1 | //===- InputSection.cpp ---------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "InputSection.h" |
10 | #include "Config.h" |
11 | #include "InputFiles.h" |
12 | #include "OutputSections.h" |
13 | #include "Relocations.h" |
14 | #include "SymbolTable.h" |
15 | #include "Symbols.h" |
16 | #include "SyntheticSections.h" |
17 | #include "Target.h" |
18 | #include "lld/Common/CommonLinkerContext.h" |
19 | #include "llvm/Support/Compiler.h" |
20 | #include "llvm/Support/Compression.h" |
21 | #include "llvm/Support/Endian.h" |
22 | #include "llvm/Support/xxhash.h" |
23 | #include <algorithm> |
24 | #include <mutex> |
25 | #include <optional> |
26 | #include <vector> |
27 | |
28 | using namespace llvm; |
29 | using namespace llvm::ELF; |
30 | using namespace llvm::object; |
31 | using namespace llvm::support; |
32 | using namespace llvm::support::endian; |
33 | using namespace llvm::sys; |
34 | using namespace lld; |
35 | using namespace lld::elf; |
36 | |
37 | DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; |
38 | |
39 | // Returns a string to construct an error message. |
40 | std::string lld::toString(const InputSectionBase *sec) { |
41 | return (toString(f: sec->file) + ":(" + sec->name + ")" ).str(); |
42 | } |
43 | |
44 | template <class ELFT> |
45 | static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, |
46 | const typename ELFT::Shdr &hdr) { |
47 | if (hdr.sh_type == SHT_NOBITS) |
48 | return ArrayRef<uint8_t>(nullptr, hdr.sh_size); |
49 | return check(file.getObj().getSectionContents(hdr)); |
50 | } |
51 | |
52 | InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, |
53 | uint32_t type, uint64_t entsize, |
54 | uint32_t link, uint32_t info, |
55 | uint32_t addralign, ArrayRef<uint8_t> data, |
56 | StringRef name, Kind sectionKind) |
57 | : SectionBase(sectionKind, name, flags, entsize, addralign, type, info, |
58 | link), |
59 | file(file), content_(data.data()), size(data.size()) { |
60 | // In order to reduce memory allocation, we assume that mergeable |
61 | // sections are smaller than 4 GiB, which is not an unreasonable |
62 | // assumption as of 2017. |
63 | if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) |
64 | error(msg: toString(sec: this) + ": section too large" ); |
65 | |
66 | // The ELF spec states that a value of 0 means the section has |
67 | // no alignment constraints. |
68 | uint32_t v = std::max<uint32_t>(a: addralign, b: 1); |
69 | if (!isPowerOf2_64(Value: v)) |
70 | fatal(msg: toString(sec: this) + ": sh_addralign is not a power of 2" ); |
71 | this->addralign = v; |
72 | |
73 | // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no |
74 | // longer supported. |
75 | if (flags & SHF_COMPRESSED) |
76 | invokeELFT(parseCompressedHeader,); |
77 | } |
78 | |
79 | // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the |
80 | // output section. However, for relocatable linking without |
81 | // --force-group-allocation, the SHF_GROUP flag and section groups are retained. |
82 | static uint64_t getFlags(uint64_t flags) { |
83 | flags &= ~(uint64_t)SHF_INFO_LINK; |
84 | if (config->resolveGroups) |
85 | flags &= ~(uint64_t)SHF_GROUP; |
86 | return flags; |
87 | } |
88 | |
89 | template <class ELFT> |
90 | InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, |
91 | const typename ELFT::Shdr &hdr, |
92 | StringRef name, Kind sectionKind) |
93 | : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, |
94 | hdr.sh_entsize, hdr.sh_link, hdr.sh_info, |
95 | hdr.sh_addralign, getSectionContents(file, hdr), name, |
96 | sectionKind) { |
97 | // We reject object files having insanely large alignments even though |
98 | // they are allowed by the spec. I think 4GB is a reasonable limitation. |
99 | // We might want to relax this in the future. |
100 | if (hdr.sh_addralign > UINT32_MAX) |
101 | fatal(toString(&file) + ": section sh_addralign is too large" ); |
102 | } |
103 | |
104 | size_t InputSectionBase::getSize() const { |
105 | if (auto *s = dyn_cast<SyntheticSection>(Val: this)) |
106 | return s->getSize(); |
107 | return size - bytesDropped; |
108 | } |
109 | |
110 | template <class ELFT> |
111 | static void decompressAux(const InputSectionBase &sec, uint8_t *out, |
112 | size_t size) { |
113 | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); |
114 | auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) |
115 | .slice(N: sizeof(typename ELFT::Chdr)); |
116 | if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB |
117 | ? compression::zlib::decompress(Input: compressed, Output: out, UncompressedSize&: size) |
118 | : compression::zstd::decompress(Input: compressed, Output: out, UncompressedSize&: size)) |
119 | fatal(msg: toString(sec: &sec) + |
120 | ": decompress failed: " + llvm::toString(E: std::move(e))); |
121 | } |
122 | |
123 | void InputSectionBase::decompress() const { |
124 | uint8_t *uncompressedBuf; |
125 | { |
126 | static std::mutex mu; |
127 | std::lock_guard<std::mutex> lock(mu); |
128 | uncompressedBuf = bAlloc().Allocate<uint8_t>(Num: size); |
129 | } |
130 | |
131 | invokeELFT(decompressAux, *this, uncompressedBuf, size); |
132 | content_ = uncompressedBuf; |
133 | compressed = false; |
134 | } |
135 | |
136 | template <class ELFT> |
137 | RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const { |
138 | if (relSecIdx == 0) |
139 | return {}; |
140 | RelsOrRelas<ELFT> ret; |
141 | auto *f = cast<ObjFile<ELFT>>(file); |
142 | typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx]; |
143 | if (shdr.sh_type == SHT_CREL) { |
144 | // Return an iterator if supported by caller. |
145 | if (supportsCrel) { |
146 | ret.crels = Relocs<typename ELFT::Crel>( |
147 | (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset); |
148 | return ret; |
149 | } |
150 | InputSectionBase *const &relSec = f->getSections()[relSecIdx]; |
151 | // Otherwise, allocate a buffer to hold the decoded RELA relocations. When |
152 | // called for the first time, relSec is null (without --emit-relocs) or an |
153 | // InputSection with false decodedCrel. |
154 | if (!relSec || !cast<InputSection>(Val: relSec)->decodedCrel) { |
155 | auto *sec = makeThreadLocal<InputSection>(*f, shdr, name); |
156 | f->cacheDecodedCrel(relSecIdx, sec); |
157 | sec->type = SHT_RELA; |
158 | sec->decodedCrel = true; |
159 | |
160 | RelocsCrel<ELFT::Is64Bits> entries(sec->content_); |
161 | sec->size = entries.size() * sizeof(typename ELFT::Rela); |
162 | auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size()); |
163 | sec->content_ = reinterpret_cast<uint8_t *>(relas); |
164 | for (auto [i, r] : llvm::enumerate(entries)) { |
165 | relas[i].r_offset = r.r_offset; |
166 | relas[i].setSymbolAndType(r.r_symidx, r.r_type, false); |
167 | relas[i].r_addend = r.r_addend; |
168 | } |
169 | } |
170 | ret.relas = {ArrayRef( |
171 | reinterpret_cast<const typename ELFT::Rela *>(relSec->content_), |
172 | relSec->size / sizeof(typename ELFT::Rela))}; |
173 | return ret; |
174 | } |
175 | |
176 | const void *content = f->mb.getBufferStart() + shdr.sh_offset; |
177 | size_t size = shdr.sh_size; |
178 | if (shdr.sh_type == SHT_REL) { |
179 | ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content), |
180 | size / sizeof(typename ELFT::Rel))}; |
181 | } else { |
182 | assert(shdr.sh_type == SHT_RELA); |
183 | ret.relas = { |
184 | ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content), |
185 | size / sizeof(typename ELFT::Rela))}; |
186 | } |
187 | return ret; |
188 | } |
189 | |
190 | uint64_t SectionBase::getOffset(uint64_t offset) const { |
191 | switch (kind()) { |
192 | case Output: { |
193 | auto *os = cast<OutputSection>(Val: this); |
194 | // For output sections we treat offset -1 as the end of the section. |
195 | return offset == uint64_t(-1) ? os->size : offset; |
196 | } |
197 | case Regular: |
198 | case Synthetic: |
199 | case Spill: |
200 | return cast<InputSection>(Val: this)->outSecOff + offset; |
201 | case EHFrame: { |
202 | // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC |
203 | // crtbeginT.o may reference the start of an empty .eh_frame to identify the |
204 | // start of the output .eh_frame. Just return offset. |
205 | // |
206 | // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be |
207 | // discarded due to GC/ICF. We should compute the output section offset. |
208 | const EhInputSection *es = cast<EhInputSection>(Val: this); |
209 | if (!es->content().empty()) |
210 | if (InputSection *isec = es->getParent()) |
211 | return isec->outSecOff + es->getParentOffset(offset); |
212 | return offset; |
213 | } |
214 | case Merge: |
215 | const MergeInputSection *ms = cast<MergeInputSection>(Val: this); |
216 | if (InputSection *isec = ms->getParent()) |
217 | return isec->outSecOff + ms->getParentOffset(offset); |
218 | return ms->getParentOffset(offset); |
219 | } |
220 | llvm_unreachable("invalid section kind" ); |
221 | } |
222 | |
223 | uint64_t SectionBase::getVA(uint64_t offset) const { |
224 | const OutputSection *out = getOutputSection(); |
225 | return (out ? out->addr : 0) + getOffset(offset); |
226 | } |
227 | |
228 | OutputSection *SectionBase::getOutputSection() { |
229 | InputSection *sec; |
230 | if (auto *isec = dyn_cast<InputSection>(Val: this)) |
231 | sec = isec; |
232 | else if (auto *ms = dyn_cast<MergeInputSection>(Val: this)) |
233 | sec = ms->getParent(); |
234 | else if (auto *eh = dyn_cast<EhInputSection>(Val: this)) |
235 | sec = eh->getParent(); |
236 | else |
237 | return cast<OutputSection>(Val: this); |
238 | return sec ? sec->getParent() : nullptr; |
239 | } |
240 | |
241 | // When a section is compressed, `rawData` consists with a header followed |
242 | // by zlib-compressed data. This function parses a header to initialize |
243 | // `uncompressedSize` member and remove the header from `rawData`. |
244 | template <typename ELFT> void InputSectionBase::() { |
245 | flags &= ~(uint64_t)SHF_COMPRESSED; |
246 | |
247 | // New-style header |
248 | if (content().size() < sizeof(typename ELFT::Chdr)) { |
249 | error(msg: toString(sec: this) + ": corrupted compressed section" ); |
250 | return; |
251 | } |
252 | |
253 | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); |
254 | if (hdr->ch_type == ELFCOMPRESS_ZLIB) { |
255 | if (!compression::zlib::isAvailable()) |
256 | error(msg: toString(sec: this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " |
257 | "not built with zlib support" ); |
258 | } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { |
259 | if (!compression::zstd::isAvailable()) |
260 | error(msg: toString(sec: this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is " |
261 | "not built with zstd support" ); |
262 | } else { |
263 | error(msg: toString(sec: this) + ": unsupported compression type (" + |
264 | Twine(hdr->ch_type) + ")" ); |
265 | return; |
266 | } |
267 | |
268 | compressed = true; |
269 | compressedSize = size; |
270 | size = hdr->ch_size; |
271 | addralign = std::max<uint32_t>(hdr->ch_addralign, 1); |
272 | } |
273 | |
274 | InputSection *InputSectionBase::getLinkOrderDep() const { |
275 | assert(flags & SHF_LINK_ORDER); |
276 | if (!link) |
277 | return nullptr; |
278 | return cast<InputSection>(Val: file->getSections()[link]); |
279 | } |
280 | |
281 | // Find a symbol that encloses a given location. |
282 | Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, |
283 | uint8_t type) const { |
284 | if (file->isInternal()) |
285 | return nullptr; |
286 | for (Symbol *b : file->getSymbols()) |
287 | if (Defined *d = dyn_cast<Defined>(Val: b)) |
288 | if (d->section == this && d->value <= offset && |
289 | offset < d->value + d->size && (type == 0 || type == d->type)) |
290 | return d; |
291 | return nullptr; |
292 | } |
293 | |
294 | // Returns an object file location string. Used to construct an error message. |
295 | std::string InputSectionBase::getLocation(uint64_t offset) const { |
296 | std::string secAndOffset = |
297 | (name + "+0x" + Twine::utohexstr(Val: offset) + ")" ).str(); |
298 | |
299 | // We don't have file for synthetic sections. |
300 | if (file == nullptr) |
301 | return (config->outputFile + ":(" + secAndOffset).str(); |
302 | |
303 | std::string filename = toString(f: file); |
304 | if (Defined *d = getEnclosingFunction(offset)) |
305 | return filename + ":(function " + toString(*d) + ": " + secAndOffset; |
306 | |
307 | return filename + ":(" + secAndOffset; |
308 | } |
309 | |
310 | // This function is intended to be used for constructing an error message. |
311 | // The returned message looks like this: |
312 | // |
313 | // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) |
314 | // |
315 | // Returns an empty string if there's no way to get line info. |
316 | std::string InputSectionBase::getSrcMsg(const Symbol &sym, |
317 | uint64_t offset) const { |
318 | return file->getSrcMsg(sym, sec: *this, offset); |
319 | } |
320 | |
321 | // Returns a filename string along with an optional section name. This |
322 | // function is intended to be used for constructing an error |
323 | // message. The returned message looks like this: |
324 | // |
325 | // path/to/foo.o:(function bar) |
326 | // |
327 | // or |
328 | // |
329 | // path/to/foo.o:(function bar) in archive path/to/bar.a |
330 | std::string InputSectionBase::getObjMsg(uint64_t off) const { |
331 | std::string filename = std::string(file->getName()); |
332 | |
333 | std::string archive; |
334 | if (!file->archiveName.empty()) |
335 | archive = (" in archive " + file->archiveName).str(); |
336 | |
337 | // Find a symbol that encloses a given location. getObjMsg may be called |
338 | // before ObjFile::initSectionsAndLocalSyms where local symbols are |
339 | // initialized. |
340 | if (Defined *d = getEnclosingSymbol(offset: off)) |
341 | return filename + ":(" + toString(*d) + ")" + archive; |
342 | |
343 | // If there's no symbol, print out the offset in the section. |
344 | return (filename + ":(" + name + "+0x" + utohexstr(X: off) + ")" + archive) |
345 | .str(); |
346 | } |
347 | |
348 | PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source, |
349 | InputSectionDescription &isd) |
350 | : InputSection(source.file, source.flags, source.type, source.addralign, {}, |
351 | source.name, SectionBase::Spill), |
352 | isd(&isd) {} |
353 | |
354 | InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "" ); |
355 | |
356 | InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, |
357 | uint32_t addralign, ArrayRef<uint8_t> data, |
358 | StringRef name, Kind k) |
359 | : InputSectionBase(f, flags, type, |
360 | /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data, |
361 | name, k) { |
362 | assert(f || this == &InputSection::discarded); |
363 | } |
364 | |
365 | template <class ELFT> |
366 | InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &, |
367 | StringRef name) |
368 | : InputSectionBase(f, header, name, InputSectionBase::Regular) {} |
369 | |
370 | // Copy SHT_GROUP section contents. Used only for the -r option. |
371 | template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { |
372 | // ELFT::Word is the 32-bit integral type in the target endianness. |
373 | using u32 = typename ELFT::Word; |
374 | ArrayRef<u32> from = getDataAs<u32>(); |
375 | auto *to = reinterpret_cast<u32 *>(buf); |
376 | |
377 | // The first entry is not a section number but a flag. |
378 | *to++ = from[0]; |
379 | |
380 | // Adjust section numbers because section numbers in an input object files are |
381 | // different in the output. We also need to handle combined or discarded |
382 | // members. |
383 | ArrayRef<InputSectionBase *> sections = file->getSections(); |
384 | DenseSet<uint32_t> seen; |
385 | for (uint32_t idx : from.slice(1)) { |
386 | OutputSection *osec = sections[idx]->getOutputSection(); |
387 | if (osec && seen.insert(V: osec->sectionIndex).second) |
388 | *to++ = osec->sectionIndex; |
389 | } |
390 | } |
391 | |
392 | InputSectionBase *InputSection::getRelocatedSection() const { |
393 | if (file->isInternal() || !isStaticRelSecType(type)) |
394 | return nullptr; |
395 | ArrayRef<InputSectionBase *> sections = file->getSections(); |
396 | return sections[info]; |
397 | } |
398 | |
399 | template <class ELFT, class RelTy> |
400 | void InputSection::copyRelocations(uint8_t *buf) { |
401 | if (config->relax && !config->relocatable && |
402 | (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) { |
403 | // On LoongArch and RISC-V, relaxation might change relocations: copy |
404 | // from internal ones that are updated by relaxation. |
405 | InputSectionBase *sec = getRelocatedSection(); |
406 | copyRelocations<ELFT, RelTy>(buf, llvm::make_range(x: sec->relocations.begin(), |
407 | y: sec->relocations.end())); |
408 | } else { |
409 | // Convert the raw relocations in the input section into Relocation objects |
410 | // suitable to be used by copyRelocations below. |
411 | struct MapRel { |
412 | const ObjFile<ELFT> &file; |
413 | Relocation operator()(const RelTy &rel) const { |
414 | // RelExpr is not used so set to a dummy value. |
415 | return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset, |
416 | getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; |
417 | } |
418 | }; |
419 | |
420 | using RawRels = ArrayRef<RelTy>; |
421 | using MapRelIter = |
422 | llvm::mapped_iterator<typename RawRels::iterator, MapRel>; |
423 | auto mapRel = MapRel{*getFile<ELFT>()}; |
424 | RawRels rawRels = getDataAs<RelTy>(); |
425 | auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), |
426 | MapRelIter(rawRels.end(), mapRel)); |
427 | copyRelocations<ELFT, RelTy>(buf, rels); |
428 | } |
429 | } |
430 | |
431 | // This is used for -r and --emit-relocs. We can't use memcpy to copy |
432 | // relocations because we need to update symbol table offset and section index |
433 | // for each relocation. So we copy relocations one by one. |
434 | template <class ELFT, class RelTy, class RelIt> |
435 | void InputSection::copyRelocations(uint8_t *buf, |
436 | llvm::iterator_range<RelIt> rels) { |
437 | const TargetInfo &target = *elf::target; |
438 | InputSectionBase *sec = getRelocatedSection(); |
439 | (void)sec->contentMaybeDecompress(); // uncompress if needed |
440 | |
441 | for (const Relocation &rel : rels) { |
442 | RelType type = rel.type; |
443 | const ObjFile<ELFT> *file = getFile<ELFT>(); |
444 | Symbol &sym = *rel.sym; |
445 | |
446 | auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); |
447 | buf += sizeof(RelTy); |
448 | |
449 | if (RelTy::HasAddend) |
450 | p->r_addend = rel.addend; |
451 | |
452 | // Output section VA is zero for -r, so r_offset is an offset within the |
453 | // section, but for --emit-relocs it is a virtual address. |
454 | p->r_offset = sec->getVA(offset: rel.offset); |
455 | p->setSymbolAndType(in.symTab->getSymbolIndex(sym), type, |
456 | config->isMips64EL); |
457 | |
458 | if (sym.type == STT_SECTION) { |
459 | // We combine multiple section symbols into only one per |
460 | // section. This means we have to update the addend. That is |
461 | // trivial for Elf_Rela, but for Elf_Rel we have to write to the |
462 | // section data. We do that by adding to the Relocation vector. |
463 | |
464 | // .eh_frame is horribly special and can reference discarded sections. To |
465 | // avoid having to parse and recreate .eh_frame, we just replace any |
466 | // relocation in it pointing to discarded sections with R_*_NONE, which |
467 | // hopefully creates a frame that is ignored at runtime. Also, don't warn |
468 | // on .gcc_except_table and debug sections. |
469 | // |
470 | // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc |
471 | auto *d = dyn_cast<Defined>(Val: &sym); |
472 | if (!d) { |
473 | if (!isDebugSection(sec: *sec) && sec->name != ".eh_frame" && |
474 | sec->name != ".gcc_except_table" && sec->name != ".got2" && |
475 | sec->name != ".toc" ) { |
476 | uint32_t secIdx = cast<Undefined>(Val&: sym).discardedSecIdx; |
477 | Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; |
478 | warn("relocation refers to a discarded section: " + |
479 | CHECK(file->getObj().getSectionName(sec), file) + |
480 | "\n>>> referenced by " + getObjMsg(off: p->r_offset)); |
481 | } |
482 | p->setSymbolAndType(0, 0, false); |
483 | continue; |
484 | } |
485 | SectionBase *section = d->section; |
486 | assert(section->isLive()); |
487 | |
488 | int64_t addend = rel.addend; |
489 | const uint8_t *bufLoc = sec->content().begin() + rel.offset; |
490 | if (!RelTy::HasAddend) |
491 | addend = target.getImplicitAddend(buf: bufLoc, type); |
492 | |
493 | if (config->emachine == EM_MIPS && |
494 | target.getRelExpr(type, s: sym, loc: bufLoc) == R_MIPS_GOTREL) { |
495 | // Some MIPS relocations depend on "gp" value. By default, |
496 | // this value has 0x7ff0 offset from a .got section. But |
497 | // relocatable files produced by a compiler or a linker |
498 | // might redefine this default value and we must use it |
499 | // for a calculation of the relocation result. When we |
500 | // generate EXE or DSO it's trivial. Generating a relocatable |
501 | // output is more difficult case because the linker does |
502 | // not calculate relocations in this mode and loses |
503 | // individual "gp" values used by each input object file. |
504 | // As a workaround we add the "gp" value to the relocation |
505 | // addend and save it back to the file. |
506 | addend += sec->getFile<ELFT>()->mipsGp0; |
507 | } |
508 | |
509 | if (RelTy::HasAddend) |
510 | p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; |
511 | // For SHF_ALLOC sections relocated by REL, append a relocation to |
512 | // sec->relocations so that relocateAlloc transitively called by |
513 | // writeSections will update the implicit addend. Non-SHF_ALLOC sections |
514 | // utilize relocateNonAlloc to process raw relocations and do not need |
515 | // this sec->relocations change. |
516 | else if (config->relocatable && (sec->flags & SHF_ALLOC) && |
517 | type != target.noneRel) |
518 | sec->addReloc(r: {.expr: R_ABS, .type: type, .offset: rel.offset, .addend: addend, .sym: &sym}); |
519 | } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && |
520 | p->r_addend >= 0x8000 && sec->file->ppc32Got2) { |
521 | // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 |
522 | // indicates that r30 is relative to the input section .got2 |
523 | // (r_addend>=0x8000), after linking, r30 should be relative to the output |
524 | // section .got2 . To compensate for the shift, adjust r_addend by |
525 | // ppc32Got->outSecOff. |
526 | p->r_addend += sec->file->ppc32Got2->outSecOff; |
527 | } |
528 | } |
529 | } |
530 | |
531 | // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak |
532 | // references specially. The general rule is that the value of the symbol in |
533 | // this context is the address of the place P. A further special case is that |
534 | // branch relocations to an undefined weak reference resolve to the next |
535 | // instruction. |
536 | static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, |
537 | uint32_t p) { |
538 | switch (type) { |
539 | // Unresolved branch relocations to weak references resolve to next |
540 | // instruction, this will be either 2 or 4 bytes on from P. |
541 | case R_ARM_THM_JUMP8: |
542 | case R_ARM_THM_JUMP11: |
543 | return p + 2 + a; |
544 | case R_ARM_CALL: |
545 | case R_ARM_JUMP24: |
546 | case R_ARM_PC24: |
547 | case R_ARM_PLT32: |
548 | case R_ARM_PREL31: |
549 | case R_ARM_THM_JUMP19: |
550 | case R_ARM_THM_JUMP24: |
551 | return p + 4 + a; |
552 | case R_ARM_THM_CALL: |
553 | // We don't want an interworking BLX to ARM |
554 | return p + 5 + a; |
555 | // Unresolved non branch pc-relative relocations |
556 | // R_ARM_TARGET2 which can be resolved relatively is not present as it never |
557 | // targets a weak-reference. |
558 | case R_ARM_MOVW_PREL_NC: |
559 | case R_ARM_MOVT_PREL: |
560 | case R_ARM_REL32: |
561 | case R_ARM_THM_ALU_PREL_11_0: |
562 | case R_ARM_THM_MOVW_PREL_NC: |
563 | case R_ARM_THM_MOVT_PREL: |
564 | case R_ARM_THM_PC12: |
565 | return p + a; |
566 | // p + a is unrepresentable as negative immediates can't be encoded. |
567 | case R_ARM_THM_PC8: |
568 | return p; |
569 | } |
570 | llvm_unreachable("ARM pc-relative relocation expected\n" ); |
571 | } |
572 | |
573 | // The comment above getARMUndefinedRelativeWeakVA applies to this function. |
574 | static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
575 | switch (type) { |
576 | // Unresolved branch relocations to weak references resolve to next |
577 | // instruction, this is 4 bytes on from P. |
578 | case R_AARCH64_CALL26: |
579 | case R_AARCH64_CONDBR19: |
580 | case R_AARCH64_JUMP26: |
581 | case R_AARCH64_TSTBR14: |
582 | return p + 4; |
583 | // Unresolved non branch pc-relative relocations |
584 | case R_AARCH64_PREL16: |
585 | case R_AARCH64_PREL32: |
586 | case R_AARCH64_PREL64: |
587 | case R_AARCH64_ADR_PREL_LO21: |
588 | case R_AARCH64_LD_PREL_LO19: |
589 | case R_AARCH64_PLT32: |
590 | return p; |
591 | } |
592 | llvm_unreachable("AArch64 pc-relative relocation expected\n" ); |
593 | } |
594 | |
595 | static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
596 | switch (type) { |
597 | case R_RISCV_BRANCH: |
598 | case R_RISCV_JAL: |
599 | case R_RISCV_CALL: |
600 | case R_RISCV_CALL_PLT: |
601 | case R_RISCV_RVC_BRANCH: |
602 | case R_RISCV_RVC_JUMP: |
603 | case R_RISCV_PLT32: |
604 | return p; |
605 | default: |
606 | return 0; |
607 | } |
608 | } |
609 | |
610 | // ARM SBREL relocations are of the form S + A - B where B is the static base |
611 | // The ARM ABI defines base to be "addressing origin of the output segment |
612 | // defining the symbol S". We defined the "addressing origin"/static base to be |
613 | // the base of the PT_LOAD segment containing the Sym. |
614 | // The procedure call standard only defines a Read Write Position Independent |
615 | // RWPI variant so in practice we should expect the static base to be the base |
616 | // of the RW segment. |
617 | static uint64_t getARMStaticBase(const Symbol &sym) { |
618 | OutputSection *os = sym.getOutputSection(); |
619 | if (!os || !os->ptLoad || !os->ptLoad->firstSec) |
620 | fatal(msg: "SBREL relocation to " + sym.getName() + " without static base" ); |
621 | return os->ptLoad->firstSec->addr; |
622 | } |
623 | |
624 | // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually |
625 | // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA |
626 | // is calculated using PCREL_HI20's symbol. |
627 | // |
628 | // This function returns the R_RISCV_PCREL_HI20 relocation from |
629 | // R_RISCV_PCREL_LO12's symbol and addend. |
630 | static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { |
631 | const Defined *d = cast<Defined>(Val: sym); |
632 | if (!d->section) { |
633 | errorOrWarn(msg: "R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + |
634 | sym->getName()); |
635 | return nullptr; |
636 | } |
637 | InputSection *isec = cast<InputSection>(Val: d->section); |
638 | |
639 | if (addend != 0) |
640 | warn(msg: "non-zero addend in R_RISCV_PCREL_LO12 relocation to " + |
641 | isec->getObjMsg(off: d->value) + " is ignored" ); |
642 | |
643 | // Relocations are sorted by offset, so we can use std::equal_range to do |
644 | // binary search. |
645 | Relocation r; |
646 | r.offset = d->value; |
647 | auto range = |
648 | std::equal_range(first: isec->relocs().begin(), last: isec->relocs().end(), val: r, |
649 | comp: [](const Relocation &lhs, const Relocation &rhs) { |
650 | return lhs.offset < rhs.offset; |
651 | }); |
652 | |
653 | for (auto it = range.first; it != range.second; ++it) |
654 | if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || |
655 | it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) |
656 | return &*it; |
657 | |
658 | errorOrWarn(msg: "R_RISCV_PCREL_LO12 relocation points to " + |
659 | isec->getObjMsg(off: d->value) + |
660 | " without an associated R_RISCV_PCREL_HI20 relocation" ); |
661 | return nullptr; |
662 | } |
663 | |
664 | // A TLS symbol's virtual address is relative to the TLS segment. Add a |
665 | // target-specific adjustment to produce a thread-pointer-relative offset. |
666 | static int64_t getTlsTpOffset(const Symbol &s) { |
667 | // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. |
668 | if (&s == ElfSym::tlsModuleBase) |
669 | return 0; |
670 | |
671 | // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 |
672 | // while most others use Variant 1. At run time TP will be aligned to p_align. |
673 | |
674 | // Variant 1. TP will be followed by an optional gap (which is the size of 2 |
675 | // pointers on ARM/AArch64, 0 on other targets), followed by alignment |
676 | // padding, then the static TLS blocks. The alignment padding is added so that |
677 | // (TP + gap + padding) is congruent to p_vaddr modulo p_align. |
678 | // |
679 | // Variant 2. Static TLS blocks, followed by alignment padding are placed |
680 | // before TP. The alignment padding is added so that (TP - padding - |
681 | // p_memsz) is congruent to p_vaddr modulo p_align. |
682 | PhdrEntry *tls = Out::tlsPhdr; |
683 | switch (config->emachine) { |
684 | // Variant 1. |
685 | case EM_ARM: |
686 | case EM_AARCH64: |
687 | return s.getVA(addend: 0) + config->wordsize * 2 + |
688 | ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); |
689 | case EM_MIPS: |
690 | case EM_PPC: |
691 | case EM_PPC64: |
692 | // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is |
693 | // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library |
694 | // data and 0xf000 of the program's TLS segment. |
695 | return s.getVA(addend: 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; |
696 | case EM_LOONGARCH: |
697 | case EM_RISCV: |
698 | // See the comment in handleTlsRelocation. For TLSDESC=>IE, |
699 | // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While |
700 | // `tls` may be null, the return value is ignored. |
701 | if (s.type != STT_TLS) |
702 | return 0; |
703 | return s.getVA(addend: 0) + (tls->p_vaddr & (tls->p_align - 1)); |
704 | |
705 | // Variant 2. |
706 | case EM_HEXAGON: |
707 | case EM_S390: |
708 | case EM_SPARCV9: |
709 | case EM_386: |
710 | case EM_X86_64: |
711 | return s.getVA(addend: 0) - tls->p_memsz - |
712 | ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); |
713 | default: |
714 | llvm_unreachable("unhandled Config->EMachine" ); |
715 | } |
716 | } |
717 | |
718 | uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, |
719 | int64_t a, uint64_t p, |
720 | const Symbol &sym, RelExpr expr) { |
721 | switch (expr) { |
722 | case R_ABS: |
723 | case R_DTPREL: |
724 | case R_RELAX_TLS_LD_TO_LE_ABS: |
725 | case R_RELAX_GOT_PC_NOPIC: |
726 | case R_AARCH64_AUTH: |
727 | case R_RISCV_ADD: |
728 | case R_RISCV_LEB128: |
729 | return sym.getVA(addend: a); |
730 | case R_ADDEND: |
731 | return a; |
732 | case R_RELAX_HINT: |
733 | return 0; |
734 | case R_ARM_SBREL: |
735 | return sym.getVA(addend: a) - getARMStaticBase(sym); |
736 | case R_GOT: |
737 | case R_RELAX_TLS_GD_TO_IE_ABS: |
738 | return sym.getGotVA() + a; |
739 | case R_LOONGARCH_GOT: |
740 | // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type |
741 | // for their page offsets. The arithmetics are different in the TLS case |
742 | // so we have to duplicate some logic here. |
743 | if (sym.hasFlag(bit: NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12) |
744 | // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. |
745 | return in.got->getGlobalDynAddr(b: sym) + a; |
746 | return getRelocTargetVA(file, type, a, p, sym, expr: R_GOT); |
747 | case R_GOTONLY_PC: |
748 | return in.got->getVA() + a - p; |
749 | case R_GOTPLTONLY_PC: |
750 | return in.gotPlt->getVA() + a - p; |
751 | case R_GOTREL: |
752 | case R_PPC64_RELAX_TOC: |
753 | return sym.getVA(addend: a) - in.got->getVA(); |
754 | case R_GOTPLTREL: |
755 | return sym.getVA(addend: a) - in.gotPlt->getVA(); |
756 | case R_GOTPLT: |
757 | case R_RELAX_TLS_GD_TO_IE_GOTPLT: |
758 | return sym.getGotVA() + a - in.gotPlt->getVA(); |
759 | case R_TLSLD_GOT_OFF: |
760 | case R_GOT_OFF: |
761 | case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
762 | return sym.getGotOffset() + a; |
763 | case R_AARCH64_GOT_PAGE_PC: |
764 | case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
765 | return getAArch64Page(expr: sym.getGotVA() + a) - getAArch64Page(expr: p); |
766 | case R_AARCH64_GOT_PAGE: |
767 | return sym.getGotVA() + a - getAArch64Page(expr: in.got->getVA()); |
768 | case R_GOT_PC: |
769 | case R_RELAX_TLS_GD_TO_IE: |
770 | return sym.getGotVA() + a - p; |
771 | case R_GOTPLT_GOTREL: |
772 | return sym.getGotPltVA() + a - in.got->getVA(); |
773 | case R_GOTPLT_PC: |
774 | return sym.getGotPltVA() + a - p; |
775 | case R_LOONGARCH_GOT_PAGE_PC: |
776 | if (sym.hasFlag(bit: NEEDS_TLSGD)) |
777 | return getLoongArchPageDelta(dest: in.got->getGlobalDynAddr(b: sym) + a, pc: p, type); |
778 | return getLoongArchPageDelta(dest: sym.getGotVA() + a, pc: p, type); |
779 | case R_MIPS_GOTREL: |
780 | return sym.getVA(addend: a) - in.mipsGot->getGp(f: file); |
781 | case R_MIPS_GOT_GP: |
782 | return in.mipsGot->getGp(f: file) + a; |
783 | case R_MIPS_GOT_GP_PC: { |
784 | // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target |
785 | // is _gp_disp symbol. In that case we should use the following |
786 | // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at |
787 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
788 | // microMIPS variants of these relocations use slightly different |
789 | // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() |
790 | // to correctly handle less-significant bit of the microMIPS symbol. |
791 | uint64_t v = in.mipsGot->getGp(f: file) + a - p; |
792 | if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) |
793 | v += 4; |
794 | if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) |
795 | v -= 1; |
796 | return v; |
797 | } |
798 | case R_MIPS_GOT_LOCAL_PAGE: |
799 | // If relocation against MIPS local symbol requires GOT entry, this entry |
800 | // should be initialized by 'page address'. This address is high 16-bits |
801 | // of sum the symbol's value and the addend. |
802 | return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(f: file, s: sym, addend: a) - |
803 | in.mipsGot->getGp(f: file); |
804 | case R_MIPS_GOT_OFF: |
805 | case R_MIPS_GOT_OFF32: |
806 | // In case of MIPS if a GOT relocation has non-zero addend this addend |
807 | // should be applied to the GOT entry content not to the GOT entry offset. |
808 | // That is why we use separate expression type. |
809 | return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(f: file, s: sym, addend: a) - |
810 | in.mipsGot->getGp(f: file); |
811 | case R_MIPS_TLSGD: |
812 | return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(f: file, s: sym) - |
813 | in.mipsGot->getGp(f: file); |
814 | case R_MIPS_TLSLD: |
815 | return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(f: file) - |
816 | in.mipsGot->getGp(f: file); |
817 | case R_AARCH64_PAGE_PC: { |
818 | uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(addend: a); |
819 | return getAArch64Page(expr: val) - getAArch64Page(expr: p); |
820 | } |
821 | case R_RISCV_PC_INDIRECT: { |
822 | if (const Relocation *hiRel = getRISCVPCRelHi20(sym: &sym, addend: a)) |
823 | return getRelocTargetVA(file, type: hiRel->type, a: hiRel->addend, p: sym.getVA(), |
824 | sym: *hiRel->sym, expr: hiRel->expr); |
825 | return 0; |
826 | } |
827 | case R_LOONGARCH_PAGE_PC: |
828 | return getLoongArchPageDelta(dest: sym.getVA(addend: a), pc: p, type); |
829 | case R_PC: |
830 | case R_ARM_PCA: { |
831 | uint64_t dest; |
832 | if (expr == R_ARM_PCA) |
833 | // Some PC relative ARM (Thumb) relocations align down the place. |
834 | p = p & 0xfffffffc; |
835 | if (sym.isUndefined()) { |
836 | // On ARM and AArch64 a branch to an undefined weak resolves to the next |
837 | // instruction, otherwise the place. On RISC-V, resolve an undefined weak |
838 | // to the same instruction to cause an infinite loop (making the user |
839 | // aware of the issue) while ensuring no overflow. |
840 | // Note: if the symbol is hidden, its binding has been converted to local, |
841 | // so we just check isUndefined() here. |
842 | if (config->emachine == EM_ARM) |
843 | dest = getARMUndefinedRelativeWeakVA(type, a, p); |
844 | else if (config->emachine == EM_AARCH64) |
845 | dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; |
846 | else if (config->emachine == EM_PPC) |
847 | dest = p; |
848 | else if (config->emachine == EM_RISCV) |
849 | dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; |
850 | else |
851 | dest = sym.getVA(addend: a); |
852 | } else { |
853 | dest = sym.getVA(addend: a); |
854 | } |
855 | return dest - p; |
856 | } |
857 | case R_PLT: |
858 | return sym.getPltVA() + a; |
859 | case R_PLT_PC: |
860 | case R_PPC64_CALL_PLT: |
861 | return sym.getPltVA() + a - p; |
862 | case R_LOONGARCH_PLT_PAGE_PC: |
863 | return getLoongArchPageDelta(dest: sym.getPltVA() + a, pc: p, type); |
864 | case R_PLT_GOTPLT: |
865 | return sym.getPltVA() + a - in.gotPlt->getVA(); |
866 | case R_PLT_GOTREL: |
867 | return sym.getPltVA() + a - in.got->getVA(); |
868 | case R_PPC32_PLTREL: |
869 | // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 |
870 | // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for |
871 | // target VA computation. |
872 | return sym.getPltVA() - p; |
873 | case R_PPC64_CALL: { |
874 | uint64_t symVA = sym.getVA(addend: a); |
875 | // If we have an undefined weak symbol, we might get here with a symbol |
876 | // address of zero. That could overflow, but the code must be unreachable, |
877 | // so don't bother doing anything at all. |
878 | if (!symVA) |
879 | return 0; |
880 | |
881 | // PPC64 V2 ABI describes two entry points to a function. The global entry |
882 | // point is used for calls where the caller and callee (may) have different |
883 | // TOC base pointers and r2 needs to be modified to hold the TOC base for |
884 | // the callee. For local calls the caller and callee share the same |
885 | // TOC base and so the TOC pointer initialization code should be skipped by |
886 | // branching to the local entry point. |
887 | return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(stOther: sym.stOther); |
888 | } |
889 | case R_PPC64_TOCBASE: |
890 | return getPPC64TocBase() + a; |
891 | case R_RELAX_GOT_PC: |
892 | case R_PPC64_RELAX_GOT_PC: |
893 | return sym.getVA(addend: a) - p; |
894 | case R_RELAX_TLS_GD_TO_LE: |
895 | case R_RELAX_TLS_IE_TO_LE: |
896 | case R_RELAX_TLS_LD_TO_LE: |
897 | case R_TPREL: |
898 | // It is not very clear what to return if the symbol is undefined. With |
899 | // --noinhibit-exec, even a non-weak undefined reference may reach here. |
900 | // Just return A, which matches R_ABS, and the behavior of some dynamic |
901 | // loaders. |
902 | if (sym.isUndefined()) |
903 | return a; |
904 | return getTlsTpOffset(s: sym) + a; |
905 | case R_RELAX_TLS_GD_TO_LE_NEG: |
906 | case R_TPREL_NEG: |
907 | if (sym.isUndefined()) |
908 | return a; |
909 | return -getTlsTpOffset(s: sym) + a; |
910 | case R_SIZE: |
911 | return sym.getSize() + a; |
912 | case R_TLSDESC: |
913 | return in.got->getTlsDescAddr(sym) + a; |
914 | case R_TLSDESC_PC: |
915 | return in.got->getTlsDescAddr(sym) + a - p; |
916 | case R_TLSDESC_GOTPLT: |
917 | return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); |
918 | case R_AARCH64_TLSDESC_PAGE: |
919 | return getAArch64Page(expr: in.got->getTlsDescAddr(sym) + a) - getAArch64Page(expr: p); |
920 | case R_LOONGARCH_TLSDESC_PAGE_PC: |
921 | return getLoongArchPageDelta(dest: in.got->getTlsDescAddr(sym) + a, pc: p, type); |
922 | case R_TLSGD_GOT: |
923 | return in.got->getGlobalDynOffset(b: sym) + a; |
924 | case R_TLSGD_GOTPLT: |
925 | return in.got->getGlobalDynAddr(b: sym) + a - in.gotPlt->getVA(); |
926 | case R_TLSGD_PC: |
927 | return in.got->getGlobalDynAddr(b: sym) + a - p; |
928 | case R_LOONGARCH_TLSGD_PAGE_PC: |
929 | return getLoongArchPageDelta(dest: in.got->getGlobalDynAddr(b: sym) + a, pc: p, type); |
930 | case R_TLSLD_GOTPLT: |
931 | return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); |
932 | case R_TLSLD_GOT: |
933 | return in.got->getTlsIndexOff() + a; |
934 | case R_TLSLD_PC: |
935 | return in.got->getTlsIndexVA() + a - p; |
936 | default: |
937 | llvm_unreachable("invalid expression" ); |
938 | } |
939 | } |
940 | |
941 | // This function applies relocations to sections without SHF_ALLOC bit. |
942 | // Such sections are never mapped to memory at runtime. Debug sections are |
943 | // an example. Relocations in non-alloc sections are much easier to |
944 | // handle than in allocated sections because it will never need complex |
945 | // treatment such as GOT or PLT (because at runtime no one refers them). |
946 | // So, we handle relocations for non-alloc sections directly in this |
947 | // function as a performance optimization. |
948 | template <class ELFT, class RelTy> |
949 | void InputSection::relocateNonAlloc(uint8_t *buf, Relocs<RelTy> rels) { |
950 | const unsigned bits = sizeof(typename ELFT::uint) * 8; |
951 | const TargetInfo &target = *elf::target; |
952 | const auto emachine = config->emachine; |
953 | const bool isDebug = isDebugSection(sec: *this); |
954 | const bool isDebugLine = isDebug && name == ".debug_line" ; |
955 | std::optional<uint64_t> tombstone; |
956 | if (isDebug) { |
957 | if (name == ".debug_loc" || name == ".debug_ranges" ) |
958 | tombstone = 1; |
959 | else if (name == ".debug_names" ) |
960 | tombstone = UINT64_MAX; // tombstone value |
961 | else |
962 | tombstone = 0; |
963 | } |
964 | for (const auto &patAndValue : llvm::reverse(C&: config->deadRelocInNonAlloc)) |
965 | if (patAndValue.first.match(S: this->name)) { |
966 | tombstone = patAndValue.second; |
967 | break; |
968 | } |
969 | |
970 | const InputFile *f = this->file; |
971 | for (auto it = rels.begin(), end = rels.end(); it != end; ++it) { |
972 | const RelTy &rel = *it; |
973 | const RelType type = rel.getType(config->isMips64EL); |
974 | const uint64_t offset = rel.r_offset; |
975 | uint8_t *bufLoc = buf + offset; |
976 | int64_t addend = getAddend<ELFT>(rel); |
977 | if (!RelTy::HasAddend) |
978 | addend += target.getImplicitAddend(buf: bufLoc, type); |
979 | |
980 | Symbol &sym = f->getRelocTargetSym(rel); |
981 | RelExpr expr = target.getRelExpr(type, s: sym, loc: bufLoc); |
982 | if (expr == R_NONE) |
983 | continue; |
984 | auto *ds = dyn_cast<Defined>(Val: &sym); |
985 | |
986 | if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { |
987 | if (++it != end && |
988 | it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && |
989 | it->r_offset == offset) { |
990 | uint64_t val; |
991 | if (!ds && tombstone) { |
992 | val = *tombstone; |
993 | } else { |
994 | val = sym.getVA(addend) - |
995 | (f->getRelocTargetSym(*it).getVA(0) + getAddend<ELFT>(*it)); |
996 | } |
997 | if (overwriteULEB128(bufLoc, val) >= 0x80) |
998 | errorOrWarn(msg: getLocation(offset) + ": ULEB128 value " + Twine(val) + |
999 | " exceeds available space; references '" + |
1000 | lld::toString(sym) + "'" ); |
1001 | continue; |
1002 | } |
1003 | errorOrWarn(msg: getLocation(offset) + |
1004 | ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128" ); |
1005 | return; |
1006 | } |
1007 | |
1008 | if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { |
1009 | // Resolve relocations in .debug_* referencing (discarded symbols or ICF |
1010 | // folded section symbols) to a tombstone value. Resolving to addend is |
1011 | // unsatisfactory because the result address range may collide with a |
1012 | // valid range of low address, or leave multiple CUs claiming ownership of |
1013 | // the same range of code, which may confuse consumers. |
1014 | // |
1015 | // To address the problems, we use -1 as a tombstone value for most |
1016 | // .debug_* sections. We have to ignore the addend because we don't want |
1017 | // to resolve an address attribute (which may have a non-zero addend) to |
1018 | // -1+addend (wrap around to a low address). |
1019 | // |
1020 | // R_DTPREL type relocations represent an offset into the dynamic thread |
1021 | // vector. The computed value is st_value plus a non-negative offset. |
1022 | // Negative values are invalid, so -1 can be used as the tombstone value. |
1023 | // |
1024 | // If the referenced symbol is relative to a discarded section (due to |
1025 | // --gc-sections, COMDAT, etc), it has been converted to a Undefined. |
1026 | // `ds->folded` catches the ICF folded case. However, resolving a |
1027 | // relocation in .debug_line to -1 would stop debugger users from setting |
1028 | // breakpoints on the folded-in function, so exclude .debug_line. |
1029 | // |
1030 | // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value |
1031 | // (base address selection entry), use 1 (which is used by GNU ld for |
1032 | // .debug_ranges). |
1033 | // |
1034 | // TODO To reduce disruption, we use 0 instead of -1 as the tombstone |
1035 | // value. Enable -1 in a future release. |
1036 | if (!ds || (ds->folded && !isDebugLine)) { |
1037 | // If -z dead-reloc-in-nonalloc= is specified, respect it. |
1038 | uint64_t value = SignExtend64<bits>(*tombstone); |
1039 | // For a 32-bit local TU reference in .debug_names, X86_64::relocate |
1040 | // requires that the unsigned value for R_X86_64_32 is truncated to |
1041 | // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit |
1042 | // absolute relocations and do not need this change. |
1043 | if (emachine == EM_X86_64 && type == R_X86_64_32) |
1044 | value = static_cast<uint32_t>(value); |
1045 | target.relocateNoSym(loc: bufLoc, type, val: value); |
1046 | continue; |
1047 | } |
1048 | } |
1049 | |
1050 | // For a relocatable link, content relocated by relocation types with an |
1051 | // explicit addend, such as RELA, remain unchanged and we can stop here. |
1052 | // While content relocated by relocation types with an implicit addend, such |
1053 | // as REL, needs the implicit addend updated. |
1054 | if (config->relocatable && (RelTy::HasAddend || sym.type != STT_SECTION)) |
1055 | continue; |
1056 | |
1057 | // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC |
1058 | // sections. |
1059 | if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || |
1060 | expr == R_RISCV_ADD) { |
1061 | target.relocateNoSym(loc: bufLoc, type, val: SignExtend64<bits>(sym.getVA(addend))); |
1062 | continue; |
1063 | } |
1064 | |
1065 | if (expr == R_SIZE) { |
1066 | target.relocateNoSym(loc: bufLoc, type, |
1067 | val: SignExtend64<bits>(sym.getSize() + addend)); |
1068 | continue; |
1069 | } |
1070 | |
1071 | std::string msg = getLocation(offset) + ": has non-ABS relocation " + |
1072 | toString(type) + " against symbol '" + toString(sym) + |
1073 | "'" ; |
1074 | if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) { |
1075 | errorOrWarn(msg); |
1076 | return; |
1077 | } |
1078 | |
1079 | // If the control reaches here, we found a PC-relative relocation in a |
1080 | // non-ALLOC section. Since non-ALLOC section is not loaded into memory |
1081 | // at runtime, the notion of PC-relative doesn't make sense here. So, |
1082 | // this is a usage error. However, GNU linkers historically accept such |
1083 | // relocations without any errors and relocate them as if they were at |
1084 | // address 0. For bug-compatibility, we accept them with warnings. We |
1085 | // know Steel Bank Common Lisp as of 2018 have this bug. |
1086 | // |
1087 | // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations |
1088 | // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in |
1089 | // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to |
1090 | // keep this bug-compatible code for a while. |
1091 | warn(msg); |
1092 | target.relocateNoSym( |
1093 | loc: bufLoc, type, |
1094 | val: SignExtend64<bits>(sym.getVA(addend: addend - offset - outSecOff))); |
1095 | } |
1096 | } |
1097 | |
1098 | template <class ELFT> |
1099 | void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { |
1100 | if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) |
1101 | adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); |
1102 | |
1103 | if (flags & SHF_ALLOC) { |
1104 | target->relocateAlloc(sec&: *this, buf); |
1105 | return; |
1106 | } |
1107 | |
1108 | auto *sec = cast<InputSection>(Val: this); |
1109 | // For a relocatable link, also call relocateNonAlloc() to rewrite applicable |
1110 | // locations with tombstone values. |
1111 | invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, buf); |
1112 | } |
1113 | |
1114 | // For each function-defining prologue, find any calls to __morestack, |
1115 | // and replace them with calls to __morestack_non_split. |
1116 | static void switchMorestackCallsToMorestackNonSplit( |
1117 | DenseSet<Defined *> &prologues, |
1118 | SmallVector<Relocation *, 0> &morestackCalls) { |
1119 | |
1120 | // If the target adjusted a function's prologue, all calls to |
1121 | // __morestack inside that function should be switched to |
1122 | // __morestack_non_split. |
1123 | Symbol *moreStackNonSplit = symtab.find(name: "__morestack_non_split" ); |
1124 | if (!moreStackNonSplit) { |
1125 | error(msg: "mixing split-stack objects requires a definition of " |
1126 | "__morestack_non_split" ); |
1127 | return; |
1128 | } |
1129 | |
1130 | // Sort both collections to compare addresses efficiently. |
1131 | llvm::sort(C&: morestackCalls, Comp: [](const Relocation *l, const Relocation *r) { |
1132 | return l->offset < r->offset; |
1133 | }); |
1134 | std::vector<Defined *> functions(prologues.begin(), prologues.end()); |
1135 | llvm::sort(C&: functions, Comp: [](const Defined *l, const Defined *r) { |
1136 | return l->value < r->value; |
1137 | }); |
1138 | |
1139 | auto it = morestackCalls.begin(); |
1140 | for (Defined *f : functions) { |
1141 | // Find the first call to __morestack within the function. |
1142 | while (it != morestackCalls.end() && (*it)->offset < f->value) |
1143 | ++it; |
1144 | // Adjust all calls inside the function. |
1145 | while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { |
1146 | (*it)->sym = moreStackNonSplit; |
1147 | ++it; |
1148 | } |
1149 | } |
1150 | } |
1151 | |
1152 | static bool enclosingPrologueAttempted(uint64_t offset, |
1153 | const DenseSet<Defined *> &prologues) { |
1154 | for (Defined *f : prologues) |
1155 | if (f->value <= offset && offset < f->value + f->size) |
1156 | return true; |
1157 | return false; |
1158 | } |
1159 | |
1160 | // If a function compiled for split stack calls a function not |
1161 | // compiled for split stack, then the caller needs its prologue |
1162 | // adjusted to ensure that the called function will have enough stack |
1163 | // available. Find those functions, and adjust their prologues. |
1164 | template <class ELFT> |
1165 | void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, |
1166 | uint8_t *end) { |
1167 | DenseSet<Defined *> prologues; |
1168 | SmallVector<Relocation *, 0> morestackCalls; |
1169 | |
1170 | for (Relocation &rel : relocs()) { |
1171 | // Ignore calls into the split-stack api. |
1172 | if (rel.sym->getName().starts_with(Prefix: "__morestack" )) { |
1173 | if (rel.sym->getName() == "__morestack" ) |
1174 | morestackCalls.push_back(Elt: &rel); |
1175 | continue; |
1176 | } |
1177 | |
1178 | // A relocation to non-function isn't relevant. Sometimes |
1179 | // __morestack is not marked as a function, so this check comes |
1180 | // after the name check. |
1181 | if (rel.sym->type != STT_FUNC) |
1182 | continue; |
1183 | |
1184 | // If the callee's-file was compiled with split stack, nothing to do. In |
1185 | // this context, a "Defined" symbol is one "defined by the binary currently |
1186 | // being produced". So an "undefined" symbol might be provided by a shared |
1187 | // library. It is not possible to tell how such symbols were compiled, so be |
1188 | // conservative. |
1189 | if (Defined *d = dyn_cast<Defined>(Val: rel.sym)) |
1190 | if (InputSection *isec = cast_or_null<InputSection>(Val: d->section)) |
1191 | if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) |
1192 | continue; |
1193 | |
1194 | if (enclosingPrologueAttempted(offset: rel.offset, prologues)) |
1195 | continue; |
1196 | |
1197 | if (Defined *f = getEnclosingFunction(offset: rel.offset)) { |
1198 | prologues.insert(V: f); |
1199 | if (target->adjustPrologueForCrossSplitStack(loc: buf + f->value, end, |
1200 | stOther: f->stOther)) |
1201 | continue; |
1202 | if (!getFile<ELFT>()->someNoSplitStack) |
1203 | error(msg: lld::toString(sec: this) + ": " + f->getName() + |
1204 | " (with -fsplit-stack) calls " + rel.sym->getName() + |
1205 | " (without -fsplit-stack), but couldn't adjust its prologue" ); |
1206 | } |
1207 | } |
1208 | |
1209 | if (target->needsMoreStackNonSplit) |
1210 | switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); |
1211 | } |
1212 | |
1213 | template <class ELFT> void InputSection::writeTo(uint8_t *buf) { |
1214 | if (LLVM_UNLIKELY(type == SHT_NOBITS)) |
1215 | return; |
1216 | // If -r or --emit-relocs is given, then an InputSection |
1217 | // may be a relocation section. |
1218 | if (LLVM_UNLIKELY(type == SHT_RELA)) { |
1219 | copyRelocations<ELFT, typename ELFT::Rela>(buf); |
1220 | return; |
1221 | } |
1222 | if (LLVM_UNLIKELY(type == SHT_REL)) { |
1223 | copyRelocations<ELFT, typename ELFT::Rel>(buf); |
1224 | return; |
1225 | } |
1226 | |
1227 | // If -r is given, we may have a SHT_GROUP section. |
1228 | if (LLVM_UNLIKELY(type == SHT_GROUP)) { |
1229 | copyShtGroup<ELFT>(buf); |
1230 | return; |
1231 | } |
1232 | |
1233 | // If this is a compressed section, uncompress section contents directly |
1234 | // to the buffer. |
1235 | if (compressed) { |
1236 | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); |
1237 | auto compressed = ArrayRef<uint8_t>(content_, compressedSize) |
1238 | .slice(N: sizeof(typename ELFT::Chdr)); |
1239 | size_t size = this->size; |
1240 | if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB |
1241 | ? compression::zlib::decompress(Input: compressed, Output: buf, UncompressedSize&: size) |
1242 | : compression::zstd::decompress(Input: compressed, Output: buf, UncompressedSize&: size)) |
1243 | fatal(msg: toString(sec: this) + |
1244 | ": decompress failed: " + llvm::toString(E: std::move(e))); |
1245 | uint8_t *bufEnd = buf + size; |
1246 | relocate<ELFT>(buf, bufEnd); |
1247 | return; |
1248 | } |
1249 | |
1250 | // Copy section contents from source object file to output file |
1251 | // and then apply relocations. |
1252 | memcpy(dest: buf, src: content().data(), n: content().size()); |
1253 | relocate<ELFT>(buf, buf + content().size()); |
1254 | } |
1255 | |
1256 | void InputSection::replace(InputSection *other) { |
1257 | addralign = std::max(a: addralign, b: other->addralign); |
1258 | |
1259 | // When a section is replaced with another section that was allocated to |
1260 | // another partition, the replacement section (and its associated sections) |
1261 | // need to be placed in the main partition so that both partitions will be |
1262 | // able to access it. |
1263 | if (partition != other->partition) { |
1264 | partition = 1; |
1265 | for (InputSection *isec : dependentSections) |
1266 | isec->partition = 1; |
1267 | } |
1268 | |
1269 | other->repl = repl; |
1270 | other->markDead(); |
1271 | } |
1272 | |
1273 | template <class ELFT> |
1274 | EhInputSection::EhInputSection(ObjFile<ELFT> &f, |
1275 | const typename ELFT::Shdr &, |
1276 | StringRef name) |
1277 | : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} |
1278 | |
1279 | SyntheticSection *EhInputSection::getParent() const { |
1280 | return cast_or_null<SyntheticSection>(Val: parent); |
1281 | } |
1282 | |
1283 | // .eh_frame is a sequence of CIE or FDE records. |
1284 | // This function splits an input section into records and returns them. |
1285 | template <class ELFT> void EhInputSection::split() { |
1286 | const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false); |
1287 | // getReloc expects the relocations to be sorted by r_offset. See the comment |
1288 | // in scanRelocs. |
1289 | if (rels.areRelocsRel()) { |
1290 | SmallVector<typename ELFT::Rel, 0> storage; |
1291 | split<ELFT>(sortRels(rels.rels, storage)); |
1292 | } else { |
1293 | SmallVector<typename ELFT::Rela, 0> storage; |
1294 | split<ELFT>(sortRels(rels.relas, storage)); |
1295 | } |
1296 | } |
1297 | |
1298 | template <class ELFT, class RelTy> |
1299 | void EhInputSection::split(ArrayRef<RelTy> rels) { |
1300 | ArrayRef<uint8_t> d = content(); |
1301 | const char *msg = nullptr; |
1302 | unsigned relI = 0; |
1303 | while (!d.empty()) { |
1304 | if (d.size() < 4) { |
1305 | msg = "CIE/FDE too small" ; |
1306 | break; |
1307 | } |
1308 | uint64_t size = endian::read32<ELFT::Endianness>(d.data()); |
1309 | if (size == 0) // ZERO terminator |
1310 | break; |
1311 | uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4); |
1312 | size += 4; |
1313 | if (LLVM_UNLIKELY(size > d.size())) { |
1314 | // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, |
1315 | // but we do not support that format yet. |
1316 | msg = size == UINT32_MAX + uint64_t(4) |
1317 | ? "CIE/FDE too large" |
1318 | : "CIE/FDE ends past the end of the section" ; |
1319 | break; |
1320 | } |
1321 | |
1322 | // Find the first relocation that points to [off,off+size). Relocations |
1323 | // have been sorted by r_offset. |
1324 | const uint64_t off = d.data() - content().data(); |
1325 | while (relI != rels.size() && rels[relI].r_offset < off) |
1326 | ++relI; |
1327 | unsigned firstRel = -1; |
1328 | if (relI != rels.size() && rels[relI].r_offset < off + size) |
1329 | firstRel = relI; |
1330 | (id == 0 ? cies : fdes).emplace_back(Args: off, Args: this, Args&: size, Args&: firstRel); |
1331 | d = d.slice(N: size); |
1332 | } |
1333 | if (msg) |
1334 | errorOrWarn(msg: "corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + |
1335 | getObjMsg(off: d.data() - content().data())); |
1336 | } |
1337 | |
1338 | // Return the offset in an output section for a given input offset. |
1339 | uint64_t EhInputSection::getParentOffset(uint64_t offset) const { |
1340 | auto it = partition_point( |
1341 | Range: fdes, P: [=](EhSectionPiece p) { return p.inputOff <= offset; }); |
1342 | if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { |
1343 | it = partition_point( |
1344 | Range: cies, P: [=](EhSectionPiece p) { return p.inputOff <= offset; }); |
1345 | if (it == cies.begin()) // invalid piece |
1346 | return offset; |
1347 | } |
1348 | if (it[-1].outputOff == -1) // invalid piece |
1349 | return offset - it[-1].inputOff; |
1350 | return it[-1].outputOff + (offset - it[-1].inputOff); |
1351 | } |
1352 | |
1353 | static size_t findNull(StringRef s, size_t entSize) { |
1354 | for (unsigned i = 0, n = s.size(); i != n; i += entSize) { |
1355 | const char *b = s.begin() + i; |
1356 | if (std::all_of(first: b, last: b + entSize, pred: [](char c) { return c == 0; })) |
1357 | return i; |
1358 | } |
1359 | llvm_unreachable("" ); |
1360 | } |
1361 | |
1362 | // Split SHF_STRINGS section. Such section is a sequence of |
1363 | // null-terminated strings. |
1364 | void MergeInputSection::splitStrings(StringRef s, size_t entSize) { |
1365 | const bool live = !(flags & SHF_ALLOC) || !config->gcSections; |
1366 | const char *p = s.data(), *end = s.data() + s.size(); |
1367 | if (!std::all_of(first: end - entSize, last: end, pred: [](char c) { return c == 0; })) |
1368 | fatal(msg: toString(sec: this) + ": string is not null terminated" ); |
1369 | if (entSize == 1) { |
1370 | // Optimize the common case. |
1371 | do { |
1372 | size_t size = strlen(s: p); |
1373 | pieces.emplace_back(Args: p - s.begin(), Args: xxh3_64bits(data: StringRef(p, size)), Args: live); |
1374 | p += size + 1; |
1375 | } while (p != end); |
1376 | } else { |
1377 | do { |
1378 | size_t size = findNull(s: StringRef(p, end - p), entSize); |
1379 | pieces.emplace_back(Args: p - s.begin(), Args: xxh3_64bits(data: StringRef(p, size)), Args: live); |
1380 | p += size + entSize; |
1381 | } while (p != end); |
1382 | } |
1383 | } |
1384 | |
1385 | // Split non-SHF_STRINGS section. Such section is a sequence of |
1386 | // fixed size records. |
1387 | void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, |
1388 | size_t entSize) { |
1389 | size_t size = data.size(); |
1390 | assert((size % entSize) == 0); |
1391 | const bool live = !(flags & SHF_ALLOC) || !config->gcSections; |
1392 | |
1393 | pieces.resize_for_overwrite(N: size / entSize); |
1394 | for (size_t i = 0, j = 0; i != size; i += entSize, j++) |
1395 | pieces[j] = {i, (uint32_t)xxh3_64bits(data: data.slice(N: i, M: entSize)), live}; |
1396 | } |
1397 | |
1398 | template <class ELFT> |
1399 | MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, |
1400 | const typename ELFT::Shdr &, |
1401 | StringRef name) |
1402 | : InputSectionBase(f, header, name, InputSectionBase::Merge) {} |
1403 | |
1404 | MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, |
1405 | uint64_t entsize, ArrayRef<uint8_t> data, |
1406 | StringRef name) |
1407 | : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, |
1408 | /*Alignment*/ entsize, data, name, SectionBase::Merge) {} |
1409 | |
1410 | // This function is called after we obtain a complete list of input sections |
1411 | // that need to be linked. This is responsible to split section contents |
1412 | // into small chunks for further processing. |
1413 | // |
1414 | // Note that this function is called from parallelForEach. This must be |
1415 | // thread-safe (i.e. no memory allocation from the pools). |
1416 | void MergeInputSection::splitIntoPieces() { |
1417 | assert(pieces.empty()); |
1418 | |
1419 | if (flags & SHF_STRINGS) |
1420 | splitStrings(s: toStringRef(Input: contentMaybeDecompress()), entSize: entsize); |
1421 | else |
1422 | splitNonStrings(data: contentMaybeDecompress(), entSize: entsize); |
1423 | } |
1424 | |
1425 | SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { |
1426 | if (content().size() <= offset) |
1427 | fatal(msg: toString(sec: this) + ": offset is outside the section" ); |
1428 | return partition_point( |
1429 | Range&: pieces, P: [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; |
1430 | } |
1431 | |
1432 | // Return the offset in an output section for a given input offset. |
1433 | uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { |
1434 | const SectionPiece &piece = getSectionPiece(offset); |
1435 | return piece.outputOff + (offset - piece.inputOff); |
1436 | } |
1437 | |
1438 | template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, |
1439 | StringRef); |
1440 | template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, |
1441 | StringRef); |
1442 | template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, |
1443 | StringRef); |
1444 | template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, |
1445 | StringRef); |
1446 | |
1447 | template void InputSection::writeTo<ELF32LE>(uint8_t *); |
1448 | template void InputSection::writeTo<ELF32BE>(uint8_t *); |
1449 | template void InputSection::writeTo<ELF64LE>(uint8_t *); |
1450 | template void InputSection::writeTo<ELF64BE>(uint8_t *); |
1451 | |
1452 | template RelsOrRelas<ELF32LE> |
1453 | InputSectionBase::relsOrRelas<ELF32LE>(bool) const; |
1454 | template RelsOrRelas<ELF32BE> |
1455 | InputSectionBase::relsOrRelas<ELF32BE>(bool) const; |
1456 | template RelsOrRelas<ELF64LE> |
1457 | InputSectionBase::relsOrRelas<ELF64LE>(bool) const; |
1458 | template RelsOrRelas<ELF64BE> |
1459 | InputSectionBase::relsOrRelas<ELF64BE>(bool) const; |
1460 | |
1461 | template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, |
1462 | const ELF32LE::Shdr &, StringRef); |
1463 | template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, |
1464 | const ELF32BE::Shdr &, StringRef); |
1465 | template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, |
1466 | const ELF64LE::Shdr &, StringRef); |
1467 | template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, |
1468 | const ELF64BE::Shdr &, StringRef); |
1469 | |
1470 | template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, |
1471 | const ELF32LE::Shdr &, StringRef); |
1472 | template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, |
1473 | const ELF32BE::Shdr &, StringRef); |
1474 | template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, |
1475 | const ELF64LE::Shdr &, StringRef); |
1476 | template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, |
1477 | const ELF64BE::Shdr &, StringRef); |
1478 | |
1479 | template void EhInputSection::split<ELF32LE>(); |
1480 | template void EhInputSection::split<ELF32BE>(); |
1481 | template void EhInputSection::split<ELF64LE>(); |
1482 | template void EhInputSection::split<ELF64BE>(); |
1483 | |