1 | //===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Defines the clang::Preprocessor interface. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H |
15 | #define LLVM_CLANG_LEX_PREPROCESSOR_H |
16 | |
17 | #include "clang/Basic/Diagnostic.h" |
18 | #include "clang/Basic/DiagnosticIDs.h" |
19 | #include "clang/Basic/IdentifierTable.h" |
20 | #include "clang/Basic/LLVM.h" |
21 | #include "clang/Basic/LangOptions.h" |
22 | #include "clang/Basic/Module.h" |
23 | #include "clang/Basic/SourceLocation.h" |
24 | #include "clang/Basic/SourceManager.h" |
25 | #include "clang/Basic/TokenKinds.h" |
26 | #include "clang/Lex/HeaderSearch.h" |
27 | #include "clang/Lex/Lexer.h" |
28 | #include "clang/Lex/MacroInfo.h" |
29 | #include "clang/Lex/ModuleLoader.h" |
30 | #include "clang/Lex/ModuleMap.h" |
31 | #include "clang/Lex/PPCallbacks.h" |
32 | #include "clang/Lex/PPEmbedParameters.h" |
33 | #include "clang/Lex/Token.h" |
34 | #include "clang/Lex/TokenLexer.h" |
35 | #include "llvm/ADT/APSInt.h" |
36 | #include "llvm/ADT/ArrayRef.h" |
37 | #include "llvm/ADT/DenseMap.h" |
38 | #include "llvm/ADT/FoldingSet.h" |
39 | #include "llvm/ADT/FunctionExtras.h" |
40 | #include "llvm/ADT/PointerUnion.h" |
41 | #include "llvm/ADT/STLExtras.h" |
42 | #include "llvm/ADT/SmallPtrSet.h" |
43 | #include "llvm/ADT/SmallVector.h" |
44 | #include "llvm/ADT/StringRef.h" |
45 | #include "llvm/ADT/TinyPtrVector.h" |
46 | #include "llvm/ADT/iterator_range.h" |
47 | #include "llvm/Support/Allocator.h" |
48 | #include "llvm/Support/Casting.h" |
49 | #include "llvm/Support/Registry.h" |
50 | #include <cassert> |
51 | #include <cstddef> |
52 | #include <cstdint> |
53 | #include <map> |
54 | #include <memory> |
55 | #include <optional> |
56 | #include <string> |
57 | #include <utility> |
58 | #include <vector> |
59 | |
60 | namespace llvm { |
61 | |
62 | template<unsigned InternalLen> class SmallString; |
63 | |
64 | } // namespace llvm |
65 | |
66 | namespace clang { |
67 | |
68 | class CodeCompletionHandler; |
69 | class CommentHandler; |
70 | class DirectoryEntry; |
71 | class EmptylineHandler; |
72 | class ExternalPreprocessorSource; |
73 | class FileEntry; |
74 | class FileManager; |
75 | class ; |
76 | class MacroArgs; |
77 | class PragmaHandler; |
78 | class PragmaNamespace; |
79 | class PreprocessingRecord; |
80 | class PreprocessorLexer; |
81 | class PreprocessorOptions; |
82 | class ScratchBuffer; |
83 | class TargetInfo; |
84 | |
85 | namespace Builtin { |
86 | class Context; |
87 | } |
88 | |
89 | /// Stores token information for comparing actual tokens with |
90 | /// predefined values. Only handles simple tokens and identifiers. |
91 | class TokenValue { |
92 | tok::TokenKind Kind; |
93 | IdentifierInfo *II; |
94 | |
95 | public: |
96 | TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) { |
97 | assert(Kind != tok::raw_identifier && "Raw identifiers are not supported." ); |
98 | assert(Kind != tok::identifier && |
99 | "Identifiers should be created by TokenValue(IdentifierInfo *)" ); |
100 | assert(!tok::isLiteral(Kind) && "Literals are not supported." ); |
101 | assert(!tok::isAnnotation(Kind) && "Annotations are not supported." ); |
102 | } |
103 | |
104 | TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {} |
105 | |
106 | bool operator==(const Token &Tok) const { |
107 | return Tok.getKind() == Kind && |
108 | (!II || II == Tok.getIdentifierInfo()); |
109 | } |
110 | }; |
111 | |
112 | /// Context in which macro name is used. |
113 | enum MacroUse { |
114 | // other than #define or #undef |
115 | MU_Other = 0, |
116 | |
117 | // macro name specified in #define |
118 | MU_Define = 1, |
119 | |
120 | // macro name specified in #undef |
121 | MU_Undef = 2 |
122 | }; |
123 | |
124 | enum class EmbedResult { |
125 | Invalid = -1, // Parsing error occurred. |
126 | NotFound = 0, // Corresponds to __STDC_EMBED_NOT_FOUND__ |
127 | Found = 1, // Corresponds to __STDC_EMBED_FOUND__ |
128 | Empty = 2, // Corresponds to __STDC_EMBED_EMPTY__ |
129 | }; |
130 | |
131 | /// Engages in a tight little dance with the lexer to efficiently |
132 | /// preprocess tokens. |
133 | /// |
134 | /// Lexers know only about tokens within a single source file, and don't |
135 | /// know anything about preprocessor-level issues like the \#include stack, |
136 | /// token expansion, etc. |
137 | class Preprocessor { |
138 | friend class VAOptDefinitionContext; |
139 | friend class VariadicMacroScopeGuard; |
140 | |
141 | llvm::unique_function<void(const clang::Token &)> OnToken; |
142 | std::shared_ptr<PreprocessorOptions> PPOpts; |
143 | DiagnosticsEngine *Diags; |
144 | const LangOptions &LangOpts; |
145 | const TargetInfo *Target = nullptr; |
146 | const TargetInfo *AuxTarget = nullptr; |
147 | FileManager &FileMgr; |
148 | SourceManager &SourceMgr; |
149 | std::unique_ptr<ScratchBuffer> ScratchBuf; |
150 | HeaderSearch &; |
151 | ModuleLoader &TheModuleLoader; |
152 | |
153 | /// External source of macros. |
154 | ExternalPreprocessorSource *ExternalSource; |
155 | |
156 | /// A BumpPtrAllocator object used to quickly allocate and release |
157 | /// objects internal to the Preprocessor. |
158 | llvm::BumpPtrAllocator BP; |
159 | |
160 | /// Identifiers for builtin macros and other builtins. |
161 | IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__ |
162 | IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__ |
163 | IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__ |
164 | IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__ |
165 | IdentifierInfo *Ident__FILE_NAME__; // __FILE_NAME__ |
166 | IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__ |
167 | IdentifierInfo *Ident__COUNTER__; // __COUNTER__ |
168 | IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma |
169 | IdentifierInfo *Ident__identifier; // __identifier |
170 | IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__ |
171 | IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__ |
172 | IdentifierInfo *Ident__has_feature; // __has_feature |
173 | IdentifierInfo *Ident__has_extension; // __has_extension |
174 | IdentifierInfo *Ident__has_builtin; // __has_builtin |
175 | IdentifierInfo *Ident__has_constexpr_builtin; // __has_constexpr_builtin |
176 | IdentifierInfo *Ident__has_attribute; // __has_attribute |
177 | IdentifierInfo *Ident__has_embed; // __has_embed |
178 | IdentifierInfo *Ident__has_include; // __has_include |
179 | IdentifierInfo *Ident__has_include_next; // __has_include_next |
180 | IdentifierInfo *Ident__has_warning; // __has_warning |
181 | IdentifierInfo *Ident__is_identifier; // __is_identifier |
182 | IdentifierInfo *Ident__building_module; // __building_module |
183 | IdentifierInfo *Ident__MODULE__; // __MODULE__ |
184 | IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute |
185 | IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute |
186 | IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute |
187 | IdentifierInfo *Ident__is_target_arch; // __is_target_arch |
188 | IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor |
189 | IdentifierInfo *Ident__is_target_os; // __is_target_os |
190 | IdentifierInfo *Ident__is_target_environment; // __is_target_environment |
191 | IdentifierInfo *Ident__is_target_variant_os; |
192 | IdentifierInfo *Ident__is_target_variant_environment; |
193 | IdentifierInfo *Ident__FLT_EVAL_METHOD__; // __FLT_EVAL_METHOD |
194 | |
195 | // Weak, only valid (and set) while InMacroArgs is true. |
196 | Token* ArgMacro; |
197 | |
198 | SourceLocation DATELoc, TIMELoc; |
199 | |
200 | // FEM_UnsetOnCommandLine means that an explicit evaluation method was |
201 | // not specified on the command line. The target is queried to set the |
202 | // default evaluation method. |
203 | LangOptions::FPEvalMethodKind CurrentFPEvalMethod = |
204 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; |
205 | |
206 | // The most recent pragma location where the floating point evaluation |
207 | // method was modified. This is used to determine whether the |
208 | // 'pragma clang fp eval_method' was used whithin the current scope. |
209 | SourceLocation LastFPEvalPragmaLocation; |
210 | |
211 | LangOptions::FPEvalMethodKind TUFPEvalMethod = |
212 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; |
213 | |
214 | // Next __COUNTER__ value, starts at 0. |
215 | unsigned CounterValue = 0; |
216 | |
217 | enum { |
218 | /// Maximum depth of \#includes. |
219 | MaxAllowedIncludeStackDepth = 200 |
220 | }; |
221 | |
222 | // State that is set before the preprocessor begins. |
223 | bool : 1; |
224 | bool : 1; |
225 | bool SuppressIncludeNotFoundError : 1; |
226 | |
227 | // State that changes while the preprocessor runs: |
228 | bool InMacroArgs : 1; // True if parsing fn macro invocation args. |
229 | |
230 | /// Whether the preprocessor owns the header search object. |
231 | bool : 1; |
232 | |
233 | /// True if macro expansion is disabled. |
234 | bool DisableMacroExpansion : 1; |
235 | |
236 | /// Temporarily disables DisableMacroExpansion (i.e. enables expansion) |
237 | /// when parsing preprocessor directives. |
238 | bool MacroExpansionInDirectivesOverride : 1; |
239 | |
240 | class ResetMacroExpansionHelper; |
241 | |
242 | /// Whether we have already loaded macros from the external source. |
243 | mutable bool ReadMacrosFromExternalSource : 1; |
244 | |
245 | /// True if pragmas are enabled. |
246 | bool PragmasEnabled : 1; |
247 | |
248 | /// True if the current build action is a preprocessing action. |
249 | bool PreprocessedOutput : 1; |
250 | |
251 | /// True if we are currently preprocessing a #if or #elif directive |
252 | bool ParsingIfOrElifDirective; |
253 | |
254 | /// True if we are pre-expanding macro arguments. |
255 | bool InMacroArgPreExpansion; |
256 | |
257 | /// Mapping/lookup information for all identifiers in |
258 | /// the program, including program keywords. |
259 | mutable IdentifierTable Identifiers; |
260 | |
261 | /// This table contains all the selectors in the program. |
262 | /// |
263 | /// Unlike IdentifierTable above, this table *isn't* populated by the |
264 | /// preprocessor. It is declared/expanded here because its role/lifetime is |
265 | /// conceptually similar to the IdentifierTable. In addition, the current |
266 | /// control flow (in clang::ParseAST()), make it convenient to put here. |
267 | /// |
268 | /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to |
269 | /// the lifetime of the preprocessor. |
270 | SelectorTable Selectors; |
271 | |
272 | /// Information about builtins. |
273 | std::unique_ptr<Builtin::Context> BuiltinInfo; |
274 | |
275 | /// Tracks all of the pragmas that the client registered |
276 | /// with this preprocessor. |
277 | std::unique_ptr<PragmaNamespace> PragmaHandlers; |
278 | |
279 | /// Pragma handlers of the original source is stored here during the |
280 | /// parsing of a model file. |
281 | std::unique_ptr<PragmaNamespace> PragmaHandlersBackup; |
282 | |
283 | /// Tracks all of the comment handlers that the client registered |
284 | /// with this preprocessor. |
285 | std::vector<CommentHandler *> CommentHandlers; |
286 | |
287 | /// Empty line handler. |
288 | EmptylineHandler *Emptyline = nullptr; |
289 | |
290 | /// True to avoid tearing down the lexer etc on EOF |
291 | bool IncrementalProcessing = false; |
292 | |
293 | public: |
294 | /// The kind of translation unit we are processing. |
295 | const TranslationUnitKind TUKind; |
296 | |
297 | /// Returns a pointer into the given file's buffer that's guaranteed |
298 | /// to be between tokens. The returned pointer is always before \p Start. |
299 | /// The maximum distance betweenthe returned pointer and \p Start is |
300 | /// limited by a constant value, but also an implementation detail. |
301 | /// If no such check point exists, \c nullptr is returned. |
302 | const char *getCheckPoint(FileID FID, const char *Start) const; |
303 | |
304 | private: |
305 | /// The code-completion handler. |
306 | CodeCompletionHandler *CodeComplete = nullptr; |
307 | |
308 | /// The file that we're performing code-completion for, if any. |
309 | const FileEntry *CodeCompletionFile = nullptr; |
310 | |
311 | /// The offset in file for the code-completion point. |
312 | unsigned CodeCompletionOffset = 0; |
313 | |
314 | /// The location for the code-completion point. This gets instantiated |
315 | /// when the CodeCompletionFile gets \#include'ed for preprocessing. |
316 | SourceLocation CodeCompletionLoc; |
317 | |
318 | /// The start location for the file of the code-completion point. |
319 | /// |
320 | /// This gets instantiated when the CodeCompletionFile gets \#include'ed |
321 | /// for preprocessing. |
322 | SourceLocation CodeCompletionFileLoc; |
323 | |
324 | /// The source location of the \c import contextual keyword we just |
325 | /// lexed, if any. |
326 | SourceLocation ModuleImportLoc; |
327 | |
328 | /// The import path for named module that we're currently processing. |
329 | SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> NamedModuleImportPath; |
330 | |
331 | llvm::DenseMap<FileID, SmallVector<const char *>> CheckPoints; |
332 | unsigned CheckPointCounter = 0; |
333 | |
334 | /// Whether the import is an `@import` or a standard c++ modules import. |
335 | bool IsAtImport = false; |
336 | |
337 | /// Whether the last token we lexed was an '@'. |
338 | bool LastTokenWasAt = false; |
339 | |
340 | /// A position within a C++20 import-seq. |
341 | class StdCXXImportSeq { |
342 | public: |
343 | enum State : int { |
344 | // Positive values represent a number of unclosed brackets. |
345 | AtTopLevel = 0, |
346 | AfterTopLevelTokenSeq = -1, |
347 | AfterExport = -2, |
348 | AfterImportSeq = -3, |
349 | }; |
350 | |
351 | StdCXXImportSeq(State S) : S(S) {} |
352 | |
353 | /// Saw any kind of open bracket. |
354 | void handleOpenBracket() { |
355 | S = static_cast<State>(std::max<int>(a: S, b: 0) + 1); |
356 | } |
357 | /// Saw any kind of close bracket other than '}'. |
358 | void handleCloseBracket() { |
359 | S = static_cast<State>(std::max<int>(a: S, b: 1) - 1); |
360 | } |
361 | /// Saw a close brace. |
362 | void handleCloseBrace() { |
363 | handleCloseBracket(); |
364 | if (S == AtTopLevel && !AfterHeaderName) |
365 | S = AfterTopLevelTokenSeq; |
366 | } |
367 | /// Saw a semicolon. |
368 | void handleSemi() { |
369 | if (atTopLevel()) { |
370 | S = AfterTopLevelTokenSeq; |
371 | AfterHeaderName = false; |
372 | } |
373 | } |
374 | |
375 | /// Saw an 'export' identifier. |
376 | void handleExport() { |
377 | if (S == AfterTopLevelTokenSeq) |
378 | S = AfterExport; |
379 | else if (S <= 0) |
380 | S = AtTopLevel; |
381 | } |
382 | /// Saw an 'import' identifier. |
383 | void handleImport() { |
384 | if (S == AfterTopLevelTokenSeq || S == AfterExport) |
385 | S = AfterImportSeq; |
386 | else if (S <= 0) |
387 | S = AtTopLevel; |
388 | } |
389 | |
390 | /// Saw a 'header-name' token; do not recognize any more 'import' tokens |
391 | /// until we reach a top-level semicolon. |
392 | void handleHeaderName() { |
393 | if (S == AfterImportSeq) |
394 | AfterHeaderName = true; |
395 | handleMisc(); |
396 | } |
397 | |
398 | /// Saw any other token. |
399 | void handleMisc() { |
400 | if (S <= 0) |
401 | S = AtTopLevel; |
402 | } |
403 | |
404 | bool atTopLevel() { return S <= 0; } |
405 | bool afterImportSeq() { return S == AfterImportSeq; } |
406 | bool afterTopLevelSeq() { return S == AfterTopLevelTokenSeq; } |
407 | |
408 | private: |
409 | State S; |
410 | /// Whether we're in the pp-import-suffix following the header-name in a |
411 | /// pp-import. If so, a close-brace is not sufficient to end the |
412 | /// top-level-token-seq of an import-seq. |
413 | bool = false; |
414 | }; |
415 | |
416 | /// Our current position within a C++20 import-seq. |
417 | StdCXXImportSeq StdCXXImportSeqState = StdCXXImportSeq::AfterTopLevelTokenSeq; |
418 | |
419 | /// Track whether we are in a Global Module Fragment |
420 | class TrackGMF { |
421 | public: |
422 | enum GMFState : int { |
423 | GMFActive = 1, |
424 | MaybeGMF = 0, |
425 | BeforeGMFIntroducer = -1, |
426 | GMFAbsentOrEnded = -2, |
427 | }; |
428 | |
429 | TrackGMF(GMFState S) : S(S) {} |
430 | |
431 | /// Saw a semicolon. |
432 | void handleSemi() { |
433 | // If it is immediately after the first instance of the module keyword, |
434 | // then that introduces the GMF. |
435 | if (S == MaybeGMF) |
436 | S = GMFActive; |
437 | } |
438 | |
439 | /// Saw an 'export' identifier. |
440 | void handleExport() { |
441 | // The presence of an 'export' keyword always ends or excludes a GMF. |
442 | S = GMFAbsentOrEnded; |
443 | } |
444 | |
445 | /// Saw an 'import' identifier. |
446 | void handleImport(bool AfterTopLevelTokenSeq) { |
447 | // If we see this before any 'module' kw, then we have no GMF. |
448 | if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) |
449 | S = GMFAbsentOrEnded; |
450 | } |
451 | |
452 | /// Saw a 'module' identifier. |
453 | void handleModule(bool AfterTopLevelTokenSeq) { |
454 | // This was the first module identifier and not preceded by any token |
455 | // that would exclude a GMF. It could begin a GMF, but only if directly |
456 | // followed by a semicolon. |
457 | if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) |
458 | S = MaybeGMF; |
459 | else |
460 | S = GMFAbsentOrEnded; |
461 | } |
462 | |
463 | /// Saw any other token. |
464 | void handleMisc() { |
465 | // We saw something other than ; after the 'module' kw, so not a GMF. |
466 | if (S == MaybeGMF) |
467 | S = GMFAbsentOrEnded; |
468 | } |
469 | |
470 | bool inGMF() { return S == GMFActive; } |
471 | |
472 | private: |
473 | /// Track the transitions into and out of a Global Module Fragment, |
474 | /// if one is present. |
475 | GMFState S; |
476 | }; |
477 | |
478 | TrackGMF TrackGMFState = TrackGMF::BeforeGMFIntroducer; |
479 | |
480 | /// Track the status of the c++20 module decl. |
481 | /// |
482 | /// module-declaration: |
483 | /// 'export'[opt] 'module' module-name module-partition[opt] |
484 | /// attribute-specifier-seq[opt] ';' |
485 | /// |
486 | /// module-name: |
487 | /// module-name-qualifier[opt] identifier |
488 | /// |
489 | /// module-partition: |
490 | /// ':' module-name-qualifier[opt] identifier |
491 | /// |
492 | /// module-name-qualifier: |
493 | /// identifier '.' |
494 | /// module-name-qualifier identifier '.' |
495 | /// |
496 | /// Transition state: |
497 | /// |
498 | /// NotAModuleDecl --- export ---> FoundExport |
499 | /// NotAModuleDecl --- module ---> ImplementationCandidate |
500 | /// FoundExport --- module ---> InterfaceCandidate |
501 | /// ImplementationCandidate --- Identifier ---> ImplementationCandidate |
502 | /// ImplementationCandidate --- period ---> ImplementationCandidate |
503 | /// ImplementationCandidate --- colon ---> ImplementationCandidate |
504 | /// InterfaceCandidate --- Identifier ---> InterfaceCandidate |
505 | /// InterfaceCandidate --- period ---> InterfaceCandidate |
506 | /// InterfaceCandidate --- colon ---> InterfaceCandidate |
507 | /// ImplementationCandidate --- Semi ---> NamedModuleImplementation |
508 | /// NamedModuleInterface --- Semi ---> NamedModuleInterface |
509 | /// NamedModuleImplementation --- Anything ---> NamedModuleImplementation |
510 | /// NamedModuleInterface --- Anything ---> NamedModuleInterface |
511 | /// |
512 | /// FIXME: We haven't handle attribute-specifier-seq here. It may not be bad |
513 | /// soon since we don't support any module attributes yet. |
514 | class ModuleDeclSeq { |
515 | enum ModuleDeclState : int { |
516 | NotAModuleDecl, |
517 | FoundExport, |
518 | InterfaceCandidate, |
519 | ImplementationCandidate, |
520 | NamedModuleInterface, |
521 | NamedModuleImplementation, |
522 | }; |
523 | |
524 | public: |
525 | ModuleDeclSeq() = default; |
526 | |
527 | void handleExport() { |
528 | if (State == NotAModuleDecl) |
529 | State = FoundExport; |
530 | else if (!isNamedModule()) |
531 | reset(); |
532 | } |
533 | |
534 | void handleModule() { |
535 | if (State == FoundExport) |
536 | State = InterfaceCandidate; |
537 | else if (State == NotAModuleDecl) |
538 | State = ImplementationCandidate; |
539 | else if (!isNamedModule()) |
540 | reset(); |
541 | } |
542 | |
543 | void handleIdentifier(IdentifierInfo *Identifier) { |
544 | if (isModuleCandidate() && Identifier) |
545 | Name += Identifier->getName().str(); |
546 | else if (!isNamedModule()) |
547 | reset(); |
548 | } |
549 | |
550 | void handleColon() { |
551 | if (isModuleCandidate()) |
552 | Name += ":" ; |
553 | else if (!isNamedModule()) |
554 | reset(); |
555 | } |
556 | |
557 | void handlePeriod() { |
558 | if (isModuleCandidate()) |
559 | Name += "." ; |
560 | else if (!isNamedModule()) |
561 | reset(); |
562 | } |
563 | |
564 | void handleSemi() { |
565 | if (!Name.empty() && isModuleCandidate()) { |
566 | if (State == InterfaceCandidate) |
567 | State = NamedModuleInterface; |
568 | else if (State == ImplementationCandidate) |
569 | State = NamedModuleImplementation; |
570 | else |
571 | llvm_unreachable("Unimaged ModuleDeclState." ); |
572 | } else if (!isNamedModule()) |
573 | reset(); |
574 | } |
575 | |
576 | void handleMisc() { |
577 | if (!isNamedModule()) |
578 | reset(); |
579 | } |
580 | |
581 | bool isModuleCandidate() const { |
582 | return State == InterfaceCandidate || State == ImplementationCandidate; |
583 | } |
584 | |
585 | bool isNamedModule() const { |
586 | return State == NamedModuleInterface || |
587 | State == NamedModuleImplementation; |
588 | } |
589 | |
590 | bool isNamedInterface() const { return State == NamedModuleInterface; } |
591 | |
592 | bool isImplementationUnit() const { |
593 | return State == NamedModuleImplementation && !getName().contains(C: ':'); |
594 | } |
595 | |
596 | StringRef getName() const { |
597 | assert(isNamedModule() && "Can't get name from a non named module" ); |
598 | return Name; |
599 | } |
600 | |
601 | StringRef getPrimaryName() const { |
602 | assert(isNamedModule() && "Can't get name from a non named module" ); |
603 | return getName().split(Separator: ':').first; |
604 | } |
605 | |
606 | void reset() { |
607 | Name.clear(); |
608 | State = NotAModuleDecl; |
609 | } |
610 | |
611 | private: |
612 | ModuleDeclState State = NotAModuleDecl; |
613 | std::string Name; |
614 | }; |
615 | |
616 | ModuleDeclSeq ModuleDeclState; |
617 | |
618 | /// Whether the module import expects an identifier next. Otherwise, |
619 | /// it expects a '.' or ';'. |
620 | bool ModuleImportExpectsIdentifier = false; |
621 | |
622 | /// The identifier and source location of the currently-active |
623 | /// \#pragma clang arc_cf_code_audited begin. |
624 | std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo; |
625 | |
626 | /// The source location of the currently-active |
627 | /// \#pragma clang assume_nonnull begin. |
628 | SourceLocation PragmaAssumeNonNullLoc; |
629 | |
630 | /// Set only for preambles which end with an active |
631 | /// \#pragma clang assume_nonnull begin. |
632 | /// |
633 | /// When the preamble is loaded into the main file, |
634 | /// `PragmaAssumeNonNullLoc` will be set to this to |
635 | /// replay the unterminated assume_nonnull. |
636 | SourceLocation PreambleRecordedPragmaAssumeNonNullLoc; |
637 | |
638 | /// True if we hit the code-completion point. |
639 | bool CodeCompletionReached = false; |
640 | |
641 | /// The code completion token containing the information |
642 | /// on the stem that is to be code completed. |
643 | IdentifierInfo *CodeCompletionII = nullptr; |
644 | |
645 | /// Range for the code completion token. |
646 | SourceRange CodeCompletionTokenRange; |
647 | |
648 | /// The directory that the main file should be considered to occupy, |
649 | /// if it does not correspond to a real file (as happens when building a |
650 | /// module). |
651 | OptionalDirectoryEntryRef MainFileDir; |
652 | |
653 | /// The number of bytes that we will initially skip when entering the |
654 | /// main file, along with a flag that indicates whether skipping this number |
655 | /// of bytes will place the lexer at the start of a line. |
656 | /// |
657 | /// This is used when loading a precompiled preamble. |
658 | std::pair<int, bool> SkipMainFilePreamble; |
659 | |
660 | /// Whether we hit an error due to reaching max allowed include depth. Allows |
661 | /// to avoid hitting the same error over and over again. |
662 | bool HasReachedMaxIncludeDepth = false; |
663 | |
664 | /// The number of currently-active calls to Lex. |
665 | /// |
666 | /// Lex is reentrant, and asking for an (end-of-phase-4) token can often |
667 | /// require asking for multiple additional tokens. This counter makes it |
668 | /// possible for Lex to detect whether it's producing a token for the end |
669 | /// of phase 4 of translation or for some other situation. |
670 | unsigned LexLevel = 0; |
671 | |
672 | /// The number of (LexLevel 0) preprocessor tokens. |
673 | unsigned TokenCount = 0; |
674 | |
675 | /// Preprocess every token regardless of LexLevel. |
676 | bool PreprocessToken = false; |
677 | |
678 | /// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens |
679 | /// warning, or zero for unlimited. |
680 | unsigned MaxTokens = 0; |
681 | SourceLocation MaxTokensOverrideLoc; |
682 | |
683 | public: |
684 | struct PreambleSkipInfo { |
685 | SourceLocation HashTokenLoc; |
686 | SourceLocation IfTokenLoc; |
687 | bool FoundNonSkipPortion; |
688 | bool FoundElse; |
689 | SourceLocation ElseLoc; |
690 | |
691 | PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, |
692 | bool FoundNonSkipPortion, bool FoundElse, |
693 | SourceLocation ElseLoc) |
694 | : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc), |
695 | FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse), |
696 | ElseLoc(ElseLoc) {} |
697 | }; |
698 | |
699 | using IncludedFilesSet = llvm::DenseSet<const FileEntry *>; |
700 | |
701 | private: |
702 | friend class ASTReader; |
703 | friend class MacroArgs; |
704 | |
705 | class PreambleConditionalStackStore { |
706 | enum State { |
707 | Off = 0, |
708 | Recording = 1, |
709 | Replaying = 2, |
710 | }; |
711 | |
712 | public: |
713 | PreambleConditionalStackStore() = default; |
714 | |
715 | void startRecording() { ConditionalStackState = Recording; } |
716 | void startReplaying() { ConditionalStackState = Replaying; } |
717 | bool isRecording() const { return ConditionalStackState == Recording; } |
718 | bool isReplaying() const { return ConditionalStackState == Replaying; } |
719 | |
720 | ArrayRef<PPConditionalInfo> getStack() const { |
721 | return ConditionalStack; |
722 | } |
723 | |
724 | void doneReplaying() { |
725 | ConditionalStack.clear(); |
726 | ConditionalStackState = Off; |
727 | } |
728 | |
729 | void setStack(ArrayRef<PPConditionalInfo> s) { |
730 | if (!isRecording() && !isReplaying()) |
731 | return; |
732 | ConditionalStack.clear(); |
733 | ConditionalStack.append(in_start: s.begin(), in_end: s.end()); |
734 | } |
735 | |
736 | bool hasRecordedPreamble() const { return !ConditionalStack.empty(); } |
737 | |
738 | bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); } |
739 | |
740 | void clearSkipInfo() { SkipInfo.reset(); } |
741 | |
742 | std::optional<PreambleSkipInfo> SkipInfo; |
743 | |
744 | private: |
745 | SmallVector<PPConditionalInfo, 4> ConditionalStack; |
746 | State ConditionalStackState = Off; |
747 | } PreambleConditionalStack; |
748 | |
749 | /// The current top of the stack that we're lexing from if |
750 | /// not expanding a macro and we are lexing directly from source code. |
751 | /// |
752 | /// Only one of CurLexer, or CurTokenLexer will be non-null. |
753 | std::unique_ptr<Lexer> CurLexer; |
754 | |
755 | /// The current top of the stack that we're lexing from |
756 | /// if not expanding a macro. |
757 | /// |
758 | /// This is an alias for CurLexer. |
759 | PreprocessorLexer *CurPPLexer = nullptr; |
760 | |
761 | /// Used to find the current FileEntry, if CurLexer is non-null |
762 | /// and if applicable. |
763 | /// |
764 | /// This allows us to implement \#include_next and find directory-specific |
765 | /// properties. |
766 | ConstSearchDirIterator CurDirLookup = nullptr; |
767 | |
768 | /// The current macro we are expanding, if we are expanding a macro. |
769 | /// |
770 | /// One of CurLexer and CurTokenLexer must be null. |
771 | std::unique_ptr<TokenLexer> CurTokenLexer; |
772 | |
773 | /// The kind of lexer we're currently working with. |
774 | typedef bool (*LexerCallback)(Preprocessor &, Token &); |
775 | LexerCallback CurLexerCallback = &CLK_Lexer; |
776 | |
777 | /// If the current lexer is for a submodule that is being built, this |
778 | /// is that submodule. |
779 | Module *CurLexerSubmodule = nullptr; |
780 | |
781 | /// Keeps track of the stack of files currently |
782 | /// \#included, and macros currently being expanded from, not counting |
783 | /// CurLexer/CurTokenLexer. |
784 | struct IncludeStackInfo { |
785 | LexerCallback CurLexerCallback; |
786 | Module *TheSubmodule; |
787 | std::unique_ptr<Lexer> TheLexer; |
788 | PreprocessorLexer *ThePPLexer; |
789 | std::unique_ptr<TokenLexer> TheTokenLexer; |
790 | ConstSearchDirIterator TheDirLookup; |
791 | |
792 | // The following constructors are completely useless copies of the default |
793 | // versions, only needed to pacify MSVC. |
794 | IncludeStackInfo(LexerCallback CurLexerCallback, Module *TheSubmodule, |
795 | std::unique_ptr<Lexer> &&TheLexer, |
796 | PreprocessorLexer *ThePPLexer, |
797 | std::unique_ptr<TokenLexer> &&TheTokenLexer, |
798 | ConstSearchDirIterator TheDirLookup) |
799 | : CurLexerCallback(std::move(CurLexerCallback)), |
800 | TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)), |
801 | ThePPLexer(std::move(ThePPLexer)), |
802 | TheTokenLexer(std::move(TheTokenLexer)), |
803 | TheDirLookup(std::move(TheDirLookup)) {} |
804 | }; |
805 | std::vector<IncludeStackInfo> IncludeMacroStack; |
806 | |
807 | /// Actions invoked when some preprocessor activity is |
808 | /// encountered (e.g. a file is \#included, etc). |
809 | std::unique_ptr<PPCallbacks> Callbacks; |
810 | |
811 | struct MacroExpandsInfo { |
812 | Token Tok; |
813 | MacroDefinition MD; |
814 | SourceRange Range; |
815 | |
816 | MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range) |
817 | : Tok(Tok), MD(MD), Range(Range) {} |
818 | }; |
819 | SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks; |
820 | |
821 | /// Information about a name that has been used to define a module macro. |
822 | struct ModuleMacroInfo { |
823 | /// The most recent macro directive for this identifier. |
824 | MacroDirective *MD; |
825 | |
826 | /// The active module macros for this identifier. |
827 | llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros; |
828 | |
829 | /// The generation number at which we last updated ActiveModuleMacros. |
830 | /// \see Preprocessor::VisibleModules. |
831 | unsigned ActiveModuleMacrosGeneration = 0; |
832 | |
833 | /// Whether this macro name is ambiguous. |
834 | bool IsAmbiguous = false; |
835 | |
836 | /// The module macros that are overridden by this macro. |
837 | llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros; |
838 | |
839 | ModuleMacroInfo(MacroDirective *MD) : MD(MD) {} |
840 | }; |
841 | |
842 | /// The state of a macro for an identifier. |
843 | class MacroState { |
844 | mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State; |
845 | |
846 | ModuleMacroInfo *getModuleInfo(Preprocessor &PP, |
847 | const IdentifierInfo *II) const { |
848 | if (II->isOutOfDate()) |
849 | PP.updateOutOfDateIdentifier(II: *II); |
850 | // FIXME: Find a spare bit on IdentifierInfo and store a |
851 | // HasModuleMacros flag. |
852 | if (!II->hasMacroDefinition() || |
853 | (!PP.getLangOpts().Modules && |
854 | !PP.getLangOpts().ModulesLocalVisibility) || |
855 | !PP.CurSubmoduleState->VisibleModules.getGeneration()) |
856 | return nullptr; |
857 | |
858 | auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
859 | if (!Info) { |
860 | Info = new (PP.getPreprocessorAllocator()) |
861 | ModuleMacroInfo(State.get<MacroDirective *>()); |
862 | State = Info; |
863 | } |
864 | |
865 | if (PP.CurSubmoduleState->VisibleModules.getGeneration() != |
866 | Info->ActiveModuleMacrosGeneration) |
867 | PP.updateModuleMacroInfo(II, Info&: *Info); |
868 | return Info; |
869 | } |
870 | |
871 | public: |
872 | MacroState() : MacroState(nullptr) {} |
873 | MacroState(MacroDirective *MD) : State(MD) {} |
874 | |
875 | MacroState(MacroState &&O) noexcept : State(O.State) { |
876 | O.State = (MacroDirective *)nullptr; |
877 | } |
878 | |
879 | MacroState &operator=(MacroState &&O) noexcept { |
880 | auto S = O.State; |
881 | O.State = (MacroDirective *)nullptr; |
882 | State = S; |
883 | return *this; |
884 | } |
885 | |
886 | ~MacroState() { |
887 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
888 | Info->~ModuleMacroInfo(); |
889 | } |
890 | |
891 | MacroDirective *getLatest() const { |
892 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
893 | return Info->MD; |
894 | return State.get<MacroDirective*>(); |
895 | } |
896 | |
897 | void setLatest(MacroDirective *MD) { |
898 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
899 | Info->MD = MD; |
900 | else |
901 | State = MD; |
902 | } |
903 | |
904 | bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const { |
905 | auto *Info = getModuleInfo(PP, II); |
906 | return Info ? Info->IsAmbiguous : false; |
907 | } |
908 | |
909 | ArrayRef<ModuleMacro *> |
910 | getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const { |
911 | if (auto *Info = getModuleInfo(PP, II)) |
912 | return Info->ActiveModuleMacros; |
913 | return std::nullopt; |
914 | } |
915 | |
916 | MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc, |
917 | SourceManager &SourceMgr) const { |
918 | // FIXME: Incorporate module macros into the result of this. |
919 | if (auto *Latest = getLatest()) |
920 | return Latest->findDirectiveAtLoc(L: Loc, SM: SourceMgr); |
921 | return {}; |
922 | } |
923 | |
924 | void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) { |
925 | if (auto *Info = getModuleInfo(PP, II)) { |
926 | Info->OverriddenMacros.insert(I: Info->OverriddenMacros.end(), |
927 | From: Info->ActiveModuleMacros.begin(), |
928 | To: Info->ActiveModuleMacros.end()); |
929 | Info->ActiveModuleMacros.clear(); |
930 | Info->IsAmbiguous = false; |
931 | } |
932 | } |
933 | |
934 | ArrayRef<ModuleMacro*> getOverriddenMacros() const { |
935 | if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) |
936 | return Info->OverriddenMacros; |
937 | return std::nullopt; |
938 | } |
939 | |
940 | void setOverriddenMacros(Preprocessor &PP, |
941 | ArrayRef<ModuleMacro *> Overrides) { |
942 | auto *Info = State.dyn_cast<ModuleMacroInfo*>(); |
943 | if (!Info) { |
944 | if (Overrides.empty()) |
945 | return; |
946 | Info = new (PP.getPreprocessorAllocator()) |
947 | ModuleMacroInfo(State.get<MacroDirective *>()); |
948 | State = Info; |
949 | } |
950 | Info->OverriddenMacros.clear(); |
951 | Info->OverriddenMacros.insert(I: Info->OverriddenMacros.end(), |
952 | From: Overrides.begin(), To: Overrides.end()); |
953 | Info->ActiveModuleMacrosGeneration = 0; |
954 | } |
955 | }; |
956 | |
957 | /// For each IdentifierInfo that was associated with a macro, we |
958 | /// keep a mapping to the history of all macro definitions and #undefs in |
959 | /// the reverse order (the latest one is in the head of the list). |
960 | /// |
961 | /// This mapping lives within the \p CurSubmoduleState. |
962 | using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>; |
963 | |
964 | struct SubmoduleState; |
965 | |
966 | /// Information about a submodule that we're currently building. |
967 | struct BuildingSubmoduleInfo { |
968 | /// The module that we are building. |
969 | Module *M; |
970 | |
971 | /// The location at which the module was included. |
972 | SourceLocation ImportLoc; |
973 | |
974 | /// Whether we entered this submodule via a pragma. |
975 | bool IsPragma; |
976 | |
977 | /// The previous SubmoduleState. |
978 | SubmoduleState *OuterSubmoduleState; |
979 | |
980 | /// The number of pending module macro names when we started building this. |
981 | unsigned OuterPendingModuleMacroNames; |
982 | |
983 | BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma, |
984 | SubmoduleState *OuterSubmoduleState, |
985 | unsigned OuterPendingModuleMacroNames) |
986 | : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma), |
987 | OuterSubmoduleState(OuterSubmoduleState), |
988 | OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {} |
989 | }; |
990 | SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack; |
991 | |
992 | /// Information about a submodule's preprocessor state. |
993 | struct SubmoduleState { |
994 | /// The macros for the submodule. |
995 | MacroMap Macros; |
996 | |
997 | /// The set of modules that are visible within the submodule. |
998 | VisibleModuleSet VisibleModules; |
999 | |
1000 | // FIXME: CounterValue? |
1001 | // FIXME: PragmaPushMacroInfo? |
1002 | }; |
1003 | std::map<Module *, SubmoduleState> Submodules; |
1004 | |
1005 | /// The preprocessor state for preprocessing outside of any submodule. |
1006 | SubmoduleState NullSubmoduleState; |
1007 | |
1008 | /// The current submodule state. Will be \p NullSubmoduleState if we're not |
1009 | /// in a submodule. |
1010 | SubmoduleState *CurSubmoduleState; |
1011 | |
1012 | /// The files that have been included. |
1013 | IncludedFilesSet IncludedFiles; |
1014 | |
1015 | /// The set of top-level modules that affected preprocessing, but were not |
1016 | /// imported. |
1017 | llvm::SmallSetVector<Module *, 2> AffectingClangModules; |
1018 | |
1019 | /// The set of known macros exported from modules. |
1020 | llvm::FoldingSet<ModuleMacro> ModuleMacros; |
1021 | |
1022 | /// The names of potential module macros that we've not yet processed. |
1023 | llvm::SmallVector<IdentifierInfo *, 32> PendingModuleMacroNames; |
1024 | |
1025 | /// The list of module macros, for each identifier, that are not overridden by |
1026 | /// any other module macro. |
1027 | llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>> |
1028 | LeafModuleMacros; |
1029 | |
1030 | /// Macros that we want to warn because they are not used at the end |
1031 | /// of the translation unit. |
1032 | /// |
1033 | /// We store just their SourceLocations instead of |
1034 | /// something like MacroInfo*. The benefit of this is that when we are |
1035 | /// deserializing from PCH, we don't need to deserialize identifier & macros |
1036 | /// just so that we can report that they are unused, we just warn using |
1037 | /// the SourceLocations of this set (that will be filled by the ASTReader). |
1038 | using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>; |
1039 | WarnUnusedMacroLocsTy WarnUnusedMacroLocs; |
1040 | |
1041 | /// This is a pair of an optional message and source location used for pragmas |
1042 | /// that annotate macros like pragma clang restrict_expansion and pragma clang |
1043 | /// deprecated. This pair stores the optional message and the location of the |
1044 | /// annotation pragma for use producing diagnostics and notes. |
1045 | using MsgLocationPair = std::pair<std::string, SourceLocation>; |
1046 | |
1047 | struct MacroAnnotationInfo { |
1048 | SourceLocation Location; |
1049 | std::string Message; |
1050 | }; |
1051 | |
1052 | struct MacroAnnotations { |
1053 | std::optional<MacroAnnotationInfo> DeprecationInfo; |
1054 | std::optional<MacroAnnotationInfo> RestrictExpansionInfo; |
1055 | std::optional<SourceLocation> FinalAnnotationLoc; |
1056 | |
1057 | static MacroAnnotations makeDeprecation(SourceLocation Loc, |
1058 | std::string Msg) { |
1059 | return MacroAnnotations{.DeprecationInfo: MacroAnnotationInfo{.Location: Loc, .Message: std::move(Msg)}, |
1060 | .RestrictExpansionInfo: std::nullopt, .FinalAnnotationLoc: std::nullopt}; |
1061 | } |
1062 | |
1063 | static MacroAnnotations makeRestrictExpansion(SourceLocation Loc, |
1064 | std::string Msg) { |
1065 | return MacroAnnotations{ |
1066 | .DeprecationInfo: std::nullopt, .RestrictExpansionInfo: MacroAnnotationInfo{.Location: Loc, .Message: std::move(Msg)}, .FinalAnnotationLoc: std::nullopt}; |
1067 | } |
1068 | |
1069 | static MacroAnnotations makeFinal(SourceLocation Loc) { |
1070 | return MacroAnnotations{.DeprecationInfo: std::nullopt, .RestrictExpansionInfo: std::nullopt, .FinalAnnotationLoc: Loc}; |
1071 | } |
1072 | }; |
1073 | |
1074 | /// Warning information for macro annotations. |
1075 | llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos; |
1076 | |
1077 | /// A "freelist" of MacroArg objects that can be |
1078 | /// reused for quick allocation. |
1079 | MacroArgs *MacroArgCache = nullptr; |
1080 | |
1081 | /// For each IdentifierInfo used in a \#pragma push_macro directive, |
1082 | /// we keep a MacroInfo stack used to restore the previous macro value. |
1083 | llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>> |
1084 | PragmaPushMacroInfo; |
1085 | |
1086 | // Various statistics we track for performance analysis. |
1087 | unsigned NumDirectives = 0; |
1088 | unsigned NumDefined = 0; |
1089 | unsigned NumUndefined = 0; |
1090 | unsigned NumPragma = 0; |
1091 | unsigned NumIf = 0; |
1092 | unsigned NumElse = 0; |
1093 | unsigned NumEndif = 0; |
1094 | unsigned NumEnteredSourceFiles = 0; |
1095 | unsigned MaxIncludeStackDepth = 0; |
1096 | unsigned NumMacroExpanded = 0; |
1097 | unsigned NumFnMacroExpanded = 0; |
1098 | unsigned NumBuiltinMacroExpanded = 0; |
1099 | unsigned NumFastMacroExpanded = 0; |
1100 | unsigned NumTokenPaste = 0; |
1101 | unsigned NumFastTokenPaste = 0; |
1102 | unsigned NumSkipped = 0; |
1103 | |
1104 | /// The predefined macros that preprocessor should use from the |
1105 | /// command line etc. |
1106 | std::string Predefines; |
1107 | |
1108 | /// The file ID for the preprocessor predefines. |
1109 | FileID PredefinesFileID; |
1110 | |
1111 | /// The file ID for the PCH through header. |
1112 | FileID ; |
1113 | |
1114 | /// Whether tokens are being skipped until a #pragma hdrstop is seen. |
1115 | bool SkippingUntilPragmaHdrStop = false; |
1116 | |
1117 | /// Whether tokens are being skipped until the through header is seen. |
1118 | bool = false; |
1119 | |
1120 | /// \{ |
1121 | /// Cache of macro expanders to reduce malloc traffic. |
1122 | enum { TokenLexerCacheSize = 8 }; |
1123 | unsigned NumCachedTokenLexers; |
1124 | std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize]; |
1125 | /// \} |
1126 | |
1127 | /// Keeps macro expanded tokens for TokenLexers. |
1128 | // |
1129 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
1130 | /// going to lex in the cache and when it finishes the tokens are removed |
1131 | /// from the end of the cache. |
1132 | SmallVector<Token, 16> MacroExpandedTokens; |
1133 | std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack; |
1134 | |
1135 | /// A record of the macro definitions and expansions that |
1136 | /// occurred during preprocessing. |
1137 | /// |
1138 | /// This is an optional side structure that can be enabled with |
1139 | /// \c createPreprocessingRecord() prior to preprocessing. |
1140 | PreprocessingRecord *Record = nullptr; |
1141 | |
1142 | /// Cached tokens state. |
1143 | using CachedTokensTy = SmallVector<Token, 1>; |
1144 | |
1145 | /// Cached tokens are stored here when we do backtracking or |
1146 | /// lookahead. They are "lexed" by the CachingLex() method. |
1147 | CachedTokensTy CachedTokens; |
1148 | |
1149 | /// The position of the cached token that CachingLex() should |
1150 | /// "lex" next. |
1151 | /// |
1152 | /// If it points beyond the CachedTokens vector, it means that a normal |
1153 | /// Lex() should be invoked. |
1154 | CachedTokensTy::size_type CachedLexPos = 0; |
1155 | |
1156 | /// Stack of backtrack positions, allowing nested backtracks. |
1157 | /// |
1158 | /// The EnableBacktrackAtThisPos() method pushes a position to |
1159 | /// indicate where CachedLexPos should be set when the BackTrack() method is |
1160 | /// invoked (at which point the last position is popped). |
1161 | std::vector<CachedTokensTy::size_type> BacktrackPositions; |
1162 | |
1163 | /// True if \p Preprocessor::SkipExcludedConditionalBlock() is running. |
1164 | /// This is used to guard against calling this function recursively. |
1165 | /// |
1166 | /// See comments at the use-site for more context about why it is needed. |
1167 | bool SkippingExcludedConditionalBlock = false; |
1168 | |
1169 | /// Keeps track of skipped range mappings that were recorded while skipping |
1170 | /// excluded conditional directives. It maps the source buffer pointer at |
1171 | /// the beginning of a skipped block, to the number of bytes that should be |
1172 | /// skipped. |
1173 | llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges; |
1174 | |
1175 | void updateOutOfDateIdentifier(const IdentifierInfo &II) const; |
1176 | |
1177 | public: |
1178 | (std::shared_ptr<PreprocessorOptions> PPOpts, |
1179 | DiagnosticsEngine &diags, const LangOptions &LangOpts, |
1180 | SourceManager &SM, HeaderSearch &, |
1181 | ModuleLoader &TheModuleLoader, |
1182 | IdentifierInfoLookup *IILookup = nullptr, |
1183 | bool = false, |
1184 | TranslationUnitKind TUKind = TU_Complete); |
1185 | |
1186 | ~Preprocessor(); |
1187 | |
1188 | /// Initialize the preprocessor using information about the target. |
1189 | /// |
1190 | /// \param Target is owned by the caller and must remain valid for the |
1191 | /// lifetime of the preprocessor. |
1192 | /// \param AuxTarget is owned by the caller and must remain valid for |
1193 | /// the lifetime of the preprocessor. |
1194 | void Initialize(const TargetInfo &Target, |
1195 | const TargetInfo *AuxTarget = nullptr); |
1196 | |
1197 | /// Initialize the preprocessor to parse a model file |
1198 | /// |
1199 | /// To parse model files the preprocessor of the original source is reused to |
1200 | /// preserver the identifier table. However to avoid some duplicate |
1201 | /// information in the preprocessor some cleanup is needed before it is used |
1202 | /// to parse model files. This method does that cleanup. |
1203 | void InitializeForModelFile(); |
1204 | |
1205 | /// Cleanup after model file parsing |
1206 | void FinalizeForModelFile(); |
1207 | |
1208 | /// Retrieve the preprocessor options used to initialize this |
1209 | /// preprocessor. |
1210 | PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; } |
1211 | |
1212 | DiagnosticsEngine &getDiagnostics() const { return *Diags; } |
1213 | void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; } |
1214 | |
1215 | const LangOptions &getLangOpts() const { return LangOpts; } |
1216 | const TargetInfo &getTargetInfo() const { return *Target; } |
1217 | const TargetInfo *getAuxTargetInfo() const { return AuxTarget; } |
1218 | FileManager &getFileManager() const { return FileMgr; } |
1219 | SourceManager &getSourceManager() const { return SourceMgr; } |
1220 | HeaderSearch &() const { return HeaderInfo; } |
1221 | |
1222 | IdentifierTable &getIdentifierTable() { return Identifiers; } |
1223 | const IdentifierTable &getIdentifierTable() const { return Identifiers; } |
1224 | SelectorTable &getSelectorTable() { return Selectors; } |
1225 | Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; } |
1226 | llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; } |
1227 | |
1228 | void setExternalSource(ExternalPreprocessorSource *Source) { |
1229 | ExternalSource = Source; |
1230 | } |
1231 | |
1232 | ExternalPreprocessorSource *getExternalSource() const { |
1233 | return ExternalSource; |
1234 | } |
1235 | |
1236 | /// Retrieve the module loader associated with this preprocessor. |
1237 | ModuleLoader &getModuleLoader() const { return TheModuleLoader; } |
1238 | |
1239 | bool hadModuleLoaderFatalFailure() const { |
1240 | return TheModuleLoader.HadFatalFailure; |
1241 | } |
1242 | |
1243 | /// Retrieve the number of Directives that have been processed by the |
1244 | /// Preprocessor. |
1245 | unsigned getNumDirectives() const { |
1246 | return NumDirectives; |
1247 | } |
1248 | |
1249 | /// True if we are currently preprocessing a #if or #elif directive |
1250 | bool isParsingIfOrElifDirective() const { |
1251 | return ParsingIfOrElifDirective; |
1252 | } |
1253 | |
1254 | /// Control whether the preprocessor retains comments in output. |
1255 | void (bool , bool ) { |
1256 | this->KeepComments = KeepComments | KeepMacroComments; |
1257 | this->KeepMacroComments = KeepMacroComments; |
1258 | } |
1259 | |
1260 | bool () const { return KeepComments; } |
1261 | |
1262 | void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; } |
1263 | bool getPragmasEnabled() const { return PragmasEnabled; } |
1264 | |
1265 | void SetSuppressIncludeNotFoundError(bool Suppress) { |
1266 | SuppressIncludeNotFoundError = Suppress; |
1267 | } |
1268 | |
1269 | bool GetSuppressIncludeNotFoundError() { |
1270 | return SuppressIncludeNotFoundError; |
1271 | } |
1272 | |
1273 | /// Sets whether the preprocessor is responsible for producing output or if |
1274 | /// it is producing tokens to be consumed by Parse and Sema. |
1275 | void setPreprocessedOutput(bool IsPreprocessedOutput) { |
1276 | PreprocessedOutput = IsPreprocessedOutput; |
1277 | } |
1278 | |
1279 | /// Returns true if the preprocessor is responsible for generating output, |
1280 | /// false if it is producing tokens to be consumed by Parse and Sema. |
1281 | bool isPreprocessedOutput() const { return PreprocessedOutput; } |
1282 | |
1283 | /// Return true if we are lexing directly from the specified lexer. |
1284 | bool isCurrentLexer(const PreprocessorLexer *L) const { |
1285 | return CurPPLexer == L; |
1286 | } |
1287 | |
1288 | /// Return the current lexer being lexed from. |
1289 | /// |
1290 | /// Note that this ignores any potentially active macro expansions and _Pragma |
1291 | /// expansions going on at the time. |
1292 | PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; } |
1293 | |
1294 | /// Return the current file lexer being lexed from. |
1295 | /// |
1296 | /// Note that this ignores any potentially active macro expansions and _Pragma |
1297 | /// expansions going on at the time. |
1298 | PreprocessorLexer *getCurrentFileLexer() const; |
1299 | |
1300 | /// Return the submodule owning the file being lexed. This may not be |
1301 | /// the current module if we have changed modules since entering the file. |
1302 | Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; } |
1303 | |
1304 | /// Returns the FileID for the preprocessor predefines. |
1305 | FileID getPredefinesFileID() const { return PredefinesFileID; } |
1306 | |
1307 | /// \{ |
1308 | /// Accessors for preprocessor callbacks. |
1309 | /// |
1310 | /// Note that this class takes ownership of any PPCallbacks object given to |
1311 | /// it. |
1312 | PPCallbacks *getPPCallbacks() const { return Callbacks.get(); } |
1313 | void addPPCallbacks(std::unique_ptr<PPCallbacks> C) { |
1314 | if (Callbacks) |
1315 | C = std::make_unique<PPChainedCallbacks>(args: std::move(C), |
1316 | args: std::move(Callbacks)); |
1317 | Callbacks = std::move(C); |
1318 | } |
1319 | /// \} |
1320 | |
1321 | /// Get the number of tokens processed so far. |
1322 | unsigned getTokenCount() const { return TokenCount; } |
1323 | |
1324 | /// Get the max number of tokens before issuing a -Wmax-tokens warning. |
1325 | unsigned getMaxTokens() const { return MaxTokens; } |
1326 | |
1327 | void overrideMaxTokens(unsigned Value, SourceLocation Loc) { |
1328 | MaxTokens = Value; |
1329 | MaxTokensOverrideLoc = Loc; |
1330 | }; |
1331 | |
1332 | SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; } |
1333 | |
1334 | /// Register a function that would be called on each token in the final |
1335 | /// expanded token stream. |
1336 | /// This also reports annotation tokens produced by the parser. |
1337 | void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) { |
1338 | OnToken = std::move(F); |
1339 | } |
1340 | |
1341 | void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; } |
1342 | |
1343 | bool isMacroDefined(StringRef Id) { |
1344 | return isMacroDefined(II: &Identifiers.get(Name: Id)); |
1345 | } |
1346 | bool isMacroDefined(const IdentifierInfo *II) { |
1347 | return II->hasMacroDefinition() && |
1348 | (!getLangOpts().Modules || (bool)getMacroDefinition(II)); |
1349 | } |
1350 | |
1351 | /// Determine whether II is defined as a macro within the module M, |
1352 | /// if that is a module that we've already preprocessed. Does not check for |
1353 | /// macros imported into M. |
1354 | bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) { |
1355 | if (!II->hasMacroDefinition()) |
1356 | return false; |
1357 | auto I = Submodules.find(x: M); |
1358 | if (I == Submodules.end()) |
1359 | return false; |
1360 | auto J = I->second.Macros.find(Val: II); |
1361 | if (J == I->second.Macros.end()) |
1362 | return false; |
1363 | auto *MD = J->second.getLatest(); |
1364 | return MD && MD->isDefined(); |
1365 | } |
1366 | |
1367 | MacroDefinition getMacroDefinition(const IdentifierInfo *II) { |
1368 | if (!II->hasMacroDefinition()) |
1369 | return {}; |
1370 | |
1371 | MacroState &S = CurSubmoduleState->Macros[II]; |
1372 | auto *MD = S.getLatest(); |
1373 | while (isa_and_nonnull<VisibilityMacroDirective>(Val: MD)) |
1374 | MD = MD->getPrevious(); |
1375 | return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(Val: MD), |
1376 | S.getActiveModuleMacros(PP&: *this, II), |
1377 | S.isAmbiguous(PP&: *this, II)); |
1378 | } |
1379 | |
1380 | MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II, |
1381 | SourceLocation Loc) { |
1382 | if (!II->hadMacroDefinition()) |
1383 | return {}; |
1384 | |
1385 | MacroState &S = CurSubmoduleState->Macros[II]; |
1386 | MacroDirective::DefInfo DI; |
1387 | if (auto *MD = S.getLatest()) |
1388 | DI = MD->findDirectiveAtLoc(L: Loc, SM: getSourceManager()); |
1389 | // FIXME: Compute the set of active module macros at the specified location. |
1390 | return MacroDefinition(DI.getDirective(), |
1391 | S.getActiveModuleMacros(PP&: *this, II), |
1392 | S.isAmbiguous(PP&: *this, II)); |
1393 | } |
1394 | |
1395 | /// Given an identifier, return its latest non-imported MacroDirective |
1396 | /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd. |
1397 | MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const { |
1398 | if (!II->hasMacroDefinition()) |
1399 | return nullptr; |
1400 | |
1401 | auto *MD = getLocalMacroDirectiveHistory(II); |
1402 | if (!MD || MD->getDefinition().isUndefined()) |
1403 | return nullptr; |
1404 | |
1405 | return MD; |
1406 | } |
1407 | |
1408 | const MacroInfo *getMacroInfo(const IdentifierInfo *II) const { |
1409 | return const_cast<Preprocessor*>(this)->getMacroInfo(II); |
1410 | } |
1411 | |
1412 | MacroInfo *getMacroInfo(const IdentifierInfo *II) { |
1413 | if (!II->hasMacroDefinition()) |
1414 | return nullptr; |
1415 | if (auto MD = getMacroDefinition(II)) |
1416 | return MD.getMacroInfo(); |
1417 | return nullptr; |
1418 | } |
1419 | |
1420 | /// Given an identifier, return the latest non-imported macro |
1421 | /// directive for that identifier. |
1422 | /// |
1423 | /// One can iterate over all previous macro directives from the most recent |
1424 | /// one. |
1425 | MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const; |
1426 | |
1427 | /// Add a directive to the macro directive history for this identifier. |
1428 | void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD); |
1429 | DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI, |
1430 | SourceLocation Loc) { |
1431 | DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc); |
1432 | appendMacroDirective(II, MD); |
1433 | return MD; |
1434 | } |
1435 | DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, |
1436 | MacroInfo *MI) { |
1437 | return appendDefMacroDirective(II, MI, Loc: MI->getDefinitionLoc()); |
1438 | } |
1439 | |
1440 | /// Set a MacroDirective that was loaded from a PCH file. |
1441 | void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, |
1442 | MacroDirective *MD); |
1443 | |
1444 | /// Register an exported macro for a module and identifier. |
1445 | ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, |
1446 | MacroInfo *Macro, |
1447 | ArrayRef<ModuleMacro *> Overrides, bool &IsNew); |
1448 | ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II); |
1449 | |
1450 | /// Get the list of leaf (non-overridden) module macros for a name. |
1451 | ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const { |
1452 | if (II->isOutOfDate()) |
1453 | updateOutOfDateIdentifier(II: *II); |
1454 | auto I = LeafModuleMacros.find(Val: II); |
1455 | if (I != LeafModuleMacros.end()) |
1456 | return I->second; |
1457 | return std::nullopt; |
1458 | } |
1459 | |
1460 | /// Get the list of submodules that we're currently building. |
1461 | ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const { |
1462 | return BuildingSubmoduleStack; |
1463 | } |
1464 | |
1465 | /// \{ |
1466 | /// Iterators for the macro history table. Currently defined macros have |
1467 | /// IdentifierInfo::hasMacroDefinition() set and an empty |
1468 | /// MacroInfo::getUndefLoc() at the head of the list. |
1469 | using macro_iterator = MacroMap::const_iterator; |
1470 | |
1471 | macro_iterator macro_begin(bool IncludeExternalMacros = true) const; |
1472 | macro_iterator macro_end(bool IncludeExternalMacros = true) const; |
1473 | |
1474 | llvm::iterator_range<macro_iterator> |
1475 | macros(bool IncludeExternalMacros = true) const { |
1476 | macro_iterator begin = macro_begin(IncludeExternalMacros); |
1477 | macro_iterator end = macro_end(IncludeExternalMacros); |
1478 | return llvm::make_range(x: begin, y: end); |
1479 | } |
1480 | |
1481 | /// \} |
1482 | |
1483 | /// Mark the given clang module as affecting the current clang module or translation unit. |
1484 | void markClangModuleAsAffecting(Module *M) { |
1485 | assert(M->isModuleMapModule()); |
1486 | if (!BuildingSubmoduleStack.empty()) { |
1487 | if (M != BuildingSubmoduleStack.back().M) |
1488 | BuildingSubmoduleStack.back().M->AffectingClangModules.insert(X: M); |
1489 | } else { |
1490 | AffectingClangModules.insert(X: M); |
1491 | } |
1492 | } |
1493 | |
1494 | /// Get the set of top-level clang modules that affected preprocessing, but were not |
1495 | /// imported. |
1496 | const llvm::SmallSetVector<Module *, 2> &getAffectingClangModules() const { |
1497 | return AffectingClangModules; |
1498 | } |
1499 | |
1500 | /// Mark the file as included. |
1501 | /// Returns true if this is the first time the file was included. |
1502 | bool markIncluded(FileEntryRef File) { |
1503 | HeaderInfo.getFileInfo(FE: File); |
1504 | return IncludedFiles.insert(V: File).second; |
1505 | } |
1506 | |
1507 | /// Return true if this header has already been included. |
1508 | bool alreadyIncluded(FileEntryRef File) const { |
1509 | HeaderInfo.getFileInfo(FE: File); |
1510 | return IncludedFiles.count(V: File); |
1511 | } |
1512 | |
1513 | /// Get the set of included files. |
1514 | IncludedFilesSet &getIncludedFiles() { return IncludedFiles; } |
1515 | const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; } |
1516 | |
1517 | /// Return the name of the macro defined before \p Loc that has |
1518 | /// spelling \p Tokens. If there are multiple macros with same spelling, |
1519 | /// return the last one defined. |
1520 | StringRef getLastMacroWithSpelling(SourceLocation Loc, |
1521 | ArrayRef<TokenValue> Tokens) const; |
1522 | |
1523 | /// Get the predefines for this processor. |
1524 | /// Used by some third-party tools to inspect and add predefines (see |
1525 | /// https://github.com/llvm/llvm-project/issues/57483). |
1526 | const std::string &getPredefines() const { return Predefines; } |
1527 | |
1528 | /// Set the predefines for this Preprocessor. |
1529 | /// |
1530 | /// These predefines are automatically injected when parsing the main file. |
1531 | void setPredefines(std::string P) { Predefines = std::move(P); } |
1532 | |
1533 | /// Return information about the specified preprocessor |
1534 | /// identifier token. |
1535 | IdentifierInfo *getIdentifierInfo(StringRef Name) const { |
1536 | return &Identifiers.get(Name); |
1537 | } |
1538 | |
1539 | /// Add the specified pragma handler to this preprocessor. |
1540 | /// |
1541 | /// If \p Namespace is non-null, then it is a token required to exist on the |
1542 | /// pragma line before the pragma string starts, e.g. "STDC" or "GCC". |
1543 | void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
1544 | void AddPragmaHandler(PragmaHandler *Handler) { |
1545 | AddPragmaHandler(Namespace: StringRef(), Handler); |
1546 | } |
1547 | |
1548 | /// Remove the specific pragma handler from this preprocessor. |
1549 | /// |
1550 | /// If \p Namespace is non-null, then it should be the namespace that |
1551 | /// \p Handler was added to. It is an error to remove a handler that |
1552 | /// has not been registered. |
1553 | void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler); |
1554 | void RemovePragmaHandler(PragmaHandler *Handler) { |
1555 | RemovePragmaHandler(Namespace: StringRef(), Handler); |
1556 | } |
1557 | |
1558 | /// Install empty handlers for all pragmas (making them ignored). |
1559 | void IgnorePragmas(); |
1560 | |
1561 | /// Set empty line handler. |
1562 | void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; } |
1563 | |
1564 | EmptylineHandler *getEmptylineHandler() const { return Emptyline; } |
1565 | |
1566 | /// Add the specified comment handler to the preprocessor. |
1567 | void addCommentHandler(CommentHandler *Handler); |
1568 | |
1569 | /// Remove the specified comment handler. |
1570 | /// |
1571 | /// It is an error to remove a handler that has not been registered. |
1572 | void removeCommentHandler(CommentHandler *Handler); |
1573 | |
1574 | /// Set the code completion handler to the given object. |
1575 | void setCodeCompletionHandler(CodeCompletionHandler &Handler) { |
1576 | CodeComplete = &Handler; |
1577 | } |
1578 | |
1579 | /// Retrieve the current code-completion handler. |
1580 | CodeCompletionHandler *getCodeCompletionHandler() const { |
1581 | return CodeComplete; |
1582 | } |
1583 | |
1584 | /// Clear out the code completion handler. |
1585 | void clearCodeCompletionHandler() { |
1586 | CodeComplete = nullptr; |
1587 | } |
1588 | |
1589 | /// Hook used by the lexer to invoke the "included file" code |
1590 | /// completion point. |
1591 | void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); |
1592 | |
1593 | /// Hook used by the lexer to invoke the "natural language" code |
1594 | /// completion point. |
1595 | void CodeCompleteNaturalLanguage(); |
1596 | |
1597 | /// Set the code completion token for filtering purposes. |
1598 | void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) { |
1599 | CodeCompletionII = Filter; |
1600 | } |
1601 | |
1602 | /// Set the code completion token range for detecting replacement range later |
1603 | /// on. |
1604 | void setCodeCompletionTokenRange(const SourceLocation Start, |
1605 | const SourceLocation End) { |
1606 | CodeCompletionTokenRange = {Start, End}; |
1607 | } |
1608 | SourceRange getCodeCompletionTokenRange() const { |
1609 | return CodeCompletionTokenRange; |
1610 | } |
1611 | |
1612 | /// Get the code completion token for filtering purposes. |
1613 | StringRef getCodeCompletionFilter() { |
1614 | if (CodeCompletionII) |
1615 | return CodeCompletionII->getName(); |
1616 | return {}; |
1617 | } |
1618 | |
1619 | /// Retrieve the preprocessing record, or NULL if there is no |
1620 | /// preprocessing record. |
1621 | PreprocessingRecord *getPreprocessingRecord() const { return Record; } |
1622 | |
1623 | /// Create a new preprocessing record, which will keep track of |
1624 | /// all macro expansions, macro definitions, etc. |
1625 | void createPreprocessingRecord(); |
1626 | |
1627 | /// Returns true if the FileEntry is the PCH through header. |
1628 | bool (const FileEntry *FE); |
1629 | |
1630 | /// True if creating a PCH with a through header. |
1631 | bool (); |
1632 | |
1633 | /// True if using a PCH with a through header. |
1634 | bool (); |
1635 | |
1636 | /// True if creating a PCH with a #pragma hdrstop. |
1637 | bool creatingPCHWithPragmaHdrStop(); |
1638 | |
1639 | /// True if using a PCH with a #pragma hdrstop. |
1640 | bool usingPCHWithPragmaHdrStop(); |
1641 | |
1642 | /// Skip tokens until after the #include of the through header or |
1643 | /// until after a #pragma hdrstop. |
1644 | void SkipTokensWhileUsingPCH(); |
1645 | |
1646 | /// Process directives while skipping until the through header or |
1647 | /// #pragma hdrstop is found. |
1648 | void HandleSkippedDirectiveWhileUsingPCH(Token &Result, |
1649 | SourceLocation HashLoc); |
1650 | |
1651 | /// Enter the specified FileID as the main source file, |
1652 | /// which implicitly adds the builtin defines etc. |
1653 | void EnterMainSourceFile(); |
1654 | |
1655 | /// Inform the preprocessor callbacks that processing is complete. |
1656 | void EndSourceFile(); |
1657 | |
1658 | /// Add a source file to the top of the include stack and |
1659 | /// start lexing tokens from it instead of the current buffer. |
1660 | /// |
1661 | /// Emits a diagnostic, doesn't enter the file, and returns true on error. |
1662 | bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir, |
1663 | SourceLocation Loc, bool IsFirstIncludeOfFile = true); |
1664 | |
1665 | /// Add a Macro to the top of the include stack and start lexing |
1666 | /// tokens from it instead of the current buffer. |
1667 | /// |
1668 | /// \param Args specifies the tokens input to a function-like macro. |
1669 | /// \param ILEnd specifies the location of the ')' for a function-like macro |
1670 | /// or the identifier for an object-like macro. |
1671 | void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro, |
1672 | MacroArgs *Args); |
1673 | |
1674 | private: |
1675 | /// Add a "macro" context to the top of the include stack, |
1676 | /// which will cause the lexer to start returning the specified tokens. |
1677 | /// |
1678 | /// If \p DisableMacroExpansion is true, tokens lexed from the token stream |
1679 | /// will not be subject to further macro expansion. Otherwise, these tokens |
1680 | /// will be re-macro-expanded when/if expansion is enabled. |
1681 | /// |
1682 | /// If \p OwnsTokens is false, this method assumes that the specified stream |
1683 | /// of tokens has a permanent owner somewhere, so they do not need to be |
1684 | /// copied. If it is true, it assumes the array of tokens is allocated with |
1685 | /// \c new[] and the Preprocessor will delete[] it. |
1686 | /// |
1687 | /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag |
1688 | /// set, see the flag documentation for details. |
1689 | void EnterTokenStream(const Token *Toks, unsigned NumToks, |
1690 | bool DisableMacroExpansion, bool OwnsTokens, |
1691 | bool IsReinject); |
1692 | |
1693 | public: |
1694 | void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks, |
1695 | bool DisableMacroExpansion, bool IsReinject) { |
1696 | EnterTokenStream(Toks: Toks.release(), NumToks, DisableMacroExpansion, OwnsTokens: true, |
1697 | IsReinject); |
1698 | } |
1699 | |
1700 | void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion, |
1701 | bool IsReinject) { |
1702 | EnterTokenStream(Toks: Toks.data(), NumToks: Toks.size(), DisableMacroExpansion, OwnsTokens: false, |
1703 | IsReinject); |
1704 | } |
1705 | |
1706 | /// Pop the current lexer/macro exp off the top of the lexer stack. |
1707 | /// |
1708 | /// This should only be used in situations where the current state of the |
1709 | /// top-of-stack lexer is known. |
1710 | void RemoveTopOfLexerStack(); |
1711 | |
1712 | /// From the point that this method is called, and until |
1713 | /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor |
1714 | /// keeps track of the lexed tokens so that a subsequent Backtrack() call will |
1715 | /// make the Preprocessor re-lex the same tokens. |
1716 | /// |
1717 | /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can |
1718 | /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will |
1719 | /// be combined with the EnableBacktrackAtThisPos calls in reverse order. |
1720 | /// |
1721 | /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack |
1722 | /// at some point after EnableBacktrackAtThisPos. If you don't, caching of |
1723 | /// tokens will continue indefinitely. |
1724 | /// |
1725 | void EnableBacktrackAtThisPos(); |
1726 | |
1727 | /// Disable the last EnableBacktrackAtThisPos call. |
1728 | void CommitBacktrackedTokens(); |
1729 | |
1730 | /// Make Preprocessor re-lex the tokens that were lexed since |
1731 | /// EnableBacktrackAtThisPos() was previously called. |
1732 | void Backtrack(); |
1733 | |
1734 | /// True if EnableBacktrackAtThisPos() was called and |
1735 | /// caching of tokens is on. |
1736 | bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); } |
1737 | |
1738 | /// Lex the next token for this preprocessor. |
1739 | void Lex(Token &Result); |
1740 | |
1741 | /// Lex all tokens for this preprocessor until (and excluding) end of file. |
1742 | void LexTokensUntilEOF(std::vector<Token> *Tokens = nullptr); |
1743 | |
1744 | /// Lex a token, forming a header-name token if possible. |
1745 | bool (Token &Result, bool AllowMacroExpansion = true); |
1746 | |
1747 | /// Lex the parameters for an #embed directive, returns nullopt on error. |
1748 | std::optional<LexEmbedParametersResult> LexEmbedParameters(Token &Current, |
1749 | bool ForHasEmbed); |
1750 | |
1751 | bool LexAfterModuleImport(Token &Result); |
1752 | void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks); |
1753 | |
1754 | void makeModuleVisible(Module *M, SourceLocation Loc); |
1755 | |
1756 | SourceLocation getModuleImportLoc(Module *M) const { |
1757 | return CurSubmoduleState->VisibleModules.getImportLoc(M); |
1758 | } |
1759 | |
1760 | /// Lex a string literal, which may be the concatenation of multiple |
1761 | /// string literals and may even come from macro expansion. |
1762 | /// \returns true on success, false if a error diagnostic has been generated. |
1763 | bool LexStringLiteral(Token &Result, std::string &String, |
1764 | const char *DiagnosticTag, bool AllowMacroExpansion) { |
1765 | if (AllowMacroExpansion) |
1766 | Lex(Result); |
1767 | else |
1768 | LexUnexpandedToken(Result); |
1769 | return FinishLexStringLiteral(Result, String, DiagnosticTag, |
1770 | AllowMacroExpansion); |
1771 | } |
1772 | |
1773 | /// Complete the lexing of a string literal where the first token has |
1774 | /// already been lexed (see LexStringLiteral). |
1775 | bool FinishLexStringLiteral(Token &Result, std::string &String, |
1776 | const char *DiagnosticTag, |
1777 | bool AllowMacroExpansion); |
1778 | |
1779 | /// Lex a token. If it's a comment, keep lexing until we get |
1780 | /// something not a comment. |
1781 | /// |
1782 | /// This is useful in -E -C mode where comments would foul up preprocessor |
1783 | /// directive handling. |
1784 | void (Token &Result) { |
1785 | do |
1786 | Lex(Result); |
1787 | while (Result.getKind() == tok::comment); |
1788 | } |
1789 | |
1790 | /// Just like Lex, but disables macro expansion of identifier tokens. |
1791 | void LexUnexpandedToken(Token &Result) { |
1792 | // Disable macro expansion. |
1793 | bool OldVal = DisableMacroExpansion; |
1794 | DisableMacroExpansion = true; |
1795 | // Lex the token. |
1796 | Lex(Result); |
1797 | |
1798 | // Reenable it. |
1799 | DisableMacroExpansion = OldVal; |
1800 | } |
1801 | |
1802 | /// Like LexNonComment, but this disables macro expansion of |
1803 | /// identifier tokens. |
1804 | void LexUnexpandedNonComment(Token &Result) { |
1805 | do |
1806 | LexUnexpandedToken(Result); |
1807 | while (Result.getKind() == tok::comment); |
1808 | } |
1809 | |
1810 | /// Parses a simple integer literal to get its numeric value. Floating |
1811 | /// point literals and user defined literals are rejected. Used primarily to |
1812 | /// handle pragmas that accept integer arguments. |
1813 | bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value); |
1814 | |
1815 | /// Disables macro expansion everywhere except for preprocessor directives. |
1816 | void SetMacroExpansionOnlyInDirectives() { |
1817 | DisableMacroExpansion = true; |
1818 | MacroExpansionInDirectivesOverride = true; |
1819 | } |
1820 | |
1821 | /// Peeks ahead N tokens and returns that token without consuming any |
1822 | /// tokens. |
1823 | /// |
1824 | /// LookAhead(0) returns the next token that would be returned by Lex(), |
1825 | /// LookAhead(1) returns the token after it, etc. This returns normal |
1826 | /// tokens after phase 5. As such, it is equivalent to using |
1827 | /// 'Lex', not 'LexUnexpandedToken'. |
1828 | const Token &LookAhead(unsigned N) { |
1829 | assert(LexLevel == 0 && "cannot use lookahead while lexing" ); |
1830 | if (CachedLexPos + N < CachedTokens.size()) |
1831 | return CachedTokens[CachedLexPos+N]; |
1832 | else |
1833 | return PeekAhead(N: N+1); |
1834 | } |
1835 | |
1836 | /// When backtracking is enabled and tokens are cached, |
1837 | /// this allows to revert a specific number of tokens. |
1838 | /// |
1839 | /// Note that the number of tokens being reverted should be up to the last |
1840 | /// backtrack position, not more. |
1841 | void RevertCachedTokens(unsigned N) { |
1842 | assert(isBacktrackEnabled() && |
1843 | "Should only be called when tokens are cached for backtracking" ); |
1844 | assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back()) |
1845 | && "Should revert tokens up to the last backtrack position, not more" ); |
1846 | assert(signed(CachedLexPos) - signed(N) >= 0 && |
1847 | "Corrupted backtrack positions ?" ); |
1848 | CachedLexPos -= N; |
1849 | } |
1850 | |
1851 | /// Enters a token in the token stream to be lexed next. |
1852 | /// |
1853 | /// If BackTrack() is called afterwards, the token will remain at the |
1854 | /// insertion point. |
1855 | /// If \p IsReinject is true, resulting token will have Token::IsReinjected |
1856 | /// flag set. See the flag documentation for details. |
1857 | void EnterToken(const Token &Tok, bool IsReinject) { |
1858 | if (LexLevel) { |
1859 | // It's not correct in general to enter caching lex mode while in the |
1860 | // middle of a nested lexing action. |
1861 | auto TokCopy = std::make_unique<Token[]>(num: 1); |
1862 | TokCopy[0] = Tok; |
1863 | EnterTokenStream(Toks: std::move(TokCopy), NumToks: 1, DisableMacroExpansion: true, IsReinject); |
1864 | } else { |
1865 | EnterCachingLexMode(); |
1866 | assert(IsReinject && "new tokens in the middle of cached stream" ); |
1867 | CachedTokens.insert(I: CachedTokens.begin()+CachedLexPos, Elt: Tok); |
1868 | } |
1869 | } |
1870 | |
1871 | /// We notify the Preprocessor that if it is caching tokens (because |
1872 | /// backtrack is enabled) it should replace the most recent cached tokens |
1873 | /// with the given annotation token. This function has no effect if |
1874 | /// backtracking is not enabled. |
1875 | /// |
1876 | /// Note that the use of this function is just for optimization, so that the |
1877 | /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is |
1878 | /// invoked. |
1879 | void AnnotateCachedTokens(const Token &Tok) { |
1880 | assert(Tok.isAnnotation() && "Expected annotation token" ); |
1881 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1882 | AnnotatePreviousCachedTokens(Tok); |
1883 | } |
1884 | |
1885 | /// Get the location of the last cached token, suitable for setting the end |
1886 | /// location of an annotation token. |
1887 | SourceLocation getLastCachedTokenLocation() const { |
1888 | assert(CachedLexPos != 0); |
1889 | return CachedTokens[CachedLexPos-1].getLastLoc(); |
1890 | } |
1891 | |
1892 | /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in |
1893 | /// CachedTokens. |
1894 | bool IsPreviousCachedToken(const Token &Tok) const; |
1895 | |
1896 | /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens |
1897 | /// in \p NewToks. |
1898 | /// |
1899 | /// Useful when a token needs to be split in smaller ones and CachedTokens |
1900 | /// most recent token must to be updated to reflect that. |
1901 | void ReplacePreviousCachedToken(ArrayRef<Token> NewToks); |
1902 | |
1903 | /// Replace the last token with an annotation token. |
1904 | /// |
1905 | /// Like AnnotateCachedTokens(), this routine replaces an |
1906 | /// already-parsed (and resolved) token with an annotation |
1907 | /// token. However, this routine only replaces the last token with |
1908 | /// the annotation token; it does not affect any other cached |
1909 | /// tokens. This function has no effect if backtracking is not |
1910 | /// enabled. |
1911 | void ReplaceLastTokenWithAnnotation(const Token &Tok) { |
1912 | assert(Tok.isAnnotation() && "Expected annotation token" ); |
1913 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1914 | CachedTokens[CachedLexPos-1] = Tok; |
1915 | } |
1916 | |
1917 | /// Enter an annotation token into the token stream. |
1918 | void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind, |
1919 | void *AnnotationVal); |
1920 | |
1921 | /// Determine whether it's possible for a future call to Lex to produce an |
1922 | /// annotation token created by a previous call to EnterAnnotationToken. |
1923 | bool mightHavePendingAnnotationTokens() { |
1924 | return CurLexerCallback != CLK_Lexer; |
1925 | } |
1926 | |
1927 | /// Update the current token to represent the provided |
1928 | /// identifier, in order to cache an action performed by typo correction. |
1929 | void TypoCorrectToken(const Token &Tok) { |
1930 | assert(Tok.getIdentifierInfo() && "Expected identifier token" ); |
1931 | if (CachedLexPos != 0 && isBacktrackEnabled()) |
1932 | CachedTokens[CachedLexPos-1] = Tok; |
1933 | } |
1934 | |
1935 | /// Recompute the current lexer kind based on the CurLexer/ |
1936 | /// CurTokenLexer pointers. |
1937 | void recomputeCurLexerKind(); |
1938 | |
1939 | /// Returns true if incremental processing is enabled |
1940 | bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; } |
1941 | |
1942 | /// Enables the incremental processing |
1943 | void enableIncrementalProcessing(bool value = true) { |
1944 | IncrementalProcessing = value; |
1945 | } |
1946 | |
1947 | /// Specify the point at which code-completion will be performed. |
1948 | /// |
1949 | /// \param File the file in which code completion should occur. If |
1950 | /// this file is included multiple times, code-completion will |
1951 | /// perform completion the first time it is included. If NULL, this |
1952 | /// function clears out the code-completion point. |
1953 | /// |
1954 | /// \param Line the line at which code completion should occur |
1955 | /// (1-based). |
1956 | /// |
1957 | /// \param Column the column at which code completion should occur |
1958 | /// (1-based). |
1959 | /// |
1960 | /// \returns true if an error occurred, false otherwise. |
1961 | bool SetCodeCompletionPoint(FileEntryRef File, unsigned Line, |
1962 | unsigned Column); |
1963 | |
1964 | /// Determine if we are performing code completion. |
1965 | bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; } |
1966 | |
1967 | /// Returns the location of the code-completion point. |
1968 | /// |
1969 | /// Returns an invalid location if code-completion is not enabled or the file |
1970 | /// containing the code-completion point has not been lexed yet. |
1971 | SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; } |
1972 | |
1973 | /// Returns the start location of the file of code-completion point. |
1974 | /// |
1975 | /// Returns an invalid location if code-completion is not enabled or the file |
1976 | /// containing the code-completion point has not been lexed yet. |
1977 | SourceLocation getCodeCompletionFileLoc() const { |
1978 | return CodeCompletionFileLoc; |
1979 | } |
1980 | |
1981 | /// Returns true if code-completion is enabled and we have hit the |
1982 | /// code-completion point. |
1983 | bool isCodeCompletionReached() const { return CodeCompletionReached; } |
1984 | |
1985 | /// Note that we hit the code-completion point. |
1986 | void setCodeCompletionReached() { |
1987 | assert(isCodeCompletionEnabled() && "Code-completion not enabled!" ); |
1988 | CodeCompletionReached = true; |
1989 | // Silence any diagnostics that occur after we hit the code-completion. |
1990 | getDiagnostics().setSuppressAllDiagnostics(true); |
1991 | } |
1992 | |
1993 | /// The location of the currently-active \#pragma clang |
1994 | /// arc_cf_code_audited begin. |
1995 | /// |
1996 | /// Returns an invalid location if there is no such pragma active. |
1997 | std::pair<IdentifierInfo *, SourceLocation> |
1998 | getPragmaARCCFCodeAuditedInfo() const { |
1999 | return PragmaARCCFCodeAuditedInfo; |
2000 | } |
2001 | |
2002 | /// Set the location of the currently-active \#pragma clang |
2003 | /// arc_cf_code_audited begin. An invalid location ends the pragma. |
2004 | void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident, |
2005 | SourceLocation Loc) { |
2006 | PragmaARCCFCodeAuditedInfo = {Ident, Loc}; |
2007 | } |
2008 | |
2009 | /// The location of the currently-active \#pragma clang |
2010 | /// assume_nonnull begin. |
2011 | /// |
2012 | /// Returns an invalid location if there is no such pragma active. |
2013 | SourceLocation getPragmaAssumeNonNullLoc() const { |
2014 | return PragmaAssumeNonNullLoc; |
2015 | } |
2016 | |
2017 | /// Set the location of the currently-active \#pragma clang |
2018 | /// assume_nonnull begin. An invalid location ends the pragma. |
2019 | void setPragmaAssumeNonNullLoc(SourceLocation Loc) { |
2020 | PragmaAssumeNonNullLoc = Loc; |
2021 | } |
2022 | |
2023 | /// Get the location of the recorded unterminated \#pragma clang |
2024 | /// assume_nonnull begin in the preamble, if one exists. |
2025 | /// |
2026 | /// Returns an invalid location if the premable did not end with |
2027 | /// such a pragma active or if there is no recorded preamble. |
2028 | SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const { |
2029 | return PreambleRecordedPragmaAssumeNonNullLoc; |
2030 | } |
2031 | |
2032 | /// Record the location of the unterminated \#pragma clang |
2033 | /// assume_nonnull begin in the preamble. |
2034 | void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) { |
2035 | PreambleRecordedPragmaAssumeNonNullLoc = Loc; |
2036 | } |
2037 | |
2038 | /// Set the directory in which the main file should be considered |
2039 | /// to have been found, if it is not a real file. |
2040 | void setMainFileDir(DirectoryEntryRef Dir) { MainFileDir = Dir; } |
2041 | |
2042 | /// Instruct the preprocessor to skip part of the main source file. |
2043 | /// |
2044 | /// \param Bytes The number of bytes in the preamble to skip. |
2045 | /// |
2046 | /// \param StartOfLine Whether skipping these bytes puts the lexer at the |
2047 | /// start of a line. |
2048 | void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) { |
2049 | SkipMainFilePreamble.first = Bytes; |
2050 | SkipMainFilePreamble.second = StartOfLine; |
2051 | } |
2052 | |
2053 | /// Forwarding function for diagnostics. This emits a diagnostic at |
2054 | /// the specified Token's location, translating the token's start |
2055 | /// position in the current buffer into a SourcePosition object for rendering. |
2056 | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const { |
2057 | return Diags->Report(Loc, DiagID); |
2058 | } |
2059 | |
2060 | DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const { |
2061 | return Diags->Report(Loc: Tok.getLocation(), DiagID); |
2062 | } |
2063 | |
2064 | /// Return the 'spelling' of the token at the given |
2065 | /// location; does not go up to the spelling location or down to the |
2066 | /// expansion location. |
2067 | /// |
2068 | /// \param buffer A buffer which will be used only if the token requires |
2069 | /// "cleaning", e.g. if it contains trigraphs or escaped newlines |
2070 | /// \param invalid If non-null, will be set \c true if an error occurs. |
2071 | StringRef getSpelling(SourceLocation loc, |
2072 | SmallVectorImpl<char> &buffer, |
2073 | bool *invalid = nullptr) const { |
2074 | return Lexer::getSpelling(loc, buffer, SM: SourceMgr, options: LangOpts, invalid); |
2075 | } |
2076 | |
2077 | /// Return the 'spelling' of the Tok token. |
2078 | /// |
2079 | /// The spelling of a token is the characters used to represent the token in |
2080 | /// the source file after trigraph expansion and escaped-newline folding. In |
2081 | /// particular, this wants to get the true, uncanonicalized, spelling of |
2082 | /// things like digraphs, UCNs, etc. |
2083 | /// |
2084 | /// \param Invalid If non-null, will be set \c true if an error occurs. |
2085 | std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const { |
2086 | return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid); |
2087 | } |
2088 | |
2089 | /// Get the spelling of a token into a preallocated buffer, instead |
2090 | /// of as an std::string. |
2091 | /// |
2092 | /// The caller is required to allocate enough space for the token, which is |
2093 | /// guaranteed to be at least Tok.getLength() bytes long. The length of the |
2094 | /// actual result is returned. |
2095 | /// |
2096 | /// Note that this method may do two possible things: it may either fill in |
2097 | /// the buffer specified with characters, or it may *change the input pointer* |
2098 | /// to point to a constant buffer with the data already in it (avoiding a |
2099 | /// copy). The caller is not allowed to modify the returned buffer pointer |
2100 | /// if an internal buffer is returned. |
2101 | unsigned getSpelling(const Token &Tok, const char *&Buffer, |
2102 | bool *Invalid = nullptr) const { |
2103 | return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid); |
2104 | } |
2105 | |
2106 | /// Get the spelling of a token into a SmallVector. |
2107 | /// |
2108 | /// Note that the returned StringRef may not point to the |
2109 | /// supplied buffer if a copy can be avoided. |
2110 | StringRef getSpelling(const Token &Tok, |
2111 | SmallVectorImpl<char> &Buffer, |
2112 | bool *Invalid = nullptr) const; |
2113 | |
2114 | /// Relex the token at the specified location. |
2115 | /// \returns true if there was a failure, false on success. |
2116 | bool getRawToken(SourceLocation Loc, Token &Result, |
2117 | bool IgnoreWhiteSpace = false) { |
2118 | return Lexer::getRawToken(Loc, Result, SM: SourceMgr, LangOpts, IgnoreWhiteSpace); |
2119 | } |
2120 | |
2121 | /// Given a Token \p Tok that is a numeric constant with length 1, |
2122 | /// return the character. |
2123 | char |
2124 | getSpellingOfSingleCharacterNumericConstant(const Token &Tok, |
2125 | bool *Invalid = nullptr) const { |
2126 | assert((Tok.is(tok::numeric_constant) || Tok.is(tok::binary_data)) && |
2127 | Tok.getLength() == 1 && "Called on unsupported token" ); |
2128 | assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1" ); |
2129 | |
2130 | // If the token is carrying a literal data pointer, just use it. |
2131 | if (const char *D = Tok.getLiteralData()) |
2132 | return (Tok.getKind() == tok::binary_data) ? *D : *D - '0'; |
2133 | |
2134 | assert(Tok.is(tok::numeric_constant) && "binary data with no data" ); |
2135 | // Otherwise, fall back on getCharacterData, which is slower, but always |
2136 | // works. |
2137 | return *SourceMgr.getCharacterData(SL: Tok.getLocation(), Invalid) - '0'; |
2138 | } |
2139 | |
2140 | /// Retrieve the name of the immediate macro expansion. |
2141 | /// |
2142 | /// This routine starts from a source location, and finds the name of the |
2143 | /// macro responsible for its immediate expansion. It looks through any |
2144 | /// intervening macro argument expansions to compute this. It returns a |
2145 | /// StringRef that refers to the SourceManager-owned buffer of the source |
2146 | /// where that macro name is spelled. Thus, the result shouldn't out-live |
2147 | /// the SourceManager. |
2148 | StringRef getImmediateMacroName(SourceLocation Loc) { |
2149 | return Lexer::getImmediateMacroName(Loc, SM: SourceMgr, LangOpts: getLangOpts()); |
2150 | } |
2151 | |
2152 | /// Plop the specified string into a scratch buffer and set the |
2153 | /// specified token's location and length to it. |
2154 | /// |
2155 | /// If specified, the source location provides a location of the expansion |
2156 | /// point of the token. |
2157 | void CreateString(StringRef Str, Token &Tok, |
2158 | SourceLocation ExpansionLocStart = SourceLocation(), |
2159 | SourceLocation ExpansionLocEnd = SourceLocation()); |
2160 | |
2161 | /// Split the first Length characters out of the token starting at TokLoc |
2162 | /// and return a location pointing to the split token. Re-lexing from the |
2163 | /// split token will return the split token rather than the original. |
2164 | SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length); |
2165 | |
2166 | /// Computes the source location just past the end of the |
2167 | /// token at this source location. |
2168 | /// |
2169 | /// This routine can be used to produce a source location that |
2170 | /// points just past the end of the token referenced by \p Loc, and |
2171 | /// is generally used when a diagnostic needs to point just after a |
2172 | /// token where it expected something different that it received. If |
2173 | /// the returned source location would not be meaningful (e.g., if |
2174 | /// it points into a macro), this routine returns an invalid |
2175 | /// source location. |
2176 | /// |
2177 | /// \param Offset an offset from the end of the token, where the source |
2178 | /// location should refer to. The default offset (0) produces a source |
2179 | /// location pointing just past the end of the token; an offset of 1 produces |
2180 | /// a source location pointing to the last character in the token, etc. |
2181 | SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) { |
2182 | return Lexer::getLocForEndOfToken(Loc, Offset, SM: SourceMgr, LangOpts); |
2183 | } |
2184 | |
2185 | /// Returns true if the given MacroID location points at the first |
2186 | /// token of the macro expansion. |
2187 | /// |
2188 | /// \param MacroBegin If non-null and function returns true, it is set to |
2189 | /// begin location of the macro. |
2190 | bool isAtStartOfMacroExpansion(SourceLocation loc, |
2191 | SourceLocation *MacroBegin = nullptr) const { |
2192 | return Lexer::isAtStartOfMacroExpansion(loc, SM: SourceMgr, LangOpts, |
2193 | MacroBegin); |
2194 | } |
2195 | |
2196 | /// Returns true if the given MacroID location points at the last |
2197 | /// token of the macro expansion. |
2198 | /// |
2199 | /// \param MacroEnd If non-null and function returns true, it is set to |
2200 | /// end location of the macro. |
2201 | bool isAtEndOfMacroExpansion(SourceLocation loc, |
2202 | SourceLocation *MacroEnd = nullptr) const { |
2203 | return Lexer::isAtEndOfMacroExpansion(loc, SM: SourceMgr, LangOpts, MacroEnd); |
2204 | } |
2205 | |
2206 | /// Print the token to stderr, used for debugging. |
2207 | void DumpToken(const Token &Tok, bool DumpFlags = false) const; |
2208 | void DumpLocation(SourceLocation Loc) const; |
2209 | void DumpMacro(const MacroInfo &MI) const; |
2210 | void dumpMacroInfo(const IdentifierInfo *II); |
2211 | |
2212 | /// Given a location that specifies the start of a |
2213 | /// token, return a new location that specifies a character within the token. |
2214 | SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, |
2215 | unsigned Char) const { |
2216 | return Lexer::AdvanceToTokenCharacter(TokStart, Characters: Char, SM: SourceMgr, LangOpts); |
2217 | } |
2218 | |
2219 | /// Increment the counters for the number of token paste operations |
2220 | /// performed. |
2221 | /// |
2222 | /// If fast was specified, this is a 'fast paste' case we handled. |
2223 | void IncrementPasteCounter(bool isFast) { |
2224 | if (isFast) |
2225 | ++NumFastTokenPaste; |
2226 | else |
2227 | ++NumTokenPaste; |
2228 | } |
2229 | |
2230 | void PrintStats(); |
2231 | |
2232 | size_t getTotalMemory() const; |
2233 | |
2234 | /// When the macro expander pastes together a comment (/##/) in Microsoft |
2235 | /// mode, this method handles updating the current state, returning the |
2236 | /// token on the next source line. |
2237 | void HandleMicrosoftCommentPaste(Token &Tok); |
2238 | |
2239 | //===--------------------------------------------------------------------===// |
2240 | // Preprocessor callback methods. These are invoked by a lexer as various |
2241 | // directives and events are found. |
2242 | |
2243 | /// Given a tok::raw_identifier token, look up the |
2244 | /// identifier information for the token and install it into the token, |
2245 | /// updating the token kind accordingly. |
2246 | IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const; |
2247 | |
2248 | private: |
2249 | llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons; |
2250 | |
2251 | public: |
2252 | /// Specifies the reason for poisoning an identifier. |
2253 | /// |
2254 | /// If that identifier is accessed while poisoned, then this reason will be |
2255 | /// used instead of the default "poisoned" diagnostic. |
2256 | void SetPoisonReason(IdentifierInfo *II, unsigned DiagID); |
2257 | |
2258 | /// Display reason for poisoned identifier. |
2259 | void HandlePoisonedIdentifier(Token & Identifier); |
2260 | |
2261 | void MaybeHandlePoisonedIdentifier(Token & Identifier) { |
2262 | if(IdentifierInfo * II = Identifier.getIdentifierInfo()) { |
2263 | if(II->isPoisoned()) { |
2264 | HandlePoisonedIdentifier(Identifier); |
2265 | } |
2266 | } |
2267 | } |
2268 | |
2269 | private: |
2270 | /// Identifiers used for SEH handling in Borland. These are only |
2271 | /// allowed in particular circumstances |
2272 | // __except block |
2273 | IdentifierInfo *Ident__exception_code, |
2274 | *Ident___exception_code, |
2275 | *Ident_GetExceptionCode; |
2276 | // __except filter expression |
2277 | IdentifierInfo *Ident__exception_info, |
2278 | *Ident___exception_info, |
2279 | *Ident_GetExceptionInfo; |
2280 | // __finally |
2281 | IdentifierInfo *Ident__abnormal_termination, |
2282 | *Ident___abnormal_termination, |
2283 | *Ident_AbnormalTermination; |
2284 | |
2285 | const char *getCurLexerEndPos(); |
2286 | void (const Module &Mod); |
2287 | |
2288 | public: |
2289 | void PoisonSEHIdentifiers(bool Poison = true); // Borland |
2290 | |
2291 | /// Callback invoked when the lexer reads an identifier and has |
2292 | /// filled in the tokens IdentifierInfo member. |
2293 | /// |
2294 | /// This callback potentially macro expands it or turns it into a named |
2295 | /// token (like 'for'). |
2296 | /// |
2297 | /// \returns true if we actually computed a token, false if we need to |
2298 | /// lex again. |
2299 | bool HandleIdentifier(Token &Identifier); |
2300 | |
2301 | /// Callback invoked when the lexer hits the end of the current file. |
2302 | /// |
2303 | /// This either returns the EOF token and returns true, or |
2304 | /// pops a level off the include stack and returns false, at which point the |
2305 | /// client should call lex again. |
2306 | bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false); |
2307 | |
2308 | /// Callback invoked when the current TokenLexer hits the end of its |
2309 | /// token stream. |
2310 | bool HandleEndOfTokenLexer(Token &Result); |
2311 | |
2312 | /// Callback invoked when the lexer sees a # token at the start of a |
2313 | /// line. |
2314 | /// |
2315 | /// This consumes the directive, modifies the lexer/preprocessor state, and |
2316 | /// advances the lexer(s) so that the next token read is the correct one. |
2317 | void HandleDirective(Token &Result); |
2318 | |
2319 | /// Ensure that the next token is a tok::eod token. |
2320 | /// |
2321 | /// If not, emit a diagnostic and consume up until the eod. |
2322 | /// If \p EnableMacros is true, then we consider macros that expand to zero |
2323 | /// tokens as being ok. |
2324 | /// |
2325 | /// \return The location of the end of the directive (the terminating |
2326 | /// newline). |
2327 | SourceLocation CheckEndOfDirective(const char *DirType, |
2328 | bool EnableMacros = false); |
2329 | |
2330 | /// Read and discard all tokens remaining on the current line until |
2331 | /// the tok::eod token is found. Returns the range of the skipped tokens. |
2332 | SourceRange DiscardUntilEndOfDirective() { |
2333 | Token Tmp; |
2334 | return DiscardUntilEndOfDirective(Tok&: Tmp); |
2335 | } |
2336 | |
2337 | /// Same as above except retains the token that was found. |
2338 | SourceRange DiscardUntilEndOfDirective(Token &Tok); |
2339 | |
2340 | /// Returns true if the preprocessor has seen a use of |
2341 | /// __DATE__ or __TIME__ in the file so far. |
2342 | bool SawDateOrTime() const { |
2343 | return DATELoc != SourceLocation() || TIMELoc != SourceLocation(); |
2344 | } |
2345 | unsigned getCounterValue() const { return CounterValue; } |
2346 | void setCounterValue(unsigned V) { CounterValue = V; } |
2347 | |
2348 | LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const { |
2349 | assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine && |
2350 | "FPEvalMethod should be set either from command line or from the " |
2351 | "target info" ); |
2352 | return CurrentFPEvalMethod; |
2353 | } |
2354 | |
2355 | LangOptions::FPEvalMethodKind getTUFPEvalMethod() const { |
2356 | return TUFPEvalMethod; |
2357 | } |
2358 | |
2359 | SourceLocation getLastFPEvalPragmaLocation() const { |
2360 | return LastFPEvalPragmaLocation; |
2361 | } |
2362 | |
2363 | void setCurrentFPEvalMethod(SourceLocation PragmaLoc, |
2364 | LangOptions::FPEvalMethodKind Val) { |
2365 | assert(Val != LangOptions::FEM_UnsetOnCommandLine && |
2366 | "FPEvalMethod should never be set to FEM_UnsetOnCommandLine" ); |
2367 | // This is the location of the '#pragma float_control" where the |
2368 | // execution state is modifed. |
2369 | LastFPEvalPragmaLocation = PragmaLoc; |
2370 | CurrentFPEvalMethod = Val; |
2371 | TUFPEvalMethod = Val; |
2372 | } |
2373 | |
2374 | void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) { |
2375 | assert(Val != LangOptions::FEM_UnsetOnCommandLine && |
2376 | "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine" ); |
2377 | TUFPEvalMethod = Val; |
2378 | } |
2379 | |
2380 | /// Retrieves the module that we're currently building, if any. |
2381 | Module *getCurrentModule(); |
2382 | |
2383 | /// Retrieves the module whose implementation we're current compiling, if any. |
2384 | Module *getCurrentModuleImplementation(); |
2385 | |
2386 | /// If we are preprocessing a named module. |
2387 | bool isInNamedModule() const { return ModuleDeclState.isNamedModule(); } |
2388 | |
2389 | /// If we are proprocessing a named interface unit. |
2390 | /// Note that a module implementation partition is not considered as an |
2391 | /// named interface unit here although it is importable |
2392 | /// to ease the parsing. |
2393 | bool isInNamedInterfaceUnit() const { |
2394 | return ModuleDeclState.isNamedInterface(); |
2395 | } |
2396 | |
2397 | /// Get the named module name we're preprocessing. |
2398 | /// Requires we're preprocessing a named module. |
2399 | StringRef getNamedModuleName() const { return ModuleDeclState.getName(); } |
2400 | |
2401 | /// If we are implementing an implementation module unit. |
2402 | /// Note that the module implementation partition is not considered as an |
2403 | /// implementation unit. |
2404 | bool isInImplementationUnit() const { |
2405 | return ModuleDeclState.isImplementationUnit(); |
2406 | } |
2407 | |
2408 | /// If we're importing a standard C++20 Named Modules. |
2409 | bool isInImportingCXXNamedModules() const { |
2410 | // NamedModuleImportPath will be non-empty only if we're importing |
2411 | // Standard C++ named modules. |
2412 | return !NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules && |
2413 | !IsAtImport; |
2414 | } |
2415 | |
2416 | /// Allocate a new MacroInfo object with the provided SourceLocation. |
2417 | MacroInfo *AllocateMacroInfo(SourceLocation L); |
2418 | |
2419 | /// Turn the specified lexer token into a fully checked and spelled |
2420 | /// filename, e.g. as an operand of \#include. |
2421 | /// |
2422 | /// The caller is expected to provide a buffer that is large enough to hold |
2423 | /// the spelling of the filename, but is also expected to handle the case |
2424 | /// when this method decides to use a different buffer. |
2425 | /// |
2426 | /// \returns true if the input filename was in <>'s or false if it was |
2427 | /// in ""'s. |
2428 | bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer); |
2429 | |
2430 | /// Given a "foo" or \<foo> reference, look up the indicated file. |
2431 | /// |
2432 | /// Returns std::nullopt on failure. \p isAngled indicates whether the file |
2433 | /// reference is for system \#include's or not (i.e. using <> instead of ""). |
2434 | OptionalFileEntryRef |
2435 | LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled, |
2436 | ConstSearchDirIterator FromDir, const FileEntry *FromFile, |
2437 | ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath, |
2438 | SmallVectorImpl<char> *RelativePath, |
2439 | ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped, |
2440 | bool *IsFrameworkFound, bool SkipCache = false, |
2441 | bool OpenFile = true, bool CacheFailures = true); |
2442 | |
2443 | /// Given a "Filename" or \<Filename> reference, look up the indicated embed |
2444 | /// resource. \p isAngled indicates whether the file reference is for |
2445 | /// system \#include's or not (i.e. using <> instead of ""). If \p OpenFile |
2446 | /// is true, the file looked up is opened for reading, otherwise it only |
2447 | /// validates that the file exists. Quoted filenames are looked up relative |
2448 | /// to \p LookupFromFile if it is nonnull. |
2449 | /// |
2450 | /// Returns std::nullopt on failure. |
2451 | OptionalFileEntryRef |
2452 | LookupEmbedFile(StringRef Filename, bool isAngled, bool OpenFile, |
2453 | const FileEntry *LookupFromFile = nullptr); |
2454 | |
2455 | /// Return true if we're in the top-level file, not in a \#include. |
2456 | bool isInPrimaryFile() const; |
2457 | |
2458 | /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is |
2459 | /// followed by EOD. Return true if the token is not a valid on-off-switch. |
2460 | bool LexOnOffSwitch(tok::OnOffSwitch &Result); |
2461 | |
2462 | bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, |
2463 | bool *ShadowFlag = nullptr); |
2464 | |
2465 | void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma); |
2466 | Module *LeaveSubmodule(bool ForPragma); |
2467 | |
2468 | private: |
2469 | friend void TokenLexer::ExpandFunctionArguments(); |
2470 | |
2471 | void PushIncludeMacroStack() { |
2472 | assert(CurLexerCallback != CLK_CachingLexer && |
2473 | "cannot push a caching lexer" ); |
2474 | IncludeMacroStack.emplace_back(args&: CurLexerCallback, args&: CurLexerSubmodule, |
2475 | args: std::move(CurLexer), args&: CurPPLexer, |
2476 | args: std::move(CurTokenLexer), args&: CurDirLookup); |
2477 | CurPPLexer = nullptr; |
2478 | } |
2479 | |
2480 | void PopIncludeMacroStack() { |
2481 | CurLexer = std::move(IncludeMacroStack.back().TheLexer); |
2482 | CurPPLexer = IncludeMacroStack.back().ThePPLexer; |
2483 | CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer); |
2484 | CurDirLookup = IncludeMacroStack.back().TheDirLookup; |
2485 | CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule; |
2486 | CurLexerCallback = IncludeMacroStack.back().CurLexerCallback; |
2487 | IncludeMacroStack.pop_back(); |
2488 | } |
2489 | |
2490 | void PropagateLineStartLeadingSpaceInfo(Token &Result); |
2491 | |
2492 | /// Determine whether we need to create module macros for #defines in the |
2493 | /// current context. |
2494 | bool needModuleMacros() const; |
2495 | |
2496 | /// Update the set of active module macros and ambiguity flag for a module |
2497 | /// macro name. |
2498 | void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info); |
2499 | |
2500 | DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI, |
2501 | SourceLocation Loc); |
2502 | UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc); |
2503 | VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc, |
2504 | bool isPublic); |
2505 | |
2506 | /// Lex and validate a macro name, which occurs after a |
2507 | /// \#define or \#undef. |
2508 | /// |
2509 | /// \param MacroNameTok Token that represents the name defined or undefined. |
2510 | /// \param IsDefineUndef Kind if preprocessor directive. |
2511 | /// \param ShadowFlag Points to flag that is set if macro name shadows |
2512 | /// a keyword. |
2513 | /// |
2514 | /// This emits a diagnostic, sets the token kind to eod, |
2515 | /// and discards the rest of the macro line if the macro name is invalid. |
2516 | void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other, |
2517 | bool *ShadowFlag = nullptr); |
2518 | |
2519 | /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the |
2520 | /// entire line) of the macro's tokens and adds them to MacroInfo, and while |
2521 | /// doing so performs certain validity checks including (but not limited to): |
2522 | /// - # (stringization) is followed by a macro parameter |
2523 | /// \param MacroNameTok - Token that represents the macro name |
2524 | /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard |
2525 | /// |
2526 | /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and |
2527 | /// returns a nullptr if an invalid sequence of tokens is encountered. |
2528 | MacroInfo *ReadOptionalMacroParameterListAndBody( |
2529 | const Token &MacroNameTok, bool ); |
2530 | |
2531 | /// The ( starting an argument list of a macro definition has just been read. |
2532 | /// Lex the rest of the parameters and the closing ), updating \p MI with |
2533 | /// what we learn and saving in \p LastTok the last token read. |
2534 | /// Return true if an error occurs parsing the arg list. |
2535 | bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok); |
2536 | |
2537 | /// Provide a suggestion for a typoed directive. If there is no typo, then |
2538 | /// just skip suggesting. |
2539 | /// |
2540 | /// \param Tok - Token that represents the directive |
2541 | /// \param Directive - String reference for the directive name |
2542 | void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const; |
2543 | |
2544 | /// We just read a \#if or related directive and decided that the |
2545 | /// subsequent tokens are in the \#if'd out portion of the |
2546 | /// file. Lex the rest of the file, until we see an \#endif. If \p |
2547 | /// FoundNonSkipPortion is true, then we have already emitted code for part of |
2548 | /// this \#if directive, so \#else/\#elif blocks should never be entered. If |
2549 | /// \p FoundElse is false, then \#else directives are ok, if not, then we have |
2550 | /// already seen one so a \#else directive is a duplicate. When this returns, |
2551 | /// the caller can lex the first valid token. |
2552 | void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, |
2553 | SourceLocation IfTokenLoc, |
2554 | bool FoundNonSkipPortion, bool FoundElse, |
2555 | SourceLocation ElseLoc = SourceLocation()); |
2556 | |
2557 | /// Information about the result for evaluating an expression for a |
2558 | /// preprocessor directive. |
2559 | struct DirectiveEvalResult { |
2560 | /// The integral value of the expression. |
2561 | std::optional<llvm::APSInt> Value; |
2562 | |
2563 | /// Whether the expression was evaluated as true or not. |
2564 | bool Conditional; |
2565 | |
2566 | /// True if the expression contained identifiers that were undefined. |
2567 | bool IncludedUndefinedIds; |
2568 | |
2569 | /// The source range for the expression. |
2570 | SourceRange ExprRange; |
2571 | }; |
2572 | |
2573 | /// Evaluate an integer constant expression that may occur after a |
2574 | /// \#if or \#elif directive and return a \p DirectiveEvalResult object. |
2575 | /// |
2576 | /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. |
2577 | DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro, |
2578 | bool CheckForEoD = true); |
2579 | |
2580 | /// Evaluate an integer constant expression that may occur after a |
2581 | /// \#if or \#elif directive and return a \p DirectiveEvalResult object. |
2582 | /// |
2583 | /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. |
2584 | /// \p EvaluatedDefined will contain the result of whether "defined" appeared |
2585 | /// in the evaluated expression or not. |
2586 | DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro, |
2587 | Token &Tok, |
2588 | bool &EvaluatedDefined, |
2589 | bool CheckForEoD = true); |
2590 | |
2591 | /// Process a '__has_embed("path" [, ...])' expression. |
2592 | /// |
2593 | /// Returns predefined `__STDC_EMBED_*` macro values if |
2594 | /// successful. |
2595 | EmbedResult EvaluateHasEmbed(Token &Tok, IdentifierInfo *II); |
2596 | |
2597 | /// Process a '__has_include("path")' expression. |
2598 | /// |
2599 | /// Returns true if successful. |
2600 | bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II); |
2601 | |
2602 | /// Process '__has_include_next("path")' expression. |
2603 | /// |
2604 | /// Returns true if successful. |
2605 | bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II); |
2606 | |
2607 | /// Get the directory and file from which to start \#include_next lookup. |
2608 | std::pair<ConstSearchDirIterator, const FileEntry *> |
2609 | getIncludeNextStart(const Token &IncludeNextTok) const; |
2610 | |
2611 | /// Install the standard preprocessor pragmas: |
2612 | /// \#pragma GCC poison/system_header/dependency and \#pragma once. |
2613 | void RegisterBuiltinPragmas(); |
2614 | |
2615 | /// Register builtin macros such as __LINE__ with the identifier table. |
2616 | void RegisterBuiltinMacros(); |
2617 | |
2618 | /// If an identifier token is read that is to be expanded as a macro, handle |
2619 | /// it and return the next token as 'Tok'. If we lexed a token, return true; |
2620 | /// otherwise the caller should lex again. |
2621 | bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD); |
2622 | |
2623 | /// Cache macro expanded tokens for TokenLexers. |
2624 | // |
2625 | /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
2626 | /// going to lex in the cache and when it finishes the tokens are removed |
2627 | /// from the end of the cache. |
2628 | Token *cacheMacroExpandedTokens(TokenLexer *tokLexer, |
2629 | ArrayRef<Token> tokens); |
2630 | |
2631 | void removeCachedMacroExpandedTokensOfLastLexer(); |
2632 | |
2633 | /// Determine whether the next preprocessor token to be |
2634 | /// lexed is a '('. If so, consume the token and return true, if not, this |
2635 | /// method should have no observable side-effect on the lexed tokens. |
2636 | bool isNextPPTokenLParen(); |
2637 | |
2638 | /// After reading "MACRO(", this method is invoked to read all of the formal |
2639 | /// arguments specified for the macro invocation. Returns null on error. |
2640 | MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, |
2641 | SourceLocation &MacroEnd); |
2642 | |
2643 | /// If an identifier token is read that is to be expanded |
2644 | /// as a builtin macro, handle it and return the next token as 'Tok'. |
2645 | void ExpandBuiltinMacro(Token &Tok); |
2646 | |
2647 | /// Read a \c _Pragma directive, slice it up, process it, then |
2648 | /// return the first token after the directive. |
2649 | /// This assumes that the \c _Pragma token has just been read into \p Tok. |
2650 | void Handle_Pragma(Token &Tok); |
2651 | |
2652 | /// Like Handle_Pragma except the pragma text is not enclosed within |
2653 | /// a string literal. |
2654 | void HandleMicrosoft__pragma(Token &Tok); |
2655 | |
2656 | /// Add a lexer to the top of the include stack and |
2657 | /// start lexing tokens from it instead of the current buffer. |
2658 | void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir); |
2659 | |
2660 | /// Set the FileID for the preprocessor predefines. |
2661 | void setPredefinesFileID(FileID FID) { |
2662 | assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!" ); |
2663 | PredefinesFileID = FID; |
2664 | } |
2665 | |
2666 | /// Set the FileID for the PCH through header. |
2667 | void (FileID FID); |
2668 | |
2669 | /// Returns true if we are lexing from a file and not a |
2670 | /// pragma or a macro. |
2671 | static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) { |
2672 | return L ? !L->isPragmaLexer() : P != nullptr; |
2673 | } |
2674 | |
2675 | static bool IsFileLexer(const IncludeStackInfo& I) { |
2676 | return IsFileLexer(L: I.TheLexer.get(), P: I.ThePPLexer); |
2677 | } |
2678 | |
2679 | bool IsFileLexer() const { |
2680 | return IsFileLexer(L: CurLexer.get(), P: CurPPLexer); |
2681 | } |
2682 | |
2683 | //===--------------------------------------------------------------------===// |
2684 | // Caching stuff. |
2685 | void CachingLex(Token &Result); |
2686 | |
2687 | bool InCachingLexMode() const { |
2688 | // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means |
2689 | // that we are past EOF, not that we are in CachingLex mode. |
2690 | return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty(); |
2691 | } |
2692 | |
2693 | void EnterCachingLexMode(); |
2694 | void EnterCachingLexModeUnchecked(); |
2695 | |
2696 | void ExitCachingLexMode() { |
2697 | if (InCachingLexMode()) |
2698 | RemoveTopOfLexerStack(); |
2699 | } |
2700 | |
2701 | const Token &PeekAhead(unsigned N); |
2702 | void AnnotatePreviousCachedTokens(const Token &Tok); |
2703 | |
2704 | //===--------------------------------------------------------------------===// |
2705 | /// Handle*Directive - implement the various preprocessor directives. These |
2706 | /// should side-effect the current preprocessor object so that the next call |
2707 | /// to Lex() will return the appropriate token next. |
2708 | void HandleLineDirective(); |
2709 | void HandleDigitDirective(Token &Tok); |
2710 | void HandleUserDiagnosticDirective(Token &Tok, bool isWarning); |
2711 | void HandleIdentSCCSDirective(Token &Tok); |
2712 | void HandleMacroPublicDirective(Token &Tok); |
2713 | void HandleMacroPrivateDirective(); |
2714 | |
2715 | /// An additional notification that can be produced by a header inclusion or |
2716 | /// import to tell the parser what happened. |
2717 | struct ImportAction { |
2718 | enum ActionKind { |
2719 | None, |
2720 | ModuleBegin, |
2721 | ModuleImport, |
2722 | , |
2723 | SkippedModuleImport, |
2724 | Failure, |
2725 | } Kind; |
2726 | Module * = nullptr; |
2727 | |
2728 | ImportAction(ActionKind AK, Module *Mod = nullptr) |
2729 | : Kind(AK), ModuleForHeader(Mod) { |
2730 | assert((AK == None || Mod || AK == Failure) && |
2731 | "no module for module action" ); |
2732 | } |
2733 | }; |
2734 | |
2735 | OptionalFileEntryRef ( |
2736 | ConstSearchDirIterator *CurDir, StringRef &Filename, |
2737 | SourceLocation FilenameLoc, CharSourceRange FilenameRange, |
2738 | const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl, |
2739 | bool &IsMapped, ConstSearchDirIterator LookupFrom, |
2740 | const FileEntry *LookupFromFile, StringRef &LookupFilename, |
2741 | SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath, |
2742 | ModuleMap::KnownHeader &SuggestedModule, bool isAngled); |
2743 | // Binary data inclusion |
2744 | void HandleEmbedDirective(SourceLocation HashLoc, Token &Tok, |
2745 | const FileEntry *LookupFromFile = nullptr); |
2746 | void HandleEmbedDirectiveImpl(SourceLocation HashLoc, |
2747 | const LexEmbedParametersResult &Params, |
2748 | StringRef BinaryContents); |
2749 | |
2750 | // File inclusion. |
2751 | void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok, |
2752 | ConstSearchDirIterator LookupFrom = nullptr, |
2753 | const FileEntry *LookupFromFile = nullptr); |
2754 | ImportAction |
2755 | HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok, |
2756 | Token &FilenameTok, SourceLocation EndLoc, |
2757 | ConstSearchDirIterator LookupFrom = nullptr, |
2758 | const FileEntry *LookupFromFile = nullptr); |
2759 | void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok); |
2760 | void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok); |
2761 | void HandleImportDirective(SourceLocation HashLoc, Token &Tok); |
2762 | void HandleMicrosoftImportDirective(Token &Tok); |
2763 | |
2764 | public: |
2765 | /// Check that the given module is available, producing a diagnostic if not. |
2766 | /// \return \c true if the check failed (because the module is not available). |
2767 | /// \c false if the module appears to be usable. |
2768 | static bool checkModuleIsAvailable(const LangOptions &LangOpts, |
2769 | const TargetInfo &TargetInfo, |
2770 | const Module &M, DiagnosticsEngine &Diags); |
2771 | |
2772 | // Module inclusion testing. |
2773 | /// Find the module that owns the source or header file that |
2774 | /// \p Loc points to. If the location is in a file that was included |
2775 | /// into a module, or is outside any module, returns nullptr. |
2776 | Module *getModuleForLocation(SourceLocation Loc, bool AllowTextual); |
2777 | |
2778 | /// We want to produce a diagnostic at location IncLoc concerning an |
2779 | /// unreachable effect at location MLoc (eg, where a desired entity was |
2780 | /// declared or defined). Determine whether the right way to make MLoc |
2781 | /// reachable is by #include, and if so, what header should be included. |
2782 | /// |
2783 | /// This is not necessarily fast, and might load unexpected module maps, so |
2784 | /// should only be called by code that intends to produce an error. |
2785 | /// |
2786 | /// \param IncLoc The location at which the missing effect was detected. |
2787 | /// \param MLoc A location within an unimported module at which the desired |
2788 | /// effect occurred. |
2789 | /// \return A file that can be #included to provide the desired effect. Null |
2790 | /// if no such file could be determined or if a #include is not |
2791 | /// appropriate (eg, if a module should be imported instead). |
2792 | OptionalFileEntryRef (SourceLocation IncLoc, |
2793 | SourceLocation MLoc); |
2794 | |
2795 | bool isRecordingPreamble() const { |
2796 | return PreambleConditionalStack.isRecording(); |
2797 | } |
2798 | |
2799 | bool hasRecordedPreamble() const { |
2800 | return PreambleConditionalStack.hasRecordedPreamble(); |
2801 | } |
2802 | |
2803 | ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const { |
2804 | return PreambleConditionalStack.getStack(); |
2805 | } |
2806 | |
2807 | void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) { |
2808 | PreambleConditionalStack.setStack(s); |
2809 | } |
2810 | |
2811 | void setReplayablePreambleConditionalStack( |
2812 | ArrayRef<PPConditionalInfo> s, std::optional<PreambleSkipInfo> SkipInfo) { |
2813 | PreambleConditionalStack.startReplaying(); |
2814 | PreambleConditionalStack.setStack(s); |
2815 | PreambleConditionalStack.SkipInfo = SkipInfo; |
2816 | } |
2817 | |
2818 | std::optional<PreambleSkipInfo> getPreambleSkipInfo() const { |
2819 | return PreambleConditionalStack.SkipInfo; |
2820 | } |
2821 | |
2822 | private: |
2823 | /// After processing predefined file, initialize the conditional stack from |
2824 | /// the preamble. |
2825 | void replayPreambleConditionalStack(); |
2826 | |
2827 | // Macro handling. |
2828 | void HandleDefineDirective(Token &Tok, bool ); |
2829 | void HandleUndefDirective(); |
2830 | |
2831 | // Conditional Inclusion. |
2832 | void HandleIfdefDirective(Token &Result, const Token &HashToken, |
2833 | bool isIfndef, bool ReadAnyTokensBeforeDirective); |
2834 | void HandleIfDirective(Token &IfToken, const Token &HashToken, |
2835 | bool ReadAnyTokensBeforeDirective); |
2836 | void HandleEndifDirective(Token &EndifToken); |
2837 | void HandleElseDirective(Token &Result, const Token &HashToken); |
2838 | void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken, |
2839 | tok::PPKeywordKind Kind); |
2840 | |
2841 | // Pragmas. |
2842 | void HandlePragmaDirective(PragmaIntroducer Introducer); |
2843 | |
2844 | public: |
2845 | void HandlePragmaOnce(Token &OnceTok); |
2846 | void HandlePragmaMark(Token &MarkTok); |
2847 | void HandlePragmaPoison(); |
2848 | void HandlePragmaSystemHeader(Token &); |
2849 | void HandlePragmaDependency(Token &DependencyTok); |
2850 | void HandlePragmaPushMacro(Token &Tok); |
2851 | void HandlePragmaPopMacro(Token &Tok); |
2852 | void HandlePragmaIncludeAlias(Token &Tok); |
2853 | void HandlePragmaModuleBuild(Token &Tok); |
2854 | void HandlePragmaHdrstop(Token &Tok); |
2855 | IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok); |
2856 | |
2857 | // Return true and store the first token only if any CommentHandler |
2858 | // has inserted some tokens and getCommentRetentionState() is false. |
2859 | bool HandleComment(Token &result, SourceRange ); |
2860 | |
2861 | /// A macro is used, update information about macros that need unused |
2862 | /// warnings. |
2863 | void markMacroAsUsed(MacroInfo *MI); |
2864 | |
2865 | void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg, |
2866 | SourceLocation AnnotationLoc) { |
2867 | auto Annotations = AnnotationInfos.find(Val: II); |
2868 | if (Annotations == AnnotationInfos.end()) |
2869 | AnnotationInfos.insert(KV: std::make_pair( |
2870 | x&: II, |
2871 | y: MacroAnnotations::makeDeprecation(Loc: AnnotationLoc, Msg: std::move(Msg)))); |
2872 | else |
2873 | Annotations->second.DeprecationInfo = |
2874 | MacroAnnotationInfo{.Location: AnnotationLoc, .Message: std::move(Msg)}; |
2875 | } |
2876 | |
2877 | void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg, |
2878 | SourceLocation AnnotationLoc) { |
2879 | auto Annotations = AnnotationInfos.find(Val: II); |
2880 | if (Annotations == AnnotationInfos.end()) |
2881 | AnnotationInfos.insert( |
2882 | KV: std::make_pair(x&: II, y: MacroAnnotations::makeRestrictExpansion( |
2883 | Loc: AnnotationLoc, Msg: std::move(Msg)))); |
2884 | else |
2885 | Annotations->second.RestrictExpansionInfo = |
2886 | MacroAnnotationInfo{.Location: AnnotationLoc, .Message: std::move(Msg)}; |
2887 | } |
2888 | |
2889 | void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) { |
2890 | auto Annotations = AnnotationInfos.find(Val: II); |
2891 | if (Annotations == AnnotationInfos.end()) |
2892 | AnnotationInfos.insert( |
2893 | KV: std::make_pair(x&: II, y: MacroAnnotations::makeFinal(Loc: AnnotationLoc))); |
2894 | else |
2895 | Annotations->second.FinalAnnotationLoc = AnnotationLoc; |
2896 | } |
2897 | |
2898 | const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const { |
2899 | return AnnotationInfos.find(Val: II)->second; |
2900 | } |
2901 | |
2902 | void emitMacroExpansionWarnings(const Token &Identifier, |
2903 | bool IsIfnDef = false) const { |
2904 | IdentifierInfo *Info = Identifier.getIdentifierInfo(); |
2905 | if (Info->isDeprecatedMacro()) |
2906 | emitMacroDeprecationWarning(Identifier); |
2907 | |
2908 | if (Info->isRestrictExpansion() && |
2909 | !SourceMgr.isInMainFile(Loc: Identifier.getLocation())) |
2910 | emitRestrictExpansionWarning(Identifier); |
2911 | |
2912 | if (!IsIfnDef) { |
2913 | if (Info->getName() == "INFINITY" && getLangOpts().NoHonorInfs) |
2914 | emitRestrictInfNaNWarning(Identifier, DiagSelection: 0); |
2915 | if (Info->getName() == "NAN" && getLangOpts().NoHonorNaNs) |
2916 | emitRestrictInfNaNWarning(Identifier, DiagSelection: 1); |
2917 | } |
2918 | } |
2919 | |
2920 | static void processPathForFileMacro(SmallVectorImpl<char> &Path, |
2921 | const LangOptions &LangOpts, |
2922 | const TargetInfo &TI); |
2923 | |
2924 | static void processPathToFileName(SmallVectorImpl<char> &FileName, |
2925 | const PresumedLoc &PLoc, |
2926 | const LangOptions &LangOpts, |
2927 | const TargetInfo &TI); |
2928 | |
2929 | private: |
2930 | void emitMacroDeprecationWarning(const Token &Identifier) const; |
2931 | void emitRestrictExpansionWarning(const Token &Identifier) const; |
2932 | void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const; |
2933 | void emitRestrictInfNaNWarning(const Token &Identifier, |
2934 | unsigned DiagSelection) const; |
2935 | |
2936 | /// This boolean state keeps track if the current scanned token (by this PP) |
2937 | /// is in an "-Wunsafe-buffer-usage" opt-out region. Assuming PP scans a |
2938 | /// translation unit in a linear order. |
2939 | bool InSafeBufferOptOutRegion = false; |
2940 | |
2941 | /// Hold the start location of the current "-Wunsafe-buffer-usage" opt-out |
2942 | /// region if PP is currently in such a region. Hold undefined value |
2943 | /// otherwise. |
2944 | SourceLocation CurrentSafeBufferOptOutStart; // It is used to report the start location of an never-closed region. |
2945 | |
2946 | using SafeBufferOptOutRegionsTy = |
2947 | SmallVector<std::pair<SourceLocation, SourceLocation>, 16>; |
2948 | // An ordered sequence of "-Wunsafe-buffer-usage" opt-out regions in this |
2949 | // translation unit. Each region is represented by a pair of start and |
2950 | // end locations. |
2951 | SafeBufferOptOutRegionsTy SafeBufferOptOutMap; |
2952 | |
2953 | // The "-Wunsafe-buffer-usage" opt-out regions in loaded ASTs. We use the |
2954 | // following structure to manage them by their ASTs. |
2955 | struct { |
2956 | // A map from unique IDs to region maps of loaded ASTs. The ID identifies a |
2957 | // loaded AST. See `SourceManager::getUniqueLoadedASTID`. |
2958 | llvm::DenseMap<FileID, SafeBufferOptOutRegionsTy> LoadedRegions; |
2959 | |
2960 | // Returns a reference to the safe buffer opt-out regions of the loaded |
2961 | // AST where `Loc` belongs to. (Construct if absent) |
2962 | SafeBufferOptOutRegionsTy & |
2963 | findAndConsLoadedOptOutMap(SourceLocation Loc, SourceManager &SrcMgr) { |
2964 | return LoadedRegions[SrcMgr.getUniqueLoadedASTFileID(Loc)]; |
2965 | } |
2966 | |
2967 | // Returns a reference to the safe buffer opt-out regions of the loaded |
2968 | // AST where `Loc` belongs to. (This const function returns nullptr if |
2969 | // absent.) |
2970 | const SafeBufferOptOutRegionsTy * |
2971 | lookupLoadedOptOutMap(SourceLocation Loc, |
2972 | const SourceManager &SrcMgr) const { |
2973 | FileID FID = SrcMgr.getUniqueLoadedASTFileID(Loc); |
2974 | auto Iter = LoadedRegions.find(Val: FID); |
2975 | |
2976 | if (Iter == LoadedRegions.end()) |
2977 | return nullptr; |
2978 | return &Iter->getSecond(); |
2979 | } |
2980 | } LoadedSafeBufferOptOutMap; |
2981 | |
2982 | public: |
2983 | /// \return true iff the given `Loc` is in a "-Wunsafe-buffer-usage" opt-out |
2984 | /// region. This `Loc` must be a source location that has been pre-processed. |
2985 | bool isSafeBufferOptOut(const SourceManager&SourceMgr, const SourceLocation &Loc) const; |
2986 | |
2987 | /// Alter the state of whether this PP currently is in a |
2988 | /// "-Wunsafe-buffer-usage" opt-out region. |
2989 | /// |
2990 | /// \param isEnter true if this PP is entering a region; otherwise, this PP |
2991 | /// is exiting a region |
2992 | /// \param Loc the location of the entry or exit of a |
2993 | /// region |
2994 | /// \return true iff it is INVALID to enter or exit a region, i.e., |
2995 | /// attempt to enter a region before exiting a previous region, or exiting a |
2996 | /// region that PP is not currently in. |
2997 | bool enterOrExitSafeBufferOptOutRegion(bool isEnter, |
2998 | const SourceLocation &Loc); |
2999 | |
3000 | /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" |
3001 | /// opt-out region |
3002 | bool isPPInSafeBufferOptOutRegion(); |
3003 | |
3004 | /// \param StartLoc output argument. It will be set to the start location of |
3005 | /// the current "-Wunsafe-buffer-usage" opt-out region iff this function |
3006 | /// returns true. |
3007 | /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage" |
3008 | /// opt-out region |
3009 | bool isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc); |
3010 | |
3011 | /// \return a sequence of SourceLocations representing ordered opt-out regions |
3012 | /// specified by |
3013 | /// `\#pragma clang unsafe_buffer_usage begin/end`s of this translation unit. |
3014 | SmallVector<SourceLocation, 64> serializeSafeBufferOptOutMap() const; |
3015 | |
3016 | /// \param SrcLocSeqs a sequence of SourceLocations deserialized from a |
3017 | /// record of code `PP_UNSAFE_BUFFER_USAGE`. |
3018 | /// \return true iff the `Preprocessor` has been updated; false `Preprocessor` |
3019 | /// is same as itself before the call. |
3020 | bool setDeserializedSafeBufferOptOutMap( |
3021 | const SmallVectorImpl<SourceLocation> &SrcLocSeqs); |
3022 | |
3023 | private: |
3024 | /// Helper functions to forward lexing to the actual lexer. They all share the |
3025 | /// same signature. |
3026 | static bool CLK_Lexer(Preprocessor &P, Token &Result) { |
3027 | return P.CurLexer->Lex(Result); |
3028 | } |
3029 | static bool CLK_TokenLexer(Preprocessor &P, Token &Result) { |
3030 | return P.CurTokenLexer->Lex(Tok&: Result); |
3031 | } |
3032 | static bool CLK_CachingLexer(Preprocessor &P, Token &Result) { |
3033 | P.CachingLex(Result); |
3034 | return true; |
3035 | } |
3036 | static bool CLK_DependencyDirectivesLexer(Preprocessor &P, Token &Result) { |
3037 | return P.CurLexer->LexDependencyDirectiveToken(Result); |
3038 | } |
3039 | static bool CLK_LexAfterModuleImport(Preprocessor &P, Token &Result) { |
3040 | return P.LexAfterModuleImport(Result); |
3041 | } |
3042 | }; |
3043 | |
3044 | /// Abstract base class that describes a handler that will receive |
3045 | /// source ranges for each of the comments encountered in the source file. |
3046 | class CommentHandler { |
3047 | public: |
3048 | virtual ~CommentHandler(); |
3049 | |
3050 | // The handler shall return true if it has pushed any tokens |
3051 | // to be read using e.g. EnterToken or EnterTokenStream. |
3052 | virtual bool HandleComment(Preprocessor &PP, SourceRange ) = 0; |
3053 | }; |
3054 | |
3055 | /// Abstract base class that describes a handler that will receive |
3056 | /// source ranges for empty lines encountered in the source file. |
3057 | class EmptylineHandler { |
3058 | public: |
3059 | virtual ~EmptylineHandler(); |
3060 | |
3061 | // The handler handles empty lines. |
3062 | virtual void HandleEmptyline(SourceRange Range) = 0; |
3063 | }; |
3064 | |
3065 | /// Helper class to shuttle information about #embed directives from the |
3066 | /// preprocessor to the parser through an annotation token. |
3067 | struct EmbedAnnotationData { |
3068 | StringRef BinaryData; |
3069 | }; |
3070 | |
3071 | /// Registry of pragma handlers added by plugins |
3072 | using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>; |
3073 | |
3074 | } // namespace clang |
3075 | |
3076 | #endif // LLVM_CLANG_LEX_PREPROCESSOR_H |
3077 | |