1//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Part of the Sanitizer Allocator.
10//
11//===----------------------------------------------------------------------===//
12#ifndef SANITIZER_ALLOCATOR_H
13#error This file must be included inside sanitizer_allocator.h
14#endif
15
16template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
17
18// SizeClassAllocator64 -- allocator for 64-bit address space.
19// The template parameter Params is a class containing the actual parameters.
20//
21// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically by mmap.
23// Otherwise SpaceBeg=kSpaceBeg (fixed address).
24// kSpaceSize is a power of two.
25// At the beginning the entire space is mprotect-ed, then small parts of it
26// are mapped on demand.
27//
28// Region: a part of Space dedicated to a single size class.
29// There are kNumClasses Regions of equal size.
30//
31// UserChunk: a piece of memory returned to user.
32// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
33
34// FreeArray is an array free-d chunks (stored as 4-byte offsets)
35//
36// A Region looks like this:
37// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
38
39struct SizeClassAllocator64FlagMasks { // Bit masks.
40 enum {
41 kRandomShuffleChunks = 1,
42 };
43};
44
45template <typename Allocator>
46class MemoryMapper {
47 public:
48 typedef typename Allocator::CompactPtrT CompactPtrT;
49
50 explicit MemoryMapper(const Allocator &allocator) : allocator_(allocator) {}
51
52 bool GetAndResetStats(uptr &ranges, uptr &bytes) {
53 ranges = released_ranges_count_;
54 released_ranges_count_ = 0;
55 bytes = released_bytes_;
56 released_bytes_ = 0;
57 return ranges != 0;
58 }
59
60 u64 *MapPackedCounterArrayBuffer(uptr count) {
61 buffer_.clear();
62 buffer_.resize(new_size: count);
63 return buffer_.data();
64 }
65
66 // Releases [from, to) range of pages back to OS.
67 void ReleasePageRangeToOS(uptr class_id, CompactPtrT from, CompactPtrT to) {
68 const uptr region_base = allocator_.GetRegionBeginBySizeClass(class_id);
69 const uptr from_page = allocator_.CompactPtrToPointer(region_base, from);
70 const uptr to_page = allocator_.CompactPtrToPointer(region_base, to);
71 ReleaseMemoryPagesToOS(beg: from_page, end: to_page);
72 released_ranges_count_++;
73 released_bytes_ += to_page - from_page;
74 }
75
76 private:
77 const Allocator &allocator_;
78 uptr released_ranges_count_ = 0;
79 uptr released_bytes_ = 0;
80 InternalMmapVector<u64> buffer_;
81};
82
83template <class Params>
84class SizeClassAllocator64 {
85 public:
86 using AddressSpaceView = typename Params::AddressSpaceView;
87 static const uptr kSpaceBeg = Params::kSpaceBeg;
88 static const uptr kSpaceSize = Params::kSpaceSize;
89 static const uptr kMetadataSize = Params::kMetadataSize;
90 typedef typename Params::SizeClassMap SizeClassMap;
91 typedef typename Params::MapUnmapCallback MapUnmapCallback;
92
93 static const bool kRandomShuffleChunks =
94 Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
95
96 typedef SizeClassAllocator64<Params> ThisT;
97 typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
98 typedef MemoryMapper<ThisT> MemoryMapperT;
99
100 // When we know the size class (the region base) we can represent a pointer
101 // as a 4-byte integer (offset from the region start shifted right by 4).
102 typedef u32 CompactPtrT;
103 static const uptr kCompactPtrScale = 4;
104 CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
105 return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
106 }
107 uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
108 return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
109 }
110
111 // If heap_start is nonzero, assumes kSpaceSize bytes are already mapped R/W
112 // at heap_start and places the heap there. This mode requires kSpaceBeg ==
113 // ~(uptr)0.
114 void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
115 uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
116 PremappedHeap = heap_start != 0;
117 if (PremappedHeap) {
118 CHECK(!kUsingConstantSpaceBeg);
119 NonConstSpaceBeg = heap_start;
120 uptr RegionInfoSize = AdditionalSize();
121 RegionInfoSpace =
122 address_range.Init(size: RegionInfoSize, name: PrimaryAllocatorName);
123 CHECK_NE(RegionInfoSpace, ~(uptr)0);
124 CHECK_EQ(RegionInfoSpace,
125 address_range.MapOrDie(RegionInfoSpace, RegionInfoSize,
126 "SizeClassAllocator: region info"));
127 MapUnmapCallback().OnMap(RegionInfoSpace, RegionInfoSize);
128 } else {
129 if (kUsingConstantSpaceBeg) {
130 CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
131 CHECK_EQ(kSpaceBeg,
132 address_range.Init(TotalSpaceSize, PrimaryAllocatorName,
133 kSpaceBeg));
134 } else {
135 // Combined allocator expects that an 2^N allocation is always aligned
136 // to 2^N. For this to work, the start of the space needs to be aligned
137 // as high as the largest size class (which also needs to be a power of
138 // 2).
139 NonConstSpaceBeg = address_range.InitAligned(
140 size: TotalSpaceSize, align: SizeClassMap::kMaxSize, name: PrimaryAllocatorName);
141 CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
142 }
143 RegionInfoSpace = SpaceEnd();
144 MapWithCallbackOrDie(beg: RegionInfoSpace, size: AdditionalSize(),
145 name: "SizeClassAllocator: region info");
146 }
147 SetReleaseToOSIntervalMs(release_to_os_interval_ms);
148 // Check that the RegionInfo array is aligned on the CacheLine size.
149 DCHECK_EQ(RegionInfoSpace % kCacheLineSize, 0);
150 }
151
152 s32 ReleaseToOSIntervalMs() const {
153 return atomic_load(a: &release_to_os_interval_ms_, mo: memory_order_relaxed);
154 }
155
156 void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
157 atomic_store(a: &release_to_os_interval_ms_, v: release_to_os_interval_ms,
158 mo: memory_order_relaxed);
159 }
160
161 void ForceReleaseToOS() {
162 MemoryMapperT memory_mapper(*this);
163 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
164 Lock l(&GetRegionInfo(class_id)->mutex);
165 MaybeReleaseToOS(memory_mapper: &memory_mapper, class_id, force: true /*force*/);
166 }
167 }
168
169 static bool CanAllocate(uptr size, uptr alignment) {
170 return size <= SizeClassMap::kMaxSize &&
171 alignment <= SizeClassMap::kMaxSize;
172 }
173
174 NOINLINE void ReturnToAllocator(MemoryMapperT *memory_mapper,
175 AllocatorStats *stat, uptr class_id,
176 const CompactPtrT *chunks, uptr n_chunks) {
177 RegionInfo *region = GetRegionInfo(class_id);
178 uptr region_beg = GetRegionBeginBySizeClass(class_id);
179 CompactPtrT *free_array = GetFreeArray(region_beg);
180
181 Lock l(&region->mutex);
182 uptr old_num_chunks = region->num_freed_chunks;
183 uptr new_num_freed_chunks = old_num_chunks + n_chunks;
184 // Failure to allocate free array space while releasing memory is non
185 // recoverable.
186 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
187 new_num_freed_chunks))) {
188 Report(format: "FATAL: Internal error: %s's allocator exhausted the free list "
189 "space for size class %zd (%zd bytes).\n", SanitizerToolName,
190 class_id, ClassIdToSize(class_id));
191 Die();
192 }
193 for (uptr i = 0; i < n_chunks; i++)
194 free_array[old_num_chunks + i] = chunks[i];
195 region->num_freed_chunks = new_num_freed_chunks;
196 region->stats.n_freed += n_chunks;
197
198 MaybeReleaseToOS(memory_mapper, class_id, force: false /*force*/);
199 }
200
201 NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
202 CompactPtrT *chunks, uptr n_chunks) {
203 RegionInfo *region = GetRegionInfo(class_id);
204 uptr region_beg = GetRegionBeginBySizeClass(class_id);
205 CompactPtrT *free_array = GetFreeArray(region_beg);
206
207 Lock l(&region->mutex);
208#if SANITIZER_WINDOWS
209 /* On Windows unmapping of memory during __sanitizer_purge_allocator is
210 explicit and immediate, so unmapped regions must be explicitly mapped back
211 in when they are accessed again. */
212 if (region->rtoi.last_released_bytes > 0) {
213 MmapFixedOrDie(region_beg, region->mapped_user,
214 "SizeClassAllocator: region data");
215 region->rtoi.n_freed_at_last_release = 0;
216 region->rtoi.last_released_bytes = 0;
217 }
218#endif
219 if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
220 if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
221 n_chunks - region->num_freed_chunks)))
222 return false;
223 CHECK_GE(region->num_freed_chunks, n_chunks);
224 }
225 region->num_freed_chunks -= n_chunks;
226 uptr base_idx = region->num_freed_chunks;
227 for (uptr i = 0; i < n_chunks; i++)
228 chunks[i] = free_array[base_idx + i];
229 region->stats.n_allocated += n_chunks;
230 return true;
231 }
232
233 bool PointerIsMine(const void *p) const {
234 uptr P = reinterpret_cast<uptr>(p);
235 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
236 return P / kSpaceSize == kSpaceBeg / kSpaceSize;
237 return P >= SpaceBeg() && P < SpaceEnd();
238 }
239
240 uptr GetRegionBegin(const void *p) {
241 if (kUsingConstantSpaceBeg)
242 return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
243 uptr space_beg = SpaceBeg();
244 return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
245 space_beg;
246 }
247
248 uptr GetRegionBeginBySizeClass(uptr class_id) const {
249 return SpaceBeg() + kRegionSize * class_id;
250 }
251
252 uptr GetSizeClass(const void *p) {
253 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
254 return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
255 return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
256 kNumClassesRounded;
257 }
258
259 void *GetBlockBegin(const void *p) {
260 uptr class_id = GetSizeClass(p);
261 if (class_id >= kNumClasses) return nullptr;
262 uptr size = ClassIdToSize(class_id);
263 if (!size) return nullptr;
264 uptr chunk_idx = GetChunkIdx(chunk: (uptr)p, size);
265 uptr reg_beg = GetRegionBegin(p);
266 uptr beg = chunk_idx * size;
267 uptr next_beg = beg + size;
268 const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
269 if (region->mapped_user >= next_beg)
270 return reinterpret_cast<void*>(reg_beg + beg);
271 return nullptr;
272 }
273
274 uptr GetActuallyAllocatedSize(void *p) {
275 CHECK(PointerIsMine(p));
276 return ClassIdToSize(class_id: GetSizeClass(p));
277 }
278
279 static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
280
281 void *GetMetaData(const void *p) {
282 CHECK(kMetadataSize);
283 uptr class_id = GetSizeClass(p);
284 uptr size = ClassIdToSize(class_id);
285 if (!size)
286 return nullptr;
287 uptr chunk_idx = GetChunkIdx(chunk: reinterpret_cast<uptr>(p), size);
288 uptr region_beg = GetRegionBeginBySizeClass(class_id);
289 return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
290 (1 + chunk_idx) * kMetadataSize);
291 }
292
293 uptr TotalMemoryUsed() {
294 uptr res = 0;
295 for (uptr i = 0; i < kNumClasses; i++)
296 res += GetRegionInfo(class_id: i)->allocated_user;
297 return res;
298 }
299
300 // Test-only.
301 void TestOnlyUnmap() {
302 UnmapWithCallbackOrDie(beg: (uptr)address_range.base(), size: address_range.size());
303 }
304
305 static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats) {
306 for (uptr class_id = 0; class_id < kNumClasses; class_id++)
307 if (stats[class_id] == start)
308 stats[class_id] = rss;
309 }
310
311 void PrintStats(uptr class_id, uptr rss) {
312 RegionInfo *region = GetRegionInfo(class_id);
313 if (region->mapped_user == 0) return;
314 uptr in_use = region->stats.n_allocated - region->stats.n_freed;
315 uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
316 Printf(
317 "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
318 "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
319 "last released: %6lldK region: %p\n",
320 region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
321 region->mapped_user >> 10, region->stats.n_allocated,
322 region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
323 rss >> 10, region->rtoi.num_releases,
324 region->rtoi.last_released_bytes >> 10,
325 (void *)(SpaceBeg() + kRegionSize * class_id));
326 }
327
328 void PrintStats() {
329 uptr rss_stats[kNumClasses];
330 for (uptr class_id = 0; class_id < kNumClasses; class_id++)
331 rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
332 GetMemoryProfile(FillMemoryProfile, rss_stats);
333
334 uptr total_mapped = 0;
335 uptr total_rss = 0;
336 uptr n_allocated = 0;
337 uptr n_freed = 0;
338 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
339 RegionInfo *region = GetRegionInfo(class_id);
340 if (region->mapped_user != 0) {
341 total_mapped += region->mapped_user;
342 total_rss += rss_stats[class_id];
343 }
344 n_allocated += region->stats.n_allocated;
345 n_freed += region->stats.n_freed;
346 }
347
348 Printf(format: "Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
349 "%zd allocations; remains %zd\n", total_mapped >> 20,
350 total_rss >> 20, n_allocated, n_allocated - n_freed);
351 for (uptr class_id = 1; class_id < kNumClasses; class_id++)
352 PrintStats(class_id, rss_stats[class_id]);
353 }
354
355 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
356 // introspection API.
357 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
358 for (uptr i = 0; i < kNumClasses; i++) {
359 GetRegionInfo(class_id: i)->mutex.Lock();
360 }
361 }
362
363 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
364 for (int i = (int)kNumClasses - 1; i >= 0; i--) {
365 GetRegionInfo(class_id: i)->mutex.Unlock();
366 }
367 }
368
369 // Iterate over all existing chunks.
370 // The allocator must be locked when calling this function.
371 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
372 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
373 RegionInfo *region = GetRegionInfo(class_id);
374 uptr chunk_size = ClassIdToSize(class_id);
375 uptr region_beg = SpaceBeg() + class_id * kRegionSize;
376 uptr region_allocated_user_size =
377 AddressSpaceView::Load(region)->allocated_user;
378 for (uptr chunk = region_beg;
379 chunk < region_beg + region_allocated_user_size;
380 chunk += chunk_size) {
381 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
382 callback(chunk, arg);
383 }
384 }
385 }
386
387 static uptr ClassIdToSize(uptr class_id) {
388 return SizeClassMap::Size(class_id);
389 }
390
391 static uptr AdditionalSize() {
392 return RoundUpTo(size: sizeof(RegionInfo) * kNumClassesRounded,
393 boundary: GetPageSizeCached());
394 }
395
396 typedef SizeClassMap SizeClassMapT;
397 static const uptr kNumClasses = SizeClassMap::kNumClasses;
398 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
399
400 // A packed array of counters. Each counter occupies 2^n bits, enough to store
401 // counter's max_value. Ctor will try to allocate the required buffer via
402 // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
403 // whether the initialization was successful by checking IsAllocated() result.
404 // For the performance sake, none of the accessors check the validity of the
405 // arguments, it is assumed that index is always in [0, n) range and the value
406 // is not incremented past max_value.
407 class PackedCounterArray {
408 public:
409 template <typename MemoryMapper>
410 PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapper *mapper)
411 : n(num_counters) {
412 CHECK_GT(num_counters, 0);
413 CHECK_GT(max_value, 0);
414 constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
415 // Rounding counter storage size up to the power of two allows for using
416 // bit shifts calculating particular counter's index and offset.
417 uptr counter_size_bits =
418 RoundUpToPowerOfTwo(size: MostSignificantSetBitIndex(x: max_value) + 1);
419 CHECK_LE(counter_size_bits, kMaxCounterBits);
420 counter_size_bits_log = Log2(x: counter_size_bits);
421 counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
422
423 uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
424 CHECK_GT(packing_ratio, 0);
425 packing_ratio_log = Log2(x: packing_ratio);
426 bit_offset_mask = packing_ratio - 1;
427
428 buffer = mapper->MapPackedCounterArrayBuffer(
429 RoundUpTo(size: n, boundary: 1ULL << packing_ratio_log) >> packing_ratio_log);
430 }
431
432 bool IsAllocated() const {
433 return !!buffer;
434 }
435
436 u64 GetCount() const {
437 return n;
438 }
439
440 uptr Get(uptr i) const {
441 DCHECK_LT(i, n);
442 uptr index = i >> packing_ratio_log;
443 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
444 return (buffer[index] >> bit_offset) & counter_mask;
445 }
446
447 void Inc(uptr i) const {
448 DCHECK_LT(Get(i), counter_mask);
449 uptr index = i >> packing_ratio_log;
450 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
451 buffer[index] += 1ULL << bit_offset;
452 }
453
454 void IncRange(uptr from, uptr to) const {
455 DCHECK_LE(from, to);
456 for (uptr i = from; i <= to; i++)
457 Inc(i);
458 }
459
460 private:
461 const u64 n;
462 u64 counter_size_bits_log;
463 u64 counter_mask;
464 u64 packing_ratio_log;
465 u64 bit_offset_mask;
466 u64* buffer;
467 };
468
469 template <class MemoryMapperT>
470 class FreePagesRangeTracker {
471 public:
472 FreePagesRangeTracker(MemoryMapperT *mapper, uptr class_id)
473 : memory_mapper(mapper),
474 class_id(class_id),
475 page_size_scaled_log(Log2(x: GetPageSizeCached() >> kCompactPtrScale)) {}
476
477 void NextPage(bool freed) {
478 if (freed) {
479 if (!in_the_range) {
480 current_range_start_page = current_page;
481 in_the_range = true;
482 }
483 } else {
484 CloseOpenedRange();
485 }
486 current_page++;
487 }
488
489 void Done() {
490 CloseOpenedRange();
491 }
492
493 private:
494 void CloseOpenedRange() {
495 if (in_the_range) {
496 memory_mapper->ReleasePageRangeToOS(
497 class_id, current_range_start_page << page_size_scaled_log,
498 current_page << page_size_scaled_log);
499 in_the_range = false;
500 }
501 }
502
503 MemoryMapperT *const memory_mapper = nullptr;
504 const uptr class_id = 0;
505 const uptr page_size_scaled_log = 0;
506 bool in_the_range = false;
507 uptr current_page = 0;
508 uptr current_range_start_page = 0;
509 };
510
511 // Iterates over the free_array to identify memory pages containing freed
512 // chunks only and returns these pages back to OS.
513 // allocated_pages_count is the total number of pages allocated for the
514 // current bucket.
515 template <typename MemoryMapper>
516 static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
517 uptr free_array_count, uptr chunk_size,
518 uptr allocated_pages_count,
519 MemoryMapper *memory_mapper,
520 uptr class_id) {
521 const uptr page_size = GetPageSizeCached();
522
523 // Figure out the number of chunks per page and whether we can take a fast
524 // path (the number of chunks per page is the same for all pages).
525 uptr full_pages_chunk_count_max;
526 bool same_chunk_count_per_page;
527 if (chunk_size <= page_size && page_size % chunk_size == 0) {
528 // Same number of chunks per page, no cross overs.
529 full_pages_chunk_count_max = page_size / chunk_size;
530 same_chunk_count_per_page = true;
531 } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
532 chunk_size % (page_size % chunk_size) == 0) {
533 // Some chunks are crossing page boundaries, which means that the page
534 // contains one or two partial chunks, but all pages contain the same
535 // number of chunks.
536 full_pages_chunk_count_max = page_size / chunk_size + 1;
537 same_chunk_count_per_page = true;
538 } else if (chunk_size <= page_size) {
539 // Some chunks are crossing page boundaries, which means that the page
540 // contains one or two partial chunks.
541 full_pages_chunk_count_max = page_size / chunk_size + 2;
542 same_chunk_count_per_page = false;
543 } else if (chunk_size > page_size && chunk_size % page_size == 0) {
544 // One chunk covers multiple pages, no cross overs.
545 full_pages_chunk_count_max = 1;
546 same_chunk_count_per_page = true;
547 } else if (chunk_size > page_size) {
548 // One chunk covers multiple pages, Some chunks are crossing page
549 // boundaries. Some pages contain one chunk, some contain two.
550 full_pages_chunk_count_max = 2;
551 same_chunk_count_per_page = false;
552 } else {
553 UNREACHABLE("All chunk_size/page_size ratios must be handled.");
554 }
555
556 PackedCounterArray counters(allocated_pages_count,
557 full_pages_chunk_count_max, memory_mapper);
558 if (!counters.IsAllocated())
559 return;
560
561 const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
562 const uptr page_size_scaled = page_size >> kCompactPtrScale;
563 const uptr page_size_scaled_log = Log2(x: page_size_scaled);
564
565 // Iterate over free chunks and count how many free chunks affect each
566 // allocated page.
567 if (chunk_size <= page_size && page_size % chunk_size == 0) {
568 // Each chunk affects one page only.
569 for (uptr i = 0; i < free_array_count; i++)
570 counters.Inc(free_array[i] >> page_size_scaled_log);
571 } else {
572 // In all other cases chunks might affect more than one page.
573 for (uptr i = 0; i < free_array_count; i++) {
574 counters.IncRange(
575 free_array[i] >> page_size_scaled_log,
576 (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
577 }
578 }
579
580 // Iterate over pages detecting ranges of pages with chunk counters equal
581 // to the expected number of chunks for the particular page.
582 FreePagesRangeTracker<MemoryMapper> range_tracker(memory_mapper, class_id);
583 if (same_chunk_count_per_page) {
584 // Fast path, every page has the same number of chunks affecting it.
585 for (uptr i = 0; i < counters.GetCount(); i++)
586 range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
587 } else {
588 // Show path, go through the pages keeping count how many chunks affect
589 // each page.
590 const uptr pn =
591 chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
592 const uptr pnc = pn * chunk_size_scaled;
593 // The idea is to increment the current page pointer by the first chunk
594 // size, middle portion size (the portion of the page covered by chunks
595 // except the first and the last one) and then the last chunk size, adding
596 // up the number of chunks on the current page and checking on every step
597 // whether the page boundary was crossed.
598 uptr prev_page_boundary = 0;
599 uptr current_boundary = 0;
600 for (uptr i = 0; i < counters.GetCount(); i++) {
601 uptr page_boundary = prev_page_boundary + page_size_scaled;
602 uptr chunks_per_page = pn;
603 if (current_boundary < page_boundary) {
604 if (current_boundary > prev_page_boundary)
605 chunks_per_page++;
606 current_boundary += pnc;
607 if (current_boundary < page_boundary) {
608 chunks_per_page++;
609 current_boundary += chunk_size_scaled;
610 }
611 }
612 prev_page_boundary = page_boundary;
613
614 range_tracker.NextPage(counters.Get(i) == chunks_per_page);
615 }
616 }
617 range_tracker.Done();
618 }
619
620 private:
621 friend class MemoryMapper<ThisT>;
622
623 ReservedAddressRange address_range;
624
625 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
626 // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
627 // In the worst case it may require kRegionSize/SizeClassMap::kMinSize
628 // elements, but in reality this will not happen. For simplicity we
629 // dedicate 1/8 of the region's virtual space to FreeArray.
630 static const uptr kFreeArraySize = kRegionSize / 8;
631
632 static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
633 uptr NonConstSpaceBeg;
634 uptr SpaceBeg() const {
635 return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
636 }
637 uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
638 // kRegionSize should be able to satisfy the largest size class.
639 static_assert(kRegionSize >= SizeClassMap::kMaxSize,
640 "Region size exceed largest size");
641 // kRegionSize must be <= 2^36, see CompactPtrT.
642 COMPILER_CHECK((kRegionSize) <=
643 (1ULL << (sizeof(CompactPtrT) * 8 + kCompactPtrScale)));
644 // Call mmap for user memory with at least this size.
645 static const uptr kUserMapSize = 1 << 18;
646 // Call mmap for metadata memory with at least this size.
647 static const uptr kMetaMapSize = 1 << 16;
648 // Call mmap for free array memory with at least this size.
649 static const uptr kFreeArrayMapSize = 1 << 18;
650
651 atomic_sint32_t release_to_os_interval_ms_;
652
653 uptr RegionInfoSpace;
654
655 // True if the user has already mapped the entire heap R/W.
656 bool PremappedHeap;
657
658 struct Stats {
659 uptr n_allocated;
660 uptr n_freed;
661 };
662
663 struct ReleaseToOsInfo {
664 uptr n_freed_at_last_release;
665 uptr num_releases;
666 u64 last_release_at_ns;
667 u64 last_released_bytes;
668 };
669
670 struct alignas(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
671 Mutex mutex;
672 uptr num_freed_chunks; // Number of elements in the freearray.
673 uptr mapped_free_array; // Bytes mapped for freearray.
674 uptr allocated_user; // Bytes allocated for user memory.
675 uptr allocated_meta; // Bytes allocated for metadata.
676 uptr mapped_user; // Bytes mapped for user memory.
677 uptr mapped_meta; // Bytes mapped for metadata.
678 u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
679 bool exhausted; // Whether region is out of space for new chunks.
680 Stats stats;
681 ReleaseToOsInfo rtoi;
682 };
683 COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
684
685 RegionInfo *GetRegionInfo(uptr class_id) const {
686 DCHECK_LT(class_id, kNumClasses);
687 RegionInfo *regions = reinterpret_cast<RegionInfo *>(RegionInfoSpace);
688 return &regions[class_id];
689 }
690
691 uptr GetMetadataEnd(uptr region_beg) const {
692 return region_beg + kRegionSize - kFreeArraySize;
693 }
694
695 uptr GetChunkIdx(uptr chunk, uptr size) const {
696 if (!kUsingConstantSpaceBeg)
697 chunk -= SpaceBeg();
698
699 uptr offset = chunk % kRegionSize;
700 // Here we divide by a non-constant. This is costly.
701 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
702 if (offset >> (SANITIZER_WORDSIZE / 2))
703 return offset / size;
704 return (u32)offset / (u32)size;
705 }
706
707 CompactPtrT *GetFreeArray(uptr region_beg) const {
708 return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
709 }
710
711 bool MapWithCallback(uptr beg, uptr size, const char *name) {
712 if (PremappedHeap)
713 return beg >= NonConstSpaceBeg &&
714 beg + size <= NonConstSpaceBeg + kSpaceSize;
715 uptr mapped = address_range.Map(fixed_addr: beg, size, name);
716 if (UNLIKELY(!mapped))
717 return false;
718 CHECK_EQ(beg, mapped);
719 MapUnmapCallback().OnMap(beg, size);
720 return true;
721 }
722
723 void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
724 if (PremappedHeap) {
725 CHECK_GE(beg, NonConstSpaceBeg);
726 CHECK_LE(beg + size, NonConstSpaceBeg + kSpaceSize);
727 return;
728 }
729 CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
730 MapUnmapCallback().OnMap(beg, size);
731 }
732
733 void UnmapWithCallbackOrDie(uptr beg, uptr size) {
734 if (PremappedHeap)
735 return;
736 MapUnmapCallback().OnUnmap(beg, size);
737 address_range.Unmap(addr: beg, size);
738 }
739
740 bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
741 uptr num_freed_chunks) {
742 uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
743 if (region->mapped_free_array < needed_space) {
744 uptr new_mapped_free_array = RoundUpTo(size: needed_space, boundary: kFreeArrayMapSize);
745 CHECK_LE(new_mapped_free_array, kFreeArraySize);
746 uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
747 region->mapped_free_array;
748 uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
749 if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
750 "SizeClassAllocator: freearray")))
751 return false;
752 region->mapped_free_array = new_mapped_free_array;
753 }
754 return true;
755 }
756
757 // Check whether this size class is exhausted.
758 bool IsRegionExhausted(RegionInfo *region, uptr class_id,
759 uptr additional_map_size) {
760 if (LIKELY(region->mapped_user + region->mapped_meta +
761 additional_map_size <= kRegionSize - kFreeArraySize))
762 return false;
763 if (!region->exhausted) {
764 region->exhausted = true;
765 Printf(format: "%s: Out of memory. ", SanitizerToolName);
766 Printf(format: "The process has exhausted %zuMB for size class %zu.\n",
767 kRegionSize >> 20, ClassIdToSize(class_id));
768 }
769 return true;
770 }
771
772 NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
773 RegionInfo *region, uptr requested_count) {
774 // region->mutex is held.
775 const uptr region_beg = GetRegionBeginBySizeClass(class_id);
776 const uptr size = ClassIdToSize(class_id);
777
778 const uptr total_user_bytes =
779 region->allocated_user + requested_count * size;
780 // Map more space for chunks, if necessary.
781 if (LIKELY(total_user_bytes > region->mapped_user)) {
782 if (UNLIKELY(region->mapped_user == 0)) {
783 if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
784 // The random state is initialized from ASLR.
785 region->rand_state = static_cast<u32>(region_beg >> 12);
786 // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
787 // preventing just allocated memory from being released sooner than
788 // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
789 // for short lived processes.
790 // Do it only when the feature is turned on, to avoid a potentially
791 // extraneous syscall.
792 if (ReleaseToOSIntervalMs() >= 0)
793 region->rtoi.last_release_at_ns = MonotonicNanoTime();
794 }
795 // Do the mmap for the user memory.
796 const uptr user_map_size =
797 RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
798 if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
799 return false;
800 if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
801 user_map_size,
802 "SizeClassAllocator: region data")))
803 return false;
804 stat->Add(i: AllocatorStatMapped, v: user_map_size);
805 region->mapped_user += user_map_size;
806 }
807 const uptr new_chunks_count =
808 (region->mapped_user - region->allocated_user) / size;
809
810 if (kMetadataSize) {
811 // Calculate the required space for metadata.
812 const uptr total_meta_bytes =
813 region->allocated_meta + new_chunks_count * kMetadataSize;
814 const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
815 RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
816 // Map more space for metadata, if necessary.
817 if (meta_map_size) {
818 if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
819 return false;
820 if (UNLIKELY(!MapWithCallback(
821 GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
822 meta_map_size, "SizeClassAllocator: region metadata")))
823 return false;
824 region->mapped_meta += meta_map_size;
825 }
826 }
827
828 // If necessary, allocate more space for the free array and populate it with
829 // newly allocated chunks.
830 const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
831 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
832 return false;
833 CompactPtrT *free_array = GetFreeArray(region_beg);
834 for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
835 i++, chunk += size)
836 free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(base: 0, ptr: chunk);
837 if (kRandomShuffleChunks)
838 RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
839 &region->rand_state);
840
841 // All necessary memory is mapped and now it is safe to advance all
842 // 'allocated_*' counters.
843 region->num_freed_chunks += new_chunks_count;
844 region->allocated_user += new_chunks_count * size;
845 CHECK_LE(region->allocated_user, region->mapped_user);
846 region->allocated_meta += new_chunks_count * kMetadataSize;
847 CHECK_LE(region->allocated_meta, region->mapped_meta);
848 region->exhausted = false;
849
850 // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
851 // MaybeReleaseToOS from releasing just allocated pages or protect these
852 // not yet used chunks some other way.
853
854 return true;
855 }
856
857 // Attempts to release RAM occupied by freed chunks back to OS. The region is
858 // expected to be locked.
859 //
860 // TODO(morehouse): Support a callback on memory release so HWASan can release
861 // aliases as well.
862 void MaybeReleaseToOS(MemoryMapperT *memory_mapper, uptr class_id,
863 bool force) {
864 RegionInfo *region = GetRegionInfo(class_id);
865 const uptr chunk_size = ClassIdToSize(class_id);
866 const uptr page_size = GetPageSizeCached();
867
868 uptr n = region->num_freed_chunks;
869 if (n * chunk_size < page_size)
870 return; // No chance to release anything.
871 if ((region->stats.n_freed -
872 region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
873 return; // Nothing new to release.
874 }
875
876 if (!force) {
877 s32 interval_ms = ReleaseToOSIntervalMs();
878 if (interval_ms < 0)
879 return;
880
881 if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
882 MonotonicNanoTime()) {
883 return; // Memory was returned recently.
884 }
885 }
886
887 ReleaseFreeMemoryToOS(
888 GetFreeArray(region_beg: GetRegionBeginBySizeClass(class_id)), n, chunk_size,
889 RoundUpTo(region->allocated_user, page_size) / page_size, memory_mapper,
890 class_id);
891
892 uptr ranges, bytes;
893 if (memory_mapper->GetAndResetStats(ranges, bytes)) {
894 region->rtoi.n_freed_at_last_release = region->stats.n_freed;
895 region->rtoi.num_releases += ranges;
896 region->rtoi.last_released_bytes = bytes;
897 }
898 region->rtoi.last_release_at_ns = MonotonicNanoTime();
899 }
900};
901