1//===- LoongArch.cpp ------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "OutputSections.h"
11#include "Symbols.h"
12#include "SyntheticSections.h"
13#include "Target.h"
14#include "llvm/BinaryFormat/ELF.h"
15#include "llvm/Support/LEB128.h"
16
17using namespace llvm;
18using namespace llvm::object;
19using namespace llvm::support::endian;
20using namespace llvm::ELF;
21using namespace lld;
22using namespace lld::elf;
23
24namespace {
25class LoongArch final : public TargetInfo {
26public:
27 LoongArch();
28 uint32_t calcEFlags() const override;
29 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
30 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
31 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
32 void writePltHeader(uint8_t *buf) const override;
33 void writePlt(uint8_t *buf, const Symbol &sym,
34 uint64_t pltEntryAddr) const override;
35 RelType getDynRel(RelType type) const override;
36 RelExpr getRelExpr(RelType type, const Symbol &s,
37 const uint8_t *loc) const override;
38 bool usesOnlyLowPageBits(RelType type) const override;
39 void relocate(uint8_t *loc, const Relocation &rel,
40 uint64_t val) const override;
41 bool relaxOnce(int pass) const override;
42 void finalizeRelax(int passes) const override;
43};
44} // end anonymous namespace
45
46namespace {
47enum Op {
48 SUB_W = 0x00110000,
49 SUB_D = 0x00118000,
50 BREAK = 0x002a0000,
51 SRLI_W = 0x00448000,
52 SRLI_D = 0x00450000,
53 ADDI_W = 0x02800000,
54 ADDI_D = 0x02c00000,
55 ANDI = 0x03400000,
56 PCADDU12I = 0x1c000000,
57 LD_W = 0x28800000,
58 LD_D = 0x28c00000,
59 JIRL = 0x4c000000,
60};
61
62enum Reg {
63 R_ZERO = 0,
64 R_RA = 1,
65 R_TP = 2,
66 R_T0 = 12,
67 R_T1 = 13,
68 R_T2 = 14,
69 R_T3 = 15,
70};
71} // namespace
72
73// Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences
74// like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i`
75// produces a PC-relative intermediate value with the lowest 12 bits zeroed (the
76// "page") for the next instruction to add in the "page offset". (`pcalau12i`
77// stands for something like "PC ALigned Add Upper that starts from the 12th
78// bit, Immediate".)
79//
80// Here a "page" is in fact just another way to refer to the 12-bit range
81// allowed by the immediate field of the addi/ld/st instructions, and not
82// related to the system or the kernel's actual page size. The semantics happen
83// to match the AArch64 `adrp`, so the concept of "page" is borrowed here.
84static uint64_t getLoongArchPage(uint64_t p) {
85 return p & ~static_cast<uint64_t>(0xfff);
86}
87
88static uint32_t lo12(uint32_t val) { return val & 0xfff; }
89
90// Calculate the adjusted page delta between dest and PC.
91uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) {
92 // Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d
93 // + lu52i.d`, they must be adjacent so that we can infer the PC of
94 // `pcalau12i` when calculating the page delta for the other two instructions
95 // (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit
96 // complicated. Just use psABI recommended algorithm.
97 uint64_t pcalau12i_pc;
98 switch (type) {
99 case R_LARCH_PCALA64_LO20:
100 case R_LARCH_GOT64_PC_LO20:
101 case R_LARCH_TLS_IE64_PC_LO20:
102 case R_LARCH_TLS_DESC64_PC_LO20:
103 pcalau12i_pc = pc - 8;
104 break;
105 case R_LARCH_PCALA64_HI12:
106 case R_LARCH_GOT64_PC_HI12:
107 case R_LARCH_TLS_IE64_PC_HI12:
108 case R_LARCH_TLS_DESC64_PC_HI12:
109 pcalau12i_pc = pc - 12;
110 break;
111 default:
112 pcalau12i_pc = pc;
113 break;
114 }
115 uint64_t result = getLoongArchPage(p: dest) - getLoongArchPage(p: pcalau12i_pc);
116 if (dest & 0x800)
117 result += 0x1000 - 0x1'0000'0000;
118 if (result & 0x8000'0000)
119 result += 0x1'0000'0000;
120 return result;
121}
122
123static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
124
125static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) {
126 return op | d | (j << 5) | (k << 10);
127}
128
129// Extract bits v[begin:end], where range is inclusive.
130static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) {
131 return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end;
132}
133
134static uint32_t setD5k16(uint32_t insn, uint32_t imm) {
135 uint32_t immLo = extractBits(v: imm, begin: 15, end: 0);
136 uint32_t immHi = extractBits(v: imm, begin: 20, end: 16);
137 return (insn & 0xfc0003e0) | (immLo << 10) | immHi;
138}
139
140static uint32_t setD10k16(uint32_t insn, uint32_t imm) {
141 uint32_t immLo = extractBits(v: imm, begin: 15, end: 0);
142 uint32_t immHi = extractBits(v: imm, begin: 25, end: 16);
143 return (insn & 0xfc000000) | (immLo << 10) | immHi;
144}
145
146static uint32_t setJ20(uint32_t insn, uint32_t imm) {
147 return (insn & 0xfe00001f) | (extractBits(v: imm, begin: 19, end: 0) << 5);
148}
149
150static uint32_t setK12(uint32_t insn, uint32_t imm) {
151 return (insn & 0xffc003ff) | (extractBits(v: imm, begin: 11, end: 0) << 10);
152}
153
154static uint32_t setK16(uint32_t insn, uint32_t imm) {
155 return (insn & 0xfc0003ff) | (extractBits(v: imm, begin: 15, end: 0) << 10);
156}
157
158static bool isJirl(uint32_t insn) {
159 return (insn & 0xfc000000) == JIRL;
160}
161
162static void handleUleb128(uint8_t *loc, uint64_t val) {
163 const uint32_t maxcount = 1 + 64 / 7;
164 uint32_t count;
165 const char *error = nullptr;
166 uint64_t orig = decodeULEB128(p: loc, n: &count, end: nullptr, error: &error);
167 if (count > maxcount || (count == maxcount && error))
168 errorOrWarn(msg: getErrorLocation(loc) + "extra space for uleb128");
169 uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL;
170 encodeULEB128(Value: (orig + val) & mask, p: loc, PadTo: count);
171}
172
173LoongArch::LoongArch() {
174 // The LoongArch ISA itself does not have a limit on page sizes. According to
175 // the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is
176 // 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to
177 // "unlimited".
178 // However, practically the maximum usable page size is constrained by the
179 // kernel implementation, and 64KiB is the biggest non-huge page size
180 // supported by Linux as of v6.4. The most widespread page size in use,
181 // though, is 16KiB.
182 defaultCommonPageSize = 16384;
183 defaultMaxPageSize = 65536;
184 write32le(P: trapInstr.data(), V: BREAK); // break 0
185
186 copyRel = R_LARCH_COPY;
187 pltRel = R_LARCH_JUMP_SLOT;
188 relativeRel = R_LARCH_RELATIVE;
189 iRelativeRel = R_LARCH_IRELATIVE;
190
191 if (config->is64) {
192 symbolicRel = R_LARCH_64;
193 tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64;
194 tlsOffsetRel = R_LARCH_TLS_DTPREL64;
195 tlsGotRel = R_LARCH_TLS_TPREL64;
196 tlsDescRel = R_LARCH_TLS_DESC64;
197 } else {
198 symbolicRel = R_LARCH_32;
199 tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32;
200 tlsOffsetRel = R_LARCH_TLS_DTPREL32;
201 tlsGotRel = R_LARCH_TLS_TPREL32;
202 tlsDescRel = R_LARCH_TLS_DESC32;
203 }
204
205 gotRel = symbolicRel;
206
207 // .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map
208 gotPltHeaderEntriesNum = 2;
209
210 pltHeaderSize = 32;
211 pltEntrySize = 16;
212 ipltEntrySize = 16;
213}
214
215static uint32_t getEFlags(const InputFile *f) {
216 if (config->is64)
217 return cast<ObjFile<ELF64LE>>(Val: f)->getObj().getHeader().e_flags;
218 return cast<ObjFile<ELF32LE>>(Val: f)->getObj().getHeader().e_flags;
219}
220
221static bool inputFileHasCode(const InputFile *f) {
222 for (const auto *sec : f->getSections())
223 if (sec && sec->flags & SHF_EXECINSTR)
224 return true;
225
226 return false;
227}
228
229uint32_t LoongArch::calcEFlags() const {
230 // If there are only binary input files (from -b binary), use a
231 // value of 0 for the ELF header flags.
232 if (ctx.objectFiles.empty())
233 return 0;
234
235 uint32_t target = 0;
236 const InputFile *targetFile;
237 for (const InputFile *f : ctx.objectFiles) {
238 // Do not enforce ABI compatibility if the input file does not contain code.
239 // This is useful for allowing linkage with data-only object files produced
240 // with tools like objcopy, that have zero e_flags.
241 if (!inputFileHasCode(f))
242 continue;
243
244 // Take the first non-zero e_flags as the reference.
245 uint32_t flags = getEFlags(f);
246 if (target == 0 && flags != 0) {
247 target = flags;
248 targetFile = f;
249 }
250
251 if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) !=
252 (target & EF_LOONGARCH_ABI_MODIFIER_MASK))
253 error(msg: toString(f) +
254 ": cannot link object files with different ABI from " +
255 toString(f: targetFile));
256
257 // We cannot process psABI v1.x / object ABI v0 files (containing stack
258 // relocations), unlike ld.bfd.
259 //
260 // Instead of blindly accepting every v0 object and only failing at
261 // relocation processing time, just disallow interlink altogether. We
262 // don't expect significant usage of object ABI v0 in the wild (the old
263 // world may continue using object ABI v0 for a while, but as it's not
264 // binary-compatible with the upstream i.e. new-world ecosystem, it's not
265 // being considered here).
266 //
267 // There are briefly some new-world systems with object ABI v0 binaries too.
268 // It is because these systems were built before the new ABI was finalized.
269 // These are not supported either due to the extremely small number of them,
270 // and the few impacted users are advised to simply rebuild world or
271 // reinstall a recent system.
272 if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1)
273 error(msg: toString(f) + ": unsupported object file ABI version");
274 }
275
276 return target;
277}
278
279int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const {
280 switch (type) {
281 default:
282 internalLinkerError(loc: getErrorLocation(loc: buf),
283 msg: "cannot read addend for relocation " + toString(type));
284 return 0;
285 case R_LARCH_32:
286 case R_LARCH_TLS_DTPMOD32:
287 case R_LARCH_TLS_DTPREL32:
288 case R_LARCH_TLS_TPREL32:
289 return SignExtend64<32>(x: read32le(P: buf));
290 case R_LARCH_64:
291 case R_LARCH_TLS_DTPMOD64:
292 case R_LARCH_TLS_DTPREL64:
293 case R_LARCH_TLS_TPREL64:
294 return read64le(P: buf);
295 case R_LARCH_RELATIVE:
296 case R_LARCH_IRELATIVE:
297 return config->is64 ? read64le(P: buf) : read32le(P: buf);
298 case R_LARCH_NONE:
299 case R_LARCH_JUMP_SLOT:
300 // These relocations are defined as not having an implicit addend.
301 return 0;
302 case R_LARCH_TLS_DESC32:
303 return read32le(P: buf + 4);
304 case R_LARCH_TLS_DESC64:
305 return read64le(P: buf + 8);
306 }
307}
308
309void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const {
310 if (config->is64)
311 write64le(P: buf, V: in.plt->getVA());
312 else
313 write32le(P: buf, V: in.plt->getVA());
314}
315
316void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
317 if (config->writeAddends) {
318 if (config->is64)
319 write64le(P: buf, V: s.getVA());
320 else
321 write32le(P: buf, V: s.getVA());
322 }
323}
324
325void LoongArch::writePltHeader(uint8_t *buf) const {
326 // The LoongArch PLT is currently structured just like that of RISCV.
327 // Annoyingly, this means the PLT is still using `pcaddu12i` to perform
328 // PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`),
329 // in contrast to the AArch64-like page-offset scheme with `pcalau12i` that
330 // is used everywhere else involving PC-relative operations in the LoongArch
331 // ELF psABI v2.00.
332 //
333 // The `pcrel_{hi20,lo12}` operators are illustrative only and not really
334 // supported by LoongArch assemblers.
335 //
336 // pcaddu12i $t2, %pcrel_hi20(.got.plt)
337 // sub.[wd] $t1, $t1, $t3
338 // ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve
339 // addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0]
340 // addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt)
341 // srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0]
342 // ld.[wd] $t0, $t0, Wordsize ; t0 = link_map
343 // jr $t3
344 uint32_t offset = in.gotPlt->getVA() - in.plt->getVA();
345 uint32_t sub = config->is64 ? SUB_D : SUB_W;
346 uint32_t ld = config->is64 ? LD_D : LD_W;
347 uint32_t addi = config->is64 ? ADDI_D : ADDI_W;
348 uint32_t srli = config->is64 ? SRLI_D : SRLI_W;
349 write32le(P: buf + 0, V: insn(op: PCADDU12I, d: R_T2, j: hi20(val: offset), k: 0));
350 write32le(P: buf + 4, V: insn(op: sub, d: R_T1, j: R_T1, k: R_T3));
351 write32le(P: buf + 8, V: insn(op: ld, d: R_T3, j: R_T2, k: lo12(val: offset)));
352 write32le(P: buf + 12, V: insn(op: addi, d: R_T1, j: R_T1, k: lo12(val: -target->pltHeaderSize - 12)));
353 write32le(P: buf + 16, V: insn(op: addi, d: R_T0, j: R_T2, k: lo12(val: offset)));
354 write32le(P: buf + 20, V: insn(op: srli, d: R_T1, j: R_T1, k: config->is64 ? 1 : 2));
355 write32le(P: buf + 24, V: insn(op: ld, d: R_T0, j: R_T0, k: config->wordsize));
356 write32le(P: buf + 28, V: insn(op: JIRL, d: R_ZERO, j: R_T3, k: 0));
357}
358
359void LoongArch::writePlt(uint8_t *buf, const Symbol &sym,
360 uint64_t pltEntryAddr) const {
361 // See the comment in writePltHeader for reason why pcaddu12i is used instead
362 // of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days.
363 //
364 // pcaddu12i $t3, %pcrel_hi20(f@.got.plt)
365 // ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt)
366 // jirl $t1, $t3, 0
367 // nop
368 uint32_t offset = sym.getGotPltVA() - pltEntryAddr;
369 write32le(P: buf + 0, V: insn(op: PCADDU12I, d: R_T3, j: hi20(val: offset), k: 0));
370 write32le(P: buf + 4,
371 V: insn(op: config->is64 ? LD_D : LD_W, d: R_T3, j: R_T3, k: lo12(val: offset)));
372 write32le(P: buf + 8, V: insn(op: JIRL, d: R_T1, j: R_T3, k: 0));
373 write32le(P: buf + 12, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0));
374}
375
376RelType LoongArch::getDynRel(RelType type) const {
377 return type == target->symbolicRel ? type
378 : static_cast<RelType>(R_LARCH_NONE);
379}
380
381RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s,
382 const uint8_t *loc) const {
383 switch (type) {
384 case R_LARCH_NONE:
385 case R_LARCH_MARK_LA:
386 case R_LARCH_MARK_PCREL:
387 return R_NONE;
388 case R_LARCH_32:
389 case R_LARCH_64:
390 case R_LARCH_ABS_HI20:
391 case R_LARCH_ABS_LO12:
392 case R_LARCH_ABS64_LO20:
393 case R_LARCH_ABS64_HI12:
394 return R_ABS;
395 case R_LARCH_PCALA_LO12:
396 // We could just R_ABS, but the JIRL instruction reuses the relocation type
397 // for a different purpose. The questionable usage is part of glibc 2.37
398 // libc_nonshared.a [1], which is linked into user programs, so we have to
399 // work around it for a while, even if a new relocation type may be
400 // introduced in the future [2].
401 //
402 // [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a
403 // [2]: https://github.com/loongson/la-abi-specs/pull/3
404 return isJirl(insn: read32le(P: loc)) ? R_PLT : R_ABS;
405 case R_LARCH_TLS_DTPREL32:
406 case R_LARCH_TLS_DTPREL64:
407 return R_DTPREL;
408 case R_LARCH_TLS_TPREL32:
409 case R_LARCH_TLS_TPREL64:
410 case R_LARCH_TLS_LE_HI20:
411 case R_LARCH_TLS_LE_HI20_R:
412 case R_LARCH_TLS_LE_LO12:
413 case R_LARCH_TLS_LE_LO12_R:
414 case R_LARCH_TLS_LE64_LO20:
415 case R_LARCH_TLS_LE64_HI12:
416 return R_TPREL;
417 case R_LARCH_ADD6:
418 case R_LARCH_ADD8:
419 case R_LARCH_ADD16:
420 case R_LARCH_ADD32:
421 case R_LARCH_ADD64:
422 case R_LARCH_ADD_ULEB128:
423 case R_LARCH_SUB6:
424 case R_LARCH_SUB8:
425 case R_LARCH_SUB16:
426 case R_LARCH_SUB32:
427 case R_LARCH_SUB64:
428 case R_LARCH_SUB_ULEB128:
429 // The LoongArch add/sub relocs behave like the RISCV counterparts; reuse
430 // the RelExpr to avoid code duplication.
431 return R_RISCV_ADD;
432 case R_LARCH_32_PCREL:
433 case R_LARCH_64_PCREL:
434 case R_LARCH_PCREL20_S2:
435 return R_PC;
436 case R_LARCH_B16:
437 case R_LARCH_B21:
438 case R_LARCH_B26:
439 case R_LARCH_CALL36:
440 return R_PLT_PC;
441 case R_LARCH_GOT_PC_HI20:
442 case R_LARCH_GOT64_PC_LO20:
443 case R_LARCH_GOT64_PC_HI12:
444 case R_LARCH_TLS_IE_PC_HI20:
445 case R_LARCH_TLS_IE64_PC_LO20:
446 case R_LARCH_TLS_IE64_PC_HI12:
447 return R_LOONGARCH_GOT_PAGE_PC;
448 case R_LARCH_GOT_PC_LO12:
449 case R_LARCH_TLS_IE_PC_LO12:
450 return R_LOONGARCH_GOT;
451 case R_LARCH_TLS_LD_PC_HI20:
452 case R_LARCH_TLS_GD_PC_HI20:
453 return R_LOONGARCH_TLSGD_PAGE_PC;
454 case R_LARCH_PCALA_HI20:
455 // Why not R_LOONGARCH_PAGE_PC, majority of references don't go through PLT
456 // anyway so why waste time checking only to get everything relaxed back to
457 // it?
458 //
459 // This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want
460 // both the HI20 and LO12 to potentially refer to the PLT. But in reality
461 // the HI20 reloc appears earlier, and the relocs don't contain enough
462 // information to let us properly resolve semantics per symbol.
463 // Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20
464 // relocs, hence it is nearly impossible to 100% accurately determine each
465 // HI20's "flavor" without taking big performance hits, in the presence of
466 // edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far
467 // apart that relationship is not certain anymore), and programmer mistakes
468 // (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3).
469 //
470 // Ideally we would scan in an extra pass for all LO12s on JIRL, then mark
471 // every HI20 reloc referring to the same symbol differently; this is not
472 // feasible with the current function signature of getRelExpr that doesn't
473 // allow for such inter-pass state.
474 //
475 // So, unfortunately we have to again workaround this quirk the same way as
476 // BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only
477 // relaxing back to R_LOONGARCH_PAGE_PC if it's known not so at a later
478 // stage.
479 return R_LOONGARCH_PLT_PAGE_PC;
480 case R_LARCH_PCALA64_LO20:
481 case R_LARCH_PCALA64_HI12:
482 return R_LOONGARCH_PAGE_PC;
483 case R_LARCH_GOT_HI20:
484 case R_LARCH_GOT_LO12:
485 case R_LARCH_GOT64_LO20:
486 case R_LARCH_GOT64_HI12:
487 case R_LARCH_TLS_IE_HI20:
488 case R_LARCH_TLS_IE_LO12:
489 case R_LARCH_TLS_IE64_LO20:
490 case R_LARCH_TLS_IE64_HI12:
491 return R_GOT;
492 case R_LARCH_TLS_LD_HI20:
493 return R_TLSLD_GOT;
494 case R_LARCH_TLS_GD_HI20:
495 return R_TLSGD_GOT;
496 case R_LARCH_TLS_LE_ADD_R:
497 case R_LARCH_RELAX:
498 return config->relax ? R_RELAX_HINT : R_NONE;
499 case R_LARCH_ALIGN:
500 return R_RELAX_HINT;
501 case R_LARCH_TLS_DESC_PC_HI20:
502 case R_LARCH_TLS_DESC64_PC_LO20:
503 case R_LARCH_TLS_DESC64_PC_HI12:
504 return R_LOONGARCH_TLSDESC_PAGE_PC;
505 case R_LARCH_TLS_DESC_PC_LO12:
506 case R_LARCH_TLS_DESC_LD:
507 case R_LARCH_TLS_DESC_HI20:
508 case R_LARCH_TLS_DESC_LO12:
509 case R_LARCH_TLS_DESC64_LO20:
510 case R_LARCH_TLS_DESC64_HI12:
511 return R_TLSDESC;
512 case R_LARCH_TLS_DESC_CALL:
513 return R_TLSDESC_CALL;
514 case R_LARCH_TLS_LD_PCREL20_S2:
515 return R_TLSLD_PC;
516 case R_LARCH_TLS_GD_PCREL20_S2:
517 return R_TLSGD_PC;
518 case R_LARCH_TLS_DESC_PCREL20_S2:
519 return R_TLSDESC_PC;
520
521 // Other known relocs that are explicitly unimplemented:
522 //
523 // - psABI v1 relocs that need a stateful stack machine to work, and not
524 // required when implementing psABI v2;
525 // - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the
526 // two GNU vtable-related relocs).
527 //
528 // [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51
529 default:
530 error(msg: getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
531 ") against symbol " + toString(s));
532 return R_NONE;
533 }
534}
535
536bool LoongArch::usesOnlyLowPageBits(RelType type) const {
537 switch (type) {
538 default:
539 return false;
540 case R_LARCH_PCALA_LO12:
541 case R_LARCH_GOT_LO12:
542 case R_LARCH_GOT_PC_LO12:
543 case R_LARCH_TLS_IE_PC_LO12:
544 case R_LARCH_TLS_DESC_LO12:
545 case R_LARCH_TLS_DESC_PC_LO12:
546 return true;
547 }
548}
549
550void LoongArch::relocate(uint8_t *loc, const Relocation &rel,
551 uint64_t val) const {
552 switch (rel.type) {
553 case R_LARCH_32_PCREL:
554 checkInt(loc, v: val, n: 32, rel);
555 [[fallthrough]];
556 case R_LARCH_32:
557 case R_LARCH_TLS_DTPREL32:
558 write32le(P: loc, V: val);
559 return;
560 case R_LARCH_64:
561 case R_LARCH_TLS_DTPREL64:
562 case R_LARCH_64_PCREL:
563 write64le(P: loc, V: val);
564 return;
565
566 // Relocs intended for `pcaddi`.
567 case R_LARCH_PCREL20_S2:
568 case R_LARCH_TLS_LD_PCREL20_S2:
569 case R_LARCH_TLS_GD_PCREL20_S2:
570 case R_LARCH_TLS_DESC_PCREL20_S2:
571 checkInt(loc, v: val, n: 22, rel);
572 checkAlignment(loc, v: val, n: 4, rel);
573 write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: val >> 2));
574 return;
575
576 case R_LARCH_B16:
577 checkInt(loc, v: val, n: 18, rel);
578 checkAlignment(loc, v: val, n: 4, rel);
579 write32le(P: loc, V: setK16(insn: read32le(P: loc), imm: val >> 2));
580 return;
581
582 case R_LARCH_B21:
583 checkInt(loc, v: val, n: 23, rel);
584 checkAlignment(loc, v: val, n: 4, rel);
585 write32le(P: loc, V: setD5k16(insn: read32le(P: loc), imm: val >> 2));
586 return;
587
588 case R_LARCH_B26:
589 checkInt(loc, v: val, n: 28, rel);
590 checkAlignment(loc, v: val, n: 4, rel);
591 write32le(P: loc, V: setD10k16(insn: read32le(P: loc), imm: val >> 2));
592 return;
593
594 case R_LARCH_CALL36: {
595 // This relocation is designed for adjacent pcaddu18i+jirl pairs that
596 // are patched in one time. Because of sign extension of these insns'
597 // immediate fields, the relocation range is [-128G - 0x20000, +128G -
598 // 0x20000) (of course must be 4-byte aligned).
599 if (((int64_t)val + 0x20000) != llvm::SignExtend64(X: val + 0x20000, B: 38))
600 reportRangeError(loc, rel, v: Twine(val), min: llvm::minIntN(N: 38) - 0x20000,
601 max: llvm::maxIntN(N: 38) - 0x20000);
602 checkAlignment(loc, v: val, n: 4, rel);
603 // Since jirl performs sign extension on the offset immediate, adds (1<<17)
604 // to original val to get the correct hi20.
605 uint32_t hi20 = extractBits(v: val + (1 << 17), begin: 37, end: 18);
606 // Despite the name, the lower part is actually 18 bits with 4-byte aligned.
607 uint32_t lo16 = extractBits(v: val, begin: 17, end: 2);
608 write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: hi20));
609 write32le(P: loc + 4, V: setK16(insn: read32le(P: loc + 4), imm: lo16));
610 return;
611 }
612
613 // Relocs intended for `addi`, `ld` or `st`.
614 case R_LARCH_PCALA_LO12:
615 // We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12
616 // on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes
617 // removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly
618 // its immediate slot width is different too (16, not 12).
619 // In this case, process like an R_LARCH_B16, but without overflow checking
620 // and only taking the value's lowest 12 bits.
621 if (isJirl(insn: read32le(P: loc))) {
622 checkAlignment(loc, v: val, n: 4, rel);
623 val = SignExtend64<12>(x: val);
624 write32le(P: loc, V: setK16(insn: read32le(P: loc), imm: val >> 2));
625 return;
626 }
627 [[fallthrough]];
628 case R_LARCH_ABS_LO12:
629 case R_LARCH_GOT_PC_LO12:
630 case R_LARCH_GOT_LO12:
631 case R_LARCH_TLS_LE_LO12:
632 case R_LARCH_TLS_IE_PC_LO12:
633 case R_LARCH_TLS_IE_LO12:
634 case R_LARCH_TLS_LE_LO12_R:
635 case R_LARCH_TLS_DESC_PC_LO12:
636 case R_LARCH_TLS_DESC_LO12:
637 write32le(P: loc, V: setK12(insn: read32le(P: loc), imm: extractBits(v: val, begin: 11, end: 0)));
638 return;
639
640 // Relocs intended for `lu12i.w` or `pcalau12i`.
641 case R_LARCH_ABS_HI20:
642 case R_LARCH_PCALA_HI20:
643 case R_LARCH_GOT_PC_HI20:
644 case R_LARCH_GOT_HI20:
645 case R_LARCH_TLS_LE_HI20:
646 case R_LARCH_TLS_IE_PC_HI20:
647 case R_LARCH_TLS_IE_HI20:
648 case R_LARCH_TLS_LD_PC_HI20:
649 case R_LARCH_TLS_LD_HI20:
650 case R_LARCH_TLS_GD_PC_HI20:
651 case R_LARCH_TLS_GD_HI20:
652 case R_LARCH_TLS_DESC_PC_HI20:
653 case R_LARCH_TLS_DESC_HI20:
654 write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val, begin: 31, end: 12)));
655 return;
656 case R_LARCH_TLS_LE_HI20_R:
657 write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val + 0x800, begin: 31, end: 12)));
658 return;
659
660 // Relocs intended for `lu32i.d`.
661 case R_LARCH_ABS64_LO20:
662 case R_LARCH_PCALA64_LO20:
663 case R_LARCH_GOT64_PC_LO20:
664 case R_LARCH_GOT64_LO20:
665 case R_LARCH_TLS_LE64_LO20:
666 case R_LARCH_TLS_IE64_PC_LO20:
667 case R_LARCH_TLS_IE64_LO20:
668 case R_LARCH_TLS_DESC64_PC_LO20:
669 case R_LARCH_TLS_DESC64_LO20:
670 write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val, begin: 51, end: 32)));
671 return;
672
673 // Relocs intended for `lu52i.d`.
674 case R_LARCH_ABS64_HI12:
675 case R_LARCH_PCALA64_HI12:
676 case R_LARCH_GOT64_PC_HI12:
677 case R_LARCH_GOT64_HI12:
678 case R_LARCH_TLS_LE64_HI12:
679 case R_LARCH_TLS_IE64_PC_HI12:
680 case R_LARCH_TLS_IE64_HI12:
681 case R_LARCH_TLS_DESC64_PC_HI12:
682 case R_LARCH_TLS_DESC64_HI12:
683 write32le(P: loc, V: setK12(insn: read32le(P: loc), imm: extractBits(v: val, begin: 63, end: 52)));
684 return;
685
686 case R_LARCH_ADD6:
687 *loc = (*loc & 0xc0) | ((*loc + val) & 0x3f);
688 return;
689 case R_LARCH_ADD8:
690 *loc += val;
691 return;
692 case R_LARCH_ADD16:
693 write16le(P: loc, V: read16le(P: loc) + val);
694 return;
695 case R_LARCH_ADD32:
696 write32le(P: loc, V: read32le(P: loc) + val);
697 return;
698 case R_LARCH_ADD64:
699 write64le(P: loc, V: read64le(P: loc) + val);
700 return;
701 case R_LARCH_ADD_ULEB128:
702 handleUleb128(loc, val);
703 return;
704 case R_LARCH_SUB6:
705 *loc = (*loc & 0xc0) | ((*loc - val) & 0x3f);
706 return;
707 case R_LARCH_SUB8:
708 *loc -= val;
709 return;
710 case R_LARCH_SUB16:
711 write16le(P: loc, V: read16le(P: loc) - val);
712 return;
713 case R_LARCH_SUB32:
714 write32le(P: loc, V: read32le(P: loc) - val);
715 return;
716 case R_LARCH_SUB64:
717 write64le(P: loc, V: read64le(P: loc) - val);
718 return;
719 case R_LARCH_SUB_ULEB128:
720 handleUleb128(loc, val: -val);
721 return;
722
723 case R_LARCH_MARK_LA:
724 case R_LARCH_MARK_PCREL:
725 // no-op
726 return;
727
728 case R_LARCH_TLS_LE_ADD_R:
729 case R_LARCH_RELAX:
730 return; // Ignored (for now)
731
732 case R_LARCH_TLS_DESC_LD:
733 return; // nothing to do.
734 case R_LARCH_TLS_DESC32:
735 write32le(P: loc + 4, V: val);
736 return;
737 case R_LARCH_TLS_DESC64:
738 write64le(P: loc + 8, V: val);
739 return;
740
741 default:
742 llvm_unreachable("unknown relocation");
743 }
744}
745
746static bool relax(InputSection &sec) {
747 const uint64_t secAddr = sec.getVA();
748 const MutableArrayRef<Relocation> relocs = sec.relocs();
749 auto &aux = *sec.relaxAux;
750 bool changed = false;
751 ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors);
752 uint64_t delta = 0;
753
754 std::fill_n(first: aux.relocTypes.get(), n: relocs.size(), value: R_LARCH_NONE);
755 aux.writes.clear();
756 for (auto [i, r] : llvm::enumerate(First: relocs)) {
757 const uint64_t loc = secAddr + r.offset - delta;
758 uint32_t &cur = aux.relocDeltas[i], remove = 0;
759 switch (r.type) {
760 case R_LARCH_ALIGN: {
761 const uint64_t addend =
762 r.sym->isUndefined() ? Log2_64(Value: r.addend) + 1 : r.addend;
763 const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4;
764 const uint64_t align = 1ULL << (addend & 0xff);
765 const uint64_t maxBytes = addend >> 8;
766 const uint64_t off = loc & (align - 1);
767 const uint64_t curBytes = off == 0 ? 0 : align - off;
768 // All bytes beyond the alignment boundary should be removed.
769 // If emit bytes more than max bytes to emit, remove all.
770 if (maxBytes != 0 && curBytes > maxBytes)
771 remove = allBytes;
772 else
773 remove = allBytes - curBytes;
774 // If we can't satisfy this alignment, we've found a bad input.
775 if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) {
776 errorOrWarn(msg: getErrorLocation(loc: (const uint8_t *)loc) +
777 "insufficient padding bytes for " + lld::toString(type: r.type) +
778 ": " + Twine(allBytes) + " bytes available for " +
779 "requested alignment of " + Twine(align) + " bytes");
780 remove = 0;
781 }
782 break;
783 }
784 }
785
786 // For all anchors whose offsets are <= r.offset, they are preceded by
787 // the previous relocation whose `relocDeltas` value equals `delta`.
788 // Decrease their st_value and update their st_size.
789 for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(N: 1)) {
790 if (sa[0].end)
791 sa[0].d->size = sa[0].offset - delta - sa[0].d->value;
792 else
793 sa[0].d->value = sa[0].offset - delta;
794 }
795 delta += remove;
796 if (delta != cur) {
797 cur = delta;
798 changed = true;
799 }
800 }
801
802 for (const SymbolAnchor &a : sa) {
803 if (a.end)
804 a.d->size = a.offset - delta - a.d->value;
805 else
806 a.d->value = a.offset - delta;
807 }
808 // Inform assignAddresses that the size has changed.
809 if (!isUInt<32>(x: delta))
810 fatal(msg: "section size decrease is too large: " + Twine(delta));
811 sec.bytesDropped = delta;
812 return changed;
813}
814
815// When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in
816// the absence of a linker script. For call and load/store R_LARCH_RELAX, code
817// shrinkage may reduce displacement and make more relocations eligible for
818// relaxation. Code shrinkage may increase displacement to a call/load/store
819// target at a higher fixed address, invalidating an earlier relaxation. Any
820// change in section sizes can have cascading effect and require another
821// relaxation pass.
822bool LoongArch::relaxOnce(int pass) const {
823 if (config->relocatable)
824 return false;
825
826 if (pass == 0)
827 initSymbolAnchors();
828
829 SmallVector<InputSection *, 0> storage;
830 bool changed = false;
831 for (OutputSection *osec : outputSections) {
832 if (!(osec->flags & SHF_EXECINSTR))
833 continue;
834 for (InputSection *sec : getInputSections(os: *osec, storage))
835 changed |= relax(sec&: *sec);
836 }
837 return changed;
838}
839
840void LoongArch::finalizeRelax(int passes) const {
841 log(msg: "relaxation passes: " + Twine(passes));
842 SmallVector<InputSection *, 0> storage;
843 for (OutputSection *osec : outputSections) {
844 if (!(osec->flags & SHF_EXECINSTR))
845 continue;
846 for (InputSection *sec : getInputSections(os: *osec, storage)) {
847 RelaxAux &aux = *sec->relaxAux;
848 if (!aux.relocDeltas)
849 continue;
850
851 MutableArrayRef<Relocation> rels = sec->relocs();
852 ArrayRef<uint8_t> old = sec->content();
853 size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1];
854 uint8_t *p = context().bAlloc.Allocate<uint8_t>(Num: newSize);
855 uint64_t offset = 0;
856 int64_t delta = 0;
857 sec->content_ = p;
858 sec->size = newSize;
859 sec->bytesDropped = 0;
860
861 // Update section content: remove NOPs for R_LARCH_ALIGN and rewrite
862 // instructions for relaxed relocations.
863 for (size_t i = 0, e = rels.size(); i != e; ++i) {
864 uint32_t remove = aux.relocDeltas[i] - delta;
865 delta = aux.relocDeltas[i];
866 if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE)
867 continue;
868
869 // Copy from last location to the current relocated location.
870 const Relocation &r = rels[i];
871 uint64_t size = r.offset - offset;
872 memcpy(dest: p, src: old.data() + offset, n: size);
873 p += size;
874 offset = r.offset + remove;
875 }
876 memcpy(dest: p, src: old.data() + offset, n: old.size() - offset);
877
878 // Subtract the previous relocDeltas value from the relocation offset.
879 // For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease
880 // their r_offset by the same delta.
881 delta = 0;
882 for (size_t i = 0, e = rels.size(); i != e;) {
883 uint64_t cur = rels[i].offset;
884 do {
885 rels[i].offset -= delta;
886 if (aux.relocTypes[i] != R_LARCH_NONE)
887 rels[i].type = aux.relocTypes[i];
888 } while (++i != e && rels[i].offset == cur);
889 delta = aux.relocDeltas[i - 1];
890 }
891 }
892 }
893}
894
895TargetInfo *elf::getLoongArchTargetInfo() {
896 static LoongArch target;
897 return &target;
898}
899