1 | //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Hexagon.h" |
10 | #include "HexagonISelDAGToDAG.h" |
11 | #include "HexagonISelLowering.h" |
12 | #include "HexagonTargetMachine.h" |
13 | #include "llvm/ADT/BitVector.h" |
14 | #include "llvm/ADT/SetVector.h" |
15 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
16 | #include "llvm/CodeGen/SelectionDAGISel.h" |
17 | #include "llvm/IR/Intrinsics.h" |
18 | #include "llvm/IR/IntrinsicsHexagon.h" |
19 | #include "llvm/Support/CommandLine.h" |
20 | #include "llvm/Support/Debug.h" |
21 | #include "llvm/Support/MathExtras.h" |
22 | |
23 | #include <algorithm> |
24 | #include <cmath> |
25 | #include <deque> |
26 | #include <functional> |
27 | #include <map> |
28 | #include <optional> |
29 | #include <set> |
30 | #include <unordered_map> |
31 | #include <utility> |
32 | #include <vector> |
33 | |
34 | #define DEBUG_TYPE "hexagon-isel" |
35 | using namespace llvm; |
36 | |
37 | namespace { |
38 | |
39 | // -------------------------------------------------------------------- |
40 | // Implementation of permutation networks. |
41 | |
42 | // Implementation of the node routing through butterfly networks: |
43 | // - Forward delta. |
44 | // - Reverse delta. |
45 | // - Benes. |
46 | // |
47 | // |
48 | // Forward delta network consists of log(N) steps, where N is the number |
49 | // of inputs. In each step, an input can stay in place, or it can get |
50 | // routed to another position[1]. The step after that consists of two |
51 | // networks, each half in size in terms of the number of nodes. In those |
52 | // terms, in the given step, an input can go to either the upper or the |
53 | // lower network in the next step. |
54 | // |
55 | // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both |
56 | // positions as long as there is no conflict. |
57 | |
58 | // Here's a delta network for 8 inputs, only the switching routes are |
59 | // shown: |
60 | // |
61 | // Steps: |
62 | // |- 1 ---------------|- 2 -----|- 3 -| |
63 | // |
64 | // Inp[0] *** *** *** *** Out[0] |
65 | // \ / \ / \ / |
66 | // \ / \ / X |
67 | // \ / \ / / \ |
68 | // Inp[1] *** \ / *** X *** *** Out[1] |
69 | // \ \ / / \ / \ / |
70 | // \ \ / / X X |
71 | // \ \ / / / \ / \ |
72 | // Inp[2] *** \ \ / / *** X *** *** Out[2] |
73 | // \ \ X / / / \ \ / |
74 | // \ \ / \ / / / \ X |
75 | // \ X X / / \ / \ |
76 | // Inp[3] *** \ / \ / \ / *** *** *** Out[3] |
77 | // \ X X X / |
78 | // \ / \ / \ / \ / |
79 | // X X X X |
80 | // / \ / \ / \ / \ |
81 | // / X X X \ |
82 | // Inp[4] *** / \ / \ / \ *** *** *** Out[4] |
83 | // / X X \ \ / \ / |
84 | // / / \ / \ \ \ / X |
85 | // / / X \ \ \ / / \ |
86 | // Inp[5] *** / / \ \ *** X *** *** Out[5] |
87 | // / / \ \ \ / \ / |
88 | // / / \ \ X X |
89 | // / / \ \ / \ / \ |
90 | // Inp[6] *** / \ *** X *** *** Out[6] |
91 | // / \ / \ \ / |
92 | // / \ / \ X |
93 | // / \ / \ / \ |
94 | // Inp[7] *** *** *** *** Out[7] |
95 | // |
96 | // |
97 | // Reverse delta network is same as delta network, with the steps in |
98 | // the opposite order. |
99 | // |
100 | // |
101 | // Benes network is a forward delta network immediately followed by |
102 | // a reverse delta network. |
103 | |
104 | enum class ColorKind { None, Red, Black }; |
105 | |
106 | // Graph coloring utility used to partition nodes into two groups: |
107 | // they will correspond to nodes routed to the upper and lower networks. |
108 | struct Coloring { |
109 | using Node = int; |
110 | using MapType = std::map<Node, ColorKind>; |
111 | static constexpr Node Ignore = Node(-1); |
112 | |
113 | Coloring(ArrayRef<Node> Ord) : Order(Ord) { |
114 | build(); |
115 | if (!color()) |
116 | Colors.clear(); |
117 | } |
118 | |
119 | const MapType &colors() const { |
120 | return Colors; |
121 | } |
122 | |
123 | ColorKind other(ColorKind Color) { |
124 | if (Color == ColorKind::None) |
125 | return ColorKind::Red; |
126 | return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; |
127 | } |
128 | |
129 | LLVM_DUMP_METHOD void dump() const; |
130 | |
131 | private: |
132 | ArrayRef<Node> Order; |
133 | MapType Colors; |
134 | std::set<Node> Needed; |
135 | |
136 | using NodeSet = std::set<Node>; |
137 | std::map<Node,NodeSet> Edges; |
138 | |
139 | Node conj(Node Pos) { |
140 | Node Num = Order.size(); |
141 | return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; |
142 | } |
143 | |
144 | ColorKind getColor(Node N) { |
145 | auto F = Colors.find(x: N); |
146 | return F != Colors.end() ? F->second : ColorKind::None; |
147 | } |
148 | |
149 | std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); |
150 | |
151 | void build(); |
152 | bool color(); |
153 | }; |
154 | } // namespace |
155 | |
156 | std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { |
157 | auto Color = ColorKind::None; |
158 | for (Node N : Nodes) { |
159 | ColorKind ColorN = getColor(N); |
160 | if (ColorN == ColorKind::None) |
161 | continue; |
162 | if (Color == ColorKind::None) |
163 | Color = ColorN; |
164 | else if (Color != ColorKind::None && Color != ColorN) |
165 | return { false, ColorKind::None }; |
166 | } |
167 | return { true, Color }; |
168 | } |
169 | |
170 | void Coloring::build() { |
171 | // Add Order[P] and Order[conj(P)] to Edges. |
172 | for (unsigned P = 0; P != Order.size(); ++P) { |
173 | Node I = Order[P]; |
174 | if (I != Ignore) { |
175 | Needed.insert(x: I); |
176 | Node PC = Order[conj(Pos: P)]; |
177 | if (PC != Ignore && PC != I) |
178 | Edges[I].insert(x: PC); |
179 | } |
180 | } |
181 | // Add I and conj(I) to Edges. |
182 | for (unsigned I = 0; I != Order.size(); ++I) { |
183 | if (!Needed.count(x: I)) |
184 | continue; |
185 | Node C = conj(Pos: I); |
186 | // This will create an entry in the edge table, even if I is not |
187 | // connected to any other node. This is necessary, because it still |
188 | // needs to be colored. |
189 | NodeSet &Is = Edges[I]; |
190 | if (Needed.count(x: C)) |
191 | Is.insert(x: C); |
192 | } |
193 | } |
194 | |
195 | bool Coloring::color() { |
196 | SetVector<Node> FirstQ; |
197 | auto Enqueue = [this,&FirstQ] (Node N) { |
198 | SetVector<Node> Q; |
199 | Q.insert(X: N); |
200 | for (unsigned I = 0; I != Q.size(); ++I) { |
201 | NodeSet &Ns = Edges[Q[I]]; |
202 | Q.insert(Start: Ns.begin(), End: Ns.end()); |
203 | } |
204 | FirstQ.insert(Start: Q.begin(), End: Q.end()); |
205 | }; |
206 | for (Node N : Needed) |
207 | Enqueue(N); |
208 | |
209 | for (Node N : FirstQ) { |
210 | if (Colors.count(x: N)) |
211 | continue; |
212 | NodeSet &Ns = Edges[N]; |
213 | auto P = getUniqueColor(Nodes: Ns); |
214 | if (!P.first) |
215 | return false; |
216 | Colors[N] = other(Color: P.second); |
217 | } |
218 | |
219 | // First, color nodes that don't have any dups. |
220 | for (auto E : Edges) { |
221 | Node N = E.first; |
222 | if (!Needed.count(x: conj(Pos: N)) || Colors.count(x: N)) |
223 | continue; |
224 | auto P = getUniqueColor(Nodes: E.second); |
225 | if (!P.first) |
226 | return false; |
227 | Colors[N] = other(Color: P.second); |
228 | } |
229 | |
230 | // Now, nodes that are still uncolored. Since the graph can be modified |
231 | // in this step, create a work queue. |
232 | std::vector<Node> WorkQ; |
233 | for (auto E : Edges) { |
234 | Node N = E.first; |
235 | if (!Colors.count(x: N)) |
236 | WorkQ.push_back(x: N); |
237 | } |
238 | |
239 | for (Node N : WorkQ) { |
240 | NodeSet &Ns = Edges[N]; |
241 | auto P = getUniqueColor(Nodes: Ns); |
242 | if (P.first) { |
243 | Colors[N] = other(Color: P.second); |
244 | continue; |
245 | } |
246 | |
247 | // Coloring failed. Split this node. |
248 | Node C = conj(Pos: N); |
249 | ColorKind ColorN = other(Color: ColorKind::None); |
250 | ColorKind ColorC = other(Color: ColorN); |
251 | NodeSet &Cs = Edges[C]; |
252 | NodeSet CopyNs = Ns; |
253 | for (Node M : CopyNs) { |
254 | ColorKind ColorM = getColor(N: M); |
255 | if (ColorM == ColorC) { |
256 | // Connect M with C, disconnect M from N. |
257 | Cs.insert(x: M); |
258 | Edges[M].insert(x: C); |
259 | Ns.erase(x: M); |
260 | Edges[M].erase(x: N); |
261 | } |
262 | } |
263 | Colors[N] = ColorN; |
264 | Colors[C] = ColorC; |
265 | } |
266 | |
267 | // Explicitly assign "None" to all uncolored nodes. |
268 | for (unsigned I = 0; I != Order.size(); ++I) |
269 | if (Colors.count(x: I) == 0) |
270 | Colors[I] = ColorKind::None; |
271 | |
272 | return true; |
273 | } |
274 | |
275 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
276 | void Coloring::dump() const { |
277 | dbgs() << "{ Order: {" ; |
278 | for (Node P : Order) { |
279 | if (P != Ignore) |
280 | dbgs() << ' ' << P; |
281 | else |
282 | dbgs() << " -" ; |
283 | } |
284 | dbgs() << " }\n" ; |
285 | dbgs() << " Needed: {" ; |
286 | for (Node N : Needed) |
287 | dbgs() << ' ' << N; |
288 | dbgs() << " }\n" ; |
289 | |
290 | dbgs() << " Edges: {\n" ; |
291 | for (auto E : Edges) { |
292 | dbgs() << " " << E.first << " -> {" ; |
293 | for (auto N : E.second) |
294 | dbgs() << ' ' << N; |
295 | dbgs() << " }\n" ; |
296 | } |
297 | dbgs() << " }\n" ; |
298 | |
299 | auto ColorKindToName = [](ColorKind C) { |
300 | switch (C) { |
301 | case ColorKind::None: |
302 | return "None" ; |
303 | case ColorKind::Red: |
304 | return "Red" ; |
305 | case ColorKind::Black: |
306 | return "Black" ; |
307 | } |
308 | llvm_unreachable("all ColorKinds should be handled by the switch above" ); |
309 | }; |
310 | |
311 | dbgs() << " Colors: {\n" ; |
312 | for (auto C : Colors) |
313 | dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n" ; |
314 | dbgs() << " }\n}\n" ; |
315 | } |
316 | #endif |
317 | |
318 | namespace { |
319 | // Base class of for reordering networks. They don't strictly need to be |
320 | // permutations, as outputs with repeated occurrences of an input element |
321 | // are allowed. |
322 | struct PermNetwork { |
323 | using Controls = std::vector<uint8_t>; |
324 | using ElemType = int; |
325 | static constexpr ElemType Ignore = ElemType(-1); |
326 | |
327 | enum : uint8_t { |
328 | None, |
329 | Pass, |
330 | Switch |
331 | }; |
332 | enum : uint8_t { |
333 | Forward, |
334 | Reverse |
335 | }; |
336 | |
337 | PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { |
338 | Order.assign(first: Ord.data(), last: Ord.data()+Ord.size()); |
339 | Log = 0; |
340 | |
341 | unsigned S = Order.size(); |
342 | while (S >>= 1) |
343 | ++Log; |
344 | |
345 | Table.resize(new_size: Order.size()); |
346 | for (RowType &Row : Table) |
347 | Row.resize(new_size: Mult*Log, x: None); |
348 | } |
349 | |
350 | void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { |
351 | unsigned Size = Order.size(); |
352 | V.resize(new_size: Size); |
353 | for (unsigned I = 0; I != Size; ++I) { |
354 | unsigned W = 0; |
355 | for (unsigned L = 0; L != Log; ++L) { |
356 | unsigned C = ctl(Pos: I, Step: StartAt+L) == Switch; |
357 | if (Dir == Forward) |
358 | W |= C << (Log-1-L); |
359 | else |
360 | W |= C << L; |
361 | } |
362 | assert(isUInt<8>(W)); |
363 | V[I] = uint8_t(W); |
364 | } |
365 | } |
366 | |
367 | uint8_t ctl(ElemType Pos, unsigned Step) const { |
368 | return Table[Pos][Step]; |
369 | } |
370 | unsigned size() const { |
371 | return Order.size(); |
372 | } |
373 | unsigned steps() const { |
374 | return Log; |
375 | } |
376 | |
377 | protected: |
378 | unsigned Log; |
379 | std::vector<ElemType> Order; |
380 | using RowType = std::vector<uint8_t>; |
381 | std::vector<RowType> Table; |
382 | }; |
383 | |
384 | struct ForwardDeltaNetwork : public PermNetwork { |
385 | ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} |
386 | |
387 | bool run(Controls &V) { |
388 | if (!route(P: Order.data(), T: Table.data(), Size: size(), Step: 0)) |
389 | return false; |
390 | getControls(V, StartAt: 0, Dir: Forward); |
391 | return true; |
392 | } |
393 | |
394 | private: |
395 | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); |
396 | }; |
397 | |
398 | struct ReverseDeltaNetwork : public PermNetwork { |
399 | ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} |
400 | |
401 | bool run(Controls &V) { |
402 | if (!route(P: Order.data(), T: Table.data(), Size: size(), Step: 0)) |
403 | return false; |
404 | getControls(V, StartAt: 0, Dir: Reverse); |
405 | return true; |
406 | } |
407 | |
408 | private: |
409 | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); |
410 | }; |
411 | |
412 | struct BenesNetwork : public PermNetwork { |
413 | BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} |
414 | |
415 | bool run(Controls &F, Controls &R) { |
416 | if (!route(P: Order.data(), T: Table.data(), Size: size(), Step: 0)) |
417 | return false; |
418 | |
419 | getControls(V&: F, StartAt: 0, Dir: Forward); |
420 | getControls(V&: R, StartAt: Log, Dir: Reverse); |
421 | return true; |
422 | } |
423 | |
424 | private: |
425 | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); |
426 | }; |
427 | } // namespace |
428 | |
429 | bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, |
430 | unsigned Step) { |
431 | bool UseUp = false, UseDown = false; |
432 | ElemType Num = Size; |
433 | |
434 | // Cannot use coloring here, because coloring is used to determine |
435 | // the "big" switch, i.e. the one that changes halves, and in a forward |
436 | // network, a color can be simultaneously routed to both halves in the |
437 | // step we're working on. |
438 | for (ElemType J = 0; J != Num; ++J) { |
439 | ElemType I = P[J]; |
440 | // I is the position in the input, |
441 | // J is the position in the output. |
442 | if (I == Ignore) |
443 | continue; |
444 | uint8_t S; |
445 | if (I < Num/2) |
446 | S = (J < Num/2) ? Pass : Switch; |
447 | else |
448 | S = (J < Num/2) ? Switch : Pass; |
449 | |
450 | // U is the element in the table that needs to be updated. |
451 | ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); |
452 | if (U < Num/2) |
453 | UseUp = true; |
454 | else |
455 | UseDown = true; |
456 | if (T[U][Step] != S && T[U][Step] != None) |
457 | return false; |
458 | T[U][Step] = S; |
459 | } |
460 | |
461 | for (ElemType J = 0; J != Num; ++J) |
462 | if (P[J] != Ignore && P[J] >= Num/2) |
463 | P[J] -= Num/2; |
464 | |
465 | if (Step+1 < Log) { |
466 | if (UseUp && !route(P, T, Size: Size/2, Step: Step+1)) |
467 | return false; |
468 | if (UseDown && !route(P: P+Size/2, T: T+Size/2, Size: Size/2, Step: Step+1)) |
469 | return false; |
470 | } |
471 | return true; |
472 | } |
473 | |
474 | bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, |
475 | unsigned Step) { |
476 | unsigned Pets = Log-1 - Step; |
477 | bool UseUp = false, UseDown = false; |
478 | ElemType Num = Size; |
479 | |
480 | // In this step half-switching occurs, so coloring can be used. |
481 | Coloring G({P,Size}); |
482 | const Coloring::MapType &M = G.colors(); |
483 | if (M.empty()) |
484 | return false; |
485 | |
486 | ColorKind ColorUp = ColorKind::None; |
487 | for (ElemType J = 0; J != Num; ++J) { |
488 | ElemType I = P[J]; |
489 | // I is the position in the input, |
490 | // J is the position in the output. |
491 | if (I == Ignore) |
492 | continue; |
493 | ColorKind C = M.at(k: I); |
494 | if (C == ColorKind::None) |
495 | continue; |
496 | // During "Step", inputs cannot switch halves, so if the "up" color |
497 | // is still unknown, make sure that it is selected in such a way that |
498 | // "I" will stay in the same half. |
499 | bool InpUp = I < Num/2; |
500 | if (ColorUp == ColorKind::None) |
501 | ColorUp = InpUp ? C : G.other(Color: C); |
502 | if ((C == ColorUp) != InpUp) { |
503 | // If I should go to a different half than where is it now, give up. |
504 | return false; |
505 | } |
506 | |
507 | uint8_t S; |
508 | if (InpUp) { |
509 | S = (J < Num/2) ? Pass : Switch; |
510 | UseUp = true; |
511 | } else { |
512 | S = (J < Num/2) ? Switch : Pass; |
513 | UseDown = true; |
514 | } |
515 | T[J][Pets] = S; |
516 | } |
517 | |
518 | // Reorder the working permutation according to the computed switch table |
519 | // for the last step (i.e. Pets). |
520 | for (ElemType J = 0, E = Size / 2; J != E; ++J) { |
521 | ElemType PJ = P[J]; // Current values of P[J] |
522 | ElemType PC = P[J+Size/2]; // and P[conj(J)] |
523 | ElemType QJ = PJ; // New values of P[J] |
524 | ElemType QC = PC; // and P[conj(J)] |
525 | if (T[J][Pets] == Switch) |
526 | QC = PJ; |
527 | if (T[J+Size/2][Pets] == Switch) |
528 | QJ = PC; |
529 | P[J] = QJ; |
530 | P[J+Size/2] = QC; |
531 | } |
532 | |
533 | for (ElemType J = 0; J != Num; ++J) |
534 | if (P[J] != Ignore && P[J] >= Num/2) |
535 | P[J] -= Num/2; |
536 | |
537 | if (Step+1 < Log) { |
538 | if (UseUp && !route(P, T, Size: Size/2, Step: Step+1)) |
539 | return false; |
540 | if (UseDown && !route(P: P+Size/2, T: T+Size/2, Size: Size/2, Step: Step+1)) |
541 | return false; |
542 | } |
543 | return true; |
544 | } |
545 | |
546 | bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, |
547 | unsigned Step) { |
548 | Coloring G({P,Size}); |
549 | const Coloring::MapType &M = G.colors(); |
550 | if (M.empty()) |
551 | return false; |
552 | ElemType Num = Size; |
553 | |
554 | unsigned Pets = 2*Log-1 - Step; |
555 | bool UseUp = false, UseDown = false; |
556 | |
557 | // Both assignments, i.e. Red->Up and Red->Down are valid, but they will |
558 | // result in different controls. Let's pick the one where the first |
559 | // control will be "Pass". |
560 | ColorKind ColorUp = ColorKind::None; |
561 | for (ElemType J = 0; J != Num; ++J) { |
562 | ElemType I = P[J]; |
563 | if (I == Ignore) |
564 | continue; |
565 | ColorKind C = M.at(k: I); |
566 | if (C == ColorKind::None) |
567 | continue; |
568 | if (ColorUp == ColorKind::None) { |
569 | ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; |
570 | } |
571 | unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; |
572 | if (C == ColorUp) { |
573 | if (I < Num/2) |
574 | T[I][Step] = Pass; |
575 | else |
576 | T[CI][Step] = Switch; |
577 | T[J][Pets] = (J < Num/2) ? Pass : Switch; |
578 | UseUp = true; |
579 | } else { // Down |
580 | if (I < Num/2) |
581 | T[CI][Step] = Switch; |
582 | else |
583 | T[I][Step] = Pass; |
584 | T[J][Pets] = (J < Num/2) ? Switch : Pass; |
585 | UseDown = true; |
586 | } |
587 | } |
588 | |
589 | // Reorder the working permutation according to the computed switch table |
590 | // for the last step (i.e. Pets). |
591 | for (ElemType J = 0; J != Num/2; ++J) { |
592 | ElemType PJ = P[J]; // Current values of P[J] |
593 | ElemType PC = P[J+Num/2]; // and P[conj(J)] |
594 | ElemType QJ = PJ; // New values of P[J] |
595 | ElemType QC = PC; // and P[conj(J)] |
596 | if (T[J][Pets] == Switch) |
597 | QC = PJ; |
598 | if (T[J+Num/2][Pets] == Switch) |
599 | QJ = PC; |
600 | P[J] = QJ; |
601 | P[J+Num/2] = QC; |
602 | } |
603 | |
604 | for (ElemType J = 0; J != Num; ++J) |
605 | if (P[J] != Ignore && P[J] >= Num/2) |
606 | P[J] -= Num/2; |
607 | |
608 | if (Step+1 < Log) { |
609 | if (UseUp && !route(P, T, Size: Size/2, Step: Step+1)) |
610 | return false; |
611 | if (UseDown && !route(P: P+Size/2, T: T+Size/2, Size: Size/2, Step: Step+1)) |
612 | return false; |
613 | } |
614 | return true; |
615 | } |
616 | |
617 | // -------------------------------------------------------------------- |
618 | // Support for building selection results (output instructions that are |
619 | // parts of the final selection). |
620 | |
621 | namespace { |
622 | struct OpRef { |
623 | OpRef(SDValue V) : OpV(V) {} |
624 | bool isValue() const { return OpV.getNode() != nullptr; } |
625 | bool isValid() const { return isValue() || !(OpN & Invalid); } |
626 | bool isUndef() const { return OpN & Undef; } |
627 | static OpRef res(int N) { return OpRef(Whole | (N & Index)); } |
628 | static OpRef fail() { return OpRef(Invalid); } |
629 | |
630 | static OpRef lo(const OpRef &R) { |
631 | assert(!R.isValue()); |
632 | return OpRef(R.OpN & (Undef | Index | LoHalf)); |
633 | } |
634 | static OpRef hi(const OpRef &R) { |
635 | assert(!R.isValue()); |
636 | return OpRef(R.OpN & (Undef | Index | HiHalf)); |
637 | } |
638 | static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } |
639 | |
640 | // Direct value. |
641 | SDValue OpV = SDValue(); |
642 | |
643 | // Reference to the operand of the input node: |
644 | // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the |
645 | // operand index: |
646 | // If bit 30 is set, it's the high half of the operand. |
647 | // If bit 29 is set, it's the low half of the operand. |
648 | unsigned OpN = 0; |
649 | |
650 | enum : unsigned { |
651 | Invalid = 0x10000000, |
652 | LoHalf = 0x20000000, |
653 | HiHalf = 0x40000000, |
654 | Whole = LoHalf | HiHalf, |
655 | Undef = 0x80000000, |
656 | Index = 0x0FFFFFFF, // Mask of the index value. |
657 | IndexBits = 28, |
658 | }; |
659 | |
660 | LLVM_DUMP_METHOD |
661 | void print(raw_ostream &OS, const SelectionDAG &G) const; |
662 | |
663 | private: |
664 | OpRef(unsigned N) : OpN(N) {} |
665 | }; |
666 | |
667 | struct NodeTemplate { |
668 | NodeTemplate() = default; |
669 | unsigned Opc = 0; |
670 | MVT Ty = MVT::Other; |
671 | std::vector<OpRef> Ops; |
672 | |
673 | LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; |
674 | }; |
675 | |
676 | struct ResultStack { |
677 | ResultStack(SDNode *Inp) |
678 | : InpNode(Inp), InpTy(Inp->getValueType(ResNo: 0).getSimpleVT()) {} |
679 | SDNode *InpNode; |
680 | MVT InpTy; |
681 | unsigned push(const NodeTemplate &Res) { |
682 | List.push_back(x: Res); |
683 | return List.size()-1; |
684 | } |
685 | unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { |
686 | NodeTemplate Res; |
687 | Res.Opc = Opc; |
688 | Res.Ty = Ty; |
689 | Res.Ops = Ops; |
690 | return push(Res); |
691 | } |
692 | bool empty() const { return List.empty(); } |
693 | unsigned size() const { return List.size(); } |
694 | unsigned top() const { return size()-1; } |
695 | const NodeTemplate &operator[](unsigned I) const { return List[I]; } |
696 | unsigned reset(unsigned NewTop) { |
697 | List.resize(new_size: NewTop+1); |
698 | return NewTop; |
699 | } |
700 | |
701 | using BaseType = std::vector<NodeTemplate>; |
702 | BaseType::iterator begin() { return List.begin(); } |
703 | BaseType::iterator end() { return List.end(); } |
704 | BaseType::const_iterator begin() const { return List.begin(); } |
705 | BaseType::const_iterator end() const { return List.end(); } |
706 | |
707 | BaseType List; |
708 | |
709 | LLVM_DUMP_METHOD |
710 | void print(raw_ostream &OS, const SelectionDAG &G) const; |
711 | }; |
712 | } // namespace |
713 | |
714 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
715 | void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { |
716 | if (isValue()) { |
717 | OpV.getNode()->print(OS, &G); |
718 | return; |
719 | } |
720 | if (OpN & Invalid) { |
721 | OS << "invalid" ; |
722 | return; |
723 | } |
724 | if (OpN & Undef) { |
725 | OS << "undef" ; |
726 | return; |
727 | } |
728 | if ((OpN & Whole) != Whole) { |
729 | assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); |
730 | if (OpN & LoHalf) |
731 | OS << "lo " ; |
732 | else |
733 | OS << "hi " ; |
734 | } |
735 | OS << '#' << SignExtend32(OpN & Index, IndexBits); |
736 | } |
737 | |
738 | void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { |
739 | const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); |
740 | OS << format("%8s" , EVT(Ty).getEVTString().c_str()) << " " |
741 | << TII.getName(Opc); |
742 | bool Comma = false; |
743 | for (const auto &R : Ops) { |
744 | if (Comma) |
745 | OS << ','; |
746 | Comma = true; |
747 | OS << ' '; |
748 | R.print(OS, G); |
749 | } |
750 | } |
751 | |
752 | void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { |
753 | OS << "Input node:\n" ; |
754 | #ifndef NDEBUG |
755 | InpNode->dumpr(&G); |
756 | #endif |
757 | OS << "Result templates:\n" ; |
758 | for (unsigned I = 0, E = List.size(); I != E; ++I) { |
759 | OS << '[' << I << "] " ; |
760 | List[I].print(OS, G); |
761 | OS << '\n'; |
762 | } |
763 | } |
764 | #endif |
765 | |
766 | namespace { |
767 | struct ShuffleMask { |
768 | ShuffleMask(ArrayRef<int> M) : Mask(M) { |
769 | for (int M : Mask) { |
770 | if (M == -1) |
771 | continue; |
772 | MinSrc = (MinSrc == -1) ? M : std::min(a: MinSrc, b: M); |
773 | MaxSrc = (MaxSrc == -1) ? M : std::max(a: MaxSrc, b: M); |
774 | } |
775 | } |
776 | |
777 | ArrayRef<int> Mask; |
778 | int MinSrc = -1, MaxSrc = -1; |
779 | |
780 | ShuffleMask lo() const { |
781 | size_t H = Mask.size()/2; |
782 | return ShuffleMask(Mask.take_front(N: H)); |
783 | } |
784 | ShuffleMask hi() const { |
785 | size_t H = Mask.size()/2; |
786 | return ShuffleMask(Mask.take_back(N: H)); |
787 | } |
788 | |
789 | void print(raw_ostream &OS) const { |
790 | OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {" ; |
791 | for (int M : Mask) |
792 | OS << ' ' << M; |
793 | OS << " }" ; |
794 | } |
795 | }; |
796 | |
797 | LLVM_ATTRIBUTE_UNUSED |
798 | raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) { |
799 | SM.print(OS); |
800 | return OS; |
801 | } |
802 | } // namespace |
803 | |
804 | namespace shuffles { |
805 | using MaskT = SmallVector<int, 128>; |
806 | // Vdd = vshuffvdd(Vu, Vv, Rt) |
807 | // Vdd = vdealvdd(Vu, Vv, Rt) |
808 | // Vd = vpack(Vu, Vv, Size, TakeOdd) |
809 | // Vd = vshuff(Vu, Vv, Size, TakeOdd) |
810 | // Vd = vdeal(Vu, Vv, Size, TakeOdd) |
811 | // Vd = vdealb4w(Vu, Vv) |
812 | |
813 | ArrayRef<int> lo(ArrayRef<int> Vuu) { return Vuu.take_front(N: Vuu.size() / 2); } |
814 | ArrayRef<int> hi(ArrayRef<int> Vuu) { return Vuu.take_back(N: Vuu.size() / 2); } |
815 | |
816 | MaskT vshuffvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { |
817 | int Len = Vu.size(); |
818 | MaskT Vdd(2 * Len); |
819 | std::copy(first: Vv.begin(), last: Vv.end(), result: Vdd.begin()); |
820 | std::copy(first: Vu.begin(), last: Vu.end(), result: Vdd.begin() + Len); |
821 | |
822 | auto Vd0 = MutableArrayRef<int>(Vdd).take_front(N: Len); |
823 | auto Vd1 = MutableArrayRef<int>(Vdd).take_back(N: Len); |
824 | |
825 | for (int Offset = 1; Offset < Len; Offset *= 2) { |
826 | if ((Rt & Offset) == 0) |
827 | continue; |
828 | for (int i = 0; i != Len; ++i) { |
829 | if ((i & Offset) == 0) |
830 | std::swap(a&: Vd1[i], b&: Vd0[i + Offset]); |
831 | } |
832 | } |
833 | return Vdd; |
834 | } |
835 | |
836 | MaskT vdealvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { |
837 | int Len = Vu.size(); |
838 | MaskT Vdd(2 * Len); |
839 | std::copy(first: Vv.begin(), last: Vv.end(), result: Vdd.begin()); |
840 | std::copy(first: Vu.begin(), last: Vu.end(), result: Vdd.begin() + Len); |
841 | |
842 | auto Vd0 = MutableArrayRef<int>(Vdd).take_front(N: Len); |
843 | auto Vd1 = MutableArrayRef<int>(Vdd).take_back(N: Len); |
844 | |
845 | for (int Offset = Len / 2; Offset > 0; Offset /= 2) { |
846 | if ((Rt & Offset) == 0) |
847 | continue; |
848 | for (int i = 0; i != Len; ++i) { |
849 | if ((i & Offset) == 0) |
850 | std::swap(a&: Vd1[i], b&: Vd0[i + Offset]); |
851 | } |
852 | } |
853 | return Vdd; |
854 | } |
855 | |
856 | MaskT vpack(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { |
857 | int Len = Vu.size(); |
858 | MaskT Vd(Len); |
859 | auto Odd = static_cast<int>(TakeOdd); |
860 | for (int i = 0, e = Len / (2 * Size); i != e; ++i) { |
861 | for (int b = 0; b != static_cast<int>(Size); ++b) { |
862 | // clang-format off |
863 | Vd[i * Size + b] = Vv[(2 * i + Odd) * Size + b]; |
864 | Vd[i * Size + b + Len / 2] = Vu[(2 * i + Odd) * Size + b]; |
865 | // clang-format on |
866 | } |
867 | } |
868 | return Vd; |
869 | } |
870 | |
871 | MaskT vshuff(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { |
872 | int Len = Vu.size(); |
873 | MaskT Vd(Len); |
874 | auto Odd = static_cast<int>(TakeOdd); |
875 | for (int i = 0, e = Len / (2 * Size); i != e; ++i) { |
876 | for (int b = 0; b != static_cast<int>(Size); ++b) { |
877 | Vd[(2 * i + 0) * Size + b] = Vv[(2 * i + Odd) * Size + b]; |
878 | Vd[(2 * i + 1) * Size + b] = Vu[(2 * i + Odd) * Size + b]; |
879 | } |
880 | } |
881 | return Vd; |
882 | } |
883 | |
884 | MaskT vdeal(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { |
885 | int Len = Vu.size(); |
886 | MaskT T = vdealvdd(Vu, Vv, Rt: Len - 2 * Size); |
887 | return vpack(Vu: hi(Vuu: T), Vv: lo(Vuu: T), Size, TakeOdd); |
888 | } |
889 | |
890 | MaskT vdealb4w(ArrayRef<int> Vu, ArrayRef<int> Vv) { |
891 | int Len = Vu.size(); |
892 | MaskT Vd(Len); |
893 | for (int i = 0, e = Len / 4; i != e; ++i) { |
894 | Vd[0 * (Len / 4) + i] = Vv[4 * i + 0]; |
895 | Vd[1 * (Len / 4) + i] = Vv[4 * i + 2]; |
896 | Vd[2 * (Len / 4) + i] = Vu[4 * i + 0]; |
897 | Vd[3 * (Len / 4) + i] = Vu[4 * i + 2]; |
898 | } |
899 | return Vd; |
900 | } |
901 | |
902 | template <typename ShuffFunc, typename... OptArgs> |
903 | auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT { |
904 | MaskT Vu(Length), Vv(Length); |
905 | std::iota(first: Vu.begin(), last: Vu.end(), value: Length); // High |
906 | std::iota(first: Vv.begin(), last: Vv.end(), value: 0); // Low |
907 | return S(Vu, Vv, args...); |
908 | } |
909 | |
910 | } // namespace shuffles |
911 | |
912 | // -------------------------------------------------------------------- |
913 | // The HvxSelector class. |
914 | |
915 | static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { |
916 | return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); |
917 | } |
918 | static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { |
919 | return G.getSubtarget<HexagonSubtarget>(); |
920 | } |
921 | |
922 | namespace llvm { |
923 | struct HvxSelector { |
924 | const HexagonTargetLowering &Lower; |
925 | HexagonDAGToDAGISel &ISel; |
926 | SelectionDAG &DAG; |
927 | const HexagonSubtarget &HST; |
928 | const unsigned HwLen; |
929 | |
930 | HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) |
931 | : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), |
932 | HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} |
933 | |
934 | MVT getSingleVT(MVT ElemTy) const { |
935 | assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates" ); |
936 | unsigned NumElems = HwLen / (ElemTy.getSizeInBits() / 8); |
937 | return MVT::getVectorVT(VT: ElemTy, NumElements: NumElems); |
938 | } |
939 | |
940 | MVT getPairVT(MVT ElemTy) const { |
941 | assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs. |
942 | unsigned NumElems = (2 * HwLen) / (ElemTy.getSizeInBits() / 8); |
943 | return MVT::getVectorVT(VT: ElemTy, NumElements: NumElems); |
944 | } |
945 | |
946 | MVT getBoolVT() const { |
947 | // Return HwLen x i1. |
948 | return MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
949 | } |
950 | |
951 | void selectExtractSubvector(SDNode *N); |
952 | void selectShuffle(SDNode *N); |
953 | void selectRor(SDNode *N); |
954 | void selectVAlign(SDNode *N); |
955 | |
956 | static SmallVector<uint32_t, 8> getPerfectCompletions(ShuffleMask SM, |
957 | unsigned Width); |
958 | static SmallVector<uint32_t, 8> completeToPerfect( |
959 | ArrayRef<uint32_t> Completions, unsigned Width); |
960 | static std::optional<int> rotationDistance(ShuffleMask SM, unsigned WrapAt); |
961 | |
962 | private: |
963 | void select(SDNode *ISelN); |
964 | void materialize(const ResultStack &Results); |
965 | |
966 | SDValue getConst32(int Val, const SDLoc &dl); |
967 | SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); |
968 | |
969 | enum : unsigned { |
970 | None, |
971 | PackMux, |
972 | }; |
973 | OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results); |
974 | OpRef funnels(OpRef Va, OpRef Vb, int Amount, ResultStack &Results); |
975 | |
976 | OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, |
977 | MutableArrayRef<int> NewMask, unsigned Options = None); |
978 | OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, |
979 | MutableArrayRef<int> NewMask); |
980 | OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
981 | ResultStack &Results); |
982 | OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
983 | ResultStack &Results); |
984 | |
985 | OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); |
986 | OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); |
987 | OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); |
988 | OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); |
989 | |
990 | OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); |
991 | OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); |
992 | OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); |
993 | OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); |
994 | |
995 | bool selectVectorConstants(SDNode *N); |
996 | bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, |
997 | SDValue Va, SDValue Vb, SDNode *N); |
998 | }; |
999 | } // namespace llvm |
1000 | |
1001 | static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, |
1002 | MutableArrayRef<int> MaskR) { |
1003 | unsigned VecLen = Mask.size(); |
1004 | assert(MaskL.size() == VecLen && MaskR.size() == VecLen); |
1005 | for (unsigned I = 0; I != VecLen; ++I) { |
1006 | int M = Mask[I]; |
1007 | if (M < 0) { |
1008 | MaskL[I] = MaskR[I] = -1; |
1009 | } else if (unsigned(M) < VecLen) { |
1010 | MaskL[I] = M; |
1011 | MaskR[I] = -1; |
1012 | } else { |
1013 | MaskL[I] = -1; |
1014 | MaskR[I] = M-VecLen; |
1015 | } |
1016 | } |
1017 | } |
1018 | |
1019 | static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, |
1020 | unsigned MaxLen) { |
1021 | assert(A.size() > 0 && A.size() >= MaxLen); |
1022 | int F = A[0]; |
1023 | int E = F; |
1024 | for (unsigned I = 1; I != MaxLen; ++I) { |
1025 | if (A[I] - E != Inc) |
1026 | return { F, I }; |
1027 | E = A[I]; |
1028 | } |
1029 | return { F, MaxLen }; |
1030 | } |
1031 | |
1032 | static bool isUndef(ArrayRef<int> Mask) { |
1033 | for (int Idx : Mask) |
1034 | if (Idx != -1) |
1035 | return false; |
1036 | return true; |
1037 | } |
1038 | |
1039 | static bool isIdentity(ArrayRef<int> Mask) { |
1040 | for (int I = 0, E = Mask.size(); I != E; ++I) { |
1041 | int M = Mask[I]; |
1042 | if (M >= 0 && M != I) |
1043 | return false; |
1044 | } |
1045 | return true; |
1046 | } |
1047 | |
1048 | static bool isLowHalfOnly(ArrayRef<int> Mask) { |
1049 | int L = Mask.size(); |
1050 | assert(L % 2 == 0); |
1051 | // Check if the second half of the mask is all-undef. |
1052 | return llvm::all_of(Range: Mask.drop_front(N: L / 2), P: [](int M) { return M < 0; }); |
1053 | } |
1054 | |
1055 | static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM, |
1056 | unsigned SegLen) { |
1057 | assert(isPowerOf2_32(SegLen)); |
1058 | SmallVector<unsigned, 4> SegList; |
1059 | if (SM.MaxSrc == -1) |
1060 | return SegList; |
1061 | |
1062 | unsigned Shift = Log2_32(Value: SegLen); |
1063 | BitVector Segs(alignTo(Value: SM.MaxSrc + 1, Align: SegLen) >> Shift); |
1064 | |
1065 | for (int M : SM.Mask) { |
1066 | if (M >= 0) |
1067 | Segs.set(M >> Shift); |
1068 | } |
1069 | |
1070 | for (unsigned B : Segs.set_bits()) |
1071 | SegList.push_back(Elt: B); |
1072 | return SegList; |
1073 | } |
1074 | |
1075 | static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM, |
1076 | unsigned SegLen) { |
1077 | // Calculate the layout of the output segments in terms of the input |
1078 | // segments. |
1079 | // For example [1,3,1,0] means that the output consists of 4 output |
1080 | // segments, where the first output segment has only elements of the |
1081 | // input segment at index 1. The next output segment only has elements |
1082 | // of the input segment 3, etc. |
1083 | // If an output segment only has undef elements, the value will be ~0u. |
1084 | // If an output segment has elements from more than one input segment, |
1085 | // the corresponding value will be ~1u. |
1086 | unsigned MaskLen = SM.Mask.size(); |
1087 | assert(MaskLen % SegLen == 0); |
1088 | SmallVector<unsigned, 4> Map(MaskLen / SegLen); |
1089 | |
1090 | for (int S = 0, E = Map.size(); S != E; ++S) { |
1091 | unsigned Idx = ~0u; |
1092 | for (int I = 0; I != static_cast<int>(SegLen); ++I) { |
1093 | int M = SM.Mask[S*SegLen + I]; |
1094 | if (M < 0) |
1095 | continue; |
1096 | unsigned G = M / SegLen; // Input segment of this element. |
1097 | if (Idx == ~0u) { |
1098 | Idx = G; |
1099 | } else if (Idx != G) { |
1100 | Idx = ~1u; |
1101 | break; |
1102 | } |
1103 | } |
1104 | Map[S] = Idx; |
1105 | } |
1106 | |
1107 | return Map; |
1108 | } |
1109 | |
1110 | static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap, |
1111 | unsigned SegLen, MutableArrayRef<int> PackedMask) { |
1112 | SmallVector<unsigned, 4> InvMap; |
1113 | for (int I = OutSegMap.size() - 1; I >= 0; --I) { |
1114 | unsigned S = OutSegMap[I]; |
1115 | assert(S != ~0u && "Unexpected undef" ); |
1116 | assert(S != ~1u && "Unexpected multi" ); |
1117 | if (InvMap.size() <= S) |
1118 | InvMap.resize(N: S+1); |
1119 | InvMap[S] = I; |
1120 | } |
1121 | |
1122 | unsigned Shift = Log2_32(Value: SegLen); |
1123 | for (int I = 0, E = Mask.size(); I != E; ++I) { |
1124 | int M = Mask[I]; |
1125 | if (M >= 0) { |
1126 | int OutIdx = InvMap[M >> Shift]; |
1127 | M = (M & (SegLen-1)) + SegLen*OutIdx; |
1128 | } |
1129 | PackedMask[I] = M; |
1130 | } |
1131 | } |
1132 | |
1133 | bool HvxSelector::selectVectorConstants(SDNode *N) { |
1134 | // Constant vectors are generated as loads from constant pools or as |
1135 | // splats of a constant value. Since they are generated during the |
1136 | // selection process, the main selection algorithm is not aware of them. |
1137 | // Select them directly here. |
1138 | SmallVector<SDNode*,4> Nodes; |
1139 | SetVector<SDNode*> WorkQ; |
1140 | |
1141 | // The DAG can change (due to CSE) during selection, so cache all the |
1142 | // unselected nodes first to avoid traversing a mutating DAG. |
1143 | WorkQ.insert(X: N); |
1144 | for (unsigned i = 0; i != WorkQ.size(); ++i) { |
1145 | SDNode *W = WorkQ[i]; |
1146 | if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL) |
1147 | Nodes.push_back(Elt: W); |
1148 | for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) |
1149 | WorkQ.insert(X: W->getOperand(Num: j).getNode()); |
1150 | } |
1151 | |
1152 | for (SDNode *L : Nodes) |
1153 | select(ISelN: L); |
1154 | |
1155 | return !Nodes.empty(); |
1156 | } |
1157 | |
1158 | void HvxSelector::materialize(const ResultStack &Results) { |
1159 | DEBUG_WITH_TYPE("isel" , { |
1160 | dbgs() << "Materializing\n" ; |
1161 | Results.print(dbgs(), DAG); |
1162 | }); |
1163 | if (Results.empty()) |
1164 | return; |
1165 | const SDLoc &dl(Results.InpNode); |
1166 | std::vector<SDValue> Output; |
1167 | |
1168 | for (unsigned I = 0, E = Results.size(); I != E; ++I) { |
1169 | const NodeTemplate &Node = Results[I]; |
1170 | std::vector<SDValue> Ops; |
1171 | for (const OpRef &R : Node.Ops) { |
1172 | assert(R.isValid()); |
1173 | if (R.isValue()) { |
1174 | Ops.push_back(x: R.OpV); |
1175 | continue; |
1176 | } |
1177 | if (R.OpN & OpRef::Undef) { |
1178 | MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); |
1179 | Ops.push_back(x: ISel.selectUndef(dl, ResTy: MVT(SVT))); |
1180 | continue; |
1181 | } |
1182 | // R is an index of a result. |
1183 | unsigned Part = R.OpN & OpRef::Whole; |
1184 | int Idx = SignExtend32(X: R.OpN & OpRef::Index, B: OpRef::IndexBits); |
1185 | if (Idx < 0) |
1186 | Idx += I; |
1187 | assert(Idx >= 0 && unsigned(Idx) < Output.size()); |
1188 | SDValue Op = Output[Idx]; |
1189 | MVT OpTy = Op.getValueType().getSimpleVT(); |
1190 | if (Part != OpRef::Whole) { |
1191 | assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); |
1192 | MVT HalfTy = MVT::getVectorVT(VT: OpTy.getVectorElementType(), |
1193 | NumElements: OpTy.getVectorNumElements()/2); |
1194 | unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo |
1195 | : Hexagon::vsub_hi; |
1196 | Op = DAG.getTargetExtractSubreg(SRIdx: Sub, DL: dl, VT: HalfTy, Operand: Op); |
1197 | } |
1198 | Ops.push_back(x: Op); |
1199 | } // for (Node : Results) |
1200 | |
1201 | assert(Node.Ty != MVT::Other); |
1202 | SDNode *ResN = (Node.Opc == TargetOpcode::COPY) |
1203 | ? Ops.front().getNode() |
1204 | : DAG.getMachineNode(Opcode: Node.Opc, dl, VT: Node.Ty, Ops); |
1205 | Output.push_back(x: SDValue(ResN, 0)); |
1206 | } |
1207 | |
1208 | SDNode *OutN = Output.back().getNode(); |
1209 | SDNode *InpN = Results.InpNode; |
1210 | DEBUG_WITH_TYPE("isel" , { |
1211 | dbgs() << "Generated node:\n" ; |
1212 | OutN->dumpr(&DAG); |
1213 | }); |
1214 | |
1215 | ISel.ReplaceNode(F: InpN, T: OutN); |
1216 | selectVectorConstants(N: OutN); |
1217 | DAG.RemoveDeadNodes(); |
1218 | } |
1219 | |
1220 | OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) { |
1221 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1222 | const SDLoc &dl(Results.InpNode); |
1223 | Results.push(Opc: TargetOpcode::REG_SEQUENCE, Ty: getPairVT(ElemTy: MVT::i8), Ops: { |
1224 | getConst32(Val: Hexagon::HvxWRRegClassID, dl), |
1225 | Lo, getConst32(Val: Hexagon::vsub_lo, dl), |
1226 | Hi, getConst32(Val: Hexagon::vsub_hi, dl), |
1227 | }); |
1228 | return OpRef::res(N: Results.top()); |
1229 | } |
1230 | |
1231 | OpRef HvxSelector::funnels(OpRef Va, OpRef Vb, int Amount, |
1232 | ResultStack &Results) { |
1233 | // Do a funnel shift towards the low end (shift right) by Amount bytes. |
1234 | // If Amount < 0, treat it as shift left, i.e. do a shift right by |
1235 | // Amount + HwLen. |
1236 | auto VecLen = static_cast<int>(HwLen); |
1237 | |
1238 | if (Amount == 0) |
1239 | return Va; |
1240 | if (Amount == VecLen) |
1241 | return Vb; |
1242 | |
1243 | MVT Ty = getSingleVT(ElemTy: MVT::i8); |
1244 | const SDLoc &dl(Results.InpNode); |
1245 | |
1246 | if (Amount < 0) |
1247 | Amount += VecLen; |
1248 | if (Amount > VecLen) { |
1249 | Amount -= VecLen; |
1250 | std::swap(a&: Va, b&: Vb); |
1251 | } |
1252 | |
1253 | if (isUInt<3>(x: Amount)) { |
1254 | SDValue A = getConst32(Val: Amount, dl); |
1255 | Results.push(Opc: Hexagon::V6_valignbi, Ty, Ops: {Vb, Va, A}); |
1256 | } else if (isUInt<3>(x: VecLen - Amount)) { |
1257 | SDValue A = getConst32(Val: VecLen - Amount, dl); |
1258 | Results.push(Opc: Hexagon::V6_vlalignbi, Ty, Ops: {Vb, Va, A}); |
1259 | } else { |
1260 | SDValue A = getConst32(Val: Amount, dl); |
1261 | Results.push(Opc: Hexagon::A2_tfrsi, Ty, Ops: {A}); |
1262 | Results.push(Opc: Hexagon::V6_valignb, Ty, Ops: {Vb, Va, OpRef::res(N: -1)}); |
1263 | } |
1264 | return OpRef::res(N: Results.top()); |
1265 | } |
1266 | |
1267 | // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb, |
1268 | // pack these halves into a single vector, and remap SM into NewMask to use |
1269 | // the new vector instead. |
1270 | OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, |
1271 | ResultStack &Results, MutableArrayRef<int> NewMask, |
1272 | unsigned Options) { |
1273 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1274 | if (!Va.isValid() || !Vb.isValid()) |
1275 | return OpRef::fail(); |
1276 | |
1277 | if (Vb.isUndef()) { |
1278 | std::copy(first: SM.Mask.begin(), last: SM.Mask.end(), result: NewMask.begin()); |
1279 | return Va; |
1280 | } |
1281 | if (Va.isUndef()) { |
1282 | std::copy(first: SM.Mask.begin(), last: SM.Mask.end(), result: NewMask.begin()); |
1283 | ShuffleVectorSDNode::commuteMask(Mask: NewMask); |
1284 | return Vb; |
1285 | } |
1286 | |
1287 | MVT Ty = getSingleVT(ElemTy: MVT::i8); |
1288 | MVT PairTy = getPairVT(ElemTy: MVT::i8); |
1289 | OpRef Inp[2] = {Va, Vb}; |
1290 | unsigned VecLen = SM.Mask.size(); |
1291 | |
1292 | auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty, |
1293 | ResultStack &Results) { |
1294 | if (Amt == 0) |
1295 | return Lo; |
1296 | const SDLoc &dl(Results.InpNode); |
1297 | if (isUInt<3>(x: Amt) || isUInt<3>(x: HwLen - Amt)) { |
1298 | bool IsRight = isUInt<3>(x: Amt); // Right align. |
1299 | SDValue S = getConst32(Val: IsRight ? Amt : HwLen - Amt, dl); |
1300 | unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi; |
1301 | Results.push(Opc, Ty, Ops: {Hi, Lo, S}); |
1302 | return OpRef::res(N: Results.top()); |
1303 | } |
1304 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: Amt, dl)}); |
1305 | OpRef A = OpRef::res(N: Results.top()); |
1306 | Results.push(Opc: Hexagon::V6_valignb, Ty, Ops: {Hi, Lo, A}); |
1307 | return OpRef::res(N: Results.top()); |
1308 | }; |
1309 | |
1310 | // Segment is a vector half. |
1311 | unsigned SegLen = HwLen / 2; |
1312 | |
1313 | // Check if we can shuffle vector halves around to get the used elements |
1314 | // into a single vector. |
1315 | shuffles::MaskT MaskH(SM.Mask); |
1316 | SmallVector<unsigned, 4> SegList = getInputSegmentList(SM: SM.Mask, SegLen); |
1317 | unsigned SegCount = SegList.size(); |
1318 | SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM: SM.Mask, SegLen); |
1319 | |
1320 | if (SegList.empty()) |
1321 | return OpRef::undef(Ty); |
1322 | |
1323 | // NOTE: |
1324 | // In the following part of the function, where the segments are rearranged, |
1325 | // the shuffle mask SM can be of any length that is a multiple of a vector |
1326 | // (i.e. a multiple of 2*SegLen), and non-zero. |
1327 | // The output segment map is computed, and it may have any even number of |
1328 | // entries, but the rearrangement of input segments will be done based only |
1329 | // on the first two (non-undef) entries in the segment map. |
1330 | // For example, if the output map is 3, 1, 1, 3 (it can have at most two |
1331 | // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into |
1332 | // a single vector V = 3:1. The output mask will then be updated to use |
1333 | // seg(0,V), seg(1,V), seg(1,V), seg(0,V). |
1334 | // |
1335 | // Picking the segments based on the output map is an optimization. For |
1336 | // correctness it is only necessary that Seg0 and Seg1 are the two input |
1337 | // segments that are used in the output. |
1338 | |
1339 | unsigned Seg0 = ~0u, Seg1 = ~0u; |
1340 | for (unsigned X : SegMap) { |
1341 | if (X == ~0u) |
1342 | continue; |
1343 | if (Seg0 == ~0u) |
1344 | Seg0 = X; |
1345 | else if (Seg1 != ~0u) |
1346 | break; |
1347 | if (X == ~1u || X != Seg0) |
1348 | Seg1 = X; |
1349 | } |
1350 | |
1351 | if (SegCount == 1) { |
1352 | unsigned SrcOp = SegList[0] / 2; |
1353 | for (int I = 0; I != static_cast<int>(VecLen); ++I) { |
1354 | int M = SM.Mask[I]; |
1355 | if (M >= 0) { |
1356 | M -= SrcOp * HwLen; |
1357 | assert(M >= 0); |
1358 | } |
1359 | NewMask[I] = M; |
1360 | } |
1361 | return Inp[SrcOp]; |
1362 | } |
1363 | |
1364 | if (SegCount == 2) { |
1365 | // Seg0 should not be undef here: this would imply a SegList |
1366 | // with <= 1 elements, which was checked earlier. |
1367 | assert(Seg0 != ~0u); |
1368 | |
1369 | // If Seg0 or Seg1 are "multi-defined", pick them from the input |
1370 | // segment list instead. |
1371 | if (Seg0 == ~1u || Seg1 == ~1u) { |
1372 | if (Seg0 == Seg1) { |
1373 | Seg0 = SegList[0]; |
1374 | Seg1 = SegList[1]; |
1375 | } else if (Seg0 == ~1u) { |
1376 | Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1]; |
1377 | } else { |
1378 | assert(Seg1 == ~1u); |
1379 | Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1]; |
1380 | } |
1381 | } |
1382 | assert(Seg0 != ~1u && Seg1 != ~1u); |
1383 | |
1384 | assert(Seg0 != Seg1 && "Expecting different segments" ); |
1385 | const SDLoc &dl(Results.InpNode); |
1386 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: SegLen, dl)}); |
1387 | OpRef HL = OpRef::res(N: Results.top()); |
1388 | |
1389 | // Va = AB, Vb = CD |
1390 | |
1391 | if (Seg0 / 2 == Seg1 / 2) { |
1392 | // Same input vector. |
1393 | Va = Inp[Seg0 / 2]; |
1394 | if (Seg0 > Seg1) { |
1395 | // Swap halves. |
1396 | Results.push(Opc: Hexagon::V6_vror, Ty, Ops: {Inp[Seg0 / 2], HL}); |
1397 | Va = OpRef::res(N: Results.top()); |
1398 | } |
1399 | packSegmentMask(Mask: SM.Mask, OutSegMap: {Seg0, Seg1}, SegLen, PackedMask: MaskH); |
1400 | } else if (Seg0 % 2 == Seg1 % 2) { |
1401 | // Picking AC, BD, CA, or DB. |
1402 | // vshuff(CD,AB,HL) -> BD:AC |
1403 | // vshuff(AB,CD,HL) -> DB:CA |
1404 | auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(x&: Vb, y&: Va) // AC or BD |
1405 | : std::make_pair(x&: Va, y&: Vb); // CA or DB |
1406 | Results.push(Opc: Hexagon::V6_vshuffvdd, Ty: PairTy, Ops: {Vs.first, Vs.second, HL}); |
1407 | OpRef P = OpRef::res(N: Results.top()); |
1408 | Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(R: P) : OpRef::hi(R: P); |
1409 | packSegmentMask(Mask: SM.Mask, OutSegMap: {Seg0, Seg1}, SegLen, PackedMask: MaskH); |
1410 | } else { |
1411 | // Picking AD, BC, CB, or DA. |
1412 | if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) { |
1413 | // AD or BC: this can be done using vmux. |
1414 | // Q = V6_pred_scalar2 SegLen |
1415 | // V = V6_vmux Q, (Va, Vb) or (Vb, Va) |
1416 | Results.push(Opc: Hexagon::V6_pred_scalar2, Ty: getBoolVT(), Ops: {HL}); |
1417 | OpRef Qt = OpRef::res(N: Results.top()); |
1418 | auto Vs = (Seg0 == 0) ? std::make_pair(x&: Va, y&: Vb) // AD |
1419 | : std::make_pair(x&: Vb, y&: Va); // CB |
1420 | Results.push(Opc: Hexagon::V6_vmux, Ty, Ops: {Qt, Vs.first, Vs.second}); |
1421 | Va = OpRef::res(N: Results.top()); |
1422 | packSegmentMask(Mask: SM.Mask, OutSegMap: {Seg0, Seg1}, SegLen, PackedMask: MaskH); |
1423 | } else { |
1424 | // BC or DA: this could be done via valign by SegLen. |
1425 | // Do nothing here, because valign (if possible) will be generated |
1426 | // later on (make sure the Seg0 values are as expected). |
1427 | assert(Seg0 == 1 || Seg0 == 3); |
1428 | } |
1429 | } |
1430 | } |
1431 | |
1432 | // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va). |
1433 | // FIXME: maybe remove this? |
1434 | ShuffleMask SMH(MaskH); |
1435 | assert(SMH.Mask.size() == VecLen); |
1436 | shuffles::MaskT MaskA(SMH.Mask); |
1437 | |
1438 | if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) { |
1439 | // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb. |
1440 | shuffles::MaskT Swapped(SMH.Mask); |
1441 | ShuffleVectorSDNode::commuteMask(Mask: Swapped); |
1442 | ShuffleMask SW(Swapped); |
1443 | if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) { |
1444 | MaskA.assign(in_start: SW.Mask.begin(), in_end: SW.Mask.end()); |
1445 | std::swap(a&: Va, b&: Vb); |
1446 | } |
1447 | } |
1448 | ShuffleMask SMA(MaskA); |
1449 | assert(SMA.Mask.size() == VecLen); |
1450 | |
1451 | if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) { |
1452 | int ShiftR = SMA.MinSrc; |
1453 | if (ShiftR >= static_cast<int>(HwLen)) { |
1454 | Va = Vb; |
1455 | Vb = OpRef::undef(Ty); |
1456 | ShiftR -= HwLen; |
1457 | } |
1458 | OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results); |
1459 | |
1460 | for (int I = 0; I != static_cast<int>(VecLen); ++I) { |
1461 | int M = SMA.Mask[I]; |
1462 | if (M != -1) |
1463 | M -= SMA.MinSrc; |
1464 | NewMask[I] = M; |
1465 | } |
1466 | return RetVal; |
1467 | } |
1468 | |
1469 | // By here, packing by segment (half-vector) shuffling, and vector alignment |
1470 | // failed. Try vmux. |
1471 | // Note: since this is using the original mask, Va and Vb must not have been |
1472 | // modified. |
1473 | |
1474 | if (Options & PackMux) { |
1475 | // If elements picked from Va and Vb have all different (source) indexes |
1476 | // (relative to the start of the argument), do a mux, and update the mask. |
1477 | BitVector Picked(HwLen); |
1478 | SmallVector<uint8_t,128> MuxBytes(HwLen); |
1479 | bool CanMux = true; |
1480 | for (int I = 0; I != static_cast<int>(VecLen); ++I) { |
1481 | int M = SM.Mask[I]; |
1482 | if (M == -1) |
1483 | continue; |
1484 | if (M >= static_cast<int>(HwLen)) |
1485 | M -= HwLen; |
1486 | else |
1487 | MuxBytes[M] = 0xFF; |
1488 | if (Picked[M]) { |
1489 | CanMux = false; |
1490 | break; |
1491 | } |
1492 | NewMask[I] = M; |
1493 | } |
1494 | if (CanMux) |
1495 | return vmuxs(Bytes: MuxBytes, Va, Vb, Results); |
1496 | } |
1497 | return OpRef::fail(); |
1498 | } |
1499 | |
1500 | // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb, |
1501 | // pack these vectors into a pair, and remap SM into NewMask to use the |
1502 | // new pair instead. |
1503 | OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, |
1504 | ResultStack &Results, MutableArrayRef<int> NewMask) { |
1505 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1506 | SmallVector<unsigned, 4> SegList = getInputSegmentList(SM: SM.Mask, SegLen: HwLen); |
1507 | if (SegList.empty()) |
1508 | return OpRef::undef(Ty: getPairVT(ElemTy: MVT::i8)); |
1509 | |
1510 | // If more than two halves are used, bail. |
1511 | // TODO: be more aggressive here? |
1512 | unsigned SegCount = SegList.size(); |
1513 | if (SegCount > 2) |
1514 | return OpRef::fail(); |
1515 | |
1516 | MVT HalfTy = getSingleVT(ElemTy: MVT::i8); |
1517 | |
1518 | OpRef Inp[2] = { Va, Vb }; |
1519 | OpRef Out[2] = { OpRef::undef(Ty: HalfTy), OpRef::undef(Ty: HalfTy) }; |
1520 | |
1521 | // Really make sure we have at most 2 vectors used in the mask. |
1522 | assert(SegCount <= 2); |
1523 | |
1524 | for (int I = 0, E = SegList.size(); I != E; ++I) { |
1525 | unsigned S = SegList[I]; |
1526 | OpRef Op = Inp[S / 2]; |
1527 | Out[I] = (S & 1) ? OpRef::hi(R: Op) : OpRef::lo(R: Op); |
1528 | } |
1529 | |
1530 | // NOTE: Using SegList as the packing map here (not SegMap). This works, |
1531 | // because we're not concerned here about the order of the segments (i.e. |
1532 | // single vectors) in the output pair. Changing the order of vectors is |
1533 | // free (as opposed to changing the order of vector halves as in packs), |
1534 | // and so there is no extra cost added in case the order needs to be |
1535 | // changed later. |
1536 | packSegmentMask(Mask: SM.Mask, OutSegMap: SegList, SegLen: HwLen, PackedMask: NewMask); |
1537 | return concats(Lo: Out[0], Hi: Out[1], Results); |
1538 | } |
1539 | |
1540 | OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
1541 | ResultStack &Results) { |
1542 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1543 | MVT ByteTy = getSingleVT(ElemTy: MVT::i8); |
1544 | MVT BoolTy = MVT::getVectorVT(VT: MVT::i1, NumElements: HwLen); |
1545 | const SDLoc &dl(Results.InpNode); |
1546 | SDValue B = getVectorConstant(Data: Bytes, dl); |
1547 | Results.push(Opc: Hexagon::V6_vd0, Ty: ByteTy, Ops: {}); |
1548 | Results.push(Opc: Hexagon::V6_veqb, Ty: BoolTy, Ops: {OpRef(B), OpRef::res(N: -1)}); |
1549 | Results.push(Opc: Hexagon::V6_vmux, Ty: ByteTy, Ops: {OpRef::res(N: -1), Vb, Va}); |
1550 | return OpRef::res(N: Results.top()); |
1551 | } |
1552 | |
1553 | OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, |
1554 | ResultStack &Results) { |
1555 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1556 | size_t S = Bytes.size() / 2; |
1557 | OpRef L = vmuxs(Bytes: Bytes.take_front(N: S), Va: OpRef::lo(R: Va), Vb: OpRef::lo(R: Vb), Results); |
1558 | OpRef H = vmuxs(Bytes: Bytes.drop_front(N: S), Va: OpRef::hi(R: Va), Vb: OpRef::hi(R: Vb), Results); |
1559 | return concats(Lo: L, Hi: H, Results); |
1560 | } |
1561 | |
1562 | OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
1563 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1564 | unsigned VecLen = SM.Mask.size(); |
1565 | assert(HwLen == VecLen); |
1566 | (void)VecLen; |
1567 | assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); |
1568 | |
1569 | if (isIdentity(Mask: SM.Mask)) |
1570 | return Va; |
1571 | if (isUndef(Mask: SM.Mask)) |
1572 | return OpRef::undef(Ty: getSingleVT(ElemTy: MVT::i8)); |
1573 | |
1574 | // First, check for rotations. |
1575 | if (auto Dist = rotationDistance(SM, WrapAt: VecLen)) { |
1576 | OpRef Rotate = funnels(Va, Vb: Va, Amount: *Dist, Results); |
1577 | if (Rotate.isValid()) |
1578 | return Rotate; |
1579 | } |
1580 | unsigned HalfLen = HwLen / 2; |
1581 | assert(isPowerOf2_32(HalfLen)); |
1582 | |
1583 | // Handle special case where the output is the same half of the input |
1584 | // repeated twice, i.e. if Va = AB, then handle the output of AA or BB. |
1585 | std::pair<int, unsigned> Strip1 = findStrip(A: SM.Mask, Inc: 1, MaxLen: HalfLen); |
1586 | if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) { |
1587 | std::pair<int, unsigned> Strip2 = |
1588 | findStrip(A: SM.Mask.drop_front(N: HalfLen), Inc: 1, MaxLen: HalfLen); |
1589 | if (Strip1 == Strip2) { |
1590 | const SDLoc &dl(Results.InpNode); |
1591 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: HalfLen, dl)}); |
1592 | Results.push(Opc: Hexagon::V6_vshuffvdd, Ty: getPairVT(ElemTy: MVT::i8), |
1593 | Ops: {Va, Va, OpRef::res(N: Results.top())}); |
1594 | OpRef S = OpRef::res(N: Results.top()); |
1595 | return (Strip1.first == 0) ? OpRef::lo(R: S) : OpRef::hi(R: S); |
1596 | } |
1597 | } |
1598 | |
1599 | OpRef P = perfect(SM, Va, Results); |
1600 | if (P.isValid()) |
1601 | return P; |
1602 | return butterfly(SM, Va, Results); |
1603 | } |
1604 | |
1605 | OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, |
1606 | ResultStack &Results) { |
1607 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1608 | if (isUndef(Mask: SM.Mask)) |
1609 | return OpRef::undef(Ty: getSingleVT(ElemTy: MVT::i8)); |
1610 | |
1611 | OpRef C = contracting(SM, Va, Vb, Results); |
1612 | if (C.isValid()) |
1613 | return C; |
1614 | |
1615 | int VecLen = SM.Mask.size(); |
1616 | shuffles::MaskT PackedMask(VecLen); |
1617 | OpRef P = packs(SM, Va, Vb, Results, NewMask: PackedMask); |
1618 | if (P.isValid()) |
1619 | return shuffs1(SM: ShuffleMask(PackedMask), Va: P, Results); |
1620 | |
1621 | // TODO: Before we split the mask, try perfect shuffle on concatenated |
1622 | // operands. |
1623 | |
1624 | shuffles::MaskT MaskL(VecLen), MaskR(VecLen); |
1625 | splitMask(Mask: SM.Mask, MaskL, MaskR); |
1626 | |
1627 | OpRef L = shuffs1(SM: ShuffleMask(MaskL), Va, Results); |
1628 | OpRef R = shuffs1(SM: ShuffleMask(MaskR), Va: Vb, Results); |
1629 | if (!L.isValid() || !R.isValid()) |
1630 | return OpRef::fail(); |
1631 | |
1632 | SmallVector<uint8_t, 128> Bytes(VecLen); |
1633 | for (int I = 0; I != VecLen; ++I) { |
1634 | if (MaskL[I] != -1) |
1635 | Bytes[I] = 0xFF; |
1636 | } |
1637 | return vmuxs(Bytes, Va: L, Vb: R, Results); |
1638 | } |
1639 | |
1640 | OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
1641 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1642 | int VecLen = SM.Mask.size(); |
1643 | |
1644 | if (isIdentity(Mask: SM.Mask)) |
1645 | return Va; |
1646 | if (isUndef(Mask: SM.Mask)) |
1647 | return OpRef::undef(Ty: getPairVT(ElemTy: MVT::i8)); |
1648 | |
1649 | shuffles::MaskT PackedMask(VecLen); |
1650 | OpRef P = packs(SM, Va: OpRef::lo(R: Va), Vb: OpRef::hi(R: Va), Results, NewMask: PackedMask); |
1651 | if (P.isValid()) { |
1652 | ShuffleMask PM(PackedMask); |
1653 | OpRef E = expanding(SM: PM, Va: P, Results); |
1654 | if (E.isValid()) |
1655 | return E; |
1656 | |
1657 | OpRef L = shuffs1(SM: PM.lo(), Va: P, Results); |
1658 | OpRef H = shuffs1(SM: PM.hi(), Va: P, Results); |
1659 | if (L.isValid() && H.isValid()) |
1660 | return concats(Lo: L, Hi: H, Results); |
1661 | } |
1662 | |
1663 | if (!isLowHalfOnly(Mask: SM.Mask)) { |
1664 | // Doing a perfect shuffle on a low-half mask (i.e. where the upper half |
1665 | // is all-undef) may produce a perfect shuffle that generates legitimate |
1666 | // upper half. This isn't wrong, but if the perfect shuffle was possible, |
1667 | // then there is a good chance that a shorter (contracting) code may be |
1668 | // used as well (e.g. V6_vshuffeb, etc). |
1669 | OpRef R = perfect(SM, Va, Results); |
1670 | if (R.isValid()) |
1671 | return R; |
1672 | // TODO commute the mask and try the opposite order of the halves. |
1673 | } |
1674 | |
1675 | OpRef L = shuffs2(SM: SM.lo(), Va: OpRef::lo(R: Va), Vb: OpRef::hi(R: Va), Results); |
1676 | OpRef H = shuffs2(SM: SM.hi(), Va: OpRef::lo(R: Va), Vb: OpRef::hi(R: Va), Results); |
1677 | if (L.isValid() && H.isValid()) |
1678 | return concats(Lo: L, Hi: H, Results); |
1679 | |
1680 | return OpRef::fail(); |
1681 | } |
1682 | |
1683 | OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, |
1684 | ResultStack &Results) { |
1685 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1686 | if (isUndef(Mask: SM.Mask)) |
1687 | return OpRef::undef(Ty: getPairVT(ElemTy: MVT::i8)); |
1688 | |
1689 | int VecLen = SM.Mask.size(); |
1690 | SmallVector<int,256> PackedMask(VecLen); |
1691 | OpRef P = packp(SM, Va, Vb, Results, NewMask: PackedMask); |
1692 | if (P.isValid()) |
1693 | return shuffp1(SM: ShuffleMask(PackedMask), Va: P, Results); |
1694 | |
1695 | SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); |
1696 | splitMask(Mask: SM.Mask, MaskL, MaskR); |
1697 | |
1698 | OpRef L = shuffp1(SM: ShuffleMask(MaskL), Va, Results); |
1699 | OpRef R = shuffp1(SM: ShuffleMask(MaskR), Va: Vb, Results); |
1700 | if (!L.isValid() || !R.isValid()) |
1701 | return OpRef::fail(); |
1702 | |
1703 | // Mux the results. |
1704 | SmallVector<uint8_t,256> Bytes(VecLen); |
1705 | for (int I = 0; I != VecLen; ++I) { |
1706 | if (MaskL[I] != -1) |
1707 | Bytes[I] = 0xFF; |
1708 | } |
1709 | return vmuxp(Bytes, Va: L, Vb: R, Results); |
1710 | } |
1711 | |
1712 | namespace { |
1713 | struct Deleter : public SelectionDAG::DAGNodeDeletedListener { |
1714 | template <typename T> |
1715 | Deleter(SelectionDAG &D, T &C) |
1716 | : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { |
1717 | C.erase(N); |
1718 | }) {} |
1719 | }; |
1720 | |
1721 | template <typename T> |
1722 | struct NullifyingVector : public T { |
1723 | DenseMap<SDNode*, SDNode**> Refs; |
1724 | NullifyingVector(T &&V) : T(V) { |
1725 | for (unsigned i = 0, e = T::size(); i != e; ++i) { |
1726 | SDNode *&N = T::operator[](i); |
1727 | Refs[N] = &N; |
1728 | } |
1729 | } |
1730 | void erase(SDNode *N) { |
1731 | auto F = Refs.find(Val: N); |
1732 | if (F != Refs.end()) |
1733 | *F->second = nullptr; |
1734 | } |
1735 | }; |
1736 | } |
1737 | |
1738 | void HvxSelector::select(SDNode *ISelN) { |
1739 | // What's important here is to select the right set of nodes. The main |
1740 | // selection algorithm loops over nodes in a topological order, i.e. users |
1741 | // are visited before their operands. |
1742 | // |
1743 | // It is an error to have an unselected node with a selected operand, and |
1744 | // there is an assertion in the main selector code to enforce that. |
1745 | // |
1746 | // Such a situation could occur if we selected a node, which is both a |
1747 | // subnode of ISelN, and a subnode of an unrelated (and yet unselected) |
1748 | // node in the DAG. |
1749 | assert(ISelN->getOpcode() == HexagonISD::ISEL); |
1750 | SDNode *N0 = ISelN->getOperand(Num: 0).getNode(); |
1751 | |
1752 | // There could have been nodes created (i.e. inserted into the DAG) |
1753 | // that are now dead. Remove them, in case they use any of the nodes |
1754 | // to select (and make them look shared). |
1755 | DAG.RemoveDeadNodes(); |
1756 | |
1757 | SetVector<SDNode *> SubNodes; |
1758 | |
1759 | if (!N0->isMachineOpcode()) { |
1760 | // Don't want to select N0 if it's shared with another node, except if |
1761 | // it's shared with other ISELs. |
1762 | auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; }; |
1763 | if (llvm::all_of(Range: N0->uses(), P: IsISelN)) |
1764 | SubNodes.insert(X: N0); |
1765 | } |
1766 | if (SubNodes.empty()) { |
1767 | ISel.ReplaceNode(F: ISelN, T: N0); |
1768 | return; |
1769 | } |
1770 | |
1771 | // Need to manually select the nodes that are dominated by the ISEL. Other |
1772 | // nodes are reachable from the rest of the DAG, and so will be selected |
1773 | // by the DAG selection routine. |
1774 | SetVector<SDNode*> Dom, NonDom; |
1775 | Dom.insert(X: N0); |
1776 | |
1777 | auto IsDomRec = [&Dom, &NonDom] (SDNode *T, auto Rec) -> bool { |
1778 | if (Dom.count(key: T)) |
1779 | return true; |
1780 | if (T->use_empty() || NonDom.count(key: T)) |
1781 | return false; |
1782 | for (SDNode *U : T->uses()) { |
1783 | // If T is reachable from a known non-dominated node, then T itself |
1784 | // is non-dominated. |
1785 | if (!Rec(U, Rec)) { |
1786 | NonDom.insert(X: T); |
1787 | return false; |
1788 | } |
1789 | } |
1790 | Dom.insert(X: T); |
1791 | return true; |
1792 | }; |
1793 | |
1794 | auto IsDom = [&IsDomRec] (SDNode *T) { return IsDomRec(T, IsDomRec); }; |
1795 | |
1796 | // Add the rest of nodes dominated by ISEL to SubNodes. |
1797 | for (unsigned I = 0; I != SubNodes.size(); ++I) { |
1798 | for (SDValue Op : SubNodes[I]->ops()) { |
1799 | SDNode *O = Op.getNode(); |
1800 | if (IsDom(O)) |
1801 | SubNodes.insert(X: O); |
1802 | } |
1803 | } |
1804 | |
1805 | // Do a topological sort of nodes from Dom. |
1806 | SetVector<SDNode*> TmpQ; |
1807 | |
1808 | std::map<SDNode *, unsigned> OpCount; |
1809 | for (SDNode *T : Dom) { |
1810 | unsigned NumDomOps = llvm::count_if(Range: T->ops(), P: [&Dom](const SDUse &U) { |
1811 | return Dom.count(key: U.getNode()); |
1812 | }); |
1813 | |
1814 | OpCount.insert(x: {T, NumDomOps}); |
1815 | if (NumDomOps == 0) |
1816 | TmpQ.insert(X: T); |
1817 | } |
1818 | |
1819 | for (unsigned I = 0; I != TmpQ.size(); ++I) { |
1820 | SDNode *S = TmpQ[I]; |
1821 | for (SDNode *U : S->uses()) { |
1822 | if (U == ISelN) |
1823 | continue; |
1824 | auto F = OpCount.find(x: U); |
1825 | assert(F != OpCount.end()); |
1826 | if (F->second > 0 && !--F->second) |
1827 | TmpQ.insert(X: F->first); |
1828 | } |
1829 | } |
1830 | |
1831 | // Remove the marker. |
1832 | ISel.ReplaceNode(F: ISelN, T: N0); |
1833 | |
1834 | assert(SubNodes.size() == TmpQ.size()); |
1835 | NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); |
1836 | |
1837 | Deleter DUQ(DAG, Queue); |
1838 | for (SDNode *S : reverse(C&: Queue)) { |
1839 | if (S == nullptr) |
1840 | continue; |
1841 | DEBUG_WITH_TYPE("isel" , {dbgs() << "HVX selecting: " ; S->dump(&DAG);}); |
1842 | ISel.Select(N: S); |
1843 | } |
1844 | } |
1845 | |
1846 | bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, |
1847 | MVT ResTy, SDValue Va, SDValue Vb, |
1848 | SDNode *N) { |
1849 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
1850 | MVT ElemTy = ResTy.getVectorElementType(); |
1851 | assert(ElemTy == MVT::i8); |
1852 | unsigned VecLen = Mask.size(); |
1853 | bool HavePairs = (2*HwLen == VecLen); |
1854 | MVT SingleTy = getSingleVT(ElemTy: MVT::i8); |
1855 | |
1856 | // The prior attempts to handle this shuffle may have left a bunch of |
1857 | // dead nodes in the DAG (such as constants). These nodes will be added |
1858 | // at the end of DAG's node list, which at that point had already been |
1859 | // sorted topologically. In the main selection loop, the node list is |
1860 | // traversed backwards from the root node, which means that any new |
1861 | // nodes (from the end of the list) will not be visited. |
1862 | // Scalarization will replace the shuffle node with the scalarized |
1863 | // expression, and if that expression reused any if the leftoever (dead) |
1864 | // nodes, these nodes would not be selected (since the "local" selection |
1865 | // only visits nodes that are not in AllNodes). |
1866 | // To avoid this issue, remove all dead nodes from the DAG now. |
1867 | // DAG.RemoveDeadNodes(); |
1868 | |
1869 | SmallVector<SDValue,128> Ops; |
1870 | LLVMContext &Ctx = *DAG.getContext(); |
1871 | MVT LegalTy = Lower.getTypeToTransformTo(Context&: Ctx, VT: ElemTy).getSimpleVT(); |
1872 | for (int I : Mask) { |
1873 | if (I < 0) { |
1874 | Ops.push_back(Elt: ISel.selectUndef(dl, ResTy: LegalTy)); |
1875 | continue; |
1876 | } |
1877 | SDValue Vec; |
1878 | unsigned M = I; |
1879 | if (M < VecLen) { |
1880 | Vec = Va; |
1881 | } else { |
1882 | Vec = Vb; |
1883 | M -= VecLen; |
1884 | } |
1885 | if (HavePairs) { |
1886 | if (M < HwLen) { |
1887 | Vec = DAG.getTargetExtractSubreg(SRIdx: Hexagon::vsub_lo, DL: dl, VT: SingleTy, Operand: Vec); |
1888 | } else { |
1889 | Vec = DAG.getTargetExtractSubreg(SRIdx: Hexagon::vsub_hi, DL: dl, VT: SingleTy, Operand: Vec); |
1890 | M -= HwLen; |
1891 | } |
1892 | } |
1893 | SDValue Idx = DAG.getConstant(Val: M, DL: dl, VT: MVT::i32); |
1894 | SDValue Ex = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: LegalTy, Ops: {Vec, Idx}); |
1895 | SDValue L = Lower.LowerOperation(Op: Ex, DAG); |
1896 | assert(L.getNode()); |
1897 | Ops.push_back(Elt: L); |
1898 | } |
1899 | |
1900 | SDValue LV; |
1901 | if (2*HwLen == VecLen) { |
1902 | SDValue B0 = DAG.getBuildVector(VT: SingleTy, DL: dl, Ops: {Ops.data(), HwLen}); |
1903 | SDValue L0 = Lower.LowerOperation(Op: B0, DAG); |
1904 | SDValue B1 = DAG.getBuildVector(VT: SingleTy, DL: dl, Ops: {Ops.data()+HwLen, HwLen}); |
1905 | SDValue L1 = Lower.LowerOperation(Op: B1, DAG); |
1906 | // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) |
1907 | // functions may expect to be called only for illegal operations, so |
1908 | // make sure that they are not called for legal ones. Develop a better |
1909 | // mechanism for dealing with this. |
1910 | LV = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: ResTy, Ops: {L0, L1}); |
1911 | } else { |
1912 | SDValue BV = DAG.getBuildVector(VT: ResTy, DL: dl, Ops); |
1913 | LV = Lower.LowerOperation(Op: BV, DAG); |
1914 | } |
1915 | |
1916 | assert(!N->use_empty()); |
1917 | SDValue IS = DAG.getNode(Opcode: HexagonISD::ISEL, DL: dl, VT: ResTy, Operand: LV); |
1918 | ISel.ReplaceNode(F: N, T: IS.getNode()); |
1919 | select(ISelN: IS.getNode()); |
1920 | DAG.RemoveDeadNodes(); |
1921 | return true; |
1922 | } |
1923 | |
1924 | SmallVector<uint32_t, 8> HvxSelector::getPerfectCompletions(ShuffleMask SM, |
1925 | unsigned Width) { |
1926 | auto possibilities = [](ArrayRef<uint8_t> Bs, unsigned Width) -> uint32_t { |
1927 | unsigned Impossible = ~(1u << Width) + 1; |
1928 | for (unsigned I = 0, E = Bs.size(); I != E; ++I) { |
1929 | uint8_t B = Bs[I]; |
1930 | if (B == 0xff) |
1931 | continue; |
1932 | if (~Impossible == 0) |
1933 | break; |
1934 | for (unsigned Log = 0; Log != Width; ++Log) { |
1935 | if (Impossible & (1u << Log)) |
1936 | continue; |
1937 | unsigned Expected = (I >> Log) % 2; |
1938 | if (B != Expected) |
1939 | Impossible |= (1u << Log); |
1940 | } |
1941 | } |
1942 | return ~Impossible; |
1943 | }; |
1944 | |
1945 | SmallVector<uint32_t, 8> Worklist(Width); |
1946 | |
1947 | for (unsigned BitIdx = 0; BitIdx != Width; ++BitIdx) { |
1948 | SmallVector<uint8_t> BitValues(SM.Mask.size()); |
1949 | for (int i = 0, e = SM.Mask.size(); i != e; ++i) { |
1950 | int M = SM.Mask[i]; |
1951 | if (M < 0) |
1952 | BitValues[i] = 0xff; |
1953 | else |
1954 | BitValues[i] = (M & (1u << BitIdx)) != 0; |
1955 | } |
1956 | Worklist[BitIdx] = possibilities(BitValues, Width); |
1957 | } |
1958 | |
1959 | // If there is a word P in Worklist that matches multiple possibilities, |
1960 | // then if any other word Q matches any of the possibilities matched by P, |
1961 | // then Q matches all the possibilities matched by P. In fact, P == Q. |
1962 | // In other words, for each words P, Q, the sets of possibilities matched |
1963 | // by P and Q are either equal or disjoint (no partial overlap). |
1964 | // |
1965 | // Illustration: For 4-bit values there are 4 complete sequences: |
1966 | // a: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
1967 | // b: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 |
1968 | // c: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 |
1969 | // d: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 |
1970 | // |
1971 | // Words containing unknown bits that match two of the complete |
1972 | // sequences: |
1973 | // ab: 0 u u 1 0 u u 1 0 u u 1 0 u u 1 |
1974 | // ac: 0 u 0 u u 1 u 1 0 u 0 u u 1 u 1 |
1975 | // ad: 0 u 0 u 0 u 0 u u 1 u 1 u 1 u 1 |
1976 | // bc: 0 0 u u u u 1 1 0 0 u u u u 1 1 |
1977 | // bd: 0 0 u u 0 0 u u u u 1 1 u u 1 1 |
1978 | // cd: 0 0 0 0 u u u u u u u u 1 1 1 1 |
1979 | // |
1980 | // Proof of the claim above: |
1981 | // Let P be a word that matches s0 and s1. For that to happen, all known |
1982 | // bits in P must match s0 and s1 exactly. |
1983 | // Assume there is Q that matches s1. Note that since P and Q came from |
1984 | // the same shuffle mask, the positions of unknown bits in P and Q match |
1985 | // exactly, which makes the indices of known bits be exactly the same |
1986 | // between P and Q. Since P matches s0 and s1, the known bits of P much |
1987 | // match both s0 and s1. Also, since Q matches s1, the known bits in Q |
1988 | // are exactly the same as in s1, which means that they are exactly the |
1989 | // same as in P. This implies that P == Q. |
1990 | |
1991 | // There can be a situation where there are more entries with the same |
1992 | // bits set than there are set bits (e.g. value 9 occuring more than 2 |
1993 | // times). In such cases it will be impossible to complete this to a |
1994 | // perfect shuffle. |
1995 | SmallVector<uint32_t, 8> Sorted(Worklist); |
1996 | llvm::sort(Start: Sorted.begin(), End: Sorted.end()); |
1997 | |
1998 | for (unsigned I = 0, E = Sorted.size(); I != E;) { |
1999 | unsigned P = Sorted[I], Count = 1; |
2000 | while (++I != E && P == Sorted[I]) |
2001 | ++Count; |
2002 | if ((unsigned)llvm::popcount(Value: P) < Count) { |
2003 | // Reset all occurences of P, if there are more occurrences of P |
2004 | // than there are bits in P. |
2005 | for (unsigned &Q : Worklist) { |
2006 | if (Q == P) |
2007 | Q = 0; |
2008 | } |
2009 | } |
2010 | } |
2011 | |
2012 | return Worklist; |
2013 | } |
2014 | |
2015 | SmallVector<uint32_t, 8> |
2016 | HvxSelector::completeToPerfect(ArrayRef<uint32_t> Completions, unsigned Width) { |
2017 | // Pick a completion if there are multiple possibilities. For now just |
2018 | // select any valid completion. |
2019 | SmallVector<uint32_t, 8> Comps(Completions); |
2020 | |
2021 | for (unsigned I = 0; I != Width; ++I) { |
2022 | uint32_t P = Comps[I]; |
2023 | assert(P != 0); |
2024 | if (isPowerOf2_32(Value: P)) |
2025 | continue; |
2026 | // T = least significant bit of P. |
2027 | uint32_t T = P ^ ((P - 1) & P); |
2028 | // Clear T in all remaining words matching P. |
2029 | for (unsigned J = I + 1; J != Width; ++J) { |
2030 | if (Comps[J] == P) |
2031 | Comps[J] ^= T; |
2032 | } |
2033 | Comps[I] = T; |
2034 | } |
2035 | |
2036 | #ifndef NDEBUG |
2037 | // Check that we have generated a valid completion. |
2038 | uint32_t OrAll = 0; |
2039 | for (uint32_t C : Comps) { |
2040 | assert(isPowerOf2_32(C)); |
2041 | OrAll |= C; |
2042 | } |
2043 | assert(OrAll == (1u << Width) -1); |
2044 | #endif |
2045 | |
2046 | return Comps; |
2047 | } |
2048 | |
2049 | std::optional<int> HvxSelector::rotationDistance(ShuffleMask SM, |
2050 | unsigned WrapAt) { |
2051 | std::optional<int> Dist; |
2052 | for (int I = 0, E = SM.Mask.size(); I != E; ++I) { |
2053 | int M = SM.Mask[I]; |
2054 | if (M < 0) |
2055 | continue; |
2056 | if (Dist) { |
2057 | if ((I + *Dist) % static_cast<int>(WrapAt) != M) |
2058 | return std::nullopt; |
2059 | } else { |
2060 | // Integer a%b operator assumes rounding towards zero by /, so it |
2061 | // "misbehaves" when a crosses 0 (the remainder also changes sign). |
2062 | // Add WrapAt in an attempt to keep I+Dist non-negative. |
2063 | Dist = M - I; |
2064 | if (Dist < 0) |
2065 | Dist = *Dist + WrapAt; |
2066 | } |
2067 | } |
2068 | return Dist; |
2069 | } |
2070 | |
2071 | OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, |
2072 | ResultStack &Results) { |
2073 | DEBUG_WITH_TYPE("isel" , { dbgs() << __func__ << '\n'; }); |
2074 | if (!Va.isValid() || !Vb.isValid()) |
2075 | return OpRef::fail(); |
2076 | |
2077 | // Contracting shuffles, i.e. instructions that always discard some bytes |
2078 | // from the operand vectors. |
2079 | // |
2080 | // Funnel shifts |
2081 | // V6_vshuff{e,o}b |
2082 | // V6_vshuf{e,o}h |
2083 | // V6_vdealb4w |
2084 | // V6_vpack{e,o}{b,h} |
2085 | |
2086 | int VecLen = SM.Mask.size(); |
2087 | |
2088 | // First, check for funnel shifts. |
2089 | if (auto Dist = rotationDistance(SM, WrapAt: 2 * VecLen)) { |
2090 | OpRef Funnel = funnels(Va, Vb, Amount: *Dist, Results); |
2091 | if (Funnel.isValid()) |
2092 | return Funnel; |
2093 | } |
2094 | |
2095 | MVT SingleTy = getSingleVT(ElemTy: MVT::i8); |
2096 | MVT PairTy = getPairVT(ElemTy: MVT::i8); |
2097 | |
2098 | auto same = [](ArrayRef<int> Mask1, ArrayRef<int> Mask2) -> bool { |
2099 | return Mask1 == Mask2; |
2100 | }; |
2101 | |
2102 | using PackConfig = std::pair<unsigned, bool>; |
2103 | PackConfig Packs[] = { |
2104 | {1, false}, // byte, even |
2105 | {1, true}, // byte, odd |
2106 | {2, false}, // half, even |
2107 | {2, true}, // half, odd |
2108 | }; |
2109 | |
2110 | { // Check vpack |
2111 | unsigned Opcodes[] = { |
2112 | Hexagon::V6_vpackeb, |
2113 | Hexagon::V6_vpackob, |
2114 | Hexagon::V6_vpackeh, |
2115 | Hexagon::V6_vpackoh, |
2116 | }; |
2117 | for (int i = 0, e = std::size(Opcodes); i != e; ++i) { |
2118 | auto [Size, Odd] = Packs[i]; |
2119 | if (same(SM.Mask, shuffles::mask(S: shuffles::vpack, Length: HwLen, args: Size, args: Odd))) { |
2120 | Results.push(Opc: Opcodes[i], Ty: SingleTy, Ops: {Vb, Va}); |
2121 | return OpRef::res(N: Results.top()); |
2122 | } |
2123 | } |
2124 | } |
2125 | |
2126 | { // Check vshuff |
2127 | unsigned Opcodes[] = { |
2128 | Hexagon::V6_vshuffeb, |
2129 | Hexagon::V6_vshuffob, |
2130 | Hexagon::V6_vshufeh, |
2131 | Hexagon::V6_vshufoh, |
2132 | }; |
2133 | for (int i = 0, e = std::size(Opcodes); i != e; ++i) { |
2134 | auto [Size, Odd] = Packs[i]; |
2135 | if (same(SM.Mask, shuffles::mask(S: shuffles::vshuff, Length: HwLen, args: Size, args: Odd))) { |
2136 | Results.push(Opc: Opcodes[i], Ty: SingleTy, Ops: {Vb, Va}); |
2137 | return OpRef::res(N: Results.top()); |
2138 | } |
2139 | } |
2140 | } |
2141 | |
2142 | { // Check vdeal |
2143 | // There is no "V6_vdealeb", etc, but the supposed behavior of vdealeb |
2144 | // is equivalent to "(V6_vpackeb (V6_vdealvdd Vu, Vv, -2))". Other such |
2145 | // variants of "deal" can be done similarly. |
2146 | unsigned Opcodes[] = { |
2147 | Hexagon::V6_vpackeb, |
2148 | Hexagon::V6_vpackob, |
2149 | Hexagon::V6_vpackeh, |
2150 | Hexagon::V6_vpackoh, |
2151 | }; |
2152 | const SDLoc &dl(Results.InpNode); |
2153 | |
2154 | for (int i = 0, e = std::size(Opcodes); i != e; ++i) { |
2155 | auto [Size, Odd] = Packs[i]; |
2156 | if (same(SM.Mask, shuffles::mask(S: shuffles::vdeal, Length: HwLen, args: Size, args: Odd))) { |
2157 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: -2 * Size, dl)}); |
2158 | Results.push(Opc: Hexagon::V6_vdealvdd, Ty: PairTy, Ops: {Vb, Va, OpRef::res(N: -1)}); |
2159 | auto vdeal = OpRef::res(N: Results.top()); |
2160 | Results.push(Opc: Opcodes[i], Ty: SingleTy, |
2161 | Ops: {OpRef::hi(R: vdeal), OpRef::lo(R: vdeal)}); |
2162 | return OpRef::res(N: Results.top()); |
2163 | } |
2164 | } |
2165 | } |
2166 | |
2167 | if (same(SM.Mask, shuffles::mask(S: shuffles::vdealb4w, Length: HwLen))) { |
2168 | Results.push(Opc: Hexagon::V6_vdealb4w, Ty: SingleTy, Ops: {Vb, Va}); |
2169 | return OpRef::res(N: Results.top()); |
2170 | } |
2171 | |
2172 | return OpRef::fail(); |
2173 | } |
2174 | |
2175 | OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
2176 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
2177 | // Expanding shuffles (using all elements and inserting into larger vector): |
2178 | // |
2179 | // V6_vunpacku{b,h} [*] |
2180 | // |
2181 | // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. |
2182 | // |
2183 | // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so |
2184 | // they are not shuffles. |
2185 | // |
2186 | // The argument is a single vector. |
2187 | |
2188 | int VecLen = SM.Mask.size(); |
2189 | assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type" ); |
2190 | |
2191 | std::pair<int,unsigned> Strip = findStrip(A: SM.Mask, Inc: 1, MaxLen: VecLen); |
2192 | |
2193 | // The patterns for the unpacks, in terms of the starting offsets of the |
2194 | // consecutive strips (L = length of the strip, N = VecLen): |
2195 | // |
2196 | // vunpacku: 0, -1, L, -1, 2L, -1 ... |
2197 | |
2198 | if (Strip.first != 0) |
2199 | return OpRef::fail(); |
2200 | |
2201 | // The vunpackus only handle byte and half-word. |
2202 | if (Strip.second != 1 && Strip.second != 2) |
2203 | return OpRef::fail(); |
2204 | |
2205 | int N = VecLen; |
2206 | int L = Strip.second; |
2207 | |
2208 | // First, check the non-ignored strips. |
2209 | for (int I = 2*L; I < N; I += 2*L) { |
2210 | auto S = findStrip(A: SM.Mask.drop_front(N: I), Inc: 1, MaxLen: N-I); |
2211 | if (S.second != unsigned(L)) |
2212 | return OpRef::fail(); |
2213 | if (2*S.first != I) |
2214 | return OpRef::fail(); |
2215 | } |
2216 | // Check the -1s. |
2217 | for (int I = L; I < N; I += 2*L) { |
2218 | auto S = findStrip(A: SM.Mask.drop_front(N: I), Inc: 0, MaxLen: N-I); |
2219 | if (S.first != -1 || S.second != unsigned(L)) |
2220 | return OpRef::fail(); |
2221 | } |
2222 | |
2223 | unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub |
2224 | : Hexagon::V6_vunpackuh; |
2225 | Results.push(Opc, Ty: getPairVT(ElemTy: MVT::i8), Ops: {Va}); |
2226 | return OpRef::res(N: Results.top()); |
2227 | } |
2228 | |
2229 | OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
2230 | DEBUG_WITH_TYPE("isel" , { dbgs() << __func__ << '\n'; }); |
2231 | // V6_vdeal{b,h} |
2232 | // V6_vshuff{b,h} |
2233 | |
2234 | // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2}) |
2235 | // V6_vshuffvdd (V6_vshuff) |
2236 | // V6_dealvdd (V6_vdeal) |
2237 | |
2238 | int VecLen = SM.Mask.size(); |
2239 | assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); |
2240 | unsigned LogLen = Log2_32(Value: VecLen); |
2241 | unsigned HwLog = Log2_32(Value: HwLen); |
2242 | // The result length must be the same as the length of a single vector, |
2243 | // or a vector pair. |
2244 | assert(LogLen == HwLog || LogLen == HwLog + 1); |
2245 | bool HavePairs = LogLen == HwLog + 1; |
2246 | |
2247 | SmallVector<unsigned, 8> Perm(LogLen); |
2248 | |
2249 | // Check if this could be a perfect shuffle, or a combination of perfect |
2250 | // shuffles. |
2251 | // |
2252 | // Consider this permutation (using hex digits to make the ASCII diagrams |
2253 | // easier to read): |
2254 | // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. |
2255 | // This is a "deal" operation: divide the input into two halves, and |
2256 | // create the output by picking elements by alternating between these two |
2257 | // halves: |
2258 | // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] |
2259 | // 8 9 A B C D E F |
2260 | // |
2261 | // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides |
2262 | // a somwehat different mechanism that could be used to perform shuffle/ |
2263 | // deal operations: a 2x2 transpose. |
2264 | // Consider the halves of inputs again, they can be interpreted as a 2x8 |
2265 | // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated |
2266 | // together. Now, when considering 2 elements at a time, it will be a 2x4 |
2267 | // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: |
2268 | // 01 23 45 67 |
2269 | // 89 AB CD EF |
2270 | // With groups of 4, this will become a single 2x2 matrix, and so on. |
2271 | // |
2272 | // The 2x2 transpose instruction works by transposing each of the 2x2 |
2273 | // matrices (or "sub-matrices"), given a specific group size. For example, |
2274 | // if the group size is 1 (i.e. each element is its own group), there |
2275 | // will be four transposes of the four 2x2 matrices that form the 2x8. |
2276 | // For example, with the inputs as above, the result will be: |
2277 | // 0 8 2 A 4 C 6 E |
2278 | // 1 9 3 B 5 D 7 F |
2279 | // Now, this result can be tranposed again, but with the group size of 2: |
2280 | // 08 19 4C 5D |
2281 | // 2A 3B 6E 7F |
2282 | // If we then transpose that result, but with the group size of 4, we get: |
2283 | // 0819 2A3B |
2284 | // 4C5D 6E7F |
2285 | // If we concatenate these two rows, it will be |
2286 | // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F |
2287 | // which is the same as the "deal" [*] above. |
2288 | // |
2289 | // In general, a "deal" of individual elements is a series of 2x2 transposes, |
2290 | // with changing group size. HVX has two instructions: |
2291 | // Vdd = V6_vdealvdd Vu, Vv, Rt |
2292 | // Vdd = V6_shufvdd Vu, Vv, Rt |
2293 | // that perform exactly that. The register Rt controls which transposes are |
2294 | // going to happen: a bit at position n (counting from 0) indicates that a |
2295 | // transpose with a group size of 2^n will take place. If multiple bits are |
2296 | // set, multiple transposes will happen: vdealvdd will perform them starting |
2297 | // with the largest group size, vshuffvdd will do them in the reverse order. |
2298 | // |
2299 | // The main observation is that each 2x2 transpose corresponds to swapping |
2300 | // columns of bits in the binary representation of the values. |
2301 | // |
2302 | // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits |
2303 | // in a given column. The * denote the columns that will be swapped. |
2304 | // The transpose with the group size 2^n corresponds to swapping columns |
2305 | // 3 (the highest log) and log2(n): |
2306 | // |
2307 | // 3 2 1 0 0 2 1 3 0 2 3 1 |
2308 | // * * * * * * |
2309 | // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
2310 | // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 |
2311 | // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 |
2312 | // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 |
2313 | // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 |
2314 | // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 |
2315 | // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 |
2316 | // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 |
2317 | // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 |
2318 | // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 |
2319 | // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 |
2320 | // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 |
2321 | // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 |
2322 | // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 |
2323 | // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 |
2324 | // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 |
2325 | |
2326 | // There is one special case that is not a perfect shuffle, but can be |
2327 | // turned into one easily: when the shuffle operates on a vector pair, |
2328 | // but the two vectors in the pair are swapped. The code that identifies |
2329 | // perfect shuffles will reject it, unless the order is reversed. |
2330 | shuffles::MaskT MaskStorage(SM.Mask); |
2331 | bool InvertedPair = false; |
2332 | if (HavePairs && SM.Mask[0] >= int(HwLen)) { |
2333 | for (int i = 0, e = SM.Mask.size(); i != e; ++i) { |
2334 | int M = SM.Mask[i]; |
2335 | MaskStorage[i] = M >= int(HwLen) ? M - HwLen : M + HwLen; |
2336 | } |
2337 | InvertedPair = true; |
2338 | SM = ShuffleMask(MaskStorage); |
2339 | } |
2340 | |
2341 | auto Comps = getPerfectCompletions(SM, Width: LogLen); |
2342 | if (llvm::is_contained(Range&: Comps, Element: 0)) |
2343 | return OpRef::fail(); |
2344 | |
2345 | auto Pick = completeToPerfect(Completions: Comps, Width: LogLen); |
2346 | for (unsigned I = 0; I != LogLen; ++I) |
2347 | Perm[I] = Log2_32(Value: Pick[I]); |
2348 | |
2349 | // Once we have Perm, represent it as cycles. Denote the maximum log2 |
2350 | // (equal to log2(VecLen)-1) as M. The cycle containing M can then be |
2351 | // written as (M a1 a2 a3 ... an). That cycle can be broken up into |
2352 | // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition |
2353 | // order being from left to right. Any (contiguous) segment where the |
2354 | // values ai, ai+1...aj are either all increasing or all decreasing, |
2355 | // can be implemented via a single vshuffvdd/vdealvdd respectively. |
2356 | // |
2357 | // If there is a cycle (a1 a2 ... an) that does not involve M, it can |
2358 | // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can |
2359 | // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure |
2360 | // can be used to generate a sequence of vshuffvdd/vdealvdd. |
2361 | // |
2362 | // Example: |
2363 | // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written |
2364 | // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply |
2365 | // (4 0 1)(4 0)(4 2 3)(4 2). |
2366 | // It can then be expanded into swaps as |
2367 | // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), |
2368 | // and broken up into "increasing" segments as |
2369 | // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. |
2370 | // This is equivalent to |
2371 | // (4 0 1)(4 0 2 3)(4 2), |
2372 | // which can be implemented as 3 vshufvdd instructions. |
2373 | |
2374 | using CycleType = SmallVector<unsigned, 8>; |
2375 | std::set<CycleType> Cycles; |
2376 | std::set<unsigned> All; |
2377 | |
2378 | for (unsigned I : Perm) |
2379 | All.insert(x: I); |
2380 | |
2381 | // If the cycle contains LogLen-1, move it to the front of the cycle. |
2382 | // Otherwise, return the cycle unchanged. |
2383 | auto canonicalize = [LogLen](const CycleType &C) -> CycleType { |
2384 | unsigned LogPos, N = C.size(); |
2385 | for (LogPos = 0; LogPos != N; ++LogPos) |
2386 | if (C[LogPos] == LogLen - 1) |
2387 | break; |
2388 | if (LogPos == N) |
2389 | return C; |
2390 | |
2391 | CycleType NewC(C.begin() + LogPos, C.end()); |
2392 | NewC.append(in_start: C.begin(), in_end: C.begin() + LogPos); |
2393 | return NewC; |
2394 | }; |
2395 | |
2396 | auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { |
2397 | // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), |
2398 | // for bytes zero is included, for halfwords is not. |
2399 | if (Cs.size() != 1) |
2400 | return 0u; |
2401 | const CycleType &C = *Cs.begin(); |
2402 | if (C[0] != Len - 1) |
2403 | return 0u; |
2404 | int D = Len - C.size(); |
2405 | if (D != 0 && D != 1) |
2406 | return 0u; |
2407 | |
2408 | bool IsDeal = true, IsShuff = true; |
2409 | for (unsigned I = 1; I != Len - D; ++I) { |
2410 | if (C[I] != Len - 1 - I) |
2411 | IsDeal = false; |
2412 | if (C[I] != I - (1 - D)) // I-1, I |
2413 | IsShuff = false; |
2414 | } |
2415 | // At most one, IsDeal or IsShuff, can be non-zero. |
2416 | assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); |
2417 | static unsigned Deals[] = {Hexagon::V6_vdealb, Hexagon::V6_vdealh}; |
2418 | static unsigned Shufs[] = {Hexagon::V6_vshuffb, Hexagon::V6_vshuffh}; |
2419 | return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); |
2420 | }; |
2421 | |
2422 | while (!All.empty()) { |
2423 | unsigned A = *All.begin(); |
2424 | All.erase(x: A); |
2425 | CycleType C; |
2426 | C.push_back(Elt: A); |
2427 | for (unsigned B = Perm[A]; B != A; B = Perm[B]) { |
2428 | C.push_back(Elt: B); |
2429 | All.erase(x: B); |
2430 | } |
2431 | if (C.size() <= 1) |
2432 | continue; |
2433 | Cycles.insert(x: canonicalize(C)); |
2434 | } |
2435 | |
2436 | MVT SingleTy = getSingleVT(ElemTy: MVT::i8); |
2437 | MVT PairTy = getPairVT(ElemTy: MVT::i8); |
2438 | |
2439 | // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. |
2440 | if (unsigned(VecLen) == HwLen) { |
2441 | if (unsigned SingleOpc = pfs(Cycles, LogLen)) { |
2442 | Results.push(Opc: SingleOpc, Ty: SingleTy, Ops: {Va}); |
2443 | return OpRef::res(N: Results.top()); |
2444 | } |
2445 | } |
2446 | |
2447 | // From the cycles, construct the sequence of values that will |
2448 | // then form the control values for vdealvdd/vshuffvdd, i.e. |
2449 | // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5 |
2450 | // This essentially strips the M value from the cycles where |
2451 | // it's present, and performs the insertion of M (then stripping) |
2452 | // for cycles without M (as described in an earlier comment). |
2453 | SmallVector<unsigned, 8> SwapElems; |
2454 | // When the input is extended (i.e. single vector becomes a pair), |
2455 | // this is done by using an "undef" vector as the second input. |
2456 | // However, then we get |
2457 | // input 1: GOODBITS |
2458 | // input 2: ........ |
2459 | // but we need |
2460 | // input 1: ....BITS |
2461 | // input 2: ....GOOD |
2462 | // Then at the end, this needs to be undone. To accomplish this, |
2463 | // artificially add "LogLen-1" at both ends of the sequence. |
2464 | if (!HavePairs) |
2465 | SwapElems.push_back(Elt: LogLen - 1); |
2466 | for (const CycleType &C : Cycles) { |
2467 | // Do the transformation: (a1..an) -> (M a1..an)(M a1). |
2468 | unsigned First = (C[0] == LogLen - 1) ? 1 : 0; |
2469 | SwapElems.append(in_start: C.begin() + First, in_end: C.end()); |
2470 | if (First == 0) |
2471 | SwapElems.push_back(Elt: C[0]); |
2472 | } |
2473 | if (!HavePairs) |
2474 | SwapElems.push_back(Elt: LogLen - 1); |
2475 | |
2476 | const SDLoc &dl(Results.InpNode); |
2477 | OpRef Arg = HavePairs ? Va : concats(Lo: Va, Hi: OpRef::undef(Ty: SingleTy), Results); |
2478 | if (InvertedPair) |
2479 | Arg = concats(Lo: OpRef::hi(R: Arg), Hi: OpRef::lo(R: Arg), Results); |
2480 | |
2481 | for (unsigned I = 0, E = SwapElems.size(); I != E;) { |
2482 | bool IsInc = I == E - 1 || SwapElems[I] < SwapElems[I + 1]; |
2483 | unsigned S = (1u << SwapElems[I]); |
2484 | if (I < E - 1) { |
2485 | while (++I < E - 1 && IsInc == (SwapElems[I] < SwapElems[I + 1])) |
2486 | S |= 1u << SwapElems[I]; |
2487 | // The above loop will not add a bit for the final SwapElems[I+1], |
2488 | // so add it here. |
2489 | S |= 1u << SwapElems[I]; |
2490 | } |
2491 | ++I; |
2492 | |
2493 | NodeTemplate Res; |
2494 | Results.push(Opc: Hexagon::A2_tfrsi, Ty: MVT::i32, Ops: {getConst32(Val: S, dl)}); |
2495 | Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; |
2496 | Res.Ty = PairTy; |
2497 | Res.Ops = {OpRef::hi(R: Arg), OpRef::lo(R: Arg), OpRef::res(N: -1)}; |
2498 | Results.push(Res); |
2499 | Arg = OpRef::res(N: Results.top()); |
2500 | } |
2501 | |
2502 | return HavePairs ? Arg : OpRef::lo(R: Arg); |
2503 | } |
2504 | |
2505 | OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { |
2506 | DEBUG_WITH_TYPE("isel" , {dbgs() << __func__ << '\n';}); |
2507 | // Butterfly shuffles. |
2508 | // |
2509 | // V6_vdelta |
2510 | // V6_vrdelta |
2511 | // V6_vror |
2512 | |
2513 | // The assumption here is that all elements picked by Mask are in the |
2514 | // first operand to the vector_shuffle. This assumption is enforced |
2515 | // by the caller. |
2516 | |
2517 | MVT ResTy = getSingleVT(ElemTy: MVT::i8); |
2518 | PermNetwork::Controls FC, RC; |
2519 | const SDLoc &dl(Results.InpNode); |
2520 | int VecLen = SM.Mask.size(); |
2521 | |
2522 | for (int M : SM.Mask) { |
2523 | if (M != -1 && M >= VecLen) |
2524 | return OpRef::fail(); |
2525 | } |
2526 | |
2527 | // Try the deltas/benes for both single vectors and vector pairs. |
2528 | ForwardDeltaNetwork FN(SM.Mask); |
2529 | if (FN.run(V&: FC)) { |
2530 | SDValue Ctl = getVectorConstant(Data: FC, dl); |
2531 | Results.push(Opc: Hexagon::V6_vdelta, Ty: ResTy, Ops: {Va, OpRef(Ctl)}); |
2532 | return OpRef::res(N: Results.top()); |
2533 | } |
2534 | |
2535 | // Try reverse delta. |
2536 | ReverseDeltaNetwork RN(SM.Mask); |
2537 | if (RN.run(V&: RC)) { |
2538 | SDValue Ctl = getVectorConstant(Data: RC, dl); |
2539 | Results.push(Opc: Hexagon::V6_vrdelta, Ty: ResTy, Ops: {Va, OpRef(Ctl)}); |
2540 | return OpRef::res(N: Results.top()); |
2541 | } |
2542 | |
2543 | // Do Benes. |
2544 | BenesNetwork BN(SM.Mask); |
2545 | if (BN.run(F&: FC, R&: RC)) { |
2546 | SDValue CtlF = getVectorConstant(Data: FC, dl); |
2547 | SDValue CtlR = getVectorConstant(Data: RC, dl); |
2548 | Results.push(Opc: Hexagon::V6_vdelta, Ty: ResTy, Ops: {Va, OpRef(CtlF)}); |
2549 | Results.push(Opc: Hexagon::V6_vrdelta, Ty: ResTy, |
2550 | Ops: {OpRef::res(N: -1), OpRef(CtlR)}); |
2551 | return OpRef::res(N: Results.top()); |
2552 | } |
2553 | |
2554 | return OpRef::fail(); |
2555 | } |
2556 | |
2557 | SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) { |
2558 | return DAG.getTargetConstant(Val, DL: dl, VT: MVT::i32); |
2559 | } |
2560 | |
2561 | SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, |
2562 | const SDLoc &dl) { |
2563 | SmallVector<SDValue, 128> Elems; |
2564 | for (uint8_t C : Data) |
2565 | Elems.push_back(Elt: DAG.getConstant(Val: C, DL: dl, VT: MVT::i8)); |
2566 | MVT VecTy = MVT::getVectorVT(VT: MVT::i8, NumElements: Data.size()); |
2567 | SDValue BV = DAG.getBuildVector(VT: VecTy, DL: dl, Ops: Elems); |
2568 | SDValue LV = Lower.LowerOperation(Op: BV, DAG); |
2569 | DAG.RemoveDeadNode(N: BV.getNode()); |
2570 | return DAG.getNode(Opcode: HexagonISD::ISEL, DL: dl, VT: VecTy, Operand: LV); |
2571 | } |
2572 | |
2573 | void HvxSelector::(SDNode *N) { |
2574 | SDValue Inp = N->getOperand(Num: 0); |
2575 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
2576 | unsigned Idx = N->getConstantOperandVal(Num: 1); |
2577 | |
2578 | [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); |
2579 | [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); |
2580 | assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); |
2581 | assert(2 * ResLen == InpTy.getVectorNumElements()); |
2582 | assert(Idx == 0 || Idx == ResLen); |
2583 | |
2584 | unsigned SubReg = Idx == 0 ? Hexagon::vsub_lo : Hexagon::vsub_hi; |
2585 | SDValue Ext = DAG.getTargetExtractSubreg(SRIdx: SubReg, DL: SDLoc(N), VT: ResTy, Operand: Inp); |
2586 | |
2587 | ISel.ReplaceNode(F: N, T: Ext.getNode()); |
2588 | } |
2589 | |
2590 | void HvxSelector::selectShuffle(SDNode *N) { |
2591 | DEBUG_WITH_TYPE("isel" , { |
2592 | dbgs() << "Starting " << __func__ << " on node:\n" ; |
2593 | N->dump(&DAG); |
2594 | }); |
2595 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
2596 | // Assume that vector shuffles operate on vectors of bytes. |
2597 | assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); |
2598 | |
2599 | auto *SN = cast<ShuffleVectorSDNode>(Val: N); |
2600 | std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); |
2601 | // This shouldn't really be necessary. Is it? |
2602 | for (int &Idx : Mask) |
2603 | if (Idx != -1 && Idx < 0) |
2604 | Idx = -1; |
2605 | |
2606 | unsigned VecLen = Mask.size(); |
2607 | bool HavePairs = (2*HwLen == VecLen); |
2608 | assert(ResTy.getSizeInBits() / 8 == VecLen); |
2609 | |
2610 | // Vd = vector_shuffle Va, Vb, Mask |
2611 | // |
2612 | |
2613 | bool UseLeft = false, UseRight = false; |
2614 | for (unsigned I = 0; I != VecLen; ++I) { |
2615 | if (Mask[I] == -1) |
2616 | continue; |
2617 | unsigned Idx = Mask[I]; |
2618 | assert(Idx < 2*VecLen); |
2619 | if (Idx < VecLen) |
2620 | UseLeft = true; |
2621 | else |
2622 | UseRight = true; |
2623 | } |
2624 | |
2625 | DEBUG_WITH_TYPE("isel" , { |
2626 | dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" |
2627 | << UseLeft << " UseRight=" << UseRight << " HavePairs=" |
2628 | << HavePairs << '\n'; |
2629 | }); |
2630 | // If the mask is all -1's, generate "undef". |
2631 | if (!UseLeft && !UseRight) { |
2632 | ISel.ReplaceNode(F: N, T: ISel.selectUndef(dl: SDLoc(SN), ResTy).getNode()); |
2633 | return; |
2634 | } |
2635 | |
2636 | SDValue Vec0 = N->getOperand(Num: 0); |
2637 | SDValue Vec1 = N->getOperand(Num: 1); |
2638 | assert(Vec0.getValueType() == ResTy && Vec1.getValueType() == ResTy); |
2639 | |
2640 | ResultStack Results(SN); |
2641 | OpRef Va = OpRef::undef(Ty: ResTy); |
2642 | OpRef Vb = OpRef::undef(Ty: ResTy); |
2643 | |
2644 | if (!Vec0.isUndef()) { |
2645 | Results.push(Opc: TargetOpcode::COPY, Ty: ResTy, Ops: {Vec0}); |
2646 | Va = OpRef::OpRef::res(N: Results.top()); |
2647 | } |
2648 | if (!Vec1.isUndef()) { |
2649 | Results.push(Opc: TargetOpcode::COPY, Ty: ResTy, Ops: {Vec1}); |
2650 | Vb = OpRef::res(N: Results.top()); |
2651 | } |
2652 | |
2653 | OpRef Res = !HavePairs ? shuffs2(SM: ShuffleMask(Mask), Va, Vb, Results) |
2654 | : shuffp2(SM: ShuffleMask(Mask), Va, Vb, Results); |
2655 | |
2656 | bool Done = Res.isValid(); |
2657 | if (Done) { |
2658 | // Make sure that Res is on the stack before materializing. |
2659 | Results.push(Opc: TargetOpcode::COPY, Ty: ResTy, Ops: {Res}); |
2660 | materialize(Results); |
2661 | } else { |
2662 | Done = scalarizeShuffle(Mask, dl: SDLoc(N), ResTy, Va: Vec0, Vb: Vec1, N); |
2663 | } |
2664 | |
2665 | if (!Done) { |
2666 | #ifndef NDEBUG |
2667 | dbgs() << "Unhandled shuffle:\n" ; |
2668 | SN->dumpr(&DAG); |
2669 | #endif |
2670 | llvm_unreachable("Failed to select vector shuffle" ); |
2671 | } |
2672 | } |
2673 | |
2674 | void HvxSelector::selectRor(SDNode *N) { |
2675 | // If this is a rotation by less than 8, use V6_valignbi. |
2676 | MVT Ty = N->getValueType(ResNo: 0).getSimpleVT(); |
2677 | const SDLoc &dl(N); |
2678 | SDValue VecV = N->getOperand(Num: 0); |
2679 | SDValue RotV = N->getOperand(Num: 1); |
2680 | SDNode *NewN = nullptr; |
2681 | |
2682 | if (auto *CN = dyn_cast<ConstantSDNode>(Val: RotV.getNode())) { |
2683 | unsigned S = CN->getZExtValue() % HST.getVectorLength(); |
2684 | if (S == 0) { |
2685 | NewN = VecV.getNode(); |
2686 | } else if (isUInt<3>(x: S)) { |
2687 | NewN = DAG.getMachineNode(Opcode: Hexagon::V6_valignbi, dl, VT: Ty, |
2688 | Ops: {VecV, VecV, getConst32(Val: S, dl)}); |
2689 | } |
2690 | } |
2691 | |
2692 | if (!NewN) |
2693 | NewN = DAG.getMachineNode(Opcode: Hexagon::V6_vror, dl, VT: Ty, Ops: {VecV, RotV}); |
2694 | |
2695 | ISel.ReplaceNode(F: N, T: NewN); |
2696 | } |
2697 | |
2698 | void HvxSelector::selectVAlign(SDNode *N) { |
2699 | SDValue Vv = N->getOperand(Num: 0); |
2700 | SDValue Vu = N->getOperand(Num: 1); |
2701 | SDValue Rt = N->getOperand(Num: 2); |
2702 | SDNode *NewN = DAG.getMachineNode(Opcode: Hexagon::V6_valignb, dl: SDLoc(N), |
2703 | VT: N->getValueType(ResNo: 0), Ops: {Vv, Vu, Rt}); |
2704 | ISel.ReplaceNode(F: N, T: NewN); |
2705 | DAG.RemoveDeadNode(N); |
2706 | } |
2707 | |
2708 | void HexagonDAGToDAGISel::PreprocessHvxISelDAG() { |
2709 | auto getNodes = [this]() -> std::vector<SDNode *> { |
2710 | std::vector<SDNode *> T; |
2711 | T.reserve(n: CurDAG->allnodes_size()); |
2712 | for (SDNode &N : CurDAG->allnodes()) |
2713 | T.push_back(x: &N); |
2714 | return T; |
2715 | }; |
2716 | |
2717 | ppHvxShuffleOfShuffle(Nodes: getNodes()); |
2718 | } |
2719 | |
2720 | template <> struct std::hash<SDValue> { |
2721 | std::size_t operator()(SDValue V) const { |
2722 | return std::hash<const void *>()(V.getNode()) + |
2723 | std::hash<unsigned>()(V.getResNo()); |
2724 | }; |
2725 | }; |
2726 | |
2727 | void HexagonDAGToDAGISel::ppHvxShuffleOfShuffle(std::vector<SDNode *> &&Nodes) { |
2728 | // Motivating case: |
2729 | // t10: v64i32 = ... |
2730 | // t46: v128i8 = vector_shuffle<...> t44, t45 |
2731 | // t48: v128i8 = vector_shuffle<...> t44, t45 |
2732 | // t42: v128i8 = vector_shuffle<...> t46, t48 |
2733 | // t12: v32i32 = extract_subvector t10, Constant:i32<0> |
2734 | // t44: v128i8 = bitcast t12 |
2735 | // t15: v32i32 = extract_subvector t10, Constant:i32<32> |
2736 | // t45: v128i8 = bitcast t15 |
2737 | SelectionDAG &DAG = *CurDAG; |
2738 | unsigned HwLen = HST->getVectorLength(); |
2739 | |
2740 | struct SubVectorInfo { |
2741 | SubVectorInfo(SDValue S, unsigned H) : Src(S), HalfIdx(H) {} |
2742 | SDValue Src; |
2743 | unsigned HalfIdx; |
2744 | }; |
2745 | |
2746 | using MapType = std::unordered_map<SDValue, unsigned>; |
2747 | |
2748 | auto getMaskElt = [&](unsigned Idx, ShuffleVectorSDNode *Shuff0, |
2749 | ShuffleVectorSDNode *Shuff1, |
2750 | const MapType &OpMap) -> int { |
2751 | // Treat Shuff0 and Shuff1 as operands to another vector shuffle, and |
2752 | // Idx as a (non-undef) element of the top level shuffle's mask, that |
2753 | // is, index into concat(Shuff0, Shuff1). |
2754 | // Assuming that Shuff0 and Shuff1 both operate on subvectors of the |
2755 | // same source vector (as described by OpMap), return the index of |
2756 | // that source vector corresponding to Idx. |
2757 | ShuffleVectorSDNode *OpShuff = Idx < HwLen ? Shuff0 : Shuff1; |
2758 | if (Idx >= HwLen) |
2759 | Idx -= HwLen; |
2760 | |
2761 | // Get the mask index that M points at in the corresponding operand. |
2762 | int MaybeN = OpShuff->getMaskElt(Idx); |
2763 | if (MaybeN < 0) |
2764 | return -1; |
2765 | |
2766 | auto N = static_cast<unsigned>(MaybeN); |
2767 | unsigned SrcBase = N < HwLen ? OpMap.at(k: OpShuff->getOperand(Num: 0)) |
2768 | : OpMap.at(k: OpShuff->getOperand(Num: 1)); |
2769 | if (N >= HwLen) |
2770 | N -= HwLen; |
2771 | |
2772 | return N + SrcBase; |
2773 | }; |
2774 | |
2775 | auto fold3 = [&](SDValue TopShuff, SDValue Inp, MapType &&OpMap) -> SDValue { |
2776 | // Fold all 3 shuffles into a single one. |
2777 | auto *This = cast<ShuffleVectorSDNode>(Val&: TopShuff); |
2778 | auto *S0 = cast<ShuffleVectorSDNode>(Val: TopShuff.getOperand(i: 0)); |
2779 | auto *S1 = cast<ShuffleVectorSDNode>(Val: TopShuff.getOperand(i: 1)); |
2780 | ArrayRef<int> TopMask = This->getMask(); |
2781 | // This should be guaranteed by type checks in the caller, and the fact |
2782 | // that all shuffles should have been promoted to operate on MVT::i8. |
2783 | assert(TopMask.size() == S0->getMask().size() && |
2784 | TopMask.size() == S1->getMask().size()); |
2785 | assert(TopMask.size() == HwLen); |
2786 | |
2787 | SmallVector<int, 256> FoldedMask(2 * HwLen); |
2788 | for (unsigned I = 0; I != HwLen; ++I) { |
2789 | int MaybeM = TopMask[I]; |
2790 | if (MaybeM >= 0) { |
2791 | FoldedMask[I] = |
2792 | getMaskElt(static_cast<unsigned>(MaybeM), S0, S1, OpMap); |
2793 | } else { |
2794 | FoldedMask[I] = -1; |
2795 | } |
2796 | } |
2797 | // The second half of the result will be all-undef. |
2798 | std::fill(first: FoldedMask.begin() + HwLen, last: FoldedMask.end(), value: -1); |
2799 | |
2800 | // Return |
2801 | // FoldedShuffle = (Shuffle Inp, undef, FoldedMask) |
2802 | // (LoHalf FoldedShuffle) |
2803 | const SDLoc &dl(TopShuff); |
2804 | MVT SingleTy = MVT::getVectorVT(VT: MVT::i8, NumElements: HwLen); |
2805 | MVT PairTy = MVT::getVectorVT(VT: MVT::i8, NumElements: 2 * HwLen); |
2806 | SDValue FoldedShuff = |
2807 | DAG.getVectorShuffle(VT: PairTy, dl, N1: DAG.getBitcast(VT: PairTy, V: Inp), |
2808 | N2: DAG.getUNDEF(VT: PairTy), Mask: FoldedMask); |
2809 | return DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: SingleTy, N1: FoldedShuff, |
2810 | N2: DAG.getConstant(Val: 0, DL: dl, VT: MVT::i32)); |
2811 | }; |
2812 | |
2813 | auto getSourceInfo = [](SDValue V) -> std::optional<SubVectorInfo> { |
2814 | while (V.getOpcode() == ISD::BITCAST) |
2815 | V = V.getOperand(i: 0); |
2816 | if (V.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
2817 | return std::nullopt; |
2818 | return SubVectorInfo(V.getOperand(i: 0), |
2819 | !cast<ConstantSDNode>(Val: V.getOperand(i: 1))->isZero()); |
2820 | }; |
2821 | |
2822 | for (SDNode *N : Nodes) { |
2823 | if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
2824 | continue; |
2825 | EVT ResTy = N->getValueType(ResNo: 0); |
2826 | if (ResTy.getVectorElementType() != MVT::i8) |
2827 | continue; |
2828 | if (ResTy.getVectorNumElements() != HwLen) |
2829 | continue; |
2830 | |
2831 | SDValue V0 = N->getOperand(Num: 0); |
2832 | SDValue V1 = N->getOperand(Num: 1); |
2833 | if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) |
2834 | continue; |
2835 | if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) |
2836 | continue; |
2837 | if (V0.getValueType() != ResTy || V1.getValueType() != ResTy) |
2838 | continue; |
2839 | |
2840 | // Check if all operands of the two operand shuffles are extract_subvectors |
2841 | // from the same vector pair. |
2842 | auto V0A = getSourceInfo(V0.getOperand(i: 0)); |
2843 | if (!V0A.has_value()) |
2844 | continue; |
2845 | auto V0B = getSourceInfo(V0.getOperand(i: 1)); |
2846 | if (!V0B.has_value() || V0B->Src != V0A->Src) |
2847 | continue; |
2848 | auto V1A = getSourceInfo(V1.getOperand(i: 0)); |
2849 | if (!V1A.has_value() || V1A->Src != V0A->Src) |
2850 | continue; |
2851 | auto V1B = getSourceInfo(V1.getOperand(i: 1)); |
2852 | if (!V1B.has_value() || V1B->Src != V0A->Src) |
2853 | continue; |
2854 | |
2855 | // The source must be a pair. This should be guaranteed here, |
2856 | // but check just in case. |
2857 | assert(V0A->Src.getValueType().getSizeInBits() == 16 * HwLen); |
2858 | |
2859 | MapType OpMap = { |
2860 | {V0.getOperand(i: 0), V0A->HalfIdx * HwLen}, |
2861 | {V0.getOperand(i: 1), V0B->HalfIdx * HwLen}, |
2862 | {V1.getOperand(i: 0), V1A->HalfIdx * HwLen}, |
2863 | {V1.getOperand(i: 1), V1B->HalfIdx * HwLen}, |
2864 | }; |
2865 | SDValue NewS = fold3(SDValue(N, 0), V0A->Src, std::move(OpMap)); |
2866 | ReplaceNode(F: N, T: NewS.getNode()); |
2867 | } |
2868 | } |
2869 | |
2870 | void HexagonDAGToDAGISel::(SDNode *N) { |
2871 | HvxSelector(*this, *CurDAG).selectExtractSubvector(N); |
2872 | } |
2873 | |
2874 | void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { |
2875 | HvxSelector(*this, *CurDAG).selectShuffle(N); |
2876 | } |
2877 | |
2878 | void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { |
2879 | HvxSelector(*this, *CurDAG).selectRor(N); |
2880 | } |
2881 | |
2882 | void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { |
2883 | HvxSelector(*this, *CurDAG).selectVAlign(N); |
2884 | } |
2885 | |
2886 | void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { |
2887 | const SDLoc &dl(N); |
2888 | SDValue Chain = N->getOperand(Num: 0); |
2889 | SDValue Address = N->getOperand(Num: 2); |
2890 | SDValue Predicate = N->getOperand(Num: 3); |
2891 | SDValue Base = N->getOperand(Num: 4); |
2892 | SDValue Modifier = N->getOperand(Num: 5); |
2893 | SDValue Offset = N->getOperand(Num: 6); |
2894 | SDValue ImmOperand = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
2895 | |
2896 | unsigned Opcode; |
2897 | unsigned IntNo = N->getConstantOperandVal(Num: 1); |
2898 | switch (IntNo) { |
2899 | default: |
2900 | llvm_unreachable("Unexpected HVX gather intrinsic." ); |
2901 | case Intrinsic::hexagon_V6_vgathermhq: |
2902 | case Intrinsic::hexagon_V6_vgathermhq_128B: |
2903 | Opcode = Hexagon::V6_vgathermhq_pseudo; |
2904 | break; |
2905 | case Intrinsic::hexagon_V6_vgathermwq: |
2906 | case Intrinsic::hexagon_V6_vgathermwq_128B: |
2907 | Opcode = Hexagon::V6_vgathermwq_pseudo; |
2908 | break; |
2909 | case Intrinsic::hexagon_V6_vgathermhwq: |
2910 | case Intrinsic::hexagon_V6_vgathermhwq_128B: |
2911 | Opcode = Hexagon::V6_vgathermhwq_pseudo; |
2912 | break; |
2913 | } |
2914 | |
2915 | SDVTList VTs = CurDAG->getVTList(VT: MVT::Other); |
2916 | SDValue Ops[] = { Address, ImmOperand, |
2917 | Predicate, Base, Modifier, Offset, Chain }; |
2918 | SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
2919 | |
2920 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
2921 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Result), NewMemRefs: {MemOp}); |
2922 | |
2923 | ReplaceNode(F: N, T: Result); |
2924 | } |
2925 | |
2926 | void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { |
2927 | const SDLoc &dl(N); |
2928 | SDValue Chain = N->getOperand(Num: 0); |
2929 | SDValue Address = N->getOperand(Num: 2); |
2930 | SDValue Base = N->getOperand(Num: 3); |
2931 | SDValue Modifier = N->getOperand(Num: 4); |
2932 | SDValue Offset = N->getOperand(Num: 5); |
2933 | SDValue ImmOperand = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
2934 | |
2935 | unsigned Opcode; |
2936 | unsigned IntNo = N->getConstantOperandVal(Num: 1); |
2937 | switch (IntNo) { |
2938 | default: |
2939 | llvm_unreachable("Unexpected HVX gather intrinsic." ); |
2940 | case Intrinsic::hexagon_V6_vgathermh: |
2941 | case Intrinsic::hexagon_V6_vgathermh_128B: |
2942 | Opcode = Hexagon::V6_vgathermh_pseudo; |
2943 | break; |
2944 | case Intrinsic::hexagon_V6_vgathermw: |
2945 | case Intrinsic::hexagon_V6_vgathermw_128B: |
2946 | Opcode = Hexagon::V6_vgathermw_pseudo; |
2947 | break; |
2948 | case Intrinsic::hexagon_V6_vgathermhw: |
2949 | case Intrinsic::hexagon_V6_vgathermhw_128B: |
2950 | Opcode = Hexagon::V6_vgathermhw_pseudo; |
2951 | break; |
2952 | } |
2953 | |
2954 | SDVTList VTs = CurDAG->getVTList(VT: MVT::Other); |
2955 | SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain }; |
2956 | SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); |
2957 | |
2958 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
2959 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Result), NewMemRefs: {MemOp}); |
2960 | |
2961 | ReplaceNode(F: N, T: Result); |
2962 | } |
2963 | |
2964 | void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { |
2965 | unsigned IID = N->getConstantOperandVal(Num: 0); |
2966 | SDNode *Result; |
2967 | switch (IID) { |
2968 | case Intrinsic::hexagon_V6_vaddcarry: { |
2969 | std::array<SDValue, 3> Ops = { |
2970 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
2971 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v16i32, VT2: MVT::v64i1); |
2972 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vaddcarry, dl: SDLoc(N), VTs, Ops); |
2973 | break; |
2974 | } |
2975 | case Intrinsic::hexagon_V6_vaddcarry_128B: { |
2976 | std::array<SDValue, 3> Ops = { |
2977 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
2978 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v32i32, VT2: MVT::v128i1); |
2979 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vaddcarry, dl: SDLoc(N), VTs, Ops); |
2980 | break; |
2981 | } |
2982 | case Intrinsic::hexagon_V6_vsubcarry: { |
2983 | std::array<SDValue, 3> Ops = { |
2984 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
2985 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v16i32, VT2: MVT::v64i1); |
2986 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vsubcarry, dl: SDLoc(N), VTs, Ops); |
2987 | break; |
2988 | } |
2989 | case Intrinsic::hexagon_V6_vsubcarry_128B: { |
2990 | std::array<SDValue, 3> Ops = { |
2991 | ._M_elems: {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3)}}; |
2992 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::v32i32, VT2: MVT::v128i1); |
2993 | Result = CurDAG->getMachineNode(Opcode: Hexagon::V6_vsubcarry, dl: SDLoc(N), VTs, Ops); |
2994 | break; |
2995 | } |
2996 | default: |
2997 | llvm_unreachable("Unexpected HVX dual output intrinsic." ); |
2998 | } |
2999 | ReplaceUses(F: N, T: Result); |
3000 | ReplaceUses(F: SDValue(N, 0), T: SDValue(Result, 0)); |
3001 | ReplaceUses(F: SDValue(N, 1), T: SDValue(Result, 1)); |
3002 | CurDAG->RemoveDeadNode(N); |
3003 | } |
3004 | |