| 1 | //===----- CGHLSLRuntime.cpp - Interface to HLSL Runtimes -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This provides an abstract class for HLSL code generation. Concrete |
| 10 | // subclasses of this implement code generation for specific HLSL |
| 11 | // runtime libraries. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "CGHLSLRuntime.h" |
| 16 | #include "CGDebugInfo.h" |
| 17 | #include "CGRecordLayout.h" |
| 18 | #include "CodeGenFunction.h" |
| 19 | #include "CodeGenModule.h" |
| 20 | #include "HLSLBufferLayoutBuilder.h" |
| 21 | #include "TargetInfo.h" |
| 22 | #include "clang/AST/ASTContext.h" |
| 23 | #include "clang/AST/Attrs.inc" |
| 24 | #include "clang/AST/Decl.h" |
| 25 | #include "clang/AST/Expr.h" |
| 26 | #include "clang/AST/HLSLResource.h" |
| 27 | #include "clang/AST/RecursiveASTVisitor.h" |
| 28 | #include "clang/AST/Type.h" |
| 29 | #include "clang/Basic/DiagnosticFrontend.h" |
| 30 | #include "clang/Basic/TargetOptions.h" |
| 31 | #include "llvm/ADT/DenseMap.h" |
| 32 | #include "llvm/ADT/ScopeExit.h" |
| 33 | #include "llvm/ADT/SmallString.h" |
| 34 | #include "llvm/ADT/SmallVector.h" |
| 35 | #include "llvm/Frontend/HLSL/RootSignatureMetadata.h" |
| 36 | #include "llvm/IR/Constants.h" |
| 37 | #include "llvm/IR/DerivedTypes.h" |
| 38 | #include "llvm/IR/GlobalVariable.h" |
| 39 | #include "llvm/IR/LLVMContext.h" |
| 40 | #include "llvm/IR/Metadata.h" |
| 41 | #include "llvm/IR/Module.h" |
| 42 | #include "llvm/IR/Type.h" |
| 43 | #include "llvm/IR/Value.h" |
| 44 | #include "llvm/Support/Alignment.h" |
| 45 | #include "llvm/Support/ErrorHandling.h" |
| 46 | #include "llvm/Support/FormatVariadic.h" |
| 47 | #include <cstdint> |
| 48 | #include <optional> |
| 49 | |
| 50 | using namespace clang; |
| 51 | using namespace CodeGen; |
| 52 | using namespace clang::hlsl; |
| 53 | using namespace llvm; |
| 54 | |
| 55 | using llvm::hlsl::CBufferRowSizeInBytes; |
| 56 | |
| 57 | namespace { |
| 58 | |
| 59 | void addDxilValVersion(StringRef ValVersionStr, llvm::Module &M) { |
| 60 | // The validation of ValVersionStr is done at HLSLToolChain::TranslateArgs. |
| 61 | // Assume ValVersionStr is legal here. |
| 62 | VersionTuple Version; |
| 63 | if (Version.tryParse(string: ValVersionStr) || Version.getBuild() || |
| 64 | Version.getSubminor() || !Version.getMinor()) { |
| 65 | return; |
| 66 | } |
| 67 | |
| 68 | uint64_t Major = Version.getMajor(); |
| 69 | uint64_t Minor = *Version.getMinor(); |
| 70 | |
| 71 | auto &Ctx = M.getContext(); |
| 72 | IRBuilder<> B(M.getContext()); |
| 73 | MDNode *Val = MDNode::get(Context&: Ctx, MDs: {ConstantAsMetadata::get(C: B.getInt32(C: Major)), |
| 74 | ConstantAsMetadata::get(C: B.getInt32(C: Minor))}); |
| 75 | StringRef DXILValKey = "dx.valver" ; |
| 76 | auto *DXILValMD = M.getOrInsertNamedMetadata(Name: DXILValKey); |
| 77 | DXILValMD->addOperand(M: Val); |
| 78 | } |
| 79 | |
| 80 | void addRootSignatureMD(llvm::dxbc::RootSignatureVersion RootSigVer, |
| 81 | ArrayRef<llvm::hlsl::rootsig::RootElement> Elements, |
| 82 | llvm::Function *Fn, llvm::Module &M) { |
| 83 | auto &Ctx = M.getContext(); |
| 84 | |
| 85 | llvm::hlsl::rootsig::MetadataBuilder RSBuilder(Ctx, Elements); |
| 86 | MDNode *RootSignature = RSBuilder.BuildRootSignature(); |
| 87 | |
| 88 | ConstantAsMetadata *Version = ConstantAsMetadata::get(C: ConstantInt::get( |
| 89 | Ty: llvm::Type::getInt32Ty(C&: Ctx), V: llvm::to_underlying(E: RootSigVer))); |
| 90 | ValueAsMetadata *EntryFunc = Fn ? ValueAsMetadata::get(V: Fn) : nullptr; |
| 91 | MDNode *MDVals = MDNode::get(Context&: Ctx, MDs: {EntryFunc, RootSignature, Version}); |
| 92 | |
| 93 | StringRef RootSignatureValKey = "dx.rootsignatures" ; |
| 94 | auto *RootSignatureValMD = M.getOrInsertNamedMetadata(Name: RootSignatureValKey); |
| 95 | RootSignatureValMD->addOperand(M: MDVals); |
| 96 | } |
| 97 | |
| 98 | // Find array variable declaration from DeclRef expression |
| 99 | static const ValueDecl *getArrayDecl(const Expr *E) { |
| 100 | if (const DeclRefExpr *DRE = |
| 101 | dyn_cast_or_null<DeclRefExpr>(Val: E->IgnoreImpCasts())) |
| 102 | return DRE->getDecl(); |
| 103 | return nullptr; |
| 104 | } |
| 105 | |
| 106 | // Find array variable declaration from nested array subscript AST nodes |
| 107 | static const ValueDecl *getArrayDecl(const ArraySubscriptExpr *ASE) { |
| 108 | const Expr *E = nullptr; |
| 109 | while (ASE != nullptr) { |
| 110 | E = ASE->getBase()->IgnoreImpCasts(); |
| 111 | if (!E) |
| 112 | return nullptr; |
| 113 | ASE = dyn_cast<ArraySubscriptExpr>(Val: E); |
| 114 | } |
| 115 | return getArrayDecl(E); |
| 116 | } |
| 117 | |
| 118 | // Get the total size of the array, or -1 if the array is unbounded. |
| 119 | static int getTotalArraySize(ASTContext &AST, const clang::Type *Ty) { |
| 120 | Ty = Ty->getUnqualifiedDesugaredType(); |
| 121 | assert(Ty->isArrayType() && "expected array type" ); |
| 122 | if (Ty->isIncompleteArrayType()) |
| 123 | return -1; |
| 124 | return AST.getConstantArrayElementCount(CA: cast<ConstantArrayType>(Val: Ty)); |
| 125 | } |
| 126 | |
| 127 | static Value *buildNameForResource(llvm::StringRef BaseName, |
| 128 | CodeGenModule &CGM) { |
| 129 | llvm::SmallString<64> GlobalName = {BaseName, ".str" }; |
| 130 | return CGM.GetAddrOfConstantCString(Str: BaseName.str(), GlobalName: GlobalName.c_str()) |
| 131 | .getPointer(); |
| 132 | } |
| 133 | |
| 134 | static CXXMethodDecl *lookupMethod(CXXRecordDecl *Record, StringRef Name, |
| 135 | StorageClass SC = SC_None) { |
| 136 | for (auto *Method : Record->methods()) { |
| 137 | if (Method->getStorageClass() == SC && Method->getName() == Name) |
| 138 | return Method; |
| 139 | } |
| 140 | return nullptr; |
| 141 | } |
| 142 | |
| 143 | static CXXMethodDecl *lookupResourceInitMethodAndSetupArgs( |
| 144 | CodeGenModule &CGM, CXXRecordDecl *ResourceDecl, llvm::Value *Range, |
| 145 | llvm::Value *Index, StringRef Name, ResourceBindingAttrs &Binding, |
| 146 | CallArgList &Args) { |
| 147 | assert(Binding.hasBinding() && "at least one binding attribute expected" ); |
| 148 | |
| 149 | ASTContext &AST = CGM.getContext(); |
| 150 | CXXMethodDecl *CreateMethod = nullptr; |
| 151 | Value *NameStr = buildNameForResource(BaseName: Name, CGM); |
| 152 | Value *Space = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Binding.getSpace()); |
| 153 | |
| 154 | if (Binding.isExplicit()) { |
| 155 | // explicit binding |
| 156 | auto *RegSlot = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Binding.getSlot()); |
| 157 | Args.add(rvalue: RValue::get(V: RegSlot), type: AST.UnsignedIntTy); |
| 158 | const char *Name = Binding.hasCounterImplicitOrderID() |
| 159 | ? "__createFromBindingWithImplicitCounter" |
| 160 | : "__createFromBinding" ; |
| 161 | CreateMethod = lookupMethod(Record: ResourceDecl, Name, SC: SC_Static); |
| 162 | } else { |
| 163 | // implicit binding |
| 164 | auto *OrderID = |
| 165 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Binding.getImplicitOrderID()); |
| 166 | Args.add(rvalue: RValue::get(V: OrderID), type: AST.UnsignedIntTy); |
| 167 | const char *Name = Binding.hasCounterImplicitOrderID() |
| 168 | ? "__createFromImplicitBindingWithImplicitCounter" |
| 169 | : "__createFromImplicitBinding" ; |
| 170 | CreateMethod = lookupMethod(Record: ResourceDecl, Name, SC: SC_Static); |
| 171 | } |
| 172 | Args.add(rvalue: RValue::get(V: Space), type: AST.UnsignedIntTy); |
| 173 | Args.add(rvalue: RValue::get(V: Range), type: AST.IntTy); |
| 174 | Args.add(rvalue: RValue::get(V: Index), type: AST.UnsignedIntTy); |
| 175 | Args.add(rvalue: RValue::get(V: NameStr), type: AST.getPointerType(T: AST.CharTy.withConst())); |
| 176 | if (Binding.hasCounterImplicitOrderID()) { |
| 177 | uint32_t CounterBinding = Binding.getCounterImplicitOrderID(); |
| 178 | auto *CounterOrderID = llvm::ConstantInt::get(Ty: CGM.IntTy, V: CounterBinding); |
| 179 | Args.add(rvalue: RValue::get(V: CounterOrderID), type: AST.UnsignedIntTy); |
| 180 | } |
| 181 | |
| 182 | return CreateMethod; |
| 183 | } |
| 184 | |
| 185 | static void callResourceInitMethod(CodeGenFunction &CGF, |
| 186 | CXXMethodDecl *CreateMethod, |
| 187 | CallArgList &Args, Address ReturnAddress) { |
| 188 | llvm::Constant *CalleeFn = CGF.CGM.GetAddrOfFunction(GD: CreateMethod); |
| 189 | const FunctionProtoType *Proto = |
| 190 | CreateMethod->getType()->getAs<FunctionProtoType>(); |
| 191 | const CGFunctionInfo &FnInfo = |
| 192 | CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, Ty: Proto, ChainCall: false); |
| 193 | ReturnValueSlot ReturnValue(ReturnAddress, false); |
| 194 | CGCallee Callee(CGCalleeInfo(Proto), CalleeFn); |
| 195 | CGF.EmitCall(CallInfo: FnInfo, Callee, ReturnValue, Args, CallOrInvoke: nullptr); |
| 196 | } |
| 197 | |
| 198 | // Initializes local resource array variable. For multi-dimensional arrays it |
| 199 | // calls itself recursively to initialize its sub-arrays. The Index used in the |
| 200 | // resource constructor calls will begin at StartIndex and will be incremented |
| 201 | // for each array element. The last used resource Index is returned to the |
| 202 | // caller. If the function returns std::nullopt, it indicates an error. |
| 203 | static std::optional<llvm::Value *> initializeLocalResourceArray( |
| 204 | CodeGenFunction &CGF, CXXRecordDecl *ResourceDecl, |
| 205 | const ConstantArrayType *ArrayTy, AggValueSlot &ValueSlot, |
| 206 | llvm::Value *Range, llvm::Value *StartIndex, StringRef ResourceName, |
| 207 | ResourceBindingAttrs &Binding, ArrayRef<llvm::Value *> PrevGEPIndices, |
| 208 | SourceLocation ArraySubsExprLoc) { |
| 209 | |
| 210 | ASTContext &AST = CGF.getContext(); |
| 211 | llvm::IntegerType *IntTy = CGF.CGM.IntTy; |
| 212 | llvm::Value *Index = StartIndex; |
| 213 | llvm::Value *One = llvm::ConstantInt::get(Ty: IntTy, V: 1); |
| 214 | const uint64_t ArraySize = ArrayTy->getSExtSize(); |
| 215 | QualType ElemType = ArrayTy->getElementType(); |
| 216 | Address TmpArrayAddr = ValueSlot.getAddress(); |
| 217 | |
| 218 | // Add additional index to the getelementptr call indices. |
| 219 | // This index will be updated for each array element in the loops below. |
| 220 | SmallVector<llvm::Value *> GEPIndices(PrevGEPIndices); |
| 221 | GEPIndices.push_back(Elt: llvm::ConstantInt::get(Ty: IntTy, V: 0)); |
| 222 | |
| 223 | // For array of arrays, recursively initialize the sub-arrays. |
| 224 | if (ElemType->isArrayType()) { |
| 225 | const ConstantArrayType *SubArrayTy = cast<ConstantArrayType>(Val&: ElemType); |
| 226 | for (uint64_t I = 0; I < ArraySize; I++) { |
| 227 | if (I > 0) { |
| 228 | Index = CGF.Builder.CreateAdd(LHS: Index, RHS: One); |
| 229 | GEPIndices.back() = llvm::ConstantInt::get(Ty: IntTy, V: I); |
| 230 | } |
| 231 | std::optional<llvm::Value *> MaybeIndex = initializeLocalResourceArray( |
| 232 | CGF, ResourceDecl, ArrayTy: SubArrayTy, ValueSlot, Range, StartIndex: Index, ResourceName, |
| 233 | Binding, PrevGEPIndices: GEPIndices, ArraySubsExprLoc); |
| 234 | if (!MaybeIndex) |
| 235 | return std::nullopt; |
| 236 | Index = *MaybeIndex; |
| 237 | } |
| 238 | return Index; |
| 239 | } |
| 240 | |
| 241 | // For array of resources, initialize each resource in the array. |
| 242 | llvm::Type *Ty = CGF.ConvertTypeForMem(T: ElemType); |
| 243 | CharUnits ElemSize = AST.getTypeSizeInChars(T: ElemType); |
| 244 | CharUnits Align = |
| 245 | TmpArrayAddr.getAlignment().alignmentOfArrayElement(elementSize: ElemSize); |
| 246 | |
| 247 | for (uint64_t I = 0; I < ArraySize; I++) { |
| 248 | if (I > 0) { |
| 249 | Index = CGF.Builder.CreateAdd(LHS: Index, RHS: One); |
| 250 | GEPIndices.back() = llvm::ConstantInt::get(Ty: IntTy, V: I); |
| 251 | } |
| 252 | Address ReturnAddress = |
| 253 | CGF.Builder.CreateGEP(Addr: TmpArrayAddr, IdxList: GEPIndices, ElementType: Ty, Align); |
| 254 | |
| 255 | CallArgList Args; |
| 256 | CXXMethodDecl *CreateMethod = lookupResourceInitMethodAndSetupArgs( |
| 257 | CGM&: CGF.CGM, ResourceDecl, Range, Index, Name: ResourceName, Binding, Args); |
| 258 | |
| 259 | if (!CreateMethod) |
| 260 | // This can happen if someone creates an array of structs that looks like |
| 261 | // an HLSL resource record array but it does not have the required static |
| 262 | // create method. No binding will be generated for it. |
| 263 | return std::nullopt; |
| 264 | |
| 265 | callResourceInitMethod(CGF, CreateMethod, Args, ReturnAddress); |
| 266 | } |
| 267 | return Index; |
| 268 | } |
| 269 | |
| 270 | } // namespace |
| 271 | |
| 272 | llvm::Type * |
| 273 | CGHLSLRuntime::convertHLSLSpecificType(const Type *T, |
| 274 | const CGHLSLOffsetInfo &OffsetInfo) { |
| 275 | assert(T->isHLSLSpecificType() && "Not an HLSL specific type!" ); |
| 276 | |
| 277 | // Check if the target has a specific translation for this type first. |
| 278 | if (llvm::Type *TargetTy = |
| 279 | CGM.getTargetCodeGenInfo().getHLSLType(CGM, T, OffsetInfo)) |
| 280 | return TargetTy; |
| 281 | |
| 282 | llvm_unreachable("Generic handling of HLSL types is not supported." ); |
| 283 | } |
| 284 | |
| 285 | llvm::Triple::ArchType CGHLSLRuntime::getArch() { |
| 286 | return CGM.getTarget().getTriple().getArch(); |
| 287 | } |
| 288 | |
| 289 | // Emits constant global variables for buffer constants declarations |
| 290 | // and creates metadata linking the constant globals with the buffer global. |
| 291 | void CGHLSLRuntime::emitBufferGlobalsAndMetadata( |
| 292 | const HLSLBufferDecl *BufDecl, llvm::GlobalVariable *BufGV, |
| 293 | const CGHLSLOffsetInfo &OffsetInfo) { |
| 294 | LLVMContext &Ctx = CGM.getLLVMContext(); |
| 295 | |
| 296 | // get the layout struct from constant buffer target type |
| 297 | llvm::Type *BufType = BufGV->getValueType(); |
| 298 | llvm::StructType *LayoutStruct = cast<llvm::StructType>( |
| 299 | Val: cast<llvm::TargetExtType>(Val: BufType)->getTypeParameter(i: 0)); |
| 300 | |
| 301 | SmallVector<std::pair<VarDecl *, uint32_t>> DeclsWithOffset; |
| 302 | size_t OffsetIdx = 0; |
| 303 | for (Decl *D : BufDecl->buffer_decls()) { |
| 304 | if (isa<CXXRecordDecl, EmptyDecl>(Val: D)) |
| 305 | // Nothing to do for this declaration. |
| 306 | continue; |
| 307 | if (isa<FunctionDecl>(Val: D)) { |
| 308 | // A function within an cbuffer is effectively a top-level function. |
| 309 | CGM.EmitTopLevelDecl(D); |
| 310 | continue; |
| 311 | } |
| 312 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
| 313 | if (!VD) |
| 314 | continue; |
| 315 | |
| 316 | QualType VDTy = VD->getType(); |
| 317 | if (VDTy.getAddressSpace() != LangAS::hlsl_constant) { |
| 318 | if (VD->getStorageClass() == SC_Static || |
| 319 | VDTy.getAddressSpace() == LangAS::hlsl_groupshared || |
| 320 | VDTy->isHLSLResourceRecord() || VDTy->isHLSLResourceRecordArray()) { |
| 321 | // Emit static and groupshared variables and resource classes inside |
| 322 | // cbuffer as regular globals |
| 323 | CGM.EmitGlobal(D: VD); |
| 324 | } else { |
| 325 | // Anything else that is not in the hlsl_constant address space must be |
| 326 | // an empty struct or a zero-sized array and can be ignored |
| 327 | assert(BufDecl->getASTContext().getTypeSize(VDTy) == 0 && |
| 328 | "constant buffer decl with non-zero sized type outside of " |
| 329 | "hlsl_constant address space" ); |
| 330 | } |
| 331 | continue; |
| 332 | } |
| 333 | |
| 334 | DeclsWithOffset.emplace_back(Args&: VD, Args: OffsetInfo[OffsetIdx++]); |
| 335 | } |
| 336 | |
| 337 | if (!OffsetInfo.empty()) |
| 338 | llvm::stable_sort(Range&: DeclsWithOffset, C: [](const auto &LHS, const auto &RHS) { |
| 339 | return CGHLSLOffsetInfo::compareOffsets(LHS: LHS.second, RHS: RHS.second); |
| 340 | }); |
| 341 | |
| 342 | // Associate the buffer global variable with its constants |
| 343 | SmallVector<llvm::Metadata *> BufGlobals; |
| 344 | BufGlobals.reserve(N: DeclsWithOffset.size() + 1); |
| 345 | BufGlobals.push_back(Elt: ValueAsMetadata::get(V: BufGV)); |
| 346 | |
| 347 | auto ElemIt = LayoutStruct->element_begin(); |
| 348 | for (auto &[VD, _] : DeclsWithOffset) { |
| 349 | if (CGM.getTargetCodeGenInfo().isHLSLPadding(Ty: *ElemIt)) |
| 350 | ++ElemIt; |
| 351 | |
| 352 | assert(ElemIt != LayoutStruct->element_end() && |
| 353 | "number of elements in layout struct does not match" ); |
| 354 | llvm::Type *LayoutType = *ElemIt++; |
| 355 | |
| 356 | GlobalVariable *ElemGV = |
| 357 | cast<GlobalVariable>(Val: CGM.GetAddrOfGlobalVar(D: VD, Ty: LayoutType)); |
| 358 | BufGlobals.push_back(Elt: ValueAsMetadata::get(V: ElemGV)); |
| 359 | } |
| 360 | assert(ElemIt == LayoutStruct->element_end() && |
| 361 | "number of elements in layout struct does not match" ); |
| 362 | |
| 363 | // add buffer metadata to the module |
| 364 | CGM.getModule() |
| 365 | .getOrInsertNamedMetadata(Name: "hlsl.cbs" ) |
| 366 | ->addOperand(M: MDNode::get(Context&: Ctx, MDs: BufGlobals)); |
| 367 | } |
| 368 | |
| 369 | // Creates resource handle type for the HLSL buffer declaration |
| 370 | static const clang::HLSLAttributedResourceType * |
| 371 | createBufferHandleType(const HLSLBufferDecl *BufDecl) { |
| 372 | ASTContext &AST = BufDecl->getASTContext(); |
| 373 | QualType QT = AST.getHLSLAttributedResourceType( |
| 374 | Wrapped: AST.HLSLResourceTy, Contained: AST.getCanonicalTagType(TD: BufDecl->getLayoutStruct()), |
| 375 | Attrs: HLSLAttributedResourceType::Attributes(ResourceClass::CBuffer)); |
| 376 | return cast<HLSLAttributedResourceType>(Val: QT.getTypePtr()); |
| 377 | } |
| 378 | |
| 379 | CGHLSLOffsetInfo CGHLSLOffsetInfo::fromDecl(const HLSLBufferDecl &BufDecl) { |
| 380 | CGHLSLOffsetInfo Result; |
| 381 | |
| 382 | // If we don't have packoffset info, just return an empty result. |
| 383 | if (!BufDecl.hasValidPackoffset()) |
| 384 | return Result; |
| 385 | |
| 386 | for (Decl *D : BufDecl.buffer_decls()) { |
| 387 | if (isa<CXXRecordDecl, EmptyDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
| 388 | continue; |
| 389 | } |
| 390 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
| 391 | if (!VD || VD->getType().getAddressSpace() != LangAS::hlsl_constant) |
| 392 | continue; |
| 393 | |
| 394 | if (!VD->hasAttrs()) { |
| 395 | Result.Offsets.push_back(Elt: Unspecified); |
| 396 | continue; |
| 397 | } |
| 398 | |
| 399 | uint32_t Offset = Unspecified; |
| 400 | for (auto *Attr : VD->getAttrs()) { |
| 401 | if (auto *POA = dyn_cast<HLSLPackOffsetAttr>(Val: Attr)) { |
| 402 | Offset = POA->getOffsetInBytes(); |
| 403 | break; |
| 404 | } |
| 405 | auto *RBA = dyn_cast<HLSLResourceBindingAttr>(Val: Attr); |
| 406 | if (RBA && |
| 407 | RBA->getRegisterType() == HLSLResourceBindingAttr::RegisterType::C) { |
| 408 | Offset = RBA->getSlotNumber() * CBufferRowSizeInBytes; |
| 409 | break; |
| 410 | } |
| 411 | } |
| 412 | Result.Offsets.push_back(Elt: Offset); |
| 413 | } |
| 414 | return Result; |
| 415 | } |
| 416 | |
| 417 | // Codegen for HLSLBufferDecl |
| 418 | void CGHLSLRuntime::addBuffer(const HLSLBufferDecl *BufDecl) { |
| 419 | |
| 420 | assert(BufDecl->isCBuffer() && "tbuffer codegen is not supported yet" ); |
| 421 | |
| 422 | // create resource handle type for the buffer |
| 423 | const clang::HLSLAttributedResourceType *ResHandleTy = |
| 424 | createBufferHandleType(BufDecl); |
| 425 | |
| 426 | // empty constant buffer is ignored |
| 427 | if (ResHandleTy->getContainedType()->getAsCXXRecordDecl()->isEmpty()) |
| 428 | return; |
| 429 | |
| 430 | // create global variable for the constant buffer |
| 431 | CGHLSLOffsetInfo OffsetInfo = CGHLSLOffsetInfo::fromDecl(BufDecl: *BufDecl); |
| 432 | llvm::Type *LayoutTy = convertHLSLSpecificType(T: ResHandleTy, OffsetInfo); |
| 433 | llvm::GlobalVariable *BufGV = new GlobalVariable( |
| 434 | LayoutTy, /*isConstant*/ false, |
| 435 | GlobalValue::LinkageTypes::ExternalLinkage, PoisonValue::get(T: LayoutTy), |
| 436 | llvm::formatv(Fmt: "{0}{1}" , Vals: BufDecl->getName(), |
| 437 | Vals: BufDecl->isCBuffer() ? ".cb" : ".tb" ), |
| 438 | GlobalValue::NotThreadLocal); |
| 439 | CGM.getModule().insertGlobalVariable(GV: BufGV); |
| 440 | |
| 441 | // Add globals for constant buffer elements and create metadata nodes |
| 442 | emitBufferGlobalsAndMetadata(BufDecl, BufGV, OffsetInfo); |
| 443 | |
| 444 | // Initialize cbuffer from binding (implicit or explicit) |
| 445 | initializeBufferFromBinding(BufDecl, GV: BufGV); |
| 446 | } |
| 447 | |
| 448 | void CGHLSLRuntime::addRootSignature( |
| 449 | const HLSLRootSignatureDecl *SignatureDecl) { |
| 450 | llvm::Module &M = CGM.getModule(); |
| 451 | Triple T(M.getTargetTriple()); |
| 452 | |
| 453 | // Generated later with the function decl if not targeting root signature |
| 454 | if (T.getEnvironment() != Triple::EnvironmentType::RootSignature) |
| 455 | return; |
| 456 | |
| 457 | addRootSignatureMD(RootSigVer: SignatureDecl->getVersion(), |
| 458 | Elements: SignatureDecl->getRootElements(), Fn: nullptr, M); |
| 459 | } |
| 460 | |
| 461 | llvm::StructType * |
| 462 | CGHLSLRuntime::getHLSLBufferLayoutType(const RecordType *StructType) { |
| 463 | const auto Entry = LayoutTypes.find(Val: StructType); |
| 464 | if (Entry != LayoutTypes.end()) |
| 465 | return Entry->getSecond(); |
| 466 | return nullptr; |
| 467 | } |
| 468 | |
| 469 | void CGHLSLRuntime::addHLSLBufferLayoutType(const RecordType *StructType, |
| 470 | llvm::StructType *LayoutTy) { |
| 471 | assert(getHLSLBufferLayoutType(StructType) == nullptr && |
| 472 | "layout type for this struct already exist" ); |
| 473 | LayoutTypes[StructType] = LayoutTy; |
| 474 | } |
| 475 | |
| 476 | void CGHLSLRuntime::finishCodeGen() { |
| 477 | auto &TargetOpts = CGM.getTarget().getTargetOpts(); |
| 478 | auto &CodeGenOpts = CGM.getCodeGenOpts(); |
| 479 | auto &LangOpts = CGM.getLangOpts(); |
| 480 | llvm::Module &M = CGM.getModule(); |
| 481 | Triple T(M.getTargetTriple()); |
| 482 | if (T.getArch() == Triple::ArchType::dxil) |
| 483 | addDxilValVersion(ValVersionStr: TargetOpts.DxilValidatorVersion, M); |
| 484 | if (CodeGenOpts.ResMayAlias) |
| 485 | M.setModuleFlag(Behavior: llvm::Module::ModFlagBehavior::Error, Key: "dx.resmayalias" , Val: 1); |
| 486 | if (CodeGenOpts.AllResourcesBound) |
| 487 | M.setModuleFlag(Behavior: llvm::Module::ModFlagBehavior::Error, |
| 488 | Key: "dx.allresourcesbound" , Val: 1); |
| 489 | // NativeHalfType corresponds to the -fnative-half-type clang option which is |
| 490 | // aliased by clang-dxc's -enable-16bit-types option. This option is used to |
| 491 | // set the UseNativeLowPrecision DXIL module flag in the DirectX backend |
| 492 | if (LangOpts.NativeHalfType) |
| 493 | M.setModuleFlag(Behavior: llvm::Module::ModFlagBehavior::Error, Key: "dx.nativelowprec" , |
| 494 | Val: 1); |
| 495 | |
| 496 | generateGlobalCtorDtorCalls(); |
| 497 | } |
| 498 | |
| 499 | void clang::CodeGen::CGHLSLRuntime::setHLSLEntryAttributes( |
| 500 | const FunctionDecl *FD, llvm::Function *Fn) { |
| 501 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
| 502 | assert(ShaderAttr && "All entry functions must have a HLSLShaderAttr" ); |
| 503 | const StringRef ShaderAttrKindStr = "hlsl.shader" ; |
| 504 | Fn->addFnAttr(Kind: ShaderAttrKindStr, |
| 505 | Val: llvm::Triple::getEnvironmentTypeName(Kind: ShaderAttr->getType())); |
| 506 | if (HLSLNumThreadsAttr *NumThreadsAttr = FD->getAttr<HLSLNumThreadsAttr>()) { |
| 507 | const StringRef NumThreadsKindStr = "hlsl.numthreads" ; |
| 508 | std::string NumThreadsStr = |
| 509 | formatv(Fmt: "{0},{1},{2}" , Vals: NumThreadsAttr->getX(), Vals: NumThreadsAttr->getY(), |
| 510 | Vals: NumThreadsAttr->getZ()); |
| 511 | Fn->addFnAttr(Kind: NumThreadsKindStr, Val: NumThreadsStr); |
| 512 | } |
| 513 | if (HLSLWaveSizeAttr *WaveSizeAttr = FD->getAttr<HLSLWaveSizeAttr>()) { |
| 514 | const StringRef WaveSizeKindStr = "hlsl.wavesize" ; |
| 515 | std::string WaveSizeStr = |
| 516 | formatv(Fmt: "{0},{1},{2}" , Vals: WaveSizeAttr->getMin(), Vals: WaveSizeAttr->getMax(), |
| 517 | Vals: WaveSizeAttr->getPreferred()); |
| 518 | Fn->addFnAttr(Kind: WaveSizeKindStr, Val: WaveSizeStr); |
| 519 | } |
| 520 | // HLSL entry functions are materialized for module functions with |
| 521 | // HLSLShaderAttr attribute. SetLLVMFunctionAttributesForDefinition called |
| 522 | // later in the compiler-flow for such module functions is not aware of and |
| 523 | // hence not able to set attributes of the newly materialized entry functions. |
| 524 | // So, set attributes of entry function here, as appropriate. |
| 525 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| 526 | Fn->addFnAttr(Kind: llvm::Attribute::OptimizeNone); |
| 527 | Fn->addFnAttr(Kind: llvm::Attribute::NoInline); |
| 528 | |
| 529 | if (CGM.getLangOpts().HLSLSpvEnableMaximalReconvergence) { |
| 530 | Fn->addFnAttr(Kind: "enable-maximal-reconvergence" , Val: "true" ); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | static Value *buildVectorInput(IRBuilder<> &B, Function *F, llvm::Type *Ty) { |
| 535 | if (const auto *VT = dyn_cast<FixedVectorType>(Val: Ty)) { |
| 536 | Value *Result = PoisonValue::get(T: Ty); |
| 537 | for (unsigned I = 0; I < VT->getNumElements(); ++I) { |
| 538 | Value *Elt = B.CreateCall(Callee: F, Args: {B.getInt32(C: I)}); |
| 539 | Result = B.CreateInsertElement(Vec: Result, NewElt: Elt, Idx: I); |
| 540 | } |
| 541 | return Result; |
| 542 | } |
| 543 | return B.CreateCall(Callee: F, Args: {B.getInt32(C: 0)}); |
| 544 | } |
| 545 | |
| 546 | static void addSPIRVBuiltinDecoration(llvm::GlobalVariable *GV, |
| 547 | unsigned BuiltIn) { |
| 548 | LLVMContext &Ctx = GV->getContext(); |
| 549 | IRBuilder<> B(GV->getContext()); |
| 550 | MDNode *Operands = MDNode::get( |
| 551 | Context&: Ctx, |
| 552 | MDs: {ConstantAsMetadata::get(C: B.getInt32(/* Spirv::Decoration::BuiltIn */ C: 11)), |
| 553 | ConstantAsMetadata::get(C: B.getInt32(C: BuiltIn))}); |
| 554 | MDNode *Decoration = MDNode::get(Context&: Ctx, MDs: {Operands}); |
| 555 | GV->addMetadata(Kind: "spirv.Decorations" , MD&: *Decoration); |
| 556 | } |
| 557 | |
| 558 | static void addLocationDecoration(llvm::GlobalVariable *GV, unsigned Location) { |
| 559 | LLVMContext &Ctx = GV->getContext(); |
| 560 | IRBuilder<> B(GV->getContext()); |
| 561 | MDNode *Operands = |
| 562 | MDNode::get(Context&: Ctx, MDs: {ConstantAsMetadata::get(C: B.getInt32(/* Location */ C: 30)), |
| 563 | ConstantAsMetadata::get(C: B.getInt32(C: Location))}); |
| 564 | MDNode *Decoration = MDNode::get(Context&: Ctx, MDs: {Operands}); |
| 565 | GV->addMetadata(Kind: "spirv.Decorations" , MD&: *Decoration); |
| 566 | } |
| 567 | |
| 568 | static llvm::Value *createSPIRVBuiltinLoad(IRBuilder<> &B, llvm::Module &M, |
| 569 | llvm::Type *Ty, const Twine &Name, |
| 570 | unsigned BuiltInID) { |
| 571 | auto *GV = new llvm::GlobalVariable( |
| 572 | M, Ty, /* isConstant= */ true, llvm::GlobalValue::ExternalLinkage, |
| 573 | /* Initializer= */ nullptr, Name, /* insertBefore= */ nullptr, |
| 574 | llvm::GlobalVariable::GeneralDynamicTLSModel, |
| 575 | /* AddressSpace */ 7, /* isExternallyInitialized= */ true); |
| 576 | addSPIRVBuiltinDecoration(GV, BuiltIn: BuiltInID); |
| 577 | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 578 | return B.CreateLoad(Ty, Ptr: GV); |
| 579 | } |
| 580 | |
| 581 | static llvm::Value *createSPIRVLocationLoad(IRBuilder<> &B, llvm::Module &M, |
| 582 | llvm::Type *Ty, unsigned Location, |
| 583 | StringRef Name) { |
| 584 | auto *GV = new llvm::GlobalVariable( |
| 585 | M, Ty, /* isConstant= */ true, llvm::GlobalValue::ExternalLinkage, |
| 586 | /* Initializer= */ nullptr, /* Name= */ Name, /* insertBefore= */ nullptr, |
| 587 | llvm::GlobalVariable::GeneralDynamicTLSModel, |
| 588 | /* AddressSpace */ 7, /* isExternallyInitialized= */ true); |
| 589 | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 590 | addLocationDecoration(GV, Location); |
| 591 | return B.CreateLoad(Ty, Ptr: GV); |
| 592 | } |
| 593 | |
| 594 | llvm::Value *CGHLSLRuntime::emitSPIRVUserSemanticLoad( |
| 595 | llvm::IRBuilder<> &B, llvm::Type *Type, const clang::DeclaratorDecl *Decl, |
| 596 | HLSLAppliedSemanticAttr *Semantic, std::optional<unsigned> Index) { |
| 597 | Twine BaseName = Twine(Semantic->getAttrName()->getName()); |
| 598 | Twine VariableName = BaseName.concat(Suffix: Twine(Index.value_or(u: 0))); |
| 599 | |
| 600 | unsigned Location = SPIRVLastAssignedInputSemanticLocation; |
| 601 | if (auto *L = Decl->getAttr<HLSLVkLocationAttr>()) |
| 602 | Location = L->getLocation(); |
| 603 | |
| 604 | // DXC completely ignores the semantic/index pair. Location are assigned from |
| 605 | // the first semantic to the last. |
| 606 | llvm::ArrayType *AT = dyn_cast<llvm::ArrayType>(Val: Type); |
| 607 | unsigned ElementCount = AT ? AT->getNumElements() : 1; |
| 608 | SPIRVLastAssignedInputSemanticLocation += ElementCount; |
| 609 | |
| 610 | return createSPIRVLocationLoad(B, M&: CGM.getModule(), Ty: Type, Location, |
| 611 | Name: VariableName.str()); |
| 612 | } |
| 613 | |
| 614 | static void createSPIRVLocationStore(IRBuilder<> &B, llvm::Module &M, |
| 615 | llvm::Value *Source, unsigned Location, |
| 616 | StringRef Name) { |
| 617 | auto *GV = new llvm::GlobalVariable( |
| 618 | M, Source->getType(), /* isConstant= */ false, |
| 619 | llvm::GlobalValue::ExternalLinkage, |
| 620 | /* Initializer= */ nullptr, /* Name= */ Name, /* insertBefore= */ nullptr, |
| 621 | llvm::GlobalVariable::GeneralDynamicTLSModel, |
| 622 | /* AddressSpace */ 8, /* isExternallyInitialized= */ false); |
| 623 | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 624 | addLocationDecoration(GV, Location); |
| 625 | B.CreateStore(Val: Source, Ptr: GV); |
| 626 | } |
| 627 | |
| 628 | void CGHLSLRuntime::emitSPIRVUserSemanticStore( |
| 629 | llvm::IRBuilder<> &B, llvm::Value *Source, |
| 630 | const clang::DeclaratorDecl *Decl, HLSLAppliedSemanticAttr *Semantic, |
| 631 | std::optional<unsigned> Index) { |
| 632 | Twine BaseName = Twine(Semantic->getAttrName()->getName()); |
| 633 | Twine VariableName = BaseName.concat(Suffix: Twine(Index.value_or(u: 0))); |
| 634 | |
| 635 | unsigned Location = SPIRVLastAssignedOutputSemanticLocation; |
| 636 | if (auto *L = Decl->getAttr<HLSLVkLocationAttr>()) |
| 637 | Location = L->getLocation(); |
| 638 | |
| 639 | // DXC completely ignores the semantic/index pair. Location are assigned from |
| 640 | // the first semantic to the last. |
| 641 | llvm::ArrayType *AT = dyn_cast<llvm::ArrayType>(Val: Source->getType()); |
| 642 | unsigned ElementCount = AT ? AT->getNumElements() : 1; |
| 643 | SPIRVLastAssignedOutputSemanticLocation += ElementCount; |
| 644 | createSPIRVLocationStore(B, M&: CGM.getModule(), Source, Location, |
| 645 | Name: VariableName.str()); |
| 646 | } |
| 647 | |
| 648 | llvm::Value * |
| 649 | CGHLSLRuntime::emitDXILUserSemanticLoad(llvm::IRBuilder<> &B, llvm::Type *Type, |
| 650 | HLSLAppliedSemanticAttr *Semantic, |
| 651 | std::optional<unsigned> Index) { |
| 652 | Twine BaseName = Twine(Semantic->getAttrName()->getName()); |
| 653 | Twine VariableName = BaseName.concat(Suffix: Twine(Index.value_or(u: 0))); |
| 654 | |
| 655 | // DXIL packing rules etc shall be handled here. |
| 656 | // FIXME: generate proper sigpoint, index, col, row values. |
| 657 | // FIXME: also DXIL loads vectors element by element. |
| 658 | SmallVector<Value *> Args{B.getInt32(C: 4), B.getInt32(C: 0), B.getInt32(C: 0), |
| 659 | B.getInt8(C: 0), |
| 660 | llvm::PoisonValue::get(T: B.getInt32Ty())}; |
| 661 | |
| 662 | llvm::Intrinsic::ID IntrinsicID = llvm::Intrinsic::dx_load_input; |
| 663 | llvm::Value *Value = B.CreateIntrinsic(/*ReturnType=*/RetTy: Type, ID: IntrinsicID, Args, |
| 664 | FMFSource: nullptr, Name: VariableName); |
| 665 | return Value; |
| 666 | } |
| 667 | |
| 668 | void CGHLSLRuntime::emitDXILUserSemanticStore(llvm::IRBuilder<> &B, |
| 669 | llvm::Value *Source, |
| 670 | HLSLAppliedSemanticAttr *Semantic, |
| 671 | std::optional<unsigned> Index) { |
| 672 | // DXIL packing rules etc shall be handled here. |
| 673 | // FIXME: generate proper sigpoint, index, col, row values. |
| 674 | SmallVector<Value *> Args{B.getInt32(C: 4), |
| 675 | B.getInt32(C: 0), |
| 676 | B.getInt32(C: 0), |
| 677 | B.getInt8(C: 0), |
| 678 | llvm::PoisonValue::get(T: B.getInt32Ty()), |
| 679 | Source}; |
| 680 | |
| 681 | llvm::Intrinsic::ID IntrinsicID = llvm::Intrinsic::dx_store_output; |
| 682 | B.CreateIntrinsic(/*ReturnType=*/RetTy: CGM.VoidTy, ID: IntrinsicID, Args, FMFSource: nullptr); |
| 683 | } |
| 684 | |
| 685 | llvm::Value *CGHLSLRuntime::emitUserSemanticLoad( |
| 686 | IRBuilder<> &B, llvm::Type *Type, const clang::DeclaratorDecl *Decl, |
| 687 | HLSLAppliedSemanticAttr *Semantic, std::optional<unsigned> Index) { |
| 688 | if (CGM.getTarget().getTriple().isSPIRV()) |
| 689 | return emitSPIRVUserSemanticLoad(B, Type, Decl, Semantic, Index); |
| 690 | |
| 691 | if (CGM.getTarget().getTriple().isDXIL()) |
| 692 | return emitDXILUserSemanticLoad(B, Type, Semantic, Index); |
| 693 | |
| 694 | llvm_unreachable("Unsupported target for user-semantic load." ); |
| 695 | } |
| 696 | |
| 697 | void CGHLSLRuntime::emitUserSemanticStore(IRBuilder<> &B, llvm::Value *Source, |
| 698 | const clang::DeclaratorDecl *Decl, |
| 699 | HLSLAppliedSemanticAttr *Semantic, |
| 700 | std::optional<unsigned> Index) { |
| 701 | if (CGM.getTarget().getTriple().isSPIRV()) |
| 702 | return emitSPIRVUserSemanticStore(B, Source, Decl, Semantic, Index); |
| 703 | |
| 704 | if (CGM.getTarget().getTriple().isDXIL()) |
| 705 | return emitDXILUserSemanticStore(B, Source, Semantic, Index); |
| 706 | |
| 707 | llvm_unreachable("Unsupported target for user-semantic load." ); |
| 708 | } |
| 709 | |
| 710 | llvm::Value *CGHLSLRuntime::emitSystemSemanticLoad( |
| 711 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Type *Type, |
| 712 | const clang::DeclaratorDecl *Decl, HLSLAppliedSemanticAttr *Semantic, |
| 713 | std::optional<unsigned> Index) { |
| 714 | |
| 715 | std::string SemanticName = Semantic->getAttrName()->getName().upper(); |
| 716 | if (SemanticName == "SV_GROUPINDEX" ) { |
| 717 | llvm::Function *GroupIndex = |
| 718 | CGM.getIntrinsic(IID: getFlattenedThreadIdInGroupIntrinsic()); |
| 719 | return B.CreateCall(Callee: FunctionCallee(GroupIndex)); |
| 720 | } |
| 721 | |
| 722 | if (SemanticName == "SV_DISPATCHTHREADID" ) { |
| 723 | llvm::Intrinsic::ID IntrinID = getThreadIdIntrinsic(); |
| 724 | llvm::Function *ThreadIDIntrinsic = |
| 725 | llvm::Intrinsic::isOverloaded(id: IntrinID) |
| 726 | ? CGM.getIntrinsic(IID: IntrinID, Tys: {CGM.Int32Ty}) |
| 727 | : CGM.getIntrinsic(IID: IntrinID); |
| 728 | return buildVectorInput(B, F: ThreadIDIntrinsic, Ty: Type); |
| 729 | } |
| 730 | |
| 731 | if (SemanticName == "SV_GROUPTHREADID" ) { |
| 732 | llvm::Intrinsic::ID IntrinID = getGroupThreadIdIntrinsic(); |
| 733 | llvm::Function *GroupThreadIDIntrinsic = |
| 734 | llvm::Intrinsic::isOverloaded(id: IntrinID) |
| 735 | ? CGM.getIntrinsic(IID: IntrinID, Tys: {CGM.Int32Ty}) |
| 736 | : CGM.getIntrinsic(IID: IntrinID); |
| 737 | return buildVectorInput(B, F: GroupThreadIDIntrinsic, Ty: Type); |
| 738 | } |
| 739 | |
| 740 | if (SemanticName == "SV_GROUPID" ) { |
| 741 | llvm::Intrinsic::ID IntrinID = getGroupIdIntrinsic(); |
| 742 | llvm::Function *GroupIDIntrinsic = |
| 743 | llvm::Intrinsic::isOverloaded(id: IntrinID) |
| 744 | ? CGM.getIntrinsic(IID: IntrinID, Tys: {CGM.Int32Ty}) |
| 745 | : CGM.getIntrinsic(IID: IntrinID); |
| 746 | return buildVectorInput(B, F: GroupIDIntrinsic, Ty: Type); |
| 747 | } |
| 748 | |
| 749 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
| 750 | assert(ShaderAttr && "Entry point has no shader attribute" ); |
| 751 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
| 752 | |
| 753 | if (SemanticName == "SV_POSITION" ) { |
| 754 | if (ST == Triple::EnvironmentType::Pixel) { |
| 755 | if (CGM.getTarget().getTriple().isSPIRV()) |
| 756 | return createSPIRVBuiltinLoad(B, M&: CGM.getModule(), Ty: Type, |
| 757 | Name: Semantic->getAttrName()->getName(), |
| 758 | /* BuiltIn::FragCoord */ BuiltInID: 15); |
| 759 | if (CGM.getTarget().getTriple().isDXIL()) |
| 760 | return emitDXILUserSemanticLoad(B, Type, Semantic, Index); |
| 761 | } |
| 762 | |
| 763 | if (ST == Triple::EnvironmentType::Vertex) { |
| 764 | return emitUserSemanticLoad(B, Type, Decl, Semantic, Index); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | llvm_unreachable( |
| 769 | "Load hasn't been implemented yet for this system semantic. FIXME" ); |
| 770 | } |
| 771 | |
| 772 | static void createSPIRVBuiltinStore(IRBuilder<> &B, llvm::Module &M, |
| 773 | llvm::Value *Source, const Twine &Name, |
| 774 | unsigned BuiltInID) { |
| 775 | auto *GV = new llvm::GlobalVariable( |
| 776 | M, Source->getType(), /* isConstant= */ false, |
| 777 | llvm::GlobalValue::ExternalLinkage, |
| 778 | /* Initializer= */ nullptr, Name, /* insertBefore= */ nullptr, |
| 779 | llvm::GlobalVariable::GeneralDynamicTLSModel, |
| 780 | /* AddressSpace */ 8, /* isExternallyInitialized= */ false); |
| 781 | addSPIRVBuiltinDecoration(GV, BuiltIn: BuiltInID); |
| 782 | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 783 | B.CreateStore(Val: Source, Ptr: GV); |
| 784 | } |
| 785 | |
| 786 | void CGHLSLRuntime::emitSystemSemanticStore(IRBuilder<> &B, llvm::Value *Source, |
| 787 | const clang::DeclaratorDecl *Decl, |
| 788 | HLSLAppliedSemanticAttr *Semantic, |
| 789 | std::optional<unsigned> Index) { |
| 790 | |
| 791 | std::string SemanticName = Semantic->getAttrName()->getName().upper(); |
| 792 | if (SemanticName == "SV_POSITION" ) { |
| 793 | if (CGM.getTarget().getTriple().isDXIL()) { |
| 794 | emitDXILUserSemanticStore(B, Source, Semantic, Index); |
| 795 | return; |
| 796 | } |
| 797 | |
| 798 | if (CGM.getTarget().getTriple().isSPIRV()) { |
| 799 | createSPIRVBuiltinStore(B, M&: CGM.getModule(), Source, |
| 800 | Name: Semantic->getAttrName()->getName(), |
| 801 | /* BuiltIn::Position */ BuiltInID: 0); |
| 802 | return; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | if (SemanticName == "SV_TARGET" ) { |
| 807 | emitUserSemanticStore(B, Source, Decl, Semantic, Index); |
| 808 | return; |
| 809 | } |
| 810 | |
| 811 | llvm_unreachable( |
| 812 | "Store hasn't been implemented yet for this system semantic. FIXME" ); |
| 813 | } |
| 814 | |
| 815 | llvm::Value *CGHLSLRuntime::handleScalarSemanticLoad( |
| 816 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Type *Type, |
| 817 | const clang::DeclaratorDecl *Decl, HLSLAppliedSemanticAttr *Semantic) { |
| 818 | |
| 819 | std::optional<unsigned> Index = Semantic->getSemanticIndex(); |
| 820 | if (Semantic->getAttrName()->getName().starts_with_insensitive(Prefix: "SV_" )) |
| 821 | return emitSystemSemanticLoad(B, FD, Type, Decl, Semantic, Index); |
| 822 | return emitUserSemanticLoad(B, Type, Decl, Semantic, Index); |
| 823 | } |
| 824 | |
| 825 | void CGHLSLRuntime::handleScalarSemanticStore( |
| 826 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Value *Source, |
| 827 | const clang::DeclaratorDecl *Decl, HLSLAppliedSemanticAttr *Semantic) { |
| 828 | std::optional<unsigned> Index = Semantic->getSemanticIndex(); |
| 829 | if (Semantic->getAttrName()->getName().starts_with_insensitive(Prefix: "SV_" )) |
| 830 | emitSystemSemanticStore(B, Source, Decl, Semantic, Index); |
| 831 | else |
| 832 | emitUserSemanticStore(B, Source, Decl, Semantic, Index); |
| 833 | } |
| 834 | |
| 835 | std::pair<llvm::Value *, specific_attr_iterator<HLSLAppliedSemanticAttr>> |
| 836 | CGHLSLRuntime::handleStructSemanticLoad( |
| 837 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Type *Type, |
| 838 | const clang::DeclaratorDecl *Decl, |
| 839 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrBegin, |
| 840 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrEnd) { |
| 841 | const llvm::StructType *ST = cast<StructType>(Val: Type); |
| 842 | const clang::RecordDecl *RD = Decl->getType()->getAsRecordDecl(); |
| 843 | |
| 844 | assert(RD->getNumFields() == ST->getNumElements()); |
| 845 | |
| 846 | llvm::Value *Aggregate = llvm::PoisonValue::get(T: Type); |
| 847 | auto FieldDecl = RD->field_begin(); |
| 848 | for (unsigned I = 0; I < ST->getNumElements(); ++I) { |
| 849 | auto [ChildValue, NextAttr] = handleSemanticLoad( |
| 850 | B, FD, Type: ST->getElementType(N: I), Decl: *FieldDecl, begin: AttrBegin, end: AttrEnd); |
| 851 | AttrBegin = NextAttr; |
| 852 | assert(ChildValue); |
| 853 | Aggregate = B.CreateInsertValue(Agg: Aggregate, Val: ChildValue, Idxs: I); |
| 854 | ++FieldDecl; |
| 855 | } |
| 856 | |
| 857 | return std::make_pair(x&: Aggregate, y&: AttrBegin); |
| 858 | } |
| 859 | |
| 860 | specific_attr_iterator<HLSLAppliedSemanticAttr> |
| 861 | CGHLSLRuntime::handleStructSemanticStore( |
| 862 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Value *Source, |
| 863 | const clang::DeclaratorDecl *Decl, |
| 864 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrBegin, |
| 865 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrEnd) { |
| 866 | |
| 867 | const llvm::StructType *ST = cast<StructType>(Val: Source->getType()); |
| 868 | |
| 869 | const clang::RecordDecl *RD = nullptr; |
| 870 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Decl)) |
| 871 | RD = FD->getDeclaredReturnType()->getAsRecordDecl(); |
| 872 | else |
| 873 | RD = Decl->getType()->getAsRecordDecl(); |
| 874 | assert(RD); |
| 875 | |
| 876 | assert(RD->getNumFields() == ST->getNumElements()); |
| 877 | |
| 878 | auto FieldDecl = RD->field_begin(); |
| 879 | for (unsigned I = 0; I < ST->getNumElements(); ++I) { |
| 880 | llvm::Value * = B.CreateExtractValue(Agg: Source, Idxs: I); |
| 881 | AttrBegin = |
| 882 | handleSemanticStore(B, FD, Source: Extract, Decl: *FieldDecl, AttrBegin, AttrEnd); |
| 883 | } |
| 884 | |
| 885 | return AttrBegin; |
| 886 | } |
| 887 | |
| 888 | std::pair<llvm::Value *, specific_attr_iterator<HLSLAppliedSemanticAttr>> |
| 889 | CGHLSLRuntime::handleSemanticLoad( |
| 890 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Type *Type, |
| 891 | const clang::DeclaratorDecl *Decl, |
| 892 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrBegin, |
| 893 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrEnd) { |
| 894 | assert(AttrBegin != AttrEnd); |
| 895 | if (Type->isStructTy()) |
| 896 | return handleStructSemanticLoad(B, FD, Type, Decl, AttrBegin, AttrEnd); |
| 897 | |
| 898 | HLSLAppliedSemanticAttr *Attr = *AttrBegin; |
| 899 | ++AttrBegin; |
| 900 | return std::make_pair(x: handleScalarSemanticLoad(B, FD, Type, Decl, Semantic: Attr), |
| 901 | y&: AttrBegin); |
| 902 | } |
| 903 | |
| 904 | specific_attr_iterator<HLSLAppliedSemanticAttr> |
| 905 | CGHLSLRuntime::handleSemanticStore( |
| 906 | IRBuilder<> &B, const FunctionDecl *FD, llvm::Value *Source, |
| 907 | const clang::DeclaratorDecl *Decl, |
| 908 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrBegin, |
| 909 | specific_attr_iterator<HLSLAppliedSemanticAttr> AttrEnd) { |
| 910 | assert(AttrBegin != AttrEnd); |
| 911 | if (Source->getType()->isStructTy()) |
| 912 | return handleStructSemanticStore(B, FD, Source, Decl, AttrBegin, AttrEnd); |
| 913 | |
| 914 | HLSLAppliedSemanticAttr *Attr = *AttrBegin; |
| 915 | ++AttrBegin; |
| 916 | handleScalarSemanticStore(B, FD, Source, Decl, Semantic: Attr); |
| 917 | return AttrBegin; |
| 918 | } |
| 919 | |
| 920 | void CGHLSLRuntime::emitEntryFunction(const FunctionDecl *FD, |
| 921 | llvm::Function *Fn) { |
| 922 | llvm::Module &M = CGM.getModule(); |
| 923 | llvm::LLVMContext &Ctx = M.getContext(); |
| 924 | auto *EntryTy = llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: Ctx), isVarArg: false); |
| 925 | Function *EntryFn = |
| 926 | Function::Create(Ty: EntryTy, Linkage: Function::ExternalLinkage, N: FD->getName(), M: &M); |
| 927 | |
| 928 | // Copy function attributes over, we have no argument or return attributes |
| 929 | // that can be valid on the real entry. |
| 930 | AttributeList NewAttrs = AttributeList::get(C&: Ctx, Index: AttributeList::FunctionIndex, |
| 931 | Attrs: Fn->getAttributes().getFnAttrs()); |
| 932 | EntryFn->setAttributes(NewAttrs); |
| 933 | setHLSLEntryAttributes(FD, Fn: EntryFn); |
| 934 | |
| 935 | // Set the called function as internal linkage. |
| 936 | Fn->setLinkage(GlobalValue::InternalLinkage); |
| 937 | |
| 938 | BasicBlock *BB = BasicBlock::Create(Context&: Ctx, Name: "entry" , Parent: EntryFn); |
| 939 | IRBuilder<> B(BB); |
| 940 | llvm::SmallVector<Value *> Args; |
| 941 | |
| 942 | SmallVector<OperandBundleDef, 1> OB; |
| 943 | if (CGM.shouldEmitConvergenceTokens()) { |
| 944 | assert(EntryFn->isConvergent()); |
| 945 | llvm::Value *I = |
| 946 | B.CreateIntrinsic(ID: llvm::Intrinsic::experimental_convergence_entry, Args: {}); |
| 947 | llvm::Value *bundleArgs[] = {I}; |
| 948 | OB.emplace_back(Args: "convergencectrl" , Args&: bundleArgs); |
| 949 | } |
| 950 | |
| 951 | llvm::DenseMap<const DeclaratorDecl *, llvm::Value *> OutputSemantic; |
| 952 | |
| 953 | unsigned SRetOffset = 0; |
| 954 | for (const auto &Param : Fn->args()) { |
| 955 | if (Param.hasStructRetAttr()) { |
| 956 | SRetOffset = 1; |
| 957 | llvm::Type *VarType = Param.getParamStructRetType(); |
| 958 | llvm::Value *Var = B.CreateAlloca(Ty: VarType); |
| 959 | OutputSemantic.try_emplace(Key: FD, Args&: Var); |
| 960 | Args.push_back(Elt: Var); |
| 961 | continue; |
| 962 | } |
| 963 | |
| 964 | const ParmVarDecl *PD = FD->getParamDecl(i: Param.getArgNo() - SRetOffset); |
| 965 | llvm::Value *SemanticValue = nullptr; |
| 966 | // FIXME: support inout/out parameters for semantics. |
| 967 | if ([[maybe_unused]] HLSLParamModifierAttr *MA = |
| 968 | PD->getAttr<HLSLParamModifierAttr>()) { |
| 969 | llvm_unreachable("Not handled yet" ); |
| 970 | } else { |
| 971 | llvm::Type *ParamType = |
| 972 | Param.hasByValAttr() ? Param.getParamByValType() : Param.getType(); |
| 973 | auto AttrBegin = PD->specific_attr_begin<HLSLAppliedSemanticAttr>(); |
| 974 | auto AttrEnd = PD->specific_attr_end<HLSLAppliedSemanticAttr>(); |
| 975 | auto Result = |
| 976 | handleSemanticLoad(B, FD, Type: ParamType, Decl: PD, AttrBegin, AttrEnd); |
| 977 | SemanticValue = Result.first; |
| 978 | if (!SemanticValue) |
| 979 | return; |
| 980 | if (Param.hasByValAttr()) { |
| 981 | llvm::Value *Var = B.CreateAlloca(Ty: Param.getParamByValType()); |
| 982 | B.CreateStore(Val: SemanticValue, Ptr: Var); |
| 983 | SemanticValue = Var; |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | assert(SemanticValue); |
| 988 | Args.push_back(Elt: SemanticValue); |
| 989 | } |
| 990 | |
| 991 | CallInst *CI = B.CreateCall(Callee: FunctionCallee(Fn), Args, OpBundles: OB); |
| 992 | CI->setCallingConv(Fn->getCallingConv()); |
| 993 | |
| 994 | if (Fn->getReturnType() != CGM.VoidTy) |
| 995 | OutputSemantic.try_emplace(Key: FD, Args&: CI); |
| 996 | |
| 997 | for (auto &[Decl, Source] : OutputSemantic) { |
| 998 | AllocaInst *AI = dyn_cast<AllocaInst>(Val: Source); |
| 999 | llvm::Value *SourceValue = |
| 1000 | AI ? B.CreateLoad(Ty: AI->getAllocatedType(), Ptr: Source) : Source; |
| 1001 | |
| 1002 | auto AttrBegin = Decl->specific_attr_begin<HLSLAppliedSemanticAttr>(); |
| 1003 | auto AttrEnd = Decl->specific_attr_end<HLSLAppliedSemanticAttr>(); |
| 1004 | handleSemanticStore(B, FD, Source: SourceValue, Decl, AttrBegin, AttrEnd); |
| 1005 | } |
| 1006 | |
| 1007 | B.CreateRetVoid(); |
| 1008 | |
| 1009 | // Add and identify root signature to function, if applicable |
| 1010 | for (const Attr *Attr : FD->getAttrs()) { |
| 1011 | if (const auto *RSAttr = dyn_cast<RootSignatureAttr>(Val: Attr)) { |
| 1012 | auto *RSDecl = RSAttr->getSignatureDecl(); |
| 1013 | addRootSignatureMD(RootSigVer: RSDecl->getVersion(), Elements: RSDecl->getRootElements(), |
| 1014 | Fn: EntryFn, M); |
| 1015 | } |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | static void gatherFunctions(SmallVectorImpl<Function *> &Fns, llvm::Module &M, |
| 1020 | bool CtorOrDtor) { |
| 1021 | const auto *GV = |
| 1022 | M.getNamedGlobal(Name: CtorOrDtor ? "llvm.global_ctors" : "llvm.global_dtors" ); |
| 1023 | if (!GV) |
| 1024 | return; |
| 1025 | const auto *CA = dyn_cast<ConstantArray>(Val: GV->getInitializer()); |
| 1026 | if (!CA) |
| 1027 | return; |
| 1028 | // The global_ctor array elements are a struct [Priority, Fn *, COMDat]. |
| 1029 | // HLSL neither supports priorities or COMDat values, so we will check those |
| 1030 | // in an assert but not handle them. |
| 1031 | |
| 1032 | for (const auto &Ctor : CA->operands()) { |
| 1033 | if (isa<ConstantAggregateZero>(Val: Ctor)) |
| 1034 | continue; |
| 1035 | ConstantStruct *CS = cast<ConstantStruct>(Val: Ctor); |
| 1036 | |
| 1037 | assert(cast<ConstantInt>(CS->getOperand(0))->getValue() == 65535 && |
| 1038 | "HLSL doesn't support setting priority for global ctors." ); |
| 1039 | assert(isa<ConstantPointerNull>(CS->getOperand(2)) && |
| 1040 | "HLSL doesn't support COMDat for global ctors." ); |
| 1041 | Fns.push_back(Elt: cast<Function>(Val: CS->getOperand(i_nocapture: 1))); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | void CGHLSLRuntime::generateGlobalCtorDtorCalls() { |
| 1046 | llvm::Module &M = CGM.getModule(); |
| 1047 | SmallVector<Function *> CtorFns; |
| 1048 | SmallVector<Function *> DtorFns; |
| 1049 | gatherFunctions(Fns&: CtorFns, M, CtorOrDtor: true); |
| 1050 | gatherFunctions(Fns&: DtorFns, M, CtorOrDtor: false); |
| 1051 | |
| 1052 | // Insert a call to the global constructor at the beginning of the entry block |
| 1053 | // to externally exported functions. This is a bit of a hack, but HLSL allows |
| 1054 | // global constructors, but doesn't support driver initialization of globals. |
| 1055 | for (auto &F : M.functions()) { |
| 1056 | if (!F.hasFnAttribute(Kind: "hlsl.shader" )) |
| 1057 | continue; |
| 1058 | auto *Token = getConvergenceToken(BB&: F.getEntryBlock()); |
| 1059 | Instruction *IP = &*F.getEntryBlock().begin(); |
| 1060 | SmallVector<OperandBundleDef, 1> OB; |
| 1061 | if (Token) { |
| 1062 | llvm::Value *bundleArgs[] = {Token}; |
| 1063 | OB.emplace_back(Args: "convergencectrl" , Args&: bundleArgs); |
| 1064 | IP = Token->getNextNode(); |
| 1065 | } |
| 1066 | IRBuilder<> B(IP); |
| 1067 | for (auto *Fn : CtorFns) { |
| 1068 | auto CI = B.CreateCall(Callee: FunctionCallee(Fn), Args: {}, OpBundles: OB); |
| 1069 | CI->setCallingConv(Fn->getCallingConv()); |
| 1070 | } |
| 1071 | |
| 1072 | // Insert global dtors before the terminator of the last instruction |
| 1073 | B.SetInsertPoint(F.back().getTerminator()); |
| 1074 | for (auto *Fn : DtorFns) { |
| 1075 | auto CI = B.CreateCall(Callee: FunctionCallee(Fn), Args: {}, OpBundles: OB); |
| 1076 | CI->setCallingConv(Fn->getCallingConv()); |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | // No need to keep global ctors/dtors for non-lib profile after call to |
| 1081 | // ctors/dtors added for entry. |
| 1082 | Triple T(M.getTargetTriple()); |
| 1083 | if (T.getEnvironment() != Triple::EnvironmentType::Library) { |
| 1084 | if (auto *GV = M.getNamedGlobal(Name: "llvm.global_ctors" )) |
| 1085 | GV->eraseFromParent(); |
| 1086 | if (auto *GV = M.getNamedGlobal(Name: "llvm.global_dtors" )) |
| 1087 | GV->eraseFromParent(); |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | static void initializeBuffer(CodeGenModule &CGM, llvm::GlobalVariable *GV, |
| 1092 | Intrinsic::ID IntrID, |
| 1093 | ArrayRef<llvm::Value *> Args) { |
| 1094 | |
| 1095 | LLVMContext &Ctx = CGM.getLLVMContext(); |
| 1096 | llvm::Function *InitResFunc = llvm::Function::Create( |
| 1097 | Ty: llvm::FunctionType::get(Result: CGM.VoidTy, isVarArg: false), |
| 1098 | Linkage: llvm::GlobalValue::InternalLinkage, |
| 1099 | N: ("_init_buffer_" + GV->getName()).str(), M&: CGM.getModule()); |
| 1100 | InitResFunc->addFnAttr(Kind: llvm::Attribute::AlwaysInline); |
| 1101 | |
| 1102 | llvm::BasicBlock *EntryBB = |
| 1103 | llvm::BasicBlock::Create(Context&: Ctx, Name: "entry" , Parent: InitResFunc); |
| 1104 | CGBuilderTy Builder(CGM, Ctx); |
| 1105 | const DataLayout &DL = CGM.getModule().getDataLayout(); |
| 1106 | Builder.SetInsertPoint(EntryBB); |
| 1107 | |
| 1108 | // Make sure the global variable is buffer resource handle |
| 1109 | llvm::Type *HandleTy = GV->getValueType(); |
| 1110 | assert(HandleTy->isTargetExtTy() && "unexpected type of the buffer global" ); |
| 1111 | |
| 1112 | llvm::Value *CreateHandle = Builder.CreateIntrinsic( |
| 1113 | /*ReturnType=*/RetTy: HandleTy, ID: IntrID, Args, FMFSource: nullptr, |
| 1114 | Name: Twine(GV->getName()).concat(Suffix: "_h" )); |
| 1115 | |
| 1116 | Builder.CreateAlignedStore(Val: CreateHandle, Ptr: GV, Align: GV->getPointerAlignment(DL)); |
| 1117 | Builder.CreateRetVoid(); |
| 1118 | |
| 1119 | CGM.AddCXXGlobalInit(F: InitResFunc); |
| 1120 | } |
| 1121 | |
| 1122 | void CGHLSLRuntime::initializeBufferFromBinding(const HLSLBufferDecl *BufDecl, |
| 1123 | llvm::GlobalVariable *GV) { |
| 1124 | ResourceBindingAttrs Binding(BufDecl); |
| 1125 | assert(Binding.hasBinding() && |
| 1126 | "cbuffer/tbuffer should always have resource binding attribute" ); |
| 1127 | |
| 1128 | auto *Index = llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
| 1129 | auto *RangeSize = llvm::ConstantInt::get(Ty: CGM.IntTy, V: 1); |
| 1130 | auto *Space = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Binding.getSpace()); |
| 1131 | Value *Name = buildNameForResource(BaseName: BufDecl->getName(), CGM); |
| 1132 | |
| 1133 | // buffer with explicit binding |
| 1134 | if (Binding.isExplicit()) { |
| 1135 | llvm::Intrinsic::ID IntrinsicID = |
| 1136 | CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic(); |
| 1137 | auto *RegSlot = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Binding.getSlot()); |
| 1138 | SmallVector<Value *> Args{Space, RegSlot, RangeSize, Index, Name}; |
| 1139 | initializeBuffer(CGM, GV, IntrID: IntrinsicID, Args); |
| 1140 | } else { |
| 1141 | // buffer with implicit binding |
| 1142 | llvm::Intrinsic::ID IntrinsicID = |
| 1143 | CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic(); |
| 1144 | auto *OrderID = |
| 1145 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Binding.getImplicitOrderID()); |
| 1146 | SmallVector<Value *> Args{OrderID, Space, RangeSize, Index, Name}; |
| 1147 | initializeBuffer(CGM, GV, IntrID: IntrinsicID, Args); |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | void CGHLSLRuntime::handleGlobalVarDefinition(const VarDecl *VD, |
| 1152 | llvm::GlobalVariable *GV) { |
| 1153 | if (auto Attr = VD->getAttr<HLSLVkExtBuiltinInputAttr>()) |
| 1154 | addSPIRVBuiltinDecoration(GV, BuiltIn: Attr->getBuiltIn()); |
| 1155 | } |
| 1156 | |
| 1157 | llvm::Instruction *CGHLSLRuntime::getConvergenceToken(BasicBlock &BB) { |
| 1158 | if (!CGM.shouldEmitConvergenceTokens()) |
| 1159 | return nullptr; |
| 1160 | |
| 1161 | auto E = BB.end(); |
| 1162 | for (auto I = BB.begin(); I != E; ++I) { |
| 1163 | auto *II = dyn_cast<llvm::IntrinsicInst>(Val: &*I); |
| 1164 | if (II && llvm::isConvergenceControlIntrinsic(IntrinsicID: II->getIntrinsicID())) { |
| 1165 | return II; |
| 1166 | } |
| 1167 | } |
| 1168 | llvm_unreachable("Convergence token should have been emitted." ); |
| 1169 | return nullptr; |
| 1170 | } |
| 1171 | |
| 1172 | class OpaqueValueVisitor : public RecursiveASTVisitor<OpaqueValueVisitor> { |
| 1173 | public: |
| 1174 | llvm::SmallVector<OpaqueValueExpr *, 8> OVEs; |
| 1175 | llvm::SmallPtrSet<OpaqueValueExpr *, 8> Visited; |
| 1176 | OpaqueValueVisitor() {} |
| 1177 | |
| 1178 | bool VisitHLSLOutArgExpr(HLSLOutArgExpr *) { |
| 1179 | // These need to be bound in CodeGenFunction::EmitHLSLOutArgLValues |
| 1180 | // or CodeGenFunction::EmitHLSLOutArgExpr. If they are part of this |
| 1181 | // traversal, the temporary containing the copy out will not have |
| 1182 | // been created yet. |
| 1183 | return false; |
| 1184 | } |
| 1185 | |
| 1186 | bool VisitOpaqueValueExpr(OpaqueValueExpr *E) { |
| 1187 | // Traverse the source expression first. |
| 1188 | if (E->getSourceExpr()) |
| 1189 | TraverseStmt(S: E->getSourceExpr()); |
| 1190 | |
| 1191 | // Then add this OVE if we haven't seen it before. |
| 1192 | if (Visited.insert(Ptr: E).second) |
| 1193 | OVEs.push_back(Elt: E); |
| 1194 | |
| 1195 | return true; |
| 1196 | } |
| 1197 | }; |
| 1198 | |
| 1199 | void CGHLSLRuntime::emitInitListOpaqueValues(CodeGenFunction &CGF, |
| 1200 | InitListExpr *E) { |
| 1201 | |
| 1202 | typedef CodeGenFunction::OpaqueValueMappingData OpaqueValueMappingData; |
| 1203 | OpaqueValueVisitor Visitor; |
| 1204 | Visitor.TraverseStmt(S: E); |
| 1205 | for (auto *OVE : Visitor.OVEs) { |
| 1206 | if (CGF.isOpaqueValueEmitted(E: OVE)) |
| 1207 | continue; |
| 1208 | if (OpaqueValueMappingData::shouldBindAsLValue(expr: OVE)) { |
| 1209 | LValue LV = CGF.EmitLValue(E: OVE->getSourceExpr()); |
| 1210 | OpaqueValueMappingData::bind(CGF, ov: OVE, lv: LV); |
| 1211 | } else { |
| 1212 | RValue RV = CGF.EmitAnyExpr(E: OVE->getSourceExpr()); |
| 1213 | OpaqueValueMappingData::bind(CGF, ov: OVE, rv: RV); |
| 1214 | } |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | std::optional<LValue> CGHLSLRuntime::emitResourceArraySubscriptExpr( |
| 1219 | const ArraySubscriptExpr *ArraySubsExpr, CodeGenFunction &CGF) { |
| 1220 | assert((ArraySubsExpr->getType()->isHLSLResourceRecord() || |
| 1221 | ArraySubsExpr->getType()->isHLSLResourceRecordArray()) && |
| 1222 | "expected resource array subscript expression" ); |
| 1223 | |
| 1224 | // Let clang codegen handle local and static resource array subscripts, |
| 1225 | // or when the subscript references on opaque expression (as part of |
| 1226 | // ArrayInitLoopExpr AST node). |
| 1227 | const VarDecl *ArrayDecl = |
| 1228 | dyn_cast_or_null<VarDecl>(Val: getArrayDecl(ASE: ArraySubsExpr)); |
| 1229 | if (!ArrayDecl || !ArrayDecl->hasGlobalStorage() || |
| 1230 | ArrayDecl->getStorageClass() == SC_Static) |
| 1231 | return std::nullopt; |
| 1232 | |
| 1233 | // get the resource array type |
| 1234 | ASTContext &AST = ArrayDecl->getASTContext(); |
| 1235 | const Type *ResArrayTy = ArrayDecl->getType().getTypePtr(); |
| 1236 | assert(ResArrayTy->isHLSLResourceRecordArray() && |
| 1237 | "expected array of resource classes" ); |
| 1238 | |
| 1239 | // Iterate through all nested array subscript expressions to calculate |
| 1240 | // the index in the flattened resource array (if this is a multi- |
| 1241 | // dimensional array). The index is calculated as a sum of all indices |
| 1242 | // multiplied by the total size of the array at that level. |
| 1243 | Value *Index = nullptr; |
| 1244 | const ArraySubscriptExpr *ASE = ArraySubsExpr; |
| 1245 | while (ASE != nullptr) { |
| 1246 | Value *SubIndex = CGF.EmitScalarExpr(E: ASE->getIdx()); |
| 1247 | if (const auto *ArrayTy = |
| 1248 | dyn_cast<ConstantArrayType>(Val: ASE->getType().getTypePtr())) { |
| 1249 | Value *Multiplier = llvm::ConstantInt::get( |
| 1250 | Ty: CGM.IntTy, V: AST.getConstantArrayElementCount(CA: ArrayTy)); |
| 1251 | SubIndex = CGF.Builder.CreateMul(LHS: SubIndex, RHS: Multiplier); |
| 1252 | } |
| 1253 | Index = Index ? CGF.Builder.CreateAdd(LHS: Index, RHS: SubIndex) : SubIndex; |
| 1254 | ASE = dyn_cast<ArraySubscriptExpr>(Val: ASE->getBase()->IgnoreParenImpCasts()); |
| 1255 | } |
| 1256 | |
| 1257 | // Find binding info for the resource array. For implicit binding |
| 1258 | // an HLSLResourceBindingAttr should have been added by SemaHLSL. |
| 1259 | ResourceBindingAttrs Binding(ArrayDecl); |
| 1260 | assert(Binding.hasBinding() && |
| 1261 | "resource array must have a binding attribute" ); |
| 1262 | |
| 1263 | // Find the individual resource type. |
| 1264 | QualType ResultTy = ArraySubsExpr->getType(); |
| 1265 | QualType ResourceTy = |
| 1266 | ResultTy->isArrayType() ? AST.getBaseElementType(QT: ResultTy) : ResultTy; |
| 1267 | |
| 1268 | // Create a temporary variable for the result, which is either going |
| 1269 | // to be a single resource instance or a local array of resources (we need to |
| 1270 | // return an LValue). |
| 1271 | RawAddress TmpVar = CGF.CreateMemTemp(T: ResultTy); |
| 1272 | if (CGF.EmitLifetimeStart(Addr: TmpVar.getPointer())) |
| 1273 | CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( |
| 1274 | kind: NormalEHLifetimeMarker, A: TmpVar); |
| 1275 | |
| 1276 | AggValueSlot ValueSlot = AggValueSlot::forAddr( |
| 1277 | addr: TmpVar, quals: Qualifiers(), isDestructed: AggValueSlot::IsDestructed_t(true), |
| 1278 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsAliased_t(false), |
| 1279 | mayOverlap: AggValueSlot::DoesNotOverlap); |
| 1280 | |
| 1281 | // Calculate total array size (= range size). |
| 1282 | llvm::Value *Range = llvm::ConstantInt::getSigned( |
| 1283 | Ty: CGM.IntTy, V: getTotalArraySize(AST, Ty: ResArrayTy)); |
| 1284 | |
| 1285 | // If the result of the subscript operation is a single resource, call the |
| 1286 | // constructor. |
| 1287 | if (ResultTy == ResourceTy) { |
| 1288 | CallArgList Args; |
| 1289 | CXXMethodDecl *CreateMethod = lookupResourceInitMethodAndSetupArgs( |
| 1290 | CGM&: CGF.CGM, ResourceDecl: ResourceTy->getAsCXXRecordDecl(), Range, Index, |
| 1291 | Name: ArrayDecl->getName(), Binding, Args); |
| 1292 | |
| 1293 | if (!CreateMethod) |
| 1294 | // This can happen if someone creates an array of structs that looks like |
| 1295 | // an HLSL resource record array but it does not have the required static |
| 1296 | // create method. No binding will be generated for it. |
| 1297 | return std::nullopt; |
| 1298 | |
| 1299 | callResourceInitMethod(CGF, CreateMethod, Args, ReturnAddress: ValueSlot.getAddress()); |
| 1300 | |
| 1301 | } else { |
| 1302 | // The result of the subscript operation is a local resource array which |
| 1303 | // needs to be initialized. |
| 1304 | const ConstantArrayType *ArrayTy = |
| 1305 | cast<ConstantArrayType>(Val: ResultTy.getTypePtr()); |
| 1306 | std::optional<llvm::Value *> EndIndex = initializeLocalResourceArray( |
| 1307 | CGF, ResourceDecl: ResourceTy->getAsCXXRecordDecl(), ArrayTy, ValueSlot, Range, StartIndex: Index, |
| 1308 | ResourceName: ArrayDecl->getName(), Binding, PrevGEPIndices: {llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0)}, |
| 1309 | ArraySubsExprLoc: ArraySubsExpr->getExprLoc()); |
| 1310 | if (!EndIndex) |
| 1311 | return std::nullopt; |
| 1312 | } |
| 1313 | return CGF.MakeAddrLValue(Addr: TmpVar, T: ResultTy, Source: AlignmentSource::Decl); |
| 1314 | } |
| 1315 | |
| 1316 | // If RHSExpr is a global resource array, initialize all of its resources and |
| 1317 | // set them into LHS. Returns false if no copy has been performed and the |
| 1318 | // array copy should be handled by Clang codegen. |
| 1319 | bool CGHLSLRuntime::emitResourceArrayCopy(LValue &LHS, Expr *RHSExpr, |
| 1320 | CodeGenFunction &CGF) { |
| 1321 | QualType ResultTy = RHSExpr->getType(); |
| 1322 | assert(ResultTy->isHLSLResourceRecordArray() && "expected resource array" ); |
| 1323 | |
| 1324 | // Let Clang codegen handle local and static resource array copies. |
| 1325 | const VarDecl *ArrayDecl = dyn_cast_or_null<VarDecl>(Val: getArrayDecl(E: RHSExpr)); |
| 1326 | if (!ArrayDecl || !ArrayDecl->hasGlobalStorage() || |
| 1327 | ArrayDecl->getStorageClass() == SC_Static) |
| 1328 | return false; |
| 1329 | |
| 1330 | // Find binding info for the resource array. For implicit binding |
| 1331 | // the HLSLResourceBindingAttr should have been added by SemaHLSL. |
| 1332 | ResourceBindingAttrs Binding(ArrayDecl); |
| 1333 | assert(Binding.hasBinding() && |
| 1334 | "resource array must have a binding attribute" ); |
| 1335 | |
| 1336 | // Find the individual resource type. |
| 1337 | ASTContext &AST = ArrayDecl->getASTContext(); |
| 1338 | QualType ResTy = AST.getBaseElementType(QT: ResultTy); |
| 1339 | const auto *ResArrayTy = cast<ConstantArrayType>(Val: ResultTy.getTypePtr()); |
| 1340 | |
| 1341 | // Use the provided LHS for the result. |
| 1342 | AggValueSlot ValueSlot = AggValueSlot::forAddr( |
| 1343 | addr: LHS.getAddress(), quals: Qualifiers(), isDestructed: AggValueSlot::IsDestructed_t(true), |
| 1344 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsAliased_t(false), |
| 1345 | mayOverlap: AggValueSlot::DoesNotOverlap); |
| 1346 | |
| 1347 | // Create Value for index and total array size (= range size). |
| 1348 | int Size = getTotalArraySize(AST, Ty: ResArrayTy); |
| 1349 | llvm::Value *Zero = llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
| 1350 | llvm::Value *Range = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Size); |
| 1351 | |
| 1352 | // Initialize individual resources in the array into LHS. |
| 1353 | std::optional<llvm::Value *> EndIndex = initializeLocalResourceArray( |
| 1354 | CGF, ResourceDecl: ResTy->getAsCXXRecordDecl(), ArrayTy: ResArrayTy, ValueSlot, Range, StartIndex: Zero, |
| 1355 | ResourceName: ArrayDecl->getName(), Binding, PrevGEPIndices: {Zero}, ArraySubsExprLoc: RHSExpr->getExprLoc()); |
| 1356 | return EndIndex.has_value(); |
| 1357 | } |
| 1358 | |
| 1359 | std::optional<LValue> CGHLSLRuntime::emitBufferArraySubscriptExpr( |
| 1360 | const ArraySubscriptExpr *E, CodeGenFunction &CGF, |
| 1361 | llvm::function_ref<llvm::Value *(bool Promote)> EmitIdxAfterBase) { |
| 1362 | // Find the element type to index by first padding the element type per HLSL |
| 1363 | // buffer rules, and then padding out to a 16-byte register boundary if |
| 1364 | // necessary. |
| 1365 | llvm::Type *LayoutTy = |
| 1366 | HLSLBufferLayoutBuilder(CGF.CGM).layOutType(Type: E->getType()); |
| 1367 | uint64_t LayoutSizeInBits = |
| 1368 | CGM.getDataLayout().getTypeSizeInBits(Ty: LayoutTy).getFixedValue(); |
| 1369 | CharUnits ElementSize = CharUnits::fromQuantity(Quantity: LayoutSizeInBits / 8); |
| 1370 | CharUnits RowAlignedSize = ElementSize.alignTo(Align: CharUnits::fromQuantity(Quantity: 16)); |
| 1371 | if (RowAlignedSize > ElementSize) { |
| 1372 | llvm::Type *Padding = CGM.getTargetCodeGenInfo().getHLSLPadding( |
| 1373 | CGM, NumBytes: RowAlignedSize - ElementSize); |
| 1374 | assert(Padding && "No padding type for target?" ); |
| 1375 | LayoutTy = llvm::StructType::get(Context&: CGF.getLLVMContext(), Elements: {LayoutTy, Padding}, |
| 1376 | /*isPacked=*/true); |
| 1377 | } |
| 1378 | |
| 1379 | // If the layout type doesn't introduce any padding, we don't need to do |
| 1380 | // anything special. |
| 1381 | llvm::Type *OrigTy = CGF.CGM.getTypes().ConvertTypeForMem(T: E->getType()); |
| 1382 | if (LayoutTy == OrigTy) |
| 1383 | return std::nullopt; |
| 1384 | |
| 1385 | LValueBaseInfo EltBaseInfo; |
| 1386 | TBAAAccessInfo EltTBAAInfo; |
| 1387 | Address Addr = |
| 1388 | CGF.EmitPointerWithAlignment(Addr: E->getBase(), BaseInfo: &EltBaseInfo, TBAAInfo: &EltTBAAInfo); |
| 1389 | llvm::Value *Idx = EmitIdxAfterBase(/*Promote*/ true); |
| 1390 | |
| 1391 | // Index into the object as-if we have an array of the padded element type, |
| 1392 | // and then dereference the element itself to avoid reading padding that may |
| 1393 | // be past the end of the in-memory object. |
| 1394 | SmallVector<llvm::Value *, 2> Indices; |
| 1395 | Indices.push_back(Elt: Idx); |
| 1396 | Indices.push_back(Elt: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0)); |
| 1397 | |
| 1398 | llvm::Value *GEP = CGF.Builder.CreateGEP(Ty: LayoutTy, Ptr: Addr.emitRawPointer(CGF), |
| 1399 | IdxList: Indices, Name: "cbufferidx" ); |
| 1400 | Addr = Address(GEP, Addr.getElementType(), RowAlignedSize, KnownNonNull); |
| 1401 | |
| 1402 | return CGF.MakeAddrLValue(Addr, T: E->getType(), BaseInfo: EltBaseInfo, TBAAInfo: EltTBAAInfo); |
| 1403 | } |
| 1404 | |
| 1405 | namespace { |
| 1406 | /// Utility for emitting copies following the HLSL buffer layout rules (ie, |
| 1407 | /// copying out of a cbuffer). |
| 1408 | class HLSLBufferCopyEmitter { |
| 1409 | CodeGenFunction &CGF; |
| 1410 | Address DestPtr; |
| 1411 | Address SrcPtr; |
| 1412 | llvm::Type *LayoutTy = nullptr; |
| 1413 | |
| 1414 | SmallVector<llvm::Value *> CurStoreIndices; |
| 1415 | SmallVector<llvm::Value *> CurLoadIndices; |
| 1416 | |
| 1417 | void emitCopyAtIndices(llvm::Type *FieldTy, llvm::ConstantInt *StoreIndex, |
| 1418 | llvm::ConstantInt *LoadIndex) { |
| 1419 | CurStoreIndices.push_back(Elt: StoreIndex); |
| 1420 | CurLoadIndices.push_back(Elt: LoadIndex); |
| 1421 | llvm::scope_exit RestoreIndices([&]() { |
| 1422 | CurStoreIndices.pop_back(); |
| 1423 | CurLoadIndices.pop_back(); |
| 1424 | }); |
| 1425 | |
| 1426 | // First, see if this is some kind of aggregate and recurse. |
| 1427 | if (processArray(FieldTy)) |
| 1428 | return; |
| 1429 | if (processBufferLayoutArray(FieldTy)) |
| 1430 | return; |
| 1431 | if (processStruct(FieldTy)) |
| 1432 | return; |
| 1433 | |
| 1434 | // When we have a scalar or vector element we can emit the copy. |
| 1435 | CharUnits Align = CharUnits::fromQuantity( |
| 1436 | Quantity: CGF.CGM.getDataLayout().getABITypeAlign(Ty: FieldTy)); |
| 1437 | Address SrcGEP = RawAddress( |
| 1438 | CGF.Builder.CreateInBoundsGEP(Ty: LayoutTy, Ptr: SrcPtr.getBasePointer(), |
| 1439 | IdxList: CurLoadIndices, Name: "cbuf.src" ), |
| 1440 | FieldTy, Align, SrcPtr.isKnownNonNull()); |
| 1441 | Address DestGEP = CGF.Builder.CreateInBoundsGEP( |
| 1442 | Addr: DestPtr, IdxList: CurStoreIndices, ElementType: FieldTy, Align, Name: "cbuf.dest" ); |
| 1443 | llvm::Value *Load = CGF.Builder.CreateLoad(Addr: SrcGEP, Name: "cbuf.load" ); |
| 1444 | CGF.Builder.CreateStore(Val: Load, Addr: DestGEP); |
| 1445 | } |
| 1446 | |
| 1447 | bool processArray(llvm::Type *FieldTy) { |
| 1448 | auto *AT = dyn_cast<llvm::ArrayType>(Val: FieldTy); |
| 1449 | if (!AT) |
| 1450 | return false; |
| 1451 | |
| 1452 | // If we have an llvm::ArrayType this is just a regular array with no top |
| 1453 | // level padding, so all we need to do is copy each member. |
| 1454 | for (unsigned I = 0, E = AT->getNumElements(); I < E; ++I) |
| 1455 | emitCopyAtIndices(FieldTy: AT->getElementType(), |
| 1456 | StoreIndex: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: I), |
| 1457 | LoadIndex: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: I)); |
| 1458 | return true; |
| 1459 | } |
| 1460 | |
| 1461 | bool processBufferLayoutArray(llvm::Type *FieldTy) { |
| 1462 | // A buffer layout array is a struct with two elements: the padded array, |
| 1463 | // and the last element. That is, is should look something like this: |
| 1464 | // |
| 1465 | // { [%n x { %type, %padding }], %type } |
| 1466 | // |
| 1467 | auto *ST = dyn_cast<llvm::StructType>(Val: FieldTy); |
| 1468 | if (!ST || ST->getNumElements() != 2) |
| 1469 | return false; |
| 1470 | |
| 1471 | auto *PaddedEltsTy = dyn_cast<llvm::ArrayType>(Val: ST->getElementType(N: 0)); |
| 1472 | if (!PaddedEltsTy) |
| 1473 | return false; |
| 1474 | |
| 1475 | auto *PaddedTy = dyn_cast<llvm::StructType>(Val: PaddedEltsTy->getElementType()); |
| 1476 | if (!PaddedTy || PaddedTy->getNumElements() != 2) |
| 1477 | return false; |
| 1478 | |
| 1479 | if (!CGF.CGM.getTargetCodeGenInfo().isHLSLPadding( |
| 1480 | Ty: PaddedTy->getElementType(N: 1))) |
| 1481 | return false; |
| 1482 | |
| 1483 | llvm::Type *ElementTy = ST->getElementType(N: 1); |
| 1484 | if (PaddedTy->getElementType(N: 0) != ElementTy) |
| 1485 | return false; |
| 1486 | |
| 1487 | // All but the last of the logical array elements are in the padded array. |
| 1488 | unsigned NumElts = PaddedEltsTy->getNumElements() + 1; |
| 1489 | |
| 1490 | // Add an extra indirection to the load for the struct and walk the |
| 1491 | // array prefix. |
| 1492 | CurLoadIndices.push_back(Elt: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0)); |
| 1493 | for (unsigned I = 0; I < NumElts - 1; ++I) { |
| 1494 | // We need to copy the element itself, without the padding. |
| 1495 | CurLoadIndices.push_back(Elt: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: I)); |
| 1496 | emitCopyAtIndices(FieldTy: ElementTy, StoreIndex: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: I), |
| 1497 | LoadIndex: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0)); |
| 1498 | CurLoadIndices.pop_back(); |
| 1499 | } |
| 1500 | CurLoadIndices.pop_back(); |
| 1501 | |
| 1502 | // Now copy the last element. |
| 1503 | emitCopyAtIndices(FieldTy: ElementTy, |
| 1504 | StoreIndex: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: NumElts - 1), |
| 1505 | LoadIndex: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 1)); |
| 1506 | |
| 1507 | return true; |
| 1508 | } |
| 1509 | |
| 1510 | bool processStruct(llvm::Type *FieldTy) { |
| 1511 | auto *ST = dyn_cast<llvm::StructType>(Val: FieldTy); |
| 1512 | if (!ST) |
| 1513 | return false; |
| 1514 | |
| 1515 | // Copy the struct field by field, but skip any explicit padding. |
| 1516 | unsigned Skipped = 0; |
| 1517 | for (unsigned I = 0, E = ST->getNumElements(); I < E; ++I) { |
| 1518 | llvm::Type *ElementTy = ST->getElementType(N: I); |
| 1519 | if (CGF.CGM.getTargetCodeGenInfo().isHLSLPadding(Ty: ElementTy)) |
| 1520 | ++Skipped; |
| 1521 | else |
| 1522 | emitCopyAtIndices(FieldTy: ElementTy, StoreIndex: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: I), |
| 1523 | LoadIndex: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: I + Skipped)); |
| 1524 | } |
| 1525 | return true; |
| 1526 | } |
| 1527 | |
| 1528 | public: |
| 1529 | HLSLBufferCopyEmitter(CodeGenFunction &CGF, Address DestPtr, Address SrcPtr) |
| 1530 | : CGF(CGF), DestPtr(DestPtr), SrcPtr(SrcPtr) {} |
| 1531 | |
| 1532 | bool emitCopy(QualType CType) { |
| 1533 | LayoutTy = HLSLBufferLayoutBuilder(CGF.CGM).layOutType(Type: CType); |
| 1534 | |
| 1535 | // TODO: We should be able to fall back to a regular memcpy if the layout |
| 1536 | // type doesn't have any padding, but that runs into issues in the backend |
| 1537 | // currently. |
| 1538 | // |
| 1539 | // See https://github.com/llvm/wg-hlsl/issues/351 |
| 1540 | emitCopyAtIndices(FieldTy: LayoutTy, StoreIndex: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: 0), |
| 1541 | LoadIndex: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: 0)); |
| 1542 | return true; |
| 1543 | } |
| 1544 | }; |
| 1545 | } // namespace |
| 1546 | |
| 1547 | bool CGHLSLRuntime::emitBufferCopy(CodeGenFunction &CGF, Address DestPtr, |
| 1548 | Address SrcPtr, QualType CType) { |
| 1549 | return HLSLBufferCopyEmitter(CGF, DestPtr, SrcPtr).emitCopy(CType); |
| 1550 | } |
| 1551 | |
| 1552 | LValue CGHLSLRuntime::emitBufferMemberExpr(CodeGenFunction &CGF, |
| 1553 | const MemberExpr *E) { |
| 1554 | LValue Base = |
| 1555 | CGF.EmitCheckedLValue(E: E->getBase(), TCK: CodeGenFunction::TCK_MemberAccess); |
| 1556 | auto *Field = dyn_cast<FieldDecl>(Val: E->getMemberDecl()); |
| 1557 | assert(Field && "Unexpected access into HLSL buffer" ); |
| 1558 | |
| 1559 | // Get the field index for the struct. |
| 1560 | const RecordDecl *Rec = Field->getParent(); |
| 1561 | unsigned FieldIdx = |
| 1562 | CGM.getTypes().getCGRecordLayout(Rec).getLLVMFieldNo(FD: Field); |
| 1563 | |
| 1564 | // Work out the buffer layout type to index into. |
| 1565 | QualType RecType = CGM.getContext().getCanonicalTagType(TD: Rec); |
| 1566 | assert(RecType->isStructureOrClassType() && "Invalid type in HLSL buffer" ); |
| 1567 | // Since this is a member of an object in the buffer and not the buffer's |
| 1568 | // struct/class itself, we shouldn't have any offsets on the members we need |
| 1569 | // to contend with. |
| 1570 | CGHLSLOffsetInfo EmptyOffsets; |
| 1571 | llvm::StructType *LayoutTy = HLSLBufferLayoutBuilder(CGM).layOutStruct( |
| 1572 | StructType: RecType->getAsCanonical<RecordType>(), OffsetInfo: EmptyOffsets); |
| 1573 | |
| 1574 | // Now index into the struct, making sure that the type we return is the |
| 1575 | // buffer layout type rather than the original type in the AST. |
| 1576 | QualType FieldType = Field->getType(); |
| 1577 | llvm::Type *FieldLLVMTy = CGM.getTypes().ConvertTypeForMem(T: FieldType); |
| 1578 | CharUnits Align = CharUnits::fromQuantity( |
| 1579 | Quantity: CGF.CGM.getDataLayout().getABITypeAlign(Ty: FieldLLVMTy)); |
| 1580 | Address Addr(CGF.Builder.CreateStructGEP(Ty: LayoutTy, Ptr: Base.getPointer(CGF), |
| 1581 | Idx: FieldIdx, Name: Field->getName()), |
| 1582 | FieldLLVMTy, Align, KnownNonNull); |
| 1583 | |
| 1584 | LValue LV = LValue::MakeAddr(Addr, type: FieldType, Context&: CGM.getContext(), |
| 1585 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
| 1586 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: FieldType)); |
| 1587 | LV.getQuals().addCVRQualifiers(mask: Base.getVRQualifiers()); |
| 1588 | |
| 1589 | return LV; |
| 1590 | } |
| 1591 | |