1 | //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains types to represent alignments. |
10 | // They are instrumented to guarantee some invariants are preserved and prevent |
11 | // invalid manipulations. |
12 | // |
13 | // - Align represents an alignment in bytes, it is always set and always a valid |
14 | // power of two, its minimum value is 1 which means no alignment requirements. |
15 | // |
16 | // - MaybeAlign is an optional type, it may be undefined or set. When it's set |
17 | // you can get the underlying Align type by using the getValue() method. |
18 | // |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #ifndef LLVM_SUPPORT_ALIGNMENT_H_ |
22 | #define LLVM_SUPPORT_ALIGNMENT_H_ |
23 | |
24 | #include "llvm/Support/MathExtras.h" |
25 | #include <cassert> |
26 | #include <optional> |
27 | #ifndef NDEBUG |
28 | #include <string> |
29 | #endif // NDEBUG |
30 | |
31 | namespace llvm { |
32 | |
33 | #define ALIGN_CHECK_ISPOSITIVE(decl) \ |
34 | assert(decl > 0 && (#decl " should be defined")) |
35 | |
36 | /// This struct is a compact representation of a valid (non-zero power of two) |
37 | /// alignment. |
38 | /// It is suitable for use as static global constants. |
39 | struct Align { |
40 | private: |
41 | uint8_t ShiftValue = 0; /// The log2 of the required alignment. |
42 | /// ShiftValue is less than 64 by construction. |
43 | |
44 | friend struct MaybeAlign; |
45 | friend unsigned Log2(Align); |
46 | friend bool operator==(Align Lhs, Align Rhs); |
47 | friend bool operator!=(Align Lhs, Align Rhs); |
48 | friend bool operator<=(Align Lhs, Align Rhs); |
49 | friend bool operator>=(Align Lhs, Align Rhs); |
50 | friend bool operator<(Align Lhs, Align Rhs); |
51 | friend bool operator>(Align Lhs, Align Rhs); |
52 | friend unsigned encode(struct MaybeAlign A); |
53 | friend struct MaybeAlign decodeMaybeAlign(unsigned Value); |
54 | |
55 | /// A trivial type to allow construction of constexpr Align. |
56 | /// This is currently needed to workaround a bug in GCC 5.3 which prevents |
57 | /// definition of constexpr assign operators. |
58 | /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic |
59 | /// FIXME: Remove this, make all assign operators constexpr and introduce user |
60 | /// defined literals when we don't have to support GCC 5.3 anymore. |
61 | /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain |
62 | struct LogValue { |
63 | uint8_t Log; |
64 | }; |
65 | |
66 | public: |
67 | /// Default is byte-aligned. |
68 | constexpr Align() = default; |
69 | /// Do not perform checks in case of copy/move construct/assign, because the |
70 | /// checks have been performed when building `Other`. |
71 | constexpr Align(const Align &Other) = default; |
72 | constexpr Align(Align &&Other) = default; |
73 | Align &operator=(const Align &Other) = default; |
74 | Align &operator=(Align &&Other) = default; |
75 | |
76 | explicit Align(uint64_t Value) { |
77 | assert(Value > 0 && "Value must not be 0" ); |
78 | assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2" ); |
79 | ShiftValue = Log2_64(Value); |
80 | assert(ShiftValue < 64 && "Broken invariant" ); |
81 | } |
82 | |
83 | /// This is a hole in the type system and should not be abused. |
84 | /// Needed to interact with C for instance. |
85 | uint64_t value() const { return uint64_t(1) << ShiftValue; } |
86 | |
87 | // Returns the previous alignment. |
88 | Align previous() const { |
89 | assert(ShiftValue != 0 && "Undefined operation" ); |
90 | Align Out; |
91 | Out.ShiftValue = ShiftValue - 1; |
92 | return Out; |
93 | } |
94 | |
95 | /// Allow constructions of constexpr Align. |
96 | template <size_t kValue> constexpr static Align Constant() { |
97 | return LogValue{.Log: static_cast<uint8_t>(CTLog2<kValue>())}; |
98 | } |
99 | |
100 | /// Allow constructions of constexpr Align from types. |
101 | /// Compile time equivalent to Align(alignof(T)). |
102 | template <typename T> constexpr static Align Of() { |
103 | return Constant<std::alignment_of_v<T>>(); |
104 | } |
105 | |
106 | /// Constexpr constructor from LogValue type. |
107 | constexpr Align(LogValue CA) : ShiftValue(CA.Log) {} |
108 | }; |
109 | |
110 | /// Treats the value 0 as a 1, so Align is always at least 1. |
111 | inline Align assumeAligned(uint64_t Value) { |
112 | return Value ? Align(Value) : Align(); |
113 | } |
114 | |
115 | /// This struct is a compact representation of a valid (power of two) or |
116 | /// undefined (0) alignment. |
117 | struct MaybeAlign : public std::optional<Align> { |
118 | private: |
119 | using UP = std::optional<Align>; |
120 | |
121 | public: |
122 | /// Default is undefined. |
123 | MaybeAlign() = default; |
124 | /// Do not perform checks in case of copy/move construct/assign, because the |
125 | /// checks have been performed when building `Other`. |
126 | MaybeAlign(const MaybeAlign &Other) = default; |
127 | MaybeAlign &operator=(const MaybeAlign &Other) = default; |
128 | MaybeAlign(MaybeAlign &&Other) = default; |
129 | MaybeAlign &operator=(MaybeAlign &&Other) = default; |
130 | |
131 | constexpr MaybeAlign(std::nullopt_t None) : UP(None) {} |
132 | constexpr MaybeAlign(Align Value) : UP(Value) {} |
133 | explicit MaybeAlign(uint64_t Value) { |
134 | assert((Value == 0 || llvm::isPowerOf2_64(Value)) && |
135 | "Alignment is neither 0 nor a power of 2" ); |
136 | if (Value) |
137 | emplace(args&: Value); |
138 | } |
139 | |
140 | /// For convenience, returns a valid alignment or 1 if undefined. |
141 | Align valueOrOne() const { return value_or(u: Align()); } |
142 | }; |
143 | |
144 | /// Checks that SizeInBytes is a multiple of the alignment. |
145 | inline bool isAligned(Align Lhs, uint64_t SizeInBytes) { |
146 | return SizeInBytes % Lhs.value() == 0; |
147 | } |
148 | |
149 | /// Checks that Addr is a multiple of the alignment. |
150 | inline bool isAddrAligned(Align Lhs, const void *Addr) { |
151 | return isAligned(Lhs, SizeInBytes: reinterpret_cast<uintptr_t>(Addr)); |
152 | } |
153 | |
154 | /// Returns a multiple of A needed to store `Size` bytes. |
155 | inline uint64_t alignTo(uint64_t Size, Align A) { |
156 | const uint64_t Value = A.value(); |
157 | // The following line is equivalent to `(Size + Value - 1) / Value * Value`. |
158 | |
159 | // The division followed by a multiplication can be thought of as a right |
160 | // shift followed by a left shift which zeros out the extra bits produced in |
161 | // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out |
162 | // are just zero. |
163 | |
164 | // Most compilers can generate this code but the pattern may be missed when |
165 | // multiple functions gets inlined. |
166 | return (Size + Value - 1) & ~(Value - 1U); |
167 | } |
168 | |
169 | /// If non-zero \p Skew is specified, the return value will be a minimal integer |
170 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for |
171 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p |
172 | /// Skew mod \p A'. |
173 | /// |
174 | /// Examples: |
175 | /// \code |
176 | /// alignTo(5, Align(8), 7) = 7 |
177 | /// alignTo(17, Align(8), 1) = 17 |
178 | /// alignTo(~0LL, Align(8), 3) = 3 |
179 | /// \endcode |
180 | inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) { |
181 | const uint64_t Value = A.value(); |
182 | Skew %= Value; |
183 | return alignTo(Size: Size - Skew, A) + Skew; |
184 | } |
185 | |
186 | /// Aligns `Addr` to `Alignment` bytes, rounding up. |
187 | inline uintptr_t alignAddr(const void *Addr, Align Alignment) { |
188 | uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr); |
189 | assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >= |
190 | ArithAddr && |
191 | "Overflow" ); |
192 | return alignTo(Size: ArithAddr, A: Alignment); |
193 | } |
194 | |
195 | /// Returns the offset to the next integer (mod 2**64) that is greater than |
196 | /// or equal to \p Value and is a multiple of \p Align. |
197 | inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) { |
198 | return alignTo(Size: Value, A: Alignment) - Value; |
199 | } |
200 | |
201 | /// Returns the necessary adjustment for aligning `Addr` to `Alignment` |
202 | /// bytes, rounding up. |
203 | inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) { |
204 | return offsetToAlignment(Value: reinterpret_cast<uintptr_t>(Addr), Alignment); |
205 | } |
206 | |
207 | /// Returns the log2 of the alignment. |
208 | inline unsigned Log2(Align A) { return A.ShiftValue; } |
209 | |
210 | /// Returns the alignment that satisfies both alignments. |
211 | /// Same semantic as MinAlign. |
212 | inline Align commonAlignment(Align A, uint64_t Offset) { |
213 | return Align(MinAlign(A: A.value(), B: Offset)); |
214 | } |
215 | |
216 | /// Returns a representation of the alignment that encodes undefined as 0. |
217 | inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; } |
218 | |
219 | /// Dual operation of the encode function above. |
220 | inline MaybeAlign decodeMaybeAlign(unsigned Value) { |
221 | if (Value == 0) |
222 | return MaybeAlign(); |
223 | Align Out; |
224 | Out.ShiftValue = Value - 1; |
225 | return Out; |
226 | } |
227 | |
228 | /// Returns a representation of the alignment, the encoded value is positive by |
229 | /// definition. |
230 | inline unsigned encode(Align A) { return encode(A: MaybeAlign(A)); } |
231 | |
232 | /// Comparisons between Align and scalars. Rhs must be positive. |
233 | inline bool operator==(Align Lhs, uint64_t Rhs) { |
234 | ALIGN_CHECK_ISPOSITIVE(Rhs); |
235 | return Lhs.value() == Rhs; |
236 | } |
237 | inline bool operator!=(Align Lhs, uint64_t Rhs) { |
238 | ALIGN_CHECK_ISPOSITIVE(Rhs); |
239 | return Lhs.value() != Rhs; |
240 | } |
241 | inline bool operator<=(Align Lhs, uint64_t Rhs) { |
242 | ALIGN_CHECK_ISPOSITIVE(Rhs); |
243 | return Lhs.value() <= Rhs; |
244 | } |
245 | inline bool operator>=(Align Lhs, uint64_t Rhs) { |
246 | ALIGN_CHECK_ISPOSITIVE(Rhs); |
247 | return Lhs.value() >= Rhs; |
248 | } |
249 | inline bool operator<(Align Lhs, uint64_t Rhs) { |
250 | ALIGN_CHECK_ISPOSITIVE(Rhs); |
251 | return Lhs.value() < Rhs; |
252 | } |
253 | inline bool operator>(Align Lhs, uint64_t Rhs) { |
254 | ALIGN_CHECK_ISPOSITIVE(Rhs); |
255 | return Lhs.value() > Rhs; |
256 | } |
257 | |
258 | /// Comparisons operators between Align. |
259 | inline bool operator==(Align Lhs, Align Rhs) { |
260 | return Lhs.ShiftValue == Rhs.ShiftValue; |
261 | } |
262 | inline bool operator!=(Align Lhs, Align Rhs) { |
263 | return Lhs.ShiftValue != Rhs.ShiftValue; |
264 | } |
265 | inline bool operator<=(Align Lhs, Align Rhs) { |
266 | return Lhs.ShiftValue <= Rhs.ShiftValue; |
267 | } |
268 | inline bool operator>=(Align Lhs, Align Rhs) { |
269 | return Lhs.ShiftValue >= Rhs.ShiftValue; |
270 | } |
271 | inline bool operator<(Align Lhs, Align Rhs) { |
272 | return Lhs.ShiftValue < Rhs.ShiftValue; |
273 | } |
274 | inline bool operator>(Align Lhs, Align Rhs) { |
275 | return Lhs.ShiftValue > Rhs.ShiftValue; |
276 | } |
277 | |
278 | // Don't allow relational comparisons with MaybeAlign. |
279 | bool operator<=(Align Lhs, MaybeAlign Rhs) = delete; |
280 | bool operator>=(Align Lhs, MaybeAlign Rhs) = delete; |
281 | bool operator<(Align Lhs, MaybeAlign Rhs) = delete; |
282 | bool operator>(Align Lhs, MaybeAlign Rhs) = delete; |
283 | |
284 | bool operator<=(MaybeAlign Lhs, Align Rhs) = delete; |
285 | bool operator>=(MaybeAlign Lhs, Align Rhs) = delete; |
286 | bool operator<(MaybeAlign Lhs, Align Rhs) = delete; |
287 | bool operator>(MaybeAlign Lhs, Align Rhs) = delete; |
288 | |
289 | bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; |
290 | bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; |
291 | bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete; |
292 | bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete; |
293 | |
294 | // Allow equality comparisons between Align and MaybeAlign. |
295 | inline bool operator==(MaybeAlign Lhs, Align Rhs) { return Lhs && *Lhs == Rhs; } |
296 | inline bool operator!=(MaybeAlign Lhs, Align Rhs) { return !(Lhs == Rhs); } |
297 | inline bool operator==(Align Lhs, MaybeAlign Rhs) { return Rhs == Lhs; } |
298 | inline bool operator!=(Align Lhs, MaybeAlign Rhs) { return !(Rhs == Lhs); } |
299 | // Allow equality comparisons with MaybeAlign. |
300 | inline bool operator==(MaybeAlign Lhs, MaybeAlign Rhs) { |
301 | return (Lhs && Rhs && (*Lhs == *Rhs)) || (!Lhs && !Rhs); |
302 | } |
303 | inline bool operator!=(MaybeAlign Lhs, MaybeAlign Rhs) { return !(Lhs == Rhs); } |
304 | // Allow equality comparisons with std::nullopt. |
305 | inline bool operator==(MaybeAlign Lhs, std::nullopt_t) { return !bool(Lhs); } |
306 | inline bool operator!=(MaybeAlign Lhs, std::nullopt_t) { return bool(Lhs); } |
307 | inline bool operator==(std::nullopt_t, MaybeAlign Rhs) { return !bool(Rhs); } |
308 | inline bool operator!=(std::nullopt_t, MaybeAlign Rhs) { return bool(Rhs); } |
309 | |
310 | #ifndef NDEBUG |
311 | // For usage in LLVM_DEBUG macros. |
312 | inline std::string DebugStr(const Align &A) { |
313 | return std::to_string(A.value()); |
314 | } |
315 | // For usage in LLVM_DEBUG macros. |
316 | inline std::string DebugStr(const MaybeAlign &MA) { |
317 | if (MA) |
318 | return std::to_string(MA->value()); |
319 | return "None" ; |
320 | } |
321 | #endif // NDEBUG |
322 | |
323 | #undef ALIGN_CHECK_ISPOSITIVE |
324 | |
325 | } // namespace llvm |
326 | |
327 | #endif // LLVM_SUPPORT_ALIGNMENT_H_ |
328 | |