1 | //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// @file |
10 | /// This file contains the declarations for the subclasses of Constant, |
11 | /// which represent the different flavors of constant values that live in LLVM. |
12 | /// Note that Constants are immutable (once created they never change) and are |
13 | /// fully shared by structural equivalence. This means that two structurally |
14 | /// equivalent constants will always have the same address. Constants are |
15 | /// created on demand as needed and never deleted: thus clients don't have to |
16 | /// worry about the lifetime of the objects. |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #ifndef LLVM_IR_CONSTANTS_H |
21 | #define LLVM_IR_CONSTANTS_H |
22 | |
23 | #include "llvm/ADT/APFloat.h" |
24 | #include "llvm/ADT/APInt.h" |
25 | #include "llvm/ADT/ArrayRef.h" |
26 | #include "llvm/ADT/STLExtras.h" |
27 | #include "llvm/ADT/StringRef.h" |
28 | #include "llvm/IR/Constant.h" |
29 | #include "llvm/IR/ConstantRange.h" |
30 | #include "llvm/IR/DerivedTypes.h" |
31 | #include "llvm/IR/GEPNoWrapFlags.h" |
32 | #include "llvm/IR/Intrinsics.h" |
33 | #include "llvm/IR/OperandTraits.h" |
34 | #include "llvm/IR/User.h" |
35 | #include "llvm/IR/Value.h" |
36 | #include "llvm/Support/Casting.h" |
37 | #include "llvm/Support/Compiler.h" |
38 | #include "llvm/Support/ErrorHandling.h" |
39 | #include <cassert> |
40 | #include <cstddef> |
41 | #include <cstdint> |
42 | #include <optional> |
43 | |
44 | namespace llvm { |
45 | |
46 | template <class ConstantClass> struct ConstantAggrKeyType; |
47 | |
48 | /// Base class for constants with no operands. |
49 | /// |
50 | /// These constants have no operands; they represent their data directly. |
51 | /// Since they can be in use by unrelated modules (and are never based on |
52 | /// GlobalValues), it never makes sense to RAUW them. |
53 | class ConstantData : public Constant { |
54 | friend class Constant; |
55 | |
56 | Value *handleOperandChangeImpl(Value *From, Value *To) { |
57 | llvm_unreachable("Constant data does not have operands!" ); |
58 | } |
59 | |
60 | protected: |
61 | explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} |
62 | |
63 | void *operator new(size_t S) { return User::operator new(Size: S, Us: 0); } |
64 | |
65 | public: |
66 | void operator delete(void *Ptr) { User::operator delete(Usr: Ptr); } |
67 | |
68 | ConstantData(const ConstantData &) = delete; |
69 | |
70 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
71 | static bool classof(const Value *V) { |
72 | return V->getValueID() >= ConstantDataFirstVal && |
73 | V->getValueID() <= ConstantDataLastVal; |
74 | } |
75 | }; |
76 | |
77 | //===----------------------------------------------------------------------===// |
78 | /// This is the shared class of boolean and integer constants. This class |
79 | /// represents both boolean and integral constants. |
80 | /// Class for constant integers. |
81 | class ConstantInt final : public ConstantData { |
82 | friend class Constant; |
83 | friend class ConstantVector; |
84 | |
85 | APInt Val; |
86 | |
87 | ConstantInt(Type *Ty, const APInt &V); |
88 | |
89 | void destroyConstantImpl(); |
90 | |
91 | /// Return a ConstantInt with the specified value and an implied Type. The |
92 | /// type is the vector type whose integer element type corresponds to the bit |
93 | /// width of the value. |
94 | static ConstantInt *get(LLVMContext &Context, ElementCount EC, |
95 | const APInt &V); |
96 | |
97 | public: |
98 | ConstantInt(const ConstantInt &) = delete; |
99 | |
100 | static ConstantInt *getTrue(LLVMContext &Context); |
101 | static ConstantInt *getFalse(LLVMContext &Context); |
102 | static ConstantInt *getBool(LLVMContext &Context, bool V); |
103 | static Constant *getTrue(Type *Ty); |
104 | static Constant *getFalse(Type *Ty); |
105 | static Constant *getBool(Type *Ty, bool V); |
106 | |
107 | /// If Ty is a vector type, return a Constant with a splat of the given |
108 | /// value. Otherwise return a ConstantInt for the given value. |
109 | static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false); |
110 | |
111 | /// Return a ConstantInt with the specified integer value for the specified |
112 | /// type. If the type is wider than 64 bits, the value will be zero-extended |
113 | /// to fit the type, unless IsSigned is true, in which case the value will |
114 | /// be interpreted as a 64-bit signed integer and sign-extended to fit |
115 | /// the type. |
116 | /// Get a ConstantInt for a specific value. |
117 | static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false); |
118 | |
119 | /// Return a ConstantInt with the specified value for the specified type. The |
120 | /// value V will be canonicalized to a an unsigned APInt. Accessing it with |
121 | /// either getSExtValue() or getZExtValue() will yield a correctly sized and |
122 | /// signed value for the type Ty. |
123 | /// Get a ConstantInt for a specific signed value. |
124 | static ConstantInt *getSigned(IntegerType *Ty, int64_t V) { |
125 | return get(Ty, V, IsSigned: true); |
126 | } |
127 | static Constant *getSigned(Type *Ty, int64_t V) { |
128 | return get(Ty, V, IsSigned: true); |
129 | } |
130 | |
131 | /// Return a ConstantInt with the specified value and an implied Type. The |
132 | /// type is the integer type that corresponds to the bit width of the value. |
133 | static ConstantInt *get(LLVMContext &Context, const APInt &V); |
134 | |
135 | /// Return a ConstantInt constructed from the string strStart with the given |
136 | /// radix. |
137 | static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix); |
138 | |
139 | /// If Ty is a vector type, return a Constant with a splat of the given |
140 | /// value. Otherwise return a ConstantInt for the given value. |
141 | static Constant *get(Type *Ty, const APInt &V); |
142 | |
143 | /// Return the constant as an APInt value reference. This allows clients to |
144 | /// obtain a full-precision copy of the value. |
145 | /// Return the constant's value. |
146 | inline const APInt &getValue() const { return Val; } |
147 | |
148 | /// getBitWidth - Return the scalar bitwidth of this constant. |
149 | unsigned getBitWidth() const { return Val.getBitWidth(); } |
150 | |
151 | /// Return the constant as a 64-bit unsigned integer value after it |
152 | /// has been zero extended as appropriate for the type of this constant. Note |
153 | /// that this method can assert if the value does not fit in 64 bits. |
154 | /// Return the zero extended value. |
155 | inline uint64_t getZExtValue() const { return Val.getZExtValue(); } |
156 | |
157 | /// Return the constant as a 64-bit integer value after it has been sign |
158 | /// extended as appropriate for the type of this constant. Note that |
159 | /// this method can assert if the value does not fit in 64 bits. |
160 | /// Return the sign extended value. |
161 | inline int64_t getSExtValue() const { return Val.getSExtValue(); } |
162 | |
163 | /// Return the constant as an llvm::MaybeAlign. |
164 | /// Note that this method can assert if the value does not fit in 64 bits or |
165 | /// is not a power of two. |
166 | inline MaybeAlign getMaybeAlignValue() const { |
167 | return MaybeAlign(getZExtValue()); |
168 | } |
169 | |
170 | /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`. |
171 | /// Note that this method can assert if the value does not fit in 64 bits or |
172 | /// is not a power of two. |
173 | inline Align getAlignValue() const { |
174 | return getMaybeAlignValue().valueOrOne(); |
175 | } |
176 | |
177 | /// A helper method that can be used to determine if the constant contained |
178 | /// within is equal to a constant. This only works for very small values, |
179 | /// because this is all that can be represented with all types. |
180 | /// Determine if this constant's value is same as an unsigned char. |
181 | bool equalsInt(uint64_t V) const { return Val == V; } |
182 | |
183 | /// Variant of the getType() method to always return an IntegerType, which |
184 | /// reduces the amount of casting needed in parts of the compiler. |
185 | inline IntegerType *getIntegerType() const { |
186 | return cast<IntegerType>(Val: Value::getType()); |
187 | } |
188 | |
189 | /// This static method returns true if the type Ty is big enough to |
190 | /// represent the value V. This can be used to avoid having the get method |
191 | /// assert when V is larger than Ty can represent. Note that there are two |
192 | /// versions of this method, one for unsigned and one for signed integers. |
193 | /// Although ConstantInt canonicalizes everything to an unsigned integer, |
194 | /// the signed version avoids callers having to convert a signed quantity |
195 | /// to the appropriate unsigned type before calling the method. |
196 | /// @returns true if V is a valid value for type Ty |
197 | /// Determine if the value is in range for the given type. |
198 | static bool isValueValidForType(Type *Ty, uint64_t V); |
199 | static bool isValueValidForType(Type *Ty, int64_t V); |
200 | |
201 | bool isNegative() const { return Val.isNegative(); } |
202 | |
203 | /// This is just a convenience method to make client code smaller for a |
204 | /// common code. It also correctly performs the comparison without the |
205 | /// potential for an assertion from getZExtValue(). |
206 | bool isZero() const { return Val.isZero(); } |
207 | |
208 | /// This is just a convenience method to make client code smaller for a |
209 | /// common case. It also correctly performs the comparison without the |
210 | /// potential for an assertion from getZExtValue(). |
211 | /// Determine if the value is one. |
212 | bool isOne() const { return Val.isOne(); } |
213 | |
214 | /// This function will return true iff every bit in this constant is set |
215 | /// to true. |
216 | /// @returns true iff this constant's bits are all set to true. |
217 | /// Determine if the value is all ones. |
218 | bool isMinusOne() const { return Val.isAllOnes(); } |
219 | |
220 | /// This function will return true iff this constant represents the largest |
221 | /// value that may be represented by the constant's type. |
222 | /// @returns true iff this is the largest value that may be represented |
223 | /// by this type. |
224 | /// Determine if the value is maximal. |
225 | bool isMaxValue(bool IsSigned) const { |
226 | if (IsSigned) |
227 | return Val.isMaxSignedValue(); |
228 | else |
229 | return Val.isMaxValue(); |
230 | } |
231 | |
232 | /// This function will return true iff this constant represents the smallest |
233 | /// value that may be represented by this constant's type. |
234 | /// @returns true if this is the smallest value that may be represented by |
235 | /// this type. |
236 | /// Determine if the value is minimal. |
237 | bool isMinValue(bool IsSigned) const { |
238 | if (IsSigned) |
239 | return Val.isMinSignedValue(); |
240 | else |
241 | return Val.isMinValue(); |
242 | } |
243 | |
244 | /// This function will return true iff this constant represents a value with |
245 | /// active bits bigger than 64 bits or a value greater than the given uint64_t |
246 | /// value. |
247 | /// @returns true iff this constant is greater or equal to the given number. |
248 | /// Determine if the value is greater or equal to the given number. |
249 | bool uge(uint64_t Num) const { return Val.uge(RHS: Num); } |
250 | |
251 | /// getLimitedValue - If the value is smaller than the specified limit, |
252 | /// return it, otherwise return the limit value. This causes the value |
253 | /// to saturate to the limit. |
254 | /// @returns the min of the value of the constant and the specified value |
255 | /// Get the constant's value with a saturation limit |
256 | uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { |
257 | return Val.getLimitedValue(Limit); |
258 | } |
259 | |
260 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
261 | static bool classof(const Value *V) { |
262 | return V->getValueID() == ConstantIntVal; |
263 | } |
264 | }; |
265 | |
266 | //===----------------------------------------------------------------------===// |
267 | /// ConstantFP - Floating Point Values [float, double] |
268 | /// |
269 | class ConstantFP final : public ConstantData { |
270 | friend class Constant; |
271 | friend class ConstantVector; |
272 | |
273 | APFloat Val; |
274 | |
275 | ConstantFP(Type *Ty, const APFloat &V); |
276 | |
277 | void destroyConstantImpl(); |
278 | |
279 | /// Return a ConstantFP with the specified value and an implied Type. The |
280 | /// type is the vector type whose element type has the same floating point |
281 | /// semantics as the value. |
282 | static ConstantFP *get(LLVMContext &Context, ElementCount EC, |
283 | const APFloat &V); |
284 | |
285 | public: |
286 | ConstantFP(const ConstantFP &) = delete; |
287 | |
288 | /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, |
289 | /// for the specified value in the specified type. This should only be used |
290 | /// for simple constant values like 2.0/1.0 etc, that are known-valid both as |
291 | /// host double and as the target format. |
292 | static Constant *get(Type *Ty, double V); |
293 | |
294 | /// If Ty is a vector type, return a Constant with a splat of the given |
295 | /// value. Otherwise return a ConstantFP for the given value. |
296 | static Constant *get(Type *Ty, const APFloat &V); |
297 | |
298 | static Constant *get(Type *Ty, StringRef Str); |
299 | static ConstantFP *get(LLVMContext &Context, const APFloat &V); |
300 | static Constant *getNaN(Type *Ty, bool Negative = false, |
301 | uint64_t Payload = 0); |
302 | static Constant *getQNaN(Type *Ty, bool Negative = false, |
303 | APInt *Payload = nullptr); |
304 | static Constant *getSNaN(Type *Ty, bool Negative = false, |
305 | APInt *Payload = nullptr); |
306 | static Constant *getZero(Type *Ty, bool Negative = false); |
307 | static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, Negative: true); } |
308 | static Constant *getInfinity(Type *Ty, bool Negative = false); |
309 | |
310 | /// Return true if Ty is big enough to represent V. |
311 | static bool isValueValidForType(Type *Ty, const APFloat &V); |
312 | inline const APFloat &getValueAPF() const { return Val; } |
313 | inline const APFloat &getValue() const { return Val; } |
314 | |
315 | /// Return true if the value is positive or negative zero. |
316 | bool isZero() const { return Val.isZero(); } |
317 | |
318 | /// Return true if the sign bit is set. |
319 | bool isNegative() const { return Val.isNegative(); } |
320 | |
321 | /// Return true if the value is infinity |
322 | bool isInfinity() const { return Val.isInfinity(); } |
323 | |
324 | /// Return true if the value is a NaN. |
325 | bool isNaN() const { return Val.isNaN(); } |
326 | |
327 | /// We don't rely on operator== working on double values, as it returns true |
328 | /// for things that are clearly not equal, like -0.0 and 0.0. |
329 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
330 | /// two floating point values. The version with a double operand is retained |
331 | /// because it's so convenient to write isExactlyValue(2.0), but please use |
332 | /// it only for simple constants. |
333 | bool isExactlyValue(const APFloat &V) const; |
334 | |
335 | bool isExactlyValue(double V) const { |
336 | bool ignored; |
337 | APFloat FV(V); |
338 | FV.convert(ToSemantics: Val.getSemantics(), RM: APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
339 | return isExactlyValue(V: FV); |
340 | } |
341 | |
342 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
343 | static bool classof(const Value *V) { |
344 | return V->getValueID() == ConstantFPVal; |
345 | } |
346 | }; |
347 | |
348 | //===----------------------------------------------------------------------===// |
349 | /// All zero aggregate value |
350 | /// |
351 | class ConstantAggregateZero final : public ConstantData { |
352 | friend class Constant; |
353 | |
354 | explicit ConstantAggregateZero(Type *Ty) |
355 | : ConstantData(Ty, ConstantAggregateZeroVal) {} |
356 | |
357 | void destroyConstantImpl(); |
358 | |
359 | public: |
360 | ConstantAggregateZero(const ConstantAggregateZero &) = delete; |
361 | |
362 | static ConstantAggregateZero *get(Type *Ty); |
363 | |
364 | /// If this CAZ has array or vector type, return a zero with the right element |
365 | /// type. |
366 | Constant *getSequentialElement() const; |
367 | |
368 | /// If this CAZ has struct type, return a zero with the right element type for |
369 | /// the specified element. |
370 | Constant *getStructElement(unsigned Elt) const; |
371 | |
372 | /// Return a zero of the right value for the specified GEP index if we can, |
373 | /// otherwise return null (e.g. if C is a ConstantExpr). |
374 | Constant *getElementValue(Constant *C) const; |
375 | |
376 | /// Return a zero of the right value for the specified GEP index. |
377 | Constant *getElementValue(unsigned Idx) const; |
378 | |
379 | /// Return the number of elements in the array, vector, or struct. |
380 | ElementCount getElementCount() const; |
381 | |
382 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
383 | /// |
384 | static bool classof(const Value *V) { |
385 | return V->getValueID() == ConstantAggregateZeroVal; |
386 | } |
387 | }; |
388 | |
389 | /// Base class for aggregate constants (with operands). |
390 | /// |
391 | /// These constants are aggregates of other constants, which are stored as |
392 | /// operands. |
393 | /// |
394 | /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a |
395 | /// ConstantVector. |
396 | /// |
397 | /// \note Some subclasses of \a ConstantData are semantically aggregates -- |
398 | /// such as \a ConstantDataArray -- but are not subclasses of this because they |
399 | /// use operands. |
400 | class ConstantAggregate : public Constant { |
401 | protected: |
402 | ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V); |
403 | |
404 | public: |
405 | /// Transparently provide more efficient getOperand methods. |
406 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
407 | |
408 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
409 | static bool classof(const Value *V) { |
410 | return V->getValueID() >= ConstantAggregateFirstVal && |
411 | V->getValueID() <= ConstantAggregateLastVal; |
412 | } |
413 | }; |
414 | |
415 | template <> |
416 | struct OperandTraits<ConstantAggregate> |
417 | : public VariadicOperandTraits<ConstantAggregate> {}; |
418 | |
419 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) |
420 | |
421 | //===----------------------------------------------------------------------===// |
422 | /// ConstantArray - Constant Array Declarations |
423 | /// |
424 | class ConstantArray final : public ConstantAggregate { |
425 | friend struct ConstantAggrKeyType<ConstantArray>; |
426 | friend class Constant; |
427 | |
428 | ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); |
429 | |
430 | void destroyConstantImpl(); |
431 | Value *handleOperandChangeImpl(Value *From, Value *To); |
432 | |
433 | public: |
434 | // ConstantArray accessors |
435 | static Constant *get(ArrayType *T, ArrayRef<Constant *> V); |
436 | |
437 | private: |
438 | static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); |
439 | |
440 | public: |
441 | /// Specialize the getType() method to always return an ArrayType, |
442 | /// which reduces the amount of casting needed in parts of the compiler. |
443 | inline ArrayType *getType() const { |
444 | return cast<ArrayType>(Val: Value::getType()); |
445 | } |
446 | |
447 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
448 | static bool classof(const Value *V) { |
449 | return V->getValueID() == ConstantArrayVal; |
450 | } |
451 | }; |
452 | |
453 | //===----------------------------------------------------------------------===// |
454 | // Constant Struct Declarations |
455 | // |
456 | class ConstantStruct final : public ConstantAggregate { |
457 | friend struct ConstantAggrKeyType<ConstantStruct>; |
458 | friend class Constant; |
459 | |
460 | ConstantStruct(StructType *T, ArrayRef<Constant *> Val); |
461 | |
462 | void destroyConstantImpl(); |
463 | Value *handleOperandChangeImpl(Value *From, Value *To); |
464 | |
465 | public: |
466 | // ConstantStruct accessors |
467 | static Constant *get(StructType *T, ArrayRef<Constant *> V); |
468 | |
469 | template <typename... Csts> |
470 | static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *> |
471 | get(StructType *T, Csts *...Vs) { |
472 | return get(T, V: ArrayRef<Constant *>({Vs...})); |
473 | } |
474 | |
475 | /// Return an anonymous struct that has the specified elements. |
476 | /// If the struct is possibly empty, then you must specify a context. |
477 | static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) { |
478 | return get(T: getTypeForElements(V, Packed), V); |
479 | } |
480 | static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V, |
481 | bool Packed = false) { |
482 | return get(T: getTypeForElements(Ctx, V, Packed), V); |
483 | } |
484 | |
485 | /// Return an anonymous struct type to use for a constant with the specified |
486 | /// set of elements. The list must not be empty. |
487 | static StructType *getTypeForElements(ArrayRef<Constant *> V, |
488 | bool Packed = false); |
489 | /// This version of the method allows an empty list. |
490 | static StructType *getTypeForElements(LLVMContext &Ctx, |
491 | ArrayRef<Constant *> V, |
492 | bool Packed = false); |
493 | |
494 | /// Specialization - reduce amount of casting. |
495 | inline StructType *getType() const { |
496 | return cast<StructType>(Val: Value::getType()); |
497 | } |
498 | |
499 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
500 | static bool classof(const Value *V) { |
501 | return V->getValueID() == ConstantStructVal; |
502 | } |
503 | }; |
504 | |
505 | //===----------------------------------------------------------------------===// |
506 | /// Constant Vector Declarations |
507 | /// |
508 | class ConstantVector final : public ConstantAggregate { |
509 | friend struct ConstantAggrKeyType<ConstantVector>; |
510 | friend class Constant; |
511 | |
512 | ConstantVector(VectorType *T, ArrayRef<Constant *> Val); |
513 | |
514 | void destroyConstantImpl(); |
515 | Value *handleOperandChangeImpl(Value *From, Value *To); |
516 | |
517 | public: |
518 | // ConstantVector accessors |
519 | static Constant *get(ArrayRef<Constant *> V); |
520 | |
521 | private: |
522 | static Constant *getImpl(ArrayRef<Constant *> V); |
523 | |
524 | public: |
525 | /// Return a ConstantVector with the specified constant in each element. |
526 | /// Note that this might not return an instance of ConstantVector |
527 | static Constant *getSplat(ElementCount EC, Constant *Elt); |
528 | |
529 | /// Specialize the getType() method to always return a FixedVectorType, |
530 | /// which reduces the amount of casting needed in parts of the compiler. |
531 | inline FixedVectorType *getType() const { |
532 | return cast<FixedVectorType>(Val: Value::getType()); |
533 | } |
534 | |
535 | /// If all elements of the vector constant have the same value, return that |
536 | /// value. Otherwise, return nullptr. Ignore poison elements by setting |
537 | /// AllowPoison to true. |
538 | Constant *getSplatValue(bool AllowPoison = false) const; |
539 | |
540 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
541 | static bool classof(const Value *V) { |
542 | return V->getValueID() == ConstantVectorVal; |
543 | } |
544 | }; |
545 | |
546 | //===----------------------------------------------------------------------===// |
547 | /// A constant pointer value that points to null |
548 | /// |
549 | class ConstantPointerNull final : public ConstantData { |
550 | friend class Constant; |
551 | |
552 | explicit ConstantPointerNull(PointerType *T) |
553 | : ConstantData(T, Value::ConstantPointerNullVal) {} |
554 | |
555 | void destroyConstantImpl(); |
556 | |
557 | public: |
558 | ConstantPointerNull(const ConstantPointerNull &) = delete; |
559 | |
560 | /// Static factory methods - Return objects of the specified value |
561 | static ConstantPointerNull *get(PointerType *T); |
562 | |
563 | /// Specialize the getType() method to always return an PointerType, |
564 | /// which reduces the amount of casting needed in parts of the compiler. |
565 | inline PointerType *getType() const { |
566 | return cast<PointerType>(Val: Value::getType()); |
567 | } |
568 | |
569 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
570 | static bool classof(const Value *V) { |
571 | return V->getValueID() == ConstantPointerNullVal; |
572 | } |
573 | }; |
574 | |
575 | //===----------------------------------------------------------------------===// |
576 | /// ConstantDataSequential - A vector or array constant whose element type is a |
577 | /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements |
578 | /// are just simple data values (i.e. ConstantInt/ConstantFP). This Constant |
579 | /// node has no operands because it stores all of the elements of the constant |
580 | /// as densely packed data, instead of as Value*'s. |
581 | /// |
582 | /// This is the common base class of ConstantDataArray and ConstantDataVector. |
583 | /// |
584 | class ConstantDataSequential : public ConstantData { |
585 | friend class LLVMContextImpl; |
586 | friend class Constant; |
587 | |
588 | /// A pointer to the bytes underlying this constant (which is owned by the |
589 | /// uniquing StringMap). |
590 | const char *DataElements; |
591 | |
592 | /// This forms a link list of ConstantDataSequential nodes that have |
593 | /// the same value but different type. For example, 0,0,0,1 could be a 4 |
594 | /// element array of i8, or a 1-element array of i32. They'll both end up in |
595 | /// the same StringMap bucket, linked up. |
596 | std::unique_ptr<ConstantDataSequential> Next; |
597 | |
598 | void destroyConstantImpl(); |
599 | |
600 | protected: |
601 | explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) |
602 | : ConstantData(ty, VT), DataElements(Data) {} |
603 | |
604 | static Constant *getImpl(StringRef Bytes, Type *Ty); |
605 | |
606 | public: |
607 | ConstantDataSequential(const ConstantDataSequential &) = delete; |
608 | |
609 | /// Return true if a ConstantDataSequential can be formed with a vector or |
610 | /// array of the specified element type. |
611 | /// ConstantDataArray only works with normal float and int types that are |
612 | /// stored densely in memory, not with things like i42 or x86_f80. |
613 | static bool isElementTypeCompatible(Type *Ty); |
614 | |
615 | /// If this is a sequential container of integers (of any size), return the |
616 | /// specified element in the low bits of a uint64_t. |
617 | uint64_t getElementAsInteger(unsigned i) const; |
618 | |
619 | /// If this is a sequential container of integers (of any size), return the |
620 | /// specified element as an APInt. |
621 | APInt getElementAsAPInt(unsigned i) const; |
622 | |
623 | /// If this is a sequential container of floating point type, return the |
624 | /// specified element as an APFloat. |
625 | APFloat getElementAsAPFloat(unsigned i) const; |
626 | |
627 | /// If this is an sequential container of floats, return the specified element |
628 | /// as a float. |
629 | float getElementAsFloat(unsigned i) const; |
630 | |
631 | /// If this is an sequential container of doubles, return the specified |
632 | /// element as a double. |
633 | double getElementAsDouble(unsigned i) const; |
634 | |
635 | /// Return a Constant for a specified index's element. |
636 | /// Note that this has to compute a new constant to return, so it isn't as |
637 | /// efficient as getElementAsInteger/Float/Double. |
638 | Constant *getElementAsConstant(unsigned i) const; |
639 | |
640 | /// Return the element type of the array/vector. |
641 | Type *getElementType() const; |
642 | |
643 | /// Return the number of elements in the array or vector. |
644 | unsigned getNumElements() const; |
645 | |
646 | /// Return the size (in bytes) of each element in the array/vector. |
647 | /// The size of the elements is known to be a multiple of one byte. |
648 | uint64_t getElementByteSize() const; |
649 | |
650 | /// This method returns true if this is an array of \p CharSize integers. |
651 | bool isString(unsigned CharSize = 8) const; |
652 | |
653 | /// This method returns true if the array "isString", ends with a null byte, |
654 | /// and does not contains any other null bytes. |
655 | bool isCString() const; |
656 | |
657 | /// If this array is isString(), then this method returns the array as a |
658 | /// StringRef. Otherwise, it asserts out. |
659 | StringRef getAsString() const { |
660 | assert(isString() && "Not a string" ); |
661 | return getRawDataValues(); |
662 | } |
663 | |
664 | /// If this array is isCString(), then this method returns the array (without |
665 | /// the trailing null byte) as a StringRef. Otherwise, it asserts out. |
666 | StringRef getAsCString() const { |
667 | assert(isCString() && "Isn't a C string" ); |
668 | StringRef Str = getAsString(); |
669 | return Str.substr(Start: 0, N: Str.size() - 1); |
670 | } |
671 | |
672 | /// Return the raw, underlying, bytes of this data. Note that this is an |
673 | /// extremely tricky thing to work with, as it exposes the host endianness of |
674 | /// the data elements. |
675 | StringRef getRawDataValues() const; |
676 | |
677 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
678 | static bool classof(const Value *V) { |
679 | return V->getValueID() == ConstantDataArrayVal || |
680 | V->getValueID() == ConstantDataVectorVal; |
681 | } |
682 | |
683 | private: |
684 | const char *getElementPointer(unsigned Elt) const; |
685 | }; |
686 | |
687 | //===----------------------------------------------------------------------===// |
688 | /// An array constant whose element type is a simple 1/2/4/8-byte integer or |
689 | /// float/double, and whose elements are just simple data values |
690 | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
691 | /// stores all of the elements of the constant as densely packed data, instead |
692 | /// of as Value*'s. |
693 | class ConstantDataArray final : public ConstantDataSequential { |
694 | friend class ConstantDataSequential; |
695 | |
696 | explicit ConstantDataArray(Type *ty, const char *Data) |
697 | : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} |
698 | |
699 | public: |
700 | ConstantDataArray(const ConstantDataArray &) = delete; |
701 | |
702 | /// get() constructor - Return a constant with array type with an element |
703 | /// count and element type matching the ArrayRef passed in. Note that this |
704 | /// can return a ConstantAggregateZero object. |
705 | template <typename ElementTy> |
706 | static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { |
707 | const char *Data = reinterpret_cast<const char *>(Elts.data()); |
708 | return getRaw(Data: StringRef(Data, Elts.size() * sizeof(ElementTy)), NumElements: Elts.size(), |
709 | ElementTy: Type::getScalarTy<ElementTy>(Context)); |
710 | } |
711 | |
712 | /// get() constructor - ArrayTy needs to be compatible with |
713 | /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). |
714 | template <typename ArrayTy> |
715 | static Constant *get(LLVMContext &Context, ArrayTy &Elts) { |
716 | return ConstantDataArray::get(Context, ArrayRef(Elts)); |
717 | } |
718 | |
719 | /// getRaw() constructor - Return a constant with array type with an element |
720 | /// count and element type matching the NumElements and ElementTy parameters |
721 | /// passed in. Note that this can return a ConstantAggregateZero object. |
722 | /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is |
723 | /// the buffer containing the elements. Be careful to make sure Data uses the |
724 | /// right endianness, the buffer will be used as-is. |
725 | static Constant *getRaw(StringRef Data, uint64_t NumElements, |
726 | Type *ElementTy) { |
727 | Type *Ty = ArrayType::get(ElementType: ElementTy, NumElements); |
728 | return getImpl(Bytes: Data, Ty); |
729 | } |
730 | |
731 | /// getFP() constructors - Return a constant of array type with a float |
732 | /// element type taken from argument `ElementType', and count taken from |
733 | /// argument `Elts'. The amount of bits of the contained type must match the |
734 | /// number of bits of the type contained in the passed in ArrayRef. |
735 | /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note |
736 | /// that this can return a ConstantAggregateZero object. |
737 | static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); |
738 | static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); |
739 | static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); |
740 | |
741 | /// This method constructs a CDS and initializes it with a text string. |
742 | /// The default behavior (AddNull==true) causes a null terminator to |
743 | /// be placed at the end of the array (increasing the length of the string by |
744 | /// one more than the StringRef would normally indicate. Pass AddNull=false |
745 | /// to disable this behavior. |
746 | static Constant *getString(LLVMContext &Context, StringRef Initializer, |
747 | bool AddNull = true); |
748 | |
749 | /// Specialize the getType() method to always return an ArrayType, |
750 | /// which reduces the amount of casting needed in parts of the compiler. |
751 | inline ArrayType *getType() const { |
752 | return cast<ArrayType>(Val: Value::getType()); |
753 | } |
754 | |
755 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
756 | static bool classof(const Value *V) { |
757 | return V->getValueID() == ConstantDataArrayVal; |
758 | } |
759 | }; |
760 | |
761 | //===----------------------------------------------------------------------===// |
762 | /// A vector constant whose element type is a simple 1/2/4/8-byte integer or |
763 | /// float/double, and whose elements are just simple data values |
764 | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
765 | /// stores all of the elements of the constant as densely packed data, instead |
766 | /// of as Value*'s. |
767 | class ConstantDataVector final : public ConstantDataSequential { |
768 | friend class ConstantDataSequential; |
769 | |
770 | explicit ConstantDataVector(Type *ty, const char *Data) |
771 | : ConstantDataSequential(ty, ConstantDataVectorVal, Data), |
772 | IsSplatSet(false) {} |
773 | // Cache whether or not the constant is a splat. |
774 | mutable bool IsSplatSet : 1; |
775 | mutable bool IsSplat : 1; |
776 | bool isSplatData() const; |
777 | |
778 | public: |
779 | ConstantDataVector(const ConstantDataVector &) = delete; |
780 | |
781 | /// get() constructors - Return a constant with vector type with an element |
782 | /// count and element type matching the ArrayRef passed in. Note that this |
783 | /// can return a ConstantAggregateZero object. |
784 | static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); |
785 | static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
786 | static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
787 | static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
788 | static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); |
789 | static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); |
790 | |
791 | /// getRaw() constructor - Return a constant with vector type with an element |
792 | /// count and element type matching the NumElements and ElementTy parameters |
793 | /// passed in. Note that this can return a ConstantAggregateZero object. |
794 | /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is |
795 | /// the buffer containing the elements. Be careful to make sure Data uses the |
796 | /// right endianness, the buffer will be used as-is. |
797 | static Constant *getRaw(StringRef Data, uint64_t NumElements, |
798 | Type *ElementTy) { |
799 | Type *Ty = VectorType::get(ElementType: ElementTy, EC: ElementCount::getFixed(MinVal: NumElements)); |
800 | return getImpl(Bytes: Data, Ty); |
801 | } |
802 | |
803 | /// getFP() constructors - Return a constant of vector type with a float |
804 | /// element type taken from argument `ElementType', and count taken from |
805 | /// argument `Elts'. The amount of bits of the contained type must match the |
806 | /// number of bits of the type contained in the passed in ArrayRef. |
807 | /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note |
808 | /// that this can return a ConstantAggregateZero object. |
809 | static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); |
810 | static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); |
811 | static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); |
812 | |
813 | /// Return a ConstantVector with the specified constant in each element. |
814 | /// The specified constant has to be a of a compatible type (i8/i16/ |
815 | /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt. |
816 | static Constant *getSplat(unsigned NumElts, Constant *Elt); |
817 | |
818 | /// Returns true if this is a splat constant, meaning that all elements have |
819 | /// the same value. |
820 | bool isSplat() const; |
821 | |
822 | /// If this is a splat constant, meaning that all of the elements have the |
823 | /// same value, return that value. Otherwise return NULL. |
824 | Constant *getSplatValue() const; |
825 | |
826 | /// Specialize the getType() method to always return a FixedVectorType, |
827 | /// which reduces the amount of casting needed in parts of the compiler. |
828 | inline FixedVectorType *getType() const { |
829 | return cast<FixedVectorType>(Val: Value::getType()); |
830 | } |
831 | |
832 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
833 | static bool classof(const Value *V) { |
834 | return V->getValueID() == ConstantDataVectorVal; |
835 | } |
836 | }; |
837 | |
838 | //===----------------------------------------------------------------------===// |
839 | /// A constant token which is empty |
840 | /// |
841 | class ConstantTokenNone final : public ConstantData { |
842 | friend class Constant; |
843 | |
844 | explicit ConstantTokenNone(LLVMContext &Context) |
845 | : ConstantData(Type::getTokenTy(C&: Context), ConstantTokenNoneVal) {} |
846 | |
847 | void destroyConstantImpl(); |
848 | |
849 | public: |
850 | ConstantTokenNone(const ConstantTokenNone &) = delete; |
851 | |
852 | /// Return the ConstantTokenNone. |
853 | static ConstantTokenNone *get(LLVMContext &Context); |
854 | |
855 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
856 | static bool classof(const Value *V) { |
857 | return V->getValueID() == ConstantTokenNoneVal; |
858 | } |
859 | }; |
860 | |
861 | /// A constant target extension type default initializer |
862 | class ConstantTargetNone final : public ConstantData { |
863 | friend class Constant; |
864 | |
865 | explicit ConstantTargetNone(TargetExtType *T) |
866 | : ConstantData(T, Value::ConstantTargetNoneVal) {} |
867 | |
868 | void destroyConstantImpl(); |
869 | |
870 | public: |
871 | ConstantTargetNone(const ConstantTargetNone &) = delete; |
872 | |
873 | /// Static factory methods - Return objects of the specified value. |
874 | static ConstantTargetNone *get(TargetExtType *T); |
875 | |
876 | /// Specialize the getType() method to always return an TargetExtType, |
877 | /// which reduces the amount of casting needed in parts of the compiler. |
878 | inline TargetExtType *getType() const { |
879 | return cast<TargetExtType>(Val: Value::getType()); |
880 | } |
881 | |
882 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
883 | static bool classof(const Value *V) { |
884 | return V->getValueID() == ConstantTargetNoneVal; |
885 | } |
886 | }; |
887 | |
888 | /// The address of a basic block. |
889 | /// |
890 | class BlockAddress final : public Constant { |
891 | friend class Constant; |
892 | |
893 | BlockAddress(Function *F, BasicBlock *BB); |
894 | |
895 | void *operator new(size_t S) { return User::operator new(Size: S, Us: 2); } |
896 | |
897 | void destroyConstantImpl(); |
898 | Value *handleOperandChangeImpl(Value *From, Value *To); |
899 | |
900 | public: |
901 | void operator delete(void *Ptr) { User::operator delete(Usr: Ptr); } |
902 | |
903 | /// Return a BlockAddress for the specified function and basic block. |
904 | static BlockAddress *get(Function *F, BasicBlock *BB); |
905 | |
906 | /// Return a BlockAddress for the specified basic block. The basic |
907 | /// block must be embedded into a function. |
908 | static BlockAddress *get(BasicBlock *BB); |
909 | |
910 | /// Lookup an existing \c BlockAddress constant for the given BasicBlock. |
911 | /// |
912 | /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. |
913 | static BlockAddress *lookup(const BasicBlock *BB); |
914 | |
915 | /// Transparently provide more efficient getOperand methods. |
916 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
917 | |
918 | Function *getFunction() const { return (Function *)Op<0>().get(); } |
919 | BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); } |
920 | |
921 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
922 | static bool classof(const Value *V) { |
923 | return V->getValueID() == BlockAddressVal; |
924 | } |
925 | }; |
926 | |
927 | template <> |
928 | struct OperandTraits<BlockAddress> |
929 | : public FixedNumOperandTraits<BlockAddress, 2> {}; |
930 | |
931 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) |
932 | |
933 | /// Wrapper for a function that represents a value that |
934 | /// functionally represents the original function. This can be a function, |
935 | /// global alias to a function, or an ifunc. |
936 | class DSOLocalEquivalent final : public Constant { |
937 | friend class Constant; |
938 | |
939 | DSOLocalEquivalent(GlobalValue *GV); |
940 | |
941 | void *operator new(size_t S) { return User::operator new(Size: S, Us: 1); } |
942 | |
943 | void destroyConstantImpl(); |
944 | Value *handleOperandChangeImpl(Value *From, Value *To); |
945 | |
946 | public: |
947 | void operator delete(void *Ptr) { User::operator delete(Usr: Ptr); } |
948 | |
949 | /// Return a DSOLocalEquivalent for the specified global value. |
950 | static DSOLocalEquivalent *get(GlobalValue *GV); |
951 | |
952 | /// Transparently provide more efficient getOperand methods. |
953 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
954 | |
955 | GlobalValue *getGlobalValue() const { |
956 | return cast<GlobalValue>(Val: Op<0>().get()); |
957 | } |
958 | |
959 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
960 | static bool classof(const Value *V) { |
961 | return V->getValueID() == DSOLocalEquivalentVal; |
962 | } |
963 | }; |
964 | |
965 | template <> |
966 | struct OperandTraits<DSOLocalEquivalent> |
967 | : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {}; |
968 | |
969 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value) |
970 | |
971 | /// Wrapper for a value that won't be replaced with a CFI jump table |
972 | /// pointer in LowerTypeTestsModule. |
973 | class NoCFIValue final : public Constant { |
974 | friend class Constant; |
975 | |
976 | NoCFIValue(GlobalValue *GV); |
977 | |
978 | void *operator new(size_t S) { return User::operator new(Size: S, Us: 1); } |
979 | |
980 | void destroyConstantImpl(); |
981 | Value *handleOperandChangeImpl(Value *From, Value *To); |
982 | |
983 | public: |
984 | /// Return a NoCFIValue for the specified function. |
985 | static NoCFIValue *get(GlobalValue *GV); |
986 | |
987 | /// Transparently provide more efficient getOperand methods. |
988 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
989 | |
990 | GlobalValue *getGlobalValue() const { |
991 | return cast<GlobalValue>(Val: Op<0>().get()); |
992 | } |
993 | |
994 | /// NoCFIValue is always a pointer. |
995 | PointerType *getType() const { |
996 | return cast<PointerType>(Val: Value::getType()); |
997 | } |
998 | |
999 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1000 | static bool classof(const Value *V) { |
1001 | return V->getValueID() == NoCFIValueVal; |
1002 | } |
1003 | }; |
1004 | |
1005 | template <> |
1006 | struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> { |
1007 | }; |
1008 | |
1009 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value) |
1010 | |
1011 | /// A signed pointer, in the ptrauth sense. |
1012 | class ConstantPtrAuth final : public Constant { |
1013 | friend struct ConstantPtrAuthKeyType; |
1014 | friend class Constant; |
1015 | |
1016 | ConstantPtrAuth(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, |
1017 | Constant *AddrDisc); |
1018 | |
1019 | void *operator new(size_t s) { return User::operator new(Size: s, Us: 4); } |
1020 | |
1021 | void destroyConstantImpl(); |
1022 | Value *handleOperandChangeImpl(Value *From, Value *To); |
1023 | |
1024 | public: |
1025 | /// Return a pointer signed with the specified parameters. |
1026 | static ConstantPtrAuth *get(Constant *Ptr, ConstantInt *Key, |
1027 | ConstantInt *Disc, Constant *AddrDisc); |
1028 | |
1029 | /// Produce a new ptrauth expression signing the given value using |
1030 | /// the same schema as is stored in one. |
1031 | ConstantPtrAuth *getWithSameSchema(Constant *Pointer) const; |
1032 | |
1033 | /// Transparently provide more efficient getOperand methods. |
1034 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
1035 | |
1036 | /// The pointer that is signed in this ptrauth signed pointer. |
1037 | Constant *getPointer() const { return cast<Constant>(Val: Op<0>().get()); } |
1038 | |
1039 | /// The Key ID, an i32 constant. |
1040 | ConstantInt *getKey() const { return cast<ConstantInt>(Val: Op<1>().get()); } |
1041 | |
1042 | /// The integer discriminator, an i64 constant, or 0. |
1043 | ConstantInt *getDiscriminator() const { |
1044 | return cast<ConstantInt>(Val: Op<2>().get()); |
1045 | } |
1046 | |
1047 | /// The address discriminator if any, or the null constant. |
1048 | /// If present, this must be a value equivalent to the storage location of |
1049 | /// the only global-initializer user of the ptrauth signed pointer. |
1050 | Constant *getAddrDiscriminator() const { |
1051 | return cast<Constant>(Val: Op<3>().get()); |
1052 | } |
1053 | |
1054 | /// Whether there is any non-null address discriminator. |
1055 | bool hasAddressDiscriminator() const { |
1056 | return !getAddrDiscriminator()->isNullValue(); |
1057 | } |
1058 | |
1059 | /// Check whether an authentication operation with key \p Key and (possibly |
1060 | /// blended) discriminator \p Discriminator is known to be compatible with |
1061 | /// this ptrauth signed pointer. |
1062 | bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator, |
1063 | const DataLayout &DL) const; |
1064 | |
1065 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1066 | static bool classof(const Value *V) { |
1067 | return V->getValueID() == ConstantPtrAuthVal; |
1068 | } |
1069 | }; |
1070 | |
1071 | template <> |
1072 | struct OperandTraits<ConstantPtrAuth> |
1073 | : public FixedNumOperandTraits<ConstantPtrAuth, 4> {}; |
1074 | |
1075 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPtrAuth, Constant) |
1076 | |
1077 | //===----------------------------------------------------------------------===// |
1078 | /// A constant value that is initialized with an expression using |
1079 | /// other constant values. |
1080 | /// |
1081 | /// This class uses the standard Instruction opcodes to define the various |
1082 | /// constant expressions. The Opcode field for the ConstantExpr class is |
1083 | /// maintained in the Value::SubclassData field. |
1084 | class ConstantExpr : public Constant { |
1085 | friend struct ConstantExprKeyType; |
1086 | friend class Constant; |
1087 | |
1088 | void destroyConstantImpl(); |
1089 | Value *handleOperandChangeImpl(Value *From, Value *To); |
1090 | |
1091 | protected: |
1092 | ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) |
1093 | : Constant(ty, ConstantExprVal, Ops, NumOps) { |
1094 | // Operation type (an Instruction opcode) is stored as the SubclassData. |
1095 | setValueSubclassData(Opcode); |
1096 | } |
1097 | |
1098 | ~ConstantExpr() = default; |
1099 | |
1100 | public: |
1101 | // Static methods to construct a ConstantExpr of different kinds. Note that |
1102 | // these methods may return a object that is not an instance of the |
1103 | // ConstantExpr class, because they will attempt to fold the constant |
1104 | // expression into something simpler if possible. |
1105 | |
1106 | /// getAlignOf constant expr - computes the alignment of a type in a target |
1107 | /// independent way (Note: the return type is an i64). |
1108 | static Constant *getAlignOf(Type *Ty); |
1109 | |
1110 | /// getSizeOf constant expr - computes the (alloc) size of a type (in |
1111 | /// address-units, not bits) in a target independent way (Note: the return |
1112 | /// type is an i64). |
1113 | /// |
1114 | static Constant *getSizeOf(Type *Ty); |
1115 | |
1116 | static Constant *getNeg(Constant *C, bool HasNSW = false); |
1117 | static Constant *getNot(Constant *C); |
1118 | static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, |
1119 | bool HasNSW = false); |
1120 | static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, |
1121 | bool HasNSW = false); |
1122 | static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, |
1123 | bool HasNSW = false); |
1124 | static Constant *getXor(Constant *C1, Constant *C2); |
1125 | static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
1126 | static Constant *getPtrToInt(Constant *C, Type *Ty, |
1127 | bool OnlyIfReduced = false); |
1128 | static Constant *getIntToPtr(Constant *C, Type *Ty, |
1129 | bool OnlyIfReduced = false); |
1130 | static Constant *getBitCast(Constant *C, Type *Ty, |
1131 | bool OnlyIfReduced = false); |
1132 | static Constant *getAddrSpaceCast(Constant *C, Type *Ty, |
1133 | bool OnlyIfReduced = false); |
1134 | |
1135 | static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/HasNSW: true); } |
1136 | |
1137 | static Constant *getNSWAdd(Constant *C1, Constant *C2) { |
1138 | return getAdd(C1, C2, HasNUW: false, HasNSW: true); |
1139 | } |
1140 | |
1141 | static Constant *getNUWAdd(Constant *C1, Constant *C2) { |
1142 | return getAdd(C1, C2, HasNUW: true, HasNSW: false); |
1143 | } |
1144 | |
1145 | static Constant *getNSWSub(Constant *C1, Constant *C2) { |
1146 | return getSub(C1, C2, HasNUW: false, HasNSW: true); |
1147 | } |
1148 | |
1149 | static Constant *getNUWSub(Constant *C1, Constant *C2) { |
1150 | return getSub(C1, C2, HasNUW: true, HasNSW: false); |
1151 | } |
1152 | |
1153 | static Constant *getNSWMul(Constant *C1, Constant *C2) { |
1154 | return getMul(C1, C2, HasNUW: false, HasNSW: true); |
1155 | } |
1156 | |
1157 | static Constant *getNUWMul(Constant *C1, Constant *C2) { |
1158 | return getMul(C1, C2, HasNUW: true, HasNSW: false); |
1159 | } |
1160 | |
1161 | /// If C is a scalar/fixed width vector of known powers of 2, then this |
1162 | /// function returns a new scalar/fixed width vector obtained from logBase2 |
1163 | /// of C. Undef vector elements are set to zero. |
1164 | /// Return a null pointer otherwise. |
1165 | static Constant *getExactLogBase2(Constant *C); |
1166 | |
1167 | /// Return the identity constant for a binary opcode. |
1168 | /// If the binop is not commutative, callers can acquire the operand 1 |
1169 | /// identity constant by setting AllowRHSConstant to true. For example, any |
1170 | /// shift has a zero identity constant for operand 1: X shift 0 = X. If this |
1171 | /// is a fadd/fsub operation and we don't care about signed zeros, then |
1172 | /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return |
1173 | /// nullptr if the operator does not have an identity constant. |
1174 | static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, |
1175 | bool AllowRHSConstant = false, |
1176 | bool NSZ = false); |
1177 | |
1178 | static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty); |
1179 | |
1180 | /// Return the identity constant for a binary or intrinsic Instruction. |
1181 | /// The identity constant C is defined as X op C = X and C op X = X where C |
1182 | /// and X are the first two operands, and the operation is commutative. |
1183 | static Constant *getIdentity(Instruction *I, Type *Ty, |
1184 | bool AllowRHSConstant = false, bool NSZ = false); |
1185 | |
1186 | /// Return the absorbing element for the given binary |
1187 | /// operation, i.e. a constant C such that X op C = C and C op X = C for |
1188 | /// every X. For example, this returns zero for integer multiplication. |
1189 | /// It returns null if the operator doesn't have an absorbing element. |
1190 | static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); |
1191 | |
1192 | /// Transparently provide more efficient getOperand methods. |
1193 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
1194 | |
1195 | /// Convenience function for getting a Cast operation. |
1196 | /// |
1197 | /// \param ops The opcode for the conversion |
1198 | /// \param C The constant to be converted |
1199 | /// \param Ty The type to which the constant is converted |
1200 | /// \param OnlyIfReduced see \a getWithOperands() docs. |
1201 | static Constant *getCast(unsigned ops, Constant *C, Type *Ty, |
1202 | bool OnlyIfReduced = false); |
1203 | |
1204 | // Create a Trunc or BitCast cast constant expression |
1205 | static Constant * |
1206 | getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast |
1207 | Type *Ty ///< The type to trunc or bitcast C to |
1208 | ); |
1209 | |
1210 | /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant |
1211 | /// expression. |
1212 | static Constant * |
1213 | getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0) |
1214 | Type *Ty ///< The type to which cast should be made |
1215 | ); |
1216 | |
1217 | /// Create a BitCast or AddrSpaceCast for a pointer type depending on |
1218 | /// the address space. |
1219 | static Constant *getPointerBitCastOrAddrSpaceCast( |
1220 | Constant *C, ///< The constant to addrspacecast or bitcast |
1221 | Type *Ty ///< The type to bitcast or addrspacecast C to |
1222 | ); |
1223 | |
1224 | /// Return true if this is a convert constant expression |
1225 | bool isCast() const; |
1226 | |
1227 | /// get - Return a binary or shift operator constant expression, |
1228 | /// folding if possible. |
1229 | /// |
1230 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1231 | static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, |
1232 | unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); |
1233 | |
1234 | /// Getelementptr form. Value* is only accepted for convenience; |
1235 | /// all elements must be Constants. |
1236 | /// |
1237 | /// \param InRange the inrange range if present or std::nullopt. |
1238 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1239 | static Constant * |
1240 | getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList, |
1241 | GEPNoWrapFlags NW = GEPNoWrapFlags::none(), |
1242 | std::optional<ConstantRange> InRange = std::nullopt, |
1243 | Type *OnlyIfReducedTy = nullptr) { |
1244 | return getGetElementPtr( |
1245 | Ty, C, IdxList: ArrayRef((Value *const *)IdxList.data(), IdxList.size()), NW, |
1246 | InRange, OnlyIfReducedTy); |
1247 | } |
1248 | static Constant * |
1249 | getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, |
1250 | GEPNoWrapFlags NW = GEPNoWrapFlags::none(), |
1251 | std::optional<ConstantRange> InRange = std::nullopt, |
1252 | Type *OnlyIfReducedTy = nullptr) { |
1253 | // This form of the function only exists to avoid ambiguous overload |
1254 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
1255 | // ArrayRef<Value *>. |
1256 | return getGetElementPtr(Ty, C, IdxList: cast<Value>(Val: Idx), NW, InRange, |
1257 | OnlyIfReducedTy); |
1258 | } |
1259 | static Constant * |
1260 | getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList, |
1261 | GEPNoWrapFlags NW = GEPNoWrapFlags::none(), |
1262 | std::optional<ConstantRange> InRange = std::nullopt, |
1263 | Type *OnlyIfReducedTy = nullptr); |
1264 | |
1265 | /// Create an "inbounds" getelementptr. See the documentation for the |
1266 | /// "inbounds" flag in LangRef.html for details. |
1267 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1268 | ArrayRef<Constant *> IdxList) { |
1269 | return getGetElementPtr(Ty, C, IdxList, NW: GEPNoWrapFlags::inBounds()); |
1270 | } |
1271 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1272 | Constant *Idx) { |
1273 | // This form of the function only exists to avoid ambiguous overload |
1274 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
1275 | // ArrayRef<Value *>. |
1276 | return getGetElementPtr(Ty, C, Idx, NW: GEPNoWrapFlags::inBounds()); |
1277 | } |
1278 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1279 | ArrayRef<Value *> IdxList) { |
1280 | return getGetElementPtr(Ty, C, IdxList, NW: GEPNoWrapFlags::inBounds()); |
1281 | } |
1282 | |
1283 | static Constant *(Constant *Vec, Constant *Idx, |
1284 | Type *OnlyIfReducedTy = nullptr); |
1285 | static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, |
1286 | Type *OnlyIfReducedTy = nullptr); |
1287 | static Constant *getShuffleVector(Constant *V1, Constant *V2, |
1288 | ArrayRef<int> Mask, |
1289 | Type *OnlyIfReducedTy = nullptr); |
1290 | |
1291 | /// Return the opcode at the root of this constant expression |
1292 | unsigned getOpcode() const { return getSubclassDataFromValue(); } |
1293 | |
1294 | /// Assert that this is a shufflevector and return the mask. See class |
1295 | /// ShuffleVectorInst for a description of the mask representation. |
1296 | ArrayRef<int> getShuffleMask() const; |
1297 | |
1298 | /// Assert that this is a shufflevector and return the mask. |
1299 | /// |
1300 | /// TODO: This is a temporary hack until we update the bitcode format for |
1301 | /// shufflevector. |
1302 | Constant *getShuffleMaskForBitcode() const; |
1303 | |
1304 | /// Return a string representation for an opcode. |
1305 | const char *getOpcodeName() const; |
1306 | |
1307 | /// This returns the current constant expression with the operands replaced |
1308 | /// with the specified values. The specified array must have the same number |
1309 | /// of operands as our current one. |
1310 | Constant *getWithOperands(ArrayRef<Constant *> Ops) const { |
1311 | return getWithOperands(Ops, Ty: getType()); |
1312 | } |
1313 | |
1314 | /// Get the current expression with the operands replaced. |
1315 | /// |
1316 | /// Return the current constant expression with the operands replaced with \c |
1317 | /// Ops and the type with \c Ty. The new operands must have the same number |
1318 | /// as the current ones. |
1319 | /// |
1320 | /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something |
1321 | /// gets constant-folded, the type changes, or the expression is otherwise |
1322 | /// canonicalized. This parameter should almost always be \c false. |
1323 | Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, |
1324 | bool OnlyIfReduced = false, |
1325 | Type *SrcTy = nullptr) const; |
1326 | |
1327 | /// Returns an Instruction which implements the same operation as this |
1328 | /// ConstantExpr. It is not inserted into any basic block. |
1329 | /// |
1330 | /// A better approach to this could be to have a constructor for Instruction |
1331 | /// which would take a ConstantExpr parameter, but that would have spread |
1332 | /// implementation details of ConstantExpr outside of Constants.cpp, which |
1333 | /// would make it harder to remove ConstantExprs altogether. |
1334 | Instruction *getAsInstruction() const; |
1335 | |
1336 | /// Whether creating a constant expression for this binary operator is |
1337 | /// desirable. |
1338 | static bool isDesirableBinOp(unsigned Opcode); |
1339 | |
1340 | /// Whether creating a constant expression for this binary operator is |
1341 | /// supported. |
1342 | static bool isSupportedBinOp(unsigned Opcode); |
1343 | |
1344 | /// Whether creating a constant expression for this cast is desirable. |
1345 | static bool isDesirableCastOp(unsigned Opcode); |
1346 | |
1347 | /// Whether creating a constant expression for this cast is supported. |
1348 | static bool isSupportedCastOp(unsigned Opcode); |
1349 | |
1350 | /// Whether creating a constant expression for this getelementptr type is |
1351 | /// supported. |
1352 | static bool isSupportedGetElementPtr(const Type *SrcElemTy) { |
1353 | return !SrcElemTy->isScalableTy(); |
1354 | } |
1355 | |
1356 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1357 | static bool classof(const Value *V) { |
1358 | return V->getValueID() == ConstantExprVal; |
1359 | } |
1360 | |
1361 | private: |
1362 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
1363 | // subclasses cannot accidentally use it. |
1364 | void setValueSubclassData(unsigned short D) { |
1365 | Value::setValueSubclassData(D); |
1366 | } |
1367 | }; |
1368 | |
1369 | template <> |
1370 | struct OperandTraits<ConstantExpr> |
1371 | : public VariadicOperandTraits<ConstantExpr, 1> {}; |
1372 | |
1373 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) |
1374 | |
1375 | //===----------------------------------------------------------------------===// |
1376 | /// 'undef' values are things that do not have specified contents. |
1377 | /// These are used for a variety of purposes, including global variable |
1378 | /// initializers and operands to instructions. 'undef' values can occur with |
1379 | /// any first-class type. |
1380 | /// |
1381 | /// Undef values aren't exactly constants; if they have multiple uses, they |
1382 | /// can appear to have different bit patterns at each use. See |
1383 | /// LangRef.html#undefvalues for details. |
1384 | /// |
1385 | class UndefValue : public ConstantData { |
1386 | friend class Constant; |
1387 | |
1388 | explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} |
1389 | |
1390 | void destroyConstantImpl(); |
1391 | |
1392 | protected: |
1393 | explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {} |
1394 | |
1395 | public: |
1396 | UndefValue(const UndefValue &) = delete; |
1397 | |
1398 | /// Static factory methods - Return an 'undef' object of the specified type. |
1399 | static UndefValue *get(Type *T); |
1400 | |
1401 | /// If this Undef has array or vector type, return a undef with the right |
1402 | /// element type. |
1403 | UndefValue *getSequentialElement() const; |
1404 | |
1405 | /// If this undef has struct type, return a undef with the right element type |
1406 | /// for the specified element. |
1407 | UndefValue *getStructElement(unsigned Elt) const; |
1408 | |
1409 | /// Return an undef of the right value for the specified GEP index if we can, |
1410 | /// otherwise return null (e.g. if C is a ConstantExpr). |
1411 | UndefValue *getElementValue(Constant *C) const; |
1412 | |
1413 | /// Return an undef of the right value for the specified GEP index. |
1414 | UndefValue *getElementValue(unsigned Idx) const; |
1415 | |
1416 | /// Return the number of elements in the array, vector, or struct. |
1417 | unsigned getNumElements() const; |
1418 | |
1419 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1420 | static bool classof(const Value *V) { |
1421 | return V->getValueID() == UndefValueVal || |
1422 | V->getValueID() == PoisonValueVal; |
1423 | } |
1424 | }; |
1425 | |
1426 | //===----------------------------------------------------------------------===// |
1427 | /// In order to facilitate speculative execution, many instructions do not |
1428 | /// invoke immediate undefined behavior when provided with illegal operands, |
1429 | /// and return a poison value instead. |
1430 | /// |
1431 | /// see LangRef.html#poisonvalues for details. |
1432 | /// |
1433 | class PoisonValue final : public UndefValue { |
1434 | friend class Constant; |
1435 | |
1436 | explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {} |
1437 | |
1438 | void destroyConstantImpl(); |
1439 | |
1440 | public: |
1441 | PoisonValue(const PoisonValue &) = delete; |
1442 | |
1443 | /// Static factory methods - Return an 'poison' object of the specified type. |
1444 | static PoisonValue *get(Type *T); |
1445 | |
1446 | /// If this poison has array or vector type, return a poison with the right |
1447 | /// element type. |
1448 | PoisonValue *getSequentialElement() const; |
1449 | |
1450 | /// If this poison has struct type, return a poison with the right element |
1451 | /// type for the specified element. |
1452 | PoisonValue *getStructElement(unsigned Elt) const; |
1453 | |
1454 | /// Return an poison of the right value for the specified GEP index if we can, |
1455 | /// otherwise return null (e.g. if C is a ConstantExpr). |
1456 | PoisonValue *getElementValue(Constant *C) const; |
1457 | |
1458 | /// Return an poison of the right value for the specified GEP index. |
1459 | PoisonValue *getElementValue(unsigned Idx) const; |
1460 | |
1461 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1462 | static bool classof(const Value *V) { |
1463 | return V->getValueID() == PoisonValueVal; |
1464 | } |
1465 | }; |
1466 | |
1467 | } // end namespace llvm |
1468 | |
1469 | #endif // LLVM_IR_CONSTANTS_H |
1470 | |