm/IR/PatternMatch.h" |
31 | #include "llvm/Support/CommandLine.h" |
32 | #include "llvm/Transforms/Utils/Local.h" |
33 | #include "llvm/Transforms/Utils/LoopUtils.h" |
34 | #include <numeric> |
35 | #include <queue> |
36 | |
37 | #define DEBUG_TYPE "vector-combine" |
38 | #include "llvm/Transforms/Utils/InstructionWorklist.h" |
39 | |
40 | using namespace llvm; |
41 | using namespace llvm::PatternMatch; |
42 | |
43 | STATISTIC(NumVecLoad, "Number of vector loads formed" ); |
44 | STATISTIC(NumVecCmp, "Number of vector compares formed" ); |
45 | STATISTIC(NumVecBO, "Number of vector binops formed" ); |
46 | STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed" ); |
47 | STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast" ); |
48 | STATISTIC(NumScalarBO, "Number of scalar binops formed" ); |
49 | STATISTIC(NumScalarCmp, "Number of scalar compares formed" ); |
50 | |
51 | static cl::opt<bool> DisableVectorCombine( |
52 | "disable-vector-combine" , cl::init(Val: false), cl::Hidden, |
53 | cl::desc("Disable all vector combine transforms" )); |
54 | |
55 | static cl::opt<bool> ( |
56 | "disable-binop-extract-shuffle" , cl::init(Val: false), cl::Hidden, |
57 | cl::desc("Disable binop extract to shuffle transforms" )); |
58 | |
59 | static cl::opt<unsigned> MaxInstrsToScan( |
60 | "vector-combine-max-scan-instrs" , cl::init(Val: 30), cl::Hidden, |
61 | cl::desc("Max number of instructions to scan for vector combining." )); |
62 | |
63 | static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); |
64 | |
65 | namespace { |
66 | class VectorCombine { |
67 | public: |
68 | VectorCombine(Function &F, const TargetTransformInfo &TTI, |
69 | const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, |
70 | const DataLayout *DL, bool TryEarlyFoldsOnly) |
71 | : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL), |
72 | TryEarlyFoldsOnly(TryEarlyFoldsOnly) {} |
73 | |
74 | bool run(); |
75 | |
76 | private: |
77 | Function &F; |
78 | IRBuilder<> Builder; |
79 | const TargetTransformInfo &TTI; |
80 | const DominatorTree &DT; |
81 | AAResults &AA; |
82 | AssumptionCache &AC; |
83 | const DataLayout *DL; |
84 | |
85 | /// If true, only perform beneficial early IR transforms. Do not introduce new |
86 | /// vector operations. |
87 | bool TryEarlyFoldsOnly; |
88 | |
89 | InstructionWorklist Worklist; |
90 | |
91 | // TODO: Direct calls from the top-level "run" loop use a plain "Instruction" |
92 | // parameter. That should be updated to specific sub-classes because the |
93 | // run loop was changed to dispatch on opcode. |
94 | bool vectorizeLoadInsert(Instruction &I); |
95 | bool widenSubvectorLoad(Instruction &I); |
96 | ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, |
97 | ExtractElementInst *Ext1, |
98 | unsigned ) const; |
99 | bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
100 | const Instruction &I, |
101 | ExtractElementInst *&ConvertToShuffle, |
102 | unsigned ); |
103 | void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
104 | Instruction &I); |
105 | void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
106 | Instruction &I); |
107 | bool foldExtractExtract(Instruction &I); |
108 | bool foldInsExtFNeg(Instruction &I); |
109 | bool foldBitcastShuffle(Instruction &I); |
110 | bool scalarizeBinopOrCmp(Instruction &I); |
111 | bool scalarizeVPIntrinsic(Instruction &I); |
112 | bool foldExtractedCmps(Instruction &I); |
113 | bool foldSingleElementStore(Instruction &I); |
114 | bool scalarizeLoadExtract(Instruction &I); |
115 | bool foldShuffleOfBinops(Instruction &I); |
116 | bool foldShuffleOfCastops(Instruction &I); |
117 | bool foldShuffleOfShuffles(Instruction &I); |
118 | bool foldShuffleToIdentity(Instruction &I); |
119 | bool foldShuffleFromReductions(Instruction &I); |
120 | bool foldCastFromReductions(Instruction &I); |
121 | bool foldSelectShuffle(Instruction &I, bool FromReduction = false); |
122 | |
123 | void replaceValue(Value &Old, Value &New) { |
124 | Old.replaceAllUsesWith(V: &New); |
125 | if (auto *NewI = dyn_cast<Instruction>(Val: &New)) { |
126 | New.takeName(V: &Old); |
127 | Worklist.pushUsersToWorkList(I&: *NewI); |
128 | Worklist.pushValue(V: NewI); |
129 | } |
130 | Worklist.pushValue(V: &Old); |
131 | } |
132 | |
133 | void eraseInstruction(Instruction &I) { |
134 | for (Value *Op : I.operands()) |
135 | Worklist.pushValue(V: Op); |
136 | Worklist.remove(I: &I); |
137 | I.eraseFromParent(); |
138 | } |
139 | }; |
140 | } // namespace |
141 | |
142 | /// Return the source operand of a potentially bitcasted value. If there is no |
143 | /// bitcast, return the input value itself. |
144 | static Value *peekThroughBitcasts(Value *V) { |
145 | while (auto *BitCast = dyn_cast<BitCastInst>(Val: V)) |
146 | V = BitCast->getOperand(i_nocapture: 0); |
147 | return V; |
148 | } |
149 | |
150 | static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) { |
151 | // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan. |
152 | // The widened load may load data from dirty regions or create data races |
153 | // non-existent in the source. |
154 | if (!Load || !Load->isSimple() || !Load->hasOneUse() || |
155 | Load->getFunction()->hasFnAttribute(Kind: Attribute::SanitizeMemTag) || |
156 | mustSuppressSpeculation(LI: *Load)) |
157 | return false; |
158 | |
159 | // We are potentially transforming byte-sized (8-bit) memory accesses, so make |
160 | // sure we have all of our type-based constraints in place for this target. |
161 | Type *ScalarTy = Load->getType()->getScalarType(); |
162 | uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
163 | unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
164 | if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || |
165 | ScalarSize % 8 != 0) |
166 | return false; |
167 | |
168 | return true; |
169 | } |
170 | |
171 | bool VectorCombine::vectorizeLoadInsert(Instruction &I) { |
172 | // Match insert into fixed vector of scalar value. |
173 | // TODO: Handle non-zero insert index. |
174 | Value *Scalar; |
175 | if (!match(V: &I, P: m_InsertElt(Val: m_Undef(), Elt: m_Value(V&: Scalar), Idx: m_ZeroInt())) || |
176 | !Scalar->hasOneUse()) |
177 | return false; |
178 | |
179 | // Optionally match an extract from another vector. |
180 | Value *X; |
181 | bool = match(V: Scalar, P: m_ExtractElt(Val: m_Value(V&: X), Idx: m_ZeroInt())); |
182 | if (!HasExtract) |
183 | X = Scalar; |
184 | |
185 | auto *Load = dyn_cast<LoadInst>(Val: X); |
186 | if (!canWidenLoad(Load, TTI)) |
187 | return false; |
188 | |
189 | Type *ScalarTy = Scalar->getType(); |
190 | uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
191 | unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
192 | |
193 | // Check safety of replacing the scalar load with a larger vector load. |
194 | // We use minimal alignment (maximum flexibility) because we only care about |
195 | // the dereferenceable region. When calculating cost and creating a new op, |
196 | // we may use a larger value based on alignment attributes. |
197 | Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
198 | assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type" ); |
199 | |
200 | unsigned MinVecNumElts = MinVectorSize / ScalarSize; |
201 | auto *MinVecTy = VectorType::get(ElementType: ScalarTy, NumElements: MinVecNumElts, Scalable: false); |
202 | unsigned OffsetEltIndex = 0; |
203 | Align Alignment = Load->getAlign(); |
204 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty: MinVecTy, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, |
205 | DT: &DT)) { |
206 | // It is not safe to load directly from the pointer, but we can still peek |
207 | // through gep offsets and check if it safe to load from a base address with |
208 | // updated alignment. If it is, we can shuffle the element(s) into place |
209 | // after loading. |
210 | unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(Ty: SrcPtr->getType()); |
211 | APInt Offset(OffsetBitWidth, 0); |
212 | SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL: *DL, Offset); |
213 | |
214 | // We want to shuffle the result down from a high element of a vector, so |
215 | // the offset must be positive. |
216 | if (Offset.isNegative()) |
217 | return false; |
218 | |
219 | // The offset must be a multiple of the scalar element to shuffle cleanly |
220 | // in the element's size. |
221 | uint64_t ScalarSizeInBytes = ScalarSize / 8; |
222 | if (Offset.urem(RHS: ScalarSizeInBytes) != 0) |
223 | return false; |
224 | |
225 | // If we load MinVecNumElts, will our target element still be loaded? |
226 | OffsetEltIndex = Offset.udiv(RHS: ScalarSizeInBytes).getZExtValue(); |
227 | if (OffsetEltIndex >= MinVecNumElts) |
228 | return false; |
229 | |
230 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty: MinVecTy, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, |
231 | DT: &DT)) |
232 | return false; |
233 | |
234 | // Update alignment with offset value. Note that the offset could be negated |
235 | // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but |
236 | // negation does not change the result of the alignment calculation. |
237 | Alignment = commonAlignment(A: Alignment, Offset: Offset.getZExtValue()); |
238 | } |
239 | |
240 | // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 |
241 | // Use the greater of the alignment on the load or its source pointer. |
242 | Alignment = std::max(a: SrcPtr->getPointerAlignment(DL: *DL), b: Alignment); |
243 | Type *LoadTy = Load->getType(); |
244 | unsigned AS = Load->getPointerAddressSpace(); |
245 | InstructionCost OldCost = |
246 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: LoadTy, Alignment, AddressSpace: AS); |
247 | APInt DemandedElts = APInt::getOneBitSet(numBits: MinVecNumElts, BitNo: 0); |
248 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
249 | OldCost += |
250 | TTI.getScalarizationOverhead(Ty: MinVecTy, DemandedElts, |
251 | /* Insert */ true, Extract: HasExtract, CostKind); |
252 | |
253 | // New pattern: load VecPtr |
254 | InstructionCost NewCost = |
255 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: MinVecTy, Alignment, AddressSpace: AS); |
256 | // Optionally, we are shuffling the loaded vector element(s) into place. |
257 | // For the mask set everything but element 0 to undef to prevent poison from |
258 | // propagating from the extra loaded memory. This will also optionally |
259 | // shrink/grow the vector from the loaded size to the output size. |
260 | // We assume this operation has no cost in codegen if there was no offset. |
261 | // Note that we could use freeze to avoid poison problems, but then we might |
262 | // still need a shuffle to change the vector size. |
263 | auto *Ty = cast<FixedVectorType>(Val: I.getType()); |
264 | unsigned OutputNumElts = Ty->getNumElements(); |
265 | SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem); |
266 | assert(OffsetEltIndex < MinVecNumElts && "Address offset too big" ); |
267 | Mask[0] = OffsetEltIndex; |
268 | if (OffsetEltIndex) |
269 | NewCost += TTI.getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, Tp: MinVecTy, Mask); |
270 | |
271 | // We can aggressively convert to the vector form because the backend can |
272 | // invert this transform if it does not result in a performance win. |
273 | if (OldCost < NewCost || !NewCost.isValid()) |
274 | return false; |
275 | |
276 | // It is safe and potentially profitable to load a vector directly: |
277 | // inselt undef, load Scalar, 0 --> load VecPtr |
278 | IRBuilder<> Builder(Load); |
279 | Value *CastedPtr = |
280 | Builder.CreatePointerBitCastOrAddrSpaceCast(V: SrcPtr, DestTy: Builder.getPtrTy(AddrSpace: AS)); |
281 | Value *VecLd = Builder.CreateAlignedLoad(Ty: MinVecTy, Ptr: CastedPtr, Align: Alignment); |
282 | VecLd = Builder.CreateShuffleVector(V: VecLd, Mask); |
283 | |
284 | replaceValue(Old&: I, New&: *VecLd); |
285 | ++NumVecLoad; |
286 | return true; |
287 | } |
288 | |
289 | /// If we are loading a vector and then inserting it into a larger vector with |
290 | /// undefined elements, try to load the larger vector and eliminate the insert. |
291 | /// This removes a shuffle in IR and may allow combining of other loaded values. |
292 | bool VectorCombine::widenSubvectorLoad(Instruction &I) { |
293 | // Match subvector insert of fixed vector. |
294 | auto *Shuf = cast<ShuffleVectorInst>(Val: &I); |
295 | if (!Shuf->isIdentityWithPadding()) |
296 | return false; |
297 | |
298 | // Allow a non-canonical shuffle mask that is choosing elements from op1. |
299 | unsigned NumOpElts = |
300 | cast<FixedVectorType>(Val: Shuf->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
301 | unsigned OpIndex = any_of(Range: Shuf->getShuffleMask(), P: [&NumOpElts](int M) { |
302 | return M >= (int)(NumOpElts); |
303 | }); |
304 | |
305 | auto *Load = dyn_cast<LoadInst>(Val: Shuf->getOperand(i_nocapture: OpIndex)); |
306 | if (!canWidenLoad(Load, TTI)) |
307 | return false; |
308 | |
309 | // We use minimal alignment (maximum flexibility) because we only care about |
310 | // the dereferenceable region. When calculating cost and creating a new op, |
311 | // we may use a larger value based on alignment attributes. |
312 | auto *Ty = cast<FixedVectorType>(Val: I.getType()); |
313 | Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
314 | assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type" ); |
315 | Align Alignment = Load->getAlign(); |
316 | if (!isSafeToLoadUnconditionally(V: SrcPtr, Ty, Alignment: Align(1), DL: *DL, ScanFrom: Load, AC: &AC, DT: &DT)) |
317 | return false; |
318 | |
319 | Alignment = std::max(a: SrcPtr->getPointerAlignment(DL: *DL), b: Alignment); |
320 | Type *LoadTy = Load->getType(); |
321 | unsigned AS = Load->getPointerAddressSpace(); |
322 | |
323 | // Original pattern: insert_subvector (load PtrOp) |
324 | // This conservatively assumes that the cost of a subvector insert into an |
325 | // undef value is 0. We could add that cost if the cost model accurately |
326 | // reflects the real cost of that operation. |
327 | InstructionCost OldCost = |
328 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: LoadTy, Alignment, AddressSpace: AS); |
329 | |
330 | // New pattern: load PtrOp |
331 | InstructionCost NewCost = |
332 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: Ty, Alignment, AddressSpace: AS); |
333 | |
334 | // We can aggressively convert to the vector form because the backend can |
335 | // invert this transform if it does not result in a performance win. |
336 | if (OldCost < NewCost || !NewCost.isValid()) |
337 | return false; |
338 | |
339 | IRBuilder<> Builder(Load); |
340 | Value *CastedPtr = |
341 | Builder.CreatePointerBitCastOrAddrSpaceCast(V: SrcPtr, DestTy: Builder.getPtrTy(AddrSpace: AS)); |
342 | Value *VecLd = Builder.CreateAlignedLoad(Ty, Ptr: CastedPtr, Align: Alignment); |
343 | replaceValue(Old&: I, New&: *VecLd); |
344 | ++NumVecLoad; |
345 | return true; |
346 | } |
347 | |
348 | /// Determine which, if any, of the inputs should be replaced by a shuffle |
349 | /// followed by extract from a different index. |
350 | ExtractElementInst *VectorCombine::( |
351 | ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
352 | unsigned = InvalidIndex) const { |
353 | auto *Index0C = dyn_cast<ConstantInt>(Val: Ext0->getIndexOperand()); |
354 | auto *Index1C = dyn_cast<ConstantInt>(Val: Ext1->getIndexOperand()); |
355 | assert(Index0C && Index1C && "Expected constant extract indexes" ); |
356 | |
357 | unsigned Index0 = Index0C->getZExtValue(); |
358 | unsigned Index1 = Index1C->getZExtValue(); |
359 | |
360 | // If the extract indexes are identical, no shuffle is needed. |
361 | if (Index0 == Index1) |
362 | return nullptr; |
363 | |
364 | Type *VecTy = Ext0->getVectorOperand()->getType(); |
365 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
366 | assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types" ); |
367 | InstructionCost Cost0 = |
368 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Index0); |
369 | InstructionCost Cost1 = |
370 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Index1); |
371 | |
372 | // If both costs are invalid no shuffle is needed |
373 | if (!Cost0.isValid() && !Cost1.isValid()) |
374 | return nullptr; |
375 | |
376 | // We are extracting from 2 different indexes, so one operand must be shuffled |
377 | // before performing a vector operation and/or extract. The more expensive |
378 | // extract will be replaced by a shuffle. |
379 | if (Cost0 > Cost1) |
380 | return Ext0; |
381 | if (Cost1 > Cost0) |
382 | return Ext1; |
383 | |
384 | // If the costs are equal and there is a preferred extract index, shuffle the |
385 | // opposite operand. |
386 | if (PreferredExtractIndex == Index0) |
387 | return Ext1; |
388 | if (PreferredExtractIndex == Index1) |
389 | return Ext0; |
390 | |
391 | // Otherwise, replace the extract with the higher index. |
392 | return Index0 > Index1 ? Ext0 : Ext1; |
393 | } |
394 | |
395 | /// Compare the relative costs of 2 extracts followed by scalar operation vs. |
396 | /// vector operation(s) followed by extract. Return true if the existing |
397 | /// instructions are cheaper than a vector alternative. Otherwise, return false |
398 | /// and if one of the extracts should be transformed to a shufflevector, set |
399 | /// \p ConvertToShuffle to that extract instruction. |
400 | bool VectorCombine::(ExtractElementInst *Ext0, |
401 | ExtractElementInst *Ext1, |
402 | const Instruction &I, |
403 | ExtractElementInst *&ConvertToShuffle, |
404 | unsigned ) { |
405 | auto *Ext0IndexC = dyn_cast<ConstantInt>(Val: Ext0->getOperand(i_nocapture: 1)); |
406 | auto *Ext1IndexC = dyn_cast<ConstantInt>(Val: Ext1->getOperand(i_nocapture: 1)); |
407 | assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes" ); |
408 | |
409 | unsigned Opcode = I.getOpcode(); |
410 | Type *ScalarTy = Ext0->getType(); |
411 | auto *VecTy = cast<VectorType>(Val: Ext0->getOperand(i_nocapture: 0)->getType()); |
412 | InstructionCost ScalarOpCost, VectorOpCost; |
413 | |
414 | // Get cost estimates for scalar and vector versions of the operation. |
415 | bool IsBinOp = Instruction::isBinaryOp(Opcode); |
416 | if (IsBinOp) { |
417 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: ScalarTy); |
418 | VectorOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: VecTy); |
419 | } else { |
420 | assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && |
421 | "Expected a compare" ); |
422 | CmpInst::Predicate Pred = cast<CmpInst>(Val: I).getPredicate(); |
423 | ScalarOpCost = TTI.getCmpSelInstrCost( |
424 | Opcode, ValTy: ScalarTy, CondTy: CmpInst::makeCmpResultType(opnd_type: ScalarTy), VecPred: Pred); |
425 | VectorOpCost = TTI.getCmpSelInstrCost( |
426 | Opcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred); |
427 | } |
428 | |
429 | // Get cost estimates for the extract elements. These costs will factor into |
430 | // both sequences. |
431 | unsigned Ext0Index = Ext0IndexC->getZExtValue(); |
432 | unsigned Ext1Index = Ext1IndexC->getZExtValue(); |
433 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
434 | |
435 | InstructionCost = |
436 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Ext0Index); |
437 | InstructionCost = |
438 | TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Ext1Index); |
439 | |
440 | // A more expensive extract will always be replaced by a splat shuffle. |
441 | // For example, if Ext0 is more expensive: |
442 | // opcode (extelt V0, Ext0), (ext V1, Ext1) --> |
443 | // extelt (opcode (splat V0, Ext0), V1), Ext1 |
444 | // TODO: Evaluate whether that always results in lowest cost. Alternatively, |
445 | // check the cost of creating a broadcast shuffle and shuffling both |
446 | // operands to element 0. |
447 | InstructionCost = std::min(a: Extract0Cost, b: Extract1Cost); |
448 | |
449 | // Extra uses of the extracts mean that we include those costs in the |
450 | // vector total because those instructions will not be eliminated. |
451 | InstructionCost OldCost, NewCost; |
452 | if (Ext0->getOperand(i_nocapture: 0) == Ext1->getOperand(i_nocapture: 0) && Ext0Index == Ext1Index) { |
453 | // Handle a special case. If the 2 extracts are identical, adjust the |
454 | // formulas to account for that. The extra use charge allows for either the |
455 | // CSE'd pattern or an unoptimized form with identical values: |
456 | // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C |
457 | bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(N: 2) |
458 | : !Ext0->hasOneUse() || !Ext1->hasOneUse(); |
459 | OldCost = CheapExtractCost + ScalarOpCost; |
460 | NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; |
461 | } else { |
462 | // Handle the general case. Each extract is actually a different value: |
463 | // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C |
464 | OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; |
465 | NewCost = VectorOpCost + CheapExtractCost + |
466 | !Ext0->hasOneUse() * Extract0Cost + |
467 | !Ext1->hasOneUse() * Extract1Cost; |
468 | } |
469 | |
470 | ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); |
471 | if (ConvertToShuffle) { |
472 | if (IsBinOp && DisableBinopExtractShuffle) |
473 | return true; |
474 | |
475 | // If we are extracting from 2 different indexes, then one operand must be |
476 | // shuffled before performing the vector operation. The shuffle mask is |
477 | // poison except for 1 lane that is being translated to the remaining |
478 | // extraction lane. Therefore, it is a splat shuffle. Ex: |
479 | // ShufMask = { poison, poison, 0, poison } |
480 | // TODO: The cost model has an option for a "broadcast" shuffle |
481 | // (splat-from-element-0), but no option for a more general splat. |
482 | NewCost += |
483 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, Tp: VecTy); |
484 | } |
485 | |
486 | // Aggressively form a vector op if the cost is equal because the transform |
487 | // may enable further optimization. |
488 | // Codegen can reverse this transform (scalarize) if it was not profitable. |
489 | return OldCost < NewCost; |
490 | } |
491 | |
492 | /// Create a shuffle that translates (shifts) 1 element from the input vector |
493 | /// to a new element location. |
494 | static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, |
495 | unsigned NewIndex, IRBuilder<> &Builder) { |
496 | // The shuffle mask is poison except for 1 lane that is being translated |
497 | // to the new element index. Example for OldIndex == 2 and NewIndex == 0: |
498 | // ShufMask = { 2, poison, poison, poison } |
499 | auto *VecTy = cast<FixedVectorType>(Val: Vec->getType()); |
500 | SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem); |
501 | ShufMask[NewIndex] = OldIndex; |
502 | return Builder.CreateShuffleVector(V: Vec, Mask: ShufMask, Name: "shift" ); |
503 | } |
504 | |
505 | /// Given an extract element instruction with constant index operand, shuffle |
506 | /// the source vector (shift the scalar element) to a NewIndex for extraction. |
507 | /// Return null if the input can be constant folded, so that we are not creating |
508 | /// unnecessary instructions. |
509 | static ExtractElementInst *(ExtractElementInst *ExtElt, |
510 | unsigned NewIndex, |
511 | IRBuilder<> &Builder) { |
512 | // Shufflevectors can only be created for fixed-width vectors. |
513 | if (!isa<FixedVectorType>(Val: ExtElt->getOperand(i_nocapture: 0)->getType())) |
514 | return nullptr; |
515 | |
516 | // If the extract can be constant-folded, this code is unsimplified. Defer |
517 | // to other passes to handle that. |
518 | Value *X = ExtElt->getVectorOperand(); |
519 | Value *C = ExtElt->getIndexOperand(); |
520 | assert(isa<ConstantInt>(C) && "Expected a constant index operand" ); |
521 | if (isa<Constant>(Val: X)) |
522 | return nullptr; |
523 | |
524 | Value *Shuf = createShiftShuffle(Vec: X, OldIndex: cast<ConstantInt>(Val: C)->getZExtValue(), |
525 | NewIndex, Builder); |
526 | return cast<ExtractElementInst>(Val: Builder.CreateExtractElement(Vec: Shuf, Idx: NewIndex)); |
527 | } |
528 | |
529 | /// Try to reduce extract element costs by converting scalar compares to vector |
530 | /// compares followed by extract. |
531 | /// cmp (ext0 V0, C), (ext1 V1, C) |
532 | void VectorCombine::(ExtractElementInst *Ext0, |
533 | ExtractElementInst *Ext1, Instruction &I) { |
534 | assert(isa<CmpInst>(&I) && "Expected a compare" ); |
535 | assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == |
536 | cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && |
537 | "Expected matching constant extract indexes" ); |
538 | |
539 | // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C |
540 | ++NumVecCmp; |
541 | CmpInst::Predicate Pred = cast<CmpInst>(Val: &I)->getPredicate(); |
542 | Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); |
543 | Value *VecCmp = Builder.CreateCmp(Pred, LHS: V0, RHS: V1); |
544 | Value *NewExt = Builder.CreateExtractElement(Vec: VecCmp, Idx: Ext0->getIndexOperand()); |
545 | replaceValue(Old&: I, New&: *NewExt); |
546 | } |
547 | |
548 | /// Try to reduce extract element costs by converting scalar binops to vector |
549 | /// binops followed by extract. |
550 | /// bo (ext0 V0, C), (ext1 V1, C) |
551 | void VectorCombine::(ExtractElementInst *Ext0, |
552 | ExtractElementInst *Ext1, Instruction &I) { |
553 | assert(isa<BinaryOperator>(&I) && "Expected a binary operator" ); |
554 | assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == |
555 | cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && |
556 | "Expected matching constant extract indexes" ); |
557 | |
558 | // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C |
559 | ++NumVecBO; |
560 | Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); |
561 | Value *VecBO = |
562 | Builder.CreateBinOp(Opc: cast<BinaryOperator>(Val: &I)->getOpcode(), LHS: V0, RHS: V1); |
563 | |
564 | // All IR flags are safe to back-propagate because any potential poison |
565 | // created in unused vector elements is discarded by the extract. |
566 | if (auto *VecBOInst = dyn_cast<Instruction>(Val: VecBO)) |
567 | VecBOInst->copyIRFlags(V: &I); |
568 | |
569 | Value *NewExt = Builder.CreateExtractElement(Vec: VecBO, Idx: Ext0->getIndexOperand()); |
570 | replaceValue(Old&: I, New&: *NewExt); |
571 | } |
572 | |
573 | /// Match an instruction with extracted vector operands. |
574 | bool VectorCombine::(Instruction &I) { |
575 | // It is not safe to transform things like div, urem, etc. because we may |
576 | // create undefined behavior when executing those on unknown vector elements. |
577 | if (!isSafeToSpeculativelyExecute(I: &I)) |
578 | return false; |
579 | |
580 | Instruction *I0, *I1; |
581 | CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
582 | if (!match(V: &I, P: m_Cmp(Pred, L: m_Instruction(I&: I0), R: m_Instruction(I&: I1))) && |
583 | !match(V: &I, P: m_BinOp(L: m_Instruction(I&: I0), R: m_Instruction(I&: I1)))) |
584 | return false; |
585 | |
586 | Value *V0, *V1; |
587 | uint64_t C0, C1; |
588 | if (!match(V: I0, P: m_ExtractElt(Val: m_Value(V&: V0), Idx: m_ConstantInt(V&: C0))) || |
589 | !match(V: I1, P: m_ExtractElt(Val: m_Value(V&: V1), Idx: m_ConstantInt(V&: C1))) || |
590 | V0->getType() != V1->getType()) |
591 | return false; |
592 | |
593 | // If the scalar value 'I' is going to be re-inserted into a vector, then try |
594 | // to create an extract to that same element. The extract/insert can be |
595 | // reduced to a "select shuffle". |
596 | // TODO: If we add a larger pattern match that starts from an insert, this |
597 | // probably becomes unnecessary. |
598 | auto *Ext0 = cast<ExtractElementInst>(Val: I0); |
599 | auto *Ext1 = cast<ExtractElementInst>(Val: I1); |
600 | uint64_t InsertIndex = InvalidIndex; |
601 | if (I.hasOneUse()) |
602 | match(V: I.user_back(), |
603 | P: m_InsertElt(Val: m_Value(), Elt: m_Value(), Idx: m_ConstantInt(V&: InsertIndex))); |
604 | |
605 | ExtractElementInst *; |
606 | if (isExtractExtractCheap(Ext0, Ext1, I, ConvertToShuffle&: ExtractToChange, PreferredExtractIndex: InsertIndex)) |
607 | return false; |
608 | |
609 | if (ExtractToChange) { |
610 | unsigned = ExtractToChange == Ext0 ? C1 : C0; |
611 | ExtractElementInst * = |
612 | translateExtract(ExtElt: ExtractToChange, NewIndex: CheapExtractIdx, Builder); |
613 | if (!NewExtract) |
614 | return false; |
615 | if (ExtractToChange == Ext0) |
616 | Ext0 = NewExtract; |
617 | else |
618 | Ext1 = NewExtract; |
619 | } |
620 | |
621 | if (Pred != CmpInst::BAD_ICMP_PREDICATE) |
622 | foldExtExtCmp(Ext0, Ext1, I); |
623 | else |
624 | foldExtExtBinop(Ext0, Ext1, I); |
625 | |
626 | Worklist.push(I: Ext0); |
627 | Worklist.push(I: Ext1); |
628 | return true; |
629 | } |
630 | |
631 | /// Try to replace an extract + scalar fneg + insert with a vector fneg + |
632 | /// shuffle. |
633 | bool VectorCombine::foldInsExtFNeg(Instruction &I) { |
634 | // Match an insert (op (extract)) pattern. |
635 | Value *DestVec; |
636 | uint64_t Index; |
637 | Instruction *FNeg; |
638 | if (!match(V: &I, P: m_InsertElt(Val: m_Value(V&: DestVec), Elt: m_OneUse(SubPattern: m_Instruction(I&: FNeg)), |
639 | Idx: m_ConstantInt(V&: Index)))) |
640 | return false; |
641 | |
642 | // Note: This handles the canonical fneg instruction and "fsub -0.0, X". |
643 | Value *SrcVec; |
644 | Instruction *; |
645 | if (!match(V: FNeg, P: m_FNeg(X: m_CombineAnd( |
646 | L: m_Instruction(I&: Extract), |
647 | R: m_ExtractElt(Val: m_Value(V&: SrcVec), Idx: m_SpecificInt(V: Index)))))) |
648 | return false; |
649 | |
650 | // TODO: We could handle this with a length-changing shuffle. |
651 | auto *VecTy = cast<FixedVectorType>(Val: I.getType()); |
652 | if (SrcVec->getType() != VecTy) |
653 | return false; |
654 | |
655 | // Ignore bogus insert/extract index. |
656 | unsigned NumElts = VecTy->getNumElements(); |
657 | if (Index >= NumElts) |
658 | return false; |
659 | |
660 | // We are inserting the negated element into the same lane that we extracted |
661 | // from. This is equivalent to a select-shuffle that chooses all but the |
662 | // negated element from the destination vector. |
663 | SmallVector<int> Mask(NumElts); |
664 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
665 | Mask[Index] = Index + NumElts; |
666 | |
667 | Type *ScalarTy = VecTy->getScalarType(); |
668 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
669 | InstructionCost OldCost = |
670 | TTI.getArithmeticInstrCost(Opcode: Instruction::FNeg, Ty: ScalarTy) + |
671 | TTI.getVectorInstrCost(I, Val: VecTy, CostKind, Index); |
672 | |
673 | // If the extract has one use, it will be eliminated, so count it in the |
674 | // original cost. If it has more than one use, ignore the cost because it will |
675 | // be the same before/after. |
676 | if (Extract->hasOneUse()) |
677 | OldCost += TTI.getVectorInstrCost(I: *Extract, Val: VecTy, CostKind, Index); |
678 | |
679 | InstructionCost NewCost = |
680 | TTI.getArithmeticInstrCost(Opcode: Instruction::FNeg, Ty: VecTy) + |
681 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_Select, Tp: VecTy, Mask); |
682 | |
683 | if (NewCost > OldCost) |
684 | return false; |
685 | |
686 | // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index --> |
687 | // shuffle DestVec, (fneg SrcVec), Mask |
688 | Value *VecFNeg = Builder.CreateFNegFMF(V: SrcVec, FMFSource: FNeg); |
689 | Value *Shuf = Builder.CreateShuffleVector(V1: DestVec, V2: VecFNeg, Mask); |
690 | replaceValue(Old&: I, New&: *Shuf); |
691 | return true; |
692 | } |
693 | |
694 | /// If this is a bitcast of a shuffle, try to bitcast the source vector to the |
695 | /// destination type followed by shuffle. This can enable further transforms by |
696 | /// moving bitcasts or shuffles together. |
697 | bool VectorCombine::foldBitcastShuffle(Instruction &I) { |
698 | Value *V0, *V1; |
699 | ArrayRef<int> Mask; |
700 | if (!match(V: &I, P: m_BitCast(Op: m_OneUse( |
701 | SubPattern: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(Mask)))))) |
702 | return false; |
703 | |
704 | // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for |
705 | // scalable type is unknown; Second, we cannot reason if the narrowed shuffle |
706 | // mask for scalable type is a splat or not. |
707 | // 2) Disallow non-vector casts. |
708 | // TODO: We could allow any shuffle. |
709 | auto *DestTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
710 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: V0->getType()); |
711 | if (!DestTy || !SrcTy) |
712 | return false; |
713 | |
714 | unsigned DestEltSize = DestTy->getScalarSizeInBits(); |
715 | unsigned SrcEltSize = SrcTy->getScalarSizeInBits(); |
716 | if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0) |
717 | return false; |
718 | |
719 | bool IsUnary = isa<UndefValue>(Val: V1); |
720 | |
721 | // For binary shuffles, only fold bitcast(shuffle(X,Y)) |
722 | // if it won't increase the number of bitcasts. |
723 | if (!IsUnary) { |
724 | auto *BCTy0 = dyn_cast<FixedVectorType>(Val: peekThroughBitcasts(V: V0)->getType()); |
725 | auto *BCTy1 = dyn_cast<FixedVectorType>(Val: peekThroughBitcasts(V: V1)->getType()); |
726 | if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) && |
727 | !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType())) |
728 | return false; |
729 | } |
730 | |
731 | SmallVector<int, 16> NewMask; |
732 | if (DestEltSize <= SrcEltSize) { |
733 | // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
734 | // always be expanded to the equivalent form choosing narrower elements. |
735 | assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask" ); |
736 | unsigned ScaleFactor = SrcEltSize / DestEltSize; |
737 | narrowShuffleMaskElts(Scale: ScaleFactor, Mask, ScaledMask&: NewMask); |
738 | } else { |
739 | // The bitcast is from narrow elements to wide elements. The shuffle mask |
740 | // must choose consecutive elements to allow casting first. |
741 | assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask" ); |
742 | unsigned ScaleFactor = DestEltSize / SrcEltSize; |
743 | if (!widenShuffleMaskElts(Scale: ScaleFactor, Mask, ScaledMask&: NewMask)) |
744 | return false; |
745 | } |
746 | |
747 | // Bitcast the shuffle src - keep its original width but using the destination |
748 | // scalar type. |
749 | unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize; |
750 | auto *NewShuffleTy = |
751 | FixedVectorType::get(ElementType: DestTy->getScalarType(), NumElts: NumSrcElts); |
752 | auto *OldShuffleTy = |
753 | FixedVectorType::get(ElementType: SrcTy->getScalarType(), NumElts: Mask.size()); |
754 | unsigned NumOps = IsUnary ? 1 : 2; |
755 | |
756 | // The new shuffle must not cost more than the old shuffle. |
757 | TargetTransformInfo::TargetCostKind CK = |
758 | TargetTransformInfo::TCK_RecipThroughput; |
759 | TargetTransformInfo::ShuffleKind SK = |
760 | IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc |
761 | : TargetTransformInfo::SK_PermuteTwoSrc; |
762 | |
763 | InstructionCost DestCost = |
764 | TTI.getShuffleCost(Kind: SK, Tp: NewShuffleTy, Mask: NewMask, CostKind: CK) + |
765 | (NumOps * TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: NewShuffleTy, Src: SrcTy, |
766 | CCH: TargetTransformInfo::CastContextHint::None, |
767 | CostKind: CK)); |
768 | InstructionCost SrcCost = |
769 | TTI.getShuffleCost(Kind: SK, Tp: SrcTy, Mask, CostKind: CK) + |
770 | TTI.getCastInstrCost(Opcode: Instruction::BitCast, Dst: DestTy, Src: OldShuffleTy, |
771 | CCH: TargetTransformInfo::CastContextHint::None, CostKind: CK); |
772 | if (DestCost > SrcCost || !DestCost.isValid()) |
773 | return false; |
774 | |
775 | // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC' |
776 | ++NumShufOfBitcast; |
777 | Value *CastV0 = Builder.CreateBitCast(V: peekThroughBitcasts(V: V0), DestTy: NewShuffleTy); |
778 | Value *CastV1 = Builder.CreateBitCast(V: peekThroughBitcasts(V: V1), DestTy: NewShuffleTy); |
779 | Value *Shuf = Builder.CreateShuffleVector(V1: CastV0, V2: CastV1, Mask: NewMask); |
780 | replaceValue(Old&: I, New&: *Shuf); |
781 | return true; |
782 | } |
783 | |
784 | /// VP Intrinsics whose vector operands are both splat values may be simplified |
785 | /// into the scalar version of the operation and the result splatted. This |
786 | /// can lead to scalarization down the line. |
787 | bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) { |
788 | if (!isa<VPIntrinsic>(Val: I)) |
789 | return false; |
790 | VPIntrinsic &VPI = cast<VPIntrinsic>(Val&: I); |
791 | Value *Op0 = VPI.getArgOperand(i: 0); |
792 | Value *Op1 = VPI.getArgOperand(i: 1); |
793 | |
794 | if (!isSplatValue(V: Op0) || !isSplatValue(V: Op1)) |
795 | return false; |
796 | |
797 | // Check getSplatValue early in this function, to avoid doing unnecessary |
798 | // work. |
799 | Value *ScalarOp0 = getSplatValue(V: Op0); |
800 | Value *ScalarOp1 = getSplatValue(V: Op1); |
801 | if (!ScalarOp0 || !ScalarOp1) |
802 | return false; |
803 | |
804 | // For the binary VP intrinsics supported here, the result on disabled lanes |
805 | // is a poison value. For now, only do this simplification if all lanes |
806 | // are active. |
807 | // TODO: Relax the condition that all lanes are active by using insertelement |
808 | // on inactive lanes. |
809 | auto IsAllTrueMask = [](Value *MaskVal) { |
810 | if (Value *SplattedVal = getSplatValue(V: MaskVal)) |
811 | if (auto *ConstValue = dyn_cast<Constant>(Val: SplattedVal)) |
812 | return ConstValue->isAllOnesValue(); |
813 | return false; |
814 | }; |
815 | if (!IsAllTrueMask(VPI.getArgOperand(i: 2))) |
816 | return false; |
817 | |
818 | // Check to make sure we support scalarization of the intrinsic |
819 | Intrinsic::ID IntrID = VPI.getIntrinsicID(); |
820 | if (!VPBinOpIntrinsic::isVPBinOp(ID: IntrID)) |
821 | return false; |
822 | |
823 | // Calculate cost of splatting both operands into vectors and the vector |
824 | // intrinsic |
825 | VectorType *VecTy = cast<VectorType>(Val: VPI.getType()); |
826 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
827 | SmallVector<int> Mask; |
828 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: VecTy)) |
829 | Mask.resize(N: FVTy->getNumElements(), NV: 0); |
830 | InstructionCost SplatCost = |
831 | TTI.getVectorInstrCost(Opcode: Instruction::InsertElement, Val: VecTy, CostKind, Index: 0) + |
832 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_Broadcast, Tp: VecTy, Mask); |
833 | |
834 | // Calculate the cost of the VP Intrinsic |
835 | SmallVector<Type *, 4> Args; |
836 | for (Value *V : VPI.args()) |
837 | Args.push_back(Elt: V->getType()); |
838 | IntrinsicCostAttributes Attrs(IntrID, VecTy, Args); |
839 | InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(ICA: Attrs, CostKind); |
840 | InstructionCost OldCost = 2 * SplatCost + VectorOpCost; |
841 | |
842 | // Determine scalar opcode |
843 | std::optional<unsigned> FunctionalOpcode = |
844 | VPI.getFunctionalOpcode(); |
845 | std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt; |
846 | if (!FunctionalOpcode) { |
847 | ScalarIntrID = VPI.getFunctionalIntrinsicID(); |
848 | if (!ScalarIntrID) |
849 | return false; |
850 | } |
851 | |
852 | // Calculate cost of scalarizing |
853 | InstructionCost ScalarOpCost = 0; |
854 | if (ScalarIntrID) { |
855 | IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args); |
856 | ScalarOpCost = TTI.getIntrinsicInstrCost(ICA: Attrs, CostKind); |
857 | } else { |
858 | ScalarOpCost = |
859 | TTI.getArithmeticInstrCost(Opcode: *FunctionalOpcode, Ty: VecTy->getScalarType()); |
860 | } |
861 | |
862 | // The existing splats may be kept around if other instructions use them. |
863 | InstructionCost CostToKeepSplats = |
864 | (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse()); |
865 | InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats; |
866 | |
867 | LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI |
868 | << "\n" ); |
869 | LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost |
870 | << ", Cost of scalarizing:" << NewCost << "\n" ); |
871 | |
872 | // We want to scalarize unless the vector variant actually has lower cost. |
873 | if (OldCost < NewCost || !NewCost.isValid()) |
874 | return false; |
875 | |
876 | // Scalarize the intrinsic |
877 | ElementCount EC = cast<VectorType>(Val: Op0->getType())->getElementCount(); |
878 | Value *EVL = VPI.getArgOperand(i: 3); |
879 | |
880 | // If the VP op might introduce UB or poison, we can scalarize it provided |
881 | // that we know the EVL > 0: If the EVL is zero, then the original VP op |
882 | // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by |
883 | // scalarizing it. |
884 | bool SafeToSpeculate; |
885 | if (ScalarIntrID) |
886 | SafeToSpeculate = Intrinsic::getAttributes(C&: I.getContext(), id: *ScalarIntrID) |
887 | .hasFnAttr(Kind: Attribute::AttrKind::Speculatable); |
888 | else |
889 | SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode( |
890 | Opcode: *FunctionalOpcode, Inst: &VPI, CtxI: nullptr, AC: &AC, DT: &DT); |
891 | if (!SafeToSpeculate && |
892 | !isKnownNonZero(V: EVL, Q: SimplifyQuery(*DL, &DT, &AC, &VPI))) |
893 | return false; |
894 | |
895 | Value *ScalarVal = |
896 | ScalarIntrID |
897 | ? Builder.CreateIntrinsic(RetTy: VecTy->getScalarType(), ID: *ScalarIntrID, |
898 | Args: {ScalarOp0, ScalarOp1}) |
899 | : Builder.CreateBinOp(Opc: (Instruction::BinaryOps)(*FunctionalOpcode), |
900 | LHS: ScalarOp0, RHS: ScalarOp1); |
901 | |
902 | replaceValue(Old&: VPI, New&: *Builder.CreateVectorSplat(EC, V: ScalarVal)); |
903 | return true; |
904 | } |
905 | |
906 | /// Match a vector binop or compare instruction with at least one inserted |
907 | /// scalar operand and convert to scalar binop/cmp followed by insertelement. |
908 | bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { |
909 | CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
910 | Value *Ins0, *Ins1; |
911 | if (!match(V: &I, P: m_BinOp(L: m_Value(V&: Ins0), R: m_Value(V&: Ins1))) && |
912 | !match(V: &I, P: m_Cmp(Pred, L: m_Value(V&: Ins0), R: m_Value(V&: Ins1)))) |
913 | return false; |
914 | |
915 | // Do not convert the vector condition of a vector select into a scalar |
916 | // condition. That may cause problems for codegen because of differences in |
917 | // boolean formats and register-file transfers. |
918 | // TODO: Can we account for that in the cost model? |
919 | bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; |
920 | if (IsCmp) |
921 | for (User *U : I.users()) |
922 | if (match(V: U, P: m_Select(C: m_Specific(V: &I), L: m_Value(), R: m_Value()))) |
923 | return false; |
924 | |
925 | // Match against one or both scalar values being inserted into constant |
926 | // vectors: |
927 | // vec_op VecC0, (inselt VecC1, V1, Index) |
928 | // vec_op (inselt VecC0, V0, Index), VecC1 |
929 | // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) |
930 | // TODO: Deal with mismatched index constants and variable indexes? |
931 | Constant *VecC0 = nullptr, *VecC1 = nullptr; |
932 | Value *V0 = nullptr, *V1 = nullptr; |
933 | uint64_t Index0 = 0, Index1 = 0; |
934 | if (!match(V: Ins0, P: m_InsertElt(Val: m_Constant(C&: VecC0), Elt: m_Value(V&: V0), |
935 | Idx: m_ConstantInt(V&: Index0))) && |
936 | !match(V: Ins0, P: m_Constant(C&: VecC0))) |
937 | return false; |
938 | if (!match(V: Ins1, P: m_InsertElt(Val: m_Constant(C&: VecC1), Elt: m_Value(V&: V1), |
939 | Idx: m_ConstantInt(V&: Index1))) && |
940 | !match(V: Ins1, P: m_Constant(C&: VecC1))) |
941 | return false; |
942 | |
943 | bool IsConst0 = !V0; |
944 | bool IsConst1 = !V1; |
945 | if (IsConst0 && IsConst1) |
946 | return false; |
947 | if (!IsConst0 && !IsConst1 && Index0 != Index1) |
948 | return false; |
949 | |
950 | // Bail for single insertion if it is a load. |
951 | // TODO: Handle this once getVectorInstrCost can cost for load/stores. |
952 | auto *I0 = dyn_cast_or_null<Instruction>(Val: V0); |
953 | auto *I1 = dyn_cast_or_null<Instruction>(Val: V1); |
954 | if ((IsConst0 && I1 && I1->mayReadFromMemory()) || |
955 | (IsConst1 && I0 && I0->mayReadFromMemory())) |
956 | return false; |
957 | |
958 | uint64_t Index = IsConst0 ? Index1 : Index0; |
959 | Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); |
960 | Type *VecTy = I.getType(); |
961 | assert(VecTy->isVectorTy() && |
962 | (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && |
963 | (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || |
964 | ScalarTy->isPointerTy()) && |
965 | "Unexpected types for insert element into binop or cmp" ); |
966 | |
967 | unsigned Opcode = I.getOpcode(); |
968 | InstructionCost ScalarOpCost, VectorOpCost; |
969 | if (IsCmp) { |
970 | CmpInst::Predicate Pred = cast<CmpInst>(Val&: I).getPredicate(); |
971 | ScalarOpCost = TTI.getCmpSelInstrCost( |
972 | Opcode, ValTy: ScalarTy, CondTy: CmpInst::makeCmpResultType(opnd_type: ScalarTy), VecPred: Pred); |
973 | VectorOpCost = TTI.getCmpSelInstrCost( |
974 | Opcode, ValTy: VecTy, CondTy: CmpInst::makeCmpResultType(opnd_type: VecTy), VecPred: Pred); |
975 | } else { |
976 | ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: ScalarTy); |
977 | VectorOpCost = TTI.getArithmeticInstrCost(Opcode, Ty: VecTy); |
978 | } |
979 | |
980 | // Get cost estimate for the insert element. This cost will factor into |
981 | // both sequences. |
982 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
983 | InstructionCost InsertCost = TTI.getVectorInstrCost( |
984 | Opcode: Instruction::InsertElement, Val: VecTy, CostKind, Index); |
985 | InstructionCost OldCost = |
986 | (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; |
987 | InstructionCost NewCost = ScalarOpCost + InsertCost + |
988 | (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + |
989 | (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); |
990 | |
991 | // We want to scalarize unless the vector variant actually has lower cost. |
992 | if (OldCost < NewCost || !NewCost.isValid()) |
993 | return false; |
994 | |
995 | // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> |
996 | // inselt NewVecC, (scalar_op V0, V1), Index |
997 | if (IsCmp) |
998 | ++NumScalarCmp; |
999 | else |
1000 | ++NumScalarBO; |
1001 | |
1002 | // For constant cases, extract the scalar element, this should constant fold. |
1003 | if (IsConst0) |
1004 | V0 = ConstantExpr::getExtractElement(Vec: VecC0, Idx: Builder.getInt64(C: Index)); |
1005 | if (IsConst1) |
1006 | V1 = ConstantExpr::getExtractElement(Vec: VecC1, Idx: Builder.getInt64(C: Index)); |
1007 | |
1008 | Value *Scalar = |
1009 | IsCmp ? Builder.CreateCmp(Pred, LHS: V0, RHS: V1) |
1010 | : Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Opcode, LHS: V0, RHS: V1); |
1011 | |
1012 | Scalar->setName(I.getName() + ".scalar" ); |
1013 | |
1014 | // All IR flags are safe to back-propagate. There is no potential for extra |
1015 | // poison to be created by the scalar instruction. |
1016 | if (auto *ScalarInst = dyn_cast<Instruction>(Val: Scalar)) |
1017 | ScalarInst->copyIRFlags(V: &I); |
1018 | |
1019 | // Fold the vector constants in the original vectors into a new base vector. |
1020 | Value *NewVecC = |
1021 | IsCmp ? Builder.CreateCmp(Pred, LHS: VecC0, RHS: VecC1) |
1022 | : Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Opcode, LHS: VecC0, RHS: VecC1); |
1023 | Value *Insert = Builder.CreateInsertElement(Vec: NewVecC, NewElt: Scalar, Idx: Index); |
1024 | replaceValue(Old&: I, New&: *Insert); |
1025 | return true; |
1026 | } |
1027 | |
1028 | /// Try to combine a scalar binop + 2 scalar compares of extracted elements of |
1029 | /// a vector into vector operations followed by extract. Note: The SLP pass |
1030 | /// may miss this pattern because of implementation problems. |
1031 | bool VectorCombine::(Instruction &I) { |
1032 | // We are looking for a scalar binop of booleans. |
1033 | // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) |
1034 | if (!I.isBinaryOp() || !I.getType()->isIntegerTy(Bitwidth: 1)) |
1035 | return false; |
1036 | |
1037 | // The compare predicates should match, and each compare should have a |
1038 | // constant operand. |
1039 | // TODO: Relax the one-use constraints. |
1040 | Value *B0 = I.getOperand(i: 0), *B1 = I.getOperand(i: 1); |
1041 | Instruction *I0, *I1; |
1042 | Constant *C0, *C1; |
1043 | CmpInst::Predicate P0, P1; |
1044 | if (!match(V: B0, P: m_OneUse(SubPattern: m_Cmp(Pred&: P0, L: m_Instruction(I&: I0), R: m_Constant(C&: C0)))) || |
1045 | !match(V: B1, P: m_OneUse(SubPattern: m_Cmp(Pred&: P1, L: m_Instruction(I&: I1), R: m_Constant(C&: C1)))) || |
1046 | P0 != P1) |
1047 | return false; |
1048 | |
1049 | // The compare operands must be extracts of the same vector with constant |
1050 | // extract indexes. |
1051 | // TODO: Relax the one-use constraints. |
1052 | Value *X; |
1053 | uint64_t Index0, Index1; |
1054 | if (!match(V: I0, P: m_OneUse(SubPattern: m_ExtractElt(Val: m_Value(V&: X), Idx: m_ConstantInt(V&: Index0)))) || |
1055 | !match(V: I1, P: m_OneUse(SubPattern: m_ExtractElt(Val: m_Specific(V: X), Idx: m_ConstantInt(V&: Index1))))) |
1056 | return false; |
1057 | |
1058 | auto *Ext0 = cast<ExtractElementInst>(Val: I0); |
1059 | auto *Ext1 = cast<ExtractElementInst>(Val: I1); |
1060 | ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); |
1061 | if (!ConvertToShuf) |
1062 | return false; |
1063 | |
1064 | // The original scalar pattern is: |
1065 | // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) |
1066 | CmpInst::Predicate Pred = P0; |
1067 | unsigned CmpOpcode = CmpInst::isFPPredicate(P: Pred) ? Instruction::FCmp |
1068 | : Instruction::ICmp; |
1069 | auto *VecTy = dyn_cast<FixedVectorType>(Val: X->getType()); |
1070 | if (!VecTy) |
1071 | return false; |
1072 | |
1073 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
1074 | InstructionCost OldCost = |
1075 | TTI.getVectorInstrCost(I: *Ext0, Val: VecTy, CostKind, Index: Index0); |
1076 | OldCost += TTI.getVectorInstrCost(I: *Ext1, Val: VecTy, CostKind, Index: Index1); |
1077 | OldCost += |
1078 | TTI.getCmpSelInstrCost(Opcode: CmpOpcode, ValTy: I0->getType(), |
1079 | CondTy: CmpInst::makeCmpResultType(opnd_type: I0->getType()), VecPred: Pred) * |
1080 | 2; |
1081 | OldCost += TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: I.getType()); |
1082 | |
1083 | // The proposed vector pattern is: |
1084 | // vcmp = cmp Pred X, VecC |
1085 | // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 |
1086 | int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; |
1087 | int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; |
1088 | auto *CmpTy = cast<FixedVectorType>(Val: CmpInst::makeCmpResultType(opnd_type: X->getType())); |
1089 | InstructionCost NewCost = TTI.getCmpSelInstrCost( |
1090 | Opcode: CmpOpcode, ValTy: X->getType(), CondTy: CmpInst::makeCmpResultType(opnd_type: X->getType()), VecPred: Pred); |
1091 | SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem); |
1092 | ShufMask[CheapIndex] = ExpensiveIndex; |
1093 | NewCost += TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, Tp: CmpTy, |
1094 | Mask: ShufMask); |
1095 | NewCost += TTI.getArithmeticInstrCost(Opcode: I.getOpcode(), Ty: CmpTy); |
1096 | NewCost += TTI.getVectorInstrCost(I: *Ext0, Val: CmpTy, CostKind, Index: CheapIndex); |
1097 | |
1098 | // Aggressively form vector ops if the cost is equal because the transform |
1099 | // may enable further optimization. |
1100 | // Codegen can reverse this transform (scalarize) if it was not profitable. |
1101 | if (OldCost < NewCost || !NewCost.isValid()) |
1102 | return false; |
1103 | |
1104 | // Create a vector constant from the 2 scalar constants. |
1105 | SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), |
1106 | PoisonValue::get(T: VecTy->getElementType())); |
1107 | CmpC[Index0] = C0; |
1108 | CmpC[Index1] = C1; |
1109 | Value *VCmp = Builder.CreateCmp(Pred, LHS: X, RHS: ConstantVector::get(V: CmpC)); |
1110 | |
1111 | Value *Shuf = createShiftShuffle(Vec: VCmp, OldIndex: ExpensiveIndex, NewIndex: CheapIndex, Builder); |
1112 | Value *VecLogic = Builder.CreateBinOp(Opc: cast<BinaryOperator>(Val&: I).getOpcode(), |
1113 | LHS: VCmp, RHS: Shuf); |
1114 | Value *NewExt = Builder.CreateExtractElement(Vec: VecLogic, Idx: CheapIndex); |
1115 | replaceValue(Old&: I, New&: *NewExt); |
1116 | ++NumVecCmpBO; |
1117 | return true; |
1118 | } |
1119 | |
1120 | // Check if memory loc modified between two instrs in the same BB |
1121 | static bool isMemModifiedBetween(BasicBlock::iterator Begin, |
1122 | BasicBlock::iterator End, |
1123 | const MemoryLocation &Loc, AAResults &AA) { |
1124 | unsigned NumScanned = 0; |
1125 | return std::any_of(first: Begin, last: End, pred: [&](const Instruction &Instr) { |
1126 | return isModSet(MRI: AA.getModRefInfo(I: &Instr, OptLoc: Loc)) || |
1127 | ++NumScanned > MaxInstrsToScan; |
1128 | }); |
1129 | } |
1130 | |
1131 | namespace { |
1132 | /// Helper class to indicate whether a vector index can be safely scalarized and |
1133 | /// if a freeze needs to be inserted. |
1134 | class ScalarizationResult { |
1135 | enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; |
1136 | |
1137 | StatusTy Status; |
1138 | Value *ToFreeze; |
1139 | |
1140 | ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) |
1141 | : Status(Status), ToFreeze(ToFreeze) {} |
1142 | |
1143 | public: |
1144 | ScalarizationResult(const ScalarizationResult &Other) = default; |
1145 | ~ScalarizationResult() { |
1146 | assert(!ToFreeze && "freeze() not called with ToFreeze being set" ); |
1147 | } |
1148 | |
1149 | static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } |
1150 | static ScalarizationResult safe() { return {StatusTy::Safe}; } |
1151 | static ScalarizationResult safeWithFreeze(Value *ToFreeze) { |
1152 | return {StatusTy::SafeWithFreeze, ToFreeze}; |
1153 | } |
1154 | |
1155 | /// Returns true if the index can be scalarize without requiring a freeze. |
1156 | bool isSafe() const { return Status == StatusTy::Safe; } |
1157 | /// Returns true if the index cannot be scalarized. |
1158 | bool isUnsafe() const { return Status == StatusTy::Unsafe; } |
1159 | /// Returns true if the index can be scalarize, but requires inserting a |
1160 | /// freeze. |
1161 | bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } |
1162 | |
1163 | /// Reset the state of Unsafe and clear ToFreze if set. |
1164 | void discard() { |
1165 | ToFreeze = nullptr; |
1166 | Status = StatusTy::Unsafe; |
1167 | } |
1168 | |
1169 | /// Freeze the ToFreeze and update the use in \p User to use it. |
1170 | void freeze(IRBuilder<> &Builder, Instruction &UserI) { |
1171 | assert(isSafeWithFreeze() && |
1172 | "should only be used when freezing is required" ); |
1173 | assert(is_contained(ToFreeze->users(), &UserI) && |
1174 | "UserI must be a user of ToFreeze" ); |
1175 | IRBuilder<>::InsertPointGuard Guard(Builder); |
1176 | Builder.SetInsertPoint(cast<Instruction>(Val: &UserI)); |
1177 | Value *Frozen = |
1178 | Builder.CreateFreeze(V: ToFreeze, Name: ToFreeze->getName() + ".frozen" ); |
1179 | for (Use &U : make_early_inc_range(Range: (UserI.operands()))) |
1180 | if (U.get() == ToFreeze) |
1181 | U.set(Frozen); |
1182 | |
1183 | ToFreeze = nullptr; |
1184 | } |
1185 | }; |
1186 | } // namespace |
1187 | |
1188 | /// Check if it is legal to scalarize a memory access to \p VecTy at index \p |
1189 | /// Idx. \p Idx must access a valid vector element. |
1190 | static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, |
1191 | Instruction *CtxI, |
1192 | AssumptionCache &AC, |
1193 | const DominatorTree &DT) { |
1194 | // We do checks for both fixed vector types and scalable vector types. |
1195 | // This is the number of elements of fixed vector types, |
1196 | // or the minimum number of elements of scalable vector types. |
1197 | uint64_t NumElements = VecTy->getElementCount().getKnownMinValue(); |
1198 | |
1199 | if (auto *C = dyn_cast<ConstantInt>(Val: Idx)) { |
1200 | if (C->getValue().ult(RHS: NumElements)) |
1201 | return ScalarizationResult::safe(); |
1202 | return ScalarizationResult::unsafe(); |
1203 | } |
1204 | |
1205 | unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); |
1206 | APInt Zero(IntWidth, 0); |
1207 | APInt MaxElts(IntWidth, NumElements); |
1208 | ConstantRange ValidIndices(Zero, MaxElts); |
1209 | ConstantRange IdxRange(IntWidth, true); |
1210 | |
1211 | if (isGuaranteedNotToBePoison(V: Idx, AC: &AC)) { |
1212 | if (ValidIndices.contains(CR: computeConstantRange(V: Idx, /* ForSigned */ false, |
1213 | UseInstrInfo: true, AC: &AC, CtxI, DT: &DT))) |
1214 | return ScalarizationResult::safe(); |
1215 | return ScalarizationResult::unsafe(); |
1216 | } |
1217 | |
1218 | // If the index may be poison, check if we can insert a freeze before the |
1219 | // range of the index is restricted. |
1220 | Value *IdxBase; |
1221 | ConstantInt *CI; |
1222 | if (match(V: Idx, P: m_And(L: m_Value(V&: IdxBase), R: m_ConstantInt(CI)))) { |
1223 | IdxRange = IdxRange.binaryAnd(Other: CI->getValue()); |
1224 | } else if (match(V: Idx, P: m_URem(L: m_Value(V&: IdxBase), R: m_ConstantInt(CI)))) { |
1225 | IdxRange = IdxRange.urem(Other: CI->getValue()); |
1226 | } |
1227 | |
1228 | if (ValidIndices.contains(CR: IdxRange)) |
1229 | return ScalarizationResult::safeWithFreeze(ToFreeze: IdxBase); |
1230 | return ScalarizationResult::unsafe(); |
1231 | } |
1232 | |
1233 | /// The memory operation on a vector of \p ScalarType had alignment of |
1234 | /// \p VectorAlignment. Compute the maximal, but conservatively correct, |
1235 | /// alignment that will be valid for the memory operation on a single scalar |
1236 | /// element of the same type with index \p Idx. |
1237 | static Align computeAlignmentAfterScalarization(Align VectorAlignment, |
1238 | Type *ScalarType, Value *Idx, |
1239 | const DataLayout &DL) { |
1240 | if (auto *C = dyn_cast<ConstantInt>(Val: Idx)) |
1241 | return commonAlignment(A: VectorAlignment, |
1242 | Offset: C->getZExtValue() * DL.getTypeStoreSize(Ty: ScalarType)); |
1243 | return commonAlignment(A: VectorAlignment, Offset: DL.getTypeStoreSize(Ty: ScalarType)); |
1244 | } |
1245 | |
1246 | // Combine patterns like: |
1247 | // %0 = load <4 x i32>, <4 x i32>* %a |
1248 | // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 |
1249 | // store <4 x i32> %1, <4 x i32>* %a |
1250 | // to: |
1251 | // %0 = bitcast <4 x i32>* %a to i32* |
1252 | // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 |
1253 | // store i32 %b, i32* %1 |
1254 | bool VectorCombine::foldSingleElementStore(Instruction &I) { |
1255 | auto *SI = cast<StoreInst>(Val: &I); |
1256 | if (!SI->isSimple() || !isa<VectorType>(Val: SI->getValueOperand()->getType())) |
1257 | return false; |
1258 | |
1259 | // TODO: Combine more complicated patterns (multiple insert) by referencing |
1260 | // TargetTransformInfo. |
1261 | Instruction *Source; |
1262 | Value *NewElement; |
1263 | Value *Idx; |
1264 | if (!match(V: SI->getValueOperand(), |
1265 | P: m_InsertElt(Val: m_Instruction(I&: Source), Elt: m_Value(V&: NewElement), |
1266 | Idx: m_Value(V&: Idx)))) |
1267 | return false; |
1268 | |
1269 | if (auto *Load = dyn_cast<LoadInst>(Val: Source)) { |
1270 | auto VecTy = cast<VectorType>(Val: SI->getValueOperand()->getType()); |
1271 | Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); |
1272 | // Don't optimize for atomic/volatile load or store. Ensure memory is not |
1273 | // modified between, vector type matches store size, and index is inbounds. |
1274 | if (!Load->isSimple() || Load->getParent() != SI->getParent() || |
1275 | !DL->typeSizeEqualsStoreSize(Ty: Load->getType()->getScalarType()) || |
1276 | SrcAddr != SI->getPointerOperand()->stripPointerCasts()) |
1277 | return false; |
1278 | |
1279 | auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, CtxI: Load, AC, DT); |
1280 | if (ScalarizableIdx.isUnsafe() || |
1281 | isMemModifiedBetween(Begin: Load->getIterator(), End: SI->getIterator(), |
1282 | Loc: MemoryLocation::get(SI), AA)) |
1283 | return false; |
1284 | |
1285 | if (ScalarizableIdx.isSafeWithFreeze()) |
1286 | ScalarizableIdx.freeze(Builder, UserI&: *cast<Instruction>(Val: Idx)); |
1287 | Value *GEP = Builder.CreateInBoundsGEP( |
1288 | Ty: SI->getValueOperand()->getType(), Ptr: SI->getPointerOperand(), |
1289 | IdxList: {ConstantInt::get(Ty: Idx->getType(), V: 0), Idx}); |
1290 | StoreInst *NSI = Builder.CreateStore(Val: NewElement, Ptr: GEP); |
1291 | NSI->copyMetadata(SrcInst: *SI); |
1292 | Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
1293 | VectorAlignment: std::max(a: SI->getAlign(), b: Load->getAlign()), ScalarType: NewElement->getType(), Idx, |
1294 | DL: *DL); |
1295 | NSI->setAlignment(ScalarOpAlignment); |
1296 | replaceValue(Old&: I, New&: *NSI); |
1297 | eraseInstruction(I); |
1298 | return true; |
1299 | } |
1300 | |
1301 | return false; |
1302 | } |
1303 | |
1304 | /// Try to scalarize vector loads feeding extractelement instructions. |
1305 | bool VectorCombine::(Instruction &I) { |
1306 | Value *Ptr; |
1307 | if (!match(V: &I, P: m_Load(Op: m_Value(V&: Ptr)))) |
1308 | return false; |
1309 | |
1310 | auto *VecTy = cast<VectorType>(Val: I.getType()); |
1311 | auto *LI = cast<LoadInst>(Val: &I); |
1312 | if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(Ty: VecTy->getScalarType())) |
1313 | return false; |
1314 | |
1315 | InstructionCost OriginalCost = |
1316 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy, Alignment: LI->getAlign(), |
1317 | AddressSpace: LI->getPointerAddressSpace()); |
1318 | InstructionCost ScalarizedCost = 0; |
1319 | |
1320 | Instruction *LastCheckedInst = LI; |
1321 | unsigned NumInstChecked = 0; |
1322 | DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze; |
1323 | auto FailureGuard = make_scope_exit(F: [&]() { |
1324 | // If the transform is aborted, discard the ScalarizationResults. |
1325 | for (auto &Pair : NeedFreeze) |
1326 | Pair.second.discard(); |
1327 | }); |
1328 | |
1329 | // Check if all users of the load are extracts with no memory modifications |
1330 | // between the load and the extract. Compute the cost of both the original |
1331 | // code and the scalarized version. |
1332 | for (User *U : LI->users()) { |
1333 | auto *UI = dyn_cast<ExtractElementInst>(Val: U); |
1334 | if (!UI || UI->getParent() != LI->getParent()) |
1335 | return false; |
1336 | |
1337 | // Check if any instruction between the load and the extract may modify |
1338 | // memory. |
1339 | if (LastCheckedInst->comesBefore(Other: UI)) { |
1340 | for (Instruction &I : |
1341 | make_range(x: std::next(x: LI->getIterator()), y: UI->getIterator())) { |
1342 | // Bail out if we reached the check limit or the instruction may write |
1343 | // to memory. |
1344 | if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) |
1345 | return false; |
1346 | NumInstChecked++; |
1347 | } |
1348 | LastCheckedInst = UI; |
1349 | } |
1350 | |
1351 | auto ScalarIdx = canScalarizeAccess(VecTy, Idx: UI->getOperand(i_nocapture: 1), CtxI: &I, AC, DT); |
1352 | if (ScalarIdx.isUnsafe()) |
1353 | return false; |
1354 | if (ScalarIdx.isSafeWithFreeze()) { |
1355 | NeedFreeze.try_emplace(Key: UI, Args&: ScalarIdx); |
1356 | ScalarIdx.discard(); |
1357 | } |
1358 | |
1359 | auto *Index = dyn_cast<ConstantInt>(Val: UI->getOperand(i_nocapture: 1)); |
1360 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
1361 | OriginalCost += |
1362 | TTI.getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: VecTy, CostKind, |
1363 | Index: Index ? Index->getZExtValue() : -1); |
1364 | ScalarizedCost += |
1365 | TTI.getMemoryOpCost(Opcode: Instruction::Load, Src: VecTy->getElementType(), |
1366 | Alignment: Align(1), AddressSpace: LI->getPointerAddressSpace()); |
1367 | ScalarizedCost += TTI.getAddressComputationCost(Ty: VecTy->getElementType()); |
1368 | } |
1369 | |
1370 | if (ScalarizedCost >= OriginalCost) |
1371 | return false; |
1372 | |
1373 | // Replace extracts with narrow scalar loads. |
1374 | for (User *U : LI->users()) { |
1375 | auto *EI = cast<ExtractElementInst>(Val: U); |
1376 | Value *Idx = EI->getOperand(i_nocapture: 1); |
1377 | |
1378 | // Insert 'freeze' for poison indexes. |
1379 | auto It = NeedFreeze.find(Val: EI); |
1380 | if (It != NeedFreeze.end()) |
1381 | It->second.freeze(Builder, UserI&: *cast<Instruction>(Val: Idx)); |
1382 | |
1383 | Builder.SetInsertPoint(EI); |
1384 | Value *GEP = |
1385 | Builder.CreateInBoundsGEP(Ty: VecTy, Ptr, IdxList: {Builder.getInt32(C: 0), Idx}); |
1386 | auto *NewLoad = cast<LoadInst>(Val: Builder.CreateLoad( |
1387 | Ty: VecTy->getElementType(), Ptr: GEP, Name: EI->getName() + ".scalar" )); |
1388 | |
1389 | Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
1390 | VectorAlignment: LI->getAlign(), ScalarType: VecTy->getElementType(), Idx, DL: *DL); |
1391 | NewLoad->setAlignment(ScalarOpAlignment); |
1392 | |
1393 | replaceValue(Old&: *EI, New&: *NewLoad); |
1394 | } |
1395 | |
1396 | FailureGuard.release(); |
1397 | return true; |
1398 | } |
1399 | |
1400 | /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)". |
1401 | bool VectorCombine::foldShuffleOfBinops(Instruction &I) { |
1402 | BinaryOperator *B0, *B1; |
1403 | ArrayRef<int> OldMask; |
1404 | if (!match(V: &I, P: m_Shuffle(v1: m_OneUse(SubPattern: m_BinOp(I&: B0)), v2: m_OneUse(SubPattern: m_BinOp(I&: B1)), |
1405 | mask: m_Mask(OldMask)))) |
1406 | return false; |
1407 | |
1408 | // Don't introduce poison into div/rem. |
1409 | if (any_of(Range&: OldMask, P: [](int M) { return M == PoisonMaskElem; }) && |
1410 | B0->isIntDivRem()) |
1411 | return false; |
1412 | |
1413 | // TODO: Add support for addlike etc. |
1414 | Instruction::BinaryOps Opcode = B0->getOpcode(); |
1415 | if (Opcode != B1->getOpcode()) |
1416 | return false; |
1417 | |
1418 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
1419 | auto *BinOpTy = dyn_cast<FixedVectorType>(Val: B0->getType()); |
1420 | if (!ShuffleDstTy || !BinOpTy) |
1421 | return false; |
1422 | |
1423 | unsigned NumSrcElts = BinOpTy->getNumElements(); |
1424 | |
1425 | // If we have something like "add X, Y" and "add Z, X", swap ops to match. |
1426 | Value *X = B0->getOperand(i_nocapture: 0), *Y = B0->getOperand(i_nocapture: 1); |
1427 | Value *Z = B1->getOperand(i_nocapture: 0), *W = B1->getOperand(i_nocapture: 1); |
1428 | if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W && |
1429 | (X == W || Y == Z)) |
1430 | std::swap(a&: X, b&: Y); |
1431 | |
1432 | auto ConvertToUnary = [NumSrcElts](int &M) { |
1433 | if (M >= (int)NumSrcElts) |
1434 | M -= NumSrcElts; |
1435 | }; |
1436 | |
1437 | SmallVector<int> NewMask0(OldMask.begin(), OldMask.end()); |
1438 | TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc; |
1439 | if (X == Z) { |
1440 | llvm::for_each(Range&: NewMask0, F: ConvertToUnary); |
1441 | SK0 = TargetTransformInfo::SK_PermuteSingleSrc; |
1442 | Z = PoisonValue::get(T: BinOpTy); |
1443 | } |
1444 | |
1445 | SmallVector<int> NewMask1(OldMask.begin(), OldMask.end()); |
1446 | TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc; |
1447 | if (Y == W) { |
1448 | llvm::for_each(Range&: NewMask1, F: ConvertToUnary); |
1449 | SK1 = TargetTransformInfo::SK_PermuteSingleSrc; |
1450 | W = PoisonValue::get(T: BinOpTy); |
1451 | } |
1452 | |
1453 | // Try to replace a binop with a shuffle if the shuffle is not costly. |
1454 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
1455 | |
1456 | InstructionCost OldCost = |
1457 | TTI.getArithmeticInstrCost(Opcode: B0->getOpcode(), Ty: BinOpTy, CostKind) + |
1458 | TTI.getArithmeticInstrCost(Opcode: B1->getOpcode(), Ty: BinOpTy, CostKind) + |
1459 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, Tp: BinOpTy, |
1460 | Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: {B0, B1}, CxtI: &I); |
1461 | |
1462 | InstructionCost NewCost = |
1463 | TTI.getShuffleCost(Kind: SK0, Tp: BinOpTy, Mask: NewMask0, CostKind, Index: 0, SubTp: nullptr, Args: {X, Z}) + |
1464 | TTI.getShuffleCost(Kind: SK1, Tp: BinOpTy, Mask: NewMask1, CostKind, Index: 0, SubTp: nullptr, Args: {Y, W}) + |
1465 | TTI.getArithmeticInstrCost(Opcode, Ty: ShuffleDstTy, CostKind); |
1466 | |
1467 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I |
1468 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
1469 | << "\n" ); |
1470 | if (NewCost >= OldCost) |
1471 | return false; |
1472 | |
1473 | Value *Shuf0 = Builder.CreateShuffleVector(V1: X, V2: Z, Mask: NewMask0); |
1474 | Value *Shuf1 = Builder.CreateShuffleVector(V1: Y, V2: W, Mask: NewMask1); |
1475 | Value *NewBO = Builder.CreateBinOp(Opc: Opcode, LHS: Shuf0, RHS: Shuf1); |
1476 | |
1477 | // Intersect flags from the old binops. |
1478 | if (auto *NewInst = dyn_cast<Instruction>(Val: NewBO)) { |
1479 | NewInst->copyIRFlags(V: B0); |
1480 | NewInst->andIRFlags(V: B1); |
1481 | } |
1482 | |
1483 | Worklist.pushValue(V: Shuf0); |
1484 | Worklist.pushValue(V: Shuf1); |
1485 | replaceValue(Old&: I, New&: *NewBO); |
1486 | return true; |
1487 | } |
1488 | |
1489 | /// Try to convert "shuffle (castop), (castop)" with a shared castop operand |
1490 | /// into "castop (shuffle)". |
1491 | bool VectorCombine::foldShuffleOfCastops(Instruction &I) { |
1492 | Value *V0, *V1; |
1493 | ArrayRef<int> OldMask; |
1494 | if (!match(V: &I, P: m_Shuffle(v1: m_Value(V&: V0), v2: m_Value(V&: V1), mask: m_Mask(OldMask)))) |
1495 | return false; |
1496 | |
1497 | auto *C0 = dyn_cast<CastInst>(Val: V0); |
1498 | auto *C1 = dyn_cast<CastInst>(Val: V1); |
1499 | if (!C0 || !C1) |
1500 | return false; |
1501 | |
1502 | Instruction::CastOps Opcode = C0->getOpcode(); |
1503 | if (C0->getSrcTy() != C1->getSrcTy()) |
1504 | return false; |
1505 | |
1506 | // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds. |
1507 | if (Opcode != C1->getOpcode()) { |
1508 | if (match(V: C0, P: m_SExtLike(Op: m_Value())) && match(V: C1, P: m_SExtLike(Op: m_Value()))) |
1509 | Opcode = Instruction::SExt; |
1510 | else |
1511 | return false; |
1512 | } |
1513 | |
1514 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
1515 | auto *CastDstTy = dyn_cast<FixedVectorType>(Val: C0->getDestTy()); |
1516 | auto *CastSrcTy = dyn_cast<FixedVectorType>(Val: C0->getSrcTy()); |
1517 | if (!ShuffleDstTy || !CastDstTy || !CastSrcTy) |
1518 | return false; |
1519 | |
1520 | unsigned NumSrcElts = CastSrcTy->getNumElements(); |
1521 | unsigned NumDstElts = CastDstTy->getNumElements(); |
1522 | assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) && |
1523 | "Only bitcasts expected to alter src/dst element counts" ); |
1524 | |
1525 | // Check for bitcasting of unscalable vector types. |
1526 | // e.g. <32 x i40> -> <40 x i32> |
1527 | if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 && |
1528 | (NumDstElts % NumSrcElts) != 0) |
1529 | return false; |
1530 | |
1531 | SmallVector<int, 16> NewMask; |
1532 | if (NumSrcElts >= NumDstElts) { |
1533 | // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
1534 | // always be expanded to the equivalent form choosing narrower elements. |
1535 | assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask" ); |
1536 | unsigned ScaleFactor = NumSrcElts / NumDstElts; |
1537 | narrowShuffleMaskElts(Scale: ScaleFactor, Mask: OldMask, ScaledMask&: NewMask); |
1538 | } else { |
1539 | // The bitcast is from narrow elements to wide elements. The shuffle mask |
1540 | // must choose consecutive elements to allow casting first. |
1541 | assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask" ); |
1542 | unsigned ScaleFactor = NumDstElts / NumSrcElts; |
1543 | if (!widenShuffleMaskElts(Scale: ScaleFactor, Mask: OldMask, ScaledMask&: NewMask)) |
1544 | return false; |
1545 | } |
1546 | |
1547 | auto *NewShuffleDstTy = |
1548 | FixedVectorType::get(ElementType: CastSrcTy->getScalarType(), NumElts: NewMask.size()); |
1549 | |
1550 | // Try to replace a castop with a shuffle if the shuffle is not costly. |
1551 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
1552 | |
1553 | InstructionCost CostC0 = |
1554 | TTI.getCastInstrCost(Opcode: C0->getOpcode(), Dst: CastDstTy, Src: CastSrcTy, |
1555 | CCH: TTI::CastContextHint::None, CostKind); |
1556 | InstructionCost CostC1 = |
1557 | TTI.getCastInstrCost(Opcode: C1->getOpcode(), Dst: CastDstTy, Src: CastSrcTy, |
1558 | CCH: TTI::CastContextHint::None, CostKind); |
1559 | InstructionCost OldCost = CostC0 + CostC1; |
1560 | OldCost += |
1561 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, Tp: CastDstTy, |
1562 | Mask: OldMask, CostKind, Index: 0, SubTp: nullptr, Args: std::nullopt, CxtI: &I); |
1563 | |
1564 | InstructionCost NewCost = TTI.getShuffleCost( |
1565 | Kind: TargetTransformInfo::SK_PermuteTwoSrc, Tp: CastSrcTy, Mask: NewMask, CostKind); |
1566 | NewCost += TTI.getCastInstrCost(Opcode, Dst: ShuffleDstTy, Src: NewShuffleDstTy, |
1567 | CCH: TTI::CastContextHint::None, CostKind); |
1568 | if (!C0->hasOneUse()) |
1569 | NewCost += CostC0; |
1570 | if (!C1->hasOneUse()) |
1571 | NewCost += CostC1; |
1572 | |
1573 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I |
1574 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
1575 | << "\n" ); |
1576 | if (NewCost > OldCost) |
1577 | return false; |
1578 | |
1579 | Value *Shuf = Builder.CreateShuffleVector(V1: C0->getOperand(i_nocapture: 0), |
1580 | V2: C1->getOperand(i_nocapture: 0), Mask: NewMask); |
1581 | Value *Cast = Builder.CreateCast(Op: Opcode, V: Shuf, DestTy: ShuffleDstTy); |
1582 | |
1583 | // Intersect flags from the old casts. |
1584 | if (auto *NewInst = dyn_cast<Instruction>(Val: Cast)) { |
1585 | NewInst->copyIRFlags(V: C0); |
1586 | NewInst->andIRFlags(V: C1); |
1587 | } |
1588 | |
1589 | Worklist.pushValue(V: Shuf); |
1590 | replaceValue(Old&: I, New&: *Cast); |
1591 | return true; |
1592 | } |
1593 | |
1594 | /// Try to convert "shuffle (shuffle x, undef), (shuffle y, undef)" |
1595 | /// into "shuffle x, y". |
1596 | bool VectorCombine::foldShuffleOfShuffles(Instruction &I) { |
1597 | Value *V0, *V1; |
1598 | UndefValue *U0, *U1; |
1599 | ArrayRef<int> OuterMask, InnerMask0, InnerMask1; |
1600 | if (!match(V: &I, P: m_Shuffle(v1: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: V0), v2: m_UndefValue(U&: U0), |
1601 | mask: m_Mask(InnerMask0))), |
1602 | v2: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: V1), v2: m_UndefValue(U&: U1), |
1603 | mask: m_Mask(InnerMask1))), |
1604 | mask: m_Mask(OuterMask)))) |
1605 | return false; |
1606 | |
1607 | auto *ShufI0 = dyn_cast<Instruction>(Val: I.getOperand(i: 0)); |
1608 | auto *ShufI1 = dyn_cast<Instruction>(Val: I.getOperand(i: 1)); |
1609 | auto *ShuffleDstTy = dyn_cast<FixedVectorType>(Val: I.getType()); |
1610 | auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(Val: V0->getType()); |
1611 | auto *ShuffleImmTy = dyn_cast<FixedVectorType>(Val: I.getOperand(i: 0)->getType()); |
1612 | if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy || |
1613 | V0->getType() != V1->getType()) |
1614 | return false; |
1615 | |
1616 | unsigned NumSrcElts = ShuffleSrcTy->getNumElements(); |
1617 | unsigned NumImmElts = ShuffleImmTy->getNumElements(); |
1618 | |
1619 | // Bail if either inner masks reference a RHS undef arg. |
1620 | if ((!isa<PoisonValue>(Val: U0) && |
1621 | any_of(Range&: InnerMask0, P: [&](int M) { return M >= (int)NumSrcElts; })) || |
1622 | (!isa<PoisonValue>(Val: U1) && |
1623 | any_of(Range&: InnerMask1, P: [&](int M) { return M >= (int)NumSrcElts; }))) |
1624 | return false; |
1625 | |
1626 | // Merge shuffles - replace index to the RHS poison arg with PoisonMaskElem, |
1627 | SmallVector<int, 16> NewMask(OuterMask.begin(), OuterMask.end()); |
1628 | for (int &M : NewMask) { |
1629 | if (0 <= M && M < (int)NumImmElts) { |
1630 | M = (InnerMask0[M] >= (int)NumSrcElts) ? PoisonMaskElem : InnerMask0[M]; |
1631 | } else if (M >= (int)NumImmElts) { |
1632 | if (InnerMask1[M - NumImmElts] >= (int)NumSrcElts) |
1633 | M = PoisonMaskElem; |
1634 | else |
1635 | M = InnerMask1[M - NumImmElts] + (V0 == V1 ? 0 : NumSrcElts); |
1636 | } |
1637 | } |
1638 | |
1639 | // Have we folded to an Identity shuffle? |
1640 | if (ShuffleVectorInst::isIdentityMask(Mask: NewMask, NumSrcElts)) { |
1641 | replaceValue(Old&: I, New&: *V0); |
1642 | return true; |
1643 | } |
1644 | |
1645 | // Try to merge the shuffles if the new shuffle is not costly. |
1646 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
1647 | |
1648 | InstructionCost OldCost = |
1649 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, Tp: ShuffleSrcTy, |
1650 | Mask: InnerMask0, CostKind, Index: 0, SubTp: nullptr, Args: {V0, U0}, CxtI: ShufI0) + |
1651 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteSingleSrc, Tp: ShuffleSrcTy, |
1652 | Mask: InnerMask1, CostKind, Index: 0, SubTp: nullptr, Args: {V1, U1}, CxtI: ShufI1) + |
1653 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, Tp: ShuffleImmTy, |
1654 | Mask: OuterMask, CostKind, Index: 0, SubTp: nullptr, Args: {ShufI0, ShufI1}, CxtI: &I); |
1655 | |
1656 | InstructionCost NewCost = |
1657 | TTI.getShuffleCost(Kind: TargetTransformInfo::SK_PermuteTwoSrc, Tp: ShuffleSrcTy, |
1658 | Mask: NewMask, CostKind, Index: 0, SubTp: nullptr, Args: {V0, V1}); |
1659 | |
1660 | LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I |
1661 | << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost |
1662 | << "\n" ); |
1663 | if (NewCost > OldCost) |
1664 | return false; |
1665 | |
1666 | // Clear unused sources to poison. |
1667 | if (none_of(Range&: NewMask, P: [&](int M) { return 0 <= M && M < (int)NumSrcElts; })) |
1668 | V0 = PoisonValue::get(T: ShuffleSrcTy); |
1669 | if (none_of(Range&: NewMask, P: [&](int M) { return (int)NumSrcElts <= M; })) |
1670 | V1 = PoisonValue::get(T: ShuffleSrcTy); |
1671 | |
1672 | Value *Shuf = Builder.CreateShuffleVector(V1: V0, V2: V1, Mask: NewMask); |
1673 | replaceValue(Old&: I, New&: *Shuf); |
1674 | return true; |
1675 | } |
1676 | |
1677 | using InstLane = std::pair<Use *, int>; |
1678 | |
1679 | static InstLane lookThroughShuffles(Use *U, int Lane) { |
1680 | while (auto *SV = dyn_cast<ShuffleVectorInst>(Val: U->get())) { |
1681 | unsigned NumElts = |
1682 | cast<FixedVectorType>(Val: SV->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
1683 | int M = SV->getMaskValue(Elt: Lane); |
1684 | if (M < 0) |
1685 | return {nullptr, PoisonMaskElem}; |
1686 | if (static_cast<unsigned>(M) < NumElts) { |
1687 | U = &SV->getOperandUse(i: 0); |
1688 | Lane = M; |
1689 | } else { |
1690 | U = &SV->getOperandUse(i: 1); |
1691 | Lane = M - NumElts; |
1692 | } |
1693 | } |
1694 | return InstLane{U, Lane}; |
1695 | } |
1696 | |
1697 | static SmallVector<InstLane> |
1698 | generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) { |
1699 | SmallVector<InstLane> NItem; |
1700 | for (InstLane IL : Item) { |
1701 | auto [U, Lane] = IL; |
1702 | InstLane OpLane = |
1703 | U ? lookThroughShuffles(U: &cast<Instruction>(Val: U->get())->getOperandUse(i: Op), |
1704 | Lane) |
1705 | : InstLane{nullptr, PoisonMaskElem}; |
1706 | NItem.emplace_back(Args&: OpLane); |
1707 | } |
1708 | return NItem; |
1709 | } |
1710 | |
1711 | /// Detect concat of multiple values into a vector |
1712 | static bool isFreeConcat(ArrayRef<InstLane> Item, |
1713 | const TargetTransformInfo &TTI) { |
1714 | auto *Ty = cast<FixedVectorType>(Val: Item.front().first->get()->getType()); |
1715 | unsigned NumElts = Ty->getNumElements(); |
1716 | if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0) |
1717 | return false; |
1718 | |
1719 | // Check that the concat is free, usually meaning that the type will be split |
1720 | // during legalization. |
1721 | SmallVector<int, 16> ConcatMask(NumElts * 2); |
1722 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
1723 | if (TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, Tp: Ty, Mask: ConcatMask, |
1724 | CostKind: TTI::TCK_RecipThroughput) != 0) |
1725 | return false; |
1726 | |
1727 | unsigned NumSlices = Item.size() / NumElts; |
1728 | // Currently we generate a tree of shuffles for the concats, which limits us |
1729 | // to a power2. |
1730 | if (!isPowerOf2_32(Value: NumSlices)) |
1731 | return false; |
1732 | for (unsigned Slice = 0; Slice < NumSlices; ++Slice) { |
1733 | Use *SliceV = Item[Slice * NumElts].first; |
1734 | if (!SliceV || SliceV->get()->getType() != Ty) |
1735 | return false; |
1736 | for (unsigned Elt = 0; Elt < NumElts; ++Elt) { |
1737 | auto [V, Lane] = Item[Slice * NumElts + Elt]; |
1738 | if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get()) |
1739 | return false; |
1740 | } |
1741 | } |
1742 | return true; |
1743 | } |
1744 | |
1745 | static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty, |
1746 | const SmallPtrSet<Use *, 4> &IdentityLeafs, |
1747 | const SmallPtrSet<Use *, 4> &SplatLeafs, |
1748 | const SmallPtrSet<Use *, 4> &ConcatLeafs, |
1749 | IRBuilder<> &Builder) { |
1750 | auto [FrontU, FrontLane] = Item.front(); |
1751 | |
1752 | if (IdentityLeafs.contains(Ptr: FrontU)) { |
1753 | return FrontU->get(); |
1754 | } |
1755 | if (SplatLeafs.contains(Ptr: FrontU)) { |
1756 | SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane); |
1757 | return Builder.CreateShuffleVector(V: FrontU->get(), Mask); |
1758 | } |
1759 | if (ConcatLeafs.contains(Ptr: FrontU)) { |
1760 | unsigned NumElts = |
1761 | cast<FixedVectorType>(Val: FrontU->get()->getType())->getNumElements(); |
1762 | SmallVector<Value *> Values(Item.size() / NumElts, nullptr); |
1763 | for (unsigned S = 0; S < Values.size(); ++S) |
1764 | Values[S] = Item[S * NumElts].first->get(); |
1765 | |
1766 | while (Values.size() > 1) { |
1767 | NumElts *= 2; |
1768 | SmallVector<int, 16> Mask(NumElts, 0); |
1769 | std::iota(first: Mask.begin(), last: Mask.end(), value: 0); |
1770 | SmallVector<Value *> NewValues(Values.size() / 2, nullptr); |
1771 | for (unsigned S = 0; S < NewValues.size(); ++S) |
1772 | NewValues[S] = |
1773 | Builder.CreateShuffleVector(V1: Values[S * 2], V2: Values[S * 2 + 1], Mask); |
1774 | Values = NewValues; |
1775 | } |
1776 | return Values[0]; |
1777 | } |
1778 | |
1779 | auto *I = cast<Instruction>(Val: FrontU->get()); |
1780 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
1781 | unsigned NumOps = I->getNumOperands() - (II ? 1 : 0); |
1782 | SmallVector<Value *> Ops(NumOps); |
1783 | for (unsigned Idx = 0; Idx < NumOps; Idx++) { |
1784 | if (II && isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Idx)) { |
1785 | Ops[Idx] = II->getOperand(i_nocapture: Idx); |
1786 | continue; |
1787 | } |
1788 | Ops[Idx] = |
1789 | generateNewInstTree(Item: generateInstLaneVectorFromOperand(Item, Op: Idx), Ty, |
1790 | IdentityLeafs, SplatLeafs, ConcatLeafs, Builder); |
1791 | } |
1792 | |
1793 | SmallVector<Value *, 8> ValueList; |
1794 | for (const auto &Lane : Item) |
1795 | if (Lane.first) |
1796 | ValueList.push_back(Elt: Lane.first->get()); |
1797 | |
1798 | Type *DstTy = |
1799 | FixedVectorType::get(ElementType: I->getType()->getScalarType(), NumElts: Ty->getNumElements()); |
1800 | if (auto *BI = dyn_cast<BinaryOperator>(Val: I)) { |
1801 | auto *Value = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)BI->getOpcode(), |
1802 | LHS: Ops[0], RHS: Ops[1]); |
1803 | propagateIRFlags(I: Value, VL: ValueList); |
1804 | return Value; |
1805 | } |
1806 | if (auto *CI = dyn_cast<CmpInst>(Val: I)) { |
1807 | auto *Value = Builder.CreateCmp(Pred: CI->getPredicate(), LHS: Ops[0], RHS: Ops[1]); |
1808 | propagateIRFlags(I: Value, VL: ValueList); |
1809 | return Value; |
1810 | } |
1811 | if (auto *SI = dyn_cast<SelectInst>(Val: I)) { |
1812 | auto *Value = Builder.CreateSelect(C: Ops[0], True: Ops[1], False: Ops[2], Name: "" , MDFrom: SI); |
1813 | propagateIRFlags(I: Value, VL: ValueList); |
1814 | return Value; |
1815 | } |
1816 | if (auto *CI = dyn_cast<CastInst>(Val: I)) { |
1817 | auto *Value = Builder.CreateCast(Op: (Instruction::CastOps)CI->getOpcode(), |
1818 | V: Ops[0], DestTy: DstTy); |
1819 | propagateIRFlags(I: Value, VL: ValueList); |
1820 | return Value; |
1821 | } |
1822 | if (II) { |
1823 | auto *Value = Builder.CreateIntrinsic(RetTy: DstTy, ID: II->getIntrinsicID(), Args: Ops); |
1824 | propagateIRFlags(I: Value, VL: ValueList); |
1825 | return Value; |
1826 | } |
1827 | assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate" ); |
1828 | auto *Value = |
1829 | Builder.CreateUnOp(Opc: (Instruction::UnaryOps)I->getOpcode(), V: Ops[0]); |
1830 | propagateIRFlags(I: Value, VL: ValueList); |
1831 | return Value; |
1832 | } |
1833 | |
1834 | // Starting from a shuffle, look up through operands tracking the shuffled index |
1835 | // of each lane. If we can simplify away the shuffles to identities then |
1836 | // do so. |
1837 | bool VectorCombine::foldShuffleToIdentity(Instruction &I) { |
1838 | auto *Ty = dyn_cast<FixedVectorType>(Val: I.getType()); |
1839 | if (!Ty || I.use_empty()) |
1840 | return false; |
1841 | |
1842 | SmallVector<InstLane> Start(Ty->getNumElements()); |
1843 | for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M) |
1844 | Start[M] = lookThroughShuffles(U: &*I.use_begin(), Lane: M); |
1845 | |
1846 | SmallVector<SmallVector<InstLane>> Worklist; |
1847 | Worklist.push_back(Elt: Start); |
1848 | SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs; |
1849 | unsigned NumVisited = 0; |
1850 | |
1851 | while (!Worklist.empty()) { |
1852 | if (++NumVisited > MaxInstrsToScan) |
1853 | return false; |
1854 | |
1855 | SmallVector<InstLane> Item = Worklist.pop_back_val(); |
1856 | auto [FrontU, FrontLane] = Item.front(); |
1857 | |
1858 | // If we found an undef first lane then bail out to keep things simple. |
1859 | if (!FrontU) |
1860 | return false; |
1861 | |
1862 | // Helper to peek through bitcasts to the same value. |
1863 | auto IsEquiv = [&](Value *X, Value *Y) { |
1864 | return X->getType() == Y->getType() && |
1865 | peekThroughBitcasts(V: X) == peekThroughBitcasts(V: Y); |
1866 | }; |
1867 | |
1868 | // Look for an identity value. |
1869 | if (FrontLane == 0 && |
1870 | cast<FixedVectorType>(Val: FrontU->get()->getType())->getNumElements() == |
1871 | Ty->getNumElements() && |
1872 | all_of(Range: drop_begin(RangeOrContainer: enumerate(First&: Item)), P: [IsEquiv, Item](const auto &E) { |
1873 | Value *FrontV = Item.front().first->get(); |
1874 | return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) && |
1875 | E.value().second == (int)E.index()); |
1876 | })) { |
1877 | IdentityLeafs.insert(Ptr: FrontU); |
1878 | continue; |
1879 | } |
1880 | // Look for constants, for the moment only supporting constant splats. |
1881 | if (auto *C = dyn_cast<Constant>(Val: FrontU); |
1882 | C && C->getSplatValue() && |
1883 | all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane &IL) { |
1884 | Value *FrontV = Item.front().first->get(); |
1885 | Use *U = IL.first; |
1886 | return !U || U->get() == FrontV; |
1887 | })) { |
1888 | SplatLeafs.insert(Ptr: FrontU); |
1889 | continue; |
1890 | } |
1891 | // Look for a splat value. |
1892 | if (all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane &IL) { |
1893 | auto [FrontU, FrontLane] = Item.front(); |
1894 | auto [U, Lane] = IL; |
1895 | return !U || (U->get() == FrontU->get() && Lane == FrontLane); |
1896 | })) { |
1897 | SplatLeafs.insert(Ptr: FrontU); |
1898 | continue; |
1899 | } |
1900 | |
1901 | // We need each element to be the same type of value, and check that each |
1902 | // element has a single use. |
1903 | if (all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item](InstLane IL) { |
1904 | Value *FrontV = Item.front().first->get(); |
1905 | if (!IL.first) |
1906 | return true; |
1907 | Value *V = IL.first->get(); |
1908 | if (auto *I = dyn_cast<Instruction>(Val: V); I && !I->hasOneUse()) |
1909 | return false; |
1910 | if (V->getValueID() != FrontV->getValueID()) |
1911 | return false; |
1912 | if (auto *CI = dyn_cast<CmpInst>(Val: V)) |
1913 | if (CI->getPredicate() != cast<CmpInst>(Val: FrontV)->getPredicate()) |
1914 | return false; |
1915 | if (auto *CI = dyn_cast<CastInst>(Val: V)) |
1916 | if (CI->getSrcTy() != cast<CastInst>(Val: FrontV)->getSrcTy()) |
1917 | return false; |
1918 | if (auto *SI = dyn_cast<SelectInst>(Val: V)) |
1919 | if (!isa<VectorType>(Val: SI->getOperand(i_nocapture: 0)->getType()) || |
1920 | SI->getOperand(i_nocapture: 0)->getType() != |
1921 | cast<SelectInst>(Val: FrontV)->getOperand(i_nocapture: 0)->getType()) |
1922 | return false; |
1923 | if (isa<CallInst>(Val: V) && !isa<IntrinsicInst>(Val: V)) |
1924 | return false; |
1925 | auto *II = dyn_cast<IntrinsicInst>(Val: V); |
1926 | return !II || (isa<IntrinsicInst>(Val: FrontV) && |
1927 | II->getIntrinsicID() == |
1928 | cast<IntrinsicInst>(Val: FrontV)->getIntrinsicID()); |
1929 | })) { |
1930 | // Check the operator is one that we support. |
1931 | if (isa<BinaryOperator, CmpInst>(Val: FrontU)) { |
1932 | // We exclude div/rem in case they hit UB from poison lanes. |
1933 | if (auto *BO = dyn_cast<BinaryOperator>(Val: FrontU); |
1934 | BO && BO->isIntDivRem()) |
1935 | return false; |
1936 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
1937 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 1)); |
1938 | continue; |
1939 | } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst>(Val: FrontU)) { |
1940 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
1941 | continue; |
1942 | } else if (auto *BitCast = dyn_cast<BitCastInst>(Val: FrontU)) { |
1943 | // TODO: Handle vector widening/narrowing bitcasts. |
1944 | auto *DstTy = dyn_cast<FixedVectorType>(Val: BitCast->getDestTy()); |
1945 | auto *SrcTy = dyn_cast<FixedVectorType>(Val: BitCast->getSrcTy()); |
1946 | if (DstTy && SrcTy && |
1947 | SrcTy->getNumElements() == DstTy->getNumElements()) { |
1948 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
1949 | continue; |
1950 | } |
1951 | } else if (isa<SelectInst>(Val: FrontU)) { |
1952 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 0)); |
1953 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 1)); |
1954 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op: 2)); |
1955 | continue; |
1956 | } else if (auto *II = dyn_cast<IntrinsicInst>(Val: FrontU); |
1957 | II && isTriviallyVectorizable(ID: II->getIntrinsicID())) { |
1958 | for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) { |
1959 | if (isVectorIntrinsicWithScalarOpAtArg(ID: II->getIntrinsicID(), ScalarOpdIdx: Op)) { |
1960 | if (!all_of(Range: drop_begin(RangeOrContainer&: Item), P: [Item, Op](InstLane &IL) { |
1961 | Value *FrontV = Item.front().first->get(); |
1962 | Use *U = IL.first; |
1963 | return !U || (cast<Instruction>(Val: U->get())->getOperand(i: Op) == |
1964 | cast<Instruction>(Val: FrontV)->getOperand(i: Op)); |
1965 | })) |
1966 | return false; |
1967 | continue; |
1968 | } |
1969 | Worklist.push_back(Elt: generateInstLaneVectorFromOperand(Item, Op)); |
1970 | } |
1971 | continue; |
1972 | } |
1973 | } |
1974 | |
1975 | if (isFreeConcat(Item, TTI)) { |
1976 | ConcatLeafs.insert(Ptr: FrontU); |
1977 | continue; |
1978 | } |
1979 | |
1980 | return false; |
1981 | } |
1982 | |
1983 | if (NumVisited <= 1) |
1984 | return false; |
1985 | |
1986 | // If we got this far, we know the shuffles are superfluous and can be |
1987 | // removed. Scan through again and generate the new tree of instructions. |
1988 | Builder.SetInsertPoint(&I); |
1989 | Value *V = generateNewInstTree(Item: Start, Ty, IdentityLeafs, SplatLeafs, |
1990 | ConcatLeafs, Builder); |
1991 | replaceValue(Old&: I, New&: *V); |
1992 | return true; |
1993 | } |
1994 | |
1995 | /// Given a commutative reduction, the order of the input lanes does not alter |
1996 | /// the results. We can use this to remove certain shuffles feeding the |
1997 | /// reduction, removing the need to shuffle at all. |
1998 | bool VectorCombine::foldShuffleFromReductions(Instruction &I) { |
1999 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
2000 | if (!II) |
2001 | return false; |
2002 | switch (II->getIntrinsicID()) { |
2003 | case Intrinsic::vector_reduce_add: |
2004 | case Intrinsic::vector_reduce_mul: |
2005 | case Intrinsic::vector_reduce_and: |
2006 | case Intrinsic::vector_reduce_or: |
2007 | case Intrinsic::vector_reduce_xor: |
2008 | case Intrinsic::vector_reduce_smin: |
2009 | case Intrinsic::vector_reduce_smax: |
2010 | case Intrinsic::vector_reduce_umin: |
2011 | case Intrinsic::vector_reduce_umax: |
2012 | break; |
2013 | default: |
2014 | return false; |
2015 | } |
2016 | |
2017 | // Find all the inputs when looking through operations that do not alter the |
2018 | // lane order (binops, for example). Currently we look for a single shuffle, |
2019 | // and can ignore splat values. |
2020 | std::queue<Value *> Worklist; |
2021 | SmallPtrSet<Value *, 4> Visited; |
2022 | ShuffleVectorInst *Shuffle = nullptr; |
2023 | if (auto *Op = dyn_cast<Instruction>(Val: I.getOperand(i: 0))) |
2024 | Worklist.push(x: Op); |
2025 | |
2026 | while (!Worklist.empty()) { |
2027 | Value *CV = Worklist.front(); |
2028 | Worklist.pop(); |
2029 | if (Visited.contains(Ptr: CV)) |
2030 | continue; |
2031 | |
2032 | // Splats don't change the order, so can be safely ignored. |
2033 | if (isSplatValue(V: CV)) |
2034 | continue; |
2035 | |
2036 | Visited.insert(Ptr: CV); |
2037 | |
2038 | if (auto *CI = dyn_cast<Instruction>(Val: CV)) { |
2039 | if (CI->isBinaryOp()) { |
2040 | for (auto *Op : CI->operand_values()) |
2041 | Worklist.push(x: Op); |
2042 | continue; |
2043 | } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Val: CI)) { |
2044 | if (Shuffle && Shuffle != SV) |
2045 | return false; |
2046 | Shuffle = SV; |
2047 | continue; |
2048 | } |
2049 | } |
2050 | |
2051 | // Anything else is currently an unknown node. |
2052 | return false; |
2053 | } |
2054 | |
2055 | if (!Shuffle) |
2056 | return false; |
2057 | |
2058 | // Check all uses of the binary ops and shuffles are also included in the |
2059 | // lane-invariant operations (Visited should be the list of lanewise |
2060 | // instructions, including the shuffle that we found). |
2061 | for (auto *V : Visited) |
2062 | for (auto *U : V->users()) |
2063 | if (!Visited.contains(Ptr: U) && U != &I) |
2064 | return false; |
2065 | |
2066 | FixedVectorType *VecType = |
2067 | dyn_cast<FixedVectorType>(Val: II->getOperand(i_nocapture: 0)->getType()); |
2068 | if (!VecType) |
2069 | return false; |
2070 | FixedVectorType *ShuffleInputType = |
2071 | dyn_cast<FixedVectorType>(Val: Shuffle->getOperand(i_nocapture: 0)->getType()); |
2072 | if (!ShuffleInputType) |
2073 | return false; |
2074 | unsigned NumInputElts = ShuffleInputType->getNumElements(); |
2075 | |
2076 | // Find the mask from sorting the lanes into order. This is most likely to |
2077 | // become a identity or concat mask. Undef elements are pushed to the end. |
2078 | SmallVector<int> ConcatMask; |
2079 | Shuffle->getShuffleMask(Result&: ConcatMask); |
2080 | sort(C&: ConcatMask, Comp: [](int X, int Y) { return (unsigned)X < (unsigned)Y; }); |
2081 | // In the case of a truncating shuffle it's possible for the mask |
2082 | // to have an index greater than the size of the resulting vector. |
2083 | // This requires special handling. |
2084 | bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts; |
2085 | bool UsesSecondVec = |
2086 | any_of(Range&: ConcatMask, P: [&](int M) { return M >= (int)NumInputElts; }); |
2087 | |
2088 | FixedVectorType *VecTyForCost = |
2089 | (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType; |
2090 | InstructionCost OldCost = TTI.getShuffleCost( |
2091 | Kind: UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, |
2092 | Tp: VecTyForCost, Mask: Shuffle->getShuffleMask()); |
2093 | InstructionCost NewCost = TTI.getShuffleCost( |
2094 | Kind: UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc, |
2095 | Tp: VecTyForCost, Mask: ConcatMask); |
2096 | |
2097 | LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle |
2098 | << "\n" ); |
2099 | LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost |
2100 | << "\n" ); |
2101 | if (NewCost < OldCost) { |
2102 | Builder.SetInsertPoint(Shuffle); |
2103 | Value *NewShuffle = Builder.CreateShuffleVector( |
2104 | V1: Shuffle->getOperand(i_nocapture: 0), V2: Shuffle->getOperand(i_nocapture: 1), Mask: ConcatMask); |
2105 | LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n" ); |
2106 | replaceValue(Old&: *Shuffle, New&: *NewShuffle); |
2107 | } |
2108 | |
2109 | // See if we can re-use foldSelectShuffle, getting it to reduce the size of |
2110 | // the shuffle into a nicer order, as it can ignore the order of the shuffles. |
2111 | return foldSelectShuffle(I&: *Shuffle, FromReduction: true); |
2112 | } |
2113 | |
2114 | /// Determine if its more efficient to fold: |
2115 | /// reduce(trunc(x)) -> trunc(reduce(x)). |
2116 | /// reduce(sext(x)) -> sext(reduce(x)). |
2117 | /// reduce(zext(x)) -> zext(reduce(x)). |
2118 | bool VectorCombine::foldCastFromReductions(Instruction &I) { |
2119 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
2120 | if (!II) |
2121 | return false; |
2122 | |
2123 | bool TruncOnly = false; |
2124 | Intrinsic::ID IID = II->getIntrinsicID(); |
2125 | switch (IID) { |
2126 | case Intrinsic::vector_reduce_add: |
2127 | case Intrinsic::vector_reduce_mul: |
2128 | TruncOnly = true; |
2129 | break; |
2130 | case Intrinsic::vector_reduce_and: |
2131 | case Intrinsic::vector_reduce_or: |
2132 | case Intrinsic::vector_reduce_xor: |
2133 | break; |
2134 | default: |
2135 | return false; |
2136 | } |
2137 | |
2138 | unsigned ReductionOpc = getArithmeticReductionInstruction(RdxID: IID); |
2139 | Value *ReductionSrc = I.getOperand(i: 0); |
2140 | |
2141 | Value *Src; |
2142 | if (!match(V: ReductionSrc, P: m_OneUse(SubPattern: m_Trunc(Op: m_Value(V&: Src)))) && |
2143 | (TruncOnly || !match(V: ReductionSrc, P: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: Src)))))) |
2144 | return false; |
2145 | |
2146 | auto CastOpc = |
2147 | (Instruction::CastOps)cast<Instruction>(Val: ReductionSrc)->getOpcode(); |
2148 | |
2149 | auto *SrcTy = cast<VectorType>(Val: Src->getType()); |
2150 | auto *ReductionSrcTy = cast<VectorType>(Val: ReductionSrc->getType()); |
2151 | Type *ResultTy = I.getType(); |
2152 | |
2153 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
2154 | InstructionCost OldCost = TTI.getArithmeticReductionCost( |
2155 | Opcode: ReductionOpc, Ty: ReductionSrcTy, FMF: std::nullopt, CostKind); |
2156 | OldCost += TTI.getCastInstrCost(Opcode: CastOpc, Dst: ReductionSrcTy, Src: SrcTy, |
2157 | CCH: TTI::CastContextHint::None, CostKind, |
2158 | I: cast<CastInst>(Val: ReductionSrc)); |
2159 | InstructionCost NewCost = |
2160 | TTI.getArithmeticReductionCost(Opcode: ReductionOpc, Ty: SrcTy, FMF: std::nullopt, |
2161 | CostKind) + |
2162 | TTI.getCastInstrCost(Opcode: CastOpc, Dst: ResultTy, Src: ReductionSrcTy->getScalarType(), |
2163 | CCH: TTI::CastContextHint::None, CostKind); |
2164 | |
2165 | if (OldCost <= NewCost || !NewCost.isValid()) |
2166 | return false; |
2167 | |
2168 | Value *NewReduction = Builder.CreateIntrinsic(RetTy: SrcTy->getScalarType(), |
2169 | ID: II->getIntrinsicID(), Args: {Src}); |
2170 | Value *NewCast = Builder.CreateCast(Op: CastOpc, V: NewReduction, DestTy: ResultTy); |
2171 | replaceValue(Old&: I, New&: *NewCast); |
2172 | return true; |
2173 | } |
2174 | |
2175 | /// This method looks for groups of shuffles acting on binops, of the form: |
2176 | /// %x = shuffle ... |
2177 | /// %y = shuffle ... |
2178 | /// %a = binop %x, %y |
2179 | /// %b = binop %x, %y |
2180 | /// shuffle %a, %b, selectmask |
2181 | /// We may, especially if the shuffle is wider than legal, be able to convert |
2182 | /// the shuffle to a form where only parts of a and b need to be computed. On |
2183 | /// architectures with no obvious "select" shuffle, this can reduce the total |
2184 | /// number of operations if the target reports them as cheaper. |
2185 | bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) { |
2186 | auto *SVI = cast<ShuffleVectorInst>(Val: &I); |
2187 | auto *VT = cast<FixedVectorType>(Val: I.getType()); |
2188 | auto *Op0 = dyn_cast<Instruction>(Val: SVI->getOperand(i_nocapture: 0)); |
2189 | auto *Op1 = dyn_cast<Instruction>(Val: SVI->getOperand(i_nocapture: 1)); |
2190 | if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() || |
2191 | VT != Op0->getType()) |
2192 | return false; |
2193 | |
2194 | auto *SVI0A = dyn_cast<Instruction>(Val: Op0->getOperand(i: 0)); |
2195 | auto *SVI0B = dyn_cast<Instruction>(Val: Op0->getOperand(i: 1)); |
2196 | auto *SVI1A = dyn_cast<Instruction>(Val: Op1->getOperand(i: 0)); |
2197 | auto *SVI1B = dyn_cast<Instruction>(Val: Op1->getOperand(i: 1)); |
2198 | SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B}); |
2199 | auto checkSVNonOpUses = [&](Instruction *I) { |
2200 | if (!I || I->getOperand(i: 0)->getType() != VT) |
2201 | return true; |
2202 | return any_of(Range: I->users(), P: [&](User *U) { |
2203 | return U != Op0 && U != Op1 && |
2204 | !(isa<ShuffleVectorInst>(Val: U) && |
2205 | (InputShuffles.contains(Ptr: cast<Instruction>(Val: U)) || |
2206 | isInstructionTriviallyDead(I: cast<Instruction>(Val: U)))); |
2207 | }); |
2208 | }; |
2209 | if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) || |
2210 | checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B)) |
2211 | return false; |
2212 | |
2213 | // Collect all the uses that are shuffles that we can transform together. We |
2214 | // may not have a single shuffle, but a group that can all be transformed |
2215 | // together profitably. |
2216 | SmallVector<ShuffleVectorInst *> Shuffles; |
2217 | auto collectShuffles = [&](Instruction *I) { |
2218 | for (auto *U : I->users()) { |
2219 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: U); |
2220 | if (!SV || SV->getType() != VT) |
2221 | return false; |
2222 | if ((SV->getOperand(i_nocapture: 0) != Op0 && SV->getOperand(i_nocapture: 0) != Op1) || |
2223 | (SV->getOperand(i_nocapture: 1) != Op0 && SV->getOperand(i_nocapture: 1) != Op1)) |
2224 | return false; |
2225 | if (!llvm::is_contained(Range&: Shuffles, Element: SV)) |
2226 | Shuffles.push_back(Elt: SV); |
2227 | } |
2228 | return true; |
2229 | }; |
2230 | if (!collectShuffles(Op0) || !collectShuffles(Op1)) |
2231 | return false; |
2232 | // From a reduction, we need to be processing a single shuffle, otherwise the |
2233 | // other uses will not be lane-invariant. |
2234 | if (FromReduction && Shuffles.size() > 1) |
2235 | return false; |
2236 | |
2237 | // Add any shuffle uses for the shuffles we have found, to include them in our |
2238 | // cost calculations. |
2239 | if (!FromReduction) { |
2240 | for (ShuffleVectorInst *SV : Shuffles) { |
2241 | for (auto *U : SV->users()) { |
2242 | ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(Val: U); |
2243 | if (SSV && isa<UndefValue>(Val: SSV->getOperand(i_nocapture: 1)) && SSV->getType() == VT) |
2244 | Shuffles.push_back(Elt: SSV); |
2245 | } |
2246 | } |
2247 | } |
2248 | |
2249 | // For each of the output shuffles, we try to sort all the first vector |
2250 | // elements to the beginning, followed by the second array elements at the |
2251 | // end. If the binops are legalized to smaller vectors, this may reduce total |
2252 | // number of binops. We compute the ReconstructMask mask needed to convert |
2253 | // back to the original lane order. |
2254 | SmallVector<std::pair<int, int>> V1, V2; |
2255 | SmallVector<SmallVector<int>> OrigReconstructMasks; |
2256 | int MaxV1Elt = 0, MaxV2Elt = 0; |
2257 | unsigned NumElts = VT->getNumElements(); |
2258 | for (ShuffleVectorInst *SVN : Shuffles) { |
2259 | SmallVector<int> Mask; |
2260 | SVN->getShuffleMask(Result&: Mask); |
2261 | |
2262 | // Check the operands are the same as the original, or reversed (in which |
2263 | // case we need to commute the mask). |
2264 | Value *SVOp0 = SVN->getOperand(i_nocapture: 0); |
2265 | Value *SVOp1 = SVN->getOperand(i_nocapture: 1); |
2266 | if (isa<UndefValue>(Val: SVOp1)) { |
2267 | auto *SSV = cast<ShuffleVectorInst>(Val: SVOp0); |
2268 | SVOp0 = SSV->getOperand(i_nocapture: 0); |
2269 | SVOp1 = SSV->getOperand(i_nocapture: 1); |
2270 | for (unsigned I = 0, E = Mask.size(); I != E; I++) { |
2271 | if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size())) |
2272 | return false; |
2273 | Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Elt: Mask[I]); |
2274 | } |
2275 | } |
2276 | if (SVOp0 == Op1 && SVOp1 == Op0) { |
2277 | std::swap(a&: SVOp0, b&: SVOp1); |
2278 | ShuffleVectorInst::commuteShuffleMask(Mask, InVecNumElts: NumElts); |
2279 | } |
2280 | if (SVOp0 != Op0 || SVOp1 != Op1) |
2281 | return false; |
2282 | |
2283 | // Calculate the reconstruction mask for this shuffle, as the mask needed to |
2284 | // take the packed values from Op0/Op1 and reconstructing to the original |
2285 | // order. |
2286 | SmallVector<int> ReconstructMask; |
2287 | for (unsigned I = 0; I < Mask.size(); I++) { |
2288 | if (Mask[I] < 0) { |
2289 | ReconstructMask.push_back(Elt: -1); |
2290 | } else if (Mask[I] < static_cast<int>(NumElts)) { |
2291 | MaxV1Elt = std::max(a: MaxV1Elt, b: Mask[I]); |
2292 | auto It = find_if(Range&: V1, P: [&](const std::pair<int, int> &A) { |
2293 | return Mask[I] == A.first; |
2294 | }); |
2295 | if (It != V1.end()) |
2296 | ReconstructMask.push_back(Elt: It - V1.begin()); |
2297 | else { |
2298 | ReconstructMask.push_back(Elt: V1.size()); |
2299 | V1.emplace_back(Args&: Mask[I], Args: V1.size()); |
2300 | } |
2301 | } else { |
2302 | MaxV2Elt = std::max<int>(a: MaxV2Elt, b: Mask[I] - NumElts); |
2303 | auto It = find_if(Range&: V2, P: [&](const std::pair<int, int> &A) { |
2304 | return Mask[I] - static_cast<int>(NumElts) == A.first; |
2305 | }); |
2306 | if (It != V2.end()) |
2307 | ReconstructMask.push_back(Elt: NumElts + It - V2.begin()); |
2308 | else { |
2309 | ReconstructMask.push_back(Elt: NumElts + V2.size()); |
2310 | V2.emplace_back(Args: Mask[I] - NumElts, Args: NumElts + V2.size()); |
2311 | } |
2312 | } |
2313 | } |
2314 | |
2315 | // For reductions, we know that the lane ordering out doesn't alter the |
2316 | // result. In-order can help simplify the shuffle away. |
2317 | if (FromReduction) |
2318 | sort(C&: ReconstructMask); |
2319 | OrigReconstructMasks.push_back(Elt: std::move(ReconstructMask)); |
2320 | } |
2321 | |
2322 | // If the Maximum element used from V1 and V2 are not larger than the new |
2323 | // vectors, the vectors are already packes and performing the optimization |
2324 | // again will likely not help any further. This also prevents us from getting |
2325 | // stuck in a cycle in case the costs do not also rule it out. |
2326 | if (V1.empty() || V2.empty() || |
2327 | (MaxV1Elt == static_cast<int>(V1.size()) - 1 && |
2328 | MaxV2Elt == static_cast<int>(V2.size()) - 1)) |
2329 | return false; |
2330 | |
2331 | // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a |
2332 | // shuffle of another shuffle, or not a shuffle (that is treated like a |
2333 | // identity shuffle). |
2334 | auto GetBaseMaskValue = [&](Instruction *I, int M) { |
2335 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
2336 | if (!SV) |
2337 | return M; |
2338 | if (isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1))) |
2339 | if (auto *SSV = dyn_cast<ShuffleVectorInst>(Val: SV->getOperand(i_nocapture: 0))) |
2340 | if (InputShuffles.contains(Ptr: SSV)) |
2341 | return SSV->getMaskValue(Elt: SV->getMaskValue(Elt: M)); |
2342 | return SV->getMaskValue(Elt: M); |
2343 | }; |
2344 | |
2345 | // Attempt to sort the inputs my ascending mask values to make simpler input |
2346 | // shuffles and push complex shuffles down to the uses. We sort on the first |
2347 | // of the two input shuffle orders, to try and get at least one input into a |
2348 | // nice order. |
2349 | auto SortBase = [&](Instruction *A, std::pair<int, int> X, |
2350 | std::pair<int, int> Y) { |
2351 | int MXA = GetBaseMaskValue(A, X.first); |
2352 | int MYA = GetBaseMaskValue(A, Y.first); |
2353 | return MXA < MYA; |
2354 | }; |
2355 | stable_sort(Range&: V1, C: [&](std::pair<int, int> A, std::pair<int, int> B) { |
2356 | return SortBase(SVI0A, A, B); |
2357 | }); |
2358 | stable_sort(Range&: V2, C: [&](std::pair<int, int> A, std::pair<int, int> B) { |
2359 | return SortBase(SVI1A, A, B); |
2360 | }); |
2361 | // Calculate our ReconstructMasks from the OrigReconstructMasks and the |
2362 | // modified order of the input shuffles. |
2363 | SmallVector<SmallVector<int>> ReconstructMasks; |
2364 | for (const auto &Mask : OrigReconstructMasks) { |
2365 | SmallVector<int> ReconstructMask; |
2366 | for (int M : Mask) { |
2367 | auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) { |
2368 | auto It = find_if(Range: V, P: [M](auto A) { return A.second == M; }); |
2369 | assert(It != V.end() && "Expected all entries in Mask" ); |
2370 | return std::distance(first: V.begin(), last: It); |
2371 | }; |
2372 | if (M < 0) |
2373 | ReconstructMask.push_back(Elt: -1); |
2374 | else if (M < static_cast<int>(NumElts)) { |
2375 | ReconstructMask.push_back(Elt: FindIndex(V1, M)); |
2376 | } else { |
2377 | ReconstructMask.push_back(Elt: NumElts + FindIndex(V2, M)); |
2378 | } |
2379 | } |
2380 | ReconstructMasks.push_back(Elt: std::move(ReconstructMask)); |
2381 | } |
2382 | |
2383 | // Calculate the masks needed for the new input shuffles, which get padded |
2384 | // with undef |
2385 | SmallVector<int> V1A, V1B, V2A, V2B; |
2386 | for (unsigned I = 0; I < V1.size(); I++) { |
2387 | V1A.push_back(Elt: GetBaseMaskValue(SVI0A, V1[I].first)); |
2388 | V1B.push_back(Elt: GetBaseMaskValue(SVI0B, V1[I].first)); |
2389 | } |
2390 | for (unsigned I = 0; I < V2.size(); I++) { |
2391 | V2A.push_back(Elt: GetBaseMaskValue(SVI1A, V2[I].first)); |
2392 | V2B.push_back(Elt: GetBaseMaskValue(SVI1B, V2[I].first)); |
2393 | } |
2394 | while (V1A.size() < NumElts) { |
2395 | V1A.push_back(Elt: PoisonMaskElem); |
2396 | V1B.push_back(Elt: PoisonMaskElem); |
2397 | } |
2398 | while (V2A.size() < NumElts) { |
2399 | V2A.push_back(Elt: PoisonMaskElem); |
2400 | V2B.push_back(Elt: PoisonMaskElem); |
2401 | } |
2402 | |
2403 | auto AddShuffleCost = [&](InstructionCost C, Instruction *I) { |
2404 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
2405 | if (!SV) |
2406 | return C; |
2407 | return C + TTI.getShuffleCost(Kind: isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1)) |
2408 | ? TTI::SK_PermuteSingleSrc |
2409 | : TTI::SK_PermuteTwoSrc, |
2410 | Tp: VT, Mask: SV->getShuffleMask()); |
2411 | }; |
2412 | auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) { |
2413 | return C + TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, Tp: VT, Mask); |
2414 | }; |
2415 | |
2416 | // Get the costs of the shuffles + binops before and after with the new |
2417 | // shuffle masks. |
2418 | InstructionCost CostBefore = |
2419 | TTI.getArithmeticInstrCost(Opcode: Op0->getOpcode(), Ty: VT) + |
2420 | TTI.getArithmeticInstrCost(Opcode: Op1->getOpcode(), Ty: VT); |
2421 | CostBefore += std::accumulate(first: Shuffles.begin(), last: Shuffles.end(), |
2422 | init: InstructionCost(0), binary_op: AddShuffleCost); |
2423 | CostBefore += std::accumulate(first: InputShuffles.begin(), last: InputShuffles.end(), |
2424 | init: InstructionCost(0), binary_op: AddShuffleCost); |
2425 | |
2426 | // The new binops will be unused for lanes past the used shuffle lengths. |
2427 | // These types attempt to get the correct cost for that from the target. |
2428 | FixedVectorType *Op0SmallVT = |
2429 | FixedVectorType::get(ElementType: VT->getScalarType(), NumElts: V1.size()); |
2430 | FixedVectorType *Op1SmallVT = |
2431 | FixedVectorType::get(ElementType: VT->getScalarType(), NumElts: V2.size()); |
2432 | InstructionCost CostAfter = |
2433 | TTI.getArithmeticInstrCost(Opcode: Op0->getOpcode(), Ty: Op0SmallVT) + |
2434 | TTI.getArithmeticInstrCost(Opcode: Op1->getOpcode(), Ty: Op1SmallVT); |
2435 | CostAfter += std::accumulate(first: ReconstructMasks.begin(), last: ReconstructMasks.end(), |
2436 | init: InstructionCost(0), binary_op: AddShuffleMaskCost); |
2437 | std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B}); |
2438 | CostAfter += |
2439 | std::accumulate(first: OutputShuffleMasks.begin(), last: OutputShuffleMasks.end(), |
2440 | init: InstructionCost(0), binary_op: AddShuffleMaskCost); |
2441 | |
2442 | LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n" ); |
2443 | LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore |
2444 | << " vs CostAfter: " << CostAfter << "\n" ); |
2445 | if (CostBefore <= CostAfter) |
2446 | return false; |
2447 | |
2448 | // The cost model has passed, create the new instructions. |
2449 | auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * { |
2450 | auto *SV = dyn_cast<ShuffleVectorInst>(Val: I); |
2451 | if (!SV) |
2452 | return I; |
2453 | if (isa<UndefValue>(Val: SV->getOperand(i_nocapture: 1))) |
2454 | if (auto *SSV = dyn_cast<ShuffleVectorInst>(Val: SV->getOperand(i_nocapture: 0))) |
2455 | if (InputShuffles.contains(Ptr: SSV)) |
2456 | return SSV->getOperand(i_nocapture: Op); |
2457 | return SV->getOperand(i_nocapture: Op); |
2458 | }; |
2459 | Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef()); |
2460 | Value *NSV0A = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI0A, 0), |
2461 | V2: GetShuffleOperand(SVI0A, 1), Mask: V1A); |
2462 | Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef()); |
2463 | Value *NSV0B = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI0B, 0), |
2464 | V2: GetShuffleOperand(SVI0B, 1), Mask: V1B); |
2465 | Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef()); |
2466 | Value *NSV1A = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI1A, 0), |
2467 | V2: GetShuffleOperand(SVI1A, 1), Mask: V2A); |
2468 | Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef()); |
2469 | Value *NSV1B = Builder.CreateShuffleVector(V1: GetShuffleOperand(SVI1B, 0), |
2470 | V2: GetShuffleOperand(SVI1B, 1), Mask: V2B); |
2471 | Builder.SetInsertPoint(Op0); |
2472 | Value *NOp0 = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Op0->getOpcode(), |
2473 | LHS: NSV0A, RHS: NSV0B); |
2474 | if (auto *I = dyn_cast<Instruction>(Val: NOp0)) |
2475 | I->copyIRFlags(V: Op0, IncludeWrapFlags: true); |
2476 | Builder.SetInsertPoint(Op1); |
2477 | Value *NOp1 = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Op1->getOpcode(), |
2478 | LHS: NSV1A, RHS: NSV1B); |
2479 | if (auto *I = dyn_cast<Instruction>(Val: NOp1)) |
2480 | I->copyIRFlags(V: Op1, IncludeWrapFlags: true); |
2481 | |
2482 | for (int S = 0, E = ReconstructMasks.size(); S != E; S++) { |
2483 | Builder.SetInsertPoint(Shuffles[S]); |
2484 | Value *NSV = Builder.CreateShuffleVector(V1: NOp0, V2: NOp1, Mask: ReconstructMasks[S]); |
2485 | replaceValue(Old&: *Shuffles[S], New&: *NSV); |
2486 | } |
2487 | |
2488 | Worklist.pushValue(V: NSV0A); |
2489 | Worklist.pushValue(V: NSV0B); |
2490 | Worklist.pushValue(V: NSV1A); |
2491 | Worklist.pushValue(V: NSV1B); |
2492 | for (auto *S : Shuffles) |
2493 | Worklist.add(I: S); |
2494 | return true; |
2495 | } |
2496 | |
2497 | /// This is the entry point for all transforms. Pass manager differences are |
2498 | /// handled in the callers of this function. |
2499 | bool VectorCombine::run() { |
2500 | if (DisableVectorCombine) |
2501 | return false; |
2502 | |
2503 | // Don't attempt vectorization if the target does not support vectors. |
2504 | if (!TTI.getNumberOfRegisters(ClassID: TTI.getRegisterClassForType(/*Vector*/ true))) |
2505 | return false; |
2506 | |
2507 | bool MadeChange = false; |
2508 | auto FoldInst = [this, &MadeChange](Instruction &I) { |
2509 | Builder.SetInsertPoint(&I); |
2510 | bool IsFixedVectorType = isa<FixedVectorType>(Val: I.getType()); |
2511 | auto Opcode = I.getOpcode(); |
2512 | |
2513 | // These folds should be beneficial regardless of when this pass is run |
2514 | // in the optimization pipeline. |
2515 | // The type checking is for run-time efficiency. We can avoid wasting time |
2516 | // dispatching to folding functions if there's no chance of matching. |
2517 | if (IsFixedVectorType) { |
2518 | switch (Opcode) { |
2519 | case Instruction::InsertElement: |
2520 | MadeChange |= vectorizeLoadInsert(I); |
2521 | break; |
2522 | case Instruction::ShuffleVector: |
2523 | MadeChange |= widenSubvectorLoad(I); |
2524 | break; |
2525 | default: |
2526 | break; |
2527 | } |
2528 | } |
2529 | |
2530 | // This transform works with scalable and fixed vectors |
2531 | // TODO: Identify and allow other scalable transforms |
2532 | if (isa<VectorType>(Val: I.getType())) { |
2533 | MadeChange |= scalarizeBinopOrCmp(I); |
2534 | MadeChange |= scalarizeLoadExtract(I); |
2535 | MadeChange |= scalarizeVPIntrinsic(I); |
2536 | } |
2537 | |
2538 | if (Opcode == Instruction::Store) |
2539 | MadeChange |= foldSingleElementStore(I); |
2540 | |
2541 | // If this is an early pipeline invocation of this pass, we are done. |
2542 | if (TryEarlyFoldsOnly) |
2543 | return; |
2544 | |
2545 | // Otherwise, try folds that improve codegen but may interfere with |
2546 | // early IR canonicalizations. |
2547 | // The type checking is for run-time efficiency. We can avoid wasting time |
2548 | // dispatching to folding functions if there's no chance of matching. |
2549 | if (IsFixedVectorType) { |
2550 | switch (Opcode) { |
2551 | case Instruction::InsertElement: |
2552 | MadeChange |= foldInsExtFNeg(I); |
2553 | break; |
2554 | case Instruction::ShuffleVector: |
2555 | MadeChange |= foldShuffleOfBinops(I); |
2556 | MadeChange |= foldShuffleOfCastops(I); |
2557 | MadeChange |= foldShuffleOfShuffles(I); |
2558 | MadeChange |= foldSelectShuffle(I); |
2559 | MadeChange |= foldShuffleToIdentity(I); |
2560 | break; |
2561 | case Instruction::BitCast: |
2562 | MadeChange |= foldBitcastShuffle(I); |
2563 | break; |
2564 | } |
2565 | } else { |
2566 | switch (Opcode) { |
2567 | case Instruction::Call: |
2568 | MadeChange |= foldShuffleFromReductions(I); |
2569 | MadeChange |= foldCastFromReductions(I); |
2570 | break; |
2571 | case Instruction::ICmp: |
2572 | case Instruction::FCmp: |
2573 | MadeChange |= foldExtractExtract(I); |
2574 | break; |
2575 | default: |
2576 | if (Instruction::isBinaryOp(Opcode)) { |
2577 | MadeChange |= foldExtractExtract(I); |
2578 | MadeChange |= foldExtractedCmps(I); |
2579 | } |
2580 | break; |
2581 | } |
2582 | } |
2583 | }; |
2584 | |
2585 | for (BasicBlock &BB : F) { |
2586 | // Ignore unreachable basic blocks. |
2587 | if (!DT.isReachableFromEntry(A: &BB)) |
2588 | continue; |
2589 | // Use early increment range so that we can erase instructions in loop. |
2590 | for (Instruction &I : make_early_inc_range(Range&: BB)) { |
2591 | if (I.isDebugOrPseudoInst()) |
2592 | continue; |
2593 | FoldInst(I); |
2594 | } |
2595 | } |
2596 | |
2597 | while (!Worklist.isEmpty()) { |
2598 | Instruction *I = Worklist.removeOne(); |
2599 | if (!I) |
2600 | continue; |
2601 | |
2602 | if (isInstructionTriviallyDead(I)) { |
2603 | eraseInstruction(I&: *I); |
2604 | continue; |
2605 | } |
2606 | |
2607 | FoldInst(*I); |
2608 | } |
2609 | |
2610 | return MadeChange; |
2611 | } |
2612 | |
2613 | PreservedAnalyses VectorCombinePass::run(Function &F, |
2614 | FunctionAnalysisManager &FAM) { |
2615 | auto &AC = FAM.getResult<AssumptionAnalysis>(IR&: F); |
2616 | TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(IR&: F); |
2617 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
2618 | AAResults &AA = FAM.getResult<AAManager>(IR&: F); |
2619 | const DataLayout *DL = &F.getDataLayout(); |
2620 | VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TryEarlyFoldsOnly); |
2621 | if (!Combiner.run()) |
2622 | return PreservedAnalyses::all(); |
2623 | PreservedAnalyses PA; |
2624 | PA.preserveSet<CFGAnalyses>(); |
2625 | return PA; |
2626 | } |
2627 | |