1 | //===- ELFObject.cpp ------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ELFObject.h" |
10 | #include "llvm/ADT/ArrayRef.h" |
11 | #include "llvm/ADT/STLExtras.h" |
12 | #include "llvm/ADT/StringRef.h" |
13 | #include "llvm/ADT/Twine.h" |
14 | #include "llvm/ADT/iterator_range.h" |
15 | #include "llvm/BinaryFormat/ELF.h" |
16 | #include "llvm/MC/MCELFExtras.h" |
17 | #include "llvm/MC/MCTargetOptions.h" |
18 | #include "llvm/Object/ELF.h" |
19 | #include "llvm/Object/ELFObjectFile.h" |
20 | #include "llvm/Support/Compression.h" |
21 | #include "llvm/Support/Endian.h" |
22 | #include "llvm/Support/ErrorHandling.h" |
23 | #include "llvm/Support/FileOutputBuffer.h" |
24 | #include "llvm/Support/Path.h" |
25 | #include <algorithm> |
26 | #include <cstddef> |
27 | #include <cstdint> |
28 | #include <iterator> |
29 | #include <unordered_set> |
30 | #include <utility> |
31 | #include <vector> |
32 | |
33 | using namespace llvm; |
34 | using namespace llvm::ELF; |
35 | using namespace llvm::objcopy::elf; |
36 | using namespace llvm::object; |
37 | using namespace llvm::support; |
38 | |
39 | template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { |
40 | uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + |
41 | Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); |
42 | Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); |
43 | Phdr.p_type = Seg.Type; |
44 | Phdr.p_flags = Seg.Flags; |
45 | Phdr.p_offset = Seg.Offset; |
46 | Phdr.p_vaddr = Seg.VAddr; |
47 | Phdr.p_paddr = Seg.PAddr; |
48 | Phdr.p_filesz = Seg.FileSize; |
49 | Phdr.p_memsz = Seg.MemSize; |
50 | Phdr.p_align = Seg.Align; |
51 | } |
52 | |
53 | Error SectionBase::removeSectionReferences( |
54 | bool, function_ref<bool(const SectionBase *)>) { |
55 | return Error::success(); |
56 | } |
57 | |
58 | Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) { |
59 | return Error::success(); |
60 | } |
61 | |
62 | Error SectionBase::initialize(SectionTableRef) { return Error::success(); } |
63 | void SectionBase::finalize() {} |
64 | void SectionBase::markSymbols() {} |
65 | void SectionBase::replaceSectionReferences( |
66 | const DenseMap<SectionBase *, SectionBase *> &) {} |
67 | void SectionBase::onRemove() {} |
68 | |
69 | template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { |
70 | uint8_t *B = |
71 | reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset; |
72 | Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); |
73 | Shdr.sh_name = Sec.NameIndex; |
74 | Shdr.sh_type = Sec.Type; |
75 | Shdr.sh_flags = Sec.Flags; |
76 | Shdr.sh_addr = Sec.Addr; |
77 | Shdr.sh_offset = Sec.Offset; |
78 | Shdr.sh_size = Sec.Size; |
79 | Shdr.sh_link = Sec.Link; |
80 | Shdr.sh_info = Sec.Info; |
81 | Shdr.sh_addralign = Sec.Align; |
82 | Shdr.sh_entsize = Sec.EntrySize; |
83 | } |
84 | |
85 | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) { |
86 | return Error::success(); |
87 | } |
88 | |
89 | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) { |
90 | return Error::success(); |
91 | } |
92 | |
93 | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) { |
94 | return Error::success(); |
95 | } |
96 | |
97 | template <class ELFT> |
98 | Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) { |
99 | return Error::success(); |
100 | } |
101 | |
102 | template <class ELFT> |
103 | Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { |
104 | Sec.EntrySize = sizeof(Elf_Sym); |
105 | Sec.Size = Sec.Symbols.size() * Sec.EntrySize; |
106 | // Align to the largest field in Elf_Sym. |
107 | Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); |
108 | return Error::success(); |
109 | } |
110 | |
111 | template <bool Is64> |
112 | static SmallVector<char, 0> encodeCrel(ArrayRef<Relocation> Relocations) { |
113 | using uint = std::conditional_t<Is64, uint64_t, uint32_t>; |
114 | SmallVector<char, 0> Content; |
115 | raw_svector_ostream OS(Content); |
116 | ELF::encodeCrel<Is64>(OS, Relocations, [&](const Relocation &R) { |
117 | uint32_t CurSymIdx = R.RelocSymbol ? R.RelocSymbol->Index : 0; |
118 | return ELF::Elf_Crel<Is64>{static_cast<uint>(R.Offset), CurSymIdx, R.Type, |
119 | std::make_signed_t<uint>(R.Addend)}; |
120 | }); |
121 | return Content; |
122 | } |
123 | |
124 | template <class ELFT> |
125 | Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { |
126 | if (Sec.Type == SHT_CREL) { |
127 | Sec.Size = encodeCrel<ELFT::Is64Bits>(Sec.Relocations).size(); |
128 | } else { |
129 | Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); |
130 | Sec.Size = Sec.Relocations.size() * Sec.EntrySize; |
131 | // Align to the largest field in Elf_Rel(a). |
132 | Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); |
133 | } |
134 | return Error::success(); |
135 | } |
136 | |
137 | template <class ELFT> |
138 | Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) { |
139 | return Error::success(); |
140 | } |
141 | |
142 | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) { |
143 | Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); |
144 | return Error::success(); |
145 | } |
146 | |
147 | template <class ELFT> |
148 | Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) { |
149 | return Error::success(); |
150 | } |
151 | |
152 | template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) { |
153 | return Error::success(); |
154 | } |
155 | |
156 | template <class ELFT> |
157 | Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) { |
158 | return Error::success(); |
159 | } |
160 | |
161 | Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { |
162 | return createStringError(EC: errc::operation_not_permitted, |
163 | S: "cannot write symbol section index table '" + |
164 | Sec.Name + "' " ); |
165 | } |
166 | |
167 | Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { |
168 | return createStringError(EC: errc::operation_not_permitted, |
169 | S: "cannot write symbol table '" + Sec.Name + |
170 | "' out to binary" ); |
171 | } |
172 | |
173 | Error BinarySectionWriter::visit(const RelocationSection &Sec) { |
174 | return createStringError(EC: errc::operation_not_permitted, |
175 | S: "cannot write relocation section '" + Sec.Name + |
176 | "' out to binary" ); |
177 | } |
178 | |
179 | Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { |
180 | return createStringError(EC: errc::operation_not_permitted, |
181 | S: "cannot write '" + Sec.Name + "' out to binary" ); |
182 | } |
183 | |
184 | Error BinarySectionWriter::visit(const GroupSection &Sec) { |
185 | return createStringError(EC: errc::operation_not_permitted, |
186 | S: "cannot write '" + Sec.Name + "' out to binary" ); |
187 | } |
188 | |
189 | Error SectionWriter::visit(const Section &Sec) { |
190 | if (Sec.Type != SHT_NOBITS) |
191 | llvm::copy(Range: Sec.Contents, Out: Out.getBufferStart() + Sec.Offset); |
192 | |
193 | return Error::success(); |
194 | } |
195 | |
196 | static bool addressOverflows32bit(uint64_t Addr) { |
197 | // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok |
198 | return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; |
199 | } |
200 | |
201 | template <class T> static T checkedGetHex(StringRef S) { |
202 | T Value; |
203 | bool Fail = S.getAsInteger(16, Value); |
204 | assert(!Fail); |
205 | (void)Fail; |
206 | return Value; |
207 | } |
208 | |
209 | // Fills exactly Len bytes of buffer with hexadecimal characters |
210 | // representing value 'X' |
211 | template <class T, class Iterator> |
212 | static Iterator toHexStr(T X, Iterator It, size_t Len) { |
213 | // Fill range with '0' |
214 | std::fill(It, It + Len, '0'); |
215 | |
216 | for (long I = Len - 1; I >= 0; --I) { |
217 | unsigned char Mod = static_cast<unsigned char>(X) & 15; |
218 | *(It + I) = hexdigit(X: Mod, LowerCase: false); |
219 | X >>= 4; |
220 | } |
221 | assert(X == 0); |
222 | return It + Len; |
223 | } |
224 | |
225 | uint8_t IHexRecord::getChecksum(StringRef S) { |
226 | assert((S.size() & 1) == 0); |
227 | uint8_t Checksum = 0; |
228 | while (!S.empty()) { |
229 | Checksum += checkedGetHex<uint8_t>(S: S.take_front(N: 2)); |
230 | S = S.drop_front(N: 2); |
231 | } |
232 | return -Checksum; |
233 | } |
234 | |
235 | IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, |
236 | ArrayRef<uint8_t> Data) { |
237 | IHexLineData Line(getLineLength(DataSize: Data.size())); |
238 | assert(Line.size()); |
239 | auto Iter = Line.begin(); |
240 | *Iter++ = ':'; |
241 | Iter = toHexStr(X: Data.size(), It: Iter, Len: 2); |
242 | Iter = toHexStr(X: Addr, It: Iter, Len: 4); |
243 | Iter = toHexStr(X: Type, It: Iter, Len: 2); |
244 | for (uint8_t X : Data) |
245 | Iter = toHexStr(X, It: Iter, Len: 2); |
246 | StringRef S(Line.data() + 1, std::distance(first: Line.begin() + 1, last: Iter)); |
247 | Iter = toHexStr(X: getChecksum(S), It: Iter, Len: 2); |
248 | *Iter++ = '\r'; |
249 | *Iter++ = '\n'; |
250 | assert(Iter == Line.end()); |
251 | return Line; |
252 | } |
253 | |
254 | static Error checkRecord(const IHexRecord &R) { |
255 | switch (R.Type) { |
256 | case IHexRecord::Data: |
257 | if (R.HexData.size() == 0) |
258 | return createStringError( |
259 | EC: errc::invalid_argument, |
260 | S: "zero data length is not allowed for data records" ); |
261 | break; |
262 | case IHexRecord::EndOfFile: |
263 | break; |
264 | case IHexRecord::SegmentAddr: |
265 | // 20-bit segment address. Data length must be 2 bytes |
266 | // (4 bytes in hex) |
267 | if (R.HexData.size() != 4) |
268 | return createStringError( |
269 | EC: errc::invalid_argument, |
270 | S: "segment address data should be 2 bytes in size" ); |
271 | break; |
272 | case IHexRecord::StartAddr80x86: |
273 | case IHexRecord::StartAddr: |
274 | if (R.HexData.size() != 8) |
275 | return createStringError(EC: errc::invalid_argument, |
276 | S: "start address data should be 4 bytes in size" ); |
277 | // According to Intel HEX specification '03' record |
278 | // only specifies the code address within the 20-bit |
279 | // segmented address space of the 8086/80186. This |
280 | // means 12 high order bits should be zeroes. |
281 | if (R.Type == IHexRecord::StartAddr80x86 && |
282 | R.HexData.take_front(N: 3) != "000" ) |
283 | return createStringError(EC: errc::invalid_argument, |
284 | S: "start address exceeds 20 bit for 80x86" ); |
285 | break; |
286 | case IHexRecord::ExtendedAddr: |
287 | // 16-31 bits of linear base address |
288 | if (R.HexData.size() != 4) |
289 | return createStringError( |
290 | EC: errc::invalid_argument, |
291 | S: "extended address data should be 2 bytes in size" ); |
292 | break; |
293 | default: |
294 | // Unknown record type |
295 | return createStringError(EC: errc::invalid_argument, Fmt: "unknown record type: %u" , |
296 | Vals: static_cast<unsigned>(R.Type)); |
297 | } |
298 | return Error::success(); |
299 | } |
300 | |
301 | // Checks that IHEX line contains valid characters. |
302 | // This allows converting hexadecimal data to integers |
303 | // without extra verification. |
304 | static Error checkChars(StringRef Line) { |
305 | assert(!Line.empty()); |
306 | if (Line[0] != ':') |
307 | return createStringError(EC: errc::invalid_argument, |
308 | S: "missing ':' in the beginning of line." ); |
309 | |
310 | for (size_t Pos = 1; Pos < Line.size(); ++Pos) |
311 | if (hexDigitValue(C: Line[Pos]) == -1U) |
312 | return createStringError(EC: errc::invalid_argument, |
313 | Fmt: "invalid character at position %zu." , Vals: Pos + 1); |
314 | return Error::success(); |
315 | } |
316 | |
317 | Expected<IHexRecord> IHexRecord::parse(StringRef Line) { |
318 | assert(!Line.empty()); |
319 | |
320 | // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' |
321 | if (Line.size() < 11) |
322 | return createStringError(EC: errc::invalid_argument, |
323 | Fmt: "line is too short: %zu chars." , Vals: Line.size()); |
324 | |
325 | if (Error E = checkChars(Line)) |
326 | return std::move(E); |
327 | |
328 | IHexRecord Rec; |
329 | size_t DataLen = checkedGetHex<uint8_t>(S: Line.substr(Start: 1, N: 2)); |
330 | if (Line.size() != getLength(DataSize: DataLen)) |
331 | return createStringError(EC: errc::invalid_argument, |
332 | Fmt: "invalid line length %zu (should be %zu)" , |
333 | Vals: Line.size(), Vals: getLength(DataSize: DataLen)); |
334 | |
335 | Rec.Addr = checkedGetHex<uint16_t>(S: Line.substr(Start: 3, N: 4)); |
336 | Rec.Type = checkedGetHex<uint8_t>(S: Line.substr(Start: 7, N: 2)); |
337 | Rec.HexData = Line.substr(Start: 9, N: DataLen * 2); |
338 | |
339 | if (getChecksum(S: Line.drop_front(N: 1)) != 0) |
340 | return createStringError(EC: errc::invalid_argument, S: "incorrect checksum." ); |
341 | if (Error E = checkRecord(R: Rec)) |
342 | return std::move(E); |
343 | return Rec; |
344 | } |
345 | |
346 | static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { |
347 | Segment *Seg = Sec->ParentSegment; |
348 | if (Seg && Seg->Type != ELF::PT_LOAD) |
349 | Seg = nullptr; |
350 | return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset |
351 | : Sec->Addr; |
352 | } |
353 | |
354 | void IHexSectionWriterBase::writeSection(const SectionBase *Sec, |
355 | ArrayRef<uint8_t> Data) { |
356 | assert(Data.size() == Sec->Size); |
357 | const uint32_t ChunkSize = 16; |
358 | uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; |
359 | while (!Data.empty()) { |
360 | uint64_t DataSize = std::min<uint64_t>(a: Data.size(), b: ChunkSize); |
361 | if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { |
362 | if (Addr > 0xFFFFFU) { |
363 | // Write extended address record, zeroing segment address |
364 | // if needed. |
365 | if (SegmentAddr != 0) |
366 | SegmentAddr = writeSegmentAddr(Addr: 0U); |
367 | BaseAddr = writeBaseAddr(Addr); |
368 | } else { |
369 | // We can still remain 16-bit |
370 | SegmentAddr = writeSegmentAddr(Addr); |
371 | } |
372 | } |
373 | uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; |
374 | assert(SegOffset <= 0xFFFFU); |
375 | DataSize = std::min(a: DataSize, b: 0x10000U - SegOffset); |
376 | writeData(Type: 0, Addr: SegOffset, Data: Data.take_front(N: DataSize)); |
377 | Addr += DataSize; |
378 | Data = Data.drop_front(N: DataSize); |
379 | } |
380 | } |
381 | |
382 | uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { |
383 | assert(Addr <= 0xFFFFFU); |
384 | uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0}; |
385 | writeData(Type: 2, Addr: 0, Data); |
386 | return Addr & 0xF0000U; |
387 | } |
388 | |
389 | uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { |
390 | assert(Addr <= 0xFFFFFFFFU); |
391 | uint64_t Base = Addr & 0xFFFF0000U; |
392 | uint8_t Data[] = {static_cast<uint8_t>(Base >> 24), |
393 | static_cast<uint8_t>((Base >> 16) & 0xFF)}; |
394 | writeData(Type: 4, Addr: 0, Data); |
395 | return Base; |
396 | } |
397 | |
398 | void IHexSectionWriterBase::writeData(uint8_t, uint16_t, |
399 | ArrayRef<uint8_t> Data) { |
400 | Offset += IHexRecord::getLineLength(DataSize: Data.size()); |
401 | } |
402 | |
403 | Error IHexSectionWriterBase::visit(const Section &Sec) { |
404 | writeSection(Sec: &Sec, Data: Sec.Contents); |
405 | return Error::success(); |
406 | } |
407 | |
408 | Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { |
409 | writeSection(Sec: &Sec, Data: Sec.Data); |
410 | return Error::success(); |
411 | } |
412 | |
413 | Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { |
414 | // Check that sizer has already done its work |
415 | assert(Sec.Size == Sec.StrTabBuilder.getSize()); |
416 | // We are free to pass an invalid pointer to writeSection as long |
417 | // as we don't actually write any data. The real writer class has |
418 | // to override this method . |
419 | writeSection(Sec: &Sec, Data: {nullptr, static_cast<size_t>(Sec.Size)}); |
420 | return Error::success(); |
421 | } |
422 | |
423 | Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { |
424 | writeSection(Sec: &Sec, Data: Sec.Contents); |
425 | return Error::success(); |
426 | } |
427 | |
428 | void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, |
429 | ArrayRef<uint8_t> Data) { |
430 | IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); |
431 | memcpy(dest: Out.getBufferStart() + Offset, src: HexData.data(), n: HexData.size()); |
432 | Offset += HexData.size(); |
433 | } |
434 | |
435 | Error IHexSectionWriter::visit(const StringTableSection &Sec) { |
436 | assert(Sec.Size == Sec.StrTabBuilder.getSize()); |
437 | std::vector<uint8_t> Data(Sec.Size); |
438 | Sec.StrTabBuilder.write(Buf: Data.data()); |
439 | writeSection(Sec: &Sec, Data); |
440 | return Error::success(); |
441 | } |
442 | |
443 | Error Section::accept(SectionVisitor &Visitor) const { |
444 | return Visitor.visit(Sec: *this); |
445 | } |
446 | |
447 | Error Section::accept(MutableSectionVisitor &Visitor) { |
448 | return Visitor.visit(Sec&: *this); |
449 | } |
450 | |
451 | void Section::restoreSymTabLink(SymbolTableSection &SymTab) { |
452 | if (HasSymTabLink) { |
453 | assert(LinkSection == nullptr); |
454 | LinkSection = &SymTab; |
455 | } |
456 | } |
457 | |
458 | Error SectionWriter::visit(const OwnedDataSection &Sec) { |
459 | llvm::copy(Range: Sec.Data, Out: Out.getBufferStart() + Sec.Offset); |
460 | return Error::success(); |
461 | } |
462 | |
463 | template <class ELFT> |
464 | Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { |
465 | ArrayRef<uint8_t> Compressed = |
466 | Sec.OriginalData.slice(N: sizeof(Elf_Chdr_Impl<ELFT>)); |
467 | SmallVector<uint8_t, 128> Decompressed; |
468 | DebugCompressionType Type; |
469 | switch (Sec.ChType) { |
470 | case ELFCOMPRESS_ZLIB: |
471 | Type = DebugCompressionType::Zlib; |
472 | break; |
473 | case ELFCOMPRESS_ZSTD: |
474 | Type = DebugCompressionType::Zstd; |
475 | break; |
476 | default: |
477 | return createStringError(EC: errc::invalid_argument, |
478 | S: "--decompress-debug-sections: ch_type (" + |
479 | Twine(Sec.ChType) + ") of section '" + |
480 | Sec.Name + "' is unsupported" ); |
481 | } |
482 | if (auto *Reason = |
483 | compression::getReasonIfUnsupported(F: compression::formatFor(Type))) |
484 | return createStringError(EC: errc::invalid_argument, |
485 | S: "failed to decompress section '" + Sec.Name + |
486 | "': " + Reason); |
487 | if (Error E = compression::decompress(T: Type, Input: Compressed, Output&: Decompressed, |
488 | UncompressedSize: static_cast<size_t>(Sec.Size))) |
489 | return createStringError(EC: errc::invalid_argument, |
490 | S: "failed to decompress section '" + Sec.Name + |
491 | "': " + toString(E: std::move(E))); |
492 | |
493 | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
494 | std::copy(Decompressed.begin(), Decompressed.end(), Buf); |
495 | |
496 | return Error::success(); |
497 | } |
498 | |
499 | Error BinarySectionWriter::visit(const DecompressedSection &Sec) { |
500 | return createStringError(EC: errc::operation_not_permitted, |
501 | S: "cannot write compressed section '" + Sec.Name + |
502 | "' " ); |
503 | } |
504 | |
505 | Error DecompressedSection::accept(SectionVisitor &Visitor) const { |
506 | return Visitor.visit(Sec: *this); |
507 | } |
508 | |
509 | Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { |
510 | return Visitor.visit(Sec&: *this); |
511 | } |
512 | |
513 | Error OwnedDataSection::accept(SectionVisitor &Visitor) const { |
514 | return Visitor.visit(Sec: *this); |
515 | } |
516 | |
517 | Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { |
518 | return Visitor.visit(Sec&: *this); |
519 | } |
520 | |
521 | void OwnedDataSection::appendHexData(StringRef HexData) { |
522 | assert((HexData.size() & 1) == 0); |
523 | while (!HexData.empty()) { |
524 | Data.push_back(x: checkedGetHex<uint8_t>(S: HexData.take_front(N: 2))); |
525 | HexData = HexData.drop_front(N: 2); |
526 | } |
527 | Size = Data.size(); |
528 | } |
529 | |
530 | Error BinarySectionWriter::visit(const CompressedSection &Sec) { |
531 | return createStringError(EC: errc::operation_not_permitted, |
532 | S: "cannot write compressed section '" + Sec.Name + |
533 | "' " ); |
534 | } |
535 | |
536 | template <class ELFT> |
537 | Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { |
538 | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
539 | Elf_Chdr_Impl<ELFT> Chdr = {}; |
540 | switch (Sec.CompressionType) { |
541 | case DebugCompressionType::None: |
542 | std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); |
543 | return Error::success(); |
544 | case DebugCompressionType::Zlib: |
545 | Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; |
546 | break; |
547 | case DebugCompressionType::Zstd: |
548 | Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD; |
549 | break; |
550 | } |
551 | Chdr.ch_size = Sec.DecompressedSize; |
552 | Chdr.ch_addralign = Sec.DecompressedAlign; |
553 | memcpy(Buf, &Chdr, sizeof(Chdr)); |
554 | Buf += sizeof(Chdr); |
555 | |
556 | std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); |
557 | return Error::success(); |
558 | } |
559 | |
560 | CompressedSection::CompressedSection(const SectionBase &Sec, |
561 | DebugCompressionType CompressionType, |
562 | bool Is64Bits) |
563 | : SectionBase(Sec), CompressionType(CompressionType), |
564 | DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { |
565 | compression::compress(P: compression::Params(CompressionType), Input: OriginalData, |
566 | Output&: CompressedData); |
567 | |
568 | Flags |= ELF::SHF_COMPRESSED; |
569 | OriginalFlags |= ELF::SHF_COMPRESSED; |
570 | size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>) |
571 | : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>); |
572 | Size = ChdrSize + CompressedData.size(); |
573 | Align = 8; |
574 | } |
575 | |
576 | CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, |
577 | uint32_t ChType, uint64_t DecompressedSize, |
578 | uint64_t DecompressedAlign) |
579 | : ChType(ChType), CompressionType(DebugCompressionType::None), |
580 | DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { |
581 | OriginalData = CompressedData; |
582 | } |
583 | |
584 | Error CompressedSection::accept(SectionVisitor &Visitor) const { |
585 | return Visitor.visit(Sec: *this); |
586 | } |
587 | |
588 | Error CompressedSection::accept(MutableSectionVisitor &Visitor) { |
589 | return Visitor.visit(Sec&: *this); |
590 | } |
591 | |
592 | void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(S: Name); } |
593 | |
594 | uint32_t StringTableSection::findIndex(StringRef Name) const { |
595 | return StrTabBuilder.getOffset(S: Name); |
596 | } |
597 | |
598 | void StringTableSection::prepareForLayout() { |
599 | StrTabBuilder.finalize(); |
600 | Size = StrTabBuilder.getSize(); |
601 | } |
602 | |
603 | Error SectionWriter::visit(const StringTableSection &Sec) { |
604 | Sec.StrTabBuilder.write(Buf: reinterpret_cast<uint8_t *>(Out.getBufferStart()) + |
605 | Sec.Offset); |
606 | return Error::success(); |
607 | } |
608 | |
609 | Error StringTableSection::accept(SectionVisitor &Visitor) const { |
610 | return Visitor.visit(Sec: *this); |
611 | } |
612 | |
613 | Error StringTableSection::accept(MutableSectionVisitor &Visitor) { |
614 | return Visitor.visit(Sec&: *this); |
615 | } |
616 | |
617 | template <class ELFT> |
618 | Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { |
619 | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
620 | llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf)); |
621 | return Error::success(); |
622 | } |
623 | |
624 | Error SectionIndexSection::initialize(SectionTableRef SecTable) { |
625 | Size = 0; |
626 | Expected<SymbolTableSection *> Sec = |
627 | SecTable.getSectionOfType<SymbolTableSection>( |
628 | Index: Link, |
629 | IndexErrMsg: "Link field value " + Twine(Link) + " in section " + Name + |
630 | " is invalid" , |
631 | TypeErrMsg: "Link field value " + Twine(Link) + " in section " + Name + |
632 | " is not a symbol table" ); |
633 | if (!Sec) |
634 | return Sec.takeError(); |
635 | |
636 | setSymTab(*Sec); |
637 | Symbols->setShndxTable(this); |
638 | return Error::success(); |
639 | } |
640 | |
641 | void SectionIndexSection::finalize() { Link = Symbols->Index; } |
642 | |
643 | Error SectionIndexSection::accept(SectionVisitor &Visitor) const { |
644 | return Visitor.visit(Sec: *this); |
645 | } |
646 | |
647 | Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { |
648 | return Visitor.visit(Sec&: *this); |
649 | } |
650 | |
651 | static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { |
652 | switch (Index) { |
653 | case SHN_ABS: |
654 | case SHN_COMMON: |
655 | return true; |
656 | } |
657 | |
658 | if (Machine == EM_AMDGPU) { |
659 | return Index == SHN_AMDGPU_LDS; |
660 | } |
661 | |
662 | if (Machine == EM_MIPS) { |
663 | switch (Index) { |
664 | case SHN_MIPS_ACOMMON: |
665 | case SHN_MIPS_SCOMMON: |
666 | case SHN_MIPS_SUNDEFINED: |
667 | return true; |
668 | } |
669 | } |
670 | |
671 | if (Machine == EM_HEXAGON) { |
672 | switch (Index) { |
673 | case SHN_HEXAGON_SCOMMON: |
674 | case SHN_HEXAGON_SCOMMON_1: |
675 | case SHN_HEXAGON_SCOMMON_2: |
676 | case SHN_HEXAGON_SCOMMON_4: |
677 | case SHN_HEXAGON_SCOMMON_8: |
678 | return true; |
679 | } |
680 | } |
681 | return false; |
682 | } |
683 | |
684 | // Large indexes force us to clarify exactly what this function should do. This |
685 | // function should return the value that will appear in st_shndx when written |
686 | // out. |
687 | uint16_t Symbol::getShndx() const { |
688 | if (DefinedIn != nullptr) { |
689 | if (DefinedIn->Index >= SHN_LORESERVE) |
690 | return SHN_XINDEX; |
691 | return DefinedIn->Index; |
692 | } |
693 | |
694 | if (ShndxType == SYMBOL_SIMPLE_INDEX) { |
695 | // This means that we don't have a defined section but we do need to |
696 | // output a legitimate section index. |
697 | return SHN_UNDEF; |
698 | } |
699 | |
700 | assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || |
701 | (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || |
702 | (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); |
703 | return static_cast<uint16_t>(ShndxType); |
704 | } |
705 | |
706 | bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } |
707 | |
708 | void SymbolTableSection::assignIndices() { |
709 | uint32_t Index = 0; |
710 | for (auto &Sym : Symbols) { |
711 | if (Sym->Index != Index) |
712 | IndicesChanged = true; |
713 | Sym->Index = Index++; |
714 | } |
715 | } |
716 | |
717 | void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, |
718 | SectionBase *DefinedIn, uint64_t Value, |
719 | uint8_t Visibility, uint16_t Shndx, |
720 | uint64_t SymbolSize) { |
721 | Symbol Sym; |
722 | Sym.Name = Name.str(); |
723 | Sym.Binding = Bind; |
724 | Sym.Type = Type; |
725 | Sym.DefinedIn = DefinedIn; |
726 | if (DefinedIn != nullptr) |
727 | DefinedIn->HasSymbol = true; |
728 | if (DefinedIn == nullptr) { |
729 | if (Shndx >= SHN_LORESERVE) |
730 | Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); |
731 | else |
732 | Sym.ShndxType = SYMBOL_SIMPLE_INDEX; |
733 | } |
734 | Sym.Value = Value; |
735 | Sym.Visibility = Visibility; |
736 | Sym.Size = SymbolSize; |
737 | Sym.Index = Symbols.size(); |
738 | Symbols.emplace_back(args: std::make_unique<Symbol>(args&: Sym)); |
739 | Size += this->EntrySize; |
740 | } |
741 | |
742 | Error SymbolTableSection::removeSectionReferences( |
743 | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
744 | if (ToRemove(SectionIndexTable)) |
745 | SectionIndexTable = nullptr; |
746 | if (ToRemove(SymbolNames)) { |
747 | if (!AllowBrokenLinks) |
748 | return createStringError( |
749 | EC: llvm::errc::invalid_argument, |
750 | Fmt: "string table '%s' cannot be removed because it is " |
751 | "referenced by the symbol table '%s'" , |
752 | Vals: SymbolNames->Name.data(), Vals: this->Name.data()); |
753 | SymbolNames = nullptr; |
754 | } |
755 | return removeSymbols( |
756 | ToRemove: [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); |
757 | } |
758 | |
759 | void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { |
760 | for (SymPtr &Sym : llvm::drop_begin(RangeOrContainer&: Symbols)) |
761 | Callable(*Sym); |
762 | std::stable_partition( |
763 | first: std::begin(cont&: Symbols), last: std::end(cont&: Symbols), |
764 | pred: [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); |
765 | assignIndices(); |
766 | } |
767 | |
768 | Error SymbolTableSection::removeSymbols( |
769 | function_ref<bool(const Symbol &)> ToRemove) { |
770 | Symbols.erase( |
771 | first: std::remove_if(first: std::begin(cont&: Symbols) + 1, last: std::end(cont&: Symbols), |
772 | pred: [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), |
773 | last: std::end(cont&: Symbols)); |
774 | auto PrevSize = Size; |
775 | Size = Symbols.size() * EntrySize; |
776 | if (Size < PrevSize) |
777 | IndicesChanged = true; |
778 | assignIndices(); |
779 | return Error::success(); |
780 | } |
781 | |
782 | void SymbolTableSection::replaceSectionReferences( |
783 | const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
784 | for (std::unique_ptr<Symbol> &Sym : Symbols) |
785 | if (SectionBase *To = FromTo.lookup(Val: Sym->DefinedIn)) |
786 | Sym->DefinedIn = To; |
787 | } |
788 | |
789 | Error SymbolTableSection::initialize(SectionTableRef SecTable) { |
790 | Size = 0; |
791 | Expected<StringTableSection *> Sec = |
792 | SecTable.getSectionOfType<StringTableSection>( |
793 | Index: Link, |
794 | IndexErrMsg: "Symbol table has link index of " + Twine(Link) + |
795 | " which is not a valid index" , |
796 | TypeErrMsg: "Symbol table has link index of " + Twine(Link) + |
797 | " which is not a string table" ); |
798 | if (!Sec) |
799 | return Sec.takeError(); |
800 | |
801 | setStrTab(*Sec); |
802 | return Error::success(); |
803 | } |
804 | |
805 | void SymbolTableSection::finalize() { |
806 | uint32_t MaxLocalIndex = 0; |
807 | for (std::unique_ptr<Symbol> &Sym : Symbols) { |
808 | Sym->NameIndex = |
809 | SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Name: Sym->Name); |
810 | if (Sym->Binding == STB_LOCAL) |
811 | MaxLocalIndex = std::max(a: MaxLocalIndex, b: Sym->Index); |
812 | } |
813 | // Now we need to set the Link and Info fields. |
814 | Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; |
815 | Info = MaxLocalIndex + 1; |
816 | } |
817 | |
818 | void SymbolTableSection::prepareForLayout() { |
819 | // Reserve proper amount of space in section index table, so we can |
820 | // layout sections correctly. We will fill the table with correct |
821 | // indexes later in fillShdnxTable. |
822 | if (SectionIndexTable) |
823 | SectionIndexTable->reserve(NumSymbols: Symbols.size()); |
824 | |
825 | // Add all of our strings to SymbolNames so that SymbolNames has the right |
826 | // size before layout is decided. |
827 | // If the symbol names section has been removed, don't try to add strings to |
828 | // the table. |
829 | if (SymbolNames != nullptr) |
830 | for (std::unique_ptr<Symbol> &Sym : Symbols) |
831 | SymbolNames->addString(Name: Sym->Name); |
832 | } |
833 | |
834 | void SymbolTableSection::fillShndxTable() { |
835 | if (SectionIndexTable == nullptr) |
836 | return; |
837 | // Fill section index table with real section indexes. This function must |
838 | // be called after assignOffsets. |
839 | for (const std::unique_ptr<Symbol> &Sym : Symbols) { |
840 | if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) |
841 | SectionIndexTable->addIndex(Index: Sym->DefinedIn->Index); |
842 | else |
843 | SectionIndexTable->addIndex(Index: SHN_UNDEF); |
844 | } |
845 | } |
846 | |
847 | Expected<const Symbol *> |
848 | SymbolTableSection::getSymbolByIndex(uint32_t Index) const { |
849 | if (Symbols.size() <= Index) |
850 | return createStringError(EC: errc::invalid_argument, |
851 | S: "invalid symbol index: " + Twine(Index)); |
852 | return Symbols[Index].get(); |
853 | } |
854 | |
855 | Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) { |
856 | Expected<const Symbol *> Sym = |
857 | static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index); |
858 | if (!Sym) |
859 | return Sym.takeError(); |
860 | |
861 | return const_cast<Symbol *>(*Sym); |
862 | } |
863 | |
864 | template <class ELFT> |
865 | Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { |
866 | Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset); |
867 | // Loop though symbols setting each entry of the symbol table. |
868 | for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) { |
869 | Sym->st_name = Symbol->NameIndex; |
870 | Sym->st_value = Symbol->Value; |
871 | Sym->st_size = Symbol->Size; |
872 | Sym->st_other = Symbol->Visibility; |
873 | Sym->setBinding(Symbol->Binding); |
874 | Sym->setType(Symbol->Type); |
875 | Sym->st_shndx = Symbol->getShndx(); |
876 | ++Sym; |
877 | } |
878 | return Error::success(); |
879 | } |
880 | |
881 | Error SymbolTableSection::accept(SectionVisitor &Visitor) const { |
882 | return Visitor.visit(Sec: *this); |
883 | } |
884 | |
885 | Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { |
886 | return Visitor.visit(Sec&: *this); |
887 | } |
888 | |
889 | StringRef RelocationSectionBase::getNamePrefix() const { |
890 | switch (Type) { |
891 | case SHT_REL: |
892 | return ".rel" ; |
893 | case SHT_RELA: |
894 | return ".rela" ; |
895 | case SHT_CREL: |
896 | return ".crel" ; |
897 | default: |
898 | llvm_unreachable("not a relocation section" ); |
899 | } |
900 | } |
901 | |
902 | Error RelocationSection::removeSectionReferences( |
903 | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
904 | if (ToRemove(Symbols)) { |
905 | if (!AllowBrokenLinks) |
906 | return createStringError( |
907 | EC: llvm::errc::invalid_argument, |
908 | Fmt: "symbol table '%s' cannot be removed because it is " |
909 | "referenced by the relocation section '%s'" , |
910 | Vals: Symbols->Name.data(), Vals: this->Name.data()); |
911 | Symbols = nullptr; |
912 | } |
913 | |
914 | for (const Relocation &R : Relocations) { |
915 | if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || |
916 | !ToRemove(R.RelocSymbol->DefinedIn)) |
917 | continue; |
918 | return createStringError(EC: llvm::errc::invalid_argument, |
919 | Fmt: "section '%s' cannot be removed: (%s+0x%" PRIx64 |
920 | ") has relocation against symbol '%s'" , |
921 | Vals: R.RelocSymbol->DefinedIn->Name.data(), |
922 | Vals: SecToApplyRel->Name.data(), Vals: R.Offset, |
923 | Vals: R.RelocSymbol->Name.c_str()); |
924 | } |
925 | |
926 | return Error::success(); |
927 | } |
928 | |
929 | template <class SymTabType> |
930 | Error RelocSectionWithSymtabBase<SymTabType>::initialize( |
931 | SectionTableRef SecTable) { |
932 | if (Link != SHN_UNDEF) { |
933 | Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>( |
934 | Link, |
935 | "Link field value " + Twine(Link) + " in section " + Name + |
936 | " is invalid" , |
937 | "Link field value " + Twine(Link) + " in section " + Name + |
938 | " is not a symbol table" ); |
939 | if (!Sec) |
940 | return Sec.takeError(); |
941 | |
942 | setSymTab(*Sec); |
943 | } |
944 | |
945 | if (Info != SHN_UNDEF) { |
946 | Expected<SectionBase *> Sec = |
947 | SecTable.getSection(Index: Info, ErrMsg: "Info field value " + Twine(Info) + |
948 | " in section " + Name + " is invalid" ); |
949 | if (!Sec) |
950 | return Sec.takeError(); |
951 | |
952 | setSection(*Sec); |
953 | } else |
954 | setSection(nullptr); |
955 | |
956 | return Error::success(); |
957 | } |
958 | |
959 | template <class SymTabType> |
960 | void RelocSectionWithSymtabBase<SymTabType>::finalize() { |
961 | this->Link = Symbols ? Symbols->Index : 0; |
962 | |
963 | if (SecToApplyRel != nullptr) |
964 | this->Info = SecToApplyRel->Index; |
965 | } |
966 | |
967 | template <class ELFT> |
968 | static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {} |
969 | |
970 | template <class ELFT> |
971 | static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { |
972 | Rela.r_addend = Addend; |
973 | } |
974 | |
975 | template <class RelRange, class T> |
976 | static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { |
977 | for (const auto &Reloc : Relocations) { |
978 | Buf->r_offset = Reloc.Offset; |
979 | setAddend(*Buf, Reloc.Addend); |
980 | Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, |
981 | Reloc.Type, IsMips64EL); |
982 | ++Buf; |
983 | } |
984 | } |
985 | |
986 | template <class ELFT> |
987 | Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { |
988 | uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
989 | if (Sec.Type == SHT_CREL) { |
990 | auto Content = encodeCrel<ELFT::Is64Bits>(Sec.Relocations); |
991 | memcpy(Buf, Content.data(), Content.size()); |
992 | } else if (Sec.Type == SHT_REL) { |
993 | writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf), |
994 | Sec.getObject().IsMips64EL); |
995 | } else { |
996 | writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf), |
997 | Sec.getObject().IsMips64EL); |
998 | } |
999 | return Error::success(); |
1000 | } |
1001 | |
1002 | Error RelocationSection::accept(SectionVisitor &Visitor) const { |
1003 | return Visitor.visit(Sec: *this); |
1004 | } |
1005 | |
1006 | Error RelocationSection::accept(MutableSectionVisitor &Visitor) { |
1007 | return Visitor.visit(Sec&: *this); |
1008 | } |
1009 | |
1010 | Error RelocationSection::removeSymbols( |
1011 | function_ref<bool(const Symbol &)> ToRemove) { |
1012 | for (const Relocation &Reloc : Relocations) |
1013 | if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) |
1014 | return createStringError( |
1015 | EC: llvm::errc::invalid_argument, |
1016 | Fmt: "not stripping symbol '%s' because it is named in a relocation" , |
1017 | Vals: Reloc.RelocSymbol->Name.data()); |
1018 | return Error::success(); |
1019 | } |
1020 | |
1021 | void RelocationSection::markSymbols() { |
1022 | for (const Relocation &Reloc : Relocations) |
1023 | if (Reloc.RelocSymbol) |
1024 | Reloc.RelocSymbol->Referenced = true; |
1025 | } |
1026 | |
1027 | void RelocationSection::replaceSectionReferences( |
1028 | const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
1029 | // Update the target section if it was replaced. |
1030 | if (SectionBase *To = FromTo.lookup(Val: SecToApplyRel)) |
1031 | SecToApplyRel = To; |
1032 | } |
1033 | |
1034 | Error SectionWriter::visit(const DynamicRelocationSection &Sec) { |
1035 | llvm::copy(Range: Sec.Contents, Out: Out.getBufferStart() + Sec.Offset); |
1036 | return Error::success(); |
1037 | } |
1038 | |
1039 | Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { |
1040 | return Visitor.visit(Sec: *this); |
1041 | } |
1042 | |
1043 | Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { |
1044 | return Visitor.visit(Sec&: *this); |
1045 | } |
1046 | |
1047 | Error DynamicRelocationSection::removeSectionReferences( |
1048 | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
1049 | if (ToRemove(Symbols)) { |
1050 | if (!AllowBrokenLinks) |
1051 | return createStringError( |
1052 | EC: llvm::errc::invalid_argument, |
1053 | Fmt: "symbol table '%s' cannot be removed because it is " |
1054 | "referenced by the relocation section '%s'" , |
1055 | Vals: Symbols->Name.data(), Vals: this->Name.data()); |
1056 | Symbols = nullptr; |
1057 | } |
1058 | |
1059 | // SecToApplyRel contains a section referenced by sh_info field. It keeps |
1060 | // a section to which the relocation section applies. When we remove any |
1061 | // sections we also remove their relocation sections. Since we do that much |
1062 | // earlier, this assert should never be triggered. |
1063 | assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); |
1064 | return Error::success(); |
1065 | } |
1066 | |
1067 | Error Section::removeSectionReferences( |
1068 | bool AllowBrokenDependency, |
1069 | function_ref<bool(const SectionBase *)> ToRemove) { |
1070 | if (ToRemove(LinkSection)) { |
1071 | if (!AllowBrokenDependency) |
1072 | return createStringError(EC: llvm::errc::invalid_argument, |
1073 | Fmt: "section '%s' cannot be removed because it is " |
1074 | "referenced by the section '%s'" , |
1075 | Vals: LinkSection->Name.data(), Vals: this->Name.data()); |
1076 | LinkSection = nullptr; |
1077 | } |
1078 | return Error::success(); |
1079 | } |
1080 | |
1081 | void GroupSection::finalize() { |
1082 | this->Info = Sym ? Sym->Index : 0; |
1083 | this->Link = SymTab ? SymTab->Index : 0; |
1084 | // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global |
1085 | // status is not part of the equation. If Sym is localized, the intention is |
1086 | // likely to make the group fully localized. Drop GRP_COMDAT to suppress |
1087 | // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc |
1088 | if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) |
1089 | this->FlagWord &= ~GRP_COMDAT; |
1090 | } |
1091 | |
1092 | Error GroupSection::removeSectionReferences( |
1093 | bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { |
1094 | if (ToRemove(SymTab)) { |
1095 | if (!AllowBrokenLinks) |
1096 | return createStringError( |
1097 | EC: llvm::errc::invalid_argument, |
1098 | Fmt: "section '.symtab' cannot be removed because it is " |
1099 | "referenced by the group section '%s'" , |
1100 | Vals: this->Name.data()); |
1101 | SymTab = nullptr; |
1102 | Sym = nullptr; |
1103 | } |
1104 | llvm::erase_if(C&: GroupMembers, P: ToRemove); |
1105 | return Error::success(); |
1106 | } |
1107 | |
1108 | Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { |
1109 | if (ToRemove(*Sym)) |
1110 | return createStringError(EC: llvm::errc::invalid_argument, |
1111 | Fmt: "symbol '%s' cannot be removed because it is " |
1112 | "referenced by the section '%s[%d]'" , |
1113 | Vals: Sym->Name.data(), Vals: this->Name.data(), Vals: this->Index); |
1114 | return Error::success(); |
1115 | } |
1116 | |
1117 | void GroupSection::markSymbols() { |
1118 | if (Sym) |
1119 | Sym->Referenced = true; |
1120 | } |
1121 | |
1122 | void GroupSection::replaceSectionReferences( |
1123 | const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
1124 | for (SectionBase *&Sec : GroupMembers) |
1125 | if (SectionBase *To = FromTo.lookup(Val: Sec)) |
1126 | Sec = To; |
1127 | } |
1128 | |
1129 | void GroupSection::onRemove() { |
1130 | // As the header section of the group is removed, drop the Group flag in its |
1131 | // former members. |
1132 | for (SectionBase *Sec : GroupMembers) |
1133 | Sec->Flags &= ~SHF_GROUP; |
1134 | } |
1135 | |
1136 | Error Section::initialize(SectionTableRef SecTable) { |
1137 | if (Link == ELF::SHN_UNDEF) |
1138 | return Error::success(); |
1139 | |
1140 | Expected<SectionBase *> Sec = |
1141 | SecTable.getSection(Index: Link, ErrMsg: "Link field value " + Twine(Link) + |
1142 | " in section " + Name + " is invalid" ); |
1143 | if (!Sec) |
1144 | return Sec.takeError(); |
1145 | |
1146 | LinkSection = *Sec; |
1147 | |
1148 | if (LinkSection->Type == ELF::SHT_SYMTAB) { |
1149 | HasSymTabLink = true; |
1150 | LinkSection = nullptr; |
1151 | } |
1152 | |
1153 | return Error::success(); |
1154 | } |
1155 | |
1156 | void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } |
1157 | |
1158 | void GnuDebugLinkSection::init(StringRef File) { |
1159 | FileName = sys::path::filename(path: File); |
1160 | // The format for the .gnu_debuglink starts with the file name and is |
1161 | // followed by a null terminator and then the CRC32 of the file. The CRC32 |
1162 | // should be 4 byte aligned. So we add the FileName size, a 1 for the null |
1163 | // byte, and then finally push the size to alignment and add 4. |
1164 | Size = alignTo(Value: FileName.size() + 1, Align: 4) + 4; |
1165 | // The CRC32 will only be aligned if we align the whole section. |
1166 | Align = 4; |
1167 | Type = OriginalType = ELF::SHT_PROGBITS; |
1168 | Name = ".gnu_debuglink" ; |
1169 | // For sections not found in segments, OriginalOffset is only used to |
1170 | // establish the order that sections should go in. By using the maximum |
1171 | // possible offset we cause this section to wind up at the end. |
1172 | OriginalOffset = std::numeric_limits<uint64_t>::max(); |
1173 | } |
1174 | |
1175 | GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, |
1176 | uint32_t PrecomputedCRC) |
1177 | : FileName(File), CRC32(PrecomputedCRC) { |
1178 | init(File); |
1179 | } |
1180 | |
1181 | template <class ELFT> |
1182 | Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { |
1183 | unsigned char *Buf = |
1184 | reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; |
1185 | Elf_Word *CRC = |
1186 | reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); |
1187 | *CRC = Sec.CRC32; |
1188 | llvm::copy(Range: Sec.FileName, Out: Buf); |
1189 | return Error::success(); |
1190 | } |
1191 | |
1192 | Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { |
1193 | return Visitor.visit(Sec: *this); |
1194 | } |
1195 | |
1196 | Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { |
1197 | return Visitor.visit(Sec&: *this); |
1198 | } |
1199 | |
1200 | template <class ELFT> |
1201 | Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { |
1202 | ELF::Elf32_Word *Buf = |
1203 | reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); |
1204 | endian::write32<ELFT::Endianness>(Buf++, Sec.FlagWord); |
1205 | for (SectionBase *S : Sec.GroupMembers) |
1206 | endian::write32<ELFT::Endianness>(Buf++, S->Index); |
1207 | return Error::success(); |
1208 | } |
1209 | |
1210 | Error GroupSection::accept(SectionVisitor &Visitor) const { |
1211 | return Visitor.visit(Sec: *this); |
1212 | } |
1213 | |
1214 | Error GroupSection::accept(MutableSectionVisitor &Visitor) { |
1215 | return Visitor.visit(Sec&: *this); |
1216 | } |
1217 | |
1218 | // Returns true IFF a section is wholly inside the range of a segment |
1219 | static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { |
1220 | // If a section is empty it should be treated like it has a size of 1. This is |
1221 | // to clarify the case when an empty section lies on a boundary between two |
1222 | // segments and ensures that the section "belongs" to the second segment and |
1223 | // not the first. |
1224 | uint64_t SecSize = Sec.Size ? Sec.Size : 1; |
1225 | |
1226 | // Ignore just added sections. |
1227 | if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max()) |
1228 | return false; |
1229 | |
1230 | if (Sec.Type == SHT_NOBITS) { |
1231 | if (!(Sec.Flags & SHF_ALLOC)) |
1232 | return false; |
1233 | |
1234 | bool SectionIsTLS = Sec.Flags & SHF_TLS; |
1235 | bool SegmentIsTLS = Seg.Type == PT_TLS; |
1236 | if (SectionIsTLS != SegmentIsTLS) |
1237 | return false; |
1238 | |
1239 | return Seg.VAddr <= Sec.Addr && |
1240 | Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; |
1241 | } |
1242 | |
1243 | return Seg.Offset <= Sec.OriginalOffset && |
1244 | Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; |
1245 | } |
1246 | |
1247 | // Returns true IFF a segment's original offset is inside of another segment's |
1248 | // range. |
1249 | static bool segmentOverlapsSegment(const Segment &Child, |
1250 | const Segment &Parent) { |
1251 | |
1252 | return Parent.OriginalOffset <= Child.OriginalOffset && |
1253 | Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; |
1254 | } |
1255 | |
1256 | static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { |
1257 | // Any segment without a parent segment should come before a segment |
1258 | // that has a parent segment. |
1259 | if (A->OriginalOffset < B->OriginalOffset) |
1260 | return true; |
1261 | if (A->OriginalOffset > B->OriginalOffset) |
1262 | return false; |
1263 | // If alignments are different, the one with a smaller alignment cannot be the |
1264 | // parent; otherwise, layoutSegments will not respect the larger alignment |
1265 | // requirement. This rule ensures that PT_LOAD/PT_INTERP/PT_GNU_RELRO/PT_TLS |
1266 | // segments at the same offset will be aligned correctly. |
1267 | if (A->Align != B->Align) |
1268 | return A->Align > B->Align; |
1269 | return A->Index < B->Index; |
1270 | } |
1271 | |
1272 | void BasicELFBuilder::() { |
1273 | Obj->Flags = 0x0; |
1274 | Obj->Type = ET_REL; |
1275 | Obj->OSABI = ELFOSABI_NONE; |
1276 | Obj->ABIVersion = 0; |
1277 | Obj->Entry = 0x0; |
1278 | Obj->Machine = EM_NONE; |
1279 | Obj->Version = 1; |
1280 | } |
1281 | |
1282 | void BasicELFBuilder::() { Obj->ElfHdrSegment.Index = 0; } |
1283 | |
1284 | StringTableSection *BasicELFBuilder::addStrTab() { |
1285 | auto &StrTab = Obj->addSection<StringTableSection>(); |
1286 | StrTab.Name = ".strtab" ; |
1287 | |
1288 | Obj->SectionNames = &StrTab; |
1289 | return &StrTab; |
1290 | } |
1291 | |
1292 | SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { |
1293 | auto &SymTab = Obj->addSection<SymbolTableSection>(); |
1294 | |
1295 | SymTab.Name = ".symtab" ; |
1296 | SymTab.Link = StrTab->Index; |
1297 | |
1298 | // The symbol table always needs a null symbol |
1299 | SymTab.addSymbol(Name: "" , Bind: 0, Type: 0, DefinedIn: nullptr, Value: 0, Visibility: 0, Shndx: 0, SymbolSize: 0); |
1300 | |
1301 | Obj->SymbolTable = &SymTab; |
1302 | return &SymTab; |
1303 | } |
1304 | |
1305 | Error BasicELFBuilder::initSections() { |
1306 | for (SectionBase &Sec : Obj->sections()) |
1307 | if (Error Err = Sec.initialize(Obj->sections())) |
1308 | return Err; |
1309 | |
1310 | return Error::success(); |
1311 | } |
1312 | |
1313 | void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { |
1314 | auto Data = ArrayRef<uint8_t>( |
1315 | reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), |
1316 | MemBuf->getBufferSize()); |
1317 | auto &DataSection = Obj->addSection<Section>(Args&: Data); |
1318 | DataSection.Name = ".data" ; |
1319 | DataSection.Type = ELF::SHT_PROGBITS; |
1320 | DataSection.Size = Data.size(); |
1321 | DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; |
1322 | |
1323 | std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); |
1324 | std::replace_if( |
1325 | first: std::begin(cont&: SanitizedFilename), last: std::end(cont&: SanitizedFilename), |
1326 | pred: [](char C) { return !isAlnum(C); }, new_value: '_'); |
1327 | Twine Prefix = Twine("_binary_" ) + SanitizedFilename; |
1328 | |
1329 | SymTab->addSymbol(Name: Prefix + "_start" , Bind: STB_GLOBAL, Type: STT_NOTYPE, DefinedIn: &DataSection, |
1330 | /*Value=*/0, Visibility: NewSymbolVisibility, Shndx: 0, SymbolSize: 0); |
1331 | SymTab->addSymbol(Name: Prefix + "_end" , Bind: STB_GLOBAL, Type: STT_NOTYPE, DefinedIn: &DataSection, |
1332 | /*Value=*/DataSection.Size, Visibility: NewSymbolVisibility, Shndx: 0, SymbolSize: 0); |
1333 | SymTab->addSymbol(Name: Prefix + "_size" , Bind: STB_GLOBAL, Type: STT_NOTYPE, DefinedIn: nullptr, |
1334 | /*Value=*/DataSection.Size, Visibility: NewSymbolVisibility, Shndx: SHN_ABS, |
1335 | SymbolSize: 0); |
1336 | } |
1337 | |
1338 | Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() { |
1339 | initFileHeader(); |
1340 | initHeaderSegment(); |
1341 | |
1342 | SymbolTableSection *SymTab = addSymTab(StrTab: addStrTab()); |
1343 | if (Error Err = initSections()) |
1344 | return std::move(Err); |
1345 | addData(SymTab); |
1346 | |
1347 | return std::move(Obj); |
1348 | } |
1349 | |
1350 | // Adds sections from IHEX data file. Data should have been |
1351 | // fully validated by this time. |
1352 | void IHexELFBuilder::addDataSections() { |
1353 | OwnedDataSection *Section = nullptr; |
1354 | uint64_t SegmentAddr = 0, BaseAddr = 0; |
1355 | uint32_t SecNo = 1; |
1356 | |
1357 | for (const IHexRecord &R : Records) { |
1358 | uint64_t RecAddr; |
1359 | switch (R.Type) { |
1360 | case IHexRecord::Data: |
1361 | // Ignore empty data records |
1362 | if (R.HexData.empty()) |
1363 | continue; |
1364 | RecAddr = R.Addr + SegmentAddr + BaseAddr; |
1365 | if (!Section || Section->Addr + Section->Size != RecAddr) { |
1366 | // OriginalOffset field is only used to sort sections before layout, so |
1367 | // instead of keeping track of real offsets in IHEX file, and as |
1368 | // layoutSections() and layoutSectionsForOnlyKeepDebug() use |
1369 | // llvm::stable_sort(), we can just set it to a constant (zero). |
1370 | Section = &Obj->addSection<OwnedDataSection>( |
1371 | Args: ".sec" + std::to_string(val: SecNo), Args&: RecAddr, |
1372 | Args: ELF::SHF_ALLOC | ELF::SHF_WRITE, Args: 0); |
1373 | SecNo++; |
1374 | } |
1375 | Section->appendHexData(HexData: R.HexData); |
1376 | break; |
1377 | case IHexRecord::EndOfFile: |
1378 | break; |
1379 | case IHexRecord::SegmentAddr: |
1380 | // 20-bit segment address. |
1381 | SegmentAddr = checkedGetHex<uint16_t>(S: R.HexData) << 4; |
1382 | break; |
1383 | case IHexRecord::StartAddr80x86: |
1384 | case IHexRecord::StartAddr: |
1385 | Obj->Entry = checkedGetHex<uint32_t>(S: R.HexData); |
1386 | assert(Obj->Entry <= 0xFFFFFU); |
1387 | break; |
1388 | case IHexRecord::ExtendedAddr: |
1389 | // 16-31 bits of linear base address |
1390 | BaseAddr = checkedGetHex<uint16_t>(S: R.HexData) << 16; |
1391 | break; |
1392 | default: |
1393 | llvm_unreachable("unknown record type" ); |
1394 | } |
1395 | } |
1396 | } |
1397 | |
1398 | Expected<std::unique_ptr<Object>> IHexELFBuilder::build() { |
1399 | initFileHeader(); |
1400 | initHeaderSegment(); |
1401 | StringTableSection *StrTab = addStrTab(); |
1402 | addSymTab(StrTab); |
1403 | if (Error Err = initSections()) |
1404 | return std::move(Err); |
1405 | addDataSections(); |
1406 | |
1407 | return std::move(Obj); |
1408 | } |
1409 | |
1410 | template <class ELFT> |
1411 | ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj, |
1412 | std::optional<StringRef> ) |
1413 | : ElfFile(ElfObj.getELFFile()), Obj(Obj), |
1414 | ExtractPartition(ExtractPartition) { |
1415 | Obj.IsMips64EL = ElfFile.isMips64EL(); |
1416 | } |
1417 | |
1418 | template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { |
1419 | for (Segment &Parent : Obj.segments()) { |
1420 | // Every segment will overlap with itself but we don't want a segment to |
1421 | // be its own parent so we avoid that situation. |
1422 | if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { |
1423 | // We want a canonical "most parental" segment but this requires |
1424 | // inspecting the ParentSegment. |
1425 | if (compareSegmentsByOffset(A: &Parent, B: &Child)) |
1426 | if (Child.ParentSegment == nullptr || |
1427 | compareSegmentsByOffset(A: &Parent, B: Child.ParentSegment)) { |
1428 | Child.ParentSegment = &Parent; |
1429 | } |
1430 | } |
1431 | } |
1432 | } |
1433 | |
1434 | template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() { |
1435 | if (!ExtractPartition) |
1436 | return Error::success(); |
1437 | |
1438 | for (const SectionBase &Sec : Obj.sections()) { |
1439 | if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { |
1440 | EhdrOffset = Sec.Offset; |
1441 | return Error::success(); |
1442 | } |
1443 | } |
1444 | return createStringError(EC: errc::invalid_argument, |
1445 | S: "could not find partition named '" + |
1446 | *ExtractPartition + "'" ); |
1447 | } |
1448 | |
1449 | template <class ELFT> |
1450 | Error ELFBuilder<ELFT>::(const ELFFile<ELFT> &) { |
1451 | uint32_t Index = 0; |
1452 | |
1453 | Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> = |
1454 | HeadersFile.program_headers(); |
1455 | if (!Headers) |
1456 | return Headers.takeError(); |
1457 | |
1458 | for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) { |
1459 | if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) |
1460 | return createStringError( |
1461 | errc::invalid_argument, |
1462 | "program header with offset 0x" + Twine::utohexstr(Val: Phdr.p_offset) + |
1463 | " and file size 0x" + Twine::utohexstr(Val: Phdr.p_filesz) + |
1464 | " goes past the end of the file" ); |
1465 | |
1466 | ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset, |
1467 | (size_t)Phdr.p_filesz}; |
1468 | Segment &Seg = Obj.addSegment(Data); |
1469 | Seg.Type = Phdr.p_type; |
1470 | Seg.Flags = Phdr.p_flags; |
1471 | Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; |
1472 | Seg.Offset = Phdr.p_offset + EhdrOffset; |
1473 | Seg.VAddr = Phdr.p_vaddr; |
1474 | Seg.PAddr = Phdr.p_paddr; |
1475 | Seg.FileSize = Phdr.p_filesz; |
1476 | Seg.MemSize = Phdr.p_memsz; |
1477 | Seg.Align = Phdr.p_align; |
1478 | Seg.Index = Index++; |
1479 | for (SectionBase &Sec : Obj.sections()) |
1480 | if (sectionWithinSegment(Sec, Seg)) { |
1481 | Seg.addSection(Sec: &Sec); |
1482 | if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) |
1483 | Sec.ParentSegment = &Seg; |
1484 | } |
1485 | } |
1486 | |
1487 | auto &ElfHdr = Obj.ElfHdrSegment; |
1488 | ElfHdr.Index = Index++; |
1489 | ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; |
1490 | |
1491 | const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); |
1492 | auto &PrHdr = Obj.ProgramHdrSegment; |
1493 | PrHdr.Type = PT_PHDR; |
1494 | PrHdr.Flags = 0; |
1495 | // The spec requires us to have p_vaddr % p_align == p_offset % p_align. |
1496 | // Whereas this works automatically for ElfHdr, here OriginalOffset is |
1497 | // always non-zero and to ensure the equation we assign the same value to |
1498 | // VAddr as well. |
1499 | PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; |
1500 | PrHdr.PAddr = 0; |
1501 | PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; |
1502 | // The spec requires us to naturally align all the fields. |
1503 | PrHdr.Align = sizeof(Elf_Addr); |
1504 | PrHdr.Index = Index++; |
1505 | |
1506 | // Now we do an O(n^2) loop through the segments in order to match up |
1507 | // segments. |
1508 | for (Segment &Child : Obj.segments()) |
1509 | setParentSegment(Child); |
1510 | setParentSegment(ElfHdr); |
1511 | setParentSegment(PrHdr); |
1512 | |
1513 | return Error::success(); |
1514 | } |
1515 | |
1516 | template <class ELFT> |
1517 | Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { |
1518 | if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) |
1519 | return createStringError(EC: errc::invalid_argument, |
1520 | S: "invalid alignment " + Twine(GroupSec->Align) + |
1521 | " of group section '" + GroupSec->Name + "'" ); |
1522 | SectionTableRef SecTable = Obj.sections(); |
1523 | if (GroupSec->Link != SHN_UNDEF) { |
1524 | auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( |
1525 | Index: GroupSec->Link, |
1526 | IndexErrMsg: "link field value '" + Twine(GroupSec->Link) + "' in section '" + |
1527 | GroupSec->Name + "' is invalid" , |
1528 | TypeErrMsg: "link field value '" + Twine(GroupSec->Link) + "' in section '" + |
1529 | GroupSec->Name + "' is not a symbol table" ); |
1530 | if (!SymTab) |
1531 | return SymTab.takeError(); |
1532 | |
1533 | Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(Index: GroupSec->Info); |
1534 | if (!Sym) |
1535 | return createStringError(EC: errc::invalid_argument, |
1536 | S: "info field value '" + Twine(GroupSec->Info) + |
1537 | "' in section '" + GroupSec->Name + |
1538 | "' is not a valid symbol index" ); |
1539 | GroupSec->setSymTab(*SymTab); |
1540 | GroupSec->setSymbol(*Sym); |
1541 | } |
1542 | if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || |
1543 | GroupSec->Contents.empty()) |
1544 | return createStringError(EC: errc::invalid_argument, |
1545 | S: "the content of the section " + GroupSec->Name + |
1546 | " is malformed" ); |
1547 | const ELF::Elf32_Word *Word = |
1548 | reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); |
1549 | const ELF::Elf32_Word *End = |
1550 | Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); |
1551 | GroupSec->setFlagWord(endian::read32<ELFT::Endianness>(Word++)); |
1552 | for (; Word != End; ++Word) { |
1553 | uint32_t Index = support::endian::read32<ELFT::Endianness>(Word); |
1554 | Expected<SectionBase *> Sec = SecTable.getSection( |
1555 | Index, ErrMsg: "group member index " + Twine(Index) + " in section '" + |
1556 | GroupSec->Name + "' is invalid" ); |
1557 | if (!Sec) |
1558 | return Sec.takeError(); |
1559 | |
1560 | GroupSec->addMember(Sec: *Sec); |
1561 | } |
1562 | |
1563 | return Error::success(); |
1564 | } |
1565 | |
1566 | template <class ELFT> |
1567 | Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { |
1568 | Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index); |
1569 | if (!Shdr) |
1570 | return Shdr.takeError(); |
1571 | |
1572 | Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr); |
1573 | if (!StrTabData) |
1574 | return StrTabData.takeError(); |
1575 | |
1576 | ArrayRef<Elf_Word> ShndxData; |
1577 | |
1578 | Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols = |
1579 | ElfFile.symbols(*Shdr); |
1580 | if (!Symbols) |
1581 | return Symbols.takeError(); |
1582 | |
1583 | for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) { |
1584 | SectionBase *DefSection = nullptr; |
1585 | |
1586 | Expected<StringRef> Name = Sym.getName(*StrTabData); |
1587 | if (!Name) |
1588 | return Name.takeError(); |
1589 | |
1590 | if (Sym.st_shndx == SHN_XINDEX) { |
1591 | if (SymTab->getShndxTable() == nullptr) |
1592 | return createStringError(EC: errc::invalid_argument, |
1593 | S: "symbol '" + *Name + |
1594 | "' has index SHN_XINDEX but no " |
1595 | "SHT_SYMTAB_SHNDX section exists" ); |
1596 | if (ShndxData.data() == nullptr) { |
1597 | Expected<const Elf_Shdr *> ShndxSec = |
1598 | ElfFile.getSection(SymTab->getShndxTable()->Index); |
1599 | if (!ShndxSec) |
1600 | return ShndxSec.takeError(); |
1601 | |
1602 | Expected<ArrayRef<Elf_Word>> Data = |
1603 | ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec); |
1604 | if (!Data) |
1605 | return Data.takeError(); |
1606 | |
1607 | ShndxData = *Data; |
1608 | if (ShndxData.size() != Symbols->size()) |
1609 | return createStringError( |
1610 | EC: errc::invalid_argument, |
1611 | S: "symbol section index table does not have the same number of " |
1612 | "entries as the symbol table" ); |
1613 | } |
1614 | Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; |
1615 | Expected<SectionBase *> Sec = Obj.sections().getSection( |
1616 | Index, |
1617 | ErrMsg: "symbol '" + *Name + "' has invalid section index " + Twine(Index)); |
1618 | if (!Sec) |
1619 | return Sec.takeError(); |
1620 | |
1621 | DefSection = *Sec; |
1622 | } else if (Sym.st_shndx >= SHN_LORESERVE) { |
1623 | if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { |
1624 | return createStringError( |
1625 | EC: errc::invalid_argument, |
1626 | S: "symbol '" + *Name + |
1627 | "' has unsupported value greater than or equal " |
1628 | "to SHN_LORESERVE: " + |
1629 | Twine(Sym.st_shndx)); |
1630 | } |
1631 | } else if (Sym.st_shndx != SHN_UNDEF) { |
1632 | Expected<SectionBase *> Sec = Obj.sections().getSection( |
1633 | Index: Sym.st_shndx, ErrMsg: "symbol '" + *Name + |
1634 | "' is defined has invalid section index " + |
1635 | Twine(Sym.st_shndx)); |
1636 | if (!Sec) |
1637 | return Sec.takeError(); |
1638 | |
1639 | DefSection = *Sec; |
1640 | } |
1641 | |
1642 | SymTab->addSymbol(Name: *Name, Bind: Sym.getBinding(), Type: Sym.getType(), DefinedIn: DefSection, |
1643 | Value: Sym.getValue(), Visibility: Sym.st_other, Shndx: Sym.st_shndx, SymbolSize: Sym.st_size); |
1644 | } |
1645 | |
1646 | return Error::success(); |
1647 | } |
1648 | |
1649 | template <class ELFT> |
1650 | static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {} |
1651 | |
1652 | template <class ELFT> |
1653 | static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { |
1654 | ToSet = Rela.r_addend; |
1655 | } |
1656 | |
1657 | template <class T> |
1658 | static Error initRelocations(RelocationSection *Relocs, T RelRange) { |
1659 | for (const auto &Rel : RelRange) { |
1660 | Relocation ToAdd; |
1661 | ToAdd.Offset = Rel.r_offset; |
1662 | getAddend(ToAdd.Addend, Rel); |
1663 | ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); |
1664 | |
1665 | if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { |
1666 | if (!Relocs->getObject().SymbolTable) |
1667 | return createStringError( |
1668 | EC: errc::invalid_argument, |
1669 | S: "'" + Relocs->Name + "': relocation references symbol with index " + |
1670 | Twine(Sym) + ", but there is no symbol table" ); |
1671 | Expected<Symbol *> SymByIndex = |
1672 | Relocs->getObject().SymbolTable->getSymbolByIndex(Index: Sym); |
1673 | if (!SymByIndex) |
1674 | return SymByIndex.takeError(); |
1675 | |
1676 | ToAdd.RelocSymbol = *SymByIndex; |
1677 | } |
1678 | |
1679 | Relocs->addRelocation(Rel: ToAdd); |
1680 | } |
1681 | |
1682 | return Error::success(); |
1683 | } |
1684 | |
1685 | Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index, |
1686 | Twine ErrMsg) { |
1687 | if (Index == SHN_UNDEF || Index > Sections.size()) |
1688 | return createStringError(EC: errc::invalid_argument, S: ErrMsg); |
1689 | return Sections[Index - 1].get(); |
1690 | } |
1691 | |
1692 | template <class T> |
1693 | Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index, |
1694 | Twine IndexErrMsg, |
1695 | Twine TypeErrMsg) { |
1696 | Expected<SectionBase *> BaseSec = getSection(Index, ErrMsg: IndexErrMsg); |
1697 | if (!BaseSec) |
1698 | return BaseSec.takeError(); |
1699 | |
1700 | if (T *Sec = dyn_cast<T>(*BaseSec)) |
1701 | return Sec; |
1702 | |
1703 | return createStringError(EC: errc::invalid_argument, S: TypeErrMsg); |
1704 | } |
1705 | |
1706 | template <class ELFT> |
1707 | Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { |
1708 | switch (Shdr.sh_type) { |
1709 | case SHT_REL: |
1710 | case SHT_RELA: |
1711 | case SHT_CREL: |
1712 | if (Shdr.sh_flags & SHF_ALLOC) { |
1713 | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
1714 | return Obj.addSection<DynamicRelocationSection>(Args&: *Data); |
1715 | else |
1716 | return Data.takeError(); |
1717 | } |
1718 | return Obj.addSection<RelocationSection>(Args&: Obj); |
1719 | case SHT_STRTAB: |
1720 | // If a string table is allocated we don't want to mess with it. That would |
1721 | // mean altering the memory image. There are no special link types or |
1722 | // anything so we can just use a Section. |
1723 | if (Shdr.sh_flags & SHF_ALLOC) { |
1724 | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
1725 | return Obj.addSection<Section>(Args&: *Data); |
1726 | else |
1727 | return Data.takeError(); |
1728 | } |
1729 | return Obj.addSection<StringTableSection>(); |
1730 | case SHT_HASH: |
1731 | case SHT_GNU_HASH: |
1732 | // Hash tables should refer to SHT_DYNSYM which we're not going to change. |
1733 | // Because of this we don't need to mess with the hash tables either. |
1734 | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
1735 | return Obj.addSection<Section>(Args&: *Data); |
1736 | else |
1737 | return Data.takeError(); |
1738 | case SHT_GROUP: |
1739 | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
1740 | return Obj.addSection<GroupSection>(Args&: *Data); |
1741 | else |
1742 | return Data.takeError(); |
1743 | case SHT_DYNSYM: |
1744 | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
1745 | return Obj.addSection<DynamicSymbolTableSection>(Args&: *Data); |
1746 | else |
1747 | return Data.takeError(); |
1748 | case SHT_DYNAMIC: |
1749 | if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) |
1750 | return Obj.addSection<DynamicSection>(Args&: *Data); |
1751 | else |
1752 | return Data.takeError(); |
1753 | case SHT_SYMTAB: { |
1754 | // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI. |
1755 | if (Obj.SymbolTable != nullptr) |
1756 | return createStringError(EC: llvm::errc::invalid_argument, |
1757 | S: "found multiple SHT_SYMTAB sections" ); |
1758 | auto &SymTab = Obj.addSection<SymbolTableSection>(); |
1759 | Obj.SymbolTable = &SymTab; |
1760 | return SymTab; |
1761 | } |
1762 | case SHT_SYMTAB_SHNDX: { |
1763 | auto &ShndxSection = Obj.addSection<SectionIndexSection>(); |
1764 | Obj.SectionIndexTable = &ShndxSection; |
1765 | return ShndxSection; |
1766 | } |
1767 | case SHT_NOBITS: |
1768 | return Obj.addSection<Section>(Args: ArrayRef<uint8_t>()); |
1769 | default: { |
1770 | Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr); |
1771 | if (!Data) |
1772 | return Data.takeError(); |
1773 | |
1774 | Expected<StringRef> Name = ElfFile.getSectionName(Shdr); |
1775 | if (!Name) |
1776 | return Name.takeError(); |
1777 | |
1778 | if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED)) |
1779 | return Obj.addSection<Section>(Args&: *Data); |
1780 | auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data()); |
1781 | return Obj.addSection<CompressedSection>(Args: CompressedSection( |
1782 | *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign)); |
1783 | } |
1784 | } |
1785 | } |
1786 | |
1787 | template <class ELFT> Error ELFBuilder<ELFT>::() { |
1788 | uint32_t Index = 0; |
1789 | Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = |
1790 | ElfFile.sections(); |
1791 | if (!Sections) |
1792 | return Sections.takeError(); |
1793 | |
1794 | for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) { |
1795 | if (Index == 0) { |
1796 | ++Index; |
1797 | continue; |
1798 | } |
1799 | Expected<SectionBase &> Sec = makeSection(Shdr); |
1800 | if (!Sec) |
1801 | return Sec.takeError(); |
1802 | |
1803 | Expected<StringRef> SecName = ElfFile.getSectionName(Shdr); |
1804 | if (!SecName) |
1805 | return SecName.takeError(); |
1806 | Sec->Name = SecName->str(); |
1807 | Sec->Type = Sec->OriginalType = Shdr.sh_type; |
1808 | Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; |
1809 | Sec->Addr = Shdr.sh_addr; |
1810 | Sec->Offset = Shdr.sh_offset; |
1811 | Sec->OriginalOffset = Shdr.sh_offset; |
1812 | Sec->Size = Shdr.sh_size; |
1813 | Sec->Link = Shdr.sh_link; |
1814 | Sec->Info = Shdr.sh_info; |
1815 | Sec->Align = Shdr.sh_addralign; |
1816 | Sec->EntrySize = Shdr.sh_entsize; |
1817 | Sec->Index = Index++; |
1818 | Sec->OriginalIndex = Sec->Index; |
1819 | Sec->OriginalData = ArrayRef<uint8_t>( |
1820 | ElfFile.base() + Shdr.sh_offset, |
1821 | (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); |
1822 | } |
1823 | |
1824 | return Error::success(); |
1825 | } |
1826 | |
1827 | template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) { |
1828 | uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; |
1829 | if (ShstrIndex == SHN_XINDEX) { |
1830 | Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0); |
1831 | if (!Sec) |
1832 | return Sec.takeError(); |
1833 | |
1834 | ShstrIndex = (*Sec)->sh_link; |
1835 | } |
1836 | |
1837 | if (ShstrIndex == SHN_UNDEF) |
1838 | Obj.HadShdrs = false; |
1839 | else { |
1840 | Expected<StringTableSection *> Sec = |
1841 | Obj.sections().template getSectionOfType<StringTableSection>( |
1842 | Index: ShstrIndex, |
1843 | IndexErrMsg: "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + |
1844 | " is invalid" , |
1845 | TypeErrMsg: "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + |
1846 | " does not reference a string table" ); |
1847 | if (!Sec) |
1848 | return Sec.takeError(); |
1849 | |
1850 | Obj.SectionNames = *Sec; |
1851 | } |
1852 | |
1853 | // If a section index table exists we'll need to initialize it before we |
1854 | // initialize the symbol table because the symbol table might need to |
1855 | // reference it. |
1856 | if (Obj.SectionIndexTable) |
1857 | if (Error Err = Obj.SectionIndexTable->initialize(SecTable: Obj.sections())) |
1858 | return Err; |
1859 | |
1860 | // Now that all of the sections have been added we can fill out some extra |
1861 | // details about symbol tables. We need the symbol table filled out before |
1862 | // any relocations. |
1863 | if (Obj.SymbolTable) { |
1864 | if (Error Err = Obj.SymbolTable->initialize(SecTable: Obj.sections())) |
1865 | return Err; |
1866 | if (Error Err = initSymbolTable(SymTab: Obj.SymbolTable)) |
1867 | return Err; |
1868 | } else if (EnsureSymtab) { |
1869 | if (Error Err = Obj.addNewSymbolTable()) |
1870 | return Err; |
1871 | } |
1872 | |
1873 | // Now that all sections and symbols have been added we can add |
1874 | // relocations that reference symbols and set the link and info fields for |
1875 | // relocation sections. |
1876 | for (SectionBase &Sec : Obj.sections()) { |
1877 | if (&Sec == Obj.SymbolTable) |
1878 | continue; |
1879 | if (Error Err = Sec.initialize(Obj.sections())) |
1880 | return Err; |
1881 | if (auto RelSec = dyn_cast<RelocationSection>(Val: &Sec)) { |
1882 | Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = |
1883 | ElfFile.sections(); |
1884 | if (!Sections) |
1885 | return Sections.takeError(); |
1886 | |
1887 | const typename ELFFile<ELFT>::Elf_Shdr *Shdr = |
1888 | Sections->begin() + RelSec->Index; |
1889 | if (RelSec->Type == SHT_CREL) { |
1890 | auto RelsOrRelas = ElfFile.crels(*Shdr); |
1891 | if (!RelsOrRelas) |
1892 | return RelsOrRelas.takeError(); |
1893 | if (Error Err = initRelocations(RelSec, RelsOrRelas->first)) |
1894 | return Err; |
1895 | if (Error Err = initRelocations(RelSec, RelsOrRelas->second)) |
1896 | return Err; |
1897 | } else if (RelSec->Type == SHT_REL) { |
1898 | Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels = |
1899 | ElfFile.rels(*Shdr); |
1900 | if (!Rels) |
1901 | return Rels.takeError(); |
1902 | |
1903 | if (Error Err = initRelocations(RelSec, *Rels)) |
1904 | return Err; |
1905 | } else { |
1906 | Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = |
1907 | ElfFile.relas(*Shdr); |
1908 | if (!Relas) |
1909 | return Relas.takeError(); |
1910 | |
1911 | if (Error Err = initRelocations(RelSec, *Relas)) |
1912 | return Err; |
1913 | } |
1914 | } else if (auto GroupSec = dyn_cast<GroupSection>(Val: &Sec)) { |
1915 | if (Error Err = initGroupSection(GroupSec)) |
1916 | return Err; |
1917 | } |
1918 | } |
1919 | |
1920 | return Error::success(); |
1921 | } |
1922 | |
1923 | template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) { |
1924 | if (Error E = readSectionHeaders()) |
1925 | return E; |
1926 | if (Error E = findEhdrOffset()) |
1927 | return E; |
1928 | |
1929 | // The ELFFile whose ELF headers and program headers are copied into the |
1930 | // output file. Normally the same as ElfFile, but if we're extracting a |
1931 | // loadable partition it will point to the partition's headers. |
1932 | Expected<ELFFile<ELFT>> = ELFFile<ELFT>::create(toStringRef( |
1933 | {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); |
1934 | if (!HeadersFile) |
1935 | return HeadersFile.takeError(); |
1936 | |
1937 | const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); |
1938 | Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64; |
1939 | Obj.OSABI = Ehdr.e_ident[EI_OSABI]; |
1940 | Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; |
1941 | Obj.Type = Ehdr.e_type; |
1942 | Obj.Machine = Ehdr.e_machine; |
1943 | Obj.Version = Ehdr.e_version; |
1944 | Obj.Entry = Ehdr.e_entry; |
1945 | Obj.Flags = Ehdr.e_flags; |
1946 | |
1947 | if (Error E = readSections(EnsureSymtab)) |
1948 | return E; |
1949 | return readProgramHeaders(HeadersFile: *HeadersFile); |
1950 | } |
1951 | |
1952 | Writer::~Writer() = default; |
1953 | |
1954 | Reader::~Reader() = default; |
1955 | |
1956 | Expected<std::unique_ptr<Object>> |
1957 | BinaryReader::create(bool /*EnsureSymtab*/) const { |
1958 | return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); |
1959 | } |
1960 | |
1961 | Expected<std::vector<IHexRecord>> IHexReader::parse() const { |
1962 | SmallVector<StringRef, 16> Lines; |
1963 | std::vector<IHexRecord> Records; |
1964 | bool HasSections = false; |
1965 | |
1966 | MemBuf->getBuffer().split(A&: Lines, Separator: '\n'); |
1967 | Records.reserve(n: Lines.size()); |
1968 | for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { |
1969 | StringRef Line = Lines[LineNo - 1].trim(); |
1970 | if (Line.empty()) |
1971 | continue; |
1972 | |
1973 | Expected<IHexRecord> R = IHexRecord::parse(Line); |
1974 | if (!R) |
1975 | return parseError(LineNo, E: R.takeError()); |
1976 | if (R->Type == IHexRecord::EndOfFile) |
1977 | break; |
1978 | HasSections |= (R->Type == IHexRecord::Data); |
1979 | Records.push_back(x: *R); |
1980 | } |
1981 | if (!HasSections) |
1982 | return parseError(LineNo: -1U, Fmt: "no sections" ); |
1983 | |
1984 | return std::move(Records); |
1985 | } |
1986 | |
1987 | Expected<std::unique_ptr<Object>> |
1988 | IHexReader::create(bool /*EnsureSymtab*/) const { |
1989 | Expected<std::vector<IHexRecord>> Records = parse(); |
1990 | if (!Records) |
1991 | return Records.takeError(); |
1992 | |
1993 | return IHexELFBuilder(*Records).build(); |
1994 | } |
1995 | |
1996 | Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const { |
1997 | auto Obj = std::make_unique<Object>(); |
1998 | if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Val: Bin)) { |
1999 | ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition); |
2000 | if (Error Err = Builder.build(EnsureSymtab)) |
2001 | return std::move(Err); |
2002 | return std::move(Obj); |
2003 | } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Val: Bin)) { |
2004 | ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition); |
2005 | if (Error Err = Builder.build(EnsureSymtab)) |
2006 | return std::move(Err); |
2007 | return std::move(Obj); |
2008 | } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Val: Bin)) { |
2009 | ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition); |
2010 | if (Error Err = Builder.build(EnsureSymtab)) |
2011 | return std::move(Err); |
2012 | return std::move(Obj); |
2013 | } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Val: Bin)) { |
2014 | ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition); |
2015 | if (Error Err = Builder.build(EnsureSymtab)) |
2016 | return std::move(Err); |
2017 | return std::move(Obj); |
2018 | } |
2019 | return createStringError(EC: errc::invalid_argument, S: "invalid file type" ); |
2020 | } |
2021 | |
2022 | template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { |
2023 | Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart()); |
2024 | std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); |
2025 | Ehdr.e_ident[EI_MAG0] = 0x7f; |
2026 | Ehdr.e_ident[EI_MAG1] = 'E'; |
2027 | Ehdr.e_ident[EI_MAG2] = 'L'; |
2028 | Ehdr.e_ident[EI_MAG3] = 'F'; |
2029 | Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
2030 | Ehdr.e_ident[EI_DATA] = |
2031 | ELFT::Endianness == llvm::endianness::big ? ELFDATA2MSB : ELFDATA2LSB; |
2032 | Ehdr.e_ident[EI_VERSION] = EV_CURRENT; |
2033 | Ehdr.e_ident[EI_OSABI] = Obj.OSABI; |
2034 | Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; |
2035 | |
2036 | Ehdr.e_type = Obj.Type; |
2037 | Ehdr.e_machine = Obj.Machine; |
2038 | Ehdr.e_version = Obj.Version; |
2039 | Ehdr.e_entry = Obj.Entry; |
2040 | // We have to use the fully-qualified name llvm::size |
2041 | // since some compilers complain on ambiguous resolution. |
2042 | Ehdr.e_phnum = llvm::size(Obj.segments()); |
2043 | Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; |
2044 | Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; |
2045 | Ehdr.e_flags = Obj.Flags; |
2046 | Ehdr.e_ehsize = sizeof(Elf_Ehdr); |
2047 | if (WriteSectionHeaders && Obj.sections().size() != 0) { |
2048 | Ehdr.e_shentsize = sizeof(Elf_Shdr); |
2049 | Ehdr.e_shoff = Obj.SHOff; |
2050 | // """ |
2051 | // If the number of sections is greater than or equal to |
2052 | // SHN_LORESERVE (0xff00), this member has the value zero and the actual |
2053 | // number of section header table entries is contained in the sh_size field |
2054 | // of the section header at index 0. |
2055 | // """ |
2056 | auto Shnum = Obj.sections().size() + 1; |
2057 | if (Shnum >= SHN_LORESERVE) |
2058 | Ehdr.e_shnum = 0; |
2059 | else |
2060 | Ehdr.e_shnum = Shnum; |
2061 | // """ |
2062 | // If the section name string table section index is greater than or equal |
2063 | // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) |
2064 | // and the actual index of the section name string table section is |
2065 | // contained in the sh_link field of the section header at index 0. |
2066 | // """ |
2067 | if (Obj.SectionNames->Index >= SHN_LORESERVE) |
2068 | Ehdr.e_shstrndx = SHN_XINDEX; |
2069 | else |
2070 | Ehdr.e_shstrndx = Obj.SectionNames->Index; |
2071 | } else { |
2072 | Ehdr.e_shentsize = 0; |
2073 | Ehdr.e_shoff = 0; |
2074 | Ehdr.e_shnum = 0; |
2075 | Ehdr.e_shstrndx = 0; |
2076 | } |
2077 | } |
2078 | |
2079 | template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { |
2080 | for (auto &Seg : Obj.segments()) |
2081 | writePhdr(Seg); |
2082 | } |
2083 | |
2084 | template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { |
2085 | // This reference serves to write the dummy section header at the begining |
2086 | // of the file. It is not used for anything else |
2087 | Elf_Shdr &Shdr = |
2088 | *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff); |
2089 | Shdr.sh_name = 0; |
2090 | Shdr.sh_type = SHT_NULL; |
2091 | Shdr.sh_flags = 0; |
2092 | Shdr.sh_addr = 0; |
2093 | Shdr.sh_offset = 0; |
2094 | // See writeEhdr for why we do this. |
2095 | uint64_t Shnum = Obj.sections().size() + 1; |
2096 | if (Shnum >= SHN_LORESERVE) |
2097 | Shdr.sh_size = Shnum; |
2098 | else |
2099 | Shdr.sh_size = 0; |
2100 | // See writeEhdr for why we do this. |
2101 | if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) |
2102 | Shdr.sh_link = Obj.SectionNames->Index; |
2103 | else |
2104 | Shdr.sh_link = 0; |
2105 | Shdr.sh_info = 0; |
2106 | Shdr.sh_addralign = 0; |
2107 | Shdr.sh_entsize = 0; |
2108 | |
2109 | for (SectionBase &Sec : Obj.sections()) |
2110 | writeShdr(Sec); |
2111 | } |
2112 | |
2113 | template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() { |
2114 | for (SectionBase &Sec : Obj.sections()) |
2115 | // Segments are responsible for writing their contents, so only write the |
2116 | // section data if the section is not in a segment. Note that this renders |
2117 | // sections in segments effectively immutable. |
2118 | if (Sec.ParentSegment == nullptr) |
2119 | if (Error Err = Sec.accept(*SecWriter)) |
2120 | return Err; |
2121 | |
2122 | return Error::success(); |
2123 | } |
2124 | |
2125 | template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() { |
2126 | for (Segment &Seg : Obj.segments()) { |
2127 | size_t Size = std::min<size_t>(a: Seg.FileSize, b: Seg.getContents().size()); |
2128 | std::memcpy(dest: Buf->getBufferStart() + Seg.Offset, src: Seg.getContents().data(), |
2129 | n: Size); |
2130 | } |
2131 | |
2132 | for (const auto &it : Obj.getUpdatedSections()) { |
2133 | SectionBase *Sec = it.first; |
2134 | ArrayRef<uint8_t> Data = it.second; |
2135 | |
2136 | auto *Parent = Sec->ParentSegment; |
2137 | assert(Parent && "This section should've been part of a segment." ); |
2138 | uint64_t Offset = |
2139 | Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; |
2140 | llvm::copy(Range&: Data, Out: Buf->getBufferStart() + Offset); |
2141 | } |
2142 | |
2143 | // Iterate over removed sections and overwrite their old data with zeroes. |
2144 | for (auto &Sec : Obj.removedSections()) { |
2145 | Segment *Parent = Sec.ParentSegment; |
2146 | if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) |
2147 | continue; |
2148 | uint64_t Offset = |
2149 | Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; |
2150 | std::memset(s: Buf->getBufferStart() + Offset, c: 0, n: Sec.Size); |
2151 | } |
2152 | } |
2153 | |
2154 | template <class ELFT> |
2155 | ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, |
2156 | bool OnlyKeepDebug) |
2157 | : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), |
2158 | OnlyKeepDebug(OnlyKeepDebug) {} |
2159 | |
2160 | Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) { |
2161 | auto It = llvm::find_if(Range&: Sections, |
2162 | P: [&](const SecPtr &Sec) { return Sec->Name == Name; }); |
2163 | if (It == Sections.end()) |
2164 | return createStringError(EC: errc::invalid_argument, Fmt: "section '%s' not found" , |
2165 | Vals: Name.str().c_str()); |
2166 | |
2167 | auto *OldSec = It->get(); |
2168 | if (!OldSec->hasContents()) |
2169 | return createStringError( |
2170 | EC: errc::invalid_argument, |
2171 | Fmt: "section '%s' cannot be updated because it does not have contents" , |
2172 | Vals: Name.str().c_str()); |
2173 | |
2174 | if (Data.size() > OldSec->Size && OldSec->ParentSegment) |
2175 | return createStringError(EC: errc::invalid_argument, |
2176 | Fmt: "cannot fit data of size %zu into section '%s' " |
2177 | "with size %" PRIu64 " that is part of a segment" , |
2178 | Vals: Data.size(), Vals: Name.str().c_str(), Vals: OldSec->Size); |
2179 | |
2180 | if (!OldSec->ParentSegment) { |
2181 | *It = std::make_unique<OwnedDataSection>(args&: *OldSec, args&: Data); |
2182 | } else { |
2183 | // The segment writer will be in charge of updating these contents. |
2184 | OldSec->Size = Data.size(); |
2185 | UpdatedSections[OldSec] = Data; |
2186 | } |
2187 | |
2188 | return Error::success(); |
2189 | } |
2190 | |
2191 | Error Object::removeSections( |
2192 | bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) { |
2193 | |
2194 | auto Iter = std::stable_partition( |
2195 | first: std::begin(cont&: Sections), last: std::end(cont&: Sections), pred: [=](const SecPtr &Sec) { |
2196 | if (ToRemove(*Sec)) |
2197 | return false; |
2198 | // TODO: A compressed relocation section may be recognized as |
2199 | // RelocationSectionBase. We don't want such a section to be removed. |
2200 | if (isa<CompressedSection>(Val: Sec)) |
2201 | return true; |
2202 | if (auto RelSec = dyn_cast<RelocationSectionBase>(Val: Sec.get())) { |
2203 | if (auto ToRelSec = RelSec->getSection()) |
2204 | return !ToRemove(*ToRelSec); |
2205 | } |
2206 | // Remove empty group sections. |
2207 | if (Sec->Type == ELF::SHT_GROUP) { |
2208 | auto GroupSec = cast<GroupSection>(Val: Sec.get()); |
2209 | return !llvm::all_of(Range: GroupSec->members(), P: ToRemove); |
2210 | } |
2211 | return true; |
2212 | }); |
2213 | if (SymbolTable != nullptr && ToRemove(*SymbolTable)) |
2214 | SymbolTable = nullptr; |
2215 | if (SectionNames != nullptr && ToRemove(*SectionNames)) |
2216 | SectionNames = nullptr; |
2217 | if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) |
2218 | SectionIndexTable = nullptr; |
2219 | // Now make sure there are no remaining references to the sections that will |
2220 | // be removed. Sometimes it is impossible to remove a reference so we emit |
2221 | // an error here instead. |
2222 | std::unordered_set<const SectionBase *> RemoveSections; |
2223 | RemoveSections.reserve(n: std::distance(first: Iter, last: std::end(cont&: Sections))); |
2224 | for (auto &RemoveSec : make_range(x: Iter, y: std::end(cont&: Sections))) { |
2225 | for (auto &Segment : Segments) |
2226 | Segment->removeSection(Sec: RemoveSec.get()); |
2227 | RemoveSec->onRemove(); |
2228 | RemoveSections.insert(x: RemoveSec.get()); |
2229 | } |
2230 | |
2231 | // For each section that remains alive, we want to remove the dead references. |
2232 | // This either might update the content of the section (e.g. remove symbols |
2233 | // from symbol table that belongs to removed section) or trigger an error if |
2234 | // a live section critically depends on a section being removed somehow |
2235 | // (e.g. the removed section is referenced by a relocation). |
2236 | for (auto &KeepSec : make_range(x: std::begin(cont&: Sections), y: Iter)) { |
2237 | if (Error E = KeepSec->removeSectionReferences( |
2238 | AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { |
2239 | return RemoveSections.find(x: Sec) != RemoveSections.end(); |
2240 | })) |
2241 | return E; |
2242 | } |
2243 | |
2244 | // Transfer removed sections into the Object RemovedSections container for use |
2245 | // later. |
2246 | std::move(first: Iter, last: Sections.end(), result: std::back_inserter(x&: RemovedSections)); |
2247 | // Now finally get rid of them all together. |
2248 | Sections.erase(first: Iter, last: std::end(cont&: Sections)); |
2249 | return Error::success(); |
2250 | } |
2251 | |
2252 | Error Object::replaceSections( |
2253 | const DenseMap<SectionBase *, SectionBase *> &FromTo) { |
2254 | auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { |
2255 | return Lhs->Index < Rhs->Index; |
2256 | }; |
2257 | assert(llvm::is_sorted(Sections, SectionIndexLess) && |
2258 | "Sections are expected to be sorted by Index" ); |
2259 | // Set indices of new sections so that they can be later sorted into positions |
2260 | // of removed ones. |
2261 | for (auto &I : FromTo) |
2262 | I.second->Index = I.first->Index; |
2263 | |
2264 | // Notify all sections about the replacement. |
2265 | for (auto &Sec : Sections) |
2266 | Sec->replaceSectionReferences(FromTo); |
2267 | |
2268 | if (Error E = removeSections( |
2269 | /*AllowBrokenLinks=*/false, |
2270 | ToRemove: [=](const SectionBase &Sec) { return FromTo.count(Val: &Sec) > 0; })) |
2271 | return E; |
2272 | llvm::sort(C&: Sections, Comp: SectionIndexLess); |
2273 | return Error::success(); |
2274 | } |
2275 | |
2276 | Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { |
2277 | if (SymbolTable) |
2278 | for (const SecPtr &Sec : Sections) |
2279 | if (Error E = Sec->removeSymbols(ToRemove)) |
2280 | return E; |
2281 | return Error::success(); |
2282 | } |
2283 | |
2284 | Error Object::addNewSymbolTable() { |
2285 | assert(!SymbolTable && "Object must not has a SymbolTable." ); |
2286 | |
2287 | // Reuse an existing SHT_STRTAB section if it exists. |
2288 | StringTableSection *StrTab = nullptr; |
2289 | for (SectionBase &Sec : sections()) { |
2290 | if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { |
2291 | StrTab = static_cast<StringTableSection *>(&Sec); |
2292 | |
2293 | // Prefer a string table that is not the section header string table, if |
2294 | // such a table exists. |
2295 | if (SectionNames != &Sec) |
2296 | break; |
2297 | } |
2298 | } |
2299 | if (!StrTab) |
2300 | StrTab = &addSection<StringTableSection>(); |
2301 | |
2302 | SymbolTableSection &SymTab = addSection<SymbolTableSection>(); |
2303 | SymTab.Name = ".symtab" ; |
2304 | SymTab.Link = StrTab->Index; |
2305 | if (Error Err = SymTab.initialize(SecTable: sections())) |
2306 | return Err; |
2307 | SymTab.addSymbol(Name: "" , Bind: 0, Type: 0, DefinedIn: nullptr, Value: 0, Visibility: 0, Shndx: 0, SymbolSize: 0); |
2308 | |
2309 | SymbolTable = &SymTab; |
2310 | |
2311 | return Error::success(); |
2312 | } |
2313 | |
2314 | // Orders segments such that if x = y->ParentSegment then y comes before x. |
2315 | static void orderSegments(std::vector<Segment *> &Segments) { |
2316 | llvm::stable_sort(Range&: Segments, C: compareSegmentsByOffset); |
2317 | } |
2318 | |
2319 | // This function finds a consistent layout for a list of segments starting from |
2320 | // an Offset. It assumes that Segments have been sorted by orderSegments and |
2321 | // returns an Offset one past the end of the last segment. |
2322 | static uint64_t layoutSegments(std::vector<Segment *> &Segments, |
2323 | uint64_t Offset) { |
2324 | assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); |
2325 | // The only way a segment should move is if a section was between two |
2326 | // segments and that section was removed. If that section isn't in a segment |
2327 | // then it's acceptable, but not ideal, to simply move it to after the |
2328 | // segments. So we can simply layout segments one after the other accounting |
2329 | // for alignment. |
2330 | for (Segment *Seg : Segments) { |
2331 | // We assume that segments have been ordered by OriginalOffset and Index |
2332 | // such that a parent segment will always come before a child segment in |
2333 | // OrderedSegments. This means that the Offset of the ParentSegment should |
2334 | // already be set and we can set our offset relative to it. |
2335 | if (Seg->ParentSegment != nullptr) { |
2336 | Segment *Parent = Seg->ParentSegment; |
2337 | Seg->Offset = |
2338 | Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; |
2339 | } else { |
2340 | Seg->Offset = |
2341 | alignTo(Value: Offset, Align: std::max<uint64_t>(a: Seg->Align, b: 1), Skew: Seg->VAddr); |
2342 | } |
2343 | Offset = std::max(a: Offset, b: Seg->Offset + Seg->FileSize); |
2344 | } |
2345 | return Offset; |
2346 | } |
2347 | |
2348 | // This function finds a consistent layout for a list of sections. It assumes |
2349 | // that the ->ParentSegment of each section has already been laid out. The |
2350 | // supplied starting Offset is used for the starting offset of any section that |
2351 | // does not have a ParentSegment. It returns either the offset given if all |
2352 | // sections had a ParentSegment or an offset one past the last section if there |
2353 | // was a section that didn't have a ParentSegment. |
2354 | template <class Range> |
2355 | static uint64_t layoutSections(Range Sections, uint64_t Offset) { |
2356 | // Now the offset of every segment has been set we can assign the offsets |
2357 | // of each section. For sections that are covered by a segment we should use |
2358 | // the segment's original offset and the section's original offset to compute |
2359 | // the offset from the start of the segment. Using the offset from the start |
2360 | // of the segment we can assign a new offset to the section. For sections not |
2361 | // covered by segments we can just bump Offset to the next valid location. |
2362 | // While it is not necessary, layout the sections in the order based on their |
2363 | // original offsets to resemble the input file as close as possible. |
2364 | std::vector<SectionBase *> OutOfSegmentSections; |
2365 | uint32_t Index = 1; |
2366 | for (auto &Sec : Sections) { |
2367 | Sec.Index = Index++; |
2368 | if (Sec.ParentSegment != nullptr) { |
2369 | const Segment &Segment = *Sec.ParentSegment; |
2370 | Sec.Offset = |
2371 | Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); |
2372 | } else |
2373 | OutOfSegmentSections.push_back(&Sec); |
2374 | } |
2375 | |
2376 | llvm::stable_sort(OutOfSegmentSections, |
2377 | [](const SectionBase *Lhs, const SectionBase *Rhs) { |
2378 | return Lhs->OriginalOffset < Rhs->OriginalOffset; |
2379 | }); |
2380 | for (auto *Sec : OutOfSegmentSections) { |
2381 | Offset = alignTo(Value: Offset, Align: Sec->Align == 0 ? 1 : Sec->Align); |
2382 | Sec->Offset = Offset; |
2383 | if (Sec->Type != SHT_NOBITS) |
2384 | Offset += Sec->Size; |
2385 | } |
2386 | return Offset; |
2387 | } |
2388 | |
2389 | // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus |
2390 | // occupy no space in the file. |
2391 | static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { |
2392 | // The layout algorithm requires the sections to be handled in the order of |
2393 | // their offsets in the input file, at least inside segments. |
2394 | std::vector<SectionBase *> Sections; |
2395 | Sections.reserve(n: Obj.sections().size()); |
2396 | uint32_t Index = 1; |
2397 | for (auto &Sec : Obj.sections()) { |
2398 | Sec.Index = Index++; |
2399 | Sections.push_back(x: &Sec); |
2400 | } |
2401 | llvm::stable_sort(Range&: Sections, |
2402 | C: [](const SectionBase *Lhs, const SectionBase *Rhs) { |
2403 | return Lhs->OriginalOffset < Rhs->OriginalOffset; |
2404 | }); |
2405 | |
2406 | for (auto *Sec : Sections) { |
2407 | auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD |
2408 | ? Sec->ParentSegment->firstSection() |
2409 | : nullptr; |
2410 | |
2411 | // The first section in a PT_LOAD has to have congruent offset and address |
2412 | // modulo the alignment, which usually equals the maximum page size. |
2413 | if (FirstSec && FirstSec == Sec) |
2414 | Off = alignTo(Value: Off, Align: Sec->ParentSegment->Align, Skew: Sec->Addr); |
2415 | |
2416 | // sh_offset is not significant for SHT_NOBITS sections, but the congruence |
2417 | // rule must be followed if it is the first section in a PT_LOAD. Do not |
2418 | // advance Off. |
2419 | if (Sec->Type == SHT_NOBITS) { |
2420 | Sec->Offset = Off; |
2421 | continue; |
2422 | } |
2423 | |
2424 | if (!FirstSec) { |
2425 | // FirstSec being nullptr generally means that Sec does not have the |
2426 | // SHF_ALLOC flag. |
2427 | Off = Sec->Align ? alignTo(Value: Off, Align: Sec->Align) : Off; |
2428 | } else if (FirstSec != Sec) { |
2429 | // The offset is relative to the first section in the PT_LOAD segment. Use |
2430 | // sh_offset for non-SHF_ALLOC sections. |
2431 | Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; |
2432 | } |
2433 | Sec->Offset = Off; |
2434 | Off += Sec->Size; |
2435 | } |
2436 | return Off; |
2437 | } |
2438 | |
2439 | // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values |
2440 | // have been updated. |
2441 | static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments, |
2442 | uint64_t HdrEnd) { |
2443 | uint64_t MaxOffset = 0; |
2444 | for (Segment *Seg : Segments) { |
2445 | if (Seg->Type == PT_PHDR) |
2446 | continue; |
2447 | |
2448 | // The segment offset is generally the offset of the first section. |
2449 | // |
2450 | // For a segment containing no section (see sectionWithinSegment), if it has |
2451 | // a parent segment, copy the parent segment's offset field. This works for |
2452 | // empty PT_TLS. If no parent segment, use 0: the segment is not useful for |
2453 | // debugging anyway. |
2454 | const SectionBase *FirstSec = Seg->firstSection(); |
2455 | uint64_t Offset = |
2456 | FirstSec ? FirstSec->Offset |
2457 | : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); |
2458 | uint64_t FileSize = 0; |
2459 | for (const SectionBase *Sec : Seg->Sections) { |
2460 | uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; |
2461 | if (Sec->Offset + Size > Offset) |
2462 | FileSize = std::max(a: FileSize, b: Sec->Offset + Size - Offset); |
2463 | } |
2464 | |
2465 | // If the segment includes EHDR and program headers, don't make it smaller |
2466 | // than the headers. |
2467 | if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { |
2468 | FileSize += Offset - Seg->Offset; |
2469 | Offset = Seg->Offset; |
2470 | FileSize = std::max(a: FileSize, b: HdrEnd - Offset); |
2471 | } |
2472 | |
2473 | Seg->Offset = Offset; |
2474 | Seg->FileSize = FileSize; |
2475 | MaxOffset = std::max(a: MaxOffset, b: Offset + FileSize); |
2476 | } |
2477 | return MaxOffset; |
2478 | } |
2479 | |
2480 | template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { |
2481 | Segment &ElfHdr = Obj.ElfHdrSegment; |
2482 | ElfHdr.Type = PT_PHDR; |
2483 | ElfHdr.Flags = 0; |
2484 | ElfHdr.VAddr = 0; |
2485 | ElfHdr.PAddr = 0; |
2486 | ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); |
2487 | ElfHdr.Align = 0; |
2488 | } |
2489 | |
2490 | template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { |
2491 | // We need a temporary list of segments that has a special order to it |
2492 | // so that we know that anytime ->ParentSegment is set that segment has |
2493 | // already had its offset properly set. |
2494 | std::vector<Segment *> OrderedSegments; |
2495 | for (Segment &Segment : Obj.segments()) |
2496 | OrderedSegments.push_back(x: &Segment); |
2497 | OrderedSegments.push_back(&Obj.ElfHdrSegment); |
2498 | OrderedSegments.push_back(&Obj.ProgramHdrSegment); |
2499 | orderSegments(Segments&: OrderedSegments); |
2500 | |
2501 | uint64_t Offset; |
2502 | if (OnlyKeepDebug) { |
2503 | // For --only-keep-debug, the sections that did not preserve contents were |
2504 | // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and |
2505 | // then rewrite p_offset/p_filesz of program headers. |
2506 | uint64_t HdrEnd = |
2507 | sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); |
2508 | Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); |
2509 | Offset = std::max(a: Offset, |
2510 | b: layoutSegmentsForOnlyKeepDebug(Segments&: OrderedSegments, HdrEnd)); |
2511 | } else { |
2512 | // Offset is used as the start offset of the first segment to be laid out. |
2513 | // Since the ELF Header (ElfHdrSegment) must be at the start of the file, |
2514 | // we start at offset 0. |
2515 | Offset = layoutSegments(Segments&: OrderedSegments, Offset: 0); |
2516 | Offset = layoutSections(Obj.sections(), Offset); |
2517 | } |
2518 | // If we need to write the section header table out then we need to align the |
2519 | // Offset so that SHOffset is valid. |
2520 | if (WriteSectionHeaders) |
2521 | Offset = alignTo(Value: Offset, Align: sizeof(Elf_Addr)); |
2522 | Obj.SHOff = Offset; |
2523 | } |
2524 | |
2525 | template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { |
2526 | // We already have the section header offset so we can calculate the total |
2527 | // size by just adding up the size of each section header. |
2528 | if (!WriteSectionHeaders) |
2529 | return Obj.SHOff; |
2530 | size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. |
2531 | return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); |
2532 | } |
2533 | |
2534 | template <class ELFT> Error ELFWriter<ELFT>::write() { |
2535 | // Segment data must be written first, so that the ELF header and program |
2536 | // header tables can overwrite it, if covered by a segment. |
2537 | writeSegmentData(); |
2538 | writeEhdr(); |
2539 | writePhdrs(); |
2540 | if (Error E = writeSectionData()) |
2541 | return E; |
2542 | if (WriteSectionHeaders) |
2543 | writeShdrs(); |
2544 | |
2545 | // TODO: Implement direct writing to the output stream (without intermediate |
2546 | // memory buffer Buf). |
2547 | Out.write(Buf->getBufferStart(), Buf->getBufferSize()); |
2548 | return Error::success(); |
2549 | } |
2550 | |
2551 | static Error removeUnneededSections(Object &Obj) { |
2552 | // We can remove an empty symbol table from non-relocatable objects. |
2553 | // Relocatable objects typically have relocation sections whose |
2554 | // sh_link field points to .symtab, so we can't remove .symtab |
2555 | // even if it is empty. |
2556 | if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || |
2557 | !Obj.SymbolTable->empty()) |
2558 | return Error::success(); |
2559 | |
2560 | // .strtab can be used for section names. In such a case we shouldn't |
2561 | // remove it. |
2562 | auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames |
2563 | ? nullptr |
2564 | : Obj.SymbolTable->getStrTab(); |
2565 | return Obj.removeSections(AllowBrokenLinks: false, ToRemove: [&](const SectionBase &Sec) { |
2566 | return &Sec == Obj.SymbolTable || &Sec == StrTab; |
2567 | }); |
2568 | } |
2569 | |
2570 | template <class ELFT> Error ELFWriter<ELFT>::finalize() { |
2571 | // It could happen that SectionNames has been removed and yet the user wants |
2572 | // a section header table output. We need to throw an error if a user tries |
2573 | // to do that. |
2574 | if (Obj.SectionNames == nullptr && WriteSectionHeaders) |
2575 | return createStringError(EC: llvm::errc::invalid_argument, |
2576 | S: "cannot write section header table because " |
2577 | "section header string table was removed" ); |
2578 | |
2579 | if (Error E = removeUnneededSections(Obj)) |
2580 | return E; |
2581 | |
2582 | // If the .symtab indices have not been changed, restore the sh_link to |
2583 | // .symtab for sections that were linked to .symtab. |
2584 | if (Obj.SymbolTable && !Obj.SymbolTable->indicesChanged()) |
2585 | for (SectionBase &Sec : Obj.sections()) |
2586 | Sec.restoreSymTabLink(*Obj.SymbolTable); |
2587 | |
2588 | // We need to assign indexes before we perform layout because we need to know |
2589 | // if we need large indexes or not. We can assign indexes first and check as |
2590 | // we go to see if we will actully need large indexes. |
2591 | bool NeedsLargeIndexes = false; |
2592 | if (Obj.sections().size() >= SHN_LORESERVE) { |
2593 | SectionTableRef Sections = Obj.sections(); |
2594 | // Sections doesn't include the null section header, so account for this |
2595 | // when skipping the first N sections. |
2596 | NeedsLargeIndexes = |
2597 | any_of(drop_begin(RangeOrContainer&: Sections, N: SHN_LORESERVE - 1), |
2598 | [](const SectionBase &Sec) { return Sec.HasSymbol; }); |
2599 | // TODO: handle case where only one section needs the large index table but |
2600 | // only needs it because the large index table hasn't been removed yet. |
2601 | } |
2602 | |
2603 | if (NeedsLargeIndexes) { |
2604 | // This means we definitely need to have a section index table but if we |
2605 | // already have one then we should use it instead of making a new one. |
2606 | if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { |
2607 | // Addition of a section to the end does not invalidate the indexes of |
2608 | // other sections and assigns the correct index to the new section. |
2609 | auto &Shndx = Obj.addSection<SectionIndexSection>(); |
2610 | Obj.SymbolTable->setShndxTable(&Shndx); |
2611 | Shndx.setSymTab(Obj.SymbolTable); |
2612 | } |
2613 | } else { |
2614 | // Since we don't need SectionIndexTable we should remove it and all |
2615 | // references to it. |
2616 | if (Obj.SectionIndexTable != nullptr) { |
2617 | // We do not support sections referring to the section index table. |
2618 | if (Error E = Obj.removeSections(AllowBrokenLinks: false /*AllowBrokenLinks*/, |
2619 | ToRemove: [this](const SectionBase &Sec) { |
2620 | return &Sec == Obj.SectionIndexTable; |
2621 | })) |
2622 | return E; |
2623 | } |
2624 | } |
2625 | |
2626 | // Make sure we add the names of all the sections. Importantly this must be |
2627 | // done after we decide to add or remove SectionIndexes. |
2628 | if (Obj.SectionNames != nullptr) |
2629 | for (const SectionBase &Sec : Obj.sections()) |
2630 | Obj.SectionNames->addString(Name: Sec.Name); |
2631 | |
2632 | initEhdrSegment(); |
2633 | |
2634 | // Before we can prepare for layout the indexes need to be finalized. |
2635 | // Also, the output arch may not be the same as the input arch, so fix up |
2636 | // size-related fields before doing layout calculations. |
2637 | uint64_t Index = 0; |
2638 | auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>(); |
2639 | for (SectionBase &Sec : Obj.sections()) { |
2640 | Sec.Index = Index++; |
2641 | if (Error Err = Sec.accept(*SecSizer)) |
2642 | return Err; |
2643 | } |
2644 | |
2645 | // The symbol table does not update all other sections on update. For |
2646 | // instance, symbol names are not added as new symbols are added. This means |
2647 | // that some sections, like .strtab, don't yet have their final size. |
2648 | if (Obj.SymbolTable != nullptr) |
2649 | Obj.SymbolTable->prepareForLayout(); |
2650 | |
2651 | // Now that all strings are added we want to finalize string table builders, |
2652 | // because that affects section sizes which in turn affects section offsets. |
2653 | for (SectionBase &Sec : Obj.sections()) |
2654 | if (auto StrTab = dyn_cast<StringTableSection>(Val: &Sec)) |
2655 | StrTab->prepareForLayout(); |
2656 | |
2657 | assignOffsets(); |
2658 | |
2659 | // layoutSections could have modified section indexes, so we need |
2660 | // to fill the index table after assignOffsets. |
2661 | if (Obj.SymbolTable != nullptr) |
2662 | Obj.SymbolTable->fillShndxTable(); |
2663 | |
2664 | // Finally now that all offsets and indexes have been set we can finalize any |
2665 | // remaining issues. |
2666 | uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); |
2667 | for (SectionBase &Sec : Obj.sections()) { |
2668 | Sec.HeaderOffset = Offset; |
2669 | Offset += sizeof(Elf_Shdr); |
2670 | if (WriteSectionHeaders) |
2671 | Sec.NameIndex = Obj.SectionNames->findIndex(Name: Sec.Name); |
2672 | Sec.finalize(); |
2673 | } |
2674 | |
2675 | size_t TotalSize = totalSize(); |
2676 | Buf = WritableMemoryBuffer::getNewMemBuffer(Size: TotalSize); |
2677 | if (!Buf) |
2678 | return createStringError(EC: errc::not_enough_memory, |
2679 | S: "failed to allocate memory buffer of " + |
2680 | Twine::utohexstr(Val: TotalSize) + " bytes" ); |
2681 | |
2682 | SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf); |
2683 | return Error::success(); |
2684 | } |
2685 | |
2686 | Error BinaryWriter::write() { |
2687 | SmallVector<const SectionBase *, 30> SectionsToWrite; |
2688 | for (const SectionBase &Sec : Obj.allocSections()) { |
2689 | if (Sec.Type != SHT_NOBITS && Sec.Size > 0) |
2690 | SectionsToWrite.push_back(Elt: &Sec); |
2691 | } |
2692 | |
2693 | if (SectionsToWrite.empty()) |
2694 | return Error::success(); |
2695 | |
2696 | llvm::stable_sort(Range&: SectionsToWrite, |
2697 | C: [](const SectionBase *LHS, const SectionBase *RHS) { |
2698 | return LHS->Offset < RHS->Offset; |
2699 | }); |
2700 | |
2701 | assert(SectionsToWrite.front()->Offset == 0); |
2702 | |
2703 | for (size_t i = 0; i != SectionsToWrite.size(); ++i) { |
2704 | const SectionBase &Sec = *SectionsToWrite[i]; |
2705 | if (Error Err = Sec.accept(Visitor&: *SecWriter)) |
2706 | return Err; |
2707 | if (GapFill == 0) |
2708 | continue; |
2709 | uint64_t PadOffset = (i < SectionsToWrite.size() - 1) |
2710 | ? SectionsToWrite[i + 1]->Offset |
2711 | : Buf->getBufferSize(); |
2712 | assert(PadOffset <= Buf->getBufferSize()); |
2713 | assert(Sec.Offset + Sec.Size <= PadOffset); |
2714 | std::fill(first: Buf->getBufferStart() + Sec.Offset + Sec.Size, |
2715 | last: Buf->getBufferStart() + PadOffset, value: GapFill); |
2716 | } |
2717 | |
2718 | // TODO: Implement direct writing to the output stream (without intermediate |
2719 | // memory buffer Buf). |
2720 | Out.write(Ptr: Buf->getBufferStart(), Size: Buf->getBufferSize()); |
2721 | return Error::success(); |
2722 | } |
2723 | |
2724 | Error BinaryWriter::finalize() { |
2725 | // Compute the section LMA based on its sh_offset and the containing segment's |
2726 | // p_offset and p_paddr. Also compute the minimum LMA of all non-empty |
2727 | // sections as MinAddr. In the output, the contents between address 0 and |
2728 | // MinAddr will be skipped. |
2729 | uint64_t MinAddr = UINT64_MAX; |
2730 | for (SectionBase &Sec : Obj.allocSections()) { |
2731 | if (Sec.ParentSegment != nullptr) |
2732 | Sec.Addr = |
2733 | Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr; |
2734 | if (Sec.Type != SHT_NOBITS && Sec.Size > 0) |
2735 | MinAddr = std::min(a: MinAddr, b: Sec.Addr); |
2736 | } |
2737 | |
2738 | // Now that every section has been laid out we just need to compute the total |
2739 | // file size. This might not be the same as the offset returned by |
2740 | // layoutSections, because we want to truncate the last segment to the end of |
2741 | // its last non-empty section, to match GNU objcopy's behaviour. |
2742 | TotalSize = PadTo > MinAddr ? PadTo - MinAddr : 0; |
2743 | for (SectionBase &Sec : Obj.allocSections()) |
2744 | if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { |
2745 | Sec.Offset = Sec.Addr - MinAddr; |
2746 | TotalSize = std::max(a: TotalSize, b: Sec.Offset + Sec.Size); |
2747 | } |
2748 | |
2749 | Buf = WritableMemoryBuffer::getNewMemBuffer(Size: TotalSize); |
2750 | if (!Buf) |
2751 | return createStringError(EC: errc::not_enough_memory, |
2752 | S: "failed to allocate memory buffer of " + |
2753 | Twine::utohexstr(Val: TotalSize) + " bytes" ); |
2754 | SecWriter = std::make_unique<BinarySectionWriter>(args&: *Buf); |
2755 | return Error::success(); |
2756 | } |
2757 | |
2758 | Error ASCIIHexWriter::checkSection(const SectionBase &S) const { |
2759 | if (addressOverflows32bit(Addr: S.Addr) || |
2760 | addressOverflows32bit(Addr: S.Addr + S.Size - 1)) |
2761 | return createStringError( |
2762 | EC: errc::invalid_argument, |
2763 | Fmt: "section '%s' address range [0x%llx, 0x%llx] is not 32 bit" , |
2764 | Vals: S.Name.c_str(), Vals: S.Addr, Vals: S.Addr + S.Size - 1); |
2765 | return Error::success(); |
2766 | } |
2767 | |
2768 | Error ASCIIHexWriter::finalize() { |
2769 | // We can't write 64-bit addresses. |
2770 | if (addressOverflows32bit(Addr: Obj.Entry)) |
2771 | return createStringError(EC: errc::invalid_argument, |
2772 | Fmt: "entry point address 0x%llx overflows 32 bits" , |
2773 | Vals: Obj.Entry); |
2774 | |
2775 | for (const SectionBase &S : Obj.sections()) { |
2776 | if ((S.Flags & ELF::SHF_ALLOC) && S.Type != ELF::SHT_NOBITS && S.Size > 0) { |
2777 | if (Error E = checkSection(S)) |
2778 | return E; |
2779 | Sections.push_back(x: &S); |
2780 | } |
2781 | } |
2782 | |
2783 | llvm::sort(C&: Sections, Comp: [](const SectionBase *A, const SectionBase *B) { |
2784 | return sectionPhysicalAddr(Sec: A) < sectionPhysicalAddr(Sec: B); |
2785 | }); |
2786 | |
2787 | std::unique_ptr<WritableMemoryBuffer> EmptyBuffer = |
2788 | WritableMemoryBuffer::getNewMemBuffer(Size: 0); |
2789 | if (!EmptyBuffer) |
2790 | return createStringError(EC: errc::not_enough_memory, |
2791 | S: "failed to allocate memory buffer of 0 bytes" ); |
2792 | |
2793 | Expected<size_t> ExpTotalSize = getTotalSize(EmptyBuffer&: *EmptyBuffer); |
2794 | if (!ExpTotalSize) |
2795 | return ExpTotalSize.takeError(); |
2796 | TotalSize = *ExpTotalSize; |
2797 | |
2798 | Buf = WritableMemoryBuffer::getNewMemBuffer(Size: TotalSize); |
2799 | if (!Buf) |
2800 | return createStringError(EC: errc::not_enough_memory, |
2801 | S: "failed to allocate memory buffer of 0x" + |
2802 | Twine::utohexstr(Val: TotalSize) + " bytes" ); |
2803 | return Error::success(); |
2804 | } |
2805 | |
2806 | uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { |
2807 | IHexLineData HexData; |
2808 | uint8_t Data[4] = {}; |
2809 | // We don't write entry point record if entry is zero. |
2810 | if (Obj.Entry == 0) |
2811 | return 0; |
2812 | |
2813 | if (Obj.Entry <= 0xFFFFFU) { |
2814 | Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; |
2815 | support::endian::write(memory: &Data[2], value: static_cast<uint16_t>(Obj.Entry), |
2816 | endian: llvm::endianness::big); |
2817 | HexData = IHexRecord::getLine(Type: IHexRecord::StartAddr80x86, Addr: 0, Data); |
2818 | } else { |
2819 | support::endian::write(memory: Data, value: static_cast<uint32_t>(Obj.Entry), |
2820 | endian: llvm::endianness::big); |
2821 | HexData = IHexRecord::getLine(Type: IHexRecord::StartAddr, Addr: 0, Data); |
2822 | } |
2823 | memcpy(dest: Buf, src: HexData.data(), n: HexData.size()); |
2824 | return HexData.size(); |
2825 | } |
2826 | |
2827 | uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { |
2828 | IHexLineData HexData = IHexRecord::getLine(Type: IHexRecord::EndOfFile, Addr: 0, Data: {}); |
2829 | memcpy(dest: Buf, src: HexData.data(), n: HexData.size()); |
2830 | return HexData.size(); |
2831 | } |
2832 | |
2833 | Expected<size_t> |
2834 | IHexWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const { |
2835 | IHexSectionWriterBase LengthCalc(EmptyBuffer); |
2836 | for (const SectionBase *Sec : Sections) |
2837 | if (Error Err = Sec->accept(Visitor&: LengthCalc)) |
2838 | return std::move(Err); |
2839 | |
2840 | // We need space to write section records + StartAddress record |
2841 | // (if start adress is not zero) + EndOfFile record. |
2842 | return LengthCalc.getBufferOffset() + |
2843 | (Obj.Entry ? IHexRecord::getLineLength(DataSize: 4) : 0) + |
2844 | IHexRecord::getLineLength(DataSize: 0); |
2845 | } |
2846 | |
2847 | Error IHexWriter::write() { |
2848 | IHexSectionWriter Writer(*Buf); |
2849 | // Write sections. |
2850 | for (const SectionBase *Sec : Sections) |
2851 | if (Error Err = Sec->accept(Visitor&: Writer)) |
2852 | return Err; |
2853 | |
2854 | uint64_t Offset = Writer.getBufferOffset(); |
2855 | // Write entry point address. |
2856 | Offset += writeEntryPointRecord( |
2857 | Buf: reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); |
2858 | // Write EOF. |
2859 | Offset += writeEndOfFileRecord( |
2860 | Buf: reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); |
2861 | assert(Offset == TotalSize); |
2862 | |
2863 | // TODO: Implement direct writing to the output stream (without intermediate |
2864 | // memory buffer Buf). |
2865 | Out.write(Ptr: Buf->getBufferStart(), Size: Buf->getBufferSize()); |
2866 | return Error::success(); |
2867 | } |
2868 | |
2869 | Error SRECSectionWriterBase::visit(const StringTableSection &Sec) { |
2870 | // Check that the sizer has already done its work. |
2871 | assert(Sec.Size == Sec.StrTabBuilder.getSize() && |
2872 | "Expected section size to have been finalized" ); |
2873 | // We don't need to write anything here because the real writer has already |
2874 | // done it. |
2875 | return Error::success(); |
2876 | } |
2877 | |
2878 | Error SRECSectionWriterBase::visit(const Section &Sec) { |
2879 | writeSection(S: Sec, Data: Sec.Contents); |
2880 | return Error::success(); |
2881 | } |
2882 | |
2883 | Error SRECSectionWriterBase::visit(const OwnedDataSection &Sec) { |
2884 | writeSection(S: Sec, Data: Sec.Data); |
2885 | return Error::success(); |
2886 | } |
2887 | |
2888 | Error SRECSectionWriterBase::visit(const DynamicRelocationSection &Sec) { |
2889 | writeSection(S: Sec, Data: Sec.Contents); |
2890 | return Error::success(); |
2891 | } |
2892 | |
2893 | void SRECSectionWriter::writeRecord(SRecord &Record, uint64_t Off) { |
2894 | SRecLineData Data = Record.toString(); |
2895 | memcpy(dest: Out.getBufferStart() + Off, src: Data.data(), n: Data.size()); |
2896 | } |
2897 | |
2898 | void SRECSectionWriterBase::writeRecords(uint32_t Entry) { |
2899 | // The ELF header could contain an entry point outside of the sections we have |
2900 | // seen that does not fit the current record Type. |
2901 | Type = std::max(a: Type, b: SRecord::getType(Address: Entry)); |
2902 | uint64_t Off = HeaderSize; |
2903 | for (SRecord &Record : Records) { |
2904 | Record.Type = Type; |
2905 | writeRecord(Record, Off); |
2906 | Off += Record.getSize(); |
2907 | } |
2908 | Offset = Off; |
2909 | } |
2910 | |
2911 | void SRECSectionWriterBase::writeSection(const SectionBase &S, |
2912 | ArrayRef<uint8_t> Data) { |
2913 | const uint32_t ChunkSize = 16; |
2914 | uint32_t Address = sectionPhysicalAddr(Sec: &S); |
2915 | uint32_t EndAddr = Address + S.Size - 1; |
2916 | Type = std::max(a: SRecord::getType(Address: EndAddr), b: Type); |
2917 | while (!Data.empty()) { |
2918 | uint64_t DataSize = std::min<uint64_t>(a: Data.size(), b: ChunkSize); |
2919 | SRecord Record{.Type: Type, .Address: Address, .Data: Data.take_front(N: DataSize)}; |
2920 | Records.push_back(x: Record); |
2921 | Data = Data.drop_front(N: DataSize); |
2922 | Address += DataSize; |
2923 | } |
2924 | } |
2925 | |
2926 | Error SRECSectionWriter::visit(const StringTableSection &Sec) { |
2927 | assert(Sec.Size == Sec.StrTabBuilder.getSize() && |
2928 | "Section size does not match the section's string table builder size" ); |
2929 | std::vector<uint8_t> Data(Sec.Size); |
2930 | Sec.StrTabBuilder.write(Buf: Data.data()); |
2931 | writeSection(S: Sec, Data); |
2932 | return Error::success(); |
2933 | } |
2934 | |
2935 | SRecLineData SRecord::toString() const { |
2936 | SRecLineData Line(getSize()); |
2937 | auto *Iter = Line.begin(); |
2938 | *Iter++ = 'S'; |
2939 | *Iter++ = '0' + Type; |
2940 | // Write 1 byte (2 hex characters) record count. |
2941 | Iter = toHexStr(X: getCount(), It: Iter, Len: 2); |
2942 | // Write the address field with length depending on record type. |
2943 | Iter = toHexStr(X: Address, It: Iter, Len: getAddressSize()); |
2944 | // Write data byte by byte. |
2945 | for (uint8_t X : Data) |
2946 | Iter = toHexStr(X, It: Iter, Len: 2); |
2947 | // Write the 1 byte checksum. |
2948 | Iter = toHexStr(X: getChecksum(), It: Iter, Len: 2); |
2949 | *Iter++ = '\r'; |
2950 | *Iter++ = '\n'; |
2951 | assert(Iter == Line.end()); |
2952 | return Line; |
2953 | } |
2954 | |
2955 | uint8_t SRecord::getChecksum() const { |
2956 | uint32_t Sum = getCount(); |
2957 | Sum += (Address >> 24) & 0xFF; |
2958 | Sum += (Address >> 16) & 0xFF; |
2959 | Sum += (Address >> 8) & 0xFF; |
2960 | Sum += Address & 0xFF; |
2961 | for (uint8_t Byte : Data) |
2962 | Sum += Byte; |
2963 | return 0xFF - (Sum & 0xFF); |
2964 | } |
2965 | |
2966 | size_t SRecord::getSize() const { |
2967 | // Type, Count, Checksum, and CRLF are two characters each. |
2968 | return 2 + 2 + getAddressSize() + Data.size() * 2 + 2 + 2; |
2969 | } |
2970 | |
2971 | uint8_t SRecord::getAddressSize() const { |
2972 | switch (Type) { |
2973 | case Type::S2: |
2974 | return 6; |
2975 | case Type::S3: |
2976 | return 8; |
2977 | case Type::S7: |
2978 | return 8; |
2979 | case Type::S8: |
2980 | return 6; |
2981 | default: |
2982 | return 4; |
2983 | } |
2984 | } |
2985 | |
2986 | uint8_t SRecord::getCount() const { |
2987 | uint8_t DataSize = Data.size(); |
2988 | uint8_t ChecksumSize = 1; |
2989 | return getAddressSize() / 2 + DataSize + ChecksumSize; |
2990 | } |
2991 | |
2992 | uint8_t SRecord::getType(uint32_t Address) { |
2993 | if (isUInt<16>(x: Address)) |
2994 | return SRecord::S1; |
2995 | if (isUInt<24>(x: Address)) |
2996 | return SRecord::S2; |
2997 | return SRecord::S3; |
2998 | } |
2999 | |
3000 | SRecord SRecord::(StringRef FileName) { |
3001 | // Header is a record with Type S0, Address 0, and Data that is a |
3002 | // vendor-specific text comment. For the comment we will use the output file |
3003 | // name truncated to 40 characters to match the behavior of GNU objcopy. |
3004 | StringRef = FileName.slice(Start: 0, End: 40); |
3005 | ArrayRef<uint8_t> Data( |
3006 | reinterpret_cast<const uint8_t *>(HeaderContents.data()), |
3007 | HeaderContents.size()); |
3008 | return {.Type: SRecord::S0, .Address: 0, .Data: Data}; |
3009 | } |
3010 | |
3011 | size_t SRECWriter::(uint8_t *Buf) { |
3012 | SRecLineData Record = SRecord::getHeader(FileName: OutputFileName).toString(); |
3013 | memcpy(dest: Buf, src: Record.data(), n: Record.size()); |
3014 | return Record.size(); |
3015 | } |
3016 | |
3017 | size_t SRECWriter::writeTerminator(uint8_t *Buf, uint8_t Type) { |
3018 | assert(Type >= SRecord::S7 && Type <= SRecord::S9 && |
3019 | "Invalid record type for terminator" ); |
3020 | uint32_t Entry = Obj.Entry; |
3021 | SRecLineData Data = SRecord{.Type: Type, .Address: Entry, .Data: {}}.toString(); |
3022 | memcpy(dest: Buf, src: Data.data(), n: Data.size()); |
3023 | return Data.size(); |
3024 | } |
3025 | |
3026 | Expected<size_t> |
3027 | SRECWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const { |
3028 | SRECSizeCalculator SizeCalc(EmptyBuffer, 0); |
3029 | for (const SectionBase *Sec : Sections) |
3030 | if (Error Err = Sec->accept(Visitor&: SizeCalc)) |
3031 | return std::move(Err); |
3032 | |
3033 | SizeCalc.writeRecords(Entry: Obj.Entry); |
3034 | // We need to add the size of the Header and Terminator records. |
3035 | SRecord = SRecord::getHeader(FileName: OutputFileName); |
3036 | uint8_t TerminatorType = 10 - SizeCalc.getType(); |
3037 | SRecord Terminator = {.Type: TerminatorType, .Address: static_cast<uint32_t>(Obj.Entry), .Data: {}}; |
3038 | return Header.getSize() + SizeCalc.getBufferOffset() + Terminator.getSize(); |
3039 | } |
3040 | |
3041 | Error SRECWriter::write() { |
3042 | uint32_t = |
3043 | writeHeader(Buf: reinterpret_cast<uint8_t *>(Buf->getBufferStart())); |
3044 | SRECSectionWriter Writer(*Buf, HeaderSize); |
3045 | for (const SectionBase *S : Sections) { |
3046 | if (Error E = S->accept(Visitor&: Writer)) |
3047 | return E; |
3048 | } |
3049 | Writer.writeRecords(Entry: Obj.Entry); |
3050 | uint64_t Offset = Writer.getBufferOffset(); |
3051 | |
3052 | // An S1 record terminates with an S9 record, S2 with S8, and S3 with S7. |
3053 | uint8_t TerminatorType = 10 - Writer.getType(); |
3054 | Offset += writeTerminator( |
3055 | Buf: reinterpret_cast<uint8_t *>(Buf->getBufferStart() + Offset), |
3056 | Type: TerminatorType); |
3057 | assert(Offset == TotalSize); |
3058 | Out.write(Ptr: Buf->getBufferStart(), Size: Buf->getBufferSize()); |
3059 | return Error::success(); |
3060 | } |
3061 | |
3062 | namespace llvm { |
3063 | namespace objcopy { |
3064 | namespace elf { |
3065 | |
3066 | template class ELFBuilder<ELF64LE>; |
3067 | template class ELFBuilder<ELF64BE>; |
3068 | template class ELFBuilder<ELF32LE>; |
3069 | template class ELFBuilder<ELF32BE>; |
3070 | |
3071 | template class ELFWriter<ELF64LE>; |
3072 | template class ELFWriter<ELF64BE>; |
3073 | template class ELFWriter<ELF32LE>; |
3074 | template class ELFWriter<ELF32BE>; |
3075 | |
3076 | } // end namespace elf |
3077 | } // end namespace objcopy |
3078 | } // end namespace llvm |
3079 | |