| 1 | //===- NVPTX.cpp ----------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIInfoImpl.h" |
| 10 | #include "TargetInfo.h" |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/ADT/StringExtras.h" |
| 13 | #include "llvm/IR/CallingConv.h" |
| 14 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 15 | |
| 16 | using namespace clang; |
| 17 | using namespace clang::CodeGen; |
| 18 | |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | // NVPTX ABI Implementation |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | namespace { |
| 24 | |
| 25 | class NVPTXTargetCodeGenInfo; |
| 26 | |
| 27 | class NVPTXABIInfo : public ABIInfo { |
| 28 | NVPTXTargetCodeGenInfo &CGInfo; |
| 29 | |
| 30 | public: |
| 31 | NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) |
| 32 | : ABIInfo(CGT), CGInfo(Info) {} |
| 33 | |
| 34 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
| 35 | ABIArgInfo classifyArgumentType(QualType Ty) const; |
| 36 | |
| 37 | void computeInfo(CGFunctionInfo &FI) const override; |
| 38 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
| 39 | AggValueSlot Slot) const override; |
| 40 | bool isUnsupportedType(QualType T) const; |
| 41 | ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; |
| 42 | }; |
| 43 | |
| 44 | class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { |
| 45 | public: |
| 46 | NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) |
| 47 | : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(args&: CGT, args&: *this)) {} |
| 48 | |
| 49 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| 50 | CodeGen::CodeGenModule &M) const override; |
| 51 | bool shouldEmitStaticExternCAliases() const override; |
| 52 | |
| 53 | llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, |
| 54 | llvm::PointerType *T, |
| 55 | QualType QT) const override; |
| 56 | |
| 57 | llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { |
| 58 | // On the device side, surface reference is represented as an object handle |
| 59 | // in 64-bit integer. |
| 60 | return llvm::Type::getInt64Ty(C&: getABIInfo().getVMContext()); |
| 61 | } |
| 62 | |
| 63 | llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { |
| 64 | // On the device side, texture reference is represented as an object handle |
| 65 | // in 64-bit integer. |
| 66 | return llvm::Type::getInt64Ty(C&: getABIInfo().getVMContext()); |
| 67 | } |
| 68 | |
| 69 | bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, |
| 70 | LValue Src) const override { |
| 71 | emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); |
| 72 | return true; |
| 73 | } |
| 74 | |
| 75 | bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, |
| 76 | LValue Src) const override { |
| 77 | emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); |
| 78 | return true; |
| 79 | } |
| 80 | |
| 81 | unsigned getDeviceKernelCallingConv() const override { |
| 82 | return llvm::CallingConv::PTX_Kernel; |
| 83 | } |
| 84 | |
| 85 | // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the |
| 86 | // resulting MDNode to the nvvm.annotations MDNode. |
| 87 | static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, |
| 88 | int Operand); |
| 89 | |
| 90 | private: |
| 91 | static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, |
| 92 | LValue Src) { |
| 93 | llvm::Value *Handle = nullptr; |
| 94 | llvm::Constant *C = |
| 95 | llvm::dyn_cast<llvm::Constant>(Val: Src.getAddress().emitRawPointer(CGF)); |
| 96 | // Lookup `addrspacecast` through the constant pointer if any. |
| 97 | if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(Val: C)) |
| 98 | C = llvm::cast<llvm::Constant>(Val: ASC->getPointerOperand()); |
| 99 | if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(Val: C)) { |
| 100 | // Load the handle from the specific global variable using |
| 101 | // `nvvm.texsurf.handle.internal` intrinsic. |
| 102 | Handle = CGF.EmitRuntimeCall( |
| 103 | callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::nvvm_texsurf_handle_internal, |
| 104 | Tys: {GV->getType()}), |
| 105 | args: {GV}, name: "texsurf_handle" ); |
| 106 | } else |
| 107 | Handle = CGF.EmitLoadOfScalar(lvalue: Src, Loc: SourceLocation()); |
| 108 | CGF.EmitStoreOfScalar(value: Handle, lvalue: Dst); |
| 109 | } |
| 110 | }; |
| 111 | |
| 112 | /// Checks if the type is unsupported directly by the current target. |
| 113 | bool NVPTXABIInfo::isUnsupportedType(QualType T) const { |
| 114 | ASTContext &Context = getContext(); |
| 115 | if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) |
| 116 | return true; |
| 117 | if (!Context.getTargetInfo().hasFloat128Type() && |
| 118 | (T->isFloat128Type() || |
| 119 | (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) |
| 120 | return true; |
| 121 | if (const auto *EIT = T->getAs<BitIntType>()) |
| 122 | return EIT->getNumBits() > |
| 123 | (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); |
| 124 | if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && |
| 125 | Context.getTypeSize(T) > 64U) |
| 126 | return true; |
| 127 | if (const auto *AT = T->getAsArrayTypeUnsafe()) |
| 128 | return isUnsupportedType(T: AT->getElementType()); |
| 129 | const auto *RD = T->getAsRecordDecl(); |
| 130 | if (!RD) |
| 131 | return false; |
| 132 | |
| 133 | // If this is a C++ record, check the bases first. |
| 134 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 135 | for (const CXXBaseSpecifier &I : CXXRD->bases()) |
| 136 | if (isUnsupportedType(T: I.getType())) |
| 137 | return true; |
| 138 | |
| 139 | for (const FieldDecl *I : RD->fields()) |
| 140 | if (isUnsupportedType(T: I->getType())) |
| 141 | return true; |
| 142 | return false; |
| 143 | } |
| 144 | |
| 145 | /// Coerce the given type into an array with maximum allowed size of elements. |
| 146 | ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, |
| 147 | unsigned MaxSize) const { |
| 148 | // Alignment and Size are measured in bits. |
| 149 | const uint64_t Size = getContext().getTypeSize(T: Ty); |
| 150 | const uint64_t Alignment = getContext().getTypeAlign(T: Ty); |
| 151 | const unsigned Div = std::min<unsigned>(a: MaxSize, b: Alignment); |
| 152 | llvm::Type *IntType = llvm::Type::getIntNTy(C&: getVMContext(), N: Div); |
| 153 | const uint64_t NumElements = (Size + Div - 1) / Div; |
| 154 | return ABIArgInfo::getDirect(T: llvm::ArrayType::get(ElementType: IntType, NumElements)); |
| 155 | } |
| 156 | |
| 157 | ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { |
| 158 | if (RetTy->isVoidType()) |
| 159 | return ABIArgInfo::getIgnore(); |
| 160 | |
| 161 | if (getContext().getLangOpts().OpenMP && |
| 162 | getContext().getLangOpts().OpenMPIsTargetDevice && |
| 163 | isUnsupportedType(T: RetTy)) |
| 164 | return coerceToIntArrayWithLimit(Ty: RetTy, MaxSize: 64); |
| 165 | |
| 166 | // note: this is different from default ABI |
| 167 | if (!RetTy->isScalarType()) |
| 168 | return ABIArgInfo::getDirect(); |
| 169 | |
| 170 | // Treat an enum type as its underlying type. |
| 171 | if (const auto *ED = RetTy->getAsEnumDecl()) |
| 172 | RetTy = ED->getIntegerType(); |
| 173 | |
| 174 | return (isPromotableIntegerTypeForABI(Ty: RetTy) ? ABIArgInfo::getExtend(Ty: RetTy) |
| 175 | : ABIArgInfo::getDirect()); |
| 176 | } |
| 177 | |
| 178 | ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { |
| 179 | // Treat an enum type as its underlying type. |
| 180 | if (const auto *ED = Ty->getAsEnumDecl()) |
| 181 | Ty = ED->getIntegerType(); |
| 182 | |
| 183 | // Return aggregates type as indirect by value |
| 184 | if (isAggregateTypeForABI(T: Ty)) { |
| 185 | // Under CUDA device compilation, tex/surf builtin types are replaced with |
| 186 | // object types and passed directly. |
| 187 | if (getContext().getLangOpts().CUDAIsDevice) { |
| 188 | if (Ty->isCUDADeviceBuiltinSurfaceType()) |
| 189 | return ABIArgInfo::getDirect( |
| 190 | T: CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); |
| 191 | if (Ty->isCUDADeviceBuiltinTextureType()) |
| 192 | return ABIArgInfo::getDirect( |
| 193 | T: CGInfo.getCUDADeviceBuiltinTextureDeviceType()); |
| 194 | } |
| 195 | return getNaturalAlignIndirect( |
| 196 | Ty, /* AddrSpace */ getDataLayout().getAllocaAddrSpace(), |
| 197 | /* byval */ ByVal: true); |
| 198 | } |
| 199 | |
| 200 | if (const auto *EIT = Ty->getAs<BitIntType>()) { |
| 201 | if ((EIT->getNumBits() > 128) || |
| 202 | (!getContext().getTargetInfo().hasInt128Type() && |
| 203 | EIT->getNumBits() > 64)) |
| 204 | return getNaturalAlignIndirect( |
| 205 | Ty, /* AddrSpace */ getDataLayout().getAllocaAddrSpace(), |
| 206 | /* byval */ ByVal: true); |
| 207 | } |
| 208 | |
| 209 | return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
| 210 | : ABIArgInfo::getDirect()); |
| 211 | } |
| 212 | |
| 213 | void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| 214 | if (!getCXXABI().classifyReturnType(FI)) |
| 215 | FI.getReturnInfo() = classifyReturnType(RetTy: FI.getReturnType()); |
| 216 | |
| 217 | for (auto &&[ArgumentsCount, I] : llvm::enumerate(First: FI.arguments())) |
| 218 | I.info = ArgumentsCount < FI.getNumRequiredArgs() |
| 219 | ? classifyArgumentType(Ty: I.type) |
| 220 | : ABIArgInfo::getDirect(); |
| 221 | |
| 222 | // Always honor user-specified calling convention. |
| 223 | if (FI.getCallingConvention() != llvm::CallingConv::C) |
| 224 | return; |
| 225 | |
| 226 | FI.setEffectiveCallingConvention(getRuntimeCC()); |
| 227 | } |
| 228 | |
| 229 | RValue NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 230 | QualType Ty, AggValueSlot Slot) const { |
| 231 | return emitVoidPtrVAArg(CGF, VAListAddr, ValueTy: Ty, /*IsIndirect=*/false, |
| 232 | ValueInfo: getContext().getTypeInfoInChars(T: Ty), |
| 233 | SlotSizeAndAlign: CharUnits::fromQuantity(Quantity: 1), |
| 234 | /*AllowHigherAlign=*/true, Slot); |
| 235 | } |
| 236 | |
| 237 | void NVPTXTargetCodeGenInfo::setTargetAttributes( |
| 238 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
| 239 | if (GV->isDeclaration()) |
| 240 | return; |
| 241 | const VarDecl *VD = dyn_cast_or_null<VarDecl>(Val: D); |
| 242 | if (VD) { |
| 243 | if (M.getLangOpts().CUDA) { |
| 244 | if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) |
| 245 | addNVVMMetadata(GV, Name: "surface" , Operand: 1); |
| 246 | else if (VD->getType()->isCUDADeviceBuiltinTextureType()) |
| 247 | addNVVMMetadata(GV, Name: "texture" , Operand: 1); |
| 248 | return; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
| 253 | if (!FD) |
| 254 | return; |
| 255 | |
| 256 | llvm::Function *F = cast<llvm::Function>(Val: GV); |
| 257 | |
| 258 | // Perform special handling in OpenCL/CUDA mode |
| 259 | if (M.getLangOpts().OpenCL || M.getLangOpts().CUDA) { |
| 260 | // Use function attributes to check for kernel functions |
| 261 | // By default, all functions are device functions |
| 262 | if (FD->hasAttr<DeviceKernelAttr>() || FD->hasAttr<CUDAGlobalAttr>()) { |
| 263 | // OpenCL/CUDA kernel functions get kernel metadata |
| 264 | // And kernel functions are not subject to inlining |
| 265 | F->addFnAttr(Kind: llvm::Attribute::NoInline); |
| 266 | if (FD->hasAttr<CUDAGlobalAttr>()) { |
| 267 | F->setCallingConv(getDeviceKernelCallingConv()); |
| 268 | |
| 269 | for (auto IV : llvm::enumerate(First: FD->parameters())) |
| 270 | if (IV.value()->hasAttr<CUDAGridConstantAttr>()) |
| 271 | F->addParamAttr( |
| 272 | ArgNo: IV.index(), |
| 273 | Attr: llvm::Attribute::get(Context&: F->getContext(), Kind: "nvvm.grid_constant" )); |
| 274 | } |
| 275 | if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) |
| 276 | M.handleCUDALaunchBoundsAttr(F, A: Attr); |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, |
| 282 | StringRef Name, int Operand) { |
| 283 | llvm::Module *M = GV->getParent(); |
| 284 | llvm::LLVMContext &Ctx = M->getContext(); |
| 285 | |
| 286 | // Get "nvvm.annotations" metadata node |
| 287 | llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata(Name: "nvvm.annotations" ); |
| 288 | |
| 289 | SmallVector<llvm::Metadata *, 5> MDVals = { |
| 290 | llvm::ConstantAsMetadata::get(C: GV), llvm::MDString::get(Context&: Ctx, Str: Name), |
| 291 | llvm::ConstantAsMetadata::get( |
| 292 | C: llvm::ConstantInt::get(Ty: llvm::Type::getInt32Ty(C&: Ctx), V: Operand))}; |
| 293 | |
| 294 | // Append metadata to nvvm.annotations |
| 295 | MD->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: MDVals)); |
| 296 | } |
| 297 | |
| 298 | bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { |
| 299 | return false; |
| 300 | } |
| 301 | |
| 302 | llvm::Constant * |
| 303 | NVPTXTargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, |
| 304 | llvm::PointerType *PT, |
| 305 | QualType QT) const { |
| 306 | auto &Ctx = CGM.getContext(); |
| 307 | if (PT->getAddressSpace() != Ctx.getTargetAddressSpace(AS: LangAS::opencl_local)) |
| 308 | return llvm::ConstantPointerNull::get(T: PT); |
| 309 | |
| 310 | auto NPT = llvm::PointerType::get( |
| 311 | C&: PT->getContext(), AddressSpace: Ctx.getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 312 | return llvm::ConstantExpr::getAddrSpaceCast( |
| 313 | C: llvm::ConstantPointerNull::get(T: NPT), Ty: PT); |
| 314 | } |
| 315 | } // namespace |
| 316 | |
| 317 | void CodeGenModule::handleCUDALaunchBoundsAttr(llvm::Function *F, |
| 318 | const CUDALaunchBoundsAttr *Attr, |
| 319 | int32_t *MaxThreadsVal, |
| 320 | int32_t *MinBlocksVal, |
| 321 | int32_t *MaxClusterRankVal) { |
| 322 | llvm::APSInt MaxThreads(32); |
| 323 | MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(Ctx: getContext()); |
| 324 | if (MaxThreads > 0) { |
| 325 | if (MaxThreadsVal) |
| 326 | *MaxThreadsVal = MaxThreads.getExtValue(); |
| 327 | if (F) |
| 328 | F->addFnAttr(Kind: "nvvm.maxntid" , Val: llvm::utostr(X: MaxThreads.getExtValue())); |
| 329 | } |
| 330 | |
| 331 | // min and max blocks is an optional argument for CUDALaunchBoundsAttr. If it |
| 332 | // was not specified in __launch_bounds__ or if the user specified a 0 value, |
| 333 | // we don't have to add a PTX directive. |
| 334 | if (Attr->getMinBlocks()) { |
| 335 | llvm::APSInt MinBlocks(32); |
| 336 | MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(Ctx: getContext()); |
| 337 | if (MinBlocks > 0) { |
| 338 | if (MinBlocksVal) |
| 339 | *MinBlocksVal = MinBlocks.getExtValue(); |
| 340 | if (F) |
| 341 | F->addFnAttr(Kind: "nvvm.minctasm" , Val: llvm::utostr(X: MinBlocks.getExtValue())); |
| 342 | } |
| 343 | } |
| 344 | if (Attr->getMaxBlocks()) { |
| 345 | llvm::APSInt MaxBlocks(32); |
| 346 | MaxBlocks = Attr->getMaxBlocks()->EvaluateKnownConstInt(Ctx: getContext()); |
| 347 | if (MaxBlocks > 0) { |
| 348 | if (MaxClusterRankVal) |
| 349 | *MaxClusterRankVal = MaxBlocks.getExtValue(); |
| 350 | if (F) |
| 351 | F->addFnAttr(Kind: "nvvm.maxclusterrank" , |
| 352 | Val: llvm::utostr(X: MaxBlocks.getExtValue())); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | std::unique_ptr<TargetCodeGenInfo> |
| 358 | CodeGen::createNVPTXTargetCodeGenInfo(CodeGenModule &CGM) { |
| 359 | return std::make_unique<NVPTXTargetCodeGenInfo>(args&: CGM.getTypes()); |
| 360 | } |
| 361 | |