| 1 | //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass munges the code in the input function to better prepare it for |
| 10 | // SelectionDAG-based code generation. This works around limitations in it's |
| 11 | // basic-block-at-a-time approach. It should eventually be removed. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/CodeGen/CodeGenPrepare.h" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/MapVector.h" |
| 20 | #include "llvm/ADT/PointerIntPair.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/SmallPtrSet.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/Statistic.h" |
| 25 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 26 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 27 | #include "llvm/Analysis/FloatingPointPredicateUtils.h" |
| 28 | #include "llvm/Analysis/InstructionSimplify.h" |
| 29 | #include "llvm/Analysis/LoopInfo.h" |
| 30 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 31 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 32 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 33 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 34 | #include "llvm/Analysis/ValueTracking.h" |
| 35 | #include "llvm/Analysis/VectorUtils.h" |
| 36 | #include "llvm/CodeGen/Analysis.h" |
| 37 | #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" |
| 38 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 39 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 40 | #include "llvm/CodeGen/TargetLowering.h" |
| 41 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 42 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 43 | #include "llvm/CodeGen/ValueTypes.h" |
| 44 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 45 | #include "llvm/Config/llvm-config.h" |
| 46 | #include "llvm/IR/Argument.h" |
| 47 | #include "llvm/IR/Attributes.h" |
| 48 | #include "llvm/IR/BasicBlock.h" |
| 49 | #include "llvm/IR/Constant.h" |
| 50 | #include "llvm/IR/Constants.h" |
| 51 | #include "llvm/IR/DataLayout.h" |
| 52 | #include "llvm/IR/DebugInfo.h" |
| 53 | #include "llvm/IR/DerivedTypes.h" |
| 54 | #include "llvm/IR/Dominators.h" |
| 55 | #include "llvm/IR/Function.h" |
| 56 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 57 | #include "llvm/IR/GlobalValue.h" |
| 58 | #include "llvm/IR/GlobalVariable.h" |
| 59 | #include "llvm/IR/IRBuilder.h" |
| 60 | #include "llvm/IR/InlineAsm.h" |
| 61 | #include "llvm/IR/InstrTypes.h" |
| 62 | #include "llvm/IR/Instruction.h" |
| 63 | #include "llvm/IR/Instructions.h" |
| 64 | #include "llvm/IR/IntrinsicInst.h" |
| 65 | #include "llvm/IR/Intrinsics.h" |
| 66 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 67 | #include "llvm/IR/LLVMContext.h" |
| 68 | #include "llvm/IR/MDBuilder.h" |
| 69 | #include "llvm/IR/Module.h" |
| 70 | #include "llvm/IR/Operator.h" |
| 71 | #include "llvm/IR/PatternMatch.h" |
| 72 | #include "llvm/IR/ProfDataUtils.h" |
| 73 | #include "llvm/IR/Statepoint.h" |
| 74 | #include "llvm/IR/Type.h" |
| 75 | #include "llvm/IR/Use.h" |
| 76 | #include "llvm/IR/User.h" |
| 77 | #include "llvm/IR/Value.h" |
| 78 | #include "llvm/IR/ValueHandle.h" |
| 79 | #include "llvm/IR/ValueMap.h" |
| 80 | #include "llvm/InitializePasses.h" |
| 81 | #include "llvm/Pass.h" |
| 82 | #include "llvm/Support/BlockFrequency.h" |
| 83 | #include "llvm/Support/BranchProbability.h" |
| 84 | #include "llvm/Support/Casting.h" |
| 85 | #include "llvm/Support/CommandLine.h" |
| 86 | #include "llvm/Support/Compiler.h" |
| 87 | #include "llvm/Support/Debug.h" |
| 88 | #include "llvm/Support/ErrorHandling.h" |
| 89 | #include "llvm/Support/raw_ostream.h" |
| 90 | #include "llvm/Target/TargetMachine.h" |
| 91 | #include "llvm/Target/TargetOptions.h" |
| 92 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 93 | #include "llvm/Transforms/Utils/BypassSlowDivision.h" |
| 94 | #include "llvm/Transforms/Utils/Local.h" |
| 95 | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| 96 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 97 | #include <algorithm> |
| 98 | #include <cassert> |
| 99 | #include <cstdint> |
| 100 | #include <iterator> |
| 101 | #include <limits> |
| 102 | #include <memory> |
| 103 | #include <optional> |
| 104 | #include <utility> |
| 105 | #include <vector> |
| 106 | |
| 107 | using namespace llvm; |
| 108 | using namespace llvm::PatternMatch; |
| 109 | |
| 110 | #define DEBUG_TYPE "codegenprepare" |
| 111 | |
| 112 | STATISTIC(NumBlocksElim, "Number of blocks eliminated" ); |
| 113 | STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated" ); |
| 114 | STATISTIC(NumGEPsElim, "Number of GEPs converted to casts" ); |
| 115 | STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " |
| 116 | "sunken Cmps" ); |
| 117 | STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " |
| 118 | "of sunken Casts" ); |
| 119 | STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " |
| 120 | "computations were sunk" ); |
| 121 | STATISTIC(NumMemoryInstsPhiCreated, |
| 122 | "Number of phis created when address " |
| 123 | "computations were sunk to memory instructions" ); |
| 124 | STATISTIC(NumMemoryInstsSelectCreated, |
| 125 | "Number of select created when address " |
| 126 | "computations were sunk to memory instructions" ); |
| 127 | STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads" ); |
| 128 | STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized" ); |
| 129 | STATISTIC(NumAndsAdded, |
| 130 | "Number of and mask instructions added to form ext loads" ); |
| 131 | STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized" ); |
| 132 | STATISTIC(NumRetsDup, "Number of return instructions duplicated" ); |
| 133 | STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved" ); |
| 134 | STATISTIC(NumSelectsExpanded, "Number of selects turned into branches" ); |
| 135 | STATISTIC(, "Number of store(extractelement) exposed" ); |
| 136 | |
| 137 | static cl::opt<bool> DisableBranchOpts( |
| 138 | "disable-cgp-branch-opts" , cl::Hidden, cl::init(Val: false), |
| 139 | cl::desc("Disable branch optimizations in CodeGenPrepare" )); |
| 140 | |
| 141 | static cl::opt<bool> |
| 142 | DisableGCOpts("disable-cgp-gc-opts" , cl::Hidden, cl::init(Val: false), |
| 143 | cl::desc("Disable GC optimizations in CodeGenPrepare" )); |
| 144 | |
| 145 | static cl::opt<bool> |
| 146 | DisableSelectToBranch("disable-cgp-select2branch" , cl::Hidden, |
| 147 | cl::init(Val: false), |
| 148 | cl::desc("Disable select to branch conversion." )); |
| 149 | |
| 150 | static cl::opt<bool> |
| 151 | AddrSinkUsingGEPs("addr-sink-using-gep" , cl::Hidden, cl::init(Val: true), |
| 152 | cl::desc("Address sinking in CGP using GEPs." )); |
| 153 | |
| 154 | static cl::opt<bool> |
| 155 | EnableAndCmpSinking("enable-andcmp-sinking" , cl::Hidden, cl::init(Val: true), |
| 156 | cl::desc("Enable sinking and/cmp into branches." )); |
| 157 | |
| 158 | static cl::opt<bool> ( |
| 159 | "disable-cgp-store-extract" , cl::Hidden, cl::init(Val: false), |
| 160 | cl::desc("Disable store(extract) optimizations in CodeGenPrepare" )); |
| 161 | |
| 162 | static cl::opt<bool> ( |
| 163 | "stress-cgp-store-extract" , cl::Hidden, cl::init(Val: false), |
| 164 | cl::desc("Stress test store(extract) optimizations in CodeGenPrepare" )); |
| 165 | |
| 166 | static cl::opt<bool> DisableExtLdPromotion( |
| 167 | "disable-cgp-ext-ld-promotion" , cl::Hidden, cl::init(Val: false), |
| 168 | cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " |
| 169 | "CodeGenPrepare" )); |
| 170 | |
| 171 | static cl::opt<bool> StressExtLdPromotion( |
| 172 | "stress-cgp-ext-ld-promotion" , cl::Hidden, cl::init(Val: false), |
| 173 | cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " |
| 174 | "optimization in CodeGenPrepare" )); |
| 175 | |
| 176 | static cl::opt<bool> ( |
| 177 | "disable-preheader-prot" , cl::Hidden, cl::init(Val: false), |
| 178 | cl::desc("Disable protection against removing loop preheaders" )); |
| 179 | |
| 180 | static cl::opt<bool> ProfileGuidedSectionPrefix( |
| 181 | "profile-guided-section-prefix" , cl::Hidden, cl::init(Val: true), |
| 182 | cl::desc("Use profile info to add section prefix for hot/cold functions" )); |
| 183 | |
| 184 | static cl::opt<bool> ProfileUnknownInSpecialSection( |
| 185 | "profile-unknown-in-special-section" , cl::Hidden, |
| 186 | cl::desc("In profiling mode like sampleFDO, if a function doesn't have " |
| 187 | "profile, we cannot tell the function is cold for sure because " |
| 188 | "it may be a function newly added without ever being sampled. " |
| 189 | "With the flag enabled, compiler can put such profile unknown " |
| 190 | "functions into a special section, so runtime system can choose " |
| 191 | "to handle it in a different way than .text section, to save " |
| 192 | "RAM for example. " )); |
| 193 | |
| 194 | static cl::opt<bool> BBSectionsGuidedSectionPrefix( |
| 195 | "bbsections-guided-section-prefix" , cl::Hidden, cl::init(Val: true), |
| 196 | cl::desc("Use the basic-block-sections profile to determine the text " |
| 197 | "section prefix for hot functions. Functions with " |
| 198 | "basic-block-sections profile will be placed in `.text.hot` " |
| 199 | "regardless of their FDO profile info. Other functions won't be " |
| 200 | "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " |
| 201 | "profiles." )); |
| 202 | |
| 203 | static cl::opt<uint64_t> FreqRatioToSkipMerge( |
| 204 | "cgp-freq-ratio-to-skip-merge" , cl::Hidden, cl::init(Val: 2), |
| 205 | cl::desc("Skip merging empty blocks if (frequency of empty block) / " |
| 206 | "(frequency of destination block) is greater than this ratio" )); |
| 207 | |
| 208 | static cl::opt<bool> ForceSplitStore( |
| 209 | "force-split-store" , cl::Hidden, cl::init(Val: false), |
| 210 | cl::desc("Force store splitting no matter what the target query says." )); |
| 211 | |
| 212 | static cl::opt<bool> EnableTypePromotionMerge( |
| 213 | "cgp-type-promotion-merge" , cl::Hidden, |
| 214 | cl::desc("Enable merging of redundant sexts when one is dominating" |
| 215 | " the other." ), |
| 216 | cl::init(Val: true)); |
| 217 | |
| 218 | static cl::opt<bool> DisableComplexAddrModes( |
| 219 | "disable-complex-addr-modes" , cl::Hidden, cl::init(Val: false), |
| 220 | cl::desc("Disables combining addressing modes with different parts " |
| 221 | "in optimizeMemoryInst." )); |
| 222 | |
| 223 | static cl::opt<bool> |
| 224 | AddrSinkNewPhis("addr-sink-new-phis" , cl::Hidden, cl::init(Val: false), |
| 225 | cl::desc("Allow creation of Phis in Address sinking." )); |
| 226 | |
| 227 | static cl::opt<bool> AddrSinkNewSelects( |
| 228 | "addr-sink-new-select" , cl::Hidden, cl::init(Val: true), |
| 229 | cl::desc("Allow creation of selects in Address sinking." )); |
| 230 | |
| 231 | static cl::opt<bool> AddrSinkCombineBaseReg( |
| 232 | "addr-sink-combine-base-reg" , cl::Hidden, cl::init(Val: true), |
| 233 | cl::desc("Allow combining of BaseReg field in Address sinking." )); |
| 234 | |
| 235 | static cl::opt<bool> AddrSinkCombineBaseGV( |
| 236 | "addr-sink-combine-base-gv" , cl::Hidden, cl::init(Val: true), |
| 237 | cl::desc("Allow combining of BaseGV field in Address sinking." )); |
| 238 | |
| 239 | static cl::opt<bool> AddrSinkCombineBaseOffs( |
| 240 | "addr-sink-combine-base-offs" , cl::Hidden, cl::init(Val: true), |
| 241 | cl::desc("Allow combining of BaseOffs field in Address sinking." )); |
| 242 | |
| 243 | static cl::opt<bool> AddrSinkCombineScaledReg( |
| 244 | "addr-sink-combine-scaled-reg" , cl::Hidden, cl::init(Val: true), |
| 245 | cl::desc("Allow combining of ScaledReg field in Address sinking." )); |
| 246 | |
| 247 | static cl::opt<bool> |
| 248 | EnableGEPOffsetSplit("cgp-split-large-offset-gep" , cl::Hidden, |
| 249 | cl::init(Val: true), |
| 250 | cl::desc("Enable splitting large offset of GEP." )); |
| 251 | |
| 252 | static cl::opt<bool> EnableICMP_EQToICMP_ST( |
| 253 | "cgp-icmp-eq2icmp-st" , cl::Hidden, cl::init(Val: false), |
| 254 | cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion." )); |
| 255 | |
| 256 | static cl::opt<bool> |
| 257 | VerifyBFIUpdates("cgp-verify-bfi-updates" , cl::Hidden, cl::init(Val: false), |
| 258 | cl::desc("Enable BFI update verification for " |
| 259 | "CodeGenPrepare." )); |
| 260 | |
| 261 | static cl::opt<bool> |
| 262 | OptimizePhiTypes("cgp-optimize-phi-types" , cl::Hidden, cl::init(Val: true), |
| 263 | cl::desc("Enable converting phi types in CodeGenPrepare" )); |
| 264 | |
| 265 | static cl::opt<unsigned> |
| 266 | HugeFuncThresholdInCGPP("cgpp-huge-func" , cl::init(Val: 10000), cl::Hidden, |
| 267 | cl::desc("Least BB number of huge function." )); |
| 268 | |
| 269 | static cl::opt<unsigned> |
| 270 | MaxAddressUsersToScan("cgp-max-address-users-to-scan" , cl::init(Val: 100), |
| 271 | cl::Hidden, |
| 272 | cl::desc("Max number of address users to look at" )); |
| 273 | |
| 274 | static cl::opt<bool> |
| 275 | DisableDeletePHIs("disable-cgp-delete-phis" , cl::Hidden, cl::init(Val: false), |
| 276 | cl::desc("Disable elimination of dead PHI nodes." )); |
| 277 | |
| 278 | namespace { |
| 279 | |
| 280 | enum ExtType { |
| 281 | ZeroExtension, // Zero extension has been seen. |
| 282 | SignExtension, // Sign extension has been seen. |
| 283 | BothExtension // This extension type is used if we saw sext after |
| 284 | // ZeroExtension had been set, or if we saw zext after |
| 285 | // SignExtension had been set. It makes the type |
| 286 | // information of a promoted instruction invalid. |
| 287 | }; |
| 288 | |
| 289 | enum ModifyDT { |
| 290 | NotModifyDT, // Not Modify any DT. |
| 291 | ModifyBBDT, // Modify the Basic Block Dominator Tree. |
| 292 | ModifyInstDT // Modify the Instruction Dominator in a Basic Block, |
| 293 | // This usually means we move/delete/insert instruction |
| 294 | // in a Basic Block. So we should re-iterate instructions |
| 295 | // in such Basic Block. |
| 296 | }; |
| 297 | |
| 298 | using SetOfInstrs = SmallPtrSet<Instruction *, 16>; |
| 299 | using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; |
| 300 | using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; |
| 301 | using SExts = SmallVector<Instruction *, 16>; |
| 302 | using ValueToSExts = MapVector<Value *, SExts>; |
| 303 | |
| 304 | class TypePromotionTransaction; |
| 305 | |
| 306 | class CodeGenPrepare { |
| 307 | friend class CodeGenPrepareLegacyPass; |
| 308 | const TargetMachine *TM = nullptr; |
| 309 | const TargetSubtargetInfo *SubtargetInfo = nullptr; |
| 310 | const TargetLowering *TLI = nullptr; |
| 311 | const TargetRegisterInfo *TRI = nullptr; |
| 312 | const TargetTransformInfo *TTI = nullptr; |
| 313 | const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; |
| 314 | const TargetLibraryInfo *TLInfo = nullptr; |
| 315 | LoopInfo *LI = nullptr; |
| 316 | std::unique_ptr<BlockFrequencyInfo> BFI; |
| 317 | std::unique_ptr<BranchProbabilityInfo> BPI; |
| 318 | ProfileSummaryInfo *PSI = nullptr; |
| 319 | |
| 320 | /// As we scan instructions optimizing them, this is the next instruction |
| 321 | /// to optimize. Transforms that can invalidate this should update it. |
| 322 | BasicBlock::iterator CurInstIterator; |
| 323 | |
| 324 | /// Keeps track of non-local addresses that have been sunk into a block. |
| 325 | /// This allows us to avoid inserting duplicate code for blocks with |
| 326 | /// multiple load/stores of the same address. The usage of WeakTrackingVH |
| 327 | /// enables SunkAddrs to be treated as a cache whose entries can be |
| 328 | /// invalidated if a sunken address computation has been erased. |
| 329 | ValueMap<Value *, WeakTrackingVH> SunkAddrs; |
| 330 | |
| 331 | /// Keeps track of all instructions inserted for the current function. |
| 332 | SetOfInstrs InsertedInsts; |
| 333 | |
| 334 | /// Keeps track of the type of the related instruction before their |
| 335 | /// promotion for the current function. |
| 336 | InstrToOrigTy PromotedInsts; |
| 337 | |
| 338 | /// Keep track of instructions removed during promotion. |
| 339 | SetOfInstrs RemovedInsts; |
| 340 | |
| 341 | /// Keep track of sext chains based on their initial value. |
| 342 | DenseMap<Value *, Instruction *> SeenChainsForSExt; |
| 343 | |
| 344 | /// Keep track of GEPs accessing the same data structures such as structs or |
| 345 | /// arrays that are candidates to be split later because of their large |
| 346 | /// size. |
| 347 | MapVector<AssertingVH<Value>, |
| 348 | SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> |
| 349 | LargeOffsetGEPMap; |
| 350 | |
| 351 | /// Keep track of new GEP base after splitting the GEPs having large offset. |
| 352 | SmallSet<AssertingVH<Value>, 2> NewGEPBases; |
| 353 | |
| 354 | /// Map serial numbers to Large offset GEPs. |
| 355 | DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; |
| 356 | |
| 357 | /// Keep track of SExt promoted. |
| 358 | ValueToSExts ValToSExtendedUses; |
| 359 | |
| 360 | /// True if the function has the OptSize attribute. |
| 361 | bool OptSize; |
| 362 | |
| 363 | /// DataLayout for the Function being processed. |
| 364 | const DataLayout *DL = nullptr; |
| 365 | |
| 366 | /// Building the dominator tree can be expensive, so we only build it |
| 367 | /// lazily and update it when required. |
| 368 | std::unique_ptr<DominatorTree> DT; |
| 369 | |
| 370 | public: |
| 371 | CodeGenPrepare() = default; |
| 372 | CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; |
| 373 | /// If encounter huge function, we need to limit the build time. |
| 374 | bool IsHugeFunc = false; |
| 375 | |
| 376 | /// FreshBBs is like worklist, it collected the updated BBs which need |
| 377 | /// to be optimized again. |
| 378 | /// Note: Consider building time in this pass, when a BB updated, we need |
| 379 | /// to insert such BB into FreshBBs for huge function. |
| 380 | SmallPtrSet<BasicBlock *, 32> FreshBBs; |
| 381 | |
| 382 | void releaseMemory() { |
| 383 | // Clear per function information. |
| 384 | InsertedInsts.clear(); |
| 385 | PromotedInsts.clear(); |
| 386 | FreshBBs.clear(); |
| 387 | BPI.reset(); |
| 388 | BFI.reset(); |
| 389 | } |
| 390 | |
| 391 | bool run(Function &F, FunctionAnalysisManager &AM); |
| 392 | |
| 393 | private: |
| 394 | template <typename F> |
| 395 | void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { |
| 396 | // Substituting can cause recursive simplifications, which can invalidate |
| 397 | // our iterator. Use a WeakTrackingVH to hold onto it in case this |
| 398 | // happens. |
| 399 | Value *CurValue = &*CurInstIterator; |
| 400 | WeakTrackingVH IterHandle(CurValue); |
| 401 | |
| 402 | f(); |
| 403 | |
| 404 | // If the iterator instruction was recursively deleted, start over at the |
| 405 | // start of the block. |
| 406 | if (IterHandle != CurValue) { |
| 407 | CurInstIterator = BB->begin(); |
| 408 | SunkAddrs.clear(); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | // Get the DominatorTree, building if necessary. |
| 413 | DominatorTree &getDT(Function &F) { |
| 414 | if (!DT) |
| 415 | DT = std::make_unique<DominatorTree>(args&: F); |
| 416 | return *DT; |
| 417 | } |
| 418 | |
| 419 | void removeAllAssertingVHReferences(Value *V); |
| 420 | bool eliminateAssumptions(Function &F); |
| 421 | bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); |
| 422 | bool eliminateMostlyEmptyBlocks(Function &F); |
| 423 | BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); |
| 424 | bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; |
| 425 | void eliminateMostlyEmptyBlock(BasicBlock *BB); |
| 426 | bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, |
| 427 | bool ); |
| 428 | bool makeBitReverse(Instruction &I); |
| 429 | bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); |
| 430 | bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); |
| 431 | bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, |
| 432 | unsigned AddrSpace); |
| 433 | bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); |
| 434 | bool optimizeMulWithOverflow(Instruction *I, bool IsSigned, |
| 435 | ModifyDT &ModifiedDT); |
| 436 | bool optimizeInlineAsmInst(CallInst *CS); |
| 437 | bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); |
| 438 | bool optimizeExt(Instruction *&I); |
| 439 | bool optimizeExtUses(Instruction *I); |
| 440 | bool optimizeLoadExt(LoadInst *Load); |
| 441 | bool optimizeShiftInst(BinaryOperator *BO); |
| 442 | bool optimizeFunnelShift(IntrinsicInst *Fsh); |
| 443 | bool optimizeSelectInst(SelectInst *SI); |
| 444 | bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); |
| 445 | bool optimizeSwitchType(SwitchInst *SI); |
| 446 | bool optimizeSwitchPhiConstants(SwitchInst *SI); |
| 447 | bool optimizeSwitchInst(SwitchInst *SI); |
| 448 | bool optimizeExtractElementInst(Instruction *Inst); |
| 449 | bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); |
| 450 | bool fixupDbgVariableRecord(DbgVariableRecord &I); |
| 451 | bool fixupDbgVariableRecordsOnInst(Instruction &I); |
| 452 | bool placeDbgValues(Function &F); |
| 453 | bool placePseudoProbes(Function &F); |
| 454 | bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, |
| 455 | LoadInst *&LI, Instruction *&Inst, bool HasPromoted); |
| 456 | bool tryToPromoteExts(TypePromotionTransaction &TPT, |
| 457 | const SmallVectorImpl<Instruction *> &Exts, |
| 458 | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, |
| 459 | unsigned CreatedInstsCost = 0); |
| 460 | bool mergeSExts(Function &F); |
| 461 | bool splitLargeGEPOffsets(); |
| 462 | bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, |
| 463 | SmallPtrSetImpl<Instruction *> &DeletedInstrs); |
| 464 | bool optimizePhiTypes(Function &F); |
| 465 | bool performAddressTypePromotion( |
| 466 | Instruction *&Inst, bool , |
| 467 | bool HasPromoted, TypePromotionTransaction &TPT, |
| 468 | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); |
| 469 | bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); |
| 470 | bool simplifyOffsetableRelocate(GCStatepointInst &I); |
| 471 | |
| 472 | bool tryToSinkFreeOperands(Instruction *I); |
| 473 | bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, |
| 474 | CmpInst *Cmp, Intrinsic::ID IID); |
| 475 | bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); |
| 476 | bool optimizeURem(Instruction *Rem); |
| 477 | bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); |
| 478 | bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); |
| 479 | bool unfoldPowerOf2Test(CmpInst *Cmp); |
| 480 | void verifyBFIUpdates(Function &F); |
| 481 | bool _run(Function &F); |
| 482 | }; |
| 483 | |
| 484 | class CodeGenPrepareLegacyPass : public FunctionPass { |
| 485 | public: |
| 486 | static char ID; // Pass identification, replacement for typeid |
| 487 | |
| 488 | CodeGenPrepareLegacyPass() : FunctionPass(ID) {} |
| 489 | |
| 490 | bool runOnFunction(Function &F) override; |
| 491 | |
| 492 | StringRef getPassName() const override { return "CodeGen Prepare" ; } |
| 493 | |
| 494 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 495 | // FIXME: When we can selectively preserve passes, preserve the domtree. |
| 496 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 497 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 498 | AU.addRequired<TargetPassConfig>(); |
| 499 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 500 | AU.addRequired<LoopInfoWrapperPass>(); |
| 501 | AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); |
| 502 | } |
| 503 | }; |
| 504 | |
| 505 | } // end anonymous namespace |
| 506 | |
| 507 | char CodeGenPrepareLegacyPass::ID = 0; |
| 508 | |
| 509 | bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { |
| 510 | if (skipFunction(F)) |
| 511 | return false; |
| 512 | auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
| 513 | CodeGenPrepare CGP(TM); |
| 514 | CGP.DL = &F.getDataLayout(); |
| 515 | CGP.SubtargetInfo = TM->getSubtargetImpl(F); |
| 516 | CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); |
| 517 | CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); |
| 518 | CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 519 | CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 520 | CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 521 | CGP.BPI.reset(p: new BranchProbabilityInfo(F, *CGP.LI)); |
| 522 | CGP.BFI.reset(p: new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); |
| 523 | CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 524 | auto BBSPRWP = |
| 525 | getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); |
| 526 | CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; |
| 527 | |
| 528 | return CGP._run(F); |
| 529 | } |
| 530 | |
| 531 | INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, |
| 532 | "Optimize for code generation" , false, false) |
| 533 | INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) |
| 534 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 535 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| 536 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 537 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| 538 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 539 | INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, |
| 540 | "Optimize for code generation" , false, false) |
| 541 | |
| 542 | FunctionPass *llvm::createCodeGenPrepareLegacyPass() { |
| 543 | return new CodeGenPrepareLegacyPass(); |
| 544 | } |
| 545 | |
| 546 | PreservedAnalyses CodeGenPreparePass::run(Function &F, |
| 547 | FunctionAnalysisManager &AM) { |
| 548 | CodeGenPrepare CGP(TM); |
| 549 | |
| 550 | bool Changed = CGP.run(F, AM); |
| 551 | if (!Changed) |
| 552 | return PreservedAnalyses::all(); |
| 553 | |
| 554 | PreservedAnalyses PA; |
| 555 | PA.preserve<TargetLibraryAnalysis>(); |
| 556 | PA.preserve<TargetIRAnalysis>(); |
| 557 | return PA; |
| 558 | } |
| 559 | |
| 560 | bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { |
| 561 | DL = &F.getDataLayout(); |
| 562 | SubtargetInfo = TM->getSubtargetImpl(F); |
| 563 | TLI = SubtargetInfo->getTargetLowering(); |
| 564 | TRI = SubtargetInfo->getRegisterInfo(); |
| 565 | TLInfo = &AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 566 | TTI = &AM.getResult<TargetIRAnalysis>(IR&: F); |
| 567 | LI = &AM.getResult<LoopAnalysis>(IR&: F); |
| 568 | BPI.reset(p: new BranchProbabilityInfo(F, *LI)); |
| 569 | BFI.reset(p: new BlockFrequencyInfo(F, *BPI, *LI)); |
| 570 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F); |
| 571 | PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
| 572 | BBSectionsProfileReader = |
| 573 | AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(IR&: F); |
| 574 | return _run(F); |
| 575 | } |
| 576 | |
| 577 | bool CodeGenPrepare::_run(Function &F) { |
| 578 | bool EverMadeChange = false; |
| 579 | |
| 580 | OptSize = F.hasOptSize(); |
| 581 | // Use the basic-block-sections profile to promote hot functions to .text.hot |
| 582 | // if requested. |
| 583 | if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && |
| 584 | BBSectionsProfileReader->isFunctionHot(FuncName: F.getName())) { |
| 585 | (void)F.setSectionPrefix("hot" ); |
| 586 | } else if (ProfileGuidedSectionPrefix) { |
| 587 | // The hot attribute overwrites profile count based hotness while profile |
| 588 | // counts based hotness overwrite the cold attribute. |
| 589 | // This is a conservative behabvior. |
| 590 | if (F.hasFnAttribute(Kind: Attribute::Hot) || |
| 591 | PSI->isFunctionHotInCallGraph(F: &F, BFI&: *BFI)) |
| 592 | (void)F.setSectionPrefix("hot" ); |
| 593 | // If PSI shows this function is not hot, we will placed the function |
| 594 | // into unlikely section if (1) PSI shows this is a cold function, or |
| 595 | // (2) the function has a attribute of cold. |
| 596 | else if (PSI->isFunctionColdInCallGraph(F: &F, BFI&: *BFI) || |
| 597 | F.hasFnAttribute(Kind: Attribute::Cold)) |
| 598 | (void)F.setSectionPrefix("unlikely" ); |
| 599 | else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && |
| 600 | PSI->isFunctionHotnessUnknown(F)) |
| 601 | (void)F.setSectionPrefix("unknown" ); |
| 602 | } |
| 603 | |
| 604 | /// This optimization identifies DIV instructions that can be |
| 605 | /// profitably bypassed and carried out with a shorter, faster divide. |
| 606 | if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { |
| 607 | const DenseMap<unsigned int, unsigned int> &BypassWidths = |
| 608 | TLI->getBypassSlowDivWidths(); |
| 609 | BasicBlock *BB = &*F.begin(); |
| 610 | while (BB != nullptr) { |
| 611 | // bypassSlowDivision may create new BBs, but we don't want to reapply the |
| 612 | // optimization to those blocks. |
| 613 | BasicBlock *Next = BB->getNextNode(); |
| 614 | if (!llvm::shouldOptimizeForSize(BB, PSI, BFI: BFI.get())) |
| 615 | EverMadeChange |= bypassSlowDivision(BB, BypassWidth: BypassWidths); |
| 616 | BB = Next; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | // Get rid of @llvm.assume builtins before attempting to eliminate empty |
| 621 | // blocks, since there might be blocks that only contain @llvm.assume calls |
| 622 | // (plus arguments that we can get rid of). |
| 623 | EverMadeChange |= eliminateAssumptions(F); |
| 624 | |
| 625 | // Eliminate blocks that contain only PHI nodes and an |
| 626 | // unconditional branch. |
| 627 | EverMadeChange |= eliminateMostlyEmptyBlocks(F); |
| 628 | |
| 629 | ModifyDT ModifiedDT = ModifyDT::NotModifyDT; |
| 630 | if (!DisableBranchOpts) |
| 631 | EverMadeChange |= splitBranchCondition(F, ModifiedDT); |
| 632 | |
| 633 | // Split some critical edges where one of the sources is an indirect branch, |
| 634 | // to help generate sane code for PHIs involving such edges. |
| 635 | EverMadeChange |= |
| 636 | SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); |
| 637 | |
| 638 | // If we are optimzing huge function, we need to consider the build time. |
| 639 | // Because the basic algorithm's complex is near O(N!). |
| 640 | IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; |
| 641 | |
| 642 | // Transformations above may invalidate dominator tree and/or loop info. |
| 643 | DT.reset(); |
| 644 | LI->releaseMemory(); |
| 645 | LI->analyze(DomTree: getDT(F)); |
| 646 | |
| 647 | bool MadeChange = true; |
| 648 | bool FuncIterated = false; |
| 649 | while (MadeChange) { |
| 650 | MadeChange = false; |
| 651 | |
| 652 | for (BasicBlock &BB : llvm::make_early_inc_range(Range&: F)) { |
| 653 | if (FuncIterated && !FreshBBs.contains(Ptr: &BB)) |
| 654 | continue; |
| 655 | |
| 656 | ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; |
| 657 | bool Changed = optimizeBlock(BB, ModifiedDT&: ModifiedDTOnIteration); |
| 658 | |
| 659 | if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) |
| 660 | DT.reset(); |
| 661 | |
| 662 | MadeChange |= Changed; |
| 663 | if (IsHugeFunc) { |
| 664 | // If the BB is updated, it may still has chance to be optimized. |
| 665 | // This usually happen at sink optimization. |
| 666 | // For example: |
| 667 | // |
| 668 | // bb0: |
| 669 | // %and = and i32 %a, 4 |
| 670 | // %cmp = icmp eq i32 %and, 0 |
| 671 | // |
| 672 | // If the %cmp sink to other BB, the %and will has chance to sink. |
| 673 | if (Changed) |
| 674 | FreshBBs.insert(Ptr: &BB); |
| 675 | else if (FuncIterated) |
| 676 | FreshBBs.erase(Ptr: &BB); |
| 677 | } else { |
| 678 | // For small/normal functions, we restart BB iteration if the dominator |
| 679 | // tree of the Function was changed. |
| 680 | if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) |
| 681 | break; |
| 682 | } |
| 683 | } |
| 684 | // We have iterated all the BB in the (only work for huge) function. |
| 685 | FuncIterated = IsHugeFunc; |
| 686 | |
| 687 | if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) |
| 688 | MadeChange |= mergeSExts(F); |
| 689 | if (!LargeOffsetGEPMap.empty()) |
| 690 | MadeChange |= splitLargeGEPOffsets(); |
| 691 | MadeChange |= optimizePhiTypes(F); |
| 692 | |
| 693 | if (MadeChange) |
| 694 | eliminateFallThrough(F, DT: DT.get()); |
| 695 | |
| 696 | #ifndef NDEBUG |
| 697 | if (MadeChange && VerifyLoopInfo) |
| 698 | LI->verify(getDT(F)); |
| 699 | #endif |
| 700 | |
| 701 | // Really free removed instructions during promotion. |
| 702 | for (Instruction *I : RemovedInsts) |
| 703 | I->deleteValue(); |
| 704 | |
| 705 | EverMadeChange |= MadeChange; |
| 706 | SeenChainsForSExt.clear(); |
| 707 | ValToSExtendedUses.clear(); |
| 708 | RemovedInsts.clear(); |
| 709 | LargeOffsetGEPMap.clear(); |
| 710 | LargeOffsetGEPID.clear(); |
| 711 | } |
| 712 | |
| 713 | NewGEPBases.clear(); |
| 714 | SunkAddrs.clear(); |
| 715 | |
| 716 | if (!DisableBranchOpts) { |
| 717 | MadeChange = false; |
| 718 | // Use a set vector to get deterministic iteration order. The order the |
| 719 | // blocks are removed may affect whether or not PHI nodes in successors |
| 720 | // are removed. |
| 721 | SmallSetVector<BasicBlock *, 8> WorkList; |
| 722 | for (BasicBlock &BB : F) { |
| 723 | SmallVector<BasicBlock *, 2> Successors(successors(BB: &BB)); |
| 724 | MadeChange |= ConstantFoldTerminator(BB: &BB, DeleteDeadConditions: true); |
| 725 | if (!MadeChange) |
| 726 | continue; |
| 727 | |
| 728 | for (BasicBlock *Succ : Successors) |
| 729 | if (pred_empty(BB: Succ)) |
| 730 | WorkList.insert(X: Succ); |
| 731 | } |
| 732 | |
| 733 | // Delete the dead blocks and any of their dead successors. |
| 734 | MadeChange |= !WorkList.empty(); |
| 735 | while (!WorkList.empty()) { |
| 736 | BasicBlock *BB = WorkList.pop_back_val(); |
| 737 | SmallVector<BasicBlock *, 2> Successors(successors(BB)); |
| 738 | |
| 739 | DeleteDeadBlock(BB); |
| 740 | |
| 741 | for (BasicBlock *Succ : Successors) |
| 742 | if (pred_empty(BB: Succ)) |
| 743 | WorkList.insert(X: Succ); |
| 744 | } |
| 745 | |
| 746 | // Merge pairs of basic blocks with unconditional branches, connected by |
| 747 | // a single edge. |
| 748 | if (EverMadeChange || MadeChange) |
| 749 | MadeChange |= eliminateFallThrough(F); |
| 750 | |
| 751 | EverMadeChange |= MadeChange; |
| 752 | } |
| 753 | |
| 754 | if (!DisableGCOpts) { |
| 755 | SmallVector<GCStatepointInst *, 2> Statepoints; |
| 756 | for (BasicBlock &BB : F) |
| 757 | for (Instruction &I : BB) |
| 758 | if (auto *SP = dyn_cast<GCStatepointInst>(Val: &I)) |
| 759 | Statepoints.push_back(Elt: SP); |
| 760 | for (auto &I : Statepoints) |
| 761 | EverMadeChange |= simplifyOffsetableRelocate(I&: *I); |
| 762 | } |
| 763 | |
| 764 | // Do this last to clean up use-before-def scenarios introduced by other |
| 765 | // preparatory transforms. |
| 766 | EverMadeChange |= placeDbgValues(F); |
| 767 | EverMadeChange |= placePseudoProbes(F); |
| 768 | |
| 769 | #ifndef NDEBUG |
| 770 | if (VerifyBFIUpdates) |
| 771 | verifyBFIUpdates(F); |
| 772 | #endif |
| 773 | |
| 774 | return EverMadeChange; |
| 775 | } |
| 776 | |
| 777 | bool CodeGenPrepare::eliminateAssumptions(Function &F) { |
| 778 | bool MadeChange = false; |
| 779 | for (BasicBlock &BB : F) { |
| 780 | CurInstIterator = BB.begin(); |
| 781 | while (CurInstIterator != BB.end()) { |
| 782 | Instruction *I = &*(CurInstIterator++); |
| 783 | if (auto *Assume = dyn_cast<AssumeInst>(Val: I)) { |
| 784 | MadeChange = true; |
| 785 | Value *Operand = Assume->getOperand(i_nocapture: 0); |
| 786 | Assume->eraseFromParent(); |
| 787 | |
| 788 | resetIteratorIfInvalidatedWhileCalling(BB: &BB, f: [&]() { |
| 789 | RecursivelyDeleteTriviallyDeadInstructions(V: Operand, TLI: TLInfo, MSSAU: nullptr); |
| 790 | }); |
| 791 | } |
| 792 | } |
| 793 | } |
| 794 | return MadeChange; |
| 795 | } |
| 796 | |
| 797 | /// An instruction is about to be deleted, so remove all references to it in our |
| 798 | /// GEP-tracking data strcutures. |
| 799 | void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { |
| 800 | LargeOffsetGEPMap.erase(Key: V); |
| 801 | NewGEPBases.erase(V); |
| 802 | |
| 803 | auto GEP = dyn_cast<GetElementPtrInst>(Val: V); |
| 804 | if (!GEP) |
| 805 | return; |
| 806 | |
| 807 | LargeOffsetGEPID.erase(Val: GEP); |
| 808 | |
| 809 | auto VecI = LargeOffsetGEPMap.find(Key: GEP->getPointerOperand()); |
| 810 | if (VecI == LargeOffsetGEPMap.end()) |
| 811 | return; |
| 812 | |
| 813 | auto &GEPVector = VecI->second; |
| 814 | llvm::erase_if(C&: GEPVector, P: [=](auto &Elt) { return Elt.first == GEP; }); |
| 815 | |
| 816 | if (GEPVector.empty()) |
| 817 | LargeOffsetGEPMap.erase(Iterator: VecI); |
| 818 | } |
| 819 | |
| 820 | // Verify BFI has been updated correctly by recomputing BFI and comparing them. |
| 821 | [[maybe_unused]] void CodeGenPrepare::verifyBFIUpdates(Function &F) { |
| 822 | DominatorTree NewDT(F); |
| 823 | LoopInfo NewLI(NewDT); |
| 824 | BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); |
| 825 | BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); |
| 826 | NewBFI.verifyMatch(Other&: *BFI); |
| 827 | } |
| 828 | |
| 829 | /// Merge basic blocks which are connected by a single edge, where one of the |
| 830 | /// basic blocks has a single successor pointing to the other basic block, |
| 831 | /// which has a single predecessor. |
| 832 | bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { |
| 833 | bool Changed = false; |
| 834 | // Scan all of the blocks in the function, except for the entry block. |
| 835 | // Use a temporary array to avoid iterator being invalidated when |
| 836 | // deleting blocks. |
| 837 | SmallVector<WeakTrackingVH, 16> Blocks( |
| 838 | llvm::make_pointer_range(Range: llvm::drop_begin(RangeOrContainer&: F))); |
| 839 | |
| 840 | SmallSet<WeakTrackingVH, 16> Preds; |
| 841 | for (auto &Block : Blocks) { |
| 842 | auto *BB = cast_or_null<BasicBlock>(Val&: Block); |
| 843 | if (!BB) |
| 844 | continue; |
| 845 | // If the destination block has a single pred, then this is a trivial |
| 846 | // edge, just collapse it. |
| 847 | BasicBlock *SinglePred = BB->getSinglePredecessor(); |
| 848 | |
| 849 | // Don't merge if BB's address is taken. |
| 850 | if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) |
| 851 | continue; |
| 852 | |
| 853 | // Make an effort to skip unreachable blocks. |
| 854 | if (DT && !DT->isReachableFromEntry(A: BB)) |
| 855 | continue; |
| 856 | |
| 857 | BranchInst *Term = dyn_cast<BranchInst>(Val: SinglePred->getTerminator()); |
| 858 | if (Term && !Term->isConditional()) { |
| 859 | Changed = true; |
| 860 | LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n" ); |
| 861 | |
| 862 | // Merge BB into SinglePred and delete it. |
| 863 | MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, |
| 864 | /* MemDep */ nullptr, |
| 865 | /* PredecessorWithTwoSuccessors */ false, DT); |
| 866 | Preds.insert(V: SinglePred); |
| 867 | |
| 868 | if (IsHugeFunc) { |
| 869 | // Update FreshBBs to optimize the merged BB. |
| 870 | FreshBBs.insert(Ptr: SinglePred); |
| 871 | FreshBBs.erase(Ptr: BB); |
| 872 | } |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | // (Repeatedly) merging blocks into their predecessors can create redundant |
| 877 | // debug intrinsics. |
| 878 | for (const auto &Pred : Preds) |
| 879 | if (auto *BB = cast_or_null<BasicBlock>(Val: Pred)) |
| 880 | RemoveRedundantDbgInstrs(BB); |
| 881 | |
| 882 | return Changed; |
| 883 | } |
| 884 | |
| 885 | /// Find a destination block from BB if BB is mergeable empty block. |
| 886 | BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { |
| 887 | // If this block doesn't end with an uncond branch, ignore it. |
| 888 | BranchInst *BI = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
| 889 | if (!BI || !BI->isUnconditional()) |
| 890 | return nullptr; |
| 891 | |
| 892 | // If the instruction before the branch (skipping debug info) isn't a phi |
| 893 | // node, then other stuff is happening here. |
| 894 | BasicBlock::iterator BBI = BI->getIterator(); |
| 895 | if (BBI != BB->begin()) { |
| 896 | --BBI; |
| 897 | if (!isa<PHINode>(Val: BBI)) |
| 898 | return nullptr; |
| 899 | } |
| 900 | |
| 901 | // Do not break infinite loops. |
| 902 | BasicBlock *DestBB = BI->getSuccessor(i: 0); |
| 903 | if (DestBB == BB) |
| 904 | return nullptr; |
| 905 | |
| 906 | if (!canMergeBlocks(BB, DestBB)) |
| 907 | DestBB = nullptr; |
| 908 | |
| 909 | return DestBB; |
| 910 | } |
| 911 | |
| 912 | /// Eliminate blocks that contain only PHI nodes, debug info directives, and an |
| 913 | /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split |
| 914 | /// edges in ways that are non-optimal for isel. Start by eliminating these |
| 915 | /// blocks so we can split them the way we want them. |
| 916 | bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { |
| 917 | SmallPtrSet<BasicBlock *, 16> ; |
| 918 | SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); |
| 919 | while (!LoopList.empty()) { |
| 920 | Loop *L = LoopList.pop_back_val(); |
| 921 | llvm::append_range(C&: LoopList, R&: *L); |
| 922 | if (BasicBlock * = L->getLoopPreheader()) |
| 923 | Preheaders.insert(Ptr: Preheader); |
| 924 | } |
| 925 | |
| 926 | bool MadeChange = false; |
| 927 | // Copy blocks into a temporary array to avoid iterator invalidation issues |
| 928 | // as we remove them. |
| 929 | // Note that this intentionally skips the entry block. |
| 930 | SmallVector<WeakTrackingVH, 16> Blocks; |
| 931 | for (auto &Block : llvm::drop_begin(RangeOrContainer&: F)) { |
| 932 | // Delete phi nodes that could block deleting other empty blocks. |
| 933 | if (!DisableDeletePHIs) |
| 934 | MadeChange |= DeleteDeadPHIs(BB: &Block, TLI: TLInfo); |
| 935 | Blocks.push_back(Elt: &Block); |
| 936 | } |
| 937 | |
| 938 | for (auto &Block : Blocks) { |
| 939 | BasicBlock *BB = cast_or_null<BasicBlock>(Val&: Block); |
| 940 | if (!BB) |
| 941 | continue; |
| 942 | BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); |
| 943 | if (!DestBB || |
| 944 | !isMergingEmptyBlockProfitable(BB, DestBB, isPreheader: Preheaders.count(Ptr: BB))) |
| 945 | continue; |
| 946 | |
| 947 | eliminateMostlyEmptyBlock(BB); |
| 948 | MadeChange = true; |
| 949 | } |
| 950 | return MadeChange; |
| 951 | } |
| 952 | |
| 953 | bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, |
| 954 | BasicBlock *DestBB, |
| 955 | bool ) { |
| 956 | // Do not delete loop preheaders if doing so would create a critical edge. |
| 957 | // Loop preheaders can be good locations to spill registers. If the |
| 958 | // preheader is deleted and we create a critical edge, registers may be |
| 959 | // spilled in the loop body instead. |
| 960 | if (!DisablePreheaderProtect && isPreheader && |
| 961 | !(BB->getSinglePredecessor() && |
| 962 | BB->getSinglePredecessor()->getSingleSuccessor())) |
| 963 | return false; |
| 964 | |
| 965 | // Skip merging if the block's successor is also a successor to any callbr |
| 966 | // that leads to this block. |
| 967 | // FIXME: Is this really needed? Is this a correctness issue? |
| 968 | for (BasicBlock *Pred : predecessors(BB)) { |
| 969 | if (isa<CallBrInst>(Val: Pred->getTerminator()) && |
| 970 | llvm::is_contained(Range: successors(BB: Pred), Element: DestBB)) |
| 971 | return false; |
| 972 | } |
| 973 | |
| 974 | // Try to skip merging if the unique predecessor of BB is terminated by a |
| 975 | // switch or indirect branch instruction, and BB is used as an incoming block |
| 976 | // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to |
| 977 | // add COPY instructions in the predecessor of BB instead of BB (if it is not |
| 978 | // merged). Note that the critical edge created by merging such blocks wont be |
| 979 | // split in MachineSink because the jump table is not analyzable. By keeping |
| 980 | // such empty block (BB), ISel will place COPY instructions in BB, not in the |
| 981 | // predecessor of BB. |
| 982 | BasicBlock *Pred = BB->getUniquePredecessor(); |
| 983 | if (!Pred || !(isa<SwitchInst>(Val: Pred->getTerminator()) || |
| 984 | isa<IndirectBrInst>(Val: Pred->getTerminator()))) |
| 985 | return true; |
| 986 | |
| 987 | if (BB->getTerminator() != &*BB->getFirstNonPHIOrDbg()) |
| 988 | return true; |
| 989 | |
| 990 | // We use a simple cost heuristic which determine skipping merging is |
| 991 | // profitable if the cost of skipping merging is less than the cost of |
| 992 | // merging : Cost(skipping merging) < Cost(merging BB), where the |
| 993 | // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and |
| 994 | // the Cost(merging BB) is Freq(Pred) * Cost(Copy). |
| 995 | // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : |
| 996 | // Freq(Pred) / Freq(BB) > 2. |
| 997 | // Note that if there are multiple empty blocks sharing the same incoming |
| 998 | // value for the PHIs in the DestBB, we consider them together. In such |
| 999 | // case, Cost(merging BB) will be the sum of their frequencies. |
| 1000 | |
| 1001 | if (!isa<PHINode>(Val: DestBB->begin())) |
| 1002 | return true; |
| 1003 | |
| 1004 | SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; |
| 1005 | |
| 1006 | // Find all other incoming blocks from which incoming values of all PHIs in |
| 1007 | // DestBB are the same as the ones from BB. |
| 1008 | for (BasicBlock *DestBBPred : predecessors(BB: DestBB)) { |
| 1009 | if (DestBBPred == BB) |
| 1010 | continue; |
| 1011 | |
| 1012 | if (llvm::all_of(Range: DestBB->phis(), P: [&](const PHINode &DestPN) { |
| 1013 | return DestPN.getIncomingValueForBlock(BB) == |
| 1014 | DestPN.getIncomingValueForBlock(BB: DestBBPred); |
| 1015 | })) |
| 1016 | SameIncomingValueBBs.insert(Ptr: DestBBPred); |
| 1017 | } |
| 1018 | |
| 1019 | // See if all BB's incoming values are same as the value from Pred. In this |
| 1020 | // case, no reason to skip merging because COPYs are expected to be place in |
| 1021 | // Pred already. |
| 1022 | if (SameIncomingValueBBs.count(Ptr: Pred)) |
| 1023 | return true; |
| 1024 | |
| 1025 | BlockFrequency PredFreq = BFI->getBlockFreq(BB: Pred); |
| 1026 | BlockFrequency BBFreq = BFI->getBlockFreq(BB); |
| 1027 | |
| 1028 | for (auto *SameValueBB : SameIncomingValueBBs) |
| 1029 | if (SameValueBB->getUniquePredecessor() == Pred && |
| 1030 | DestBB == findDestBlockOfMergeableEmptyBlock(BB: SameValueBB)) |
| 1031 | BBFreq += BFI->getBlockFreq(BB: SameValueBB); |
| 1032 | |
| 1033 | std::optional<BlockFrequency> Limit = BBFreq.mul(Factor: FreqRatioToSkipMerge); |
| 1034 | return !Limit || PredFreq <= *Limit; |
| 1035 | } |
| 1036 | |
| 1037 | /// Return true if we can merge BB into DestBB if there is a single |
| 1038 | /// unconditional branch between them, and BB contains no other non-phi |
| 1039 | /// instructions. |
| 1040 | bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, |
| 1041 | const BasicBlock *DestBB) const { |
| 1042 | // We only want to eliminate blocks whose phi nodes are used by phi nodes in |
| 1043 | // the successor. If there are more complex condition (e.g. preheaders), |
| 1044 | // don't mess around with them. |
| 1045 | for (const PHINode &PN : BB->phis()) { |
| 1046 | for (const User *U : PN.users()) { |
| 1047 | const Instruction *UI = cast<Instruction>(Val: U); |
| 1048 | if (UI->getParent() != DestBB || !isa<PHINode>(Val: UI)) |
| 1049 | return false; |
| 1050 | // If User is inside DestBB block and it is a PHINode then check |
| 1051 | // incoming value. If incoming value is not from BB then this is |
| 1052 | // a complex condition (e.g. preheaders) we want to avoid here. |
| 1053 | if (UI->getParent() == DestBB) { |
| 1054 | if (const PHINode *UPN = dyn_cast<PHINode>(Val: UI)) |
| 1055 | for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { |
| 1056 | Instruction *Insn = dyn_cast<Instruction>(Val: UPN->getIncomingValue(i: I)); |
| 1057 | if (Insn && Insn->getParent() == BB && |
| 1058 | Insn->getParent() != UPN->getIncomingBlock(i: I)) |
| 1059 | return false; |
| 1060 | } |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | // If BB and DestBB contain any common predecessors, then the phi nodes in BB |
| 1066 | // and DestBB may have conflicting incoming values for the block. If so, we |
| 1067 | // can't merge the block. |
| 1068 | const PHINode *DestBBPN = dyn_cast<PHINode>(Val: DestBB->begin()); |
| 1069 | if (!DestBBPN) |
| 1070 | return true; // no conflict. |
| 1071 | |
| 1072 | // Collect the preds of BB. |
| 1073 | SmallPtrSet<const BasicBlock *, 16> BBPreds; |
| 1074 | if (const PHINode *BBPN = dyn_cast<PHINode>(Val: BB->begin())) { |
| 1075 | // It is faster to get preds from a PHI than with pred_iterator. |
| 1076 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) |
| 1077 | BBPreds.insert(Ptr: BBPN->getIncomingBlock(i)); |
| 1078 | } else { |
| 1079 | BBPreds.insert_range(R: predecessors(BB)); |
| 1080 | } |
| 1081 | |
| 1082 | // Walk the preds of DestBB. |
| 1083 | for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { |
| 1084 | BasicBlock *Pred = DestBBPN->getIncomingBlock(i); |
| 1085 | if (BBPreds.count(Ptr: Pred)) { // Common predecessor? |
| 1086 | for (const PHINode &PN : DestBB->phis()) { |
| 1087 | const Value *V1 = PN.getIncomingValueForBlock(BB: Pred); |
| 1088 | const Value *V2 = PN.getIncomingValueForBlock(BB); |
| 1089 | |
| 1090 | // If V2 is a phi node in BB, look up what the mapped value will be. |
| 1091 | if (const PHINode *V2PN = dyn_cast<PHINode>(Val: V2)) |
| 1092 | if (V2PN->getParent() == BB) |
| 1093 | V2 = V2PN->getIncomingValueForBlock(BB: Pred); |
| 1094 | |
| 1095 | // If there is a conflict, bail out. |
| 1096 | if (V1 != V2) |
| 1097 | return false; |
| 1098 | } |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | return true; |
| 1103 | } |
| 1104 | |
| 1105 | /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. |
| 1106 | static void replaceAllUsesWith(Value *Old, Value *New, |
| 1107 | SmallPtrSet<BasicBlock *, 32> &FreshBBs, |
| 1108 | bool IsHuge) { |
| 1109 | auto *OldI = dyn_cast<Instruction>(Val: Old); |
| 1110 | if (OldI) { |
| 1111 | for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); |
| 1112 | UI != E; ++UI) { |
| 1113 | Instruction *User = cast<Instruction>(Val: *UI); |
| 1114 | if (IsHuge) |
| 1115 | FreshBBs.insert(Ptr: User->getParent()); |
| 1116 | } |
| 1117 | } |
| 1118 | Old->replaceAllUsesWith(V: New); |
| 1119 | } |
| 1120 | |
| 1121 | /// Eliminate a basic block that has only phi's and an unconditional branch in |
| 1122 | /// it. |
| 1123 | void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { |
| 1124 | BranchInst *BI = cast<BranchInst>(Val: BB->getTerminator()); |
| 1125 | BasicBlock *DestBB = BI->getSuccessor(i: 0); |
| 1126 | |
| 1127 | LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" |
| 1128 | << *BB << *DestBB); |
| 1129 | |
| 1130 | // If the destination block has a single pred, then this is a trivial edge, |
| 1131 | // just collapse it. |
| 1132 | if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { |
| 1133 | if (SinglePred != DestBB) { |
| 1134 | assert(SinglePred == BB && |
| 1135 | "Single predecessor not the same as predecessor" ); |
| 1136 | // Merge DestBB into SinglePred/BB and delete it. |
| 1137 | MergeBlockIntoPredecessor(BB: DestBB); |
| 1138 | // Note: BB(=SinglePred) will not be deleted on this path. |
| 1139 | // DestBB(=its single successor) is the one that was deleted. |
| 1140 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n" ); |
| 1141 | |
| 1142 | if (IsHugeFunc) { |
| 1143 | // Update FreshBBs to optimize the merged BB. |
| 1144 | FreshBBs.insert(Ptr: SinglePred); |
| 1145 | FreshBBs.erase(Ptr: DestBB); |
| 1146 | } |
| 1147 | return; |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB |
| 1152 | // to handle the new incoming edges it is about to have. |
| 1153 | for (PHINode &PN : DestBB->phis()) { |
| 1154 | // Remove the incoming value for BB, and remember it. |
| 1155 | Value *InVal = PN.removeIncomingValue(BB, DeletePHIIfEmpty: false); |
| 1156 | |
| 1157 | // Two options: either the InVal is a phi node defined in BB or it is some |
| 1158 | // value that dominates BB. |
| 1159 | PHINode *InValPhi = dyn_cast<PHINode>(Val: InVal); |
| 1160 | if (InValPhi && InValPhi->getParent() == BB) { |
| 1161 | // Add all of the input values of the input PHI as inputs of this phi. |
| 1162 | for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) |
| 1163 | PN.addIncoming(V: InValPhi->getIncomingValue(i), |
| 1164 | BB: InValPhi->getIncomingBlock(i)); |
| 1165 | } else { |
| 1166 | // Otherwise, add one instance of the dominating value for each edge that |
| 1167 | // we will be adding. |
| 1168 | if (PHINode *BBPN = dyn_cast<PHINode>(Val: BB->begin())) { |
| 1169 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) |
| 1170 | PN.addIncoming(V: InVal, BB: BBPN->getIncomingBlock(i)); |
| 1171 | } else { |
| 1172 | for (BasicBlock *Pred : predecessors(BB)) |
| 1173 | PN.addIncoming(V: InVal, BB: Pred); |
| 1174 | } |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | // Preserve loop Metadata. |
| 1179 | if (BI->hasMetadata(KindID: LLVMContext::MD_loop)) { |
| 1180 | for (auto *Pred : predecessors(BB)) |
| 1181 | Pred->getTerminator()->copyMetadata(SrcInst: *BI, WL: LLVMContext::MD_loop); |
| 1182 | } |
| 1183 | |
| 1184 | // The PHIs are now updated, change everything that refers to BB to use |
| 1185 | // DestBB and remove BB. |
| 1186 | BB->replaceAllUsesWith(V: DestBB); |
| 1187 | BB->eraseFromParent(); |
| 1188 | ++NumBlocksElim; |
| 1189 | |
| 1190 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n" ); |
| 1191 | } |
| 1192 | |
| 1193 | // Computes a map of base pointer relocation instructions to corresponding |
| 1194 | // derived pointer relocation instructions given a vector of all relocate calls |
| 1195 | static void computeBaseDerivedRelocateMap( |
| 1196 | const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, |
| 1197 | MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> |
| 1198 | &RelocateInstMap) { |
| 1199 | // Collect information in two maps: one primarily for locating the base object |
| 1200 | // while filling the second map; the second map is the final structure holding |
| 1201 | // a mapping between Base and corresponding Derived relocate calls |
| 1202 | MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; |
| 1203 | for (auto *ThisRelocate : AllRelocateCalls) { |
| 1204 | auto K = std::make_pair(x: ThisRelocate->getBasePtrIndex(), |
| 1205 | y: ThisRelocate->getDerivedPtrIndex()); |
| 1206 | RelocateIdxMap.insert(KV: std::make_pair(x&: K, y&: ThisRelocate)); |
| 1207 | } |
| 1208 | for (auto &Item : RelocateIdxMap) { |
| 1209 | std::pair<unsigned, unsigned> Key = Item.first; |
| 1210 | if (Key.first == Key.second) |
| 1211 | // Base relocation: nothing to insert |
| 1212 | continue; |
| 1213 | |
| 1214 | GCRelocateInst *I = Item.second; |
| 1215 | auto BaseKey = std::make_pair(x&: Key.first, y&: Key.first); |
| 1216 | |
| 1217 | // We're iterating over RelocateIdxMap so we cannot modify it. |
| 1218 | auto MaybeBase = RelocateIdxMap.find(Key: BaseKey); |
| 1219 | if (MaybeBase == RelocateIdxMap.end()) |
| 1220 | // TODO: We might want to insert a new base object relocate and gep off |
| 1221 | // that, if there are enough derived object relocates. |
| 1222 | continue; |
| 1223 | |
| 1224 | RelocateInstMap[MaybeBase->second].push_back(Elt: I); |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | // Accepts a GEP and extracts the operands into a vector provided they're all |
| 1229 | // small integer constants |
| 1230 | static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, |
| 1231 | SmallVectorImpl<Value *> &OffsetV) { |
| 1232 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) { |
| 1233 | // Only accept small constant integer operands |
| 1234 | auto *Op = dyn_cast<ConstantInt>(Val: GEP->getOperand(i_nocapture: i)); |
| 1235 | if (!Op || Op->getZExtValue() > 20) |
| 1236 | return false; |
| 1237 | } |
| 1238 | |
| 1239 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) |
| 1240 | OffsetV.push_back(Elt: GEP->getOperand(i_nocapture: i)); |
| 1241 | return true; |
| 1242 | } |
| 1243 | |
| 1244 | // Takes a RelocatedBase (base pointer relocation instruction) and Targets to |
| 1245 | // replace, computes a replacement, and affects it. |
| 1246 | static bool |
| 1247 | simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, |
| 1248 | const SmallVectorImpl<GCRelocateInst *> &Targets) { |
| 1249 | bool MadeChange = false; |
| 1250 | // We must ensure the relocation of derived pointer is defined after |
| 1251 | // relocation of base pointer. If we find a relocation corresponding to base |
| 1252 | // defined earlier than relocation of base then we move relocation of base |
| 1253 | // right before found relocation. We consider only relocation in the same |
| 1254 | // basic block as relocation of base. Relocations from other basic block will |
| 1255 | // be skipped by optimization and we do not care about them. |
| 1256 | for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); |
| 1257 | &*R != RelocatedBase; ++R) |
| 1258 | if (auto *RI = dyn_cast<GCRelocateInst>(Val&: R)) |
| 1259 | if (RI->getStatepoint() == RelocatedBase->getStatepoint()) |
| 1260 | if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { |
| 1261 | RelocatedBase->moveBefore(InsertPos: RI->getIterator()); |
| 1262 | MadeChange = true; |
| 1263 | break; |
| 1264 | } |
| 1265 | |
| 1266 | for (GCRelocateInst *ToReplace : Targets) { |
| 1267 | assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && |
| 1268 | "Not relocating a derived object of the original base object" ); |
| 1269 | if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { |
| 1270 | // A duplicate relocate call. TODO: coalesce duplicates. |
| 1271 | continue; |
| 1272 | } |
| 1273 | |
| 1274 | if (RelocatedBase->getParent() != ToReplace->getParent()) { |
| 1275 | // Base and derived relocates are in different basic blocks. |
| 1276 | // In this case transform is only valid when base dominates derived |
| 1277 | // relocate. However it would be too expensive to check dominance |
| 1278 | // for each such relocate, so we skip the whole transformation. |
| 1279 | continue; |
| 1280 | } |
| 1281 | |
| 1282 | Value *Base = ToReplace->getBasePtr(); |
| 1283 | auto *Derived = dyn_cast<GetElementPtrInst>(Val: ToReplace->getDerivedPtr()); |
| 1284 | if (!Derived || Derived->getPointerOperand() != Base) |
| 1285 | continue; |
| 1286 | |
| 1287 | SmallVector<Value *, 2> OffsetV; |
| 1288 | if (!getGEPSmallConstantIntOffsetV(GEP: Derived, OffsetV)) |
| 1289 | continue; |
| 1290 | |
| 1291 | // Create a Builder and replace the target callsite with a gep |
| 1292 | assert(RelocatedBase->getNextNode() && |
| 1293 | "Should always have one since it's not a terminator" ); |
| 1294 | |
| 1295 | // Insert after RelocatedBase |
| 1296 | IRBuilder<> Builder(RelocatedBase->getNextNode()); |
| 1297 | Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); |
| 1298 | |
| 1299 | // If gc_relocate does not match the actual type, cast it to the right type. |
| 1300 | // In theory, there must be a bitcast after gc_relocate if the type does not |
| 1301 | // match, and we should reuse it to get the derived pointer. But it could be |
| 1302 | // cases like this: |
| 1303 | // bb1: |
| 1304 | // ... |
| 1305 | // %g1 = call coldcc i8 addrspace(1)* |
| 1306 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge |
| 1307 | // |
| 1308 | // bb2: |
| 1309 | // ... |
| 1310 | // %g2 = call coldcc i8 addrspace(1)* |
| 1311 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge |
| 1312 | // |
| 1313 | // merge: |
| 1314 | // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] |
| 1315 | // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* |
| 1316 | // |
| 1317 | // In this case, we can not find the bitcast any more. So we insert a new |
| 1318 | // bitcast no matter there is already one or not. In this way, we can handle |
| 1319 | // all cases, and the extra bitcast should be optimized away in later |
| 1320 | // passes. |
| 1321 | Value *ActualRelocatedBase = RelocatedBase; |
| 1322 | if (RelocatedBase->getType() != Base->getType()) { |
| 1323 | ActualRelocatedBase = |
| 1324 | Builder.CreateBitCast(V: RelocatedBase, DestTy: Base->getType()); |
| 1325 | } |
| 1326 | Value *Replacement = |
| 1327 | Builder.CreateGEP(Ty: Derived->getSourceElementType(), Ptr: ActualRelocatedBase, |
| 1328 | IdxList: ArrayRef(OffsetV)); |
| 1329 | Replacement->takeName(V: ToReplace); |
| 1330 | // If the newly generated derived pointer's type does not match the original |
| 1331 | // derived pointer's type, cast the new derived pointer to match it. Same |
| 1332 | // reasoning as above. |
| 1333 | Value *ActualReplacement = Replacement; |
| 1334 | if (Replacement->getType() != ToReplace->getType()) { |
| 1335 | ActualReplacement = |
| 1336 | Builder.CreateBitCast(V: Replacement, DestTy: ToReplace->getType()); |
| 1337 | } |
| 1338 | ToReplace->replaceAllUsesWith(V: ActualReplacement); |
| 1339 | ToReplace->eraseFromParent(); |
| 1340 | |
| 1341 | MadeChange = true; |
| 1342 | } |
| 1343 | return MadeChange; |
| 1344 | } |
| 1345 | |
| 1346 | // Turns this: |
| 1347 | // |
| 1348 | // %base = ... |
| 1349 | // %ptr = gep %base + 15 |
| 1350 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) |
| 1351 | // %base' = relocate(%tok, i32 4, i32 4) |
| 1352 | // %ptr' = relocate(%tok, i32 4, i32 5) |
| 1353 | // %val = load %ptr' |
| 1354 | // |
| 1355 | // into this: |
| 1356 | // |
| 1357 | // %base = ... |
| 1358 | // %ptr = gep %base + 15 |
| 1359 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) |
| 1360 | // %base' = gc.relocate(%tok, i32 4, i32 4) |
| 1361 | // %ptr' = gep %base' + 15 |
| 1362 | // %val = load %ptr' |
| 1363 | bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { |
| 1364 | bool MadeChange = false; |
| 1365 | SmallVector<GCRelocateInst *, 2> AllRelocateCalls; |
| 1366 | for (auto *U : I.users()) |
| 1367 | if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(Val: U)) |
| 1368 | // Collect all the relocate calls associated with a statepoint |
| 1369 | AllRelocateCalls.push_back(Elt: Relocate); |
| 1370 | |
| 1371 | // We need at least one base pointer relocation + one derived pointer |
| 1372 | // relocation to mangle |
| 1373 | if (AllRelocateCalls.size() < 2) |
| 1374 | return false; |
| 1375 | |
| 1376 | // RelocateInstMap is a mapping from the base relocate instruction to the |
| 1377 | // corresponding derived relocate instructions |
| 1378 | MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; |
| 1379 | computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); |
| 1380 | if (RelocateInstMap.empty()) |
| 1381 | return false; |
| 1382 | |
| 1383 | for (auto &Item : RelocateInstMap) |
| 1384 | // Item.first is the RelocatedBase to offset against |
| 1385 | // Item.second is the vector of Targets to replace |
| 1386 | MadeChange = simplifyRelocatesOffABase(RelocatedBase: Item.first, Targets: Item.second); |
| 1387 | return MadeChange; |
| 1388 | } |
| 1389 | |
| 1390 | /// Sink the specified cast instruction into its user blocks. |
| 1391 | static bool SinkCast(CastInst *CI) { |
| 1392 | BasicBlock *DefBB = CI->getParent(); |
| 1393 | |
| 1394 | /// InsertedCasts - Only insert a cast in each block once. |
| 1395 | DenseMap<BasicBlock *, CastInst *> InsertedCasts; |
| 1396 | |
| 1397 | bool MadeChange = false; |
| 1398 | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); |
| 1399 | UI != E;) { |
| 1400 | Use &TheUse = UI.getUse(); |
| 1401 | Instruction *User = cast<Instruction>(Val: *UI); |
| 1402 | |
| 1403 | // Figure out which BB this cast is used in. For PHI's this is the |
| 1404 | // appropriate predecessor block. |
| 1405 | BasicBlock *UserBB = User->getParent(); |
| 1406 | if (PHINode *PN = dyn_cast<PHINode>(Val: User)) { |
| 1407 | UserBB = PN->getIncomingBlock(U: TheUse); |
| 1408 | } |
| 1409 | |
| 1410 | // Preincrement use iterator so we don't invalidate it. |
| 1411 | ++UI; |
| 1412 | |
| 1413 | // The first insertion point of a block containing an EH pad is after the |
| 1414 | // pad. If the pad is the user, we cannot sink the cast past the pad. |
| 1415 | if (User->isEHPad()) |
| 1416 | continue; |
| 1417 | |
| 1418 | // If the block selected to receive the cast is an EH pad that does not |
| 1419 | // allow non-PHI instructions before the terminator, we can't sink the |
| 1420 | // cast. |
| 1421 | if (UserBB->getTerminator()->isEHPad()) |
| 1422 | continue; |
| 1423 | |
| 1424 | // If this user is in the same block as the cast, don't change the cast. |
| 1425 | if (UserBB == DefBB) |
| 1426 | continue; |
| 1427 | |
| 1428 | // If we have already inserted a cast into this block, use it. |
| 1429 | CastInst *&InsertedCast = InsertedCasts[UserBB]; |
| 1430 | |
| 1431 | if (!InsertedCast) { |
| 1432 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| 1433 | assert(InsertPt != UserBB->end()); |
| 1434 | InsertedCast = cast<CastInst>(Val: CI->clone()); |
| 1435 | InsertedCast->insertBefore(BB&: *UserBB, InsertPos: InsertPt); |
| 1436 | } |
| 1437 | |
| 1438 | // Replace a use of the cast with a use of the new cast. |
| 1439 | TheUse = InsertedCast; |
| 1440 | MadeChange = true; |
| 1441 | ++NumCastUses; |
| 1442 | } |
| 1443 | |
| 1444 | // If we removed all uses, nuke the cast. |
| 1445 | if (CI->use_empty()) { |
| 1446 | salvageDebugInfo(I&: *CI); |
| 1447 | CI->eraseFromParent(); |
| 1448 | MadeChange = true; |
| 1449 | } |
| 1450 | |
| 1451 | return MadeChange; |
| 1452 | } |
| 1453 | |
| 1454 | /// If the specified cast instruction is a noop copy (e.g. it's casting from |
| 1455 | /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to |
| 1456 | /// reduce the number of virtual registers that must be created and coalesced. |
| 1457 | /// |
| 1458 | /// Return true if any changes are made. |
| 1459 | static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, |
| 1460 | const DataLayout &DL) { |
| 1461 | // Sink only "cheap" (or nop) address-space casts. This is a weaker condition |
| 1462 | // than sinking only nop casts, but is helpful on some platforms. |
| 1463 | if (auto *ASC = dyn_cast<AddrSpaceCastInst>(Val: CI)) { |
| 1464 | if (!TLI.isFreeAddrSpaceCast(SrcAS: ASC->getSrcAddressSpace(), |
| 1465 | DestAS: ASC->getDestAddressSpace())) |
| 1466 | return false; |
| 1467 | } |
| 1468 | |
| 1469 | // If this is a noop copy, |
| 1470 | EVT SrcVT = TLI.getValueType(DL, Ty: CI->getOperand(i_nocapture: 0)->getType()); |
| 1471 | EVT DstVT = TLI.getValueType(DL, Ty: CI->getType()); |
| 1472 | |
| 1473 | // This is an fp<->int conversion? |
| 1474 | if (SrcVT.isInteger() != DstVT.isInteger()) |
| 1475 | return false; |
| 1476 | |
| 1477 | // If this is an extension, it will be a zero or sign extension, which |
| 1478 | // isn't a noop. |
| 1479 | if (SrcVT.bitsLT(VT: DstVT)) |
| 1480 | return false; |
| 1481 | |
| 1482 | // If these values will be promoted, find out what they will be promoted |
| 1483 | // to. This helps us consider truncates on PPC as noop copies when they |
| 1484 | // are. |
| 1485 | if (TLI.getTypeAction(Context&: CI->getContext(), VT: SrcVT) == |
| 1486 | TargetLowering::TypePromoteInteger) |
| 1487 | SrcVT = TLI.getTypeToTransformTo(Context&: CI->getContext(), VT: SrcVT); |
| 1488 | if (TLI.getTypeAction(Context&: CI->getContext(), VT: DstVT) == |
| 1489 | TargetLowering::TypePromoteInteger) |
| 1490 | DstVT = TLI.getTypeToTransformTo(Context&: CI->getContext(), VT: DstVT); |
| 1491 | |
| 1492 | // If, after promotion, these are the same types, this is a noop copy. |
| 1493 | if (SrcVT != DstVT) |
| 1494 | return false; |
| 1495 | |
| 1496 | return SinkCast(CI); |
| 1497 | } |
| 1498 | |
| 1499 | // Match a simple increment by constant operation. Note that if a sub is |
| 1500 | // matched, the step is negated (as if the step had been canonicalized to |
| 1501 | // an add, even though we leave the instruction alone.) |
| 1502 | static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, |
| 1503 | Constant *&Step) { |
| 1504 | if (match(V: IVInc, P: m_Add(L: m_Instruction(I&: LHS), R: m_Constant(C&: Step))) || |
| 1505 | match(V: IVInc, P: m_ExtractValue<0>(V: m_Intrinsic<Intrinsic::uadd_with_overflow>( |
| 1506 | Op0: m_Instruction(I&: LHS), Op1: m_Constant(C&: Step))))) |
| 1507 | return true; |
| 1508 | if (match(V: IVInc, P: m_Sub(L: m_Instruction(I&: LHS), R: m_Constant(C&: Step))) || |
| 1509 | match(V: IVInc, P: m_ExtractValue<0>(V: m_Intrinsic<Intrinsic::usub_with_overflow>( |
| 1510 | Op0: m_Instruction(I&: LHS), Op1: m_Constant(C&: Step))))) { |
| 1511 | Step = ConstantExpr::getNeg(C: Step); |
| 1512 | return true; |
| 1513 | } |
| 1514 | return false; |
| 1515 | } |
| 1516 | |
| 1517 | /// If given \p PN is an inductive variable with value IVInc coming from the |
| 1518 | /// backedge, and on each iteration it gets increased by Step, return pair |
| 1519 | /// <IVInc, Step>. Otherwise, return std::nullopt. |
| 1520 | static std::optional<std::pair<Instruction *, Constant *>> |
| 1521 | getIVIncrement(const PHINode *PN, const LoopInfo *LI) { |
| 1522 | const Loop *L = LI->getLoopFor(BB: PN->getParent()); |
| 1523 | if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) |
| 1524 | return std::nullopt; |
| 1525 | auto *IVInc = |
| 1526 | dyn_cast<Instruction>(Val: PN->getIncomingValueForBlock(BB: L->getLoopLatch())); |
| 1527 | if (!IVInc || LI->getLoopFor(BB: IVInc->getParent()) != L) |
| 1528 | return std::nullopt; |
| 1529 | Instruction *LHS = nullptr; |
| 1530 | Constant *Step = nullptr; |
| 1531 | if (matchIncrement(IVInc, LHS, Step) && LHS == PN) |
| 1532 | return std::make_pair(x&: IVInc, y&: Step); |
| 1533 | return std::nullopt; |
| 1534 | } |
| 1535 | |
| 1536 | static bool isIVIncrement(const Value *V, const LoopInfo *LI) { |
| 1537 | auto *I = dyn_cast<Instruction>(Val: V); |
| 1538 | if (!I) |
| 1539 | return false; |
| 1540 | Instruction *LHS = nullptr; |
| 1541 | Constant *Step = nullptr; |
| 1542 | if (!matchIncrement(IVInc: I, LHS, Step)) |
| 1543 | return false; |
| 1544 | if (auto *PN = dyn_cast<PHINode>(Val: LHS)) |
| 1545 | if (auto IVInc = getIVIncrement(PN, LI)) |
| 1546 | return IVInc->first == I; |
| 1547 | return false; |
| 1548 | } |
| 1549 | |
| 1550 | bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, |
| 1551 | Value *Arg0, Value *Arg1, |
| 1552 | CmpInst *Cmp, |
| 1553 | Intrinsic::ID IID) { |
| 1554 | auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { |
| 1555 | if (!isIVIncrement(V: BO, LI)) |
| 1556 | return false; |
| 1557 | const Loop *L = LI->getLoopFor(BB: BO->getParent()); |
| 1558 | assert(L && "L should not be null after isIVIncrement()" ); |
| 1559 | // Do not risk on moving increment into a child loop. |
| 1560 | if (LI->getLoopFor(BB: Cmp->getParent()) != L) |
| 1561 | return false; |
| 1562 | |
| 1563 | // Finally, we need to ensure that the insert point will dominate all |
| 1564 | // existing uses of the increment. |
| 1565 | |
| 1566 | auto &DT = getDT(F&: *BO->getParent()->getParent()); |
| 1567 | if (DT.dominates(A: Cmp->getParent(), B: BO->getParent())) |
| 1568 | // If we're moving up the dom tree, all uses are trivially dominated. |
| 1569 | // (This is the common case for code produced by LSR.) |
| 1570 | return true; |
| 1571 | |
| 1572 | // Otherwise, special case the single use in the phi recurrence. |
| 1573 | return BO->hasOneUse() && DT.dominates(A: Cmp->getParent(), B: L->getLoopLatch()); |
| 1574 | }; |
| 1575 | if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { |
| 1576 | // We used to use a dominator tree here to allow multi-block optimization. |
| 1577 | // But that was problematic because: |
| 1578 | // 1. It could cause a perf regression by hoisting the math op into the |
| 1579 | // critical path. |
| 1580 | // 2. It could cause a perf regression by creating a value that was live |
| 1581 | // across multiple blocks and increasing register pressure. |
| 1582 | // 3. Use of a dominator tree could cause large compile-time regression. |
| 1583 | // This is because we recompute the DT on every change in the main CGP |
| 1584 | // run-loop. The recomputing is probably unnecessary in many cases, so if |
| 1585 | // that was fixed, using a DT here would be ok. |
| 1586 | // |
| 1587 | // There is one important particular case we still want to handle: if BO is |
| 1588 | // the IV increment. Important properties that make it profitable: |
| 1589 | // - We can speculate IV increment anywhere in the loop (as long as the |
| 1590 | // indvar Phi is its only user); |
| 1591 | // - Upon computing Cmp, we effectively compute something equivalent to the |
| 1592 | // IV increment (despite it loops differently in the IR). So moving it up |
| 1593 | // to the cmp point does not really increase register pressure. |
| 1594 | return false; |
| 1595 | } |
| 1596 | |
| 1597 | // We allow matching the canonical IR (add X, C) back to (usubo X, -C). |
| 1598 | if (BO->getOpcode() == Instruction::Add && |
| 1599 | IID == Intrinsic::usub_with_overflow) { |
| 1600 | assert(isa<Constant>(Arg1) && "Unexpected input for usubo" ); |
| 1601 | Arg1 = ConstantExpr::getNeg(C: cast<Constant>(Val: Arg1)); |
| 1602 | } |
| 1603 | |
| 1604 | // Insert at the first instruction of the pair. |
| 1605 | Instruction *InsertPt = nullptr; |
| 1606 | for (Instruction &Iter : *Cmp->getParent()) { |
| 1607 | // If BO is an XOR, it is not guaranteed that it comes after both inputs to |
| 1608 | // the overflow intrinsic are defined. |
| 1609 | if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { |
| 1610 | InsertPt = &Iter; |
| 1611 | break; |
| 1612 | } |
| 1613 | } |
| 1614 | assert(InsertPt != nullptr && "Parent block did not contain cmp or binop" ); |
| 1615 | |
| 1616 | IRBuilder<> Builder(InsertPt); |
| 1617 | Value *MathOV = Builder.CreateBinaryIntrinsic(ID: IID, LHS: Arg0, RHS: Arg1); |
| 1618 | if (BO->getOpcode() != Instruction::Xor) { |
| 1619 | Value *Math = Builder.CreateExtractValue(Agg: MathOV, Idxs: 0, Name: "math" ); |
| 1620 | replaceAllUsesWith(Old: BO, New: Math, FreshBBs, IsHuge: IsHugeFunc); |
| 1621 | } else |
| 1622 | assert(BO->hasOneUse() && |
| 1623 | "Patterns with XOr should use the BO only in the compare" ); |
| 1624 | Value *OV = Builder.CreateExtractValue(Agg: MathOV, Idxs: 1, Name: "ov" ); |
| 1625 | replaceAllUsesWith(Old: Cmp, New: OV, FreshBBs, IsHuge: IsHugeFunc); |
| 1626 | Cmp->eraseFromParent(); |
| 1627 | BO->eraseFromParent(); |
| 1628 | return true; |
| 1629 | } |
| 1630 | |
| 1631 | /// Match special-case patterns that check for unsigned add overflow. |
| 1632 | static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, |
| 1633 | BinaryOperator *&Add) { |
| 1634 | // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) |
| 1635 | // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) |
| 1636 | Value *A = Cmp->getOperand(i_nocapture: 0), *B = Cmp->getOperand(i_nocapture: 1); |
| 1637 | |
| 1638 | // We are not expecting non-canonical/degenerate code. Just bail out. |
| 1639 | if (isa<Constant>(Val: A)) |
| 1640 | return false; |
| 1641 | |
| 1642 | ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| 1643 | if (Pred == ICmpInst::ICMP_EQ && match(V: B, P: m_AllOnes())) |
| 1644 | B = ConstantInt::get(Ty: B->getType(), V: 1); |
| 1645 | else if (Pred == ICmpInst::ICMP_NE && match(V: B, P: m_ZeroInt())) |
| 1646 | B = Constant::getAllOnesValue(Ty: B->getType()); |
| 1647 | else |
| 1648 | return false; |
| 1649 | |
| 1650 | // Check the users of the variable operand of the compare looking for an add |
| 1651 | // with the adjusted constant. |
| 1652 | for (User *U : A->users()) { |
| 1653 | if (match(V: U, P: m_Add(L: m_Specific(V: A), R: m_Specific(V: B)))) { |
| 1654 | Add = cast<BinaryOperator>(Val: U); |
| 1655 | return true; |
| 1656 | } |
| 1657 | } |
| 1658 | return false; |
| 1659 | } |
| 1660 | |
| 1661 | /// Try to combine the compare into a call to the llvm.uadd.with.overflow |
| 1662 | /// intrinsic. Return true if any changes were made. |
| 1663 | bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, |
| 1664 | ModifyDT &ModifiedDT) { |
| 1665 | bool EdgeCase = false; |
| 1666 | Value *A, *B; |
| 1667 | BinaryOperator *Add; |
| 1668 | if (!match(V: Cmp, P: m_UAddWithOverflow(L: m_Value(V&: A), R: m_Value(V&: B), S: m_BinOp(I&: Add)))) { |
| 1669 | if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) |
| 1670 | return false; |
| 1671 | // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. |
| 1672 | A = Add->getOperand(i_nocapture: 0); |
| 1673 | B = Add->getOperand(i_nocapture: 1); |
| 1674 | EdgeCase = true; |
| 1675 | } |
| 1676 | |
| 1677 | if (!TLI->shouldFormOverflowOp(Opcode: ISD::UADDO, |
| 1678 | VT: TLI->getValueType(DL: *DL, Ty: Add->getType()), |
| 1679 | MathUsed: Add->hasNUsesOrMore(N: EdgeCase ? 1 : 2))) |
| 1680 | return false; |
| 1681 | |
| 1682 | // We don't want to move around uses of condition values this late, so we |
| 1683 | // check if it is legal to create the call to the intrinsic in the basic |
| 1684 | // block containing the icmp. |
| 1685 | if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) |
| 1686 | return false; |
| 1687 | |
| 1688 | if (!replaceMathCmpWithIntrinsic(BO: Add, Arg0: A, Arg1: B, Cmp, |
| 1689 | IID: Intrinsic::uadd_with_overflow)) |
| 1690 | return false; |
| 1691 | |
| 1692 | // Reset callers - do not crash by iterating over a dead instruction. |
| 1693 | ModifiedDT = ModifyDT::ModifyInstDT; |
| 1694 | return true; |
| 1695 | } |
| 1696 | |
| 1697 | bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, |
| 1698 | ModifyDT &ModifiedDT) { |
| 1699 | // We are not expecting non-canonical/degenerate code. Just bail out. |
| 1700 | Value *A = Cmp->getOperand(i_nocapture: 0), *B = Cmp->getOperand(i_nocapture: 1); |
| 1701 | if (isa<Constant>(Val: A) && isa<Constant>(Val: B)) |
| 1702 | return false; |
| 1703 | |
| 1704 | // Convert (A u> B) to (A u< B) to simplify pattern matching. |
| 1705 | ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| 1706 | if (Pred == ICmpInst::ICMP_UGT) { |
| 1707 | std::swap(a&: A, b&: B); |
| 1708 | Pred = ICmpInst::ICMP_ULT; |
| 1709 | } |
| 1710 | // Convert special-case: (A == 0) is the same as (A u< 1). |
| 1711 | if (Pred == ICmpInst::ICMP_EQ && match(V: B, P: m_ZeroInt())) { |
| 1712 | B = ConstantInt::get(Ty: B->getType(), V: 1); |
| 1713 | Pred = ICmpInst::ICMP_ULT; |
| 1714 | } |
| 1715 | // Convert special-case: (A != 0) is the same as (0 u< A). |
| 1716 | if (Pred == ICmpInst::ICMP_NE && match(V: B, P: m_ZeroInt())) { |
| 1717 | std::swap(a&: A, b&: B); |
| 1718 | Pred = ICmpInst::ICMP_ULT; |
| 1719 | } |
| 1720 | if (Pred != ICmpInst::ICMP_ULT) |
| 1721 | return false; |
| 1722 | |
| 1723 | // Walk the users of a variable operand of a compare looking for a subtract or |
| 1724 | // add with that same operand. Also match the 2nd operand of the compare to |
| 1725 | // the add/sub, but that may be a negated constant operand of an add. |
| 1726 | Value *CmpVariableOperand = isa<Constant>(Val: A) ? B : A; |
| 1727 | BinaryOperator *Sub = nullptr; |
| 1728 | for (User *U : CmpVariableOperand->users()) { |
| 1729 | // A - B, A u< B --> usubo(A, B) |
| 1730 | if (match(V: U, P: m_Sub(L: m_Specific(V: A), R: m_Specific(V: B)))) { |
| 1731 | Sub = cast<BinaryOperator>(Val: U); |
| 1732 | break; |
| 1733 | } |
| 1734 | |
| 1735 | // A + (-C), A u< C (canonicalized form of (sub A, C)) |
| 1736 | const APInt *CmpC, *AddC; |
| 1737 | if (match(V: U, P: m_Add(L: m_Specific(V: A), R: m_APInt(Res&: AddC))) && |
| 1738 | match(V: B, P: m_APInt(Res&: CmpC)) && *AddC == -(*CmpC)) { |
| 1739 | Sub = cast<BinaryOperator>(Val: U); |
| 1740 | break; |
| 1741 | } |
| 1742 | } |
| 1743 | if (!Sub) |
| 1744 | return false; |
| 1745 | |
| 1746 | if (!TLI->shouldFormOverflowOp(Opcode: ISD::USUBO, |
| 1747 | VT: TLI->getValueType(DL: *DL, Ty: Sub->getType()), |
| 1748 | MathUsed: Sub->hasNUsesOrMore(N: 1))) |
| 1749 | return false; |
| 1750 | |
| 1751 | // We don't want to move around uses of condition values this late, so we |
| 1752 | // check if it is legal to create the call to the intrinsic in the basic |
| 1753 | // block containing the icmp. |
| 1754 | if (Sub->getParent() != Cmp->getParent() && !Sub->hasOneUse()) |
| 1755 | return false; |
| 1756 | |
| 1757 | if (!replaceMathCmpWithIntrinsic(BO: Sub, Arg0: Sub->getOperand(i_nocapture: 0), Arg1: Sub->getOperand(i_nocapture: 1), |
| 1758 | Cmp, IID: Intrinsic::usub_with_overflow)) |
| 1759 | return false; |
| 1760 | |
| 1761 | // Reset callers - do not crash by iterating over a dead instruction. |
| 1762 | ModifiedDT = ModifyDT::ModifyInstDT; |
| 1763 | return true; |
| 1764 | } |
| 1765 | |
| 1766 | // Decanonicalizes icmp+ctpop power-of-two test if ctpop is slow. |
| 1767 | // The same transformation exists in DAG combiner, but we repeat it here because |
| 1768 | // DAG builder can break the pattern by moving icmp into a successor block. |
| 1769 | bool CodeGenPrepare::unfoldPowerOf2Test(CmpInst *Cmp) { |
| 1770 | CmpPredicate Pred; |
| 1771 | Value *X; |
| 1772 | const APInt *C; |
| 1773 | |
| 1774 | // (icmp (ctpop x), c) |
| 1775 | if (!match(V: Cmp, P: m_ICmp(Pred, L: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Value(V&: X)), |
| 1776 | R: m_APIntAllowPoison(Res&: C)))) |
| 1777 | return false; |
| 1778 | |
| 1779 | // We're only interested in "is power of 2 [or zero]" patterns. |
| 1780 | bool IsStrictlyPowerOf2Test = ICmpInst::isEquality(P: Pred) && *C == 1; |
| 1781 | bool IsPowerOf2OrZeroTest = (Pred == CmpInst::ICMP_ULT && *C == 2) || |
| 1782 | (Pred == CmpInst::ICMP_UGT && *C == 1); |
| 1783 | if (!IsStrictlyPowerOf2Test && !IsPowerOf2OrZeroTest) |
| 1784 | return false; |
| 1785 | |
| 1786 | // Some targets have better codegen for `ctpop(x) u</u>= 2/1`than for |
| 1787 | // `ctpop(x) ==/!= 1`. If ctpop is fast, only try changing the comparison, |
| 1788 | // and otherwise expand ctpop into a few simple instructions. |
| 1789 | Type *OpTy = X->getType(); |
| 1790 | if (TLI->isCtpopFast(VT: TLI->getValueType(DL: *DL, Ty: OpTy))) { |
| 1791 | // Look for `ctpop(x) ==/!= 1`, where `ctpop(x)` is known to be non-zero. |
| 1792 | if (!IsStrictlyPowerOf2Test || !isKnownNonZero(V: Cmp->getOperand(i_nocapture: 0), Q: *DL)) |
| 1793 | return false; |
| 1794 | |
| 1795 | // ctpop(x) == 1 -> ctpop(x) u< 2 |
| 1796 | // ctpop(x) != 1 -> ctpop(x) u> 1 |
| 1797 | if (Pred == ICmpInst::ICMP_EQ) { |
| 1798 | Cmp->setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty: OpTy, V: 2)); |
| 1799 | Cmp->setPredicate(ICmpInst::ICMP_ULT); |
| 1800 | } else { |
| 1801 | Cmp->setPredicate(ICmpInst::ICMP_UGT); |
| 1802 | } |
| 1803 | return true; |
| 1804 | } |
| 1805 | |
| 1806 | Value *NewCmp; |
| 1807 | if (IsPowerOf2OrZeroTest || |
| 1808 | (IsStrictlyPowerOf2Test && isKnownNonZero(V: Cmp->getOperand(i_nocapture: 0), Q: *DL))) { |
| 1809 | // ctpop(x) u< 2 -> (x & (x - 1)) == 0 |
| 1810 | // ctpop(x) u> 1 -> (x & (x - 1)) != 0 |
| 1811 | IRBuilder<> Builder(Cmp); |
| 1812 | Value *Sub = Builder.CreateAdd(LHS: X, RHS: Constant::getAllOnesValue(Ty: OpTy)); |
| 1813 | Value *And = Builder.CreateAnd(LHS: X, RHS: Sub); |
| 1814 | CmpInst::Predicate NewPred = |
| 1815 | (Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_EQ) |
| 1816 | ? CmpInst::ICMP_EQ |
| 1817 | : CmpInst::ICMP_NE; |
| 1818 | NewCmp = Builder.CreateICmp(P: NewPred, LHS: And, RHS: ConstantInt::getNullValue(Ty: OpTy)); |
| 1819 | } else { |
| 1820 | // ctpop(x) == 1 -> (x ^ (x - 1)) u> (x - 1) |
| 1821 | // ctpop(x) != 1 -> (x ^ (x - 1)) u<= (x - 1) |
| 1822 | IRBuilder<> Builder(Cmp); |
| 1823 | Value *Sub = Builder.CreateAdd(LHS: X, RHS: Constant::getAllOnesValue(Ty: OpTy)); |
| 1824 | Value *Xor = Builder.CreateXor(LHS: X, RHS: Sub); |
| 1825 | CmpInst::Predicate NewPred = |
| 1826 | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; |
| 1827 | NewCmp = Builder.CreateICmp(P: NewPred, LHS: Xor, RHS: Sub); |
| 1828 | } |
| 1829 | |
| 1830 | Cmp->replaceAllUsesWith(V: NewCmp); |
| 1831 | RecursivelyDeleteTriviallyDeadInstructions(V: Cmp); |
| 1832 | return true; |
| 1833 | } |
| 1834 | |
| 1835 | /// Sink the given CmpInst into user blocks to reduce the number of virtual |
| 1836 | /// registers that must be created and coalesced. This is a clear win except on |
| 1837 | /// targets with multiple condition code registers (PowerPC), where it might |
| 1838 | /// lose; some adjustment may be wanted there. |
| 1839 | /// |
| 1840 | /// Return true if any changes are made. |
| 1841 | static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI, |
| 1842 | const DataLayout &DL) { |
| 1843 | if (TLI.hasMultipleConditionRegisters(VT: EVT::getEVT(Ty: Cmp->getType()))) |
| 1844 | return false; |
| 1845 | |
| 1846 | // Avoid sinking soft-FP comparisons, since this can move them into a loop. |
| 1847 | if (TLI.useSoftFloat() && isa<FCmpInst>(Val: Cmp)) |
| 1848 | return false; |
| 1849 | |
| 1850 | bool UsedInPhiOrCurrentBlock = any_of(Range: Cmp->users(), P: [Cmp](User *U) { |
| 1851 | return isa<PHINode>(Val: U) || |
| 1852 | cast<Instruction>(Val: U)->getParent() == Cmp->getParent(); |
| 1853 | }); |
| 1854 | |
| 1855 | // Avoid sinking larger than legal integer comparisons unless its ONLY used in |
| 1856 | // another BB. |
| 1857 | if (UsedInPhiOrCurrentBlock && Cmp->getOperand(i_nocapture: 0)->getType()->isIntegerTy() && |
| 1858 | Cmp->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() > |
| 1859 | DL.getLargestLegalIntTypeSizeInBits()) |
| 1860 | return false; |
| 1861 | |
| 1862 | // Only insert a cmp in each block once. |
| 1863 | DenseMap<BasicBlock *, CmpInst *> InsertedCmps; |
| 1864 | |
| 1865 | bool MadeChange = false; |
| 1866 | for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); |
| 1867 | UI != E;) { |
| 1868 | Use &TheUse = UI.getUse(); |
| 1869 | Instruction *User = cast<Instruction>(Val: *UI); |
| 1870 | |
| 1871 | // Preincrement use iterator so we don't invalidate it. |
| 1872 | ++UI; |
| 1873 | |
| 1874 | // Don't bother for PHI nodes. |
| 1875 | if (isa<PHINode>(Val: User)) |
| 1876 | continue; |
| 1877 | |
| 1878 | // Figure out which BB this cmp is used in. |
| 1879 | BasicBlock *UserBB = User->getParent(); |
| 1880 | BasicBlock *DefBB = Cmp->getParent(); |
| 1881 | |
| 1882 | // If this user is in the same block as the cmp, don't change the cmp. |
| 1883 | if (UserBB == DefBB) |
| 1884 | continue; |
| 1885 | |
| 1886 | // If we have already inserted a cmp into this block, use it. |
| 1887 | CmpInst *&InsertedCmp = InsertedCmps[UserBB]; |
| 1888 | |
| 1889 | if (!InsertedCmp) { |
| 1890 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| 1891 | assert(InsertPt != UserBB->end()); |
| 1892 | InsertedCmp = CmpInst::Create(Op: Cmp->getOpcode(), Pred: Cmp->getPredicate(), |
| 1893 | S1: Cmp->getOperand(i_nocapture: 0), S2: Cmp->getOperand(i_nocapture: 1), Name: "" ); |
| 1894 | InsertedCmp->insertBefore(BB&: *UserBB, InsertPos: InsertPt); |
| 1895 | // Propagate the debug info. |
| 1896 | InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); |
| 1897 | } |
| 1898 | |
| 1899 | // Replace a use of the cmp with a use of the new cmp. |
| 1900 | TheUse = InsertedCmp; |
| 1901 | MadeChange = true; |
| 1902 | ++NumCmpUses; |
| 1903 | } |
| 1904 | |
| 1905 | // If we removed all uses, nuke the cmp. |
| 1906 | if (Cmp->use_empty()) { |
| 1907 | Cmp->eraseFromParent(); |
| 1908 | MadeChange = true; |
| 1909 | } |
| 1910 | |
| 1911 | return MadeChange; |
| 1912 | } |
| 1913 | |
| 1914 | /// For pattern like: |
| 1915 | /// |
| 1916 | /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) |
| 1917 | /// ... |
| 1918 | /// DomBB: |
| 1919 | /// ... |
| 1920 | /// br DomCond, TrueBB, CmpBB |
| 1921 | /// CmpBB: (with DomBB being the single predecessor) |
| 1922 | /// ... |
| 1923 | /// Cmp = icmp eq CmpOp0, CmpOp1 |
| 1924 | /// ... |
| 1925 | /// |
| 1926 | /// It would use two comparison on targets that lowering of icmp sgt/slt is |
| 1927 | /// different from lowering of icmp eq (PowerPC). This function try to convert |
| 1928 | /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. |
| 1929 | /// After that, DomCond and Cmp can use the same comparison so reduce one |
| 1930 | /// comparison. |
| 1931 | /// |
| 1932 | /// Return true if any changes are made. |
| 1933 | static bool foldICmpWithDominatingICmp(CmpInst *Cmp, |
| 1934 | const TargetLowering &TLI) { |
| 1935 | if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) |
| 1936 | return false; |
| 1937 | |
| 1938 | ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| 1939 | if (Pred != ICmpInst::ICMP_EQ) |
| 1940 | return false; |
| 1941 | |
| 1942 | // If icmp eq has users other than BranchInst and SelectInst, converting it to |
| 1943 | // icmp slt/sgt would introduce more redundant LLVM IR. |
| 1944 | for (User *U : Cmp->users()) { |
| 1945 | if (isa<BranchInst>(Val: U)) |
| 1946 | continue; |
| 1947 | if (isa<SelectInst>(Val: U) && cast<SelectInst>(Val: U)->getCondition() == Cmp) |
| 1948 | continue; |
| 1949 | return false; |
| 1950 | } |
| 1951 | |
| 1952 | // This is a cheap/incomplete check for dominance - just match a single |
| 1953 | // predecessor with a conditional branch. |
| 1954 | BasicBlock *CmpBB = Cmp->getParent(); |
| 1955 | BasicBlock *DomBB = CmpBB->getSinglePredecessor(); |
| 1956 | if (!DomBB) |
| 1957 | return false; |
| 1958 | |
| 1959 | // We want to ensure that the only way control gets to the comparison of |
| 1960 | // interest is that a less/greater than comparison on the same operands is |
| 1961 | // false. |
| 1962 | Value *DomCond; |
| 1963 | BasicBlock *TrueBB, *FalseBB; |
| 1964 | if (!match(V: DomBB->getTerminator(), P: m_Br(C: m_Value(V&: DomCond), T&: TrueBB, F&: FalseBB))) |
| 1965 | return false; |
| 1966 | if (CmpBB != FalseBB) |
| 1967 | return false; |
| 1968 | |
| 1969 | Value *CmpOp0 = Cmp->getOperand(i_nocapture: 0), *CmpOp1 = Cmp->getOperand(i_nocapture: 1); |
| 1970 | CmpPredicate DomPred; |
| 1971 | if (!match(V: DomCond, P: m_ICmp(Pred&: DomPred, L: m_Specific(V: CmpOp0), R: m_Specific(V: CmpOp1)))) |
| 1972 | return false; |
| 1973 | if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) |
| 1974 | return false; |
| 1975 | |
| 1976 | // Convert the equality comparison to the opposite of the dominating |
| 1977 | // comparison and swap the direction for all branch/select users. |
| 1978 | // We have conceptually converted: |
| 1979 | // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; |
| 1980 | // to |
| 1981 | // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; |
| 1982 | // And similarly for branches. |
| 1983 | for (User *U : Cmp->users()) { |
| 1984 | if (auto *BI = dyn_cast<BranchInst>(Val: U)) { |
| 1985 | assert(BI->isConditional() && "Must be conditional" ); |
| 1986 | BI->swapSuccessors(); |
| 1987 | continue; |
| 1988 | } |
| 1989 | if (auto *SI = dyn_cast<SelectInst>(Val: U)) { |
| 1990 | // Swap operands |
| 1991 | SI->swapValues(); |
| 1992 | SI->swapProfMetadata(); |
| 1993 | continue; |
| 1994 | } |
| 1995 | llvm_unreachable("Must be a branch or a select" ); |
| 1996 | } |
| 1997 | Cmp->setPredicate(CmpInst::getSwappedPredicate(pred: DomPred)); |
| 1998 | return true; |
| 1999 | } |
| 2000 | |
| 2001 | /// Many architectures use the same instruction for both subtract and cmp. Try |
| 2002 | /// to swap cmp operands to match subtract operations to allow for CSE. |
| 2003 | static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { |
| 2004 | Value *Op0 = Cmp->getOperand(i_nocapture: 0); |
| 2005 | Value *Op1 = Cmp->getOperand(i_nocapture: 1); |
| 2006 | if (!Op0->getType()->isIntegerTy() || isa<Constant>(Val: Op0) || |
| 2007 | isa<Constant>(Val: Op1) || Op0 == Op1) |
| 2008 | return false; |
| 2009 | |
| 2010 | // If a subtract already has the same operands as a compare, swapping would be |
| 2011 | // bad. If a subtract has the same operands as a compare but in reverse order, |
| 2012 | // then swapping is good. |
| 2013 | int GoodToSwap = 0; |
| 2014 | unsigned NumInspected = 0; |
| 2015 | for (const User *U : Op0->users()) { |
| 2016 | // Avoid walking many users. |
| 2017 | if (++NumInspected > 128) |
| 2018 | return false; |
| 2019 | if (match(V: U, P: m_Sub(L: m_Specific(V: Op1), R: m_Specific(V: Op0)))) |
| 2020 | GoodToSwap++; |
| 2021 | else if (match(V: U, P: m_Sub(L: m_Specific(V: Op0), R: m_Specific(V: Op1)))) |
| 2022 | GoodToSwap--; |
| 2023 | } |
| 2024 | |
| 2025 | if (GoodToSwap > 0) { |
| 2026 | Cmp->swapOperands(); |
| 2027 | return true; |
| 2028 | } |
| 2029 | return false; |
| 2030 | } |
| 2031 | |
| 2032 | static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, |
| 2033 | const DataLayout &DL) { |
| 2034 | FCmpInst *FCmp = dyn_cast<FCmpInst>(Val: Cmp); |
| 2035 | if (!FCmp) |
| 2036 | return false; |
| 2037 | |
| 2038 | // Don't fold if the target offers free fabs and the predicate is legal. |
| 2039 | EVT VT = TLI.getValueType(DL, Ty: Cmp->getOperand(i_nocapture: 0)->getType()); |
| 2040 | if (TLI.isFAbsFree(VT) && |
| 2041 | TLI.isCondCodeLegal(CC: getFCmpCondCode(Pred: FCmp->getPredicate()), |
| 2042 | VT: VT.getSimpleVT())) |
| 2043 | return false; |
| 2044 | |
| 2045 | // Reverse the canonicalization if it is a FP class test |
| 2046 | auto ShouldReverseTransform = [](FPClassTest ClassTest) { |
| 2047 | return ClassTest == fcInf || ClassTest == (fcInf | fcNan); |
| 2048 | }; |
| 2049 | auto [ClassVal, ClassTest] = |
| 2050 | fcmpToClassTest(Pred: FCmp->getPredicate(), F: *FCmp->getParent()->getParent(), |
| 2051 | LHS: FCmp->getOperand(i_nocapture: 0), RHS: FCmp->getOperand(i_nocapture: 1)); |
| 2052 | if (!ClassVal) |
| 2053 | return false; |
| 2054 | |
| 2055 | if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) |
| 2056 | return false; |
| 2057 | |
| 2058 | IRBuilder<> Builder(Cmp); |
| 2059 | Value *IsFPClass = Builder.createIsFPClass(FPNum: ClassVal, Test: ClassTest); |
| 2060 | Cmp->replaceAllUsesWith(V: IsFPClass); |
| 2061 | RecursivelyDeleteTriviallyDeadInstructions(V: Cmp); |
| 2062 | return true; |
| 2063 | } |
| 2064 | |
| 2065 | static bool isRemOfLoopIncrementWithLoopInvariant( |
| 2066 | Instruction *Rem, const LoopInfo *LI, Value *&RemAmtOut, Value *&AddInstOut, |
| 2067 | Value *&AddOffsetOut, PHINode *&LoopIncrPNOut) { |
| 2068 | Value *Incr, *RemAmt; |
| 2069 | // NB: If RemAmt is a power of 2 it *should* have been transformed by now. |
| 2070 | if (!match(V: Rem, P: m_URem(L: m_Value(V&: Incr), R: m_Value(V&: RemAmt)))) |
| 2071 | return false; |
| 2072 | |
| 2073 | Value *AddInst, *AddOffset; |
| 2074 | // Find out loop increment PHI. |
| 2075 | auto *PN = dyn_cast<PHINode>(Val: Incr); |
| 2076 | if (PN != nullptr) { |
| 2077 | AddInst = nullptr; |
| 2078 | AddOffset = nullptr; |
| 2079 | } else { |
| 2080 | // Search through a NUW add on top of the loop increment. |
| 2081 | Value *V0, *V1; |
| 2082 | if (!match(V: Incr, P: m_NUWAdd(L: m_Value(V&: V0), R: m_Value(V&: V1)))) |
| 2083 | return false; |
| 2084 | |
| 2085 | AddInst = Incr; |
| 2086 | PN = dyn_cast<PHINode>(Val: V0); |
| 2087 | if (PN != nullptr) { |
| 2088 | AddOffset = V1; |
| 2089 | } else { |
| 2090 | PN = dyn_cast<PHINode>(Val: V1); |
| 2091 | AddOffset = V0; |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | if (!PN) |
| 2096 | return false; |
| 2097 | |
| 2098 | // This isn't strictly necessary, what we really need is one increment and any |
| 2099 | // amount of initial values all being the same. |
| 2100 | if (PN->getNumIncomingValues() != 2) |
| 2101 | return false; |
| 2102 | |
| 2103 | // Only trivially analyzable loops. |
| 2104 | Loop *L = LI->getLoopFor(BB: PN->getParent()); |
| 2105 | if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) |
| 2106 | return false; |
| 2107 | |
| 2108 | // Req that the remainder is in the loop |
| 2109 | if (!L->contains(Inst: Rem)) |
| 2110 | return false; |
| 2111 | |
| 2112 | // Only works if the remainder amount is a loop invaraint |
| 2113 | if (!L->isLoopInvariant(V: RemAmt)) |
| 2114 | return false; |
| 2115 | |
| 2116 | // Only works if the AddOffset is a loop invaraint |
| 2117 | if (AddOffset && !L->isLoopInvariant(V: AddOffset)) |
| 2118 | return false; |
| 2119 | |
| 2120 | // Is the PHI a loop increment? |
| 2121 | auto LoopIncrInfo = getIVIncrement(PN, LI); |
| 2122 | if (!LoopIncrInfo) |
| 2123 | return false; |
| 2124 | |
| 2125 | // We need remainder_amount % increment_amount to be zero. Increment of one |
| 2126 | // satisfies that without any special logic and is overwhelmingly the common |
| 2127 | // case. |
| 2128 | if (!match(V: LoopIncrInfo->second, P: m_One())) |
| 2129 | return false; |
| 2130 | |
| 2131 | // Need the increment to not overflow. |
| 2132 | if (!match(V: LoopIncrInfo->first, P: m_c_NUWAdd(L: m_Specific(V: PN), R: m_Value()))) |
| 2133 | return false; |
| 2134 | |
| 2135 | // Set output variables. |
| 2136 | RemAmtOut = RemAmt; |
| 2137 | LoopIncrPNOut = PN; |
| 2138 | AddInstOut = AddInst; |
| 2139 | AddOffsetOut = AddOffset; |
| 2140 | |
| 2141 | return true; |
| 2142 | } |
| 2143 | |
| 2144 | // Try to transform: |
| 2145 | // |
| 2146 | // for(i = Start; i < End; ++i) |
| 2147 | // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; |
| 2148 | // |
| 2149 | // -> |
| 2150 | // |
| 2151 | // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; |
| 2152 | // for(i = Start; i < End; ++i, ++rem) |
| 2153 | // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; |
| 2154 | static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, |
| 2155 | const LoopInfo *LI, |
| 2156 | SmallPtrSet<BasicBlock *, 32> &FreshBBs, |
| 2157 | bool IsHuge) { |
| 2158 | Value *AddOffset, *RemAmt, *AddInst; |
| 2159 | PHINode *LoopIncrPN; |
| 2160 | if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmtOut&: RemAmt, AddInstOut&: AddInst, |
| 2161 | AddOffsetOut&: AddOffset, LoopIncrPNOut&: LoopIncrPN)) |
| 2162 | return false; |
| 2163 | |
| 2164 | // Only non-constant remainder as the extra IV is probably not profitable |
| 2165 | // in that case. |
| 2166 | // |
| 2167 | // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If |
| 2168 | // we can rule out register pressure and ensure this `urem` is executed each |
| 2169 | // iteration, its probably profitable to handle the const case as well. |
| 2170 | // |
| 2171 | // Potential TODO(2): Should we have a check for how "nested" this remainder |
| 2172 | // operation is? The new code runs every iteration so if the remainder is |
| 2173 | // guarded behind unlikely conditions this might not be worth it. |
| 2174 | if (match(V: RemAmt, P: m_ImmConstant())) |
| 2175 | return false; |
| 2176 | |
| 2177 | Loop *L = LI->getLoopFor(BB: LoopIncrPN->getParent()); |
| 2178 | Value *Start = LoopIncrPN->getIncomingValueForBlock(BB: L->getLoopPreheader()); |
| 2179 | // If we have add create initial value for remainder. |
| 2180 | // The logic here is: |
| 2181 | // (urem (add nuw Start, IncrLoopInvariant), RemAmtLoopInvariant |
| 2182 | // |
| 2183 | // Only proceed if the expression simplifies (otherwise we can't fully |
| 2184 | // optimize out the urem). |
| 2185 | if (AddInst) { |
| 2186 | assert(AddOffset && "We found an add but missing values" ); |
| 2187 | // Without dom-condition/assumption cache we aren't likely to get much out |
| 2188 | // of a context instruction. |
| 2189 | Start = simplifyAddInst(LHS: Start, RHS: AddOffset, |
| 2190 | IsNSW: match(V: AddInst, P: m_NSWAdd(L: m_Value(), R: m_Value())), |
| 2191 | /*IsNUW=*/true, Q: *DL); |
| 2192 | if (!Start) |
| 2193 | return false; |
| 2194 | } |
| 2195 | |
| 2196 | // If we can't fully optimize out the `rem`, skip this transform. |
| 2197 | Start = simplifyURemInst(LHS: Start, RHS: RemAmt, Q: *DL); |
| 2198 | if (!Start) |
| 2199 | return false; |
| 2200 | |
| 2201 | // Create new remainder with induction variable. |
| 2202 | Type *Ty = Rem->getType(); |
| 2203 | IRBuilder<> Builder(Rem->getContext()); |
| 2204 | |
| 2205 | Builder.SetInsertPoint(LoopIncrPN); |
| 2206 | PHINode *NewRem = Builder.CreatePHI(Ty, NumReservedValues: 2); |
| 2207 | |
| 2208 | Builder.SetInsertPoint(cast<Instruction>( |
| 2209 | Val: LoopIncrPN->getIncomingValueForBlock(BB: L->getLoopLatch()))); |
| 2210 | // `(add (urem x, y), 1)` is always nuw. |
| 2211 | Value *RemAdd = Builder.CreateNUWAdd(LHS: NewRem, RHS: ConstantInt::get(Ty, V: 1)); |
| 2212 | Value *RemCmp = Builder.CreateICmp(P: ICmpInst::ICMP_EQ, LHS: RemAdd, RHS: RemAmt); |
| 2213 | Value *RemSel = |
| 2214 | Builder.CreateSelect(C: RemCmp, True: Constant::getNullValue(Ty), False: RemAdd); |
| 2215 | |
| 2216 | NewRem->addIncoming(V: Start, BB: L->getLoopPreheader()); |
| 2217 | NewRem->addIncoming(V: RemSel, BB: L->getLoopLatch()); |
| 2218 | |
| 2219 | // Insert all touched BBs. |
| 2220 | FreshBBs.insert(Ptr: LoopIncrPN->getParent()); |
| 2221 | FreshBBs.insert(Ptr: L->getLoopLatch()); |
| 2222 | FreshBBs.insert(Ptr: Rem->getParent()); |
| 2223 | if (AddInst) |
| 2224 | FreshBBs.insert(Ptr: cast<Instruction>(Val: AddInst)->getParent()); |
| 2225 | replaceAllUsesWith(Old: Rem, New: NewRem, FreshBBs, IsHuge); |
| 2226 | Rem->eraseFromParent(); |
| 2227 | if (AddInst && AddInst->use_empty()) |
| 2228 | cast<Instruction>(Val: AddInst)->eraseFromParent(); |
| 2229 | return true; |
| 2230 | } |
| 2231 | |
| 2232 | bool CodeGenPrepare::optimizeURem(Instruction *Rem) { |
| 2233 | if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHuge: IsHugeFunc)) |
| 2234 | return true; |
| 2235 | return false; |
| 2236 | } |
| 2237 | |
| 2238 | bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { |
| 2239 | if (sinkCmpExpression(Cmp, TLI: *TLI, DL: *DL)) |
| 2240 | return true; |
| 2241 | |
| 2242 | if (combineToUAddWithOverflow(Cmp, ModifiedDT)) |
| 2243 | return true; |
| 2244 | |
| 2245 | if (combineToUSubWithOverflow(Cmp, ModifiedDT)) |
| 2246 | return true; |
| 2247 | |
| 2248 | if (unfoldPowerOf2Test(Cmp)) |
| 2249 | return true; |
| 2250 | |
| 2251 | if (foldICmpWithDominatingICmp(Cmp, TLI: *TLI)) |
| 2252 | return true; |
| 2253 | |
| 2254 | if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) |
| 2255 | return true; |
| 2256 | |
| 2257 | if (foldFCmpToFPClassTest(Cmp, TLI: *TLI, DL: *DL)) |
| 2258 | return true; |
| 2259 | |
| 2260 | return false; |
| 2261 | } |
| 2262 | |
| 2263 | /// Duplicate and sink the given 'and' instruction into user blocks where it is |
| 2264 | /// used in a compare to allow isel to generate better code for targets where |
| 2265 | /// this operation can be combined. |
| 2266 | /// |
| 2267 | /// Return true if any changes are made. |
| 2268 | static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, |
| 2269 | SetOfInstrs &InsertedInsts) { |
| 2270 | // Double-check that we're not trying to optimize an instruction that was |
| 2271 | // already optimized by some other part of this pass. |
| 2272 | assert(!InsertedInsts.count(AndI) && |
| 2273 | "Attempting to optimize already optimized and instruction" ); |
| 2274 | (void)InsertedInsts; |
| 2275 | |
| 2276 | // Nothing to do for single use in same basic block. |
| 2277 | if (AndI->hasOneUse() && |
| 2278 | AndI->getParent() == cast<Instruction>(Val: *AndI->user_begin())->getParent()) |
| 2279 | return false; |
| 2280 | |
| 2281 | // Try to avoid cases where sinking/duplicating is likely to increase register |
| 2282 | // pressure. |
| 2283 | if (!isa<ConstantInt>(Val: AndI->getOperand(i: 0)) && |
| 2284 | !isa<ConstantInt>(Val: AndI->getOperand(i: 1)) && |
| 2285 | AndI->getOperand(i: 0)->hasOneUse() && AndI->getOperand(i: 1)->hasOneUse()) |
| 2286 | return false; |
| 2287 | |
| 2288 | for (auto *U : AndI->users()) { |
| 2289 | Instruction *User = cast<Instruction>(Val: U); |
| 2290 | |
| 2291 | // Only sink 'and' feeding icmp with 0. |
| 2292 | if (!isa<ICmpInst>(Val: User)) |
| 2293 | return false; |
| 2294 | |
| 2295 | auto *CmpC = dyn_cast<ConstantInt>(Val: User->getOperand(i: 1)); |
| 2296 | if (!CmpC || !CmpC->isZero()) |
| 2297 | return false; |
| 2298 | } |
| 2299 | |
| 2300 | if (!TLI.isMaskAndCmp0FoldingBeneficial(AndI: *AndI)) |
| 2301 | return false; |
| 2302 | |
| 2303 | LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n" ); |
| 2304 | LLVM_DEBUG(AndI->getParent()->dump()); |
| 2305 | |
| 2306 | // Push the 'and' into the same block as the icmp 0. There should only be |
| 2307 | // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any |
| 2308 | // others, so we don't need to keep track of which BBs we insert into. |
| 2309 | for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); |
| 2310 | UI != E;) { |
| 2311 | Use &TheUse = UI.getUse(); |
| 2312 | Instruction *User = cast<Instruction>(Val: *UI); |
| 2313 | |
| 2314 | // Preincrement use iterator so we don't invalidate it. |
| 2315 | ++UI; |
| 2316 | |
| 2317 | LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n" ); |
| 2318 | |
| 2319 | // Keep the 'and' in the same place if the use is already in the same block. |
| 2320 | Instruction *InsertPt = |
| 2321 | User->getParent() == AndI->getParent() ? AndI : User; |
| 2322 | Instruction *InsertedAnd = BinaryOperator::Create( |
| 2323 | Op: Instruction::And, S1: AndI->getOperand(i: 0), S2: AndI->getOperand(i: 1), Name: "" , |
| 2324 | InsertBefore: InsertPt->getIterator()); |
| 2325 | // Propagate the debug info. |
| 2326 | InsertedAnd->setDebugLoc(AndI->getDebugLoc()); |
| 2327 | |
| 2328 | // Replace a use of the 'and' with a use of the new 'and'. |
| 2329 | TheUse = InsertedAnd; |
| 2330 | ++NumAndUses; |
| 2331 | LLVM_DEBUG(User->getParent()->dump()); |
| 2332 | } |
| 2333 | |
| 2334 | // We removed all uses, nuke the and. |
| 2335 | AndI->eraseFromParent(); |
| 2336 | return true; |
| 2337 | } |
| 2338 | |
| 2339 | /// Check if the candidates could be combined with a shift instruction, which |
| 2340 | /// includes: |
| 2341 | /// 1. Truncate instruction |
| 2342 | /// 2. And instruction and the imm is a mask of the low bits: |
| 2343 | /// imm & (imm+1) == 0 |
| 2344 | static bool isExtractBitsCandidateUse(Instruction *User) { |
| 2345 | if (!isa<TruncInst>(Val: User)) { |
| 2346 | if (User->getOpcode() != Instruction::And || |
| 2347 | !isa<ConstantInt>(Val: User->getOperand(i: 1))) |
| 2348 | return false; |
| 2349 | |
| 2350 | const APInt &Cimm = cast<ConstantInt>(Val: User->getOperand(i: 1))->getValue(); |
| 2351 | |
| 2352 | if ((Cimm & (Cimm + 1)).getBoolValue()) |
| 2353 | return false; |
| 2354 | } |
| 2355 | return true; |
| 2356 | } |
| 2357 | |
| 2358 | /// Sink both shift and truncate instruction to the use of truncate's BB. |
| 2359 | static bool |
| 2360 | SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, |
| 2361 | DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, |
| 2362 | const TargetLowering &TLI, const DataLayout &DL) { |
| 2363 | BasicBlock *UserBB = User->getParent(); |
| 2364 | DenseMap<BasicBlock *, CastInst *> InsertedTruncs; |
| 2365 | auto *TruncI = cast<TruncInst>(Val: User); |
| 2366 | bool MadeChange = false; |
| 2367 | |
| 2368 | for (Value::user_iterator TruncUI = TruncI->user_begin(), |
| 2369 | TruncE = TruncI->user_end(); |
| 2370 | TruncUI != TruncE;) { |
| 2371 | |
| 2372 | Use &TruncTheUse = TruncUI.getUse(); |
| 2373 | Instruction *TruncUser = cast<Instruction>(Val: *TruncUI); |
| 2374 | // Preincrement use iterator so we don't invalidate it. |
| 2375 | |
| 2376 | ++TruncUI; |
| 2377 | |
| 2378 | int ISDOpcode = TLI.InstructionOpcodeToISD(Opcode: TruncUser->getOpcode()); |
| 2379 | if (!ISDOpcode) |
| 2380 | continue; |
| 2381 | |
| 2382 | // If the use is actually a legal node, there will not be an |
| 2383 | // implicit truncate. |
| 2384 | // FIXME: always querying the result type is just an |
| 2385 | // approximation; some nodes' legality is determined by the |
| 2386 | // operand or other means. There's no good way to find out though. |
| 2387 | if (TLI.isOperationLegalOrCustom( |
| 2388 | Op: ISDOpcode, VT: TLI.getValueType(DL, Ty: TruncUser->getType(), AllowUnknown: true))) |
| 2389 | continue; |
| 2390 | |
| 2391 | // Don't bother for PHI nodes. |
| 2392 | if (isa<PHINode>(Val: TruncUser)) |
| 2393 | continue; |
| 2394 | |
| 2395 | BasicBlock *TruncUserBB = TruncUser->getParent(); |
| 2396 | |
| 2397 | if (UserBB == TruncUserBB) |
| 2398 | continue; |
| 2399 | |
| 2400 | BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; |
| 2401 | CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; |
| 2402 | |
| 2403 | if (!InsertedShift && !InsertedTrunc) { |
| 2404 | BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); |
| 2405 | assert(InsertPt != TruncUserBB->end()); |
| 2406 | // Sink the shift |
| 2407 | if (ShiftI->getOpcode() == Instruction::AShr) |
| 2408 | InsertedShift = |
| 2409 | BinaryOperator::CreateAShr(V1: ShiftI->getOperand(i_nocapture: 0), V2: CI, Name: "" ); |
| 2410 | else |
| 2411 | InsertedShift = |
| 2412 | BinaryOperator::CreateLShr(V1: ShiftI->getOperand(i_nocapture: 0), V2: CI, Name: "" ); |
| 2413 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); |
| 2414 | InsertedShift->insertBefore(BB&: *TruncUserBB, InsertPos: InsertPt); |
| 2415 | |
| 2416 | // Sink the trunc |
| 2417 | BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); |
| 2418 | TruncInsertPt++; |
| 2419 | // It will go ahead of any debug-info. |
| 2420 | TruncInsertPt.setHeadBit(true); |
| 2421 | assert(TruncInsertPt != TruncUserBB->end()); |
| 2422 | |
| 2423 | InsertedTrunc = CastInst::Create(TruncI->getOpcode(), S: InsertedShift, |
| 2424 | Ty: TruncI->getType(), Name: "" ); |
| 2425 | InsertedTrunc->insertBefore(BB&: *TruncUserBB, InsertPos: TruncInsertPt); |
| 2426 | InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); |
| 2427 | |
| 2428 | MadeChange = true; |
| 2429 | |
| 2430 | TruncTheUse = InsertedTrunc; |
| 2431 | } |
| 2432 | } |
| 2433 | return MadeChange; |
| 2434 | } |
| 2435 | |
| 2436 | /// Sink the shift *right* instruction into user blocks if the uses could |
| 2437 | /// potentially be combined with this shift instruction and generate BitExtract |
| 2438 | /// instruction. It will only be applied if the architecture supports BitExtract |
| 2439 | /// instruction. Here is an example: |
| 2440 | /// BB1: |
| 2441 | /// %x.extract.shift = lshr i64 %arg1, 32 |
| 2442 | /// BB2: |
| 2443 | /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 |
| 2444 | /// ==> |
| 2445 | /// |
| 2446 | /// BB2: |
| 2447 | /// %x.extract.shift.1 = lshr i64 %arg1, 32 |
| 2448 | /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 |
| 2449 | /// |
| 2450 | /// CodeGen will recognize the pattern in BB2 and generate BitExtract |
| 2451 | /// instruction. |
| 2452 | /// Return true if any changes are made. |
| 2453 | static bool (BinaryOperator *ShiftI, ConstantInt *CI, |
| 2454 | const TargetLowering &TLI, |
| 2455 | const DataLayout &DL) { |
| 2456 | BasicBlock *DefBB = ShiftI->getParent(); |
| 2457 | |
| 2458 | /// Only insert instructions in each block once. |
| 2459 | DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; |
| 2460 | |
| 2461 | bool shiftIsLegal = TLI.isTypeLegal(VT: TLI.getValueType(DL, Ty: ShiftI->getType())); |
| 2462 | |
| 2463 | bool MadeChange = false; |
| 2464 | for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); |
| 2465 | UI != E;) { |
| 2466 | Use &TheUse = UI.getUse(); |
| 2467 | Instruction *User = cast<Instruction>(Val: *UI); |
| 2468 | // Preincrement use iterator so we don't invalidate it. |
| 2469 | ++UI; |
| 2470 | |
| 2471 | // Don't bother for PHI nodes. |
| 2472 | if (isa<PHINode>(Val: User)) |
| 2473 | continue; |
| 2474 | |
| 2475 | if (!isExtractBitsCandidateUse(User)) |
| 2476 | continue; |
| 2477 | |
| 2478 | BasicBlock *UserBB = User->getParent(); |
| 2479 | |
| 2480 | if (UserBB == DefBB) { |
| 2481 | // If the shift and truncate instruction are in the same BB. The use of |
| 2482 | // the truncate(TruncUse) may still introduce another truncate if not |
| 2483 | // legal. In this case, we would like to sink both shift and truncate |
| 2484 | // instruction to the BB of TruncUse. |
| 2485 | // for example: |
| 2486 | // BB1: |
| 2487 | // i64 shift.result = lshr i64 opnd, imm |
| 2488 | // trunc.result = trunc shift.result to i16 |
| 2489 | // |
| 2490 | // BB2: |
| 2491 | // ----> We will have an implicit truncate here if the architecture does |
| 2492 | // not have i16 compare. |
| 2493 | // cmp i16 trunc.result, opnd2 |
| 2494 | // |
| 2495 | if (isa<TruncInst>(Val: User) && |
| 2496 | shiftIsLegal |
| 2497 | // If the type of the truncate is legal, no truncate will be |
| 2498 | // introduced in other basic blocks. |
| 2499 | && (!TLI.isTypeLegal(VT: TLI.getValueType(DL, Ty: User->getType())))) |
| 2500 | MadeChange = |
| 2501 | SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); |
| 2502 | |
| 2503 | continue; |
| 2504 | } |
| 2505 | // If we have already inserted a shift into this block, use it. |
| 2506 | BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; |
| 2507 | |
| 2508 | if (!InsertedShift) { |
| 2509 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| 2510 | assert(InsertPt != UserBB->end()); |
| 2511 | |
| 2512 | if (ShiftI->getOpcode() == Instruction::AShr) |
| 2513 | InsertedShift = |
| 2514 | BinaryOperator::CreateAShr(V1: ShiftI->getOperand(i_nocapture: 0), V2: CI, Name: "" ); |
| 2515 | else |
| 2516 | InsertedShift = |
| 2517 | BinaryOperator::CreateLShr(V1: ShiftI->getOperand(i_nocapture: 0), V2: CI, Name: "" ); |
| 2518 | InsertedShift->insertBefore(BB&: *UserBB, InsertPos: InsertPt); |
| 2519 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); |
| 2520 | |
| 2521 | MadeChange = true; |
| 2522 | } |
| 2523 | |
| 2524 | // Replace a use of the shift with a use of the new shift. |
| 2525 | TheUse = InsertedShift; |
| 2526 | } |
| 2527 | |
| 2528 | // If we removed all uses, or there are none, nuke the shift. |
| 2529 | if (ShiftI->use_empty()) { |
| 2530 | salvageDebugInfo(I&: *ShiftI); |
| 2531 | ShiftI->eraseFromParent(); |
| 2532 | MadeChange = true; |
| 2533 | } |
| 2534 | |
| 2535 | return MadeChange; |
| 2536 | } |
| 2537 | |
| 2538 | /// If counting leading or trailing zeros is an expensive operation and a zero |
| 2539 | /// input is defined, add a check for zero to avoid calling the intrinsic. |
| 2540 | /// |
| 2541 | /// We want to transform: |
| 2542 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) |
| 2543 | /// |
| 2544 | /// into: |
| 2545 | /// entry: |
| 2546 | /// %cmpz = icmp eq i64 %A, 0 |
| 2547 | /// br i1 %cmpz, label %cond.end, label %cond.false |
| 2548 | /// cond.false: |
| 2549 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) |
| 2550 | /// br label %cond.end |
| 2551 | /// cond.end: |
| 2552 | /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] |
| 2553 | /// |
| 2554 | /// If the transform is performed, return true and set ModifiedDT to true. |
| 2555 | static bool despeculateCountZeros(IntrinsicInst *CountZeros, LoopInfo &LI, |
| 2556 | const TargetLowering *TLI, |
| 2557 | const DataLayout *DL, ModifyDT &ModifiedDT, |
| 2558 | SmallPtrSet<BasicBlock *, 32> &FreshBBs, |
| 2559 | bool IsHugeFunc) { |
| 2560 | // If a zero input is undefined, it doesn't make sense to despeculate that. |
| 2561 | if (match(V: CountZeros->getOperand(i_nocapture: 1), P: m_One())) |
| 2562 | return false; |
| 2563 | |
| 2564 | // If it's cheap to speculate, there's nothing to do. |
| 2565 | Type *Ty = CountZeros->getType(); |
| 2566 | auto IntrinsicID = CountZeros->getIntrinsicID(); |
| 2567 | if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || |
| 2568 | (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) |
| 2569 | return false; |
| 2570 | |
| 2571 | // Only handle scalar cases. Anything else requires too much work. |
| 2572 | unsigned SizeInBits = Ty->getScalarSizeInBits(); |
| 2573 | if (Ty->isVectorTy()) |
| 2574 | return false; |
| 2575 | |
| 2576 | // Bail if the value is never zero. |
| 2577 | Use &Op = CountZeros->getOperandUse(i: 0); |
| 2578 | if (isKnownNonZero(V: Op, Q: *DL)) |
| 2579 | return false; |
| 2580 | |
| 2581 | // The intrinsic will be sunk behind a compare against zero and branch. |
| 2582 | BasicBlock *StartBlock = CountZeros->getParent(); |
| 2583 | BasicBlock *CallBlock = StartBlock->splitBasicBlock(I: CountZeros, BBName: "cond.false" ); |
| 2584 | if (IsHugeFunc) |
| 2585 | FreshBBs.insert(Ptr: CallBlock); |
| 2586 | |
| 2587 | // Create another block after the count zero intrinsic. A PHI will be added |
| 2588 | // in this block to select the result of the intrinsic or the bit-width |
| 2589 | // constant if the input to the intrinsic is zero. |
| 2590 | BasicBlock::iterator SplitPt = std::next(x: BasicBlock::iterator(CountZeros)); |
| 2591 | // Any debug-info after CountZeros should not be included. |
| 2592 | SplitPt.setHeadBit(true); |
| 2593 | BasicBlock *EndBlock = CallBlock->splitBasicBlock(I: SplitPt, BBName: "cond.end" ); |
| 2594 | if (IsHugeFunc) |
| 2595 | FreshBBs.insert(Ptr: EndBlock); |
| 2596 | |
| 2597 | // Update the LoopInfo. The new blocks are in the same loop as the start |
| 2598 | // block. |
| 2599 | if (Loop *L = LI.getLoopFor(BB: StartBlock)) { |
| 2600 | L->addBasicBlockToLoop(NewBB: CallBlock, LI); |
| 2601 | L->addBasicBlockToLoop(NewBB: EndBlock, LI); |
| 2602 | } |
| 2603 | |
| 2604 | // Set up a builder to create a compare, conditional branch, and PHI. |
| 2605 | IRBuilder<> Builder(CountZeros->getContext()); |
| 2606 | Builder.SetInsertPoint(StartBlock->getTerminator()); |
| 2607 | Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); |
| 2608 | |
| 2609 | // Replace the unconditional branch that was created by the first split with |
| 2610 | // a compare against zero and a conditional branch. |
| 2611 | Value *Zero = Constant::getNullValue(Ty); |
| 2612 | // Avoid introducing branch on poison. This also replaces the ctz operand. |
| 2613 | if (!isGuaranteedNotToBeUndefOrPoison(V: Op)) |
| 2614 | Op = Builder.CreateFreeze(V: Op, Name: Op->getName() + ".fr" ); |
| 2615 | Value *Cmp = Builder.CreateICmpEQ(LHS: Op, RHS: Zero, Name: "cmpz" ); |
| 2616 | Builder.CreateCondBr(Cond: Cmp, True: EndBlock, False: CallBlock); |
| 2617 | StartBlock->getTerminator()->eraseFromParent(); |
| 2618 | |
| 2619 | // Create a PHI in the end block to select either the output of the intrinsic |
| 2620 | // or the bit width of the operand. |
| 2621 | Builder.SetInsertPoint(TheBB: EndBlock, IP: EndBlock->begin()); |
| 2622 | PHINode *PN = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: "ctz" ); |
| 2623 | replaceAllUsesWith(Old: CountZeros, New: PN, FreshBBs, IsHuge: IsHugeFunc); |
| 2624 | Value *BitWidth = Builder.getInt(AI: APInt(SizeInBits, SizeInBits)); |
| 2625 | PN->addIncoming(V: BitWidth, BB: StartBlock); |
| 2626 | PN->addIncoming(V: CountZeros, BB: CallBlock); |
| 2627 | |
| 2628 | // We are explicitly handling the zero case, so we can set the intrinsic's |
| 2629 | // undefined zero argument to 'true'. This will also prevent reprocessing the |
| 2630 | // intrinsic; we only despeculate when a zero input is defined. |
| 2631 | CountZeros->setArgOperand(i: 1, v: Builder.getTrue()); |
| 2632 | ModifiedDT = ModifyDT::ModifyBBDT; |
| 2633 | return true; |
| 2634 | } |
| 2635 | |
| 2636 | bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { |
| 2637 | BasicBlock *BB = CI->getParent(); |
| 2638 | |
| 2639 | // Sink address computing for memory operands into the block. |
| 2640 | if (CI->isInlineAsm() && optimizeInlineAsmInst(CS: CI)) |
| 2641 | return true; |
| 2642 | |
| 2643 | // Align the pointer arguments to this call if the target thinks it's a good |
| 2644 | // idea |
| 2645 | unsigned MinSize; |
| 2646 | Align PrefAlign; |
| 2647 | if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { |
| 2648 | for (auto &Arg : CI->args()) { |
| 2649 | // We want to align both objects whose address is used directly and |
| 2650 | // objects whose address is used in casts and GEPs, though it only makes |
| 2651 | // sense for GEPs if the offset is a multiple of the desired alignment and |
| 2652 | // if size - offset meets the size threshold. |
| 2653 | if (!Arg->getType()->isPointerTy()) |
| 2654 | continue; |
| 2655 | APInt Offset(DL->getIndexSizeInBits( |
| 2656 | AS: cast<PointerType>(Val: Arg->getType())->getAddressSpace()), |
| 2657 | 0); |
| 2658 | Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(DL: *DL, Offset); |
| 2659 | uint64_t Offset2 = Offset.getLimitedValue(); |
| 2660 | if (!isAligned(Lhs: PrefAlign, SizeInBytes: Offset2)) |
| 2661 | continue; |
| 2662 | AllocaInst *AI; |
| 2663 | if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign) { |
| 2664 | std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL: *DL); |
| 2665 | if (AllocaSize && AllocaSize->getKnownMinValue() >= MinSize + Offset2) |
| 2666 | AI->setAlignment(PrefAlign); |
| 2667 | } |
| 2668 | // Global variables can only be aligned if they are defined in this |
| 2669 | // object (i.e. they are uniquely initialized in this object), and |
| 2670 | // over-aligning global variables that have an explicit section is |
| 2671 | // forbidden. |
| 2672 | GlobalVariable *GV; |
| 2673 | if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && |
| 2674 | GV->getPointerAlignment(DL: *DL) < PrefAlign && |
| 2675 | GV->getGlobalSize(DL: *DL) >= MinSize + Offset2) |
| 2676 | GV->setAlignment(PrefAlign); |
| 2677 | } |
| 2678 | } |
| 2679 | // If this is a memcpy (or similar) then we may be able to improve the |
| 2680 | // alignment. |
| 2681 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: CI)) { |
| 2682 | Align DestAlign = getKnownAlignment(V: MI->getDest(), DL: *DL); |
| 2683 | MaybeAlign MIDestAlign = MI->getDestAlign(); |
| 2684 | if (!MIDestAlign || DestAlign > *MIDestAlign) |
| 2685 | MI->setDestAlignment(DestAlign); |
| 2686 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Val: MI)) { |
| 2687 | MaybeAlign MTISrcAlign = MTI->getSourceAlign(); |
| 2688 | Align SrcAlign = getKnownAlignment(V: MTI->getSource(), DL: *DL); |
| 2689 | if (!MTISrcAlign || SrcAlign > *MTISrcAlign) |
| 2690 | MTI->setSourceAlignment(SrcAlign); |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | // If we have a cold call site, try to sink addressing computation into the |
| 2695 | // cold block. This interacts with our handling for loads and stores to |
| 2696 | // ensure that we can fold all uses of a potential addressing computation |
| 2697 | // into their uses. TODO: generalize this to work over profiling data |
| 2698 | if (CI->hasFnAttr(Kind: Attribute::Cold) && |
| 2699 | !llvm::shouldOptimizeForSize(BB, PSI, BFI: BFI.get())) |
| 2700 | for (auto &Arg : CI->args()) { |
| 2701 | if (!Arg->getType()->isPointerTy()) |
| 2702 | continue; |
| 2703 | unsigned AS = Arg->getType()->getPointerAddressSpace(); |
| 2704 | if (optimizeMemoryInst(MemoryInst: CI, Addr: Arg, AccessTy: Arg->getType(), AddrSpace: AS)) |
| 2705 | return true; |
| 2706 | } |
| 2707 | |
| 2708 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: CI); |
| 2709 | if (II) { |
| 2710 | switch (II->getIntrinsicID()) { |
| 2711 | default: |
| 2712 | break; |
| 2713 | case Intrinsic::assume: |
| 2714 | llvm_unreachable("llvm.assume should have been removed already" ); |
| 2715 | case Intrinsic::allow_runtime_check: |
| 2716 | case Intrinsic::allow_ubsan_check: |
| 2717 | case Intrinsic::experimental_widenable_condition: { |
| 2718 | // Give up on future widening opportunities so that we can fold away dead |
| 2719 | // paths and merge blocks before going into block-local instruction |
| 2720 | // selection. |
| 2721 | if (II->use_empty()) { |
| 2722 | II->eraseFromParent(); |
| 2723 | return true; |
| 2724 | } |
| 2725 | Constant *RetVal = ConstantInt::getTrue(Context&: II->getContext()); |
| 2726 | resetIteratorIfInvalidatedWhileCalling(BB, f: [&]() { |
| 2727 | replaceAndRecursivelySimplify(I: CI, SimpleV: RetVal, TLI: TLInfo, DT: nullptr); |
| 2728 | }); |
| 2729 | return true; |
| 2730 | } |
| 2731 | case Intrinsic::objectsize: |
| 2732 | llvm_unreachable("llvm.objectsize.* should have been lowered already" ); |
| 2733 | case Intrinsic::is_constant: |
| 2734 | llvm_unreachable("llvm.is.constant.* should have been lowered already" ); |
| 2735 | case Intrinsic::aarch64_stlxr: |
| 2736 | case Intrinsic::aarch64_stxr: { |
| 2737 | ZExtInst *ExtVal = dyn_cast<ZExtInst>(Val: CI->getArgOperand(i: 0)); |
| 2738 | if (!ExtVal || !ExtVal->hasOneUse() || |
| 2739 | ExtVal->getParent() == CI->getParent()) |
| 2740 | return false; |
| 2741 | // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. |
| 2742 | ExtVal->moveBefore(InsertPos: CI->getIterator()); |
| 2743 | // Mark this instruction as "inserted by CGP", so that other |
| 2744 | // optimizations don't touch it. |
| 2745 | InsertedInsts.insert(Ptr: ExtVal); |
| 2746 | return true; |
| 2747 | } |
| 2748 | |
| 2749 | case Intrinsic::launder_invariant_group: |
| 2750 | case Intrinsic::strip_invariant_group: { |
| 2751 | Value *ArgVal = II->getArgOperand(i: 0); |
| 2752 | auto it = LargeOffsetGEPMap.find(Key: II); |
| 2753 | if (it != LargeOffsetGEPMap.end()) { |
| 2754 | // Merge entries in LargeOffsetGEPMap to reflect the RAUW. |
| 2755 | // Make sure not to have to deal with iterator invalidation |
| 2756 | // after possibly adding ArgVal to LargeOffsetGEPMap. |
| 2757 | auto GEPs = std::move(it->second); |
| 2758 | LargeOffsetGEPMap[ArgVal].append(in_start: GEPs.begin(), in_end: GEPs.end()); |
| 2759 | LargeOffsetGEPMap.erase(Key: II); |
| 2760 | } |
| 2761 | |
| 2762 | replaceAllUsesWith(Old: II, New: ArgVal, FreshBBs, IsHuge: IsHugeFunc); |
| 2763 | II->eraseFromParent(); |
| 2764 | return true; |
| 2765 | } |
| 2766 | case Intrinsic::cttz: |
| 2767 | case Intrinsic::ctlz: |
| 2768 | // If counting zeros is expensive, try to avoid it. |
| 2769 | return despeculateCountZeros(CountZeros: II, LI&: *LI, TLI, DL, ModifiedDT, FreshBBs, |
| 2770 | IsHugeFunc); |
| 2771 | case Intrinsic::fshl: |
| 2772 | case Intrinsic::fshr: |
| 2773 | return optimizeFunnelShift(Fsh: II); |
| 2774 | case Intrinsic::masked_gather: |
| 2775 | return optimizeGatherScatterInst(MemoryInst: II, Ptr: II->getArgOperand(i: 0)); |
| 2776 | case Intrinsic::masked_scatter: |
| 2777 | return optimizeGatherScatterInst(MemoryInst: II, Ptr: II->getArgOperand(i: 1)); |
| 2778 | case Intrinsic::masked_load: |
| 2779 | // Treat v1X masked load as load X type. |
| 2780 | if (auto *VT = dyn_cast<FixedVectorType>(Val: II->getType())) { |
| 2781 | if (VT->getNumElements() == 1) { |
| 2782 | Value *PtrVal = II->getArgOperand(i: 0); |
| 2783 | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); |
| 2784 | if (optimizeMemoryInst(MemoryInst: II, Addr: PtrVal, AccessTy: VT->getElementType(), AddrSpace: AS)) |
| 2785 | return true; |
| 2786 | } |
| 2787 | } |
| 2788 | return false; |
| 2789 | case Intrinsic::masked_store: |
| 2790 | // Treat v1X masked store as store X type. |
| 2791 | if (auto *VT = |
| 2792 | dyn_cast<FixedVectorType>(Val: II->getArgOperand(i: 0)->getType())) { |
| 2793 | if (VT->getNumElements() == 1) { |
| 2794 | Value *PtrVal = II->getArgOperand(i: 1); |
| 2795 | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); |
| 2796 | if (optimizeMemoryInst(MemoryInst: II, Addr: PtrVal, AccessTy: VT->getElementType(), AddrSpace: AS)) |
| 2797 | return true; |
| 2798 | } |
| 2799 | } |
| 2800 | return false; |
| 2801 | case Intrinsic::umul_with_overflow: |
| 2802 | return optimizeMulWithOverflow(I: II, /*IsSigned=*/false, ModifiedDT); |
| 2803 | case Intrinsic::smul_with_overflow: |
| 2804 | return optimizeMulWithOverflow(I: II, /*IsSigned=*/true, ModifiedDT); |
| 2805 | } |
| 2806 | |
| 2807 | SmallVector<Value *, 2> PtrOps; |
| 2808 | Type *AccessTy; |
| 2809 | if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) |
| 2810 | while (!PtrOps.empty()) { |
| 2811 | Value *PtrVal = PtrOps.pop_back_val(); |
| 2812 | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); |
| 2813 | if (optimizeMemoryInst(MemoryInst: II, Addr: PtrVal, AccessTy, AddrSpace: AS)) |
| 2814 | return true; |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | // From here on out we're working with named functions. |
| 2819 | auto *Callee = CI->getCalledFunction(); |
| 2820 | if (!Callee) |
| 2821 | return false; |
| 2822 | |
| 2823 | // Lower all default uses of _chk calls. This is very similar |
| 2824 | // to what InstCombineCalls does, but here we are only lowering calls |
| 2825 | // to fortified library functions (e.g. __memcpy_chk) that have the default |
| 2826 | // "don't know" as the objectsize. Anything else should be left alone. |
| 2827 | FortifiedLibCallSimplifier Simplifier(TLInfo, true); |
| 2828 | IRBuilder<> Builder(CI); |
| 2829 | if (Value *V = Simplifier.optimizeCall(CI, B&: Builder)) { |
| 2830 | replaceAllUsesWith(Old: CI, New: V, FreshBBs, IsHuge: IsHugeFunc); |
| 2831 | CI->eraseFromParent(); |
| 2832 | return true; |
| 2833 | } |
| 2834 | |
| 2835 | // SCCP may have propagated, among other things, C++ static variables across |
| 2836 | // calls. If this happens to be the case, we may want to undo it in order to |
| 2837 | // avoid redundant pointer computation of the constant, as the function method |
| 2838 | // returning the constant needs to be executed anyways. |
| 2839 | auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * { |
| 2840 | if (!F->getReturnType()->isPointerTy()) |
| 2841 | return nullptr; |
| 2842 | |
| 2843 | GlobalVariable *UniformValue = nullptr; |
| 2844 | for (auto &BB : *F) { |
| 2845 | if (auto *RI = dyn_cast<ReturnInst>(Val: BB.getTerminator())) { |
| 2846 | if (auto *V = dyn_cast<GlobalVariable>(Val: RI->getReturnValue())) { |
| 2847 | if (!UniformValue) |
| 2848 | UniformValue = V; |
| 2849 | else if (V != UniformValue) |
| 2850 | return nullptr; |
| 2851 | } else { |
| 2852 | return nullptr; |
| 2853 | } |
| 2854 | } |
| 2855 | } |
| 2856 | |
| 2857 | return UniformValue; |
| 2858 | }; |
| 2859 | |
| 2860 | if (Callee->hasExactDefinition()) { |
| 2861 | if (GlobalVariable *RV = GetUniformReturnValue(Callee)) { |
| 2862 | bool MadeChange = false; |
| 2863 | for (Use &U : make_early_inc_range(Range: RV->uses())) { |
| 2864 | auto *I = dyn_cast<Instruction>(Val: U.getUser()); |
| 2865 | if (!I || I->getParent() != CI->getParent()) { |
| 2866 | // Limit to the same basic block to avoid extending the call-site live |
| 2867 | // range, which otherwise could increase register pressure. |
| 2868 | continue; |
| 2869 | } |
| 2870 | if (CI->comesBefore(Other: I)) { |
| 2871 | U.set(CI); |
| 2872 | MadeChange = true; |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | return MadeChange; |
| 2877 | } |
| 2878 | } |
| 2879 | |
| 2880 | return false; |
| 2881 | } |
| 2882 | |
| 2883 | static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, |
| 2884 | const CallInst *CI) { |
| 2885 | assert(CI && CI->use_empty()); |
| 2886 | |
| 2887 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: CI)) |
| 2888 | switch (II->getIntrinsicID()) { |
| 2889 | case Intrinsic::memset: |
| 2890 | case Intrinsic::memcpy: |
| 2891 | case Intrinsic::memmove: |
| 2892 | return true; |
| 2893 | default: |
| 2894 | return false; |
| 2895 | } |
| 2896 | |
| 2897 | LibFunc LF; |
| 2898 | Function *Callee = CI->getCalledFunction(); |
| 2899 | if (Callee && TLInfo && TLInfo->getLibFunc(FDecl: *Callee, F&: LF)) |
| 2900 | switch (LF) { |
| 2901 | case LibFunc_strcpy: |
| 2902 | case LibFunc_strncpy: |
| 2903 | case LibFunc_strcat: |
| 2904 | case LibFunc_strncat: |
| 2905 | return true; |
| 2906 | default: |
| 2907 | return false; |
| 2908 | } |
| 2909 | |
| 2910 | return false; |
| 2911 | } |
| 2912 | |
| 2913 | /// Look for opportunities to duplicate return instructions to the predecessor |
| 2914 | /// to enable tail call optimizations. The case it is currently looking for is |
| 2915 | /// the following one. Known intrinsics or library function that may be tail |
| 2916 | /// called are taken into account as well. |
| 2917 | /// @code |
| 2918 | /// bb0: |
| 2919 | /// %tmp0 = tail call i32 @f0() |
| 2920 | /// br label %return |
| 2921 | /// bb1: |
| 2922 | /// %tmp1 = tail call i32 @f1() |
| 2923 | /// br label %return |
| 2924 | /// bb2: |
| 2925 | /// %tmp2 = tail call i32 @f2() |
| 2926 | /// br label %return |
| 2927 | /// return: |
| 2928 | /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] |
| 2929 | /// ret i32 %retval |
| 2930 | /// @endcode |
| 2931 | /// |
| 2932 | /// => |
| 2933 | /// |
| 2934 | /// @code |
| 2935 | /// bb0: |
| 2936 | /// %tmp0 = tail call i32 @f0() |
| 2937 | /// ret i32 %tmp0 |
| 2938 | /// bb1: |
| 2939 | /// %tmp1 = tail call i32 @f1() |
| 2940 | /// ret i32 %tmp1 |
| 2941 | /// bb2: |
| 2942 | /// %tmp2 = tail call i32 @f2() |
| 2943 | /// ret i32 %tmp2 |
| 2944 | /// @endcode |
| 2945 | bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, |
| 2946 | ModifyDT &ModifiedDT) { |
| 2947 | if (!BB->getTerminator()) |
| 2948 | return false; |
| 2949 | |
| 2950 | ReturnInst *RetI = dyn_cast<ReturnInst>(Val: BB->getTerminator()); |
| 2951 | if (!RetI) |
| 2952 | return false; |
| 2953 | |
| 2954 | assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop" ); |
| 2955 | |
| 2956 | PHINode *PN = nullptr; |
| 2957 | ExtractValueInst *EVI = nullptr; |
| 2958 | BitCastInst *BCI = nullptr; |
| 2959 | Value *V = RetI->getReturnValue(); |
| 2960 | if (V) { |
| 2961 | BCI = dyn_cast<BitCastInst>(Val: V); |
| 2962 | if (BCI) |
| 2963 | V = BCI->getOperand(i_nocapture: 0); |
| 2964 | |
| 2965 | EVI = dyn_cast<ExtractValueInst>(Val: V); |
| 2966 | if (EVI) { |
| 2967 | V = EVI->getOperand(i_nocapture: 0); |
| 2968 | if (!llvm::all_of(Range: EVI->indices(), P: equal_to(Arg: 0))) |
| 2969 | return false; |
| 2970 | } |
| 2971 | |
| 2972 | PN = dyn_cast<PHINode>(Val: V); |
| 2973 | } |
| 2974 | |
| 2975 | if (PN && PN->getParent() != BB) |
| 2976 | return false; |
| 2977 | |
| 2978 | auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { |
| 2979 | const BitCastInst *BC = dyn_cast<BitCastInst>(Val: Inst); |
| 2980 | if (BC && BC->hasOneUse()) |
| 2981 | Inst = BC->user_back(); |
| 2982 | |
| 2983 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) |
| 2984 | return II->getIntrinsicID() == Intrinsic::lifetime_end; |
| 2985 | return false; |
| 2986 | }; |
| 2987 | |
| 2988 | SmallVector<const IntrinsicInst *, 4> FakeUses; |
| 2989 | |
| 2990 | auto isFakeUse = [&FakeUses](const Instruction *Inst) { |
| 2991 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Inst); |
| 2992 | II && II->getIntrinsicID() == Intrinsic::fake_use) { |
| 2993 | // Record the instruction so it can be preserved when the exit block is |
| 2994 | // removed. Do not preserve the fake use that uses the result of the |
| 2995 | // PHI instruction. |
| 2996 | // Do not copy fake uses that use the result of a PHI node. |
| 2997 | // FIXME: If we do want to copy the fake use into the return blocks, we |
| 2998 | // have to figure out which of the PHI node operands to use for each |
| 2999 | // copy. |
| 3000 | if (!isa<PHINode>(Val: II->getOperand(i_nocapture: 0))) { |
| 3001 | FakeUses.push_back(Elt: II); |
| 3002 | } |
| 3003 | return true; |
| 3004 | } |
| 3005 | |
| 3006 | return false; |
| 3007 | }; |
| 3008 | |
| 3009 | // Make sure there are no instructions between the first instruction |
| 3010 | // and return. |
| 3011 | BasicBlock::const_iterator BI = BB->getFirstNonPHIIt(); |
| 3012 | // Skip over pseudo-probes and the bitcast. |
| 3013 | while (&*BI == BCI || &*BI == EVI || isa<PseudoProbeInst>(Val: BI) || |
| 3014 | isLifetimeEndOrBitCastFor(&*BI) || isFakeUse(&*BI)) |
| 3015 | BI = std::next(x: BI); |
| 3016 | if (&*BI != RetI) |
| 3017 | return false; |
| 3018 | |
| 3019 | // Only dup the ReturnInst if the CallInst is likely to be emitted as a tail |
| 3020 | // call. |
| 3021 | auto MayBePermittedAsTailCall = [&](const auto *CI) { |
| 3022 | return TLI->mayBeEmittedAsTailCall(CI) && |
| 3023 | attributesPermitTailCall(BB->getParent(), CI, RetI, *TLI); |
| 3024 | }; |
| 3025 | |
| 3026 | SmallVector<BasicBlock *, 4> TailCallBBs; |
| 3027 | // Record the call instructions so we can insert any fake uses |
| 3028 | // that need to be preserved before them. |
| 3029 | SmallVector<CallInst *, 4> CallInsts; |
| 3030 | if (PN) { |
| 3031 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { |
| 3032 | // Look through bitcasts. |
| 3033 | Value *IncomingVal = PN->getIncomingValue(i: I)->stripPointerCasts(); |
| 3034 | CallInst *CI = dyn_cast<CallInst>(Val: IncomingVal); |
| 3035 | BasicBlock *PredBB = PN->getIncomingBlock(i: I); |
| 3036 | // Make sure the phi value is indeed produced by the tail call. |
| 3037 | if (CI && CI->hasOneUse() && CI->getParent() == PredBB && |
| 3038 | MayBePermittedAsTailCall(CI)) { |
| 3039 | TailCallBBs.push_back(Elt: PredBB); |
| 3040 | CallInsts.push_back(Elt: CI); |
| 3041 | } else { |
| 3042 | // Consider the cases in which the phi value is indirectly produced by |
| 3043 | // the tail call, for example when encountering memset(), memmove(), |
| 3044 | // strcpy(), whose return value may have been optimized out. In such |
| 3045 | // cases, the value needs to be the first function argument. |
| 3046 | // |
| 3047 | // bb0: |
| 3048 | // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) |
| 3049 | // br label %return |
| 3050 | // return: |
| 3051 | // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] |
| 3052 | if (PredBB && PredBB->getSingleSuccessor() == BB) |
| 3053 | CI = dyn_cast_or_null<CallInst>( |
| 3054 | Val: PredBB->getTerminator()->getPrevNode()); |
| 3055 | |
| 3056 | if (CI && CI->use_empty() && |
| 3057 | isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && |
| 3058 | IncomingVal == CI->getArgOperand(i: 0) && |
| 3059 | MayBePermittedAsTailCall(CI)) { |
| 3060 | TailCallBBs.push_back(Elt: PredBB); |
| 3061 | CallInsts.push_back(Elt: CI); |
| 3062 | } |
| 3063 | } |
| 3064 | } |
| 3065 | } else { |
| 3066 | SmallPtrSet<BasicBlock *, 4> VisitedBBs; |
| 3067 | for (BasicBlock *Pred : predecessors(BB)) { |
| 3068 | if (!VisitedBBs.insert(Ptr: Pred).second) |
| 3069 | continue; |
| 3070 | if (Instruction *I = Pred->rbegin()->getPrevNode()) { |
| 3071 | CallInst *CI = dyn_cast<CallInst>(Val: I); |
| 3072 | if (CI && CI->use_empty() && MayBePermittedAsTailCall(CI)) { |
| 3073 | // Either we return void or the return value must be the first |
| 3074 | // argument of a known intrinsic or library function. |
| 3075 | if (!V || isa<UndefValue>(Val: V) || |
| 3076 | (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && |
| 3077 | V == CI->getArgOperand(i: 0))) { |
| 3078 | TailCallBBs.push_back(Elt: Pred); |
| 3079 | CallInsts.push_back(Elt: CI); |
| 3080 | } |
| 3081 | } |
| 3082 | } |
| 3083 | } |
| 3084 | } |
| 3085 | |
| 3086 | bool Changed = false; |
| 3087 | for (auto const &TailCallBB : TailCallBBs) { |
| 3088 | // Make sure the call instruction is followed by an unconditional branch to |
| 3089 | // the return block. |
| 3090 | BranchInst *BI = dyn_cast<BranchInst>(Val: TailCallBB->getTerminator()); |
| 3091 | if (!BI || !BI->isUnconditional() || BI->getSuccessor(i: 0) != BB) |
| 3092 | continue; |
| 3093 | |
| 3094 | // Duplicate the return into TailCallBB. |
| 3095 | (void)FoldReturnIntoUncondBranch(RI: RetI, BB, Pred: TailCallBB); |
| 3096 | assert(!VerifyBFIUpdates || |
| 3097 | BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); |
| 3098 | BFI->setBlockFreq(BB, |
| 3099 | Freq: (BFI->getBlockFreq(BB) - BFI->getBlockFreq(BB: TailCallBB))); |
| 3100 | ModifiedDT = ModifyDT::ModifyBBDT; |
| 3101 | Changed = true; |
| 3102 | ++NumRetsDup; |
| 3103 | } |
| 3104 | |
| 3105 | // If we eliminated all predecessors of the block, delete the block now. |
| 3106 | if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) { |
| 3107 | // Copy the fake uses found in the original return block to all blocks |
| 3108 | // that contain tail calls. |
| 3109 | for (auto *CI : CallInsts) { |
| 3110 | for (auto const *FakeUse : FakeUses) { |
| 3111 | auto *ClonedInst = FakeUse->clone(); |
| 3112 | ClonedInst->insertBefore(InsertPos: CI->getIterator()); |
| 3113 | } |
| 3114 | } |
| 3115 | BB->eraseFromParent(); |
| 3116 | } |
| 3117 | |
| 3118 | return Changed; |
| 3119 | } |
| 3120 | |
| 3121 | //===----------------------------------------------------------------------===// |
| 3122 | // Memory Optimization |
| 3123 | //===----------------------------------------------------------------------===// |
| 3124 | |
| 3125 | namespace { |
| 3126 | |
| 3127 | /// This is an extended version of TargetLowering::AddrMode |
| 3128 | /// which holds actual Value*'s for register values. |
| 3129 | struct ExtAddrMode : public TargetLowering::AddrMode { |
| 3130 | Value *BaseReg = nullptr; |
| 3131 | Value *ScaledReg = nullptr; |
| 3132 | Value *OriginalValue = nullptr; |
| 3133 | bool InBounds = true; |
| 3134 | |
| 3135 | enum FieldName { |
| 3136 | NoField = 0x00, |
| 3137 | BaseRegField = 0x01, |
| 3138 | BaseGVField = 0x02, |
| 3139 | BaseOffsField = 0x04, |
| 3140 | ScaledRegField = 0x08, |
| 3141 | ScaleField = 0x10, |
| 3142 | MultipleFields = 0xff |
| 3143 | }; |
| 3144 | |
| 3145 | ExtAddrMode() = default; |
| 3146 | |
| 3147 | void print(raw_ostream &OS) const; |
| 3148 | void dump() const; |
| 3149 | |
| 3150 | // Replace From in ExtAddrMode with To. |
| 3151 | // E.g., SExt insts may be promoted and deleted. We should replace them with |
| 3152 | // the promoted values. |
| 3153 | void replaceWith(Value *From, Value *To) { |
| 3154 | if (ScaledReg == From) |
| 3155 | ScaledReg = To; |
| 3156 | } |
| 3157 | |
| 3158 | FieldName compare(const ExtAddrMode &other) { |
| 3159 | // First check that the types are the same on each field, as differing types |
| 3160 | // is something we can't cope with later on. |
| 3161 | if (BaseReg && other.BaseReg && |
| 3162 | BaseReg->getType() != other.BaseReg->getType()) |
| 3163 | return MultipleFields; |
| 3164 | if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) |
| 3165 | return MultipleFields; |
| 3166 | if (ScaledReg && other.ScaledReg && |
| 3167 | ScaledReg->getType() != other.ScaledReg->getType()) |
| 3168 | return MultipleFields; |
| 3169 | |
| 3170 | // Conservatively reject 'inbounds' mismatches. |
| 3171 | if (InBounds != other.InBounds) |
| 3172 | return MultipleFields; |
| 3173 | |
| 3174 | // Check each field to see if it differs. |
| 3175 | unsigned Result = NoField; |
| 3176 | if (BaseReg != other.BaseReg) |
| 3177 | Result |= BaseRegField; |
| 3178 | if (BaseGV != other.BaseGV) |
| 3179 | Result |= BaseGVField; |
| 3180 | if (BaseOffs != other.BaseOffs) |
| 3181 | Result |= BaseOffsField; |
| 3182 | if (ScaledReg != other.ScaledReg) |
| 3183 | Result |= ScaledRegField; |
| 3184 | // Don't count 0 as being a different scale, because that actually means |
| 3185 | // unscaled (which will already be counted by having no ScaledReg). |
| 3186 | if (Scale && other.Scale && Scale != other.Scale) |
| 3187 | Result |= ScaleField; |
| 3188 | |
| 3189 | if (llvm::popcount(Value: Result) > 1) |
| 3190 | return MultipleFields; |
| 3191 | else |
| 3192 | return static_cast<FieldName>(Result); |
| 3193 | } |
| 3194 | |
| 3195 | // An AddrMode is trivial if it involves no calculation i.e. it is just a base |
| 3196 | // with no offset. |
| 3197 | bool isTrivial() { |
| 3198 | // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is |
| 3199 | // trivial if at most one of these terms is nonzero, except that BaseGV and |
| 3200 | // BaseReg both being zero actually means a null pointer value, which we |
| 3201 | // consider to be 'non-zero' here. |
| 3202 | return !BaseOffs && !Scale && !(BaseGV && BaseReg); |
| 3203 | } |
| 3204 | |
| 3205 | Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { |
| 3206 | switch (Field) { |
| 3207 | default: |
| 3208 | return nullptr; |
| 3209 | case BaseRegField: |
| 3210 | return BaseReg; |
| 3211 | case BaseGVField: |
| 3212 | return BaseGV; |
| 3213 | case ScaledRegField: |
| 3214 | return ScaledReg; |
| 3215 | case BaseOffsField: |
| 3216 | return ConstantInt::getSigned(Ty: IntPtrTy, V: BaseOffs); |
| 3217 | } |
| 3218 | } |
| 3219 | |
| 3220 | void SetCombinedField(FieldName Field, Value *V, |
| 3221 | const SmallVectorImpl<ExtAddrMode> &AddrModes) { |
| 3222 | switch (Field) { |
| 3223 | default: |
| 3224 | llvm_unreachable("Unhandled fields are expected to be rejected earlier" ); |
| 3225 | break; |
| 3226 | case ExtAddrMode::BaseRegField: |
| 3227 | BaseReg = V; |
| 3228 | break; |
| 3229 | case ExtAddrMode::BaseGVField: |
| 3230 | // A combined BaseGV is an Instruction, not a GlobalValue, so it goes |
| 3231 | // in the BaseReg field. |
| 3232 | assert(BaseReg == nullptr); |
| 3233 | BaseReg = V; |
| 3234 | BaseGV = nullptr; |
| 3235 | break; |
| 3236 | case ExtAddrMode::ScaledRegField: |
| 3237 | ScaledReg = V; |
| 3238 | // If we have a mix of scaled and unscaled addrmodes then we want scale |
| 3239 | // to be the scale and not zero. |
| 3240 | if (!Scale) |
| 3241 | for (const ExtAddrMode &AM : AddrModes) |
| 3242 | if (AM.Scale) { |
| 3243 | Scale = AM.Scale; |
| 3244 | break; |
| 3245 | } |
| 3246 | break; |
| 3247 | case ExtAddrMode::BaseOffsField: |
| 3248 | // The offset is no longer a constant, so it goes in ScaledReg with a |
| 3249 | // scale of 1. |
| 3250 | assert(ScaledReg == nullptr); |
| 3251 | ScaledReg = V; |
| 3252 | Scale = 1; |
| 3253 | BaseOffs = 0; |
| 3254 | break; |
| 3255 | } |
| 3256 | } |
| 3257 | }; |
| 3258 | |
| 3259 | #ifndef NDEBUG |
| 3260 | static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { |
| 3261 | AM.print(OS); |
| 3262 | return OS; |
| 3263 | } |
| 3264 | #endif |
| 3265 | |
| 3266 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3267 | void ExtAddrMode::print(raw_ostream &OS) const { |
| 3268 | bool NeedPlus = false; |
| 3269 | OS << "[" ; |
| 3270 | if (InBounds) |
| 3271 | OS << "inbounds " ; |
| 3272 | if (BaseGV) { |
| 3273 | OS << "GV:" ; |
| 3274 | BaseGV->printAsOperand(OS, /*PrintType=*/false); |
| 3275 | NeedPlus = true; |
| 3276 | } |
| 3277 | |
| 3278 | if (BaseOffs) { |
| 3279 | OS << (NeedPlus ? " + " : "" ) << BaseOffs; |
| 3280 | NeedPlus = true; |
| 3281 | } |
| 3282 | |
| 3283 | if (BaseReg) { |
| 3284 | OS << (NeedPlus ? " + " : "" ) << "Base:" ; |
| 3285 | BaseReg->printAsOperand(OS, /*PrintType=*/false); |
| 3286 | NeedPlus = true; |
| 3287 | } |
| 3288 | if (Scale) { |
| 3289 | OS << (NeedPlus ? " + " : "" ) << Scale << "*" ; |
| 3290 | ScaledReg->printAsOperand(OS, /*PrintType=*/false); |
| 3291 | } |
| 3292 | |
| 3293 | OS << ']'; |
| 3294 | } |
| 3295 | |
| 3296 | LLVM_DUMP_METHOD void ExtAddrMode::dump() const { |
| 3297 | print(dbgs()); |
| 3298 | dbgs() << '\n'; |
| 3299 | } |
| 3300 | #endif |
| 3301 | |
| 3302 | } // end anonymous namespace |
| 3303 | |
| 3304 | namespace { |
| 3305 | |
| 3306 | /// This class provides transaction based operation on the IR. |
| 3307 | /// Every change made through this class is recorded in the internal state and |
| 3308 | /// can be undone (rollback) until commit is called. |
| 3309 | /// CGP does not check if instructions could be speculatively executed when |
| 3310 | /// moved. Preserving the original location would pessimize the debugging |
| 3311 | /// experience, as well as negatively impact the quality of sample PGO. |
| 3312 | class TypePromotionTransaction { |
| 3313 | /// This represents the common interface of the individual transaction. |
| 3314 | /// Each class implements the logic for doing one specific modification on |
| 3315 | /// the IR via the TypePromotionTransaction. |
| 3316 | class TypePromotionAction { |
| 3317 | protected: |
| 3318 | /// The Instruction modified. |
| 3319 | Instruction *Inst; |
| 3320 | |
| 3321 | public: |
| 3322 | /// Constructor of the action. |
| 3323 | /// The constructor performs the related action on the IR. |
| 3324 | TypePromotionAction(Instruction *Inst) : Inst(Inst) {} |
| 3325 | |
| 3326 | virtual ~TypePromotionAction() = default; |
| 3327 | |
| 3328 | /// Undo the modification done by this action. |
| 3329 | /// When this method is called, the IR must be in the same state as it was |
| 3330 | /// before this action was applied. |
| 3331 | /// \pre Undoing the action works if and only if the IR is in the exact same |
| 3332 | /// state as it was directly after this action was applied. |
| 3333 | virtual void undo() = 0; |
| 3334 | |
| 3335 | /// Advocate every change made by this action. |
| 3336 | /// When the results on the IR of the action are to be kept, it is important |
| 3337 | /// to call this function, otherwise hidden information may be kept forever. |
| 3338 | virtual void commit() { |
| 3339 | // Nothing to be done, this action is not doing anything. |
| 3340 | } |
| 3341 | }; |
| 3342 | |
| 3343 | /// Utility to remember the position of an instruction. |
| 3344 | class InsertionHandler { |
| 3345 | /// Position of an instruction. |
| 3346 | /// Either an instruction: |
| 3347 | /// - Is the first in a basic block: BB is used. |
| 3348 | /// - Has a previous instruction: PrevInst is used. |
| 3349 | struct { |
| 3350 | BasicBlock::iterator PrevInst; |
| 3351 | BasicBlock *BB; |
| 3352 | } Point; |
| 3353 | std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; |
| 3354 | |
| 3355 | /// Remember whether or not the instruction had a previous instruction. |
| 3356 | bool HasPrevInstruction; |
| 3357 | |
| 3358 | public: |
| 3359 | /// Record the position of \p Inst. |
| 3360 | InsertionHandler(Instruction *Inst) { |
| 3361 | HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); |
| 3362 | BasicBlock *BB = Inst->getParent(); |
| 3363 | |
| 3364 | // Record where we would have to re-insert the instruction in the sequence |
| 3365 | // of DbgRecords, if we ended up reinserting. |
| 3366 | BeforeDbgRecord = Inst->getDbgReinsertionPosition(); |
| 3367 | |
| 3368 | if (HasPrevInstruction) { |
| 3369 | Point.PrevInst = std::prev(x: Inst->getIterator()); |
| 3370 | } else { |
| 3371 | Point.BB = BB; |
| 3372 | } |
| 3373 | } |
| 3374 | |
| 3375 | /// Insert \p Inst at the recorded position. |
| 3376 | void insert(Instruction *Inst) { |
| 3377 | if (HasPrevInstruction) { |
| 3378 | if (Inst->getParent()) |
| 3379 | Inst->removeFromParent(); |
| 3380 | Inst->insertAfter(InsertPos: Point.PrevInst); |
| 3381 | } else { |
| 3382 | BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); |
| 3383 | if (Inst->getParent()) |
| 3384 | Inst->moveBefore(BB&: *Point.BB, I: Position); |
| 3385 | else |
| 3386 | Inst->insertBefore(BB&: *Point.BB, InsertPos: Position); |
| 3387 | } |
| 3388 | |
| 3389 | Inst->getParent()->reinsertInstInDbgRecords(I: Inst, Pos: BeforeDbgRecord); |
| 3390 | } |
| 3391 | }; |
| 3392 | |
| 3393 | /// Move an instruction before another. |
| 3394 | class InstructionMoveBefore : public TypePromotionAction { |
| 3395 | /// Original position of the instruction. |
| 3396 | InsertionHandler Position; |
| 3397 | |
| 3398 | public: |
| 3399 | /// Move \p Inst before \p Before. |
| 3400 | InstructionMoveBefore(Instruction *Inst, BasicBlock::iterator Before) |
| 3401 | : TypePromotionAction(Inst), Position(Inst) { |
| 3402 | LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before |
| 3403 | << "\n" ); |
| 3404 | Inst->moveBefore(InsertPos: Before); |
| 3405 | } |
| 3406 | |
| 3407 | /// Move the instruction back to its original position. |
| 3408 | void undo() override { |
| 3409 | LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n" ); |
| 3410 | Position.insert(Inst); |
| 3411 | } |
| 3412 | }; |
| 3413 | |
| 3414 | /// Set the operand of an instruction with a new value. |
| 3415 | class OperandSetter : public TypePromotionAction { |
| 3416 | /// Original operand of the instruction. |
| 3417 | Value *Origin; |
| 3418 | |
| 3419 | /// Index of the modified instruction. |
| 3420 | unsigned Idx; |
| 3421 | |
| 3422 | public: |
| 3423 | /// Set \p Idx operand of \p Inst with \p NewVal. |
| 3424 | OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) |
| 3425 | : TypePromotionAction(Inst), Idx(Idx) { |
| 3426 | LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" |
| 3427 | << "for:" << *Inst << "\n" |
| 3428 | << "with:" << *NewVal << "\n" ); |
| 3429 | Origin = Inst->getOperand(i: Idx); |
| 3430 | Inst->setOperand(i: Idx, Val: NewVal); |
| 3431 | } |
| 3432 | |
| 3433 | /// Restore the original value of the instruction. |
| 3434 | void undo() override { |
| 3435 | LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" |
| 3436 | << "for: " << *Inst << "\n" |
| 3437 | << "with: " << *Origin << "\n" ); |
| 3438 | Inst->setOperand(i: Idx, Val: Origin); |
| 3439 | } |
| 3440 | }; |
| 3441 | |
| 3442 | /// Hide the operands of an instruction. |
| 3443 | /// Do as if this instruction was not using any of its operands. |
| 3444 | class OperandsHider : public TypePromotionAction { |
| 3445 | /// The list of original operands. |
| 3446 | SmallVector<Value *, 4> OriginalValues; |
| 3447 | |
| 3448 | public: |
| 3449 | /// Remove \p Inst from the uses of the operands of \p Inst. |
| 3450 | OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { |
| 3451 | LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n" ); |
| 3452 | unsigned NumOpnds = Inst->getNumOperands(); |
| 3453 | OriginalValues.reserve(N: NumOpnds); |
| 3454 | for (unsigned It = 0; It < NumOpnds; ++It) { |
| 3455 | // Save the current operand. |
| 3456 | Value *Val = Inst->getOperand(i: It); |
| 3457 | OriginalValues.push_back(Elt: Val); |
| 3458 | // Set a dummy one. |
| 3459 | // We could use OperandSetter here, but that would imply an overhead |
| 3460 | // that we are not willing to pay. |
| 3461 | Inst->setOperand(i: It, Val: PoisonValue::get(T: Val->getType())); |
| 3462 | } |
| 3463 | } |
| 3464 | |
| 3465 | /// Restore the original list of uses. |
| 3466 | void undo() override { |
| 3467 | LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n" ); |
| 3468 | for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) |
| 3469 | Inst->setOperand(i: It, Val: OriginalValues[It]); |
| 3470 | } |
| 3471 | }; |
| 3472 | |
| 3473 | /// Build a truncate instruction. |
| 3474 | class TruncBuilder : public TypePromotionAction { |
| 3475 | Value *Val; |
| 3476 | |
| 3477 | public: |
| 3478 | /// Build a truncate instruction of \p Opnd producing a \p Ty |
| 3479 | /// result. |
| 3480 | /// trunc Opnd to Ty. |
| 3481 | TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { |
| 3482 | IRBuilder<> Builder(Opnd); |
| 3483 | Builder.SetCurrentDebugLocation(DebugLoc()); |
| 3484 | Val = Builder.CreateTrunc(V: Opnd, DestTy: Ty, Name: "promoted" ); |
| 3485 | LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n" ); |
| 3486 | } |
| 3487 | |
| 3488 | /// Get the built value. |
| 3489 | Value *getBuiltValue() { return Val; } |
| 3490 | |
| 3491 | /// Remove the built instruction. |
| 3492 | void undo() override { |
| 3493 | LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n" ); |
| 3494 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) |
| 3495 | IVal->eraseFromParent(); |
| 3496 | } |
| 3497 | }; |
| 3498 | |
| 3499 | /// Build a sign extension instruction. |
| 3500 | class SExtBuilder : public TypePromotionAction { |
| 3501 | Value *Val; |
| 3502 | |
| 3503 | public: |
| 3504 | /// Build a sign extension instruction of \p Opnd producing a \p Ty |
| 3505 | /// result. |
| 3506 | /// sext Opnd to Ty. |
| 3507 | SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) |
| 3508 | : TypePromotionAction(InsertPt) { |
| 3509 | IRBuilder<> Builder(InsertPt); |
| 3510 | Val = Builder.CreateSExt(V: Opnd, DestTy: Ty, Name: "promoted" ); |
| 3511 | LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n" ); |
| 3512 | } |
| 3513 | |
| 3514 | /// Get the built value. |
| 3515 | Value *getBuiltValue() { return Val; } |
| 3516 | |
| 3517 | /// Remove the built instruction. |
| 3518 | void undo() override { |
| 3519 | LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n" ); |
| 3520 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) |
| 3521 | IVal->eraseFromParent(); |
| 3522 | } |
| 3523 | }; |
| 3524 | |
| 3525 | /// Build a zero extension instruction. |
| 3526 | class ZExtBuilder : public TypePromotionAction { |
| 3527 | Value *Val; |
| 3528 | |
| 3529 | public: |
| 3530 | /// Build a zero extension instruction of \p Opnd producing a \p Ty |
| 3531 | /// result. |
| 3532 | /// zext Opnd to Ty. |
| 3533 | ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) |
| 3534 | : TypePromotionAction(InsertPt) { |
| 3535 | IRBuilder<> Builder(InsertPt); |
| 3536 | Builder.SetCurrentDebugLocation(DebugLoc()); |
| 3537 | Val = Builder.CreateZExt(V: Opnd, DestTy: Ty, Name: "promoted" ); |
| 3538 | LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n" ); |
| 3539 | } |
| 3540 | |
| 3541 | /// Get the built value. |
| 3542 | Value *getBuiltValue() { return Val; } |
| 3543 | |
| 3544 | /// Remove the built instruction. |
| 3545 | void undo() override { |
| 3546 | LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n" ); |
| 3547 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) |
| 3548 | IVal->eraseFromParent(); |
| 3549 | } |
| 3550 | }; |
| 3551 | |
| 3552 | /// Mutate an instruction to another type. |
| 3553 | class TypeMutator : public TypePromotionAction { |
| 3554 | /// Record the original type. |
| 3555 | Type *OrigTy; |
| 3556 | |
| 3557 | public: |
| 3558 | /// Mutate the type of \p Inst into \p NewTy. |
| 3559 | TypeMutator(Instruction *Inst, Type *NewTy) |
| 3560 | : TypePromotionAction(Inst), OrigTy(Inst->getType()) { |
| 3561 | LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy |
| 3562 | << "\n" ); |
| 3563 | Inst->mutateType(Ty: NewTy); |
| 3564 | } |
| 3565 | |
| 3566 | /// Mutate the instruction back to its original type. |
| 3567 | void undo() override { |
| 3568 | LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy |
| 3569 | << "\n" ); |
| 3570 | Inst->mutateType(Ty: OrigTy); |
| 3571 | } |
| 3572 | }; |
| 3573 | |
| 3574 | /// Replace the uses of an instruction by another instruction. |
| 3575 | class UsesReplacer : public TypePromotionAction { |
| 3576 | /// Helper structure to keep track of the replaced uses. |
| 3577 | struct InstructionAndIdx { |
| 3578 | /// The instruction using the instruction. |
| 3579 | Instruction *Inst; |
| 3580 | |
| 3581 | /// The index where this instruction is used for Inst. |
| 3582 | unsigned Idx; |
| 3583 | |
| 3584 | InstructionAndIdx(Instruction *Inst, unsigned Idx) |
| 3585 | : Inst(Inst), Idx(Idx) {} |
| 3586 | }; |
| 3587 | |
| 3588 | /// Keep track of the original uses (pair Instruction, Index). |
| 3589 | SmallVector<InstructionAndIdx, 4> OriginalUses; |
| 3590 | /// Keep track of the debug users. |
| 3591 | SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; |
| 3592 | |
| 3593 | /// Keep track of the new value so that we can undo it by replacing |
| 3594 | /// instances of the new value with the original value. |
| 3595 | Value *New; |
| 3596 | |
| 3597 | using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; |
| 3598 | |
| 3599 | public: |
| 3600 | /// Replace all the use of \p Inst by \p New. |
| 3601 | UsesReplacer(Instruction *Inst, Value *New) |
| 3602 | : TypePromotionAction(Inst), New(New) { |
| 3603 | LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New |
| 3604 | << "\n" ); |
| 3605 | // Record the original uses. |
| 3606 | for (Use &U : Inst->uses()) { |
| 3607 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 3608 | OriginalUses.push_back(Elt: InstructionAndIdx(UserI, U.getOperandNo())); |
| 3609 | } |
| 3610 | // Record the debug uses separately. They are not in the instruction's |
| 3611 | // use list, but they are replaced by RAUW. |
| 3612 | findDbgValues(V: Inst, DbgVariableRecords); |
| 3613 | |
| 3614 | // Now, we can replace the uses. |
| 3615 | Inst->replaceAllUsesWith(V: New); |
| 3616 | } |
| 3617 | |
| 3618 | /// Reassign the original uses of Inst to Inst. |
| 3619 | void undo() override { |
| 3620 | LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n" ); |
| 3621 | for (InstructionAndIdx &Use : OriginalUses) |
| 3622 | Use.Inst->setOperand(i: Use.Idx, Val: Inst); |
| 3623 | // RAUW has replaced all original uses with references to the new value, |
| 3624 | // including the debug uses. Since we are undoing the replacements, |
| 3625 | // the original debug uses must also be reinstated to maintain the |
| 3626 | // correctness and utility of debug value records. |
| 3627 | for (DbgVariableRecord *DVR : DbgVariableRecords) |
| 3628 | DVR->replaceVariableLocationOp(OldValue: New, NewValue: Inst); |
| 3629 | } |
| 3630 | }; |
| 3631 | |
| 3632 | /// Remove an instruction from the IR. |
| 3633 | class InstructionRemover : public TypePromotionAction { |
| 3634 | /// Original position of the instruction. |
| 3635 | InsertionHandler Inserter; |
| 3636 | |
| 3637 | /// Helper structure to hide all the link to the instruction. In other |
| 3638 | /// words, this helps to do as if the instruction was removed. |
| 3639 | OperandsHider Hider; |
| 3640 | |
| 3641 | /// Keep track of the uses replaced, if any. |
| 3642 | UsesReplacer *Replacer = nullptr; |
| 3643 | |
| 3644 | /// Keep track of instructions removed. |
| 3645 | SetOfInstrs &RemovedInsts; |
| 3646 | |
| 3647 | public: |
| 3648 | /// Remove all reference of \p Inst and optionally replace all its |
| 3649 | /// uses with New. |
| 3650 | /// \p RemovedInsts Keep track of the instructions removed by this Action. |
| 3651 | /// \pre If !Inst->use_empty(), then New != nullptr |
| 3652 | InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, |
| 3653 | Value *New = nullptr) |
| 3654 | : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), |
| 3655 | RemovedInsts(RemovedInsts) { |
| 3656 | if (New) |
| 3657 | Replacer = new UsesReplacer(Inst, New); |
| 3658 | LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n" ); |
| 3659 | RemovedInsts.insert(Ptr: Inst); |
| 3660 | /// The instructions removed here will be freed after completing |
| 3661 | /// optimizeBlock() for all blocks as we need to keep track of the |
| 3662 | /// removed instructions during promotion. |
| 3663 | Inst->removeFromParent(); |
| 3664 | } |
| 3665 | |
| 3666 | ~InstructionRemover() override { delete Replacer; } |
| 3667 | |
| 3668 | InstructionRemover &operator=(const InstructionRemover &other) = delete; |
| 3669 | InstructionRemover(const InstructionRemover &other) = delete; |
| 3670 | |
| 3671 | /// Resurrect the instruction and reassign it to the proper uses if |
| 3672 | /// new value was provided when build this action. |
| 3673 | void undo() override { |
| 3674 | LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n" ); |
| 3675 | Inserter.insert(Inst); |
| 3676 | if (Replacer) |
| 3677 | Replacer->undo(); |
| 3678 | Hider.undo(); |
| 3679 | RemovedInsts.erase(Ptr: Inst); |
| 3680 | } |
| 3681 | }; |
| 3682 | |
| 3683 | public: |
| 3684 | /// Restoration point. |
| 3685 | /// The restoration point is a pointer to an action instead of an iterator |
| 3686 | /// because the iterator may be invalidated but not the pointer. |
| 3687 | using ConstRestorationPt = const TypePromotionAction *; |
| 3688 | |
| 3689 | TypePromotionTransaction(SetOfInstrs &RemovedInsts) |
| 3690 | : RemovedInsts(RemovedInsts) {} |
| 3691 | |
| 3692 | /// Advocate every changes made in that transaction. Return true if any change |
| 3693 | /// happen. |
| 3694 | bool commit(); |
| 3695 | |
| 3696 | /// Undo all the changes made after the given point. |
| 3697 | void rollback(ConstRestorationPt Point); |
| 3698 | |
| 3699 | /// Get the current restoration point. |
| 3700 | ConstRestorationPt getRestorationPoint() const; |
| 3701 | |
| 3702 | /// \name API for IR modification with state keeping to support rollback. |
| 3703 | /// @{ |
| 3704 | /// Same as Instruction::setOperand. |
| 3705 | void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); |
| 3706 | |
| 3707 | /// Same as Instruction::eraseFromParent. |
| 3708 | void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); |
| 3709 | |
| 3710 | /// Same as Value::replaceAllUsesWith. |
| 3711 | void replaceAllUsesWith(Instruction *Inst, Value *New); |
| 3712 | |
| 3713 | /// Same as Value::mutateType. |
| 3714 | void mutateType(Instruction *Inst, Type *NewTy); |
| 3715 | |
| 3716 | /// Same as IRBuilder::createTrunc. |
| 3717 | Value *createTrunc(Instruction *Opnd, Type *Ty); |
| 3718 | |
| 3719 | /// Same as IRBuilder::createSExt. |
| 3720 | Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); |
| 3721 | |
| 3722 | /// Same as IRBuilder::createZExt. |
| 3723 | Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); |
| 3724 | |
| 3725 | private: |
| 3726 | /// The ordered list of actions made so far. |
| 3727 | SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; |
| 3728 | |
| 3729 | using CommitPt = |
| 3730 | SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; |
| 3731 | |
| 3732 | SetOfInstrs &RemovedInsts; |
| 3733 | }; |
| 3734 | |
| 3735 | } // end anonymous namespace |
| 3736 | |
| 3737 | void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, |
| 3738 | Value *NewVal) { |
| 3739 | Actions.push_back(Elt: std::make_unique<TypePromotionTransaction::OperandSetter>( |
| 3740 | args&: Inst, args&: Idx, args&: NewVal)); |
| 3741 | } |
| 3742 | |
| 3743 | void TypePromotionTransaction::eraseInstruction(Instruction *Inst, |
| 3744 | Value *NewVal) { |
| 3745 | Actions.push_back( |
| 3746 | Elt: std::make_unique<TypePromotionTransaction::InstructionRemover>( |
| 3747 | args&: Inst, args&: RemovedInsts, args&: NewVal)); |
| 3748 | } |
| 3749 | |
| 3750 | void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, |
| 3751 | Value *New) { |
| 3752 | Actions.push_back( |
| 3753 | Elt: std::make_unique<TypePromotionTransaction::UsesReplacer>(args&: Inst, args&: New)); |
| 3754 | } |
| 3755 | |
| 3756 | void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { |
| 3757 | Actions.push_back( |
| 3758 | Elt: std::make_unique<TypePromotionTransaction::TypeMutator>(args&: Inst, args&: NewTy)); |
| 3759 | } |
| 3760 | |
| 3761 | Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { |
| 3762 | std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); |
| 3763 | Value *Val = Ptr->getBuiltValue(); |
| 3764 | Actions.push_back(Elt: std::move(Ptr)); |
| 3765 | return Val; |
| 3766 | } |
| 3767 | |
| 3768 | Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, |
| 3769 | Type *Ty) { |
| 3770 | std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); |
| 3771 | Value *Val = Ptr->getBuiltValue(); |
| 3772 | Actions.push_back(Elt: std::move(Ptr)); |
| 3773 | return Val; |
| 3774 | } |
| 3775 | |
| 3776 | Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, |
| 3777 | Type *Ty) { |
| 3778 | std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); |
| 3779 | Value *Val = Ptr->getBuiltValue(); |
| 3780 | Actions.push_back(Elt: std::move(Ptr)); |
| 3781 | return Val; |
| 3782 | } |
| 3783 | |
| 3784 | TypePromotionTransaction::ConstRestorationPt |
| 3785 | TypePromotionTransaction::getRestorationPoint() const { |
| 3786 | return !Actions.empty() ? Actions.back().get() : nullptr; |
| 3787 | } |
| 3788 | |
| 3789 | bool TypePromotionTransaction::commit() { |
| 3790 | for (std::unique_ptr<TypePromotionAction> &Action : Actions) |
| 3791 | Action->commit(); |
| 3792 | bool Modified = !Actions.empty(); |
| 3793 | Actions.clear(); |
| 3794 | return Modified; |
| 3795 | } |
| 3796 | |
| 3797 | void TypePromotionTransaction::rollback( |
| 3798 | TypePromotionTransaction::ConstRestorationPt Point) { |
| 3799 | while (!Actions.empty() && Point != Actions.back().get()) { |
| 3800 | std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); |
| 3801 | Curr->undo(); |
| 3802 | } |
| 3803 | } |
| 3804 | |
| 3805 | namespace { |
| 3806 | |
| 3807 | /// A helper class for matching addressing modes. |
| 3808 | /// |
| 3809 | /// This encapsulates the logic for matching the target-legal addressing modes. |
| 3810 | class AddressingModeMatcher { |
| 3811 | SmallVectorImpl<Instruction *> &AddrModeInsts; |
| 3812 | const TargetLowering &TLI; |
| 3813 | const TargetRegisterInfo &TRI; |
| 3814 | const DataLayout &DL; |
| 3815 | const LoopInfo &LI; |
| 3816 | const std::function<const DominatorTree &()> getDTFn; |
| 3817 | |
| 3818 | /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and |
| 3819 | /// the memory instruction that we're computing this address for. |
| 3820 | Type *AccessTy; |
| 3821 | unsigned AddrSpace; |
| 3822 | Instruction *MemoryInst; |
| 3823 | |
| 3824 | /// This is the addressing mode that we're building up. This is |
| 3825 | /// part of the return value of this addressing mode matching stuff. |
| 3826 | ExtAddrMode &AddrMode; |
| 3827 | |
| 3828 | /// The instructions inserted by other CodeGenPrepare optimizations. |
| 3829 | const SetOfInstrs &InsertedInsts; |
| 3830 | |
| 3831 | /// A map from the instructions to their type before promotion. |
| 3832 | InstrToOrigTy &PromotedInsts; |
| 3833 | |
| 3834 | /// The ongoing transaction where every action should be registered. |
| 3835 | TypePromotionTransaction &TPT; |
| 3836 | |
| 3837 | // A GEP which has too large offset to be folded into the addressing mode. |
| 3838 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; |
| 3839 | |
| 3840 | /// This is set to true when we should not do profitability checks. |
| 3841 | /// When true, IsProfitableToFoldIntoAddressingMode always returns true. |
| 3842 | bool IgnoreProfitability; |
| 3843 | |
| 3844 | /// True if we are optimizing for size. |
| 3845 | bool OptSize = false; |
| 3846 | |
| 3847 | ProfileSummaryInfo *PSI; |
| 3848 | BlockFrequencyInfo *BFI; |
| 3849 | |
| 3850 | AddressingModeMatcher( |
| 3851 | SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, |
| 3852 | const TargetRegisterInfo &TRI, const LoopInfo &LI, |
| 3853 | const std::function<const DominatorTree &()> getDTFn, Type *AT, |
| 3854 | unsigned AS, Instruction *MI, ExtAddrMode &AM, |
| 3855 | const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, |
| 3856 | TypePromotionTransaction &TPT, |
| 3857 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, |
| 3858 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) |
| 3859 | : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), |
| 3860 | DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), |
| 3861 | AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), |
| 3862 | InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), |
| 3863 | LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { |
| 3864 | IgnoreProfitability = false; |
| 3865 | } |
| 3866 | |
| 3867 | public: |
| 3868 | /// Find the maximal addressing mode that a load/store of V can fold, |
| 3869 | /// give an access type of AccessTy. This returns a list of involved |
| 3870 | /// instructions in AddrModeInsts. |
| 3871 | /// \p InsertedInsts The instructions inserted by other CodeGenPrepare |
| 3872 | /// optimizations. |
| 3873 | /// \p PromotedInsts maps the instructions to their type before promotion. |
| 3874 | /// \p The ongoing transaction where every action should be registered. |
| 3875 | static ExtAddrMode |
| 3876 | Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, |
| 3877 | SmallVectorImpl<Instruction *> &AddrModeInsts, |
| 3878 | const TargetLowering &TLI, const LoopInfo &LI, |
| 3879 | const std::function<const DominatorTree &()> getDTFn, |
| 3880 | const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, |
| 3881 | InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, |
| 3882 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, |
| 3883 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { |
| 3884 | ExtAddrMode Result; |
| 3885 | |
| 3886 | bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, |
| 3887 | AccessTy, AS, MemoryInst, Result, |
| 3888 | InsertedInsts, PromotedInsts, TPT, |
| 3889 | LargeOffsetGEP, OptSize, PSI, BFI) |
| 3890 | .matchAddr(Addr: V, Depth: 0); |
| 3891 | (void)Success; |
| 3892 | assert(Success && "Couldn't select *anything*?" ); |
| 3893 | return Result; |
| 3894 | } |
| 3895 | |
| 3896 | private: |
| 3897 | bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); |
| 3898 | bool matchAddr(Value *Addr, unsigned Depth); |
| 3899 | bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, |
| 3900 | bool *MovedAway = nullptr); |
| 3901 | bool isProfitableToFoldIntoAddressingMode(Instruction *I, |
| 3902 | ExtAddrMode &AMBefore, |
| 3903 | ExtAddrMode &AMAfter); |
| 3904 | bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); |
| 3905 | bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, |
| 3906 | Value *PromotedOperand) const; |
| 3907 | }; |
| 3908 | |
| 3909 | class PhiNodeSet; |
| 3910 | |
| 3911 | /// An iterator for PhiNodeSet. |
| 3912 | class PhiNodeSetIterator { |
| 3913 | PhiNodeSet *const Set; |
| 3914 | size_t CurrentIndex = 0; |
| 3915 | |
| 3916 | public: |
| 3917 | /// The constructor. Start should point to either a valid element, or be equal |
| 3918 | /// to the size of the underlying SmallVector of the PhiNodeSet. |
| 3919 | PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); |
| 3920 | PHINode *operator*() const; |
| 3921 | PhiNodeSetIterator &operator++(); |
| 3922 | bool operator==(const PhiNodeSetIterator &RHS) const; |
| 3923 | bool operator!=(const PhiNodeSetIterator &RHS) const; |
| 3924 | }; |
| 3925 | |
| 3926 | /// Keeps a set of PHINodes. |
| 3927 | /// |
| 3928 | /// This is a minimal set implementation for a specific use case: |
| 3929 | /// It is very fast when there are very few elements, but also provides good |
| 3930 | /// performance when there are many. It is similar to SmallPtrSet, but also |
| 3931 | /// provides iteration by insertion order, which is deterministic and stable |
| 3932 | /// across runs. It is also similar to SmallSetVector, but provides removing |
| 3933 | /// elements in O(1) time. This is achieved by not actually removing the element |
| 3934 | /// from the underlying vector, so comes at the cost of using more memory, but |
| 3935 | /// that is fine, since PhiNodeSets are used as short lived objects. |
| 3936 | class PhiNodeSet { |
| 3937 | friend class PhiNodeSetIterator; |
| 3938 | |
| 3939 | using MapType = SmallDenseMap<PHINode *, size_t, 32>; |
| 3940 | using iterator = PhiNodeSetIterator; |
| 3941 | |
| 3942 | /// Keeps the elements in the order of their insertion in the underlying |
| 3943 | /// vector. To achieve constant time removal, it never deletes any element. |
| 3944 | SmallVector<PHINode *, 32> NodeList; |
| 3945 | |
| 3946 | /// Keeps the elements in the underlying set implementation. This (and not the |
| 3947 | /// NodeList defined above) is the source of truth on whether an element |
| 3948 | /// is actually in the collection. |
| 3949 | MapType NodeMap; |
| 3950 | |
| 3951 | /// Points to the first valid (not deleted) element when the set is not empty |
| 3952 | /// and the value is not zero. Equals to the size of the underlying vector |
| 3953 | /// when the set is empty. When the value is 0, as in the beginning, the |
| 3954 | /// first element may or may not be valid. |
| 3955 | size_t FirstValidElement = 0; |
| 3956 | |
| 3957 | public: |
| 3958 | /// Inserts a new element to the collection. |
| 3959 | /// \returns true if the element is actually added, i.e. was not in the |
| 3960 | /// collection before the operation. |
| 3961 | bool insert(PHINode *Ptr) { |
| 3962 | if (NodeMap.insert(KV: std::make_pair(x&: Ptr, y: NodeList.size())).second) { |
| 3963 | NodeList.push_back(Elt: Ptr); |
| 3964 | return true; |
| 3965 | } |
| 3966 | return false; |
| 3967 | } |
| 3968 | |
| 3969 | /// Removes the element from the collection. |
| 3970 | /// \returns whether the element is actually removed, i.e. was in the |
| 3971 | /// collection before the operation. |
| 3972 | bool erase(PHINode *Ptr) { |
| 3973 | if (NodeMap.erase(Val: Ptr)) { |
| 3974 | SkipRemovedElements(CurrentIndex&: FirstValidElement); |
| 3975 | return true; |
| 3976 | } |
| 3977 | return false; |
| 3978 | } |
| 3979 | |
| 3980 | /// Removes all elements and clears the collection. |
| 3981 | void clear() { |
| 3982 | NodeMap.clear(); |
| 3983 | NodeList.clear(); |
| 3984 | FirstValidElement = 0; |
| 3985 | } |
| 3986 | |
| 3987 | /// \returns an iterator that will iterate the elements in the order of |
| 3988 | /// insertion. |
| 3989 | iterator begin() { |
| 3990 | if (FirstValidElement == 0) |
| 3991 | SkipRemovedElements(CurrentIndex&: FirstValidElement); |
| 3992 | return PhiNodeSetIterator(this, FirstValidElement); |
| 3993 | } |
| 3994 | |
| 3995 | /// \returns an iterator that points to the end of the collection. |
| 3996 | iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } |
| 3997 | |
| 3998 | /// Returns the number of elements in the collection. |
| 3999 | size_t size() const { return NodeMap.size(); } |
| 4000 | |
| 4001 | /// \returns 1 if the given element is in the collection, and 0 if otherwise. |
| 4002 | size_t count(PHINode *Ptr) const { return NodeMap.count(Val: Ptr); } |
| 4003 | |
| 4004 | private: |
| 4005 | /// Updates the CurrentIndex so that it will point to a valid element. |
| 4006 | /// |
| 4007 | /// If the element of NodeList at CurrentIndex is valid, it does not |
| 4008 | /// change it. If there are no more valid elements, it updates CurrentIndex |
| 4009 | /// to point to the end of the NodeList. |
| 4010 | void SkipRemovedElements(size_t &CurrentIndex) { |
| 4011 | while (CurrentIndex < NodeList.size()) { |
| 4012 | auto it = NodeMap.find(Val: NodeList[CurrentIndex]); |
| 4013 | // If the element has been deleted and added again later, NodeMap will |
| 4014 | // point to a different index, so CurrentIndex will still be invalid. |
| 4015 | if (it != NodeMap.end() && it->second == CurrentIndex) |
| 4016 | break; |
| 4017 | ++CurrentIndex; |
| 4018 | } |
| 4019 | } |
| 4020 | }; |
| 4021 | |
| 4022 | PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) |
| 4023 | : Set(Set), CurrentIndex(Start) {} |
| 4024 | |
| 4025 | PHINode *PhiNodeSetIterator::operator*() const { |
| 4026 | assert(CurrentIndex < Set->NodeList.size() && |
| 4027 | "PhiNodeSet access out of range" ); |
| 4028 | return Set->NodeList[CurrentIndex]; |
| 4029 | } |
| 4030 | |
| 4031 | PhiNodeSetIterator &PhiNodeSetIterator::operator++() { |
| 4032 | assert(CurrentIndex < Set->NodeList.size() && |
| 4033 | "PhiNodeSet access out of range" ); |
| 4034 | ++CurrentIndex; |
| 4035 | Set->SkipRemovedElements(CurrentIndex); |
| 4036 | return *this; |
| 4037 | } |
| 4038 | |
| 4039 | bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { |
| 4040 | return CurrentIndex == RHS.CurrentIndex; |
| 4041 | } |
| 4042 | |
| 4043 | bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { |
| 4044 | return !((*this) == RHS); |
| 4045 | } |
| 4046 | |
| 4047 | /// Keep track of simplification of Phi nodes. |
| 4048 | /// Accept the set of all phi nodes and erase phi node from this set |
| 4049 | /// if it is simplified. |
| 4050 | class SimplificationTracker { |
| 4051 | DenseMap<Value *, Value *> Storage; |
| 4052 | // Tracks newly created Phi nodes. The elements are iterated by insertion |
| 4053 | // order. |
| 4054 | PhiNodeSet AllPhiNodes; |
| 4055 | // Tracks newly created Select nodes. |
| 4056 | SmallPtrSet<SelectInst *, 32> AllSelectNodes; |
| 4057 | |
| 4058 | public: |
| 4059 | Value *Get(Value *V) { |
| 4060 | do { |
| 4061 | auto SV = Storage.find(Val: V); |
| 4062 | if (SV == Storage.end()) |
| 4063 | return V; |
| 4064 | V = SV->second; |
| 4065 | } while (true); |
| 4066 | } |
| 4067 | |
| 4068 | void Put(Value *From, Value *To) { Storage.insert(KV: {From, To}); } |
| 4069 | |
| 4070 | void ReplacePhi(PHINode *From, PHINode *To) { |
| 4071 | Value *OldReplacement = Get(V: From); |
| 4072 | while (OldReplacement != From) { |
| 4073 | From = To; |
| 4074 | To = dyn_cast<PHINode>(Val: OldReplacement); |
| 4075 | OldReplacement = Get(V: From); |
| 4076 | } |
| 4077 | assert(To && Get(To) == To && "Replacement PHI node is already replaced." ); |
| 4078 | Put(From, To); |
| 4079 | From->replaceAllUsesWith(V: To); |
| 4080 | AllPhiNodes.erase(Ptr: From); |
| 4081 | From->eraseFromParent(); |
| 4082 | } |
| 4083 | |
| 4084 | PhiNodeSet &newPhiNodes() { return AllPhiNodes; } |
| 4085 | |
| 4086 | void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(Ptr: PN); } |
| 4087 | |
| 4088 | void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(Ptr: SI); } |
| 4089 | |
| 4090 | unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } |
| 4091 | |
| 4092 | unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } |
| 4093 | |
| 4094 | void destroyNewNodes(Type *CommonType) { |
| 4095 | // For safe erasing, replace the uses with dummy value first. |
| 4096 | auto *Dummy = PoisonValue::get(T: CommonType); |
| 4097 | for (auto *I : AllPhiNodes) { |
| 4098 | I->replaceAllUsesWith(V: Dummy); |
| 4099 | I->eraseFromParent(); |
| 4100 | } |
| 4101 | AllPhiNodes.clear(); |
| 4102 | for (auto *I : AllSelectNodes) { |
| 4103 | I->replaceAllUsesWith(V: Dummy); |
| 4104 | I->eraseFromParent(); |
| 4105 | } |
| 4106 | AllSelectNodes.clear(); |
| 4107 | } |
| 4108 | }; |
| 4109 | |
| 4110 | /// A helper class for combining addressing modes. |
| 4111 | class AddressingModeCombiner { |
| 4112 | typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; |
| 4113 | typedef std::pair<PHINode *, PHINode *> PHIPair; |
| 4114 | |
| 4115 | private: |
| 4116 | /// The addressing modes we've collected. |
| 4117 | SmallVector<ExtAddrMode, 16> AddrModes; |
| 4118 | |
| 4119 | /// The field in which the AddrModes differ, when we have more than one. |
| 4120 | ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; |
| 4121 | |
| 4122 | /// Are the AddrModes that we have all just equal to their original values? |
| 4123 | bool AllAddrModesTrivial = true; |
| 4124 | |
| 4125 | /// Common Type for all different fields in addressing modes. |
| 4126 | Type *CommonType = nullptr; |
| 4127 | |
| 4128 | const DataLayout &DL; |
| 4129 | |
| 4130 | /// Original Address. |
| 4131 | Value *Original; |
| 4132 | |
| 4133 | /// Common value among addresses |
| 4134 | Value *CommonValue = nullptr; |
| 4135 | |
| 4136 | public: |
| 4137 | AddressingModeCombiner(const DataLayout &DL, Value *OriginalValue) |
| 4138 | : DL(DL), Original(OriginalValue) {} |
| 4139 | |
| 4140 | ~AddressingModeCombiner() { eraseCommonValueIfDead(); } |
| 4141 | |
| 4142 | /// Get the combined AddrMode |
| 4143 | const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } |
| 4144 | |
| 4145 | /// Add a new AddrMode if it's compatible with the AddrModes we already |
| 4146 | /// have. |
| 4147 | /// \return True iff we succeeded in doing so. |
| 4148 | bool addNewAddrMode(ExtAddrMode &NewAddrMode) { |
| 4149 | // Take note of if we have any non-trivial AddrModes, as we need to detect |
| 4150 | // when all AddrModes are trivial as then we would introduce a phi or select |
| 4151 | // which just duplicates what's already there. |
| 4152 | AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); |
| 4153 | |
| 4154 | // If this is the first addrmode then everything is fine. |
| 4155 | if (AddrModes.empty()) { |
| 4156 | AddrModes.emplace_back(Args&: NewAddrMode); |
| 4157 | return true; |
| 4158 | } |
| 4159 | |
| 4160 | // Figure out how different this is from the other address modes, which we |
| 4161 | // can do just by comparing against the first one given that we only care |
| 4162 | // about the cumulative difference. |
| 4163 | ExtAddrMode::FieldName ThisDifferentField = |
| 4164 | AddrModes[0].compare(other: NewAddrMode); |
| 4165 | if (DifferentField == ExtAddrMode::NoField) |
| 4166 | DifferentField = ThisDifferentField; |
| 4167 | else if (DifferentField != ThisDifferentField) |
| 4168 | DifferentField = ExtAddrMode::MultipleFields; |
| 4169 | |
| 4170 | // If NewAddrMode differs in more than one dimension we cannot handle it. |
| 4171 | bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; |
| 4172 | |
| 4173 | // If Scale Field is different then we reject. |
| 4174 | CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; |
| 4175 | |
| 4176 | // We also must reject the case when base offset is different and |
| 4177 | // scale reg is not null, we cannot handle this case due to merge of |
| 4178 | // different offsets will be used as ScaleReg. |
| 4179 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || |
| 4180 | !NewAddrMode.ScaledReg); |
| 4181 | |
| 4182 | // We also must reject the case when GV is different and BaseReg installed |
| 4183 | // due to we want to use base reg as a merge of GV values. |
| 4184 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || |
| 4185 | !NewAddrMode.HasBaseReg); |
| 4186 | |
| 4187 | // Even if NewAddMode is the same we still need to collect it due to |
| 4188 | // original value is different. And later we will need all original values |
| 4189 | // as anchors during finding the common Phi node. |
| 4190 | if (CanHandle) |
| 4191 | AddrModes.emplace_back(Args&: NewAddrMode); |
| 4192 | else |
| 4193 | AddrModes.clear(); |
| 4194 | |
| 4195 | return CanHandle; |
| 4196 | } |
| 4197 | |
| 4198 | /// Combine the addressing modes we've collected into a single |
| 4199 | /// addressing mode. |
| 4200 | /// \return True iff we successfully combined them or we only had one so |
| 4201 | /// didn't need to combine them anyway. |
| 4202 | bool combineAddrModes() { |
| 4203 | // If we have no AddrModes then they can't be combined. |
| 4204 | if (AddrModes.size() == 0) |
| 4205 | return false; |
| 4206 | |
| 4207 | // A single AddrMode can trivially be combined. |
| 4208 | if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) |
| 4209 | return true; |
| 4210 | |
| 4211 | // If the AddrModes we collected are all just equal to the value they are |
| 4212 | // derived from then combining them wouldn't do anything useful. |
| 4213 | if (AllAddrModesTrivial) |
| 4214 | return false; |
| 4215 | |
| 4216 | if (!addrModeCombiningAllowed()) |
| 4217 | return false; |
| 4218 | |
| 4219 | // Build a map between <original value, basic block where we saw it> to |
| 4220 | // value of base register. |
| 4221 | // Bail out if there is no common type. |
| 4222 | FoldAddrToValueMapping Map; |
| 4223 | if (!initializeMap(Map)) |
| 4224 | return false; |
| 4225 | |
| 4226 | CommonValue = findCommon(Map); |
| 4227 | if (CommonValue) |
| 4228 | AddrModes[0].SetCombinedField(Field: DifferentField, V: CommonValue, AddrModes); |
| 4229 | return CommonValue != nullptr; |
| 4230 | } |
| 4231 | |
| 4232 | private: |
| 4233 | /// `CommonValue` may be a placeholder inserted by us. |
| 4234 | /// If the placeholder is not used, we should remove this dead instruction. |
| 4235 | void eraseCommonValueIfDead() { |
| 4236 | if (CommonValue && CommonValue->use_empty()) |
| 4237 | if (Instruction *CommonInst = dyn_cast<Instruction>(Val: CommonValue)) |
| 4238 | CommonInst->eraseFromParent(); |
| 4239 | } |
| 4240 | |
| 4241 | /// Initialize Map with anchor values. For address seen |
| 4242 | /// we set the value of different field saw in this address. |
| 4243 | /// At the same time we find a common type for different field we will |
| 4244 | /// use to create new Phi/Select nodes. Keep it in CommonType field. |
| 4245 | /// Return false if there is no common type found. |
| 4246 | bool initializeMap(FoldAddrToValueMapping &Map) { |
| 4247 | // Keep track of keys where the value is null. We will need to replace it |
| 4248 | // with constant null when we know the common type. |
| 4249 | SmallVector<Value *, 2> NullValue; |
| 4250 | Type *IntPtrTy = DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); |
| 4251 | for (auto &AM : AddrModes) { |
| 4252 | Value *DV = AM.GetFieldAsValue(Field: DifferentField, IntPtrTy); |
| 4253 | if (DV) { |
| 4254 | auto *Type = DV->getType(); |
| 4255 | if (CommonType && CommonType != Type) |
| 4256 | return false; |
| 4257 | CommonType = Type; |
| 4258 | Map[AM.OriginalValue] = DV; |
| 4259 | } else { |
| 4260 | NullValue.push_back(Elt: AM.OriginalValue); |
| 4261 | } |
| 4262 | } |
| 4263 | assert(CommonType && "At least one non-null value must be!" ); |
| 4264 | for (auto *V : NullValue) |
| 4265 | Map[V] = Constant::getNullValue(Ty: CommonType); |
| 4266 | return true; |
| 4267 | } |
| 4268 | |
| 4269 | /// We have mapping between value A and other value B where B was a field in |
| 4270 | /// addressing mode represented by A. Also we have an original value C |
| 4271 | /// representing an address we start with. Traversing from C through phi and |
| 4272 | /// selects we ended up with A's in a map. This utility function tries to find |
| 4273 | /// a value V which is a field in addressing mode C and traversing through phi |
| 4274 | /// nodes and selects we will end up in corresponded values B in a map. |
| 4275 | /// The utility will create a new Phi/Selects if needed. |
| 4276 | // The simple example looks as follows: |
| 4277 | // BB1: |
| 4278 | // p1 = b1 + 40 |
| 4279 | // br cond BB2, BB3 |
| 4280 | // BB2: |
| 4281 | // p2 = b2 + 40 |
| 4282 | // br BB3 |
| 4283 | // BB3: |
| 4284 | // p = phi [p1, BB1], [p2, BB2] |
| 4285 | // v = load p |
| 4286 | // Map is |
| 4287 | // p1 -> b1 |
| 4288 | // p2 -> b2 |
| 4289 | // Request is |
| 4290 | // p -> ? |
| 4291 | // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. |
| 4292 | Value *findCommon(FoldAddrToValueMapping &Map) { |
| 4293 | // Tracks the simplification of newly created phi nodes. The reason we use |
| 4294 | // this mapping is because we will add new created Phi nodes in AddrToBase. |
| 4295 | // Simplification of Phi nodes is recursive, so some Phi node may |
| 4296 | // be simplified after we added it to AddrToBase. In reality this |
| 4297 | // simplification is possible only if original phi/selects were not |
| 4298 | // simplified yet. |
| 4299 | // Using this mapping we can find the current value in AddrToBase. |
| 4300 | SimplificationTracker ST; |
| 4301 | |
| 4302 | // First step, DFS to create PHI nodes for all intermediate blocks. |
| 4303 | // Also fill traverse order for the second step. |
| 4304 | SmallVector<Value *, 32> TraverseOrder; |
| 4305 | InsertPlaceholders(Map, TraverseOrder, ST); |
| 4306 | |
| 4307 | // Second Step, fill new nodes by merged values and simplify if possible. |
| 4308 | FillPlaceholders(Map, TraverseOrder, ST); |
| 4309 | |
| 4310 | if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { |
| 4311 | ST.destroyNewNodes(CommonType); |
| 4312 | return nullptr; |
| 4313 | } |
| 4314 | |
| 4315 | // Now we'd like to match New Phi nodes to existed ones. |
| 4316 | unsigned PhiNotMatchedCount = 0; |
| 4317 | if (!MatchPhiSet(ST, AllowNewPhiNodes: AddrSinkNewPhis, PhiNotMatchedCount)) { |
| 4318 | ST.destroyNewNodes(CommonType); |
| 4319 | return nullptr; |
| 4320 | } |
| 4321 | |
| 4322 | auto *Result = ST.Get(V: Map.find(Val: Original)->second); |
| 4323 | if (Result) { |
| 4324 | NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; |
| 4325 | NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); |
| 4326 | } |
| 4327 | return Result; |
| 4328 | } |
| 4329 | |
| 4330 | /// Try to match PHI node to Candidate. |
| 4331 | /// Matcher tracks the matched Phi nodes. |
| 4332 | bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, |
| 4333 | SmallSetVector<PHIPair, 8> &Matcher, |
| 4334 | PhiNodeSet &PhiNodesToMatch) { |
| 4335 | SmallVector<PHIPair, 8> WorkList; |
| 4336 | Matcher.insert(X: {PHI, Candidate}); |
| 4337 | SmallPtrSet<PHINode *, 8> MatchedPHIs; |
| 4338 | MatchedPHIs.insert(Ptr: PHI); |
| 4339 | WorkList.push_back(Elt: {PHI, Candidate}); |
| 4340 | SmallSet<PHIPair, 8> Visited; |
| 4341 | while (!WorkList.empty()) { |
| 4342 | auto Item = WorkList.pop_back_val(); |
| 4343 | if (!Visited.insert(V: Item).second) |
| 4344 | continue; |
| 4345 | // We iterate over all incoming values to Phi to compare them. |
| 4346 | // If values are different and both of them Phi and the first one is a |
| 4347 | // Phi we added (subject to match) and both of them is in the same basic |
| 4348 | // block then we can match our pair if values match. So we state that |
| 4349 | // these values match and add it to work list to verify that. |
| 4350 | for (auto *B : Item.first->blocks()) { |
| 4351 | Value *FirstValue = Item.first->getIncomingValueForBlock(BB: B); |
| 4352 | Value *SecondValue = Item.second->getIncomingValueForBlock(BB: B); |
| 4353 | if (FirstValue == SecondValue) |
| 4354 | continue; |
| 4355 | |
| 4356 | PHINode *FirstPhi = dyn_cast<PHINode>(Val: FirstValue); |
| 4357 | PHINode *SecondPhi = dyn_cast<PHINode>(Val: SecondValue); |
| 4358 | |
| 4359 | // One of them is not Phi or |
| 4360 | // The first one is not Phi node from the set we'd like to match or |
| 4361 | // Phi nodes from different basic blocks then |
| 4362 | // we will not be able to match. |
| 4363 | if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(Ptr: FirstPhi) || |
| 4364 | FirstPhi->getParent() != SecondPhi->getParent()) |
| 4365 | return false; |
| 4366 | |
| 4367 | // If we already matched them then continue. |
| 4368 | if (Matcher.count(key: {FirstPhi, SecondPhi})) |
| 4369 | continue; |
| 4370 | // So the values are different and does not match. So we need them to |
| 4371 | // match. (But we register no more than one match per PHI node, so that |
| 4372 | // we won't later try to replace them twice.) |
| 4373 | if (MatchedPHIs.insert(Ptr: FirstPhi).second) |
| 4374 | Matcher.insert(X: {FirstPhi, SecondPhi}); |
| 4375 | // But me must check it. |
| 4376 | WorkList.push_back(Elt: {FirstPhi, SecondPhi}); |
| 4377 | } |
| 4378 | } |
| 4379 | return true; |
| 4380 | } |
| 4381 | |
| 4382 | /// For the given set of PHI nodes (in the SimplificationTracker) try |
| 4383 | /// to find their equivalents. |
| 4384 | /// Returns false if this matching fails and creation of new Phi is disabled. |
| 4385 | bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, |
| 4386 | unsigned &PhiNotMatchedCount) { |
| 4387 | // Matched and PhiNodesToMatch iterate their elements in a deterministic |
| 4388 | // order, so the replacements (ReplacePhi) are also done in a deterministic |
| 4389 | // order. |
| 4390 | SmallSetVector<PHIPair, 8> Matched; |
| 4391 | SmallPtrSet<PHINode *, 8> WillNotMatch; |
| 4392 | PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); |
| 4393 | while (PhiNodesToMatch.size()) { |
| 4394 | PHINode *PHI = *PhiNodesToMatch.begin(); |
| 4395 | |
| 4396 | // Add us, if no Phi nodes in the basic block we do not match. |
| 4397 | WillNotMatch.clear(); |
| 4398 | WillNotMatch.insert(Ptr: PHI); |
| 4399 | |
| 4400 | // Traverse all Phis until we found equivalent or fail to do that. |
| 4401 | bool IsMatched = false; |
| 4402 | for (auto &P : PHI->getParent()->phis()) { |
| 4403 | // Skip new Phi nodes. |
| 4404 | if (PhiNodesToMatch.count(Ptr: &P)) |
| 4405 | continue; |
| 4406 | if ((IsMatched = MatchPhiNode(PHI, Candidate: &P, Matcher&: Matched, PhiNodesToMatch))) |
| 4407 | break; |
| 4408 | // If it does not match, collect all Phi nodes from matcher. |
| 4409 | // if we end up with no match, them all these Phi nodes will not match |
| 4410 | // later. |
| 4411 | WillNotMatch.insert_range(R: llvm::make_first_range(c&: Matched)); |
| 4412 | Matched.clear(); |
| 4413 | } |
| 4414 | if (IsMatched) { |
| 4415 | // Replace all matched values and erase them. |
| 4416 | for (auto MV : Matched) |
| 4417 | ST.ReplacePhi(From: MV.first, To: MV.second); |
| 4418 | Matched.clear(); |
| 4419 | continue; |
| 4420 | } |
| 4421 | // If we are not allowed to create new nodes then bail out. |
| 4422 | if (!AllowNewPhiNodes) |
| 4423 | return false; |
| 4424 | // Just remove all seen values in matcher. They will not match anything. |
| 4425 | PhiNotMatchedCount += WillNotMatch.size(); |
| 4426 | for (auto *P : WillNotMatch) |
| 4427 | PhiNodesToMatch.erase(Ptr: P); |
| 4428 | } |
| 4429 | return true; |
| 4430 | } |
| 4431 | /// Fill the placeholders with values from predecessors and simplify them. |
| 4432 | void FillPlaceholders(FoldAddrToValueMapping &Map, |
| 4433 | SmallVectorImpl<Value *> &TraverseOrder, |
| 4434 | SimplificationTracker &ST) { |
| 4435 | while (!TraverseOrder.empty()) { |
| 4436 | Value *Current = TraverseOrder.pop_back_val(); |
| 4437 | assert(Map.contains(Current) && "No node to fill!!!" ); |
| 4438 | Value *V = Map[Current]; |
| 4439 | |
| 4440 | if (SelectInst *Select = dyn_cast<SelectInst>(Val: V)) { |
| 4441 | // CurrentValue also must be Select. |
| 4442 | auto *CurrentSelect = cast<SelectInst>(Val: Current); |
| 4443 | auto *TrueValue = CurrentSelect->getTrueValue(); |
| 4444 | assert(Map.contains(TrueValue) && "No True Value!" ); |
| 4445 | Select->setTrueValue(ST.Get(V: Map[TrueValue])); |
| 4446 | auto *FalseValue = CurrentSelect->getFalseValue(); |
| 4447 | assert(Map.contains(FalseValue) && "No False Value!" ); |
| 4448 | Select->setFalseValue(ST.Get(V: Map[FalseValue])); |
| 4449 | } else { |
| 4450 | // Must be a Phi node then. |
| 4451 | auto *PHI = cast<PHINode>(Val: V); |
| 4452 | // Fill the Phi node with values from predecessors. |
| 4453 | for (auto *B : predecessors(BB: PHI->getParent())) { |
| 4454 | Value *PV = cast<PHINode>(Val: Current)->getIncomingValueForBlock(BB: B); |
| 4455 | assert(Map.contains(PV) && "No predecessor Value!" ); |
| 4456 | PHI->addIncoming(V: ST.Get(V: Map[PV]), BB: B); |
| 4457 | } |
| 4458 | } |
| 4459 | } |
| 4460 | } |
| 4461 | |
| 4462 | /// Starting from original value recursively iterates over def-use chain up to |
| 4463 | /// known ending values represented in a map. For each traversed phi/select |
| 4464 | /// inserts a placeholder Phi or Select. |
| 4465 | /// Reports all new created Phi/Select nodes by adding them to set. |
| 4466 | /// Also reports and order in what values have been traversed. |
| 4467 | void InsertPlaceholders(FoldAddrToValueMapping &Map, |
| 4468 | SmallVectorImpl<Value *> &TraverseOrder, |
| 4469 | SimplificationTracker &ST) { |
| 4470 | SmallVector<Value *, 32> Worklist; |
| 4471 | assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && |
| 4472 | "Address must be a Phi or Select node" ); |
| 4473 | auto *Dummy = PoisonValue::get(T: CommonType); |
| 4474 | Worklist.push_back(Elt: Original); |
| 4475 | while (!Worklist.empty()) { |
| 4476 | Value *Current = Worklist.pop_back_val(); |
| 4477 | // if it is already visited or it is an ending value then skip it. |
| 4478 | if (Map.contains(Val: Current)) |
| 4479 | continue; |
| 4480 | TraverseOrder.push_back(Elt: Current); |
| 4481 | |
| 4482 | // CurrentValue must be a Phi node or select. All others must be covered |
| 4483 | // by anchors. |
| 4484 | if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Val: Current)) { |
| 4485 | // Is it OK to get metadata from OrigSelect?! |
| 4486 | // Create a Select placeholder with dummy value. |
| 4487 | SelectInst *Select = |
| 4488 | SelectInst::Create(C: CurrentSelect->getCondition(), S1: Dummy, S2: Dummy, |
| 4489 | NameStr: CurrentSelect->getName(), |
| 4490 | InsertBefore: CurrentSelect->getIterator(), MDFrom: CurrentSelect); |
| 4491 | Map[Current] = Select; |
| 4492 | ST.insertNewSelect(SI: Select); |
| 4493 | // We are interested in True and False values. |
| 4494 | Worklist.push_back(Elt: CurrentSelect->getTrueValue()); |
| 4495 | Worklist.push_back(Elt: CurrentSelect->getFalseValue()); |
| 4496 | } else { |
| 4497 | // It must be a Phi node then. |
| 4498 | PHINode *CurrentPhi = cast<PHINode>(Val: Current); |
| 4499 | unsigned PredCount = CurrentPhi->getNumIncomingValues(); |
| 4500 | PHINode *PHI = |
| 4501 | PHINode::Create(Ty: CommonType, NumReservedValues: PredCount, NameStr: "sunk_phi" , InsertBefore: CurrentPhi->getIterator()); |
| 4502 | Map[Current] = PHI; |
| 4503 | ST.insertNewPhi(PN: PHI); |
| 4504 | append_range(C&: Worklist, R: CurrentPhi->incoming_values()); |
| 4505 | } |
| 4506 | } |
| 4507 | } |
| 4508 | |
| 4509 | bool addrModeCombiningAllowed() { |
| 4510 | if (DisableComplexAddrModes) |
| 4511 | return false; |
| 4512 | switch (DifferentField) { |
| 4513 | default: |
| 4514 | return false; |
| 4515 | case ExtAddrMode::BaseRegField: |
| 4516 | return AddrSinkCombineBaseReg; |
| 4517 | case ExtAddrMode::BaseGVField: |
| 4518 | return AddrSinkCombineBaseGV; |
| 4519 | case ExtAddrMode::BaseOffsField: |
| 4520 | return AddrSinkCombineBaseOffs; |
| 4521 | case ExtAddrMode::ScaledRegField: |
| 4522 | return AddrSinkCombineScaledReg; |
| 4523 | } |
| 4524 | } |
| 4525 | }; |
| 4526 | } // end anonymous namespace |
| 4527 | |
| 4528 | /// Try adding ScaleReg*Scale to the current addressing mode. |
| 4529 | /// Return true and update AddrMode if this addr mode is legal for the target, |
| 4530 | /// false if not. |
| 4531 | bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, |
| 4532 | unsigned Depth) { |
| 4533 | // If Scale is 1, then this is the same as adding ScaleReg to the addressing |
| 4534 | // mode. Just process that directly. |
| 4535 | if (Scale == 1) |
| 4536 | return matchAddr(Addr: ScaleReg, Depth); |
| 4537 | |
| 4538 | // If the scale is 0, it takes nothing to add this. |
| 4539 | if (Scale == 0) |
| 4540 | return true; |
| 4541 | |
| 4542 | // If we already have a scale of this value, we can add to it, otherwise, we |
| 4543 | // need an available scale field. |
| 4544 | if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) |
| 4545 | return false; |
| 4546 | |
| 4547 | ExtAddrMode TestAddrMode = AddrMode; |
| 4548 | |
| 4549 | // Add scale to turn X*4+X*3 -> X*7. This could also do things like |
| 4550 | // [A+B + A*7] -> [B+A*8]. |
| 4551 | TestAddrMode.Scale += Scale; |
| 4552 | TestAddrMode.ScaledReg = ScaleReg; |
| 4553 | |
| 4554 | // If the new address isn't legal, bail out. |
| 4555 | if (!TLI.isLegalAddressingMode(DL, AM: TestAddrMode, Ty: AccessTy, AddrSpace)) |
| 4556 | return false; |
| 4557 | |
| 4558 | // It was legal, so commit it. |
| 4559 | AddrMode = TestAddrMode; |
| 4560 | |
| 4561 | // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now |
| 4562 | // to see if ScaleReg is actually X+C. If so, we can turn this into adding |
| 4563 | // X*Scale + C*Scale to addr mode. If we found available IV increment, do not |
| 4564 | // go any further: we can reuse it and cannot eliminate it. |
| 4565 | ConstantInt *CI = nullptr; |
| 4566 | Value *AddLHS = nullptr; |
| 4567 | if (isa<Instruction>(Val: ScaleReg) && // not a constant expr. |
| 4568 | match(V: ScaleReg, P: m_Add(L: m_Value(V&: AddLHS), R: m_ConstantInt(CI))) && |
| 4569 | !isIVIncrement(V: ScaleReg, LI: &LI) && CI->getValue().isSignedIntN(N: 64)) { |
| 4570 | TestAddrMode.InBounds = false; |
| 4571 | TestAddrMode.ScaledReg = AddLHS; |
| 4572 | TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; |
| 4573 | |
| 4574 | // If this addressing mode is legal, commit it and remember that we folded |
| 4575 | // this instruction. |
| 4576 | if (TLI.isLegalAddressingMode(DL, AM: TestAddrMode, Ty: AccessTy, AddrSpace)) { |
| 4577 | AddrModeInsts.push_back(Elt: cast<Instruction>(Val: ScaleReg)); |
| 4578 | AddrMode = TestAddrMode; |
| 4579 | return true; |
| 4580 | } |
| 4581 | // Restore status quo. |
| 4582 | TestAddrMode = AddrMode; |
| 4583 | } |
| 4584 | |
| 4585 | // If this is an add recurrence with a constant step, return the increment |
| 4586 | // instruction and the canonicalized step. |
| 4587 | auto GetConstantStep = |
| 4588 | [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { |
| 4589 | auto *PN = dyn_cast<PHINode>(Val: V); |
| 4590 | if (!PN) |
| 4591 | return std::nullopt; |
| 4592 | auto IVInc = getIVIncrement(PN, LI: &LI); |
| 4593 | if (!IVInc) |
| 4594 | return std::nullopt; |
| 4595 | // TODO: The result of the intrinsics above is two-complement. However when |
| 4596 | // IV inc is expressed as add or sub, iv.next is potentially a poison value. |
| 4597 | // If it has nuw or nsw flags, we need to make sure that these flags are |
| 4598 | // inferrable at the point of memory instruction. Otherwise we are replacing |
| 4599 | // well-defined two-complement computation with poison. Currently, to avoid |
| 4600 | // potentially complex analysis needed to prove this, we reject such cases. |
| 4601 | if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(Val: IVInc->first)) |
| 4602 | if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) |
| 4603 | return std::nullopt; |
| 4604 | if (auto *ConstantStep = dyn_cast<ConstantInt>(Val: IVInc->second)) |
| 4605 | return std::make_pair(x&: IVInc->first, y: ConstantStep->getValue()); |
| 4606 | return std::nullopt; |
| 4607 | }; |
| 4608 | |
| 4609 | // Try to account for the following special case: |
| 4610 | // 1. ScaleReg is an inductive variable; |
| 4611 | // 2. We use it with non-zero offset; |
| 4612 | // 3. IV's increment is available at the point of memory instruction. |
| 4613 | // |
| 4614 | // In this case, we may reuse the IV increment instead of the IV Phi to |
| 4615 | // achieve the following advantages: |
| 4616 | // 1. If IV step matches the offset, we will have no need in the offset; |
| 4617 | // 2. Even if they don't match, we will reduce the overlap of living IV |
| 4618 | // and IV increment, that will potentially lead to better register |
| 4619 | // assignment. |
| 4620 | if (AddrMode.BaseOffs) { |
| 4621 | if (auto IVStep = GetConstantStep(ScaleReg)) { |
| 4622 | Instruction *IVInc = IVStep->first; |
| 4623 | // The following assert is important to ensure a lack of infinite loops. |
| 4624 | // This transforms is (intentionally) the inverse of the one just above. |
| 4625 | // If they don't agree on the definition of an increment, we'd alternate |
| 4626 | // back and forth indefinitely. |
| 4627 | assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep" ); |
| 4628 | APInt Step = IVStep->second; |
| 4629 | APInt Offset = Step * AddrMode.Scale; |
| 4630 | if (Offset.isSignedIntN(N: 64)) { |
| 4631 | TestAddrMode.InBounds = false; |
| 4632 | TestAddrMode.ScaledReg = IVInc; |
| 4633 | TestAddrMode.BaseOffs -= Offset.getLimitedValue(); |
| 4634 | // If this addressing mode is legal, commit it.. |
| 4635 | // (Note that we defer the (expensive) domtree base legality check |
| 4636 | // to the very last possible point.) |
| 4637 | if (TLI.isLegalAddressingMode(DL, AM: TestAddrMode, Ty: AccessTy, AddrSpace) && |
| 4638 | getDTFn().dominates(Def: IVInc, User: MemoryInst)) { |
| 4639 | AddrModeInsts.push_back(Elt: cast<Instruction>(Val: IVInc)); |
| 4640 | AddrMode = TestAddrMode; |
| 4641 | return true; |
| 4642 | } |
| 4643 | // Restore status quo. |
| 4644 | TestAddrMode = AddrMode; |
| 4645 | } |
| 4646 | } |
| 4647 | } |
| 4648 | |
| 4649 | // Otherwise, just return what we have. |
| 4650 | return true; |
| 4651 | } |
| 4652 | |
| 4653 | /// This is a little filter, which returns true if an addressing computation |
| 4654 | /// involving I might be folded into a load/store accessing it. |
| 4655 | /// This doesn't need to be perfect, but needs to accept at least |
| 4656 | /// the set of instructions that MatchOperationAddr can. |
| 4657 | static bool MightBeFoldableInst(Instruction *I) { |
| 4658 | switch (I->getOpcode()) { |
| 4659 | case Instruction::BitCast: |
| 4660 | case Instruction::AddrSpaceCast: |
| 4661 | // Don't touch identity bitcasts. |
| 4662 | if (I->getType() == I->getOperand(i: 0)->getType()) |
| 4663 | return false; |
| 4664 | return I->getType()->isIntOrPtrTy(); |
| 4665 | case Instruction::PtrToInt: |
| 4666 | // PtrToInt is always a noop, as we know that the int type is pointer sized. |
| 4667 | return true; |
| 4668 | case Instruction::IntToPtr: |
| 4669 | // We know the input is intptr_t, so this is foldable. |
| 4670 | return true; |
| 4671 | case Instruction::Add: |
| 4672 | return true; |
| 4673 | case Instruction::Mul: |
| 4674 | case Instruction::Shl: |
| 4675 | // Can only handle X*C and X << C. |
| 4676 | return isa<ConstantInt>(Val: I->getOperand(i: 1)); |
| 4677 | case Instruction::GetElementPtr: |
| 4678 | return true; |
| 4679 | default: |
| 4680 | return false; |
| 4681 | } |
| 4682 | } |
| 4683 | |
| 4684 | /// Check whether or not \p Val is a legal instruction for \p TLI. |
| 4685 | /// \note \p Val is assumed to be the product of some type promotion. |
| 4686 | /// Therefore if \p Val has an undefined state in \p TLI, this is assumed |
| 4687 | /// to be legal, as the non-promoted value would have had the same state. |
| 4688 | static bool isPromotedInstructionLegal(const TargetLowering &TLI, |
| 4689 | const DataLayout &DL, Value *Val) { |
| 4690 | Instruction *PromotedInst = dyn_cast<Instruction>(Val); |
| 4691 | if (!PromotedInst) |
| 4692 | return false; |
| 4693 | int ISDOpcode = TLI.InstructionOpcodeToISD(Opcode: PromotedInst->getOpcode()); |
| 4694 | // If the ISDOpcode is undefined, it was undefined before the promotion. |
| 4695 | if (!ISDOpcode) |
| 4696 | return true; |
| 4697 | // Otherwise, check if the promoted instruction is legal or not. |
| 4698 | return TLI.isOperationLegalOrCustom( |
| 4699 | Op: ISDOpcode, VT: TLI.getValueType(DL, Ty: PromotedInst->getType())); |
| 4700 | } |
| 4701 | |
| 4702 | namespace { |
| 4703 | |
| 4704 | /// Hepler class to perform type promotion. |
| 4705 | class TypePromotionHelper { |
| 4706 | /// Utility function to add a promoted instruction \p ExtOpnd to |
| 4707 | /// \p PromotedInsts and record the type of extension we have seen. |
| 4708 | static void addPromotedInst(InstrToOrigTy &PromotedInsts, |
| 4709 | Instruction *ExtOpnd, bool IsSExt) { |
| 4710 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; |
| 4711 | auto [It, Inserted] = PromotedInsts.try_emplace(Key: ExtOpnd); |
| 4712 | if (!Inserted) { |
| 4713 | // If the new extension is same as original, the information in |
| 4714 | // PromotedInsts[ExtOpnd] is still correct. |
| 4715 | if (It->second.getInt() == ExtTy) |
| 4716 | return; |
| 4717 | |
| 4718 | // Now the new extension is different from old extension, we make |
| 4719 | // the type information invalid by setting extension type to |
| 4720 | // BothExtension. |
| 4721 | ExtTy = BothExtension; |
| 4722 | } |
| 4723 | It->second = TypeIsSExt(ExtOpnd->getType(), ExtTy); |
| 4724 | } |
| 4725 | |
| 4726 | /// Utility function to query the original type of instruction \p Opnd |
| 4727 | /// with a matched extension type. If the extension doesn't match, we |
| 4728 | /// cannot use the information we had on the original type. |
| 4729 | /// BothExtension doesn't match any extension type. |
| 4730 | static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, |
| 4731 | Instruction *Opnd, bool IsSExt) { |
| 4732 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; |
| 4733 | InstrToOrigTy::const_iterator It = PromotedInsts.find(Val: Opnd); |
| 4734 | if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) |
| 4735 | return It->second.getPointer(); |
| 4736 | return nullptr; |
| 4737 | } |
| 4738 | |
| 4739 | /// Utility function to check whether or not a sign or zero extension |
| 4740 | /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by |
| 4741 | /// either using the operands of \p Inst or promoting \p Inst. |
| 4742 | /// The type of the extension is defined by \p IsSExt. |
| 4743 | /// In other words, check if: |
| 4744 | /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. |
| 4745 | /// #1 Promotion applies: |
| 4746 | /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). |
| 4747 | /// #2 Operand reuses: |
| 4748 | /// ext opnd1 to ConsideredExtType. |
| 4749 | /// \p PromotedInsts maps the instructions to their type before promotion. |
| 4750 | static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, |
| 4751 | const InstrToOrigTy &PromotedInsts, bool IsSExt); |
| 4752 | |
| 4753 | /// Utility function to determine if \p OpIdx should be promoted when |
| 4754 | /// promoting \p Inst. |
| 4755 | static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { |
| 4756 | return !(isa<SelectInst>(Val: Inst) && OpIdx == 0); |
| 4757 | } |
| 4758 | |
| 4759 | /// Utility function to promote the operand of \p Ext when this |
| 4760 | /// operand is a promotable trunc or sext or zext. |
| 4761 | /// \p PromotedInsts maps the instructions to their type before promotion. |
| 4762 | /// \p CreatedInstsCost[out] contains the cost of all instructions |
| 4763 | /// created to promote the operand of Ext. |
| 4764 | /// Newly added extensions are inserted in \p Exts. |
| 4765 | /// Newly added truncates are inserted in \p Truncs. |
| 4766 | /// Should never be called directly. |
| 4767 | /// \return The promoted value which is used instead of Ext. |
| 4768 | static Value *promoteOperandForTruncAndAnyExt( |
| 4769 | Instruction *Ext, TypePromotionTransaction &TPT, |
| 4770 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| 4771 | SmallVectorImpl<Instruction *> *Exts, |
| 4772 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); |
| 4773 | |
| 4774 | /// Utility function to promote the operand of \p Ext when this |
| 4775 | /// operand is promotable and is not a supported trunc or sext. |
| 4776 | /// \p PromotedInsts maps the instructions to their type before promotion. |
| 4777 | /// \p CreatedInstsCost[out] contains the cost of all the instructions |
| 4778 | /// created to promote the operand of Ext. |
| 4779 | /// Newly added extensions are inserted in \p Exts. |
| 4780 | /// Newly added truncates are inserted in \p Truncs. |
| 4781 | /// Should never be called directly. |
| 4782 | /// \return The promoted value which is used instead of Ext. |
| 4783 | static Value *promoteOperandForOther(Instruction *Ext, |
| 4784 | TypePromotionTransaction &TPT, |
| 4785 | InstrToOrigTy &PromotedInsts, |
| 4786 | unsigned &CreatedInstsCost, |
| 4787 | SmallVectorImpl<Instruction *> *Exts, |
| 4788 | SmallVectorImpl<Instruction *> *Truncs, |
| 4789 | const TargetLowering &TLI, bool IsSExt); |
| 4790 | |
| 4791 | /// \see promoteOperandForOther. |
| 4792 | static Value *signExtendOperandForOther( |
| 4793 | Instruction *Ext, TypePromotionTransaction &TPT, |
| 4794 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| 4795 | SmallVectorImpl<Instruction *> *Exts, |
| 4796 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { |
| 4797 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, |
| 4798 | Exts, Truncs, TLI, IsSExt: true); |
| 4799 | } |
| 4800 | |
| 4801 | /// \see promoteOperandForOther. |
| 4802 | static Value *zeroExtendOperandForOther( |
| 4803 | Instruction *Ext, TypePromotionTransaction &TPT, |
| 4804 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| 4805 | SmallVectorImpl<Instruction *> *Exts, |
| 4806 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { |
| 4807 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, |
| 4808 | Exts, Truncs, TLI, IsSExt: false); |
| 4809 | } |
| 4810 | |
| 4811 | public: |
| 4812 | /// Type for the utility function that promotes the operand of Ext. |
| 4813 | using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, |
| 4814 | InstrToOrigTy &PromotedInsts, |
| 4815 | unsigned &CreatedInstsCost, |
| 4816 | SmallVectorImpl<Instruction *> *Exts, |
| 4817 | SmallVectorImpl<Instruction *> *Truncs, |
| 4818 | const TargetLowering &TLI); |
| 4819 | |
| 4820 | /// Given a sign/zero extend instruction \p Ext, return the appropriate |
| 4821 | /// action to promote the operand of \p Ext instead of using Ext. |
| 4822 | /// \return NULL if no promotable action is possible with the current |
| 4823 | /// sign extension. |
| 4824 | /// \p InsertedInsts keeps track of all the instructions inserted by the |
| 4825 | /// other CodeGenPrepare optimizations. This information is important |
| 4826 | /// because we do not want to promote these instructions as CodeGenPrepare |
| 4827 | /// will reinsert them later. Thus creating an infinite loop: create/remove. |
| 4828 | /// \p PromotedInsts maps the instructions to their type before promotion. |
| 4829 | static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, |
| 4830 | const TargetLowering &TLI, |
| 4831 | const InstrToOrigTy &PromotedInsts); |
| 4832 | }; |
| 4833 | |
| 4834 | } // end anonymous namespace |
| 4835 | |
| 4836 | bool TypePromotionHelper::canGetThrough(const Instruction *Inst, |
| 4837 | Type *ConsideredExtType, |
| 4838 | const InstrToOrigTy &PromotedInsts, |
| 4839 | bool IsSExt) { |
| 4840 | // The promotion helper does not know how to deal with vector types yet. |
| 4841 | // To be able to fix that, we would need to fix the places where we |
| 4842 | // statically extend, e.g., constants and such. |
| 4843 | if (Inst->getType()->isVectorTy()) |
| 4844 | return false; |
| 4845 | |
| 4846 | // We can always get through zext. |
| 4847 | if (isa<ZExtInst>(Val: Inst)) |
| 4848 | return true; |
| 4849 | |
| 4850 | // sext(sext) is ok too. |
| 4851 | if (IsSExt && isa<SExtInst>(Val: Inst)) |
| 4852 | return true; |
| 4853 | |
| 4854 | // We can get through binary operator, if it is legal. In other words, the |
| 4855 | // binary operator must have a nuw or nsw flag. |
| 4856 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: Inst)) |
| 4857 | if (isa<OverflowingBinaryOperator>(Val: BinOp) && |
| 4858 | ((!IsSExt && BinOp->hasNoUnsignedWrap()) || |
| 4859 | (IsSExt && BinOp->hasNoSignedWrap()))) |
| 4860 | return true; |
| 4861 | |
| 4862 | // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) |
| 4863 | if ((Inst->getOpcode() == Instruction::And || |
| 4864 | Inst->getOpcode() == Instruction::Or)) |
| 4865 | return true; |
| 4866 | |
| 4867 | // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) |
| 4868 | if (Inst->getOpcode() == Instruction::Xor) { |
| 4869 | // Make sure it is not a NOT. |
| 4870 | if (const auto *Cst = dyn_cast<ConstantInt>(Val: Inst->getOperand(i: 1))) |
| 4871 | if (!Cst->getValue().isAllOnes()) |
| 4872 | return true; |
| 4873 | } |
| 4874 | |
| 4875 | // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) |
| 4876 | // It may change a poisoned value into a regular value, like |
| 4877 | // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 |
| 4878 | // poisoned value regular value |
| 4879 | // It should be OK since undef covers valid value. |
| 4880 | if (Inst->getOpcode() == Instruction::LShr && !IsSExt) |
| 4881 | return true; |
| 4882 | |
| 4883 | // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) |
| 4884 | // It may change a poisoned value into a regular value, like |
| 4885 | // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 |
| 4886 | // poisoned value regular value |
| 4887 | // It should be OK since undef covers valid value. |
| 4888 | if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { |
| 4889 | const auto *ExtInst = cast<const Instruction>(Val: *Inst->user_begin()); |
| 4890 | if (ExtInst->hasOneUse()) { |
| 4891 | const auto *AndInst = dyn_cast<const Instruction>(Val: *ExtInst->user_begin()); |
| 4892 | if (AndInst && AndInst->getOpcode() == Instruction::And) { |
| 4893 | const auto *Cst = dyn_cast<ConstantInt>(Val: AndInst->getOperand(i: 1)); |
| 4894 | if (Cst && |
| 4895 | Cst->getValue().isIntN(N: Inst->getType()->getIntegerBitWidth())) |
| 4896 | return true; |
| 4897 | } |
| 4898 | } |
| 4899 | } |
| 4900 | |
| 4901 | // Check if we can do the following simplification. |
| 4902 | // ext(trunc(opnd)) --> ext(opnd) |
| 4903 | if (!isa<TruncInst>(Val: Inst)) |
| 4904 | return false; |
| 4905 | |
| 4906 | Value *OpndVal = Inst->getOperand(i: 0); |
| 4907 | // Check if we can use this operand in the extension. |
| 4908 | // If the type is larger than the result type of the extension, we cannot. |
| 4909 | if (!OpndVal->getType()->isIntegerTy() || |
| 4910 | OpndVal->getType()->getIntegerBitWidth() > |
| 4911 | ConsideredExtType->getIntegerBitWidth()) |
| 4912 | return false; |
| 4913 | |
| 4914 | // If the operand of the truncate is not an instruction, we will not have |
| 4915 | // any information on the dropped bits. |
| 4916 | // (Actually we could for constant but it is not worth the extra logic). |
| 4917 | Instruction *Opnd = dyn_cast<Instruction>(Val: OpndVal); |
| 4918 | if (!Opnd) |
| 4919 | return false; |
| 4920 | |
| 4921 | // Check if the source of the type is narrow enough. |
| 4922 | // I.e., check that trunc just drops extended bits of the same kind of |
| 4923 | // the extension. |
| 4924 | // #1 get the type of the operand and check the kind of the extended bits. |
| 4925 | const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); |
| 4926 | if (OpndType) |
| 4927 | ; |
| 4928 | else if ((IsSExt && isa<SExtInst>(Val: Opnd)) || (!IsSExt && isa<ZExtInst>(Val: Opnd))) |
| 4929 | OpndType = Opnd->getOperand(i: 0)->getType(); |
| 4930 | else |
| 4931 | return false; |
| 4932 | |
| 4933 | // #2 check that the truncate just drops extended bits. |
| 4934 | return Inst->getType()->getIntegerBitWidth() >= |
| 4935 | OpndType->getIntegerBitWidth(); |
| 4936 | } |
| 4937 | |
| 4938 | TypePromotionHelper::Action TypePromotionHelper::getAction( |
| 4939 | Instruction *Ext, const SetOfInstrs &InsertedInsts, |
| 4940 | const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { |
| 4941 | assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && |
| 4942 | "Unexpected instruction type" ); |
| 4943 | Instruction *ExtOpnd = dyn_cast<Instruction>(Val: Ext->getOperand(i: 0)); |
| 4944 | Type *ExtTy = Ext->getType(); |
| 4945 | bool IsSExt = isa<SExtInst>(Val: Ext); |
| 4946 | // If the operand of the extension is not an instruction, we cannot |
| 4947 | // get through. |
| 4948 | // If it, check we can get through. |
| 4949 | if (!ExtOpnd || !canGetThrough(Inst: ExtOpnd, ConsideredExtType: ExtTy, PromotedInsts, IsSExt)) |
| 4950 | return nullptr; |
| 4951 | |
| 4952 | // Do not promote if the operand has been added by codegenprepare. |
| 4953 | // Otherwise, it means we are undoing an optimization that is likely to be |
| 4954 | // redone, thus causing potential infinite loop. |
| 4955 | if (isa<TruncInst>(Val: ExtOpnd) && InsertedInsts.count(Ptr: ExtOpnd)) |
| 4956 | return nullptr; |
| 4957 | |
| 4958 | // SExt or Trunc instructions. |
| 4959 | // Return the related handler. |
| 4960 | if (isa<SExtInst>(Val: ExtOpnd) || isa<TruncInst>(Val: ExtOpnd) || |
| 4961 | isa<ZExtInst>(Val: ExtOpnd)) |
| 4962 | return promoteOperandForTruncAndAnyExt; |
| 4963 | |
| 4964 | // Regular instruction. |
| 4965 | // Abort early if we will have to insert non-free instructions. |
| 4966 | if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(FromTy: ExtTy, ToTy: ExtOpnd->getType())) |
| 4967 | return nullptr; |
| 4968 | return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; |
| 4969 | } |
| 4970 | |
| 4971 | Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( |
| 4972 | Instruction *SExt, TypePromotionTransaction &TPT, |
| 4973 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| 4974 | SmallVectorImpl<Instruction *> *Exts, |
| 4975 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { |
| 4976 | // By construction, the operand of SExt is an instruction. Otherwise we cannot |
| 4977 | // get through it and this method should not be called. |
| 4978 | Instruction *SExtOpnd = cast<Instruction>(Val: SExt->getOperand(i: 0)); |
| 4979 | Value *ExtVal = SExt; |
| 4980 | bool HasMergedNonFreeExt = false; |
| 4981 | if (isa<ZExtInst>(Val: SExtOpnd)) { |
| 4982 | // Replace s|zext(zext(opnd)) |
| 4983 | // => zext(opnd). |
| 4984 | HasMergedNonFreeExt = !TLI.isExtFree(I: SExtOpnd); |
| 4985 | Value *ZExt = |
| 4986 | TPT.createZExt(Inst: SExt, Opnd: SExtOpnd->getOperand(i: 0), Ty: SExt->getType()); |
| 4987 | TPT.replaceAllUsesWith(Inst: SExt, New: ZExt); |
| 4988 | TPT.eraseInstruction(Inst: SExt); |
| 4989 | ExtVal = ZExt; |
| 4990 | } else { |
| 4991 | // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) |
| 4992 | // => z|sext(opnd). |
| 4993 | TPT.setOperand(Inst: SExt, Idx: 0, NewVal: SExtOpnd->getOperand(i: 0)); |
| 4994 | } |
| 4995 | CreatedInstsCost = 0; |
| 4996 | |
| 4997 | // Remove dead code. |
| 4998 | if (SExtOpnd->use_empty()) |
| 4999 | TPT.eraseInstruction(Inst: SExtOpnd); |
| 5000 | |
| 5001 | // Check if the extension is still needed. |
| 5002 | Instruction *ExtInst = dyn_cast<Instruction>(Val: ExtVal); |
| 5003 | if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(i: 0)->getType()) { |
| 5004 | if (ExtInst) { |
| 5005 | if (Exts) |
| 5006 | Exts->push_back(Elt: ExtInst); |
| 5007 | CreatedInstsCost = !TLI.isExtFree(I: ExtInst) && !HasMergedNonFreeExt; |
| 5008 | } |
| 5009 | return ExtVal; |
| 5010 | } |
| 5011 | |
| 5012 | // At this point we have: ext ty opnd to ty. |
| 5013 | // Reassign the uses of ExtInst to the opnd and remove ExtInst. |
| 5014 | Value *NextVal = ExtInst->getOperand(i: 0); |
| 5015 | TPT.eraseInstruction(Inst: ExtInst, NewVal: NextVal); |
| 5016 | return NextVal; |
| 5017 | } |
| 5018 | |
| 5019 | Value *TypePromotionHelper::promoteOperandForOther( |
| 5020 | Instruction *Ext, TypePromotionTransaction &TPT, |
| 5021 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, |
| 5022 | SmallVectorImpl<Instruction *> *Exts, |
| 5023 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, |
| 5024 | bool IsSExt) { |
| 5025 | // By construction, the operand of Ext is an instruction. Otherwise we cannot |
| 5026 | // get through it and this method should not be called. |
| 5027 | Instruction *ExtOpnd = cast<Instruction>(Val: Ext->getOperand(i: 0)); |
| 5028 | CreatedInstsCost = 0; |
| 5029 | if (!ExtOpnd->hasOneUse()) { |
| 5030 | // ExtOpnd will be promoted. |
| 5031 | // All its uses, but Ext, will need to use a truncated value of the |
| 5032 | // promoted version. |
| 5033 | // Create the truncate now. |
| 5034 | Value *Trunc = TPT.createTrunc(Opnd: Ext, Ty: ExtOpnd->getType()); |
| 5035 | if (Instruction *ITrunc = dyn_cast<Instruction>(Val: Trunc)) { |
| 5036 | // Insert it just after the definition. |
| 5037 | ITrunc->moveAfter(MovePos: ExtOpnd); |
| 5038 | if (Truncs) |
| 5039 | Truncs->push_back(Elt: ITrunc); |
| 5040 | } |
| 5041 | |
| 5042 | TPT.replaceAllUsesWith(Inst: ExtOpnd, New: Trunc); |
| 5043 | // Restore the operand of Ext (which has been replaced by the previous call |
| 5044 | // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. |
| 5045 | TPT.setOperand(Inst: Ext, Idx: 0, NewVal: ExtOpnd); |
| 5046 | } |
| 5047 | |
| 5048 | // Get through the Instruction: |
| 5049 | // 1. Update its type. |
| 5050 | // 2. Replace the uses of Ext by Inst. |
| 5051 | // 3. Extend each operand that needs to be extended. |
| 5052 | |
| 5053 | // Remember the original type of the instruction before promotion. |
| 5054 | // This is useful to know that the high bits are sign extended bits. |
| 5055 | addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); |
| 5056 | // Step #1. |
| 5057 | TPT.mutateType(Inst: ExtOpnd, NewTy: Ext->getType()); |
| 5058 | // Step #2. |
| 5059 | TPT.replaceAllUsesWith(Inst: Ext, New: ExtOpnd); |
| 5060 | // Step #3. |
| 5061 | LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n" ); |
| 5062 | for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; |
| 5063 | ++OpIdx) { |
| 5064 | LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); |
| 5065 | if (ExtOpnd->getOperand(i: OpIdx)->getType() == Ext->getType() || |
| 5066 | !shouldExtOperand(Inst: ExtOpnd, OpIdx)) { |
| 5067 | LLVM_DEBUG(dbgs() << "No need to propagate\n" ); |
| 5068 | continue; |
| 5069 | } |
| 5070 | // Check if we can statically extend the operand. |
| 5071 | Value *Opnd = ExtOpnd->getOperand(i: OpIdx); |
| 5072 | if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Val: Opnd)) { |
| 5073 | LLVM_DEBUG(dbgs() << "Statically extend\n" ); |
| 5074 | unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); |
| 5075 | APInt CstVal = IsSExt ? Cst->getValue().sext(width: BitWidth) |
| 5076 | : Cst->getValue().zext(width: BitWidth); |
| 5077 | TPT.setOperand(Inst: ExtOpnd, Idx: OpIdx, NewVal: ConstantInt::get(Ty: Ext->getType(), V: CstVal)); |
| 5078 | continue; |
| 5079 | } |
| 5080 | // UndefValue are typed, so we have to statically sign extend them. |
| 5081 | if (isa<UndefValue>(Val: Opnd)) { |
| 5082 | LLVM_DEBUG(dbgs() << "Statically extend\n" ); |
| 5083 | TPT.setOperand(Inst: ExtOpnd, Idx: OpIdx, NewVal: UndefValue::get(T: Ext->getType())); |
| 5084 | continue; |
| 5085 | } |
| 5086 | |
| 5087 | // Otherwise we have to explicitly sign extend the operand. |
| 5088 | Value *ValForExtOpnd = IsSExt |
| 5089 | ? TPT.createSExt(Inst: ExtOpnd, Opnd, Ty: Ext->getType()) |
| 5090 | : TPT.createZExt(Inst: ExtOpnd, Opnd, Ty: Ext->getType()); |
| 5091 | TPT.setOperand(Inst: ExtOpnd, Idx: OpIdx, NewVal: ValForExtOpnd); |
| 5092 | Instruction *InstForExtOpnd = dyn_cast<Instruction>(Val: ValForExtOpnd); |
| 5093 | if (!InstForExtOpnd) |
| 5094 | continue; |
| 5095 | |
| 5096 | if (Exts) |
| 5097 | Exts->push_back(Elt: InstForExtOpnd); |
| 5098 | |
| 5099 | CreatedInstsCost += !TLI.isExtFree(I: InstForExtOpnd); |
| 5100 | } |
| 5101 | LLVM_DEBUG(dbgs() << "Extension is useless now\n" ); |
| 5102 | TPT.eraseInstruction(Inst: Ext); |
| 5103 | return ExtOpnd; |
| 5104 | } |
| 5105 | |
| 5106 | /// Check whether or not promoting an instruction to a wider type is profitable. |
| 5107 | /// \p NewCost gives the cost of extension instructions created by the |
| 5108 | /// promotion. |
| 5109 | /// \p OldCost gives the cost of extension instructions before the promotion |
| 5110 | /// plus the number of instructions that have been |
| 5111 | /// matched in the addressing mode the promotion. |
| 5112 | /// \p PromotedOperand is the value that has been promoted. |
| 5113 | /// \return True if the promotion is profitable, false otherwise. |
| 5114 | bool AddressingModeMatcher::isPromotionProfitable( |
| 5115 | unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { |
| 5116 | LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost |
| 5117 | << '\n'); |
| 5118 | // The cost of the new extensions is greater than the cost of the |
| 5119 | // old extension plus what we folded. |
| 5120 | // This is not profitable. |
| 5121 | if (NewCost > OldCost) |
| 5122 | return false; |
| 5123 | if (NewCost < OldCost) |
| 5124 | return true; |
| 5125 | // The promotion is neutral but it may help folding the sign extension in |
| 5126 | // loads for instance. |
| 5127 | // Check that we did not create an illegal instruction. |
| 5128 | return isPromotedInstructionLegal(TLI, DL, Val: PromotedOperand); |
| 5129 | } |
| 5130 | |
| 5131 | /// Given an instruction or constant expr, see if we can fold the operation |
| 5132 | /// into the addressing mode. If so, update the addressing mode and return |
| 5133 | /// true, otherwise return false without modifying AddrMode. |
| 5134 | /// If \p MovedAway is not NULL, it contains the information of whether or |
| 5135 | /// not AddrInst has to be folded into the addressing mode on success. |
| 5136 | /// If \p MovedAway == true, \p AddrInst will not be part of the addressing |
| 5137 | /// because it has been moved away. |
| 5138 | /// Thus AddrInst must not be added in the matched instructions. |
| 5139 | /// This state can happen when AddrInst is a sext, since it may be moved away. |
| 5140 | /// Therefore, AddrInst may not be valid when MovedAway is true and it must |
| 5141 | /// not be referenced anymore. |
| 5142 | bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, |
| 5143 | unsigned Depth, |
| 5144 | bool *MovedAway) { |
| 5145 | // Avoid exponential behavior on extremely deep expression trees. |
| 5146 | if (Depth >= 5) |
| 5147 | return false; |
| 5148 | |
| 5149 | // By default, all matched instructions stay in place. |
| 5150 | if (MovedAway) |
| 5151 | *MovedAway = false; |
| 5152 | |
| 5153 | switch (Opcode) { |
| 5154 | case Instruction::PtrToInt: |
| 5155 | // PtrToInt is always a noop, as we know that the int type is pointer sized. |
| 5156 | return matchAddr(Addr: AddrInst->getOperand(i: 0), Depth); |
| 5157 | case Instruction::IntToPtr: { |
| 5158 | auto AS = AddrInst->getType()->getPointerAddressSpace(); |
| 5159 | auto PtrTy = MVT::getIntegerVT(BitWidth: DL.getPointerSizeInBits(AS)); |
| 5160 | // This inttoptr is a no-op if the integer type is pointer sized. |
| 5161 | if (TLI.getValueType(DL, Ty: AddrInst->getOperand(i: 0)->getType()) == PtrTy) |
| 5162 | return matchAddr(Addr: AddrInst->getOperand(i: 0), Depth); |
| 5163 | return false; |
| 5164 | } |
| 5165 | case Instruction::BitCast: |
| 5166 | // BitCast is always a noop, and we can handle it as long as it is |
| 5167 | // int->int or pointer->pointer (we don't want int<->fp or something). |
| 5168 | if (AddrInst->getOperand(i: 0)->getType()->isIntOrPtrTy() && |
| 5169 | // Don't touch identity bitcasts. These were probably put here by LSR, |
| 5170 | // and we don't want to mess around with them. Assume it knows what it |
| 5171 | // is doing. |
| 5172 | AddrInst->getOperand(i: 0)->getType() != AddrInst->getType()) |
| 5173 | return matchAddr(Addr: AddrInst->getOperand(i: 0), Depth); |
| 5174 | return false; |
| 5175 | case Instruction::AddrSpaceCast: { |
| 5176 | unsigned SrcAS = |
| 5177 | AddrInst->getOperand(i: 0)->getType()->getPointerAddressSpace(); |
| 5178 | unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); |
| 5179 | if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) |
| 5180 | return matchAddr(Addr: AddrInst->getOperand(i: 0), Depth); |
| 5181 | return false; |
| 5182 | } |
| 5183 | case Instruction::Add: { |
| 5184 | // Check to see if we can merge in one operand, then the other. If so, we |
| 5185 | // win. |
| 5186 | ExtAddrMode BackupAddrMode = AddrMode; |
| 5187 | unsigned OldSize = AddrModeInsts.size(); |
| 5188 | // Start a transaction at this point. |
| 5189 | // The LHS may match but not the RHS. |
| 5190 | // Therefore, we need a higher level restoration point to undo partially |
| 5191 | // matched operation. |
| 5192 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 5193 | TPT.getRestorationPoint(); |
| 5194 | |
| 5195 | // Try to match an integer constant second to increase its chance of ending |
| 5196 | // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. |
| 5197 | int First = 0, Second = 1; |
| 5198 | if (isa<ConstantInt>(Val: AddrInst->getOperand(i: First)) |
| 5199 | && !isa<ConstantInt>(Val: AddrInst->getOperand(i: Second))) |
| 5200 | std::swap(a&: First, b&: Second); |
| 5201 | AddrMode.InBounds = false; |
| 5202 | if (matchAddr(Addr: AddrInst->getOperand(i: First), Depth: Depth + 1) && |
| 5203 | matchAddr(Addr: AddrInst->getOperand(i: Second), Depth: Depth + 1)) |
| 5204 | return true; |
| 5205 | |
| 5206 | // Restore the old addr mode info. |
| 5207 | AddrMode = BackupAddrMode; |
| 5208 | AddrModeInsts.resize(N: OldSize); |
| 5209 | TPT.rollback(Point: LastKnownGood); |
| 5210 | |
| 5211 | // Otherwise this was over-aggressive. Try merging operands in the opposite |
| 5212 | // order. |
| 5213 | if (matchAddr(Addr: AddrInst->getOperand(i: Second), Depth: Depth + 1) && |
| 5214 | matchAddr(Addr: AddrInst->getOperand(i: First), Depth: Depth + 1)) |
| 5215 | return true; |
| 5216 | |
| 5217 | // Otherwise we definitely can't merge the ADD in. |
| 5218 | AddrMode = BackupAddrMode; |
| 5219 | AddrModeInsts.resize(N: OldSize); |
| 5220 | TPT.rollback(Point: LastKnownGood); |
| 5221 | break; |
| 5222 | } |
| 5223 | // case Instruction::Or: |
| 5224 | // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. |
| 5225 | // break; |
| 5226 | case Instruction::Mul: |
| 5227 | case Instruction::Shl: { |
| 5228 | // Can only handle X*C and X << C. |
| 5229 | AddrMode.InBounds = false; |
| 5230 | ConstantInt *RHS = dyn_cast<ConstantInt>(Val: AddrInst->getOperand(i: 1)); |
| 5231 | if (!RHS || RHS->getBitWidth() > 64) |
| 5232 | return false; |
| 5233 | int64_t Scale = Opcode == Instruction::Shl |
| 5234 | ? 1LL << RHS->getLimitedValue(Limit: RHS->getBitWidth() - 1) |
| 5235 | : RHS->getSExtValue(); |
| 5236 | |
| 5237 | return matchScaledValue(ScaleReg: AddrInst->getOperand(i: 0), Scale, Depth); |
| 5238 | } |
| 5239 | case Instruction::GetElementPtr: { |
| 5240 | // Scan the GEP. We check it if it contains constant offsets and at most |
| 5241 | // one variable offset. |
| 5242 | int VariableOperand = -1; |
| 5243 | unsigned VariableScale = 0; |
| 5244 | |
| 5245 | int64_t ConstantOffset = 0; |
| 5246 | gep_type_iterator GTI = gep_type_begin(GEP: AddrInst); |
| 5247 | for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { |
| 5248 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
| 5249 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
| 5250 | unsigned Idx = |
| 5251 | cast<ConstantInt>(Val: AddrInst->getOperand(i))->getZExtValue(); |
| 5252 | ConstantOffset += SL->getElementOffset(Idx); |
| 5253 | } else { |
| 5254 | TypeSize TS = GTI.getSequentialElementStride(DL); |
| 5255 | if (TS.isNonZero()) { |
| 5256 | // The optimisations below currently only work for fixed offsets. |
| 5257 | if (TS.isScalable()) |
| 5258 | return false; |
| 5259 | int64_t TypeSize = TS.getFixedValue(); |
| 5260 | if (ConstantInt *CI = |
| 5261 | dyn_cast<ConstantInt>(Val: AddrInst->getOperand(i))) { |
| 5262 | const APInt &CVal = CI->getValue(); |
| 5263 | if (CVal.getSignificantBits() <= 64) { |
| 5264 | ConstantOffset += CVal.getSExtValue() * TypeSize; |
| 5265 | continue; |
| 5266 | } |
| 5267 | } |
| 5268 | // We only allow one variable index at the moment. |
| 5269 | if (VariableOperand != -1) |
| 5270 | return false; |
| 5271 | |
| 5272 | // Remember the variable index. |
| 5273 | VariableOperand = i; |
| 5274 | VariableScale = TypeSize; |
| 5275 | } |
| 5276 | } |
| 5277 | } |
| 5278 | |
| 5279 | // A common case is for the GEP to only do a constant offset. In this case, |
| 5280 | // just add it to the disp field and check validity. |
| 5281 | if (VariableOperand == -1) { |
| 5282 | AddrMode.BaseOffs += ConstantOffset; |
| 5283 | if (matchAddr(Addr: AddrInst->getOperand(i: 0), Depth: Depth + 1)) { |
| 5284 | if (!cast<GEPOperator>(Val: AddrInst)->isInBounds()) |
| 5285 | AddrMode.InBounds = false; |
| 5286 | return true; |
| 5287 | } |
| 5288 | AddrMode.BaseOffs -= ConstantOffset; |
| 5289 | |
| 5290 | if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(Val: AddrInst) && |
| 5291 | TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && |
| 5292 | ConstantOffset > 0) { |
| 5293 | // Record GEPs with non-zero offsets as candidates for splitting in |
| 5294 | // the event that the offset cannot fit into the r+i addressing mode. |
| 5295 | // Simple and common case that only one GEP is used in calculating the |
| 5296 | // address for the memory access. |
| 5297 | Value *Base = AddrInst->getOperand(i: 0); |
| 5298 | auto *BaseI = dyn_cast<Instruction>(Val: Base); |
| 5299 | auto *GEP = cast<GetElementPtrInst>(Val: AddrInst); |
| 5300 | if (isa<Argument>(Val: Base) || isa<GlobalValue>(Val: Base) || |
| 5301 | (BaseI && !isa<CastInst>(Val: BaseI) && |
| 5302 | !isa<GetElementPtrInst>(Val: BaseI))) { |
| 5303 | // Make sure the parent block allows inserting non-PHI instructions |
| 5304 | // before the terminator. |
| 5305 | BasicBlock *Parent = BaseI ? BaseI->getParent() |
| 5306 | : &GEP->getFunction()->getEntryBlock(); |
| 5307 | if (!Parent->getTerminator()->isEHPad()) |
| 5308 | LargeOffsetGEP = std::make_pair(x&: GEP, y&: ConstantOffset); |
| 5309 | } |
| 5310 | } |
| 5311 | |
| 5312 | return false; |
| 5313 | } |
| 5314 | |
| 5315 | // Save the valid addressing mode in case we can't match. |
| 5316 | ExtAddrMode BackupAddrMode = AddrMode; |
| 5317 | unsigned OldSize = AddrModeInsts.size(); |
| 5318 | |
| 5319 | // See if the scale and offset amount is valid for this target. |
| 5320 | AddrMode.BaseOffs += ConstantOffset; |
| 5321 | if (!cast<GEPOperator>(Val: AddrInst)->isInBounds()) |
| 5322 | AddrMode.InBounds = false; |
| 5323 | |
| 5324 | // Match the base operand of the GEP. |
| 5325 | if (!matchAddr(Addr: AddrInst->getOperand(i: 0), Depth: Depth + 1)) { |
| 5326 | // If it couldn't be matched, just stuff the value in a register. |
| 5327 | if (AddrMode.HasBaseReg) { |
| 5328 | AddrMode = BackupAddrMode; |
| 5329 | AddrModeInsts.resize(N: OldSize); |
| 5330 | return false; |
| 5331 | } |
| 5332 | AddrMode.HasBaseReg = true; |
| 5333 | AddrMode.BaseReg = AddrInst->getOperand(i: 0); |
| 5334 | } |
| 5335 | |
| 5336 | // Match the remaining variable portion of the GEP. |
| 5337 | if (!matchScaledValue(ScaleReg: AddrInst->getOperand(i: VariableOperand), Scale: VariableScale, |
| 5338 | Depth)) { |
| 5339 | // If it couldn't be matched, try stuffing the base into a register |
| 5340 | // instead of matching it, and retrying the match of the scale. |
| 5341 | AddrMode = BackupAddrMode; |
| 5342 | AddrModeInsts.resize(N: OldSize); |
| 5343 | if (AddrMode.HasBaseReg) |
| 5344 | return false; |
| 5345 | AddrMode.HasBaseReg = true; |
| 5346 | AddrMode.BaseReg = AddrInst->getOperand(i: 0); |
| 5347 | AddrMode.BaseOffs += ConstantOffset; |
| 5348 | if (!matchScaledValue(ScaleReg: AddrInst->getOperand(i: VariableOperand), |
| 5349 | Scale: VariableScale, Depth)) { |
| 5350 | // If even that didn't work, bail. |
| 5351 | AddrMode = BackupAddrMode; |
| 5352 | AddrModeInsts.resize(N: OldSize); |
| 5353 | return false; |
| 5354 | } |
| 5355 | } |
| 5356 | |
| 5357 | return true; |
| 5358 | } |
| 5359 | case Instruction::SExt: |
| 5360 | case Instruction::ZExt: { |
| 5361 | Instruction *Ext = dyn_cast<Instruction>(Val: AddrInst); |
| 5362 | if (!Ext) |
| 5363 | return false; |
| 5364 | |
| 5365 | // Try to move this ext out of the way of the addressing mode. |
| 5366 | // Ask for a method for doing so. |
| 5367 | TypePromotionHelper::Action TPH = |
| 5368 | TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); |
| 5369 | if (!TPH) |
| 5370 | return false; |
| 5371 | |
| 5372 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 5373 | TPT.getRestorationPoint(); |
| 5374 | unsigned CreatedInstsCost = 0; |
| 5375 | unsigned ExtCost = !TLI.isExtFree(I: Ext); |
| 5376 | Value *PromotedOperand = |
| 5377 | TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); |
| 5378 | // SExt has been moved away. |
| 5379 | // Thus either it will be rematched later in the recursive calls or it is |
| 5380 | // gone. Anyway, we must not fold it into the addressing mode at this point. |
| 5381 | // E.g., |
| 5382 | // op = add opnd, 1 |
| 5383 | // idx = ext op |
| 5384 | // addr = gep base, idx |
| 5385 | // is now: |
| 5386 | // promotedOpnd = ext opnd <- no match here |
| 5387 | // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) |
| 5388 | // addr = gep base, op <- match |
| 5389 | if (MovedAway) |
| 5390 | *MovedAway = true; |
| 5391 | |
| 5392 | assert(PromotedOperand && |
| 5393 | "TypePromotionHelper should have filtered out those cases" ); |
| 5394 | |
| 5395 | ExtAddrMode BackupAddrMode = AddrMode; |
| 5396 | unsigned OldSize = AddrModeInsts.size(); |
| 5397 | |
| 5398 | if (!matchAddr(Addr: PromotedOperand, Depth) || |
| 5399 | // The total of the new cost is equal to the cost of the created |
| 5400 | // instructions. |
| 5401 | // The total of the old cost is equal to the cost of the extension plus |
| 5402 | // what we have saved in the addressing mode. |
| 5403 | !isPromotionProfitable(NewCost: CreatedInstsCost, |
| 5404 | OldCost: ExtCost + (AddrModeInsts.size() - OldSize), |
| 5405 | PromotedOperand)) { |
| 5406 | AddrMode = BackupAddrMode; |
| 5407 | AddrModeInsts.resize(N: OldSize); |
| 5408 | LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n" ); |
| 5409 | TPT.rollback(Point: LastKnownGood); |
| 5410 | return false; |
| 5411 | } |
| 5412 | |
| 5413 | // SExt has been deleted. Make sure it is not referenced by the AddrMode. |
| 5414 | AddrMode.replaceWith(From: Ext, To: PromotedOperand); |
| 5415 | return true; |
| 5416 | } |
| 5417 | case Instruction::Call: |
| 5418 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: AddrInst)) { |
| 5419 | if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { |
| 5420 | GlobalValue &GV = cast<GlobalValue>(Val&: *II->getArgOperand(i: 0)); |
| 5421 | if (TLI.addressingModeSupportsTLS(GV)) |
| 5422 | return matchAddr(Addr: AddrInst->getOperand(i: 0), Depth); |
| 5423 | } |
| 5424 | } |
| 5425 | break; |
| 5426 | } |
| 5427 | return false; |
| 5428 | } |
| 5429 | |
| 5430 | /// If we can, try to add the value of 'Addr' into the current addressing mode. |
| 5431 | /// If Addr can't be added to AddrMode this returns false and leaves AddrMode |
| 5432 | /// unmodified. This assumes that Addr is either a pointer type or intptr_t |
| 5433 | /// for the target. |
| 5434 | /// |
| 5435 | bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { |
| 5436 | // Start a transaction at this point that we will rollback if the matching |
| 5437 | // fails. |
| 5438 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 5439 | TPT.getRestorationPoint(); |
| 5440 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: Addr)) { |
| 5441 | if (CI->getValue().isSignedIntN(N: 64)) { |
| 5442 | // Check if the addition would result in a signed overflow. |
| 5443 | int64_t Result; |
| 5444 | bool Overflow = |
| 5445 | AddOverflow(X: AddrMode.BaseOffs, Y: CI->getSExtValue(), Result); |
| 5446 | if (!Overflow) { |
| 5447 | // Fold in immediates if legal for the target. |
| 5448 | AddrMode.BaseOffs = Result; |
| 5449 | if (TLI.isLegalAddressingMode(DL, AM: AddrMode, Ty: AccessTy, AddrSpace)) |
| 5450 | return true; |
| 5451 | AddrMode.BaseOffs -= CI->getSExtValue(); |
| 5452 | } |
| 5453 | } |
| 5454 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: Addr)) { |
| 5455 | // If this is a global variable, try to fold it into the addressing mode. |
| 5456 | if (!AddrMode.BaseGV) { |
| 5457 | AddrMode.BaseGV = GV; |
| 5458 | if (TLI.isLegalAddressingMode(DL, AM: AddrMode, Ty: AccessTy, AddrSpace)) |
| 5459 | return true; |
| 5460 | AddrMode.BaseGV = nullptr; |
| 5461 | } |
| 5462 | } else if (Instruction *I = dyn_cast<Instruction>(Val: Addr)) { |
| 5463 | ExtAddrMode BackupAddrMode = AddrMode; |
| 5464 | unsigned OldSize = AddrModeInsts.size(); |
| 5465 | |
| 5466 | // Check to see if it is possible to fold this operation. |
| 5467 | bool MovedAway = false; |
| 5468 | if (matchOperationAddr(AddrInst: I, Opcode: I->getOpcode(), Depth, MovedAway: &MovedAway)) { |
| 5469 | // This instruction may have been moved away. If so, there is nothing |
| 5470 | // to check here. |
| 5471 | if (MovedAway) |
| 5472 | return true; |
| 5473 | // Okay, it's possible to fold this. Check to see if it is actually |
| 5474 | // *profitable* to do so. We use a simple cost model to avoid increasing |
| 5475 | // register pressure too much. |
| 5476 | if (I->hasOneUse() || |
| 5477 | isProfitableToFoldIntoAddressingMode(I, AMBefore&: BackupAddrMode, AMAfter&: AddrMode)) { |
| 5478 | AddrModeInsts.push_back(Elt: I); |
| 5479 | return true; |
| 5480 | } |
| 5481 | |
| 5482 | // It isn't profitable to do this, roll back. |
| 5483 | AddrMode = BackupAddrMode; |
| 5484 | AddrModeInsts.resize(N: OldSize); |
| 5485 | TPT.rollback(Point: LastKnownGood); |
| 5486 | } |
| 5487 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: Addr)) { |
| 5488 | if (matchOperationAddr(AddrInst: CE, Opcode: CE->getOpcode(), Depth)) |
| 5489 | return true; |
| 5490 | TPT.rollback(Point: LastKnownGood); |
| 5491 | } else if (isa<ConstantPointerNull>(Val: Addr)) { |
| 5492 | // Null pointer gets folded without affecting the addressing mode. |
| 5493 | return true; |
| 5494 | } |
| 5495 | |
| 5496 | // Worse case, the target should support [reg] addressing modes. :) |
| 5497 | if (!AddrMode.HasBaseReg) { |
| 5498 | AddrMode.HasBaseReg = true; |
| 5499 | AddrMode.BaseReg = Addr; |
| 5500 | // Still check for legality in case the target supports [imm] but not [i+r]. |
| 5501 | if (TLI.isLegalAddressingMode(DL, AM: AddrMode, Ty: AccessTy, AddrSpace)) |
| 5502 | return true; |
| 5503 | AddrMode.HasBaseReg = false; |
| 5504 | AddrMode.BaseReg = nullptr; |
| 5505 | } |
| 5506 | |
| 5507 | // If the base register is already taken, see if we can do [r+r]. |
| 5508 | if (AddrMode.Scale == 0) { |
| 5509 | AddrMode.Scale = 1; |
| 5510 | AddrMode.ScaledReg = Addr; |
| 5511 | if (TLI.isLegalAddressingMode(DL, AM: AddrMode, Ty: AccessTy, AddrSpace)) |
| 5512 | return true; |
| 5513 | AddrMode.Scale = 0; |
| 5514 | AddrMode.ScaledReg = nullptr; |
| 5515 | } |
| 5516 | // Couldn't match. |
| 5517 | TPT.rollback(Point: LastKnownGood); |
| 5518 | return false; |
| 5519 | } |
| 5520 | |
| 5521 | /// Check to see if all uses of OpVal by the specified inline asm call are due |
| 5522 | /// to memory operands. If so, return true, otherwise return false. |
| 5523 | static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, |
| 5524 | const TargetLowering &TLI, |
| 5525 | const TargetRegisterInfo &TRI) { |
| 5526 | const Function *F = CI->getFunction(); |
| 5527 | TargetLowering::AsmOperandInfoVector TargetConstraints = |
| 5528 | TLI.ParseConstraints(DL: F->getDataLayout(), TRI: &TRI, Call: *CI); |
| 5529 | |
| 5530 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { |
| 5531 | // Compute the constraint code and ConstraintType to use. |
| 5532 | TLI.ComputeConstraintToUse(OpInfo, Op: SDValue()); |
| 5533 | |
| 5534 | // If this asm operand is our Value*, and if it isn't an indirect memory |
| 5535 | // operand, we can't fold it! TODO: Also handle C_Address? |
| 5536 | if (OpInfo.CallOperandVal == OpVal && |
| 5537 | (OpInfo.ConstraintType != TargetLowering::C_Memory || |
| 5538 | !OpInfo.isIndirect)) |
| 5539 | return false; |
| 5540 | } |
| 5541 | |
| 5542 | return true; |
| 5543 | } |
| 5544 | |
| 5545 | /// Recursively walk all the uses of I until we find a memory use. |
| 5546 | /// If we find an obviously non-foldable instruction, return true. |
| 5547 | /// Add accessed addresses and types to MemoryUses. |
| 5548 | static bool FindAllMemoryUses( |
| 5549 | Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, |
| 5550 | SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, |
| 5551 | const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, |
| 5552 | BlockFrequencyInfo *BFI, unsigned &SeenInsts) { |
| 5553 | // If we already considered this instruction, we're done. |
| 5554 | if (!ConsideredInsts.insert(Ptr: I).second) |
| 5555 | return false; |
| 5556 | |
| 5557 | // If this is an obviously unfoldable instruction, bail out. |
| 5558 | if (!MightBeFoldableInst(I)) |
| 5559 | return true; |
| 5560 | |
| 5561 | // Loop over all the uses, recursively processing them. |
| 5562 | for (Use &U : I->uses()) { |
| 5563 | // Conservatively return true if we're seeing a large number or a deep chain |
| 5564 | // of users. This avoids excessive compilation times in pathological cases. |
| 5565 | if (SeenInsts++ >= MaxAddressUsersToScan) |
| 5566 | return true; |
| 5567 | |
| 5568 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 5569 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: UserI)) { |
| 5570 | MemoryUses.push_back(Elt: {&U, LI->getType()}); |
| 5571 | continue; |
| 5572 | } |
| 5573 | |
| 5574 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: UserI)) { |
| 5575 | if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) |
| 5576 | return true; // Storing addr, not into addr. |
| 5577 | MemoryUses.push_back(Elt: {&U, SI->getValueOperand()->getType()}); |
| 5578 | continue; |
| 5579 | } |
| 5580 | |
| 5581 | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: UserI)) { |
| 5582 | if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) |
| 5583 | return true; // Storing addr, not into addr. |
| 5584 | MemoryUses.push_back(Elt: {&U, RMW->getValOperand()->getType()}); |
| 5585 | continue; |
| 5586 | } |
| 5587 | |
| 5588 | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Val: UserI)) { |
| 5589 | if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) |
| 5590 | return true; // Storing addr, not into addr. |
| 5591 | MemoryUses.push_back(Elt: {&U, CmpX->getCompareOperand()->getType()}); |
| 5592 | continue; |
| 5593 | } |
| 5594 | |
| 5595 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: UserI)) { |
| 5596 | SmallVector<Value *, 2> PtrOps; |
| 5597 | Type *AccessTy; |
| 5598 | if (!TLI.getAddrModeArguments(II, PtrOps, AccessTy)) |
| 5599 | return true; |
| 5600 | |
| 5601 | if (!find(Range&: PtrOps, Val: U.get())) |
| 5602 | return true; |
| 5603 | |
| 5604 | MemoryUses.push_back(Elt: {&U, AccessTy}); |
| 5605 | continue; |
| 5606 | } |
| 5607 | |
| 5608 | if (CallInst *CI = dyn_cast<CallInst>(Val: UserI)) { |
| 5609 | if (CI->hasFnAttr(Kind: Attribute::Cold)) { |
| 5610 | // If this is a cold call, we can sink the addressing calculation into |
| 5611 | // the cold path. See optimizeCallInst |
| 5612 | if (!llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI)) |
| 5613 | continue; |
| 5614 | } |
| 5615 | |
| 5616 | InlineAsm *IA = dyn_cast<InlineAsm>(Val: CI->getCalledOperand()); |
| 5617 | if (!IA) |
| 5618 | return true; |
| 5619 | |
| 5620 | // If this is a memory operand, we're cool, otherwise bail out. |
| 5621 | if (!IsOperandAMemoryOperand(CI, IA, OpVal: I, TLI, TRI)) |
| 5622 | return true; |
| 5623 | continue; |
| 5624 | } |
| 5625 | |
| 5626 | if (FindAllMemoryUses(I: UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, |
| 5627 | PSI, BFI, SeenInsts)) |
| 5628 | return true; |
| 5629 | } |
| 5630 | |
| 5631 | return false; |
| 5632 | } |
| 5633 | |
| 5634 | static bool FindAllMemoryUses( |
| 5635 | Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, |
| 5636 | const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, |
| 5637 | ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { |
| 5638 | unsigned SeenInsts = 0; |
| 5639 | SmallPtrSet<Instruction *, 16> ConsideredInsts; |
| 5640 | return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, |
| 5641 | PSI, BFI, SeenInsts); |
| 5642 | } |
| 5643 | |
| 5644 | |
| 5645 | /// Return true if Val is already known to be live at the use site that we're |
| 5646 | /// folding it into. If so, there is no cost to include it in the addressing |
| 5647 | /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the |
| 5648 | /// instruction already. |
| 5649 | bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, |
| 5650 | Value *KnownLive1, |
| 5651 | Value *KnownLive2) { |
| 5652 | // If Val is either of the known-live values, we know it is live! |
| 5653 | if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) |
| 5654 | return true; |
| 5655 | |
| 5656 | // All values other than instructions and arguments (e.g. constants) are live. |
| 5657 | if (!isa<Instruction>(Val) && !isa<Argument>(Val)) |
| 5658 | return true; |
| 5659 | |
| 5660 | // If Val is a constant sized alloca in the entry block, it is live, this is |
| 5661 | // true because it is just a reference to the stack/frame pointer, which is |
| 5662 | // live for the whole function. |
| 5663 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) |
| 5664 | if (AI->isStaticAlloca()) |
| 5665 | return true; |
| 5666 | |
| 5667 | // Check to see if this value is already used in the memory instruction's |
| 5668 | // block. If so, it's already live into the block at the very least, so we |
| 5669 | // can reasonably fold it. |
| 5670 | return Val->isUsedInBasicBlock(BB: MemoryInst->getParent()); |
| 5671 | } |
| 5672 | |
| 5673 | /// It is possible for the addressing mode of the machine to fold the specified |
| 5674 | /// instruction into a load or store that ultimately uses it. |
| 5675 | /// However, the specified instruction has multiple uses. |
| 5676 | /// Given this, it may actually increase register pressure to fold it |
| 5677 | /// into the load. For example, consider this code: |
| 5678 | /// |
| 5679 | /// X = ... |
| 5680 | /// Y = X+1 |
| 5681 | /// use(Y) -> nonload/store |
| 5682 | /// Z = Y+1 |
| 5683 | /// load Z |
| 5684 | /// |
| 5685 | /// In this case, Y has multiple uses, and can be folded into the load of Z |
| 5686 | /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to |
| 5687 | /// be live at the use(Y) line. If we don't fold Y into load Z, we use one |
| 5688 | /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the |
| 5689 | /// number of computations either. |
| 5690 | /// |
| 5691 | /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If |
| 5692 | /// X was live across 'load Z' for other reasons, we actually *would* want to |
| 5693 | /// fold the addressing mode in the Z case. This would make Y die earlier. |
| 5694 | bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( |
| 5695 | Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { |
| 5696 | if (IgnoreProfitability) |
| 5697 | return true; |
| 5698 | |
| 5699 | // AMBefore is the addressing mode before this instruction was folded into it, |
| 5700 | // and AMAfter is the addressing mode after the instruction was folded. Get |
| 5701 | // the set of registers referenced by AMAfter and subtract out those |
| 5702 | // referenced by AMBefore: this is the set of values which folding in this |
| 5703 | // address extends the lifetime of. |
| 5704 | // |
| 5705 | // Note that there are only two potential values being referenced here, |
| 5706 | // BaseReg and ScaleReg (global addresses are always available, as are any |
| 5707 | // folded immediates). |
| 5708 | Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; |
| 5709 | |
| 5710 | // If the BaseReg or ScaledReg was referenced by the previous addrmode, their |
| 5711 | // lifetime wasn't extended by adding this instruction. |
| 5712 | if (valueAlreadyLiveAtInst(Val: BaseReg, KnownLive1: AMBefore.BaseReg, KnownLive2: AMBefore.ScaledReg)) |
| 5713 | BaseReg = nullptr; |
| 5714 | if (valueAlreadyLiveAtInst(Val: ScaledReg, KnownLive1: AMBefore.BaseReg, KnownLive2: AMBefore.ScaledReg)) |
| 5715 | ScaledReg = nullptr; |
| 5716 | |
| 5717 | // If folding this instruction (and it's subexprs) didn't extend any live |
| 5718 | // ranges, we're ok with it. |
| 5719 | if (!BaseReg && !ScaledReg) |
| 5720 | return true; |
| 5721 | |
| 5722 | // If all uses of this instruction can have the address mode sunk into them, |
| 5723 | // we can remove the addressing mode and effectively trade one live register |
| 5724 | // for another (at worst.) In this context, folding an addressing mode into |
| 5725 | // the use is just a particularly nice way of sinking it. |
| 5726 | SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; |
| 5727 | if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) |
| 5728 | return false; // Has a non-memory, non-foldable use! |
| 5729 | |
| 5730 | // Now that we know that all uses of this instruction are part of a chain of |
| 5731 | // computation involving only operations that could theoretically be folded |
| 5732 | // into a memory use, loop over each of these memory operation uses and see |
| 5733 | // if they could *actually* fold the instruction. The assumption is that |
| 5734 | // addressing modes are cheap and that duplicating the computation involved |
| 5735 | // many times is worthwhile, even on a fastpath. For sinking candidates |
| 5736 | // (i.e. cold call sites), this serves as a way to prevent excessive code |
| 5737 | // growth since most architectures have some reasonable small and fast way to |
| 5738 | // compute an effective address. (i.e LEA on x86) |
| 5739 | SmallVector<Instruction *, 32> MatchedAddrModeInsts; |
| 5740 | for (const std::pair<Use *, Type *> &Pair : MemoryUses) { |
| 5741 | Value *Address = Pair.first->get(); |
| 5742 | Instruction *UserI = cast<Instruction>(Val: Pair.first->getUser()); |
| 5743 | Type *AddressAccessTy = Pair.second; |
| 5744 | unsigned AS = Address->getType()->getPointerAddressSpace(); |
| 5745 | |
| 5746 | // Do a match against the root of this address, ignoring profitability. This |
| 5747 | // will tell us if the addressing mode for the memory operation will |
| 5748 | // *actually* cover the shared instruction. |
| 5749 | ExtAddrMode Result; |
| 5750 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, |
| 5751 | 0); |
| 5752 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 5753 | TPT.getRestorationPoint(); |
| 5754 | AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, |
| 5755 | AddressAccessTy, AS, UserI, Result, |
| 5756 | InsertedInsts, PromotedInsts, TPT, |
| 5757 | LargeOffsetGEP, OptSize, PSI, BFI); |
| 5758 | Matcher.IgnoreProfitability = true; |
| 5759 | bool Success = Matcher.matchAddr(Addr: Address, Depth: 0); |
| 5760 | (void)Success; |
| 5761 | assert(Success && "Couldn't select *anything*?" ); |
| 5762 | |
| 5763 | // The match was to check the profitability, the changes made are not |
| 5764 | // part of the original matcher. Therefore, they should be dropped |
| 5765 | // otherwise the original matcher will not present the right state. |
| 5766 | TPT.rollback(Point: LastKnownGood); |
| 5767 | |
| 5768 | // If the match didn't cover I, then it won't be shared by it. |
| 5769 | if (!is_contained(Range&: MatchedAddrModeInsts, Element: I)) |
| 5770 | return false; |
| 5771 | |
| 5772 | MatchedAddrModeInsts.clear(); |
| 5773 | } |
| 5774 | |
| 5775 | return true; |
| 5776 | } |
| 5777 | |
| 5778 | /// Return true if the specified values are defined in a |
| 5779 | /// different basic block than BB. |
| 5780 | static bool IsNonLocalValue(Value *V, BasicBlock *BB) { |
| 5781 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
| 5782 | return I->getParent() != BB; |
| 5783 | return false; |
| 5784 | } |
| 5785 | |
| 5786 | // Find an insert position of Addr for MemoryInst. We can't guarantee MemoryInst |
| 5787 | // is the first instruction that will use Addr. So we need to find the first |
| 5788 | // user of Addr in current BB. |
| 5789 | static BasicBlock::iterator findInsertPos(Value *Addr, Instruction *MemoryInst, |
| 5790 | Value *SunkAddr) { |
| 5791 | if (Addr->hasOneUse()) |
| 5792 | return MemoryInst->getIterator(); |
| 5793 | |
| 5794 | // We already have a SunkAddr in current BB, but we may need to insert cast |
| 5795 | // instruction after it. |
| 5796 | if (SunkAddr) { |
| 5797 | if (Instruction *AddrInst = dyn_cast<Instruction>(Val: SunkAddr)) |
| 5798 | return std::next(x: AddrInst->getIterator()); |
| 5799 | } |
| 5800 | |
| 5801 | // Find the first user of Addr in current BB. |
| 5802 | Instruction *Earliest = MemoryInst; |
| 5803 | for (User *U : Addr->users()) { |
| 5804 | Instruction *UserInst = dyn_cast<Instruction>(Val: U); |
| 5805 | if (UserInst && UserInst->getParent() == MemoryInst->getParent()) { |
| 5806 | if (isa<PHINode>(Val: UserInst) || UserInst->isDebugOrPseudoInst()) |
| 5807 | continue; |
| 5808 | if (UserInst->comesBefore(Other: Earliest)) |
| 5809 | Earliest = UserInst; |
| 5810 | } |
| 5811 | } |
| 5812 | return Earliest->getIterator(); |
| 5813 | } |
| 5814 | |
| 5815 | /// Sink addressing mode computation immediate before MemoryInst if doing so |
| 5816 | /// can be done without increasing register pressure. The need for the |
| 5817 | /// register pressure constraint means this can end up being an all or nothing |
| 5818 | /// decision for all uses of the same addressing computation. |
| 5819 | /// |
| 5820 | /// Load and Store Instructions often have addressing modes that can do |
| 5821 | /// significant amounts of computation. As such, instruction selection will try |
| 5822 | /// to get the load or store to do as much computation as possible for the |
| 5823 | /// program. The problem is that isel can only see within a single block. As |
| 5824 | /// such, we sink as much legal addressing mode work into the block as possible. |
| 5825 | /// |
| 5826 | /// This method is used to optimize both load/store and inline asms with memory |
| 5827 | /// operands. It's also used to sink addressing computations feeding into cold |
| 5828 | /// call sites into their (cold) basic block. |
| 5829 | /// |
| 5830 | /// The motivation for handling sinking into cold blocks is that doing so can |
| 5831 | /// both enable other address mode sinking (by satisfying the register pressure |
| 5832 | /// constraint above), and reduce register pressure globally (by removing the |
| 5833 | /// addressing mode computation from the fast path entirely.). |
| 5834 | bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, |
| 5835 | Type *AccessTy, unsigned AddrSpace) { |
| 5836 | Value *Repl = Addr; |
| 5837 | |
| 5838 | // Try to collapse single-value PHI nodes. This is necessary to undo |
| 5839 | // unprofitable PRE transformations. |
| 5840 | SmallVector<Value *, 8> worklist; |
| 5841 | SmallPtrSet<Value *, 16> Visited; |
| 5842 | worklist.push_back(Elt: Addr); |
| 5843 | |
| 5844 | // Use a worklist to iteratively look through PHI and select nodes, and |
| 5845 | // ensure that the addressing mode obtained from the non-PHI/select roots of |
| 5846 | // the graph are compatible. |
| 5847 | bool PhiOrSelectSeen = false; |
| 5848 | SmallVector<Instruction *, 16> AddrModeInsts; |
| 5849 | AddressingModeCombiner AddrModes(*DL, Addr); |
| 5850 | TypePromotionTransaction TPT(RemovedInsts); |
| 5851 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 5852 | TPT.getRestorationPoint(); |
| 5853 | while (!worklist.empty()) { |
| 5854 | Value *V = worklist.pop_back_val(); |
| 5855 | |
| 5856 | // We allow traversing cyclic Phi nodes. |
| 5857 | // In case of success after this loop we ensure that traversing through |
| 5858 | // Phi nodes ends up with all cases to compute address of the form |
| 5859 | // BaseGV + Base + Scale * Index + Offset |
| 5860 | // where Scale and Offset are constans and BaseGV, Base and Index |
| 5861 | // are exactly the same Values in all cases. |
| 5862 | // It means that BaseGV, Scale and Offset dominate our memory instruction |
| 5863 | // and have the same value as they had in address computation represented |
| 5864 | // as Phi. So we can safely sink address computation to memory instruction. |
| 5865 | if (!Visited.insert(Ptr: V).second) |
| 5866 | continue; |
| 5867 | |
| 5868 | // For a PHI node, push all of its incoming values. |
| 5869 | if (PHINode *P = dyn_cast<PHINode>(Val: V)) { |
| 5870 | append_range(C&: worklist, R: P->incoming_values()); |
| 5871 | PhiOrSelectSeen = true; |
| 5872 | continue; |
| 5873 | } |
| 5874 | // Similar for select. |
| 5875 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: V)) { |
| 5876 | worklist.push_back(Elt: SI->getFalseValue()); |
| 5877 | worklist.push_back(Elt: SI->getTrueValue()); |
| 5878 | PhiOrSelectSeen = true; |
| 5879 | continue; |
| 5880 | } |
| 5881 | |
| 5882 | // For non-PHIs, determine the addressing mode being computed. Note that |
| 5883 | // the result may differ depending on what other uses our candidate |
| 5884 | // addressing instructions might have. |
| 5885 | AddrModeInsts.clear(); |
| 5886 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, |
| 5887 | 0); |
| 5888 | // Defer the query (and possible computation of) the dom tree to point of |
| 5889 | // actual use. It's expected that most address matches don't actually need |
| 5890 | // the domtree. |
| 5891 | auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { |
| 5892 | Function *F = MemoryInst->getParent()->getParent(); |
| 5893 | return this->getDT(F&: *F); |
| 5894 | }; |
| 5895 | ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( |
| 5896 | V, AccessTy, AS: AddrSpace, MemoryInst, AddrModeInsts, TLI: *TLI, LI: *LI, getDTFn, |
| 5897 | TRI: *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, |
| 5898 | BFI: BFI.get()); |
| 5899 | |
| 5900 | GetElementPtrInst *GEP = LargeOffsetGEP.first; |
| 5901 | if (GEP && !NewGEPBases.count(V: GEP)) { |
| 5902 | // If splitting the underlying data structure can reduce the offset of a |
| 5903 | // GEP, collect the GEP. Skip the GEPs that are the new bases of |
| 5904 | // previously split data structures. |
| 5905 | LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(Elt: LargeOffsetGEP); |
| 5906 | LargeOffsetGEPID.insert(KV: std::make_pair(x&: GEP, y: LargeOffsetGEPID.size())); |
| 5907 | } |
| 5908 | |
| 5909 | NewAddrMode.OriginalValue = V; |
| 5910 | if (!AddrModes.addNewAddrMode(NewAddrMode)) |
| 5911 | break; |
| 5912 | } |
| 5913 | |
| 5914 | // Try to combine the AddrModes we've collected. If we couldn't collect any, |
| 5915 | // or we have multiple but either couldn't combine them or combining them |
| 5916 | // wouldn't do anything useful, bail out now. |
| 5917 | if (!AddrModes.combineAddrModes()) { |
| 5918 | TPT.rollback(Point: LastKnownGood); |
| 5919 | return false; |
| 5920 | } |
| 5921 | bool Modified = TPT.commit(); |
| 5922 | |
| 5923 | // Get the combined AddrMode (or the only AddrMode, if we only had one). |
| 5924 | ExtAddrMode AddrMode = AddrModes.getAddrMode(); |
| 5925 | |
| 5926 | // If all the instructions matched are already in this BB, don't do anything. |
| 5927 | // If we saw a Phi node then it is not local definitely, and if we saw a |
| 5928 | // select then we want to push the address calculation past it even if it's |
| 5929 | // already in this BB. |
| 5930 | if (!PhiOrSelectSeen && none_of(Range&: AddrModeInsts, P: [&](Value *V) { |
| 5931 | return IsNonLocalValue(V, BB: MemoryInst->getParent()); |
| 5932 | })) { |
| 5933 | LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode |
| 5934 | << "\n" ); |
| 5935 | return Modified; |
| 5936 | } |
| 5937 | |
| 5938 | // Now that we determined the addressing expression we want to use and know |
| 5939 | // that we have to sink it into this block. Check to see if we have already |
| 5940 | // done this for some other load/store instr in this block. If so, reuse |
| 5941 | // the computation. Before attempting reuse, check if the address is valid |
| 5942 | // as it may have been erased. |
| 5943 | |
| 5944 | WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; |
| 5945 | |
| 5946 | Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; |
| 5947 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); |
| 5948 | |
| 5949 | // The current BB may be optimized multiple times, we can't guarantee the |
| 5950 | // reuse of Addr happens later, call findInsertPos to find an appropriate |
| 5951 | // insert position. |
| 5952 | auto InsertPos = findInsertPos(Addr, MemoryInst, SunkAddr); |
| 5953 | |
| 5954 | // TODO: Adjust insert point considering (Base|Scaled)Reg if possible. |
| 5955 | if (!SunkAddr) { |
| 5956 | auto &DT = getDT(F&: *MemoryInst->getFunction()); |
| 5957 | if ((AddrMode.BaseReg && !DT.dominates(Def: AddrMode.BaseReg, User: &*InsertPos)) || |
| 5958 | (AddrMode.ScaledReg && !DT.dominates(Def: AddrMode.ScaledReg, User: &*InsertPos))) |
| 5959 | return Modified; |
| 5960 | } |
| 5961 | |
| 5962 | IRBuilder<> Builder(MemoryInst->getParent(), InsertPos); |
| 5963 | |
| 5964 | if (SunkAddr) { |
| 5965 | LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode |
| 5966 | << " for " << *MemoryInst << "\n" ); |
| 5967 | if (SunkAddr->getType() != Addr->getType()) { |
| 5968 | if (SunkAddr->getType()->getPointerAddressSpace() != |
| 5969 | Addr->getType()->getPointerAddressSpace() && |
| 5970 | !DL->isNonIntegralPointerType(Ty: Addr->getType())) { |
| 5971 | // There are two reasons the address spaces might not match: a no-op |
| 5972 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a |
| 5973 | // ptrtoint/inttoptr pair to ensure we match the original semantics. |
| 5974 | // TODO: allow bitcast between different address space pointers with the |
| 5975 | // same size. |
| 5976 | SunkAddr = Builder.CreatePtrToInt(V: SunkAddr, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 5977 | SunkAddr = |
| 5978 | Builder.CreateIntToPtr(V: SunkAddr, DestTy: Addr->getType(), Name: "sunkaddr" ); |
| 5979 | } else |
| 5980 | SunkAddr = Builder.CreatePointerCast(V: SunkAddr, DestTy: Addr->getType()); |
| 5981 | } |
| 5982 | } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && |
| 5983 | SubtargetInfo->addrSinkUsingGEPs())) { |
| 5984 | // By default, we use the GEP-based method when AA is used later. This |
| 5985 | // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. |
| 5986 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode |
| 5987 | << " for " << *MemoryInst << "\n" ); |
| 5988 | Value *ResultPtr = nullptr, *ResultIndex = nullptr; |
| 5989 | |
| 5990 | // First, find the pointer. |
| 5991 | if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { |
| 5992 | ResultPtr = AddrMode.BaseReg; |
| 5993 | AddrMode.BaseReg = nullptr; |
| 5994 | } |
| 5995 | |
| 5996 | if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { |
| 5997 | // We can't add more than one pointer together, nor can we scale a |
| 5998 | // pointer (both of which seem meaningless). |
| 5999 | if (ResultPtr || AddrMode.Scale != 1) |
| 6000 | return Modified; |
| 6001 | |
| 6002 | ResultPtr = AddrMode.ScaledReg; |
| 6003 | AddrMode.Scale = 0; |
| 6004 | } |
| 6005 | |
| 6006 | // It is only safe to sign extend the BaseReg if we know that the math |
| 6007 | // required to create it did not overflow before we extend it. Since |
| 6008 | // the original IR value was tossed in favor of a constant back when |
| 6009 | // the AddrMode was created we need to bail out gracefully if widths |
| 6010 | // do not match instead of extending it. |
| 6011 | // |
| 6012 | // (See below for code to add the scale.) |
| 6013 | if (AddrMode.Scale) { |
| 6014 | Type *ScaledRegTy = AddrMode.ScaledReg->getType(); |
| 6015 | if (cast<IntegerType>(Val: IntPtrTy)->getBitWidth() > |
| 6016 | cast<IntegerType>(Val: ScaledRegTy)->getBitWidth()) |
| 6017 | return Modified; |
| 6018 | } |
| 6019 | |
| 6020 | GlobalValue *BaseGV = AddrMode.BaseGV; |
| 6021 | if (BaseGV != nullptr) { |
| 6022 | if (ResultPtr) |
| 6023 | return Modified; |
| 6024 | |
| 6025 | if (BaseGV->isThreadLocal()) { |
| 6026 | ResultPtr = Builder.CreateThreadLocalAddress(Ptr: BaseGV); |
| 6027 | } else { |
| 6028 | ResultPtr = BaseGV; |
| 6029 | } |
| 6030 | } |
| 6031 | |
| 6032 | // If the real base value actually came from an inttoptr, then the matcher |
| 6033 | // will look through it and provide only the integer value. In that case, |
| 6034 | // use it here. |
| 6035 | if (!DL->isNonIntegralPointerType(Ty: Addr->getType())) { |
| 6036 | if (!ResultPtr && AddrMode.BaseReg) { |
| 6037 | ResultPtr = Builder.CreateIntToPtr(V: AddrMode.BaseReg, DestTy: Addr->getType(), |
| 6038 | Name: "sunkaddr" ); |
| 6039 | AddrMode.BaseReg = nullptr; |
| 6040 | } else if (!ResultPtr && AddrMode.Scale == 1) { |
| 6041 | ResultPtr = Builder.CreateIntToPtr(V: AddrMode.ScaledReg, DestTy: Addr->getType(), |
| 6042 | Name: "sunkaddr" ); |
| 6043 | AddrMode.Scale = 0; |
| 6044 | } |
| 6045 | } |
| 6046 | |
| 6047 | if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && |
| 6048 | !AddrMode.BaseOffs) { |
| 6049 | SunkAddr = Constant::getNullValue(Ty: Addr->getType()); |
| 6050 | } else if (!ResultPtr) { |
| 6051 | return Modified; |
| 6052 | } else { |
| 6053 | Type *I8PtrTy = |
| 6054 | Builder.getPtrTy(AddrSpace: Addr->getType()->getPointerAddressSpace()); |
| 6055 | |
| 6056 | // Start with the base register. Do this first so that subsequent address |
| 6057 | // matching finds it last, which will prevent it from trying to match it |
| 6058 | // as the scaled value in case it happens to be a mul. That would be |
| 6059 | // problematic if we've sunk a different mul for the scale, because then |
| 6060 | // we'd end up sinking both muls. |
| 6061 | if (AddrMode.BaseReg) { |
| 6062 | Value *V = AddrMode.BaseReg; |
| 6063 | if (V->getType() != IntPtrTy) |
| 6064 | V = Builder.CreateIntCast(V, DestTy: IntPtrTy, /*isSigned=*/true, Name: "sunkaddr" ); |
| 6065 | |
| 6066 | ResultIndex = V; |
| 6067 | } |
| 6068 | |
| 6069 | // Add the scale value. |
| 6070 | if (AddrMode.Scale) { |
| 6071 | Value *V = AddrMode.ScaledReg; |
| 6072 | if (V->getType() == IntPtrTy) { |
| 6073 | // done. |
| 6074 | } else { |
| 6075 | assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < |
| 6076 | cast<IntegerType>(V->getType())->getBitWidth() && |
| 6077 | "We can't transform if ScaledReg is too narrow" ); |
| 6078 | V = Builder.CreateTrunc(V, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 6079 | } |
| 6080 | |
| 6081 | if (AddrMode.Scale != 1) |
| 6082 | V = Builder.CreateMul( |
| 6083 | LHS: V, RHS: ConstantInt::getSigned(Ty: IntPtrTy, V: AddrMode.Scale), Name: "sunkaddr" ); |
| 6084 | if (ResultIndex) |
| 6085 | ResultIndex = Builder.CreateAdd(LHS: ResultIndex, RHS: V, Name: "sunkaddr" ); |
| 6086 | else |
| 6087 | ResultIndex = V; |
| 6088 | } |
| 6089 | |
| 6090 | // Add in the Base Offset if present. |
| 6091 | if (AddrMode.BaseOffs) { |
| 6092 | Value *V = ConstantInt::getSigned(Ty: IntPtrTy, V: AddrMode.BaseOffs); |
| 6093 | if (ResultIndex) { |
| 6094 | // We need to add this separately from the scale above to help with |
| 6095 | // SDAG consecutive load/store merging. |
| 6096 | if (ResultPtr->getType() != I8PtrTy) |
| 6097 | ResultPtr = Builder.CreatePointerCast(V: ResultPtr, DestTy: I8PtrTy); |
| 6098 | ResultPtr = Builder.CreatePtrAdd(Ptr: ResultPtr, Offset: ResultIndex, Name: "sunkaddr" , |
| 6099 | NW: AddrMode.InBounds); |
| 6100 | } |
| 6101 | |
| 6102 | ResultIndex = V; |
| 6103 | } |
| 6104 | |
| 6105 | if (!ResultIndex) { |
| 6106 | auto PtrInst = dyn_cast<Instruction>(Val: ResultPtr); |
| 6107 | // We know that we have a pointer without any offsets. If this pointer |
| 6108 | // originates from a different basic block than the current one, we |
| 6109 | // must be able to recreate it in the current basic block. |
| 6110 | // We do not support the recreation of any instructions yet. |
| 6111 | if (PtrInst && PtrInst->getParent() != MemoryInst->getParent()) |
| 6112 | return Modified; |
| 6113 | SunkAddr = ResultPtr; |
| 6114 | } else { |
| 6115 | if (ResultPtr->getType() != I8PtrTy) |
| 6116 | ResultPtr = Builder.CreatePointerCast(V: ResultPtr, DestTy: I8PtrTy); |
| 6117 | SunkAddr = Builder.CreatePtrAdd(Ptr: ResultPtr, Offset: ResultIndex, Name: "sunkaddr" , |
| 6118 | NW: AddrMode.InBounds); |
| 6119 | } |
| 6120 | |
| 6121 | if (SunkAddr->getType() != Addr->getType()) { |
| 6122 | if (SunkAddr->getType()->getPointerAddressSpace() != |
| 6123 | Addr->getType()->getPointerAddressSpace() && |
| 6124 | !DL->isNonIntegralPointerType(Ty: Addr->getType())) { |
| 6125 | // There are two reasons the address spaces might not match: a no-op |
| 6126 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a |
| 6127 | // ptrtoint/inttoptr pair to ensure we match the original semantics. |
| 6128 | // TODO: allow bitcast between different address space pointers with |
| 6129 | // the same size. |
| 6130 | SunkAddr = Builder.CreatePtrToInt(V: SunkAddr, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 6131 | SunkAddr = |
| 6132 | Builder.CreateIntToPtr(V: SunkAddr, DestTy: Addr->getType(), Name: "sunkaddr" ); |
| 6133 | } else |
| 6134 | SunkAddr = Builder.CreatePointerCast(V: SunkAddr, DestTy: Addr->getType()); |
| 6135 | } |
| 6136 | } |
| 6137 | } else { |
| 6138 | // We'd require a ptrtoint/inttoptr down the line, which we can't do for |
| 6139 | // non-integral pointers, so in that case bail out now. |
| 6140 | Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; |
| 6141 | Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; |
| 6142 | PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(Val: BaseTy); |
| 6143 | PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(Val: ScaleTy); |
| 6144 | if (DL->isNonIntegralPointerType(Ty: Addr->getType()) || |
| 6145 | (BasePtrTy && DL->isNonIntegralPointerType(PT: BasePtrTy)) || |
| 6146 | (ScalePtrTy && DL->isNonIntegralPointerType(PT: ScalePtrTy)) || |
| 6147 | (AddrMode.BaseGV && |
| 6148 | DL->isNonIntegralPointerType(PT: AddrMode.BaseGV->getType()))) |
| 6149 | return Modified; |
| 6150 | |
| 6151 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode |
| 6152 | << " for " << *MemoryInst << "\n" ); |
| 6153 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); |
| 6154 | Value *Result = nullptr; |
| 6155 | |
| 6156 | // Start with the base register. Do this first so that subsequent address |
| 6157 | // matching finds it last, which will prevent it from trying to match it |
| 6158 | // as the scaled value in case it happens to be a mul. That would be |
| 6159 | // problematic if we've sunk a different mul for the scale, because then |
| 6160 | // we'd end up sinking both muls. |
| 6161 | if (AddrMode.BaseReg) { |
| 6162 | Value *V = AddrMode.BaseReg; |
| 6163 | if (V->getType()->isPointerTy()) |
| 6164 | V = Builder.CreatePtrToInt(V, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 6165 | if (V->getType() != IntPtrTy) |
| 6166 | V = Builder.CreateIntCast(V, DestTy: IntPtrTy, /*isSigned=*/true, Name: "sunkaddr" ); |
| 6167 | Result = V; |
| 6168 | } |
| 6169 | |
| 6170 | // Add the scale value. |
| 6171 | if (AddrMode.Scale) { |
| 6172 | Value *V = AddrMode.ScaledReg; |
| 6173 | if (V->getType() == IntPtrTy) { |
| 6174 | // done. |
| 6175 | } else if (V->getType()->isPointerTy()) { |
| 6176 | V = Builder.CreatePtrToInt(V, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 6177 | } else if (cast<IntegerType>(Val: IntPtrTy)->getBitWidth() < |
| 6178 | cast<IntegerType>(Val: V->getType())->getBitWidth()) { |
| 6179 | V = Builder.CreateTrunc(V, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 6180 | } else { |
| 6181 | // It is only safe to sign extend the BaseReg if we know that the math |
| 6182 | // required to create it did not overflow before we extend it. Since |
| 6183 | // the original IR value was tossed in favor of a constant back when |
| 6184 | // the AddrMode was created we need to bail out gracefully if widths |
| 6185 | // do not match instead of extending it. |
| 6186 | Instruction *I = dyn_cast_or_null<Instruction>(Val: Result); |
| 6187 | if (I && (Result != AddrMode.BaseReg)) |
| 6188 | I->eraseFromParent(); |
| 6189 | return Modified; |
| 6190 | } |
| 6191 | if (AddrMode.Scale != 1) |
| 6192 | V = Builder.CreateMul( |
| 6193 | LHS: V, RHS: ConstantInt::getSigned(Ty: IntPtrTy, V: AddrMode.Scale), Name: "sunkaddr" ); |
| 6194 | if (Result) |
| 6195 | Result = Builder.CreateAdd(LHS: Result, RHS: V, Name: "sunkaddr" ); |
| 6196 | else |
| 6197 | Result = V; |
| 6198 | } |
| 6199 | |
| 6200 | // Add in the BaseGV if present. |
| 6201 | GlobalValue *BaseGV = AddrMode.BaseGV; |
| 6202 | if (BaseGV != nullptr) { |
| 6203 | Value *BaseGVPtr; |
| 6204 | if (BaseGV->isThreadLocal()) { |
| 6205 | BaseGVPtr = Builder.CreateThreadLocalAddress(Ptr: BaseGV); |
| 6206 | } else { |
| 6207 | BaseGVPtr = BaseGV; |
| 6208 | } |
| 6209 | Value *V = Builder.CreatePtrToInt(V: BaseGVPtr, DestTy: IntPtrTy, Name: "sunkaddr" ); |
| 6210 | if (Result) |
| 6211 | Result = Builder.CreateAdd(LHS: Result, RHS: V, Name: "sunkaddr" ); |
| 6212 | else |
| 6213 | Result = V; |
| 6214 | } |
| 6215 | |
| 6216 | // Add in the Base Offset if present. |
| 6217 | if (AddrMode.BaseOffs) { |
| 6218 | Value *V = ConstantInt::getSigned(Ty: IntPtrTy, V: AddrMode.BaseOffs); |
| 6219 | if (Result) |
| 6220 | Result = Builder.CreateAdd(LHS: Result, RHS: V, Name: "sunkaddr" ); |
| 6221 | else |
| 6222 | Result = V; |
| 6223 | } |
| 6224 | |
| 6225 | if (!Result) |
| 6226 | SunkAddr = Constant::getNullValue(Ty: Addr->getType()); |
| 6227 | else |
| 6228 | SunkAddr = Builder.CreateIntToPtr(V: Result, DestTy: Addr->getType(), Name: "sunkaddr" ); |
| 6229 | } |
| 6230 | |
| 6231 | MemoryInst->replaceUsesOfWith(From: Repl, To: SunkAddr); |
| 6232 | // Store the newly computed address into the cache. In the case we reused a |
| 6233 | // value, this should be idempotent. |
| 6234 | SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); |
| 6235 | |
| 6236 | // If we have no uses, recursively delete the value and all dead instructions |
| 6237 | // using it. |
| 6238 | if (Repl->use_empty()) { |
| 6239 | resetIteratorIfInvalidatedWhileCalling(BB: CurInstIterator->getParent(), f: [&]() { |
| 6240 | RecursivelyDeleteTriviallyDeadInstructions( |
| 6241 | V: Repl, TLI: TLInfo, MSSAU: nullptr, |
| 6242 | AboutToDeleteCallback: [&](Value *V) { removeAllAssertingVHReferences(V); }); |
| 6243 | }); |
| 6244 | } |
| 6245 | ++NumMemoryInsts; |
| 6246 | return true; |
| 6247 | } |
| 6248 | |
| 6249 | /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find |
| 6250 | /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can |
| 6251 | /// only handle a 2 operand GEP in the same basic block or a splat constant |
| 6252 | /// vector. The 2 operands to the GEP must have a scalar pointer and a vector |
| 6253 | /// index. |
| 6254 | /// |
| 6255 | /// If the existing GEP has a vector base pointer that is splat, we can look |
| 6256 | /// through the splat to find the scalar pointer. If we can't find a scalar |
| 6257 | /// pointer there's nothing we can do. |
| 6258 | /// |
| 6259 | /// If we have a GEP with more than 2 indices where the middle indices are all |
| 6260 | /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. |
| 6261 | /// |
| 6262 | /// If the final index isn't a vector or is a splat, we can emit a scalar GEP |
| 6263 | /// followed by a GEP with an all zeroes vector index. This will enable |
| 6264 | /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a |
| 6265 | /// zero index. |
| 6266 | bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, |
| 6267 | Value *Ptr) { |
| 6268 | Value *NewAddr; |
| 6269 | |
| 6270 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
| 6271 | // Don't optimize GEPs that don't have indices. |
| 6272 | if (!GEP->hasIndices()) |
| 6273 | return false; |
| 6274 | |
| 6275 | // If the GEP and the gather/scatter aren't in the same BB, don't optimize. |
| 6276 | // FIXME: We should support this by sinking the GEP. |
| 6277 | if (MemoryInst->getParent() != GEP->getParent()) |
| 6278 | return false; |
| 6279 | |
| 6280 | SmallVector<Value *, 2> Ops(GEP->operands()); |
| 6281 | |
| 6282 | bool RewriteGEP = false; |
| 6283 | |
| 6284 | if (Ops[0]->getType()->isVectorTy()) { |
| 6285 | Ops[0] = getSplatValue(V: Ops[0]); |
| 6286 | if (!Ops[0]) |
| 6287 | return false; |
| 6288 | RewriteGEP = true; |
| 6289 | } |
| 6290 | |
| 6291 | unsigned FinalIndex = Ops.size() - 1; |
| 6292 | |
| 6293 | // Ensure all but the last index is 0. |
| 6294 | // FIXME: This isn't strictly required. All that's required is that they are |
| 6295 | // all scalars or splats. |
| 6296 | for (unsigned i = 1; i < FinalIndex; ++i) { |
| 6297 | auto *C = dyn_cast<Constant>(Val: Ops[i]); |
| 6298 | if (!C) |
| 6299 | return false; |
| 6300 | if (isa<VectorType>(Val: C->getType())) |
| 6301 | C = C->getSplatValue(); |
| 6302 | auto *CI = dyn_cast_or_null<ConstantInt>(Val: C); |
| 6303 | if (!CI || !CI->isZero()) |
| 6304 | return false; |
| 6305 | // Scalarize the index if needed. |
| 6306 | Ops[i] = CI; |
| 6307 | } |
| 6308 | |
| 6309 | // Try to scalarize the final index. |
| 6310 | if (Ops[FinalIndex]->getType()->isVectorTy()) { |
| 6311 | if (Value *V = getSplatValue(V: Ops[FinalIndex])) { |
| 6312 | auto *C = dyn_cast<ConstantInt>(Val: V); |
| 6313 | // Don't scalarize all zeros vector. |
| 6314 | if (!C || !C->isZero()) { |
| 6315 | Ops[FinalIndex] = V; |
| 6316 | RewriteGEP = true; |
| 6317 | } |
| 6318 | } |
| 6319 | } |
| 6320 | |
| 6321 | // If we made any changes or the we have extra operands, we need to generate |
| 6322 | // new instructions. |
| 6323 | if (!RewriteGEP && Ops.size() == 2) |
| 6324 | return false; |
| 6325 | |
| 6326 | auto NumElts = cast<VectorType>(Val: Ptr->getType())->getElementCount(); |
| 6327 | |
| 6328 | IRBuilder<> Builder(MemoryInst); |
| 6329 | |
| 6330 | Type *SourceTy = GEP->getSourceElementType(); |
| 6331 | Type *ScalarIndexTy = DL->getIndexType(PtrTy: Ops[0]->getType()->getScalarType()); |
| 6332 | |
| 6333 | // If the final index isn't a vector, emit a scalar GEP containing all ops |
| 6334 | // and a vector GEP with all zeroes final index. |
| 6335 | if (!Ops[FinalIndex]->getType()->isVectorTy()) { |
| 6336 | NewAddr = Builder.CreateGEP(Ty: SourceTy, Ptr: Ops[0], IdxList: ArrayRef(Ops).drop_front()); |
| 6337 | auto *IndexTy = VectorType::get(ElementType: ScalarIndexTy, EC: NumElts); |
| 6338 | auto *SecondTy = GetElementPtrInst::getIndexedType( |
| 6339 | Ty: SourceTy, IdxList: ArrayRef(Ops).drop_front()); |
| 6340 | NewAddr = |
| 6341 | Builder.CreateGEP(Ty: SecondTy, Ptr: NewAddr, IdxList: Constant::getNullValue(Ty: IndexTy)); |
| 6342 | } else { |
| 6343 | Value *Base = Ops[0]; |
| 6344 | Value *Index = Ops[FinalIndex]; |
| 6345 | |
| 6346 | // Create a scalar GEP if there are more than 2 operands. |
| 6347 | if (Ops.size() != 2) { |
| 6348 | // Replace the last index with 0. |
| 6349 | Ops[FinalIndex] = |
| 6350 | Constant::getNullValue(Ty: Ops[FinalIndex]->getType()->getScalarType()); |
| 6351 | Base = Builder.CreateGEP(Ty: SourceTy, Ptr: Base, IdxList: ArrayRef(Ops).drop_front()); |
| 6352 | SourceTy = GetElementPtrInst::getIndexedType( |
| 6353 | Ty: SourceTy, IdxList: ArrayRef(Ops).drop_front()); |
| 6354 | } |
| 6355 | |
| 6356 | // Now create the GEP with scalar pointer and vector index. |
| 6357 | NewAddr = Builder.CreateGEP(Ty: SourceTy, Ptr: Base, IdxList: Index); |
| 6358 | } |
| 6359 | } else if (!isa<Constant>(Val: Ptr)) { |
| 6360 | // Not a GEP, maybe its a splat and we can create a GEP to enable |
| 6361 | // SelectionDAGBuilder to use it as a uniform base. |
| 6362 | Value *V = getSplatValue(V: Ptr); |
| 6363 | if (!V) |
| 6364 | return false; |
| 6365 | |
| 6366 | auto NumElts = cast<VectorType>(Val: Ptr->getType())->getElementCount(); |
| 6367 | |
| 6368 | IRBuilder<> Builder(MemoryInst); |
| 6369 | |
| 6370 | // Emit a vector GEP with a scalar pointer and all 0s vector index. |
| 6371 | Type *ScalarIndexTy = DL->getIndexType(PtrTy: V->getType()->getScalarType()); |
| 6372 | auto *IndexTy = VectorType::get(ElementType: ScalarIndexTy, EC: NumElts); |
| 6373 | Type *ScalarTy; |
| 6374 | if (cast<IntrinsicInst>(Val: MemoryInst)->getIntrinsicID() == |
| 6375 | Intrinsic::masked_gather) { |
| 6376 | ScalarTy = MemoryInst->getType()->getScalarType(); |
| 6377 | } else { |
| 6378 | assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == |
| 6379 | Intrinsic::masked_scatter); |
| 6380 | ScalarTy = MemoryInst->getOperand(i: 0)->getType()->getScalarType(); |
| 6381 | } |
| 6382 | NewAddr = Builder.CreateGEP(Ty: ScalarTy, Ptr: V, IdxList: Constant::getNullValue(Ty: IndexTy)); |
| 6383 | } else { |
| 6384 | // Constant, SelectionDAGBuilder knows to check if its a splat. |
| 6385 | return false; |
| 6386 | } |
| 6387 | |
| 6388 | MemoryInst->replaceUsesOfWith(From: Ptr, To: NewAddr); |
| 6389 | |
| 6390 | // If we have no uses, recursively delete the value and all dead instructions |
| 6391 | // using it. |
| 6392 | if (Ptr->use_empty()) |
| 6393 | RecursivelyDeleteTriviallyDeadInstructions( |
| 6394 | V: Ptr, TLI: TLInfo, MSSAU: nullptr, |
| 6395 | AboutToDeleteCallback: [&](Value *V) { removeAllAssertingVHReferences(V); }); |
| 6396 | |
| 6397 | return true; |
| 6398 | } |
| 6399 | |
| 6400 | // This is a helper for CodeGenPrepare::optimizeMulWithOverflow. |
| 6401 | // Check the pattern we are interested in where there are maximum 2 uses |
| 6402 | // of the intrinsic which are the extract instructions. |
| 6403 | static bool (Instruction *&I, ExtractValueInst *&, |
| 6404 | ExtractValueInst *&) { |
| 6405 | // Bail out if it's more than 2 users: |
| 6406 | if (I->hasNUsesOrMore(N: 3)) |
| 6407 | return false; |
| 6408 | |
| 6409 | for (User *U : I->users()) { |
| 6410 | auto * = dyn_cast<ExtractValueInst>(Val: U); |
| 6411 | if (!Extract || Extract->getNumIndices() != 1) |
| 6412 | return false; |
| 6413 | |
| 6414 | unsigned Index = Extract->getIndices()[0]; |
| 6415 | if (Index == 0) |
| 6416 | MulExtract = Extract; |
| 6417 | else if (Index == 1) |
| 6418 | OverflowExtract = Extract; |
| 6419 | else |
| 6420 | return false; |
| 6421 | } |
| 6422 | return true; |
| 6423 | } |
| 6424 | |
| 6425 | // Rewrite the mul_with_overflow intrinsic by checking if both of the |
| 6426 | // operands' value ranges are within the legal type. If so, we can optimize the |
| 6427 | // multiplication algorithm. This code is supposed to be written during the step |
| 6428 | // of type legalization, but given that we need to reconstruct the IR which is |
| 6429 | // not doable there, we do it here. |
| 6430 | // The IR after the optimization will look like: |
| 6431 | // entry: |
| 6432 | // if signed: |
| 6433 | // ( (lhs_lo>>BW-1) ^ lhs_hi) || ( (rhs_lo>>BW-1) ^ rhs_hi) ? overflow, |
| 6434 | // overflow_no |
| 6435 | // else: |
| 6436 | // (lhs_hi != 0) || (rhs_hi != 0) ? overflow, overflow_no |
| 6437 | // overflow_no: |
| 6438 | // overflow: |
| 6439 | // overflow.res: |
| 6440 | // \returns true if optimization was applied |
| 6441 | // TODO: This optimization can be further improved to optimize branching on |
| 6442 | // overflow where the 'overflow_no' BB can branch directly to the false |
| 6443 | // successor of overflow, but that would add additional complexity so we leave |
| 6444 | // it for future work. |
| 6445 | bool CodeGenPrepare::optimizeMulWithOverflow(Instruction *I, bool IsSigned, |
| 6446 | ModifyDT &ModifiedDT) { |
| 6447 | // Check if target supports this optimization. |
| 6448 | if (!TLI->shouldOptimizeMulOverflowWithZeroHighBits( |
| 6449 | Context&: I->getContext(), |
| 6450 | VT: TLI->getValueType(DL: *DL, Ty: I->getType()->getContainedType(i: 0)))) |
| 6451 | return false; |
| 6452 | |
| 6453 | ExtractValueInst * = nullptr, * = nullptr; |
| 6454 | if (!matchOverflowPattern(I, MulExtract, OverflowExtract)) |
| 6455 | return false; |
| 6456 | |
| 6457 | // Keep track of the instruction to stop reoptimizing it again. |
| 6458 | InsertedInsts.insert(Ptr: I); |
| 6459 | |
| 6460 | Value *LHS = I->getOperand(i: 0); |
| 6461 | Value *RHS = I->getOperand(i: 1); |
| 6462 | Type *Ty = LHS->getType(); |
| 6463 | unsigned VTHalfBitWidth = Ty->getScalarSizeInBits() / 2; |
| 6464 | Type *LegalTy = Ty->getWithNewBitWidth(NewBitWidth: VTHalfBitWidth); |
| 6465 | |
| 6466 | // New BBs: |
| 6467 | BasicBlock *OverflowEntryBB = I->getParent()->splitBasicBlockBefore(I, BBName: "" ); |
| 6468 | OverflowEntryBB->takeName(V: I->getParent()); |
| 6469 | // Keep the 'br' instruction that is generated as a result of the split to be |
| 6470 | // erased/replaced later. |
| 6471 | Instruction *OldTerminator = OverflowEntryBB->getTerminator(); |
| 6472 | BasicBlock *NoOverflowBB = |
| 6473 | BasicBlock::Create(Context&: I->getContext(), Name: "overflow.no" , Parent: I->getFunction()); |
| 6474 | NoOverflowBB->moveAfter(MovePos: OverflowEntryBB); |
| 6475 | BasicBlock *OverflowBB = |
| 6476 | BasicBlock::Create(Context&: I->getContext(), Name: "overflow" , Parent: I->getFunction()); |
| 6477 | OverflowBB->moveAfter(MovePos: NoOverflowBB); |
| 6478 | |
| 6479 | // BB overflow.entry: |
| 6480 | IRBuilder<> Builder(OverflowEntryBB); |
| 6481 | // Extract low and high halves of LHS: |
| 6482 | Value *LoLHS = Builder.CreateTrunc(V: LHS, DestTy: LegalTy, Name: "lo.lhs" ); |
| 6483 | Value *HiLHS = Builder.CreateLShr(LHS, RHS: VTHalfBitWidth, Name: "lhs.lsr" ); |
| 6484 | HiLHS = Builder.CreateTrunc(V: HiLHS, DestTy: LegalTy, Name: "hi.lhs" ); |
| 6485 | |
| 6486 | // Extract low and high halves of RHS: |
| 6487 | Value *LoRHS = Builder.CreateTrunc(V: RHS, DestTy: LegalTy, Name: "lo.rhs" ); |
| 6488 | Value *HiRHS = Builder.CreateLShr(LHS: RHS, RHS: VTHalfBitWidth, Name: "rhs.lsr" ); |
| 6489 | HiRHS = Builder.CreateTrunc(V: HiRHS, DestTy: LegalTy, Name: "hi.rhs" ); |
| 6490 | |
| 6491 | Value *IsAnyBitTrue; |
| 6492 | if (IsSigned) { |
| 6493 | Value *SignLoLHS = |
| 6494 | Builder.CreateAShr(LHS: LoLHS, RHS: VTHalfBitWidth - 1, Name: "sign.lo.lhs" ); |
| 6495 | Value *SignLoRHS = |
| 6496 | Builder.CreateAShr(LHS: LoRHS, RHS: VTHalfBitWidth - 1, Name: "sign.lo.rhs" ); |
| 6497 | Value *XorLHS = Builder.CreateXor(LHS: HiLHS, RHS: SignLoLHS); |
| 6498 | Value *XorRHS = Builder.CreateXor(LHS: HiRHS, RHS: SignLoRHS); |
| 6499 | Value *Or = Builder.CreateOr(LHS: XorLHS, RHS: XorRHS, Name: "or.lhs.rhs" ); |
| 6500 | IsAnyBitTrue = Builder.CreateCmp(Pred: ICmpInst::ICMP_NE, LHS: Or, |
| 6501 | RHS: ConstantInt::getNullValue(Ty: Or->getType())); |
| 6502 | } else { |
| 6503 | Value *CmpLHS = Builder.CreateCmp(Pred: ICmpInst::ICMP_NE, LHS: HiLHS, |
| 6504 | RHS: ConstantInt::getNullValue(Ty: LegalTy)); |
| 6505 | Value *CmpRHS = Builder.CreateCmp(Pred: ICmpInst::ICMP_NE, LHS: HiRHS, |
| 6506 | RHS: ConstantInt::getNullValue(Ty: LegalTy)); |
| 6507 | IsAnyBitTrue = Builder.CreateOr(LHS: CmpLHS, RHS: CmpRHS, Name: "or.lhs.rhs" ); |
| 6508 | } |
| 6509 | Builder.CreateCondBr(Cond: IsAnyBitTrue, True: OverflowBB, False: NoOverflowBB); |
| 6510 | |
| 6511 | // BB overflow.no: |
| 6512 | Builder.SetInsertPoint(NoOverflowBB); |
| 6513 | Value *ExtLoLHS, *ExtLoRHS; |
| 6514 | if (IsSigned) { |
| 6515 | ExtLoLHS = Builder.CreateSExt(V: LoLHS, DestTy: Ty, Name: "lo.lhs.ext" ); |
| 6516 | ExtLoRHS = Builder.CreateSExt(V: LoRHS, DestTy: Ty, Name: "lo.rhs.ext" ); |
| 6517 | } else { |
| 6518 | ExtLoLHS = Builder.CreateZExt(V: LoLHS, DestTy: Ty, Name: "lo.lhs.ext" ); |
| 6519 | ExtLoRHS = Builder.CreateZExt(V: LoRHS, DestTy: Ty, Name: "lo.rhs.ext" ); |
| 6520 | } |
| 6521 | |
| 6522 | Value *Mul = Builder.CreateMul(LHS: ExtLoLHS, RHS: ExtLoRHS, Name: "mul.overflow.no" ); |
| 6523 | |
| 6524 | // Create the 'overflow.res' BB to merge the results of |
| 6525 | // the two paths: |
| 6526 | BasicBlock *OverflowResBB = I->getParent(); |
| 6527 | OverflowResBB->setName("overflow.res" ); |
| 6528 | |
| 6529 | // BB overflow.no: jump to overflow.res BB |
| 6530 | Builder.CreateBr(Dest: OverflowResBB); |
| 6531 | // No we don't need the old terminator in overflow.entry BB, erase it: |
| 6532 | OldTerminator->eraseFromParent(); |
| 6533 | |
| 6534 | // BB overflow.res: |
| 6535 | Builder.SetInsertPoint(TheBB: OverflowResBB, IP: OverflowResBB->getFirstInsertionPt()); |
| 6536 | // Create PHI nodes to merge results from no.overflow BB and overflow BB to |
| 6537 | // replace the extract instructions. |
| 6538 | PHINode *OverflowResPHI = Builder.CreatePHI(Ty, NumReservedValues: 2), |
| 6539 | *OverflowFlagPHI = |
| 6540 | Builder.CreatePHI(Ty: IntegerType::getInt1Ty(C&: I->getContext()), NumReservedValues: 2); |
| 6541 | |
| 6542 | // Add the incoming values from no.overflow BB and later from overflow BB. |
| 6543 | OverflowResPHI->addIncoming(V: Mul, BB: NoOverflowBB); |
| 6544 | OverflowFlagPHI->addIncoming(V: ConstantInt::getFalse(Context&: I->getContext()), |
| 6545 | BB: NoOverflowBB); |
| 6546 | |
| 6547 | // Replace all users of MulExtract and OverflowExtract to use the PHI nodes. |
| 6548 | if (MulExtract) { |
| 6549 | MulExtract->replaceAllUsesWith(V: OverflowResPHI); |
| 6550 | MulExtract->eraseFromParent(); |
| 6551 | } |
| 6552 | if (OverflowExtract) { |
| 6553 | OverflowExtract->replaceAllUsesWith(V: OverflowFlagPHI); |
| 6554 | OverflowExtract->eraseFromParent(); |
| 6555 | } |
| 6556 | |
| 6557 | // Remove the intrinsic from parent (overflow.res BB) as it will be part of |
| 6558 | // overflow BB |
| 6559 | I->removeFromParent(); |
| 6560 | // BB overflow: |
| 6561 | I->insertInto(ParentBB: OverflowBB, It: OverflowBB->end()); |
| 6562 | Builder.SetInsertPoint(TheBB: OverflowBB, IP: OverflowBB->end()); |
| 6563 | Value *MulOverflow = Builder.CreateExtractValue(Agg: I, Idxs: {0}, Name: "mul.overflow" ); |
| 6564 | Value *OverflowFlag = Builder.CreateExtractValue(Agg: I, Idxs: {1}, Name: "overflow.flag" ); |
| 6565 | Builder.CreateBr(Dest: OverflowResBB); |
| 6566 | |
| 6567 | // Add The Extracted values to the PHINodes in the overflow.res BB. |
| 6568 | OverflowResPHI->addIncoming(V: MulOverflow, BB: OverflowBB); |
| 6569 | OverflowFlagPHI->addIncoming(V: OverflowFlag, BB: OverflowBB); |
| 6570 | |
| 6571 | ModifiedDT = ModifyDT::ModifyBBDT; |
| 6572 | return true; |
| 6573 | } |
| 6574 | |
| 6575 | /// If there are any memory operands, use OptimizeMemoryInst to sink their |
| 6576 | /// address computing into the block when possible / profitable. |
| 6577 | bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { |
| 6578 | bool MadeChange = false; |
| 6579 | |
| 6580 | const TargetRegisterInfo *TRI = |
| 6581 | TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); |
| 6582 | TargetLowering::AsmOperandInfoVector TargetConstraints = |
| 6583 | TLI->ParseConstraints(DL: *DL, TRI, Call: *CS); |
| 6584 | unsigned ArgNo = 0; |
| 6585 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { |
| 6586 | // Compute the constraint code and ConstraintType to use. |
| 6587 | TLI->ComputeConstraintToUse(OpInfo, Op: SDValue()); |
| 6588 | |
| 6589 | // TODO: Also handle C_Address? |
| 6590 | if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| 6591 | OpInfo.isIndirect) { |
| 6592 | Value *OpVal = CS->getArgOperand(i: ArgNo++); |
| 6593 | MadeChange |= optimizeMemoryInst(MemoryInst: CS, Addr: OpVal, AccessTy: OpVal->getType(), AddrSpace: ~0u); |
| 6594 | } else if (OpInfo.Type == InlineAsm::isInput) |
| 6595 | ArgNo++; |
| 6596 | } |
| 6597 | |
| 6598 | return MadeChange; |
| 6599 | } |
| 6600 | |
| 6601 | /// Check if all the uses of \p Val are equivalent (or free) zero or |
| 6602 | /// sign extensions. |
| 6603 | static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { |
| 6604 | assert(!Val->use_empty() && "Input must have at least one use" ); |
| 6605 | const Instruction *FirstUser = cast<Instruction>(Val: *Val->user_begin()); |
| 6606 | bool IsSExt = isa<SExtInst>(Val: FirstUser); |
| 6607 | Type *ExtTy = FirstUser->getType(); |
| 6608 | for (const User *U : Val->users()) { |
| 6609 | const Instruction *UI = cast<Instruction>(Val: U); |
| 6610 | if ((IsSExt && !isa<SExtInst>(Val: UI)) || (!IsSExt && !isa<ZExtInst>(Val: UI))) |
| 6611 | return false; |
| 6612 | Type *CurTy = UI->getType(); |
| 6613 | // Same input and output types: Same instruction after CSE. |
| 6614 | if (CurTy == ExtTy) |
| 6615 | continue; |
| 6616 | |
| 6617 | // If IsSExt is true, we are in this situation: |
| 6618 | // a = Val |
| 6619 | // b = sext ty1 a to ty2 |
| 6620 | // c = sext ty1 a to ty3 |
| 6621 | // Assuming ty2 is shorter than ty3, this could be turned into: |
| 6622 | // a = Val |
| 6623 | // b = sext ty1 a to ty2 |
| 6624 | // c = sext ty2 b to ty3 |
| 6625 | // However, the last sext is not free. |
| 6626 | if (IsSExt) |
| 6627 | return false; |
| 6628 | |
| 6629 | // This is a ZExt, maybe this is free to extend from one type to another. |
| 6630 | // In that case, we would not account for a different use. |
| 6631 | Type *NarrowTy; |
| 6632 | Type *LargeTy; |
| 6633 | if (ExtTy->getScalarType()->getIntegerBitWidth() > |
| 6634 | CurTy->getScalarType()->getIntegerBitWidth()) { |
| 6635 | NarrowTy = CurTy; |
| 6636 | LargeTy = ExtTy; |
| 6637 | } else { |
| 6638 | NarrowTy = ExtTy; |
| 6639 | LargeTy = CurTy; |
| 6640 | } |
| 6641 | |
| 6642 | if (!TLI.isZExtFree(FromTy: NarrowTy, ToTy: LargeTy)) |
| 6643 | return false; |
| 6644 | } |
| 6645 | // All uses are the same or can be derived from one another for free. |
| 6646 | return true; |
| 6647 | } |
| 6648 | |
| 6649 | /// Try to speculatively promote extensions in \p Exts and continue |
| 6650 | /// promoting through newly promoted operands recursively as far as doing so is |
| 6651 | /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. |
| 6652 | /// When some promotion happened, \p TPT contains the proper state to revert |
| 6653 | /// them. |
| 6654 | /// |
| 6655 | /// \return true if some promotion happened, false otherwise. |
| 6656 | bool CodeGenPrepare::tryToPromoteExts( |
| 6657 | TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, |
| 6658 | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, |
| 6659 | unsigned CreatedInstsCost) { |
| 6660 | bool Promoted = false; |
| 6661 | |
| 6662 | // Iterate over all the extensions to try to promote them. |
| 6663 | for (auto *I : Exts) { |
| 6664 | // Early check if we directly have ext(load). |
| 6665 | if (isa<LoadInst>(Val: I->getOperand(i: 0))) { |
| 6666 | ProfitablyMovedExts.push_back(Elt: I); |
| 6667 | continue; |
| 6668 | } |
| 6669 | |
| 6670 | // Check whether or not we want to do any promotion. The reason we have |
| 6671 | // this check inside the for loop is to catch the case where an extension |
| 6672 | // is directly fed by a load because in such case the extension can be moved |
| 6673 | // up without any promotion on its operands. |
| 6674 | if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) |
| 6675 | return false; |
| 6676 | |
| 6677 | // Get the action to perform the promotion. |
| 6678 | TypePromotionHelper::Action TPH = |
| 6679 | TypePromotionHelper::getAction(Ext: I, InsertedInsts, TLI: *TLI, PromotedInsts); |
| 6680 | // Check if we can promote. |
| 6681 | if (!TPH) { |
| 6682 | // Save the current extension as we cannot move up through its operand. |
| 6683 | ProfitablyMovedExts.push_back(Elt: I); |
| 6684 | continue; |
| 6685 | } |
| 6686 | |
| 6687 | // Save the current state. |
| 6688 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 6689 | TPT.getRestorationPoint(); |
| 6690 | SmallVector<Instruction *, 4> NewExts; |
| 6691 | unsigned NewCreatedInstsCost = 0; |
| 6692 | unsigned ExtCost = !TLI->isExtFree(I); |
| 6693 | // Promote. |
| 6694 | Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, |
| 6695 | &NewExts, nullptr, *TLI); |
| 6696 | assert(PromotedVal && |
| 6697 | "TypePromotionHelper should have filtered out those cases" ); |
| 6698 | |
| 6699 | // We would be able to merge only one extension in a load. |
| 6700 | // Therefore, if we have more than 1 new extension we heuristically |
| 6701 | // cut this search path, because it means we degrade the code quality. |
| 6702 | // With exactly 2, the transformation is neutral, because we will merge |
| 6703 | // one extension but leave one. However, we optimistically keep going, |
| 6704 | // because the new extension may be removed too. Also avoid replacing a |
| 6705 | // single free extension with multiple extensions, as this increases the |
| 6706 | // number of IR instructions while not providing any savings. |
| 6707 | long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; |
| 6708 | // FIXME: It would be possible to propagate a negative value instead of |
| 6709 | // conservatively ceiling it to 0. |
| 6710 | TotalCreatedInstsCost = |
| 6711 | std::max(a: (long long)0, b: (TotalCreatedInstsCost - ExtCost)); |
| 6712 | if (!StressExtLdPromotion && |
| 6713 | (TotalCreatedInstsCost > 1 || |
| 6714 | !isPromotedInstructionLegal(TLI: *TLI, DL: *DL, Val: PromotedVal) || |
| 6715 | (ExtCost == 0 && NewExts.size() > 1))) { |
| 6716 | // This promotion is not profitable, rollback to the previous state, and |
| 6717 | // save the current extension in ProfitablyMovedExts as the latest |
| 6718 | // speculative promotion turned out to be unprofitable. |
| 6719 | TPT.rollback(Point: LastKnownGood); |
| 6720 | ProfitablyMovedExts.push_back(Elt: I); |
| 6721 | continue; |
| 6722 | } |
| 6723 | // Continue promoting NewExts as far as doing so is profitable. |
| 6724 | SmallVector<Instruction *, 2> NewlyMovedExts; |
| 6725 | (void)tryToPromoteExts(TPT, Exts: NewExts, ProfitablyMovedExts&: NewlyMovedExts, CreatedInstsCost: TotalCreatedInstsCost); |
| 6726 | bool NewPromoted = false; |
| 6727 | for (auto *ExtInst : NewlyMovedExts) { |
| 6728 | Instruction *MovedExt = cast<Instruction>(Val: ExtInst); |
| 6729 | Value *ExtOperand = MovedExt->getOperand(i: 0); |
| 6730 | // If we have reached to a load, we need this extra profitability check |
| 6731 | // as it could potentially be merged into an ext(load). |
| 6732 | if (isa<LoadInst>(Val: ExtOperand) && |
| 6733 | !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || |
| 6734 | (ExtOperand->hasOneUse() || hasSameExtUse(Val: ExtOperand, TLI: *TLI)))) |
| 6735 | continue; |
| 6736 | |
| 6737 | ProfitablyMovedExts.push_back(Elt: MovedExt); |
| 6738 | NewPromoted = true; |
| 6739 | } |
| 6740 | |
| 6741 | // If none of speculative promotions for NewExts is profitable, rollback |
| 6742 | // and save the current extension (I) as the last profitable extension. |
| 6743 | if (!NewPromoted) { |
| 6744 | TPT.rollback(Point: LastKnownGood); |
| 6745 | ProfitablyMovedExts.push_back(Elt: I); |
| 6746 | continue; |
| 6747 | } |
| 6748 | // The promotion is profitable. |
| 6749 | Promoted = true; |
| 6750 | } |
| 6751 | return Promoted; |
| 6752 | } |
| 6753 | |
| 6754 | /// Merging redundant sexts when one is dominating the other. |
| 6755 | bool CodeGenPrepare::mergeSExts(Function &F) { |
| 6756 | bool Changed = false; |
| 6757 | for (auto &Entry : ValToSExtendedUses) { |
| 6758 | SExts &Insts = Entry.second; |
| 6759 | SExts CurPts; |
| 6760 | for (Instruction *Inst : Insts) { |
| 6761 | if (RemovedInsts.count(Ptr: Inst) || !isa<SExtInst>(Val: Inst) || |
| 6762 | Inst->getOperand(i: 0) != Entry.first) |
| 6763 | continue; |
| 6764 | bool inserted = false; |
| 6765 | for (auto &Pt : CurPts) { |
| 6766 | if (getDT(F).dominates(Def: Inst, User: Pt)) { |
| 6767 | replaceAllUsesWith(Old: Pt, New: Inst, FreshBBs, IsHuge: IsHugeFunc); |
| 6768 | RemovedInsts.insert(Ptr: Pt); |
| 6769 | Pt->removeFromParent(); |
| 6770 | Pt = Inst; |
| 6771 | inserted = true; |
| 6772 | Changed = true; |
| 6773 | break; |
| 6774 | } |
| 6775 | if (!getDT(F).dominates(Def: Pt, User: Inst)) |
| 6776 | // Give up if we need to merge in a common dominator as the |
| 6777 | // experiments show it is not profitable. |
| 6778 | continue; |
| 6779 | replaceAllUsesWith(Old: Inst, New: Pt, FreshBBs, IsHuge: IsHugeFunc); |
| 6780 | RemovedInsts.insert(Ptr: Inst); |
| 6781 | Inst->removeFromParent(); |
| 6782 | inserted = true; |
| 6783 | Changed = true; |
| 6784 | break; |
| 6785 | } |
| 6786 | if (!inserted) |
| 6787 | CurPts.push_back(Elt: Inst); |
| 6788 | } |
| 6789 | } |
| 6790 | return Changed; |
| 6791 | } |
| 6792 | |
| 6793 | // Splitting large data structures so that the GEPs accessing them can have |
| 6794 | // smaller offsets so that they can be sunk to the same blocks as their users. |
| 6795 | // For example, a large struct starting from %base is split into two parts |
| 6796 | // where the second part starts from %new_base. |
| 6797 | // |
| 6798 | // Before: |
| 6799 | // BB0: |
| 6800 | // %base = |
| 6801 | // |
| 6802 | // BB1: |
| 6803 | // %gep0 = gep %base, off0 |
| 6804 | // %gep1 = gep %base, off1 |
| 6805 | // %gep2 = gep %base, off2 |
| 6806 | // |
| 6807 | // BB2: |
| 6808 | // %load1 = load %gep0 |
| 6809 | // %load2 = load %gep1 |
| 6810 | // %load3 = load %gep2 |
| 6811 | // |
| 6812 | // After: |
| 6813 | // BB0: |
| 6814 | // %base = |
| 6815 | // %new_base = gep %base, off0 |
| 6816 | // |
| 6817 | // BB1: |
| 6818 | // %new_gep0 = %new_base |
| 6819 | // %new_gep1 = gep %new_base, off1 - off0 |
| 6820 | // %new_gep2 = gep %new_base, off2 - off0 |
| 6821 | // |
| 6822 | // BB2: |
| 6823 | // %load1 = load i32, i32* %new_gep0 |
| 6824 | // %load2 = load i32, i32* %new_gep1 |
| 6825 | // %load3 = load i32, i32* %new_gep2 |
| 6826 | // |
| 6827 | // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because |
| 6828 | // their offsets are smaller enough to fit into the addressing mode. |
| 6829 | bool CodeGenPrepare::splitLargeGEPOffsets() { |
| 6830 | bool Changed = false; |
| 6831 | for (auto &Entry : LargeOffsetGEPMap) { |
| 6832 | Value *OldBase = Entry.first; |
| 6833 | SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> |
| 6834 | &LargeOffsetGEPs = Entry.second; |
| 6835 | auto compareGEPOffset = |
| 6836 | [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, |
| 6837 | const std::pair<GetElementPtrInst *, int64_t> &RHS) { |
| 6838 | if (LHS.first == RHS.first) |
| 6839 | return false; |
| 6840 | if (LHS.second != RHS.second) |
| 6841 | return LHS.second < RHS.second; |
| 6842 | return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; |
| 6843 | }; |
| 6844 | // Sorting all the GEPs of the same data structures based on the offsets. |
| 6845 | llvm::sort(C&: LargeOffsetGEPs, Comp: compareGEPOffset); |
| 6846 | LargeOffsetGEPs.erase(CS: llvm::unique(R&: LargeOffsetGEPs), CE: LargeOffsetGEPs.end()); |
| 6847 | // Skip if all the GEPs have the same offsets. |
| 6848 | if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) |
| 6849 | continue; |
| 6850 | GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; |
| 6851 | int64_t BaseOffset = LargeOffsetGEPs.begin()->second; |
| 6852 | Value *NewBaseGEP = nullptr; |
| 6853 | |
| 6854 | auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, |
| 6855 | GetElementPtrInst *GEP) { |
| 6856 | LLVMContext &Ctx = GEP->getContext(); |
| 6857 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
| 6858 | Type *I8PtrTy = |
| 6859 | PointerType::get(C&: Ctx, AddressSpace: GEP->getType()->getPointerAddressSpace()); |
| 6860 | |
| 6861 | BasicBlock::iterator NewBaseInsertPt; |
| 6862 | BasicBlock *NewBaseInsertBB; |
| 6863 | if (auto *BaseI = dyn_cast<Instruction>(Val: OldBase)) { |
| 6864 | // If the base of the struct is an instruction, the new base will be |
| 6865 | // inserted close to it. |
| 6866 | NewBaseInsertBB = BaseI->getParent(); |
| 6867 | if (isa<PHINode>(Val: BaseI)) |
| 6868 | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); |
| 6869 | else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Val: BaseI)) { |
| 6870 | NewBaseInsertBB = |
| 6871 | SplitEdge(From: NewBaseInsertBB, To: Invoke->getNormalDest(), |
| 6872 | DT: &getDT(F&: *NewBaseInsertBB->getParent()), LI); |
| 6873 | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); |
| 6874 | } else |
| 6875 | NewBaseInsertPt = std::next(x: BaseI->getIterator()); |
| 6876 | } else { |
| 6877 | // If the current base is an argument or global value, the new base |
| 6878 | // will be inserted to the entry block. |
| 6879 | NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); |
| 6880 | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); |
| 6881 | } |
| 6882 | IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); |
| 6883 | // Create a new base. |
| 6884 | // TODO: Avoid implicit trunc? |
| 6885 | // See https://github.com/llvm/llvm-project/issues/112510. |
| 6886 | Value *BaseIndex = |
| 6887 | ConstantInt::getSigned(Ty: PtrIdxTy, V: BaseOffset, /*ImplicitTrunc=*/true); |
| 6888 | NewBaseGEP = OldBase; |
| 6889 | if (NewBaseGEP->getType() != I8PtrTy) |
| 6890 | NewBaseGEP = NewBaseBuilder.CreatePointerCast(V: NewBaseGEP, DestTy: I8PtrTy); |
| 6891 | NewBaseGEP = |
| 6892 | NewBaseBuilder.CreatePtrAdd(Ptr: NewBaseGEP, Offset: BaseIndex, Name: "splitgep" ); |
| 6893 | NewGEPBases.insert(V: NewBaseGEP); |
| 6894 | return; |
| 6895 | }; |
| 6896 | |
| 6897 | // Check whether all the offsets can be encoded with prefered common base. |
| 6898 | if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( |
| 6899 | MinOffset: LargeOffsetGEPs.front().second, MaxOffset: LargeOffsetGEPs.back().second)) { |
| 6900 | BaseOffset = PreferBase; |
| 6901 | // Create a new base if the offset of the BaseGEP can be decoded with one |
| 6902 | // instruction. |
| 6903 | createNewBase(BaseOffset, OldBase, BaseGEP); |
| 6904 | } |
| 6905 | |
| 6906 | auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); |
| 6907 | while (LargeOffsetGEP != LargeOffsetGEPs.end()) { |
| 6908 | GetElementPtrInst *GEP = LargeOffsetGEP->first; |
| 6909 | int64_t Offset = LargeOffsetGEP->second; |
| 6910 | if (Offset != BaseOffset) { |
| 6911 | TargetLowering::AddrMode AddrMode; |
| 6912 | AddrMode.HasBaseReg = true; |
| 6913 | AddrMode.BaseOffs = Offset - BaseOffset; |
| 6914 | // The result type of the GEP might not be the type of the memory |
| 6915 | // access. |
| 6916 | if (!TLI->isLegalAddressingMode(DL: *DL, AM: AddrMode, |
| 6917 | Ty: GEP->getResultElementType(), |
| 6918 | AddrSpace: GEP->getAddressSpace())) { |
| 6919 | // We need to create a new base if the offset to the current base is |
| 6920 | // too large to fit into the addressing mode. So, a very large struct |
| 6921 | // may be split into several parts. |
| 6922 | BaseGEP = GEP; |
| 6923 | BaseOffset = Offset; |
| 6924 | NewBaseGEP = nullptr; |
| 6925 | } |
| 6926 | } |
| 6927 | |
| 6928 | // Generate a new GEP to replace the current one. |
| 6929 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
| 6930 | |
| 6931 | if (!NewBaseGEP) { |
| 6932 | // Create a new base if we don't have one yet. Find the insertion |
| 6933 | // pointer for the new base first. |
| 6934 | createNewBase(BaseOffset, OldBase, GEP); |
| 6935 | } |
| 6936 | |
| 6937 | IRBuilder<> Builder(GEP); |
| 6938 | Value *NewGEP = NewBaseGEP; |
| 6939 | if (Offset != BaseOffset) { |
| 6940 | // Calculate the new offset for the new GEP. |
| 6941 | Value *Index = ConstantInt::get(Ty: PtrIdxTy, V: Offset - BaseOffset); |
| 6942 | NewGEP = Builder.CreatePtrAdd(Ptr: NewBaseGEP, Offset: Index); |
| 6943 | } |
| 6944 | replaceAllUsesWith(Old: GEP, New: NewGEP, FreshBBs, IsHuge: IsHugeFunc); |
| 6945 | LargeOffsetGEPID.erase(Val: GEP); |
| 6946 | LargeOffsetGEP = LargeOffsetGEPs.erase(CI: LargeOffsetGEP); |
| 6947 | GEP->eraseFromParent(); |
| 6948 | Changed = true; |
| 6949 | } |
| 6950 | } |
| 6951 | return Changed; |
| 6952 | } |
| 6953 | |
| 6954 | bool CodeGenPrepare::optimizePhiType( |
| 6955 | PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, |
| 6956 | SmallPtrSetImpl<Instruction *> &DeletedInstrs) { |
| 6957 | // We are looking for a collection on interconnected phi nodes that together |
| 6958 | // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts |
| 6959 | // are of the same type. Convert the whole set of nodes to the type of the |
| 6960 | // bitcast. |
| 6961 | Type *PhiTy = I->getType(); |
| 6962 | Type *ConvertTy = nullptr; |
| 6963 | if (Visited.count(Ptr: I) || |
| 6964 | (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) |
| 6965 | return false; |
| 6966 | |
| 6967 | SmallVector<Instruction *, 4> Worklist; |
| 6968 | Worklist.push_back(Elt: cast<Instruction>(Val: I)); |
| 6969 | SmallPtrSet<PHINode *, 4> PhiNodes; |
| 6970 | SmallPtrSet<ConstantData *, 4> Constants; |
| 6971 | PhiNodes.insert(Ptr: I); |
| 6972 | Visited.insert(Ptr: I); |
| 6973 | SmallPtrSet<Instruction *, 4> Defs; |
| 6974 | SmallPtrSet<Instruction *, 4> Uses; |
| 6975 | // This works by adding extra bitcasts between load/stores and removing |
| 6976 | // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) |
| 6977 | // we can get in the situation where we remove a bitcast in one iteration |
| 6978 | // just to add it again in the next. We need to ensure that at least one |
| 6979 | // bitcast we remove are anchored to something that will not change back. |
| 6980 | bool AnyAnchored = false; |
| 6981 | |
| 6982 | while (!Worklist.empty()) { |
| 6983 | Instruction *II = Worklist.pop_back_val(); |
| 6984 | |
| 6985 | if (auto *Phi = dyn_cast<PHINode>(Val: II)) { |
| 6986 | // Handle Defs, which might also be PHI's |
| 6987 | for (Value *V : Phi->incoming_values()) { |
| 6988 | if (auto *OpPhi = dyn_cast<PHINode>(Val: V)) { |
| 6989 | if (!PhiNodes.count(Ptr: OpPhi)) { |
| 6990 | if (!Visited.insert(Ptr: OpPhi).second) |
| 6991 | return false; |
| 6992 | PhiNodes.insert(Ptr: OpPhi); |
| 6993 | Worklist.push_back(Elt: OpPhi); |
| 6994 | } |
| 6995 | } else if (auto *OpLoad = dyn_cast<LoadInst>(Val: V)) { |
| 6996 | if (!OpLoad->isSimple()) |
| 6997 | return false; |
| 6998 | if (Defs.insert(Ptr: OpLoad).second) |
| 6999 | Worklist.push_back(Elt: OpLoad); |
| 7000 | } else if (auto *OpEx = dyn_cast<ExtractElementInst>(Val: V)) { |
| 7001 | if (Defs.insert(Ptr: OpEx).second) |
| 7002 | Worklist.push_back(Elt: OpEx); |
| 7003 | } else if (auto *OpBC = dyn_cast<BitCastInst>(Val: V)) { |
| 7004 | if (!ConvertTy) |
| 7005 | ConvertTy = OpBC->getOperand(i_nocapture: 0)->getType(); |
| 7006 | if (OpBC->getOperand(i_nocapture: 0)->getType() != ConvertTy) |
| 7007 | return false; |
| 7008 | if (Defs.insert(Ptr: OpBC).second) { |
| 7009 | Worklist.push_back(Elt: OpBC); |
| 7010 | AnyAnchored |= !isa<LoadInst>(Val: OpBC->getOperand(i_nocapture: 0)) && |
| 7011 | !isa<ExtractElementInst>(Val: OpBC->getOperand(i_nocapture: 0)); |
| 7012 | } |
| 7013 | } else if (auto *OpC = dyn_cast<ConstantData>(Val: V)) |
| 7014 | Constants.insert(Ptr: OpC); |
| 7015 | else |
| 7016 | return false; |
| 7017 | } |
| 7018 | } |
| 7019 | |
| 7020 | // Handle uses which might also be phi's |
| 7021 | for (User *V : II->users()) { |
| 7022 | if (auto *OpPhi = dyn_cast<PHINode>(Val: V)) { |
| 7023 | if (!PhiNodes.count(Ptr: OpPhi)) { |
| 7024 | if (Visited.count(Ptr: OpPhi)) |
| 7025 | return false; |
| 7026 | PhiNodes.insert(Ptr: OpPhi); |
| 7027 | Visited.insert(Ptr: OpPhi); |
| 7028 | Worklist.push_back(Elt: OpPhi); |
| 7029 | } |
| 7030 | } else if (auto *OpStore = dyn_cast<StoreInst>(Val: V)) { |
| 7031 | if (!OpStore->isSimple() || OpStore->getOperand(i_nocapture: 0) != II) |
| 7032 | return false; |
| 7033 | Uses.insert(Ptr: OpStore); |
| 7034 | } else if (auto *OpBC = dyn_cast<BitCastInst>(Val: V)) { |
| 7035 | if (!ConvertTy) |
| 7036 | ConvertTy = OpBC->getType(); |
| 7037 | if (OpBC->getType() != ConvertTy) |
| 7038 | return false; |
| 7039 | Uses.insert(Ptr: OpBC); |
| 7040 | AnyAnchored |= |
| 7041 | any_of(Range: OpBC->users(), P: [](User *U) { return !isa<StoreInst>(Val: U); }); |
| 7042 | } else { |
| 7043 | return false; |
| 7044 | } |
| 7045 | } |
| 7046 | } |
| 7047 | |
| 7048 | if (!ConvertTy || !AnyAnchored || PhiTy == ConvertTy || |
| 7049 | !TLI->shouldConvertPhiType(From: PhiTy, To: ConvertTy)) |
| 7050 | return false; |
| 7051 | |
| 7052 | LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " |
| 7053 | << *ConvertTy << "\n" ); |
| 7054 | |
| 7055 | // Create all the new phi nodes of the new type, and bitcast any loads to the |
| 7056 | // correct type. |
| 7057 | ValueToValueMap ValMap; |
| 7058 | for (ConstantData *C : Constants) |
| 7059 | ValMap[C] = ConstantExpr::getBitCast(C, Ty: ConvertTy); |
| 7060 | for (Instruction *D : Defs) { |
| 7061 | if (isa<BitCastInst>(Val: D)) { |
| 7062 | ValMap[D] = D->getOperand(i: 0); |
| 7063 | DeletedInstrs.insert(Ptr: D); |
| 7064 | } else { |
| 7065 | BasicBlock::iterator insertPt = std::next(x: D->getIterator()); |
| 7066 | ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc" , insertPt); |
| 7067 | } |
| 7068 | } |
| 7069 | for (PHINode *Phi : PhiNodes) |
| 7070 | ValMap[Phi] = PHINode::Create(Ty: ConvertTy, NumReservedValues: Phi->getNumIncomingValues(), |
| 7071 | NameStr: Phi->getName() + ".tc" , InsertBefore: Phi->getIterator()); |
| 7072 | // Pipe together all the PhiNodes. |
| 7073 | for (PHINode *Phi : PhiNodes) { |
| 7074 | PHINode *NewPhi = cast<PHINode>(Val: ValMap[Phi]); |
| 7075 | for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) |
| 7076 | NewPhi->addIncoming(V: ValMap[Phi->getIncomingValue(i)], |
| 7077 | BB: Phi->getIncomingBlock(i)); |
| 7078 | Visited.insert(Ptr: NewPhi); |
| 7079 | } |
| 7080 | // And finally pipe up the stores and bitcasts |
| 7081 | for (Instruction *U : Uses) { |
| 7082 | if (isa<BitCastInst>(Val: U)) { |
| 7083 | DeletedInstrs.insert(Ptr: U); |
| 7084 | replaceAllUsesWith(Old: U, New: ValMap[U->getOperand(i: 0)], FreshBBs, IsHuge: IsHugeFunc); |
| 7085 | } else { |
| 7086 | U->setOperand(i: 0, Val: new BitCastInst(ValMap[U->getOperand(i: 0)], PhiTy, "bc" , |
| 7087 | U->getIterator())); |
| 7088 | } |
| 7089 | } |
| 7090 | |
| 7091 | // Save the removed phis to be deleted later. |
| 7092 | DeletedInstrs.insert_range(R&: PhiNodes); |
| 7093 | return true; |
| 7094 | } |
| 7095 | |
| 7096 | bool CodeGenPrepare::optimizePhiTypes(Function &F) { |
| 7097 | if (!OptimizePhiTypes) |
| 7098 | return false; |
| 7099 | |
| 7100 | bool Changed = false; |
| 7101 | SmallPtrSet<PHINode *, 4> Visited; |
| 7102 | SmallPtrSet<Instruction *, 4> DeletedInstrs; |
| 7103 | |
| 7104 | // Attempt to optimize all the phis in the functions to the correct type. |
| 7105 | for (auto &BB : F) |
| 7106 | for (auto &Phi : BB.phis()) |
| 7107 | Changed |= optimizePhiType(I: &Phi, Visited, DeletedInstrs); |
| 7108 | |
| 7109 | // Remove any old phi's that have been converted. |
| 7110 | for (auto *I : DeletedInstrs) { |
| 7111 | replaceAllUsesWith(Old: I, New: PoisonValue::get(T: I->getType()), FreshBBs, IsHuge: IsHugeFunc); |
| 7112 | I->eraseFromParent(); |
| 7113 | } |
| 7114 | |
| 7115 | return Changed; |
| 7116 | } |
| 7117 | |
| 7118 | /// Return true, if an ext(load) can be formed from an extension in |
| 7119 | /// \p MovedExts. |
| 7120 | bool CodeGenPrepare::canFormExtLd( |
| 7121 | const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, |
| 7122 | Instruction *&Inst, bool HasPromoted) { |
| 7123 | for (auto *MovedExtInst : MovedExts) { |
| 7124 | if (isa<LoadInst>(Val: MovedExtInst->getOperand(i: 0))) { |
| 7125 | LI = cast<LoadInst>(Val: MovedExtInst->getOperand(i: 0)); |
| 7126 | Inst = MovedExtInst; |
| 7127 | break; |
| 7128 | } |
| 7129 | } |
| 7130 | if (!LI) |
| 7131 | return false; |
| 7132 | |
| 7133 | // If they're already in the same block, there's nothing to do. |
| 7134 | // Make the cheap checks first if we did not promote. |
| 7135 | // If we promoted, we need to check if it is indeed profitable. |
| 7136 | if (!HasPromoted && LI->getParent() == Inst->getParent()) |
| 7137 | return false; |
| 7138 | |
| 7139 | return TLI->isExtLoad(Load: LI, Ext: Inst, DL: *DL); |
| 7140 | } |
| 7141 | |
| 7142 | /// Move a zext or sext fed by a load into the same basic block as the load, |
| 7143 | /// unless conditions are unfavorable. This allows SelectionDAG to fold the |
| 7144 | /// extend into the load. |
| 7145 | /// |
| 7146 | /// E.g., |
| 7147 | /// \code |
| 7148 | /// %ld = load i32* %addr |
| 7149 | /// %add = add nuw i32 %ld, 4 |
| 7150 | /// %zext = zext i32 %add to i64 |
| 7151 | // \endcode |
| 7152 | /// => |
| 7153 | /// \code |
| 7154 | /// %ld = load i32* %addr |
| 7155 | /// %zext = zext i32 %ld to i64 |
| 7156 | /// %add = add nuw i64 %zext, 4 |
| 7157 | /// \encode |
| 7158 | /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which |
| 7159 | /// allow us to match zext(load i32*) to i64. |
| 7160 | /// |
| 7161 | /// Also, try to promote the computations used to obtain a sign extended |
| 7162 | /// value used into memory accesses. |
| 7163 | /// E.g., |
| 7164 | /// \code |
| 7165 | /// a = add nsw i32 b, 3 |
| 7166 | /// d = sext i32 a to i64 |
| 7167 | /// e = getelementptr ..., i64 d |
| 7168 | /// \endcode |
| 7169 | /// => |
| 7170 | /// \code |
| 7171 | /// f = sext i32 b to i64 |
| 7172 | /// a = add nsw i64 f, 3 |
| 7173 | /// e = getelementptr ..., i64 a |
| 7174 | /// \endcode |
| 7175 | /// |
| 7176 | /// \p Inst[in/out] the extension may be modified during the process if some |
| 7177 | /// promotions apply. |
| 7178 | bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { |
| 7179 | bool = false; |
| 7180 | /// See if it is an interesting sext operations for the address type |
| 7181 | /// promotion before trying to promote it, e.g., the ones with the right |
| 7182 | /// type and used in memory accesses. |
| 7183 | bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( |
| 7184 | I: *Inst, AllowPromotionWithoutCommonHeader); |
| 7185 | TypePromotionTransaction TPT(RemovedInsts); |
| 7186 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = |
| 7187 | TPT.getRestorationPoint(); |
| 7188 | SmallVector<Instruction *, 1> Exts; |
| 7189 | SmallVector<Instruction *, 2> SpeculativelyMovedExts; |
| 7190 | Exts.push_back(Elt: Inst); |
| 7191 | |
| 7192 | bool HasPromoted = tryToPromoteExts(TPT, Exts, ProfitablyMovedExts&: SpeculativelyMovedExts); |
| 7193 | |
| 7194 | // Look for a load being extended. |
| 7195 | LoadInst *LI = nullptr; |
| 7196 | Instruction *ExtFedByLoad; |
| 7197 | |
| 7198 | // Try to promote a chain of computation if it allows to form an extended |
| 7199 | // load. |
| 7200 | if (canFormExtLd(MovedExts: SpeculativelyMovedExts, LI, Inst&: ExtFedByLoad, HasPromoted)) { |
| 7201 | assert(LI && ExtFedByLoad && "Expect a valid load and extension" ); |
| 7202 | TPT.commit(); |
| 7203 | // Move the extend into the same block as the load. |
| 7204 | ExtFedByLoad->moveAfter(MovePos: LI); |
| 7205 | ++NumExtsMoved; |
| 7206 | Inst = ExtFedByLoad; |
| 7207 | return true; |
| 7208 | } |
| 7209 | |
| 7210 | // Continue promoting SExts if known as considerable depending on targets. |
| 7211 | if (ATPConsiderable && |
| 7212 | performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, |
| 7213 | HasPromoted, TPT, SpeculativelyMovedExts)) |
| 7214 | return true; |
| 7215 | |
| 7216 | TPT.rollback(Point: LastKnownGood); |
| 7217 | return false; |
| 7218 | } |
| 7219 | |
| 7220 | // Perform address type promotion if doing so is profitable. |
| 7221 | // If AllowPromotionWithoutCommonHeader == false, we should find other sext |
| 7222 | // instructions that sign extended the same initial value. However, if |
| 7223 | // AllowPromotionWithoutCommonHeader == true, we expect promoting the |
| 7224 | // extension is just profitable. |
| 7225 | bool CodeGenPrepare::performAddressTypePromotion( |
| 7226 | Instruction *&Inst, bool , |
| 7227 | bool HasPromoted, TypePromotionTransaction &TPT, |
| 7228 | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { |
| 7229 | bool Promoted = false; |
| 7230 | SmallPtrSet<Instruction *, 1> UnhandledExts; |
| 7231 | bool AllSeenFirst = true; |
| 7232 | for (auto *I : SpeculativelyMovedExts) { |
| 7233 | Value *HeadOfChain = I->getOperand(i: 0); |
| 7234 | DenseMap<Value *, Instruction *>::iterator AlreadySeen = |
| 7235 | SeenChainsForSExt.find(Val: HeadOfChain); |
| 7236 | // If there is an unhandled SExt which has the same header, try to promote |
| 7237 | // it as well. |
| 7238 | if (AlreadySeen != SeenChainsForSExt.end()) { |
| 7239 | if (AlreadySeen->second != nullptr) |
| 7240 | UnhandledExts.insert(Ptr: AlreadySeen->second); |
| 7241 | AllSeenFirst = false; |
| 7242 | } |
| 7243 | } |
| 7244 | |
| 7245 | if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && |
| 7246 | SpeculativelyMovedExts.size() == 1)) { |
| 7247 | TPT.commit(); |
| 7248 | if (HasPromoted) |
| 7249 | Promoted = true; |
| 7250 | for (auto *I : SpeculativelyMovedExts) { |
| 7251 | Value *HeadOfChain = I->getOperand(i: 0); |
| 7252 | SeenChainsForSExt[HeadOfChain] = nullptr; |
| 7253 | ValToSExtendedUses[HeadOfChain].push_back(Elt: I); |
| 7254 | } |
| 7255 | // Update Inst as promotion happen. |
| 7256 | Inst = SpeculativelyMovedExts.pop_back_val(); |
| 7257 | } else { |
| 7258 | // This is the first chain visited from the header, keep the current chain |
| 7259 | // as unhandled. Defer to promote this until we encounter another SExt |
| 7260 | // chain derived from the same header. |
| 7261 | for (auto *I : SpeculativelyMovedExts) { |
| 7262 | Value *HeadOfChain = I->getOperand(i: 0); |
| 7263 | SeenChainsForSExt[HeadOfChain] = Inst; |
| 7264 | } |
| 7265 | return false; |
| 7266 | } |
| 7267 | |
| 7268 | if (!AllSeenFirst && !UnhandledExts.empty()) |
| 7269 | for (auto *VisitedSExt : UnhandledExts) { |
| 7270 | if (RemovedInsts.count(Ptr: VisitedSExt)) |
| 7271 | continue; |
| 7272 | TypePromotionTransaction TPT(RemovedInsts); |
| 7273 | SmallVector<Instruction *, 1> Exts; |
| 7274 | SmallVector<Instruction *, 2> Chains; |
| 7275 | Exts.push_back(Elt: VisitedSExt); |
| 7276 | bool HasPromoted = tryToPromoteExts(TPT, Exts, ProfitablyMovedExts&: Chains); |
| 7277 | TPT.commit(); |
| 7278 | if (HasPromoted) |
| 7279 | Promoted = true; |
| 7280 | for (auto *I : Chains) { |
| 7281 | Value *HeadOfChain = I->getOperand(i: 0); |
| 7282 | // Mark this as handled. |
| 7283 | SeenChainsForSExt[HeadOfChain] = nullptr; |
| 7284 | ValToSExtendedUses[HeadOfChain].push_back(Elt: I); |
| 7285 | } |
| 7286 | } |
| 7287 | return Promoted; |
| 7288 | } |
| 7289 | |
| 7290 | bool CodeGenPrepare::optimizeExtUses(Instruction *I) { |
| 7291 | BasicBlock *DefBB = I->getParent(); |
| 7292 | |
| 7293 | // If the result of a {s|z}ext and its source are both live out, rewrite all |
| 7294 | // other uses of the source with result of extension. |
| 7295 | Value *Src = I->getOperand(i: 0); |
| 7296 | if (Src->hasOneUse()) |
| 7297 | return false; |
| 7298 | |
| 7299 | // Only do this xform if truncating is free. |
| 7300 | if (!TLI->isTruncateFree(FromTy: I->getType(), ToTy: Src->getType())) |
| 7301 | return false; |
| 7302 | |
| 7303 | // Only safe to perform the optimization if the source is also defined in |
| 7304 | // this block. |
| 7305 | if (!isa<Instruction>(Val: Src) || DefBB != cast<Instruction>(Val: Src)->getParent()) |
| 7306 | return false; |
| 7307 | |
| 7308 | bool DefIsLiveOut = false; |
| 7309 | for (User *U : I->users()) { |
| 7310 | Instruction *UI = cast<Instruction>(Val: U); |
| 7311 | |
| 7312 | // Figure out which BB this ext is used in. |
| 7313 | BasicBlock *UserBB = UI->getParent(); |
| 7314 | if (UserBB == DefBB) |
| 7315 | continue; |
| 7316 | DefIsLiveOut = true; |
| 7317 | break; |
| 7318 | } |
| 7319 | if (!DefIsLiveOut) |
| 7320 | return false; |
| 7321 | |
| 7322 | // Make sure none of the uses are PHI nodes. |
| 7323 | for (User *U : Src->users()) { |
| 7324 | Instruction *UI = cast<Instruction>(Val: U); |
| 7325 | BasicBlock *UserBB = UI->getParent(); |
| 7326 | if (UserBB == DefBB) |
| 7327 | continue; |
| 7328 | // Be conservative. We don't want this xform to end up introducing |
| 7329 | // reloads just before load / store instructions. |
| 7330 | if (isa<PHINode>(Val: UI) || isa<LoadInst>(Val: UI) || isa<StoreInst>(Val: UI)) |
| 7331 | return false; |
| 7332 | } |
| 7333 | |
| 7334 | // InsertedTruncs - Only insert one trunc in each block once. |
| 7335 | DenseMap<BasicBlock *, Instruction *> InsertedTruncs; |
| 7336 | |
| 7337 | bool MadeChange = false; |
| 7338 | for (Use &U : Src->uses()) { |
| 7339 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
| 7340 | |
| 7341 | // Figure out which BB this ext is used in. |
| 7342 | BasicBlock *UserBB = User->getParent(); |
| 7343 | if (UserBB == DefBB) |
| 7344 | continue; |
| 7345 | |
| 7346 | // Both src and def are live in this block. Rewrite the use. |
| 7347 | Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; |
| 7348 | |
| 7349 | if (!InsertedTrunc) { |
| 7350 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| 7351 | assert(InsertPt != UserBB->end()); |
| 7352 | InsertedTrunc = new TruncInst(I, Src->getType(), "" ); |
| 7353 | InsertedTrunc->insertBefore(BB&: *UserBB, InsertPos: InsertPt); |
| 7354 | InsertedInsts.insert(Ptr: InsertedTrunc); |
| 7355 | } |
| 7356 | |
| 7357 | // Replace a use of the {s|z}ext source with a use of the result. |
| 7358 | U = InsertedTrunc; |
| 7359 | ++NumExtUses; |
| 7360 | MadeChange = true; |
| 7361 | } |
| 7362 | |
| 7363 | return MadeChange; |
| 7364 | } |
| 7365 | |
| 7366 | // Find loads whose uses only use some of the loaded value's bits. Add an "and" |
| 7367 | // just after the load if the target can fold this into one extload instruction, |
| 7368 | // with the hope of eliminating some of the other later "and" instructions using |
| 7369 | // the loaded value. "and"s that are made trivially redundant by the insertion |
| 7370 | // of the new "and" are removed by this function, while others (e.g. those whose |
| 7371 | // path from the load goes through a phi) are left for isel to potentially |
| 7372 | // remove. |
| 7373 | // |
| 7374 | // For example: |
| 7375 | // |
| 7376 | // b0: |
| 7377 | // x = load i32 |
| 7378 | // ... |
| 7379 | // b1: |
| 7380 | // y = and x, 0xff |
| 7381 | // z = use y |
| 7382 | // |
| 7383 | // becomes: |
| 7384 | // |
| 7385 | // b0: |
| 7386 | // x = load i32 |
| 7387 | // x' = and x, 0xff |
| 7388 | // ... |
| 7389 | // b1: |
| 7390 | // z = use x' |
| 7391 | // |
| 7392 | // whereas: |
| 7393 | // |
| 7394 | // b0: |
| 7395 | // x1 = load i32 |
| 7396 | // ... |
| 7397 | // b1: |
| 7398 | // x2 = load i32 |
| 7399 | // ... |
| 7400 | // b2: |
| 7401 | // x = phi x1, x2 |
| 7402 | // y = and x, 0xff |
| 7403 | // |
| 7404 | // becomes (after a call to optimizeLoadExt for each load): |
| 7405 | // |
| 7406 | // b0: |
| 7407 | // x1 = load i32 |
| 7408 | // x1' = and x1, 0xff |
| 7409 | // ... |
| 7410 | // b1: |
| 7411 | // x2 = load i32 |
| 7412 | // x2' = and x2, 0xff |
| 7413 | // ... |
| 7414 | // b2: |
| 7415 | // x = phi x1', x2' |
| 7416 | // y = and x, 0xff |
| 7417 | bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { |
| 7418 | if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) |
| 7419 | return false; |
| 7420 | |
| 7421 | // Skip loads we've already transformed. |
| 7422 | if (Load->hasOneUse() && |
| 7423 | InsertedInsts.count(Ptr: cast<Instruction>(Val: *Load->user_begin()))) |
| 7424 | return false; |
| 7425 | |
| 7426 | // Look at all uses of Load, looking through phis, to determine how many bits |
| 7427 | // of the loaded value are needed. |
| 7428 | SmallVector<Instruction *, 8> WorkList; |
| 7429 | SmallPtrSet<Instruction *, 16> Visited; |
| 7430 | SmallVector<Instruction *, 8> AndsToMaybeRemove; |
| 7431 | SmallVector<Instruction *, 8> DropFlags; |
| 7432 | for (auto *U : Load->users()) |
| 7433 | WorkList.push_back(Elt: cast<Instruction>(Val: U)); |
| 7434 | |
| 7435 | EVT LoadResultVT = TLI->getValueType(DL: *DL, Ty: Load->getType()); |
| 7436 | unsigned BitWidth = LoadResultVT.getSizeInBits(); |
| 7437 | // If the BitWidth is 0, do not try to optimize the type |
| 7438 | if (BitWidth == 0) |
| 7439 | return false; |
| 7440 | |
| 7441 | APInt DemandBits(BitWidth, 0); |
| 7442 | APInt WidestAndBits(BitWidth, 0); |
| 7443 | |
| 7444 | while (!WorkList.empty()) { |
| 7445 | Instruction *I = WorkList.pop_back_val(); |
| 7446 | |
| 7447 | // Break use-def graph loops. |
| 7448 | if (!Visited.insert(Ptr: I).second) |
| 7449 | continue; |
| 7450 | |
| 7451 | // For a PHI node, push all of its users. |
| 7452 | if (auto *Phi = dyn_cast<PHINode>(Val: I)) { |
| 7453 | for (auto *U : Phi->users()) |
| 7454 | WorkList.push_back(Elt: cast<Instruction>(Val: U)); |
| 7455 | continue; |
| 7456 | } |
| 7457 | |
| 7458 | switch (I->getOpcode()) { |
| 7459 | case Instruction::And: { |
| 7460 | auto *AndC = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1)); |
| 7461 | if (!AndC) |
| 7462 | return false; |
| 7463 | APInt AndBits = AndC->getValue(); |
| 7464 | DemandBits |= AndBits; |
| 7465 | // Keep track of the widest and mask we see. |
| 7466 | if (AndBits.ugt(RHS: WidestAndBits)) |
| 7467 | WidestAndBits = AndBits; |
| 7468 | if (AndBits == WidestAndBits && I->getOperand(i: 0) == Load) |
| 7469 | AndsToMaybeRemove.push_back(Elt: I); |
| 7470 | break; |
| 7471 | } |
| 7472 | |
| 7473 | case Instruction::Shl: { |
| 7474 | auto *ShlC = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1)); |
| 7475 | if (!ShlC) |
| 7476 | return false; |
| 7477 | uint64_t ShiftAmt = ShlC->getLimitedValue(Limit: BitWidth - 1); |
| 7478 | DemandBits.setLowBits(BitWidth - ShiftAmt); |
| 7479 | DropFlags.push_back(Elt: I); |
| 7480 | break; |
| 7481 | } |
| 7482 | |
| 7483 | case Instruction::Trunc: { |
| 7484 | EVT TruncVT = TLI->getValueType(DL: *DL, Ty: I->getType()); |
| 7485 | unsigned TruncBitWidth = TruncVT.getSizeInBits(); |
| 7486 | DemandBits.setLowBits(TruncBitWidth); |
| 7487 | DropFlags.push_back(Elt: I); |
| 7488 | break; |
| 7489 | } |
| 7490 | |
| 7491 | default: |
| 7492 | return false; |
| 7493 | } |
| 7494 | } |
| 7495 | |
| 7496 | uint32_t ActiveBits = DemandBits.getActiveBits(); |
| 7497 | // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the |
| 7498 | // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, |
| 7499 | // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but |
| 7500 | // (and (load x) 1) is not matched as a single instruction, rather as a LDR |
| 7501 | // followed by an AND. |
| 7502 | // TODO: Look into removing this restriction by fixing backends to either |
| 7503 | // return false for isLoadExtLegal for i1 or have them select this pattern to |
| 7504 | // a single instruction. |
| 7505 | // |
| 7506 | // Also avoid hoisting if we didn't see any ands with the exact DemandBits |
| 7507 | // mask, since these are the only ands that will be removed by isel. |
| 7508 | if (ActiveBits <= 1 || !DemandBits.isMask(numBits: ActiveBits) || |
| 7509 | WidestAndBits != DemandBits) |
| 7510 | return false; |
| 7511 | |
| 7512 | LLVMContext &Ctx = Load->getType()->getContext(); |
| 7513 | Type *TruncTy = Type::getIntNTy(C&: Ctx, N: ActiveBits); |
| 7514 | EVT TruncVT = TLI->getValueType(DL: *DL, Ty: TruncTy); |
| 7515 | |
| 7516 | // Reject cases that won't be matched as extloads. |
| 7517 | if (!LoadResultVT.bitsGT(VT: TruncVT) || !TruncVT.isRound() || |
| 7518 | !TLI->isLoadExtLegal(ExtType: ISD::ZEXTLOAD, ValVT: LoadResultVT, MemVT: TruncVT)) |
| 7519 | return false; |
| 7520 | |
| 7521 | IRBuilder<> Builder(Load->getNextNode()); |
| 7522 | auto *NewAnd = cast<Instruction>( |
| 7523 | Val: Builder.CreateAnd(LHS: Load, RHS: ConstantInt::get(Context&: Ctx, V: DemandBits))); |
| 7524 | // Mark this instruction as "inserted by CGP", so that other |
| 7525 | // optimizations don't touch it. |
| 7526 | InsertedInsts.insert(Ptr: NewAnd); |
| 7527 | |
| 7528 | // Replace all uses of load with new and (except for the use of load in the |
| 7529 | // new and itself). |
| 7530 | replaceAllUsesWith(Old: Load, New: NewAnd, FreshBBs, IsHuge: IsHugeFunc); |
| 7531 | NewAnd->setOperand(i: 0, Val: Load); |
| 7532 | |
| 7533 | // Remove any and instructions that are now redundant. |
| 7534 | for (auto *And : AndsToMaybeRemove) |
| 7535 | // Check that the and mask is the same as the one we decided to put on the |
| 7536 | // new and. |
| 7537 | if (cast<ConstantInt>(Val: And->getOperand(i: 1))->getValue() == DemandBits) { |
| 7538 | replaceAllUsesWith(Old: And, New: NewAnd, FreshBBs, IsHuge: IsHugeFunc); |
| 7539 | if (&*CurInstIterator == And) |
| 7540 | CurInstIterator = std::next(x: And->getIterator()); |
| 7541 | And->eraseFromParent(); |
| 7542 | ++NumAndUses; |
| 7543 | } |
| 7544 | |
| 7545 | // NSW flags may not longer hold. |
| 7546 | for (auto *Inst : DropFlags) |
| 7547 | Inst->setHasNoSignedWrap(false); |
| 7548 | |
| 7549 | ++NumAndsAdded; |
| 7550 | return true; |
| 7551 | } |
| 7552 | |
| 7553 | /// Check if V (an operand of a select instruction) is an expensive instruction |
| 7554 | /// that is only used once. |
| 7555 | static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { |
| 7556 | auto *I = dyn_cast<Instruction>(Val: V); |
| 7557 | // If it's safe to speculatively execute, then it should not have side |
| 7558 | // effects; therefore, it's safe to sink and possibly *not* execute. |
| 7559 | return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && |
| 7560 | TTI->isExpensiveToSpeculativelyExecute(I); |
| 7561 | } |
| 7562 | |
| 7563 | /// Returns true if a SelectInst should be turned into an explicit branch. |
| 7564 | static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, |
| 7565 | const TargetLowering *TLI, |
| 7566 | SelectInst *SI) { |
| 7567 | // If even a predictable select is cheap, then a branch can't be cheaper. |
| 7568 | if (!TLI->isPredictableSelectExpensive()) |
| 7569 | return false; |
| 7570 | |
| 7571 | // FIXME: This should use the same heuristics as IfConversion to determine |
| 7572 | // whether a select is better represented as a branch. |
| 7573 | |
| 7574 | // If metadata tells us that the select condition is obviously predictable, |
| 7575 | // then we want to replace the select with a branch. |
| 7576 | uint64_t TrueWeight, FalseWeight; |
| 7577 | if (extractBranchWeights(I: *SI, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
| 7578 | uint64_t Max = std::max(a: TrueWeight, b: FalseWeight); |
| 7579 | uint64_t Sum = TrueWeight + FalseWeight; |
| 7580 | if (Sum != 0) { |
| 7581 | auto Probability = BranchProbability::getBranchProbability(Numerator: Max, Denominator: Sum); |
| 7582 | if (Probability > TTI->getPredictableBranchThreshold()) |
| 7583 | return true; |
| 7584 | } |
| 7585 | } |
| 7586 | |
| 7587 | CmpInst *Cmp = dyn_cast<CmpInst>(Val: SI->getCondition()); |
| 7588 | |
| 7589 | // If a branch is predictable, an out-of-order CPU can avoid blocking on its |
| 7590 | // comparison condition. If the compare has more than one use, there's |
| 7591 | // probably another cmov or setcc around, so it's not worth emitting a branch. |
| 7592 | if (!Cmp || !Cmp->hasOneUse()) |
| 7593 | return false; |
| 7594 | |
| 7595 | // If either operand of the select is expensive and only needed on one side |
| 7596 | // of the select, we should form a branch. |
| 7597 | if (sinkSelectOperand(TTI, V: SI->getTrueValue()) || |
| 7598 | sinkSelectOperand(TTI, V: SI->getFalseValue())) |
| 7599 | return true; |
| 7600 | |
| 7601 | return false; |
| 7602 | } |
| 7603 | |
| 7604 | /// If \p isTrue is true, return the true value of \p SI, otherwise return |
| 7605 | /// false value of \p SI. If the true/false value of \p SI is defined by any |
| 7606 | /// select instructions in \p Selects, look through the defining select |
| 7607 | /// instruction until the true/false value is not defined in \p Selects. |
| 7608 | static Value * |
| 7609 | getTrueOrFalseValue(SelectInst *SI, bool isTrue, |
| 7610 | const SmallPtrSet<const Instruction *, 2> &Selects) { |
| 7611 | Value *V = nullptr; |
| 7612 | |
| 7613 | for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(Ptr: DefSI); |
| 7614 | DefSI = dyn_cast<SelectInst>(Val: V)) { |
| 7615 | assert(DefSI->getCondition() == SI->getCondition() && |
| 7616 | "The condition of DefSI does not match with SI" ); |
| 7617 | V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); |
| 7618 | } |
| 7619 | |
| 7620 | assert(V && "Failed to get select true/false value" ); |
| 7621 | return V; |
| 7622 | } |
| 7623 | |
| 7624 | bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { |
| 7625 | assert(Shift->isShift() && "Expected a shift" ); |
| 7626 | |
| 7627 | // If this is (1) a vector shift, (2) shifts by scalars are cheaper than |
| 7628 | // general vector shifts, and (3) the shift amount is a select-of-splatted |
| 7629 | // values, hoist the shifts before the select: |
| 7630 | // shift Op0, (select Cond, TVal, FVal) --> |
| 7631 | // select Cond, (shift Op0, TVal), (shift Op0, FVal) |
| 7632 | // |
| 7633 | // This is inverting a generic IR transform when we know that the cost of a |
| 7634 | // general vector shift is more than the cost of 2 shift-by-scalars. |
| 7635 | // We can't do this effectively in SDAG because we may not be able to |
| 7636 | // determine if the select operands are splats from within a basic block. |
| 7637 | Type *Ty = Shift->getType(); |
| 7638 | if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) |
| 7639 | return false; |
| 7640 | Value *Cond, *TVal, *FVal; |
| 7641 | if (!match(V: Shift->getOperand(i_nocapture: 1), |
| 7642 | P: m_OneUse(SubPattern: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TVal), R: m_Value(V&: FVal))))) |
| 7643 | return false; |
| 7644 | if (!isSplatValue(V: TVal) || !isSplatValue(V: FVal)) |
| 7645 | return false; |
| 7646 | |
| 7647 | IRBuilder<> Builder(Shift); |
| 7648 | BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); |
| 7649 | Value *NewTVal = Builder.CreateBinOp(Opc: Opcode, LHS: Shift->getOperand(i_nocapture: 0), RHS: TVal); |
| 7650 | Value *NewFVal = Builder.CreateBinOp(Opc: Opcode, LHS: Shift->getOperand(i_nocapture: 0), RHS: FVal); |
| 7651 | Value *NewSel = Builder.CreateSelect(C: Cond, True: NewTVal, False: NewFVal); |
| 7652 | replaceAllUsesWith(Old: Shift, New: NewSel, FreshBBs, IsHuge: IsHugeFunc); |
| 7653 | Shift->eraseFromParent(); |
| 7654 | return true; |
| 7655 | } |
| 7656 | |
| 7657 | bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { |
| 7658 | Intrinsic::ID Opcode = Fsh->getIntrinsicID(); |
| 7659 | assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && |
| 7660 | "Expected a funnel shift" ); |
| 7661 | |
| 7662 | // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper |
| 7663 | // than general vector shifts, and (3) the shift amount is select-of-splatted |
| 7664 | // values, hoist the funnel shifts before the select: |
| 7665 | // fsh Op0, Op1, (select Cond, TVal, FVal) --> |
| 7666 | // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) |
| 7667 | // |
| 7668 | // This is inverting a generic IR transform when we know that the cost of a |
| 7669 | // general vector shift is more than the cost of 2 shift-by-scalars. |
| 7670 | // We can't do this effectively in SDAG because we may not be able to |
| 7671 | // determine if the select operands are splats from within a basic block. |
| 7672 | Type *Ty = Fsh->getType(); |
| 7673 | if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) |
| 7674 | return false; |
| 7675 | Value *Cond, *TVal, *FVal; |
| 7676 | if (!match(V: Fsh->getOperand(i_nocapture: 2), |
| 7677 | P: m_OneUse(SubPattern: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TVal), R: m_Value(V&: FVal))))) |
| 7678 | return false; |
| 7679 | if (!isSplatValue(V: TVal) || !isSplatValue(V: FVal)) |
| 7680 | return false; |
| 7681 | |
| 7682 | IRBuilder<> Builder(Fsh); |
| 7683 | Value *X = Fsh->getOperand(i_nocapture: 0), *Y = Fsh->getOperand(i_nocapture: 1); |
| 7684 | Value *NewTVal = Builder.CreateIntrinsic(ID: Opcode, Types: Ty, Args: {X, Y, TVal}); |
| 7685 | Value *NewFVal = Builder.CreateIntrinsic(ID: Opcode, Types: Ty, Args: {X, Y, FVal}); |
| 7686 | Value *NewSel = Builder.CreateSelect(C: Cond, True: NewTVal, False: NewFVal); |
| 7687 | replaceAllUsesWith(Old: Fsh, New: NewSel, FreshBBs, IsHuge: IsHugeFunc); |
| 7688 | Fsh->eraseFromParent(); |
| 7689 | return true; |
| 7690 | } |
| 7691 | |
| 7692 | /// If we have a SelectInst that will likely profit from branch prediction, |
| 7693 | /// turn it into a branch. |
| 7694 | bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { |
| 7695 | if (DisableSelectToBranch) |
| 7696 | return false; |
| 7697 | |
| 7698 | // If the SelectOptimize pass is enabled, selects have already been optimized. |
| 7699 | if (!getCGPassBuilderOption().DisableSelectOptimize) |
| 7700 | return false; |
| 7701 | |
| 7702 | // Find all consecutive select instructions that share the same condition. |
| 7703 | SmallVector<SelectInst *, 2> ASI; |
| 7704 | ASI.push_back(Elt: SI); |
| 7705 | for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); |
| 7706 | It != SI->getParent()->end(); ++It) { |
| 7707 | SelectInst *I = dyn_cast<SelectInst>(Val: &*It); |
| 7708 | if (I && SI->getCondition() == I->getCondition()) { |
| 7709 | ASI.push_back(Elt: I); |
| 7710 | } else { |
| 7711 | break; |
| 7712 | } |
| 7713 | } |
| 7714 | |
| 7715 | SelectInst *LastSI = ASI.back(); |
| 7716 | // Increment the current iterator to skip all the rest of select instructions |
| 7717 | // because they will be either "not lowered" or "all lowered" to branch. |
| 7718 | CurInstIterator = std::next(x: LastSI->getIterator()); |
| 7719 | // Examine debug-info attached to the consecutive select instructions. They |
| 7720 | // won't be individually optimised by optimizeInst, so we need to perform |
| 7721 | // DbgVariableRecord maintenence here instead. |
| 7722 | for (SelectInst *SI : ArrayRef(ASI).drop_front()) |
| 7723 | fixupDbgVariableRecordsOnInst(I&: *SI); |
| 7724 | |
| 7725 | bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(Bitwidth: 1); |
| 7726 | |
| 7727 | // Can we convert the 'select' to CF ? |
| 7728 | if (VectorCond || SI->getMetadata(KindID: LLVMContext::MD_unpredictable)) |
| 7729 | return false; |
| 7730 | |
| 7731 | TargetLowering::SelectSupportKind SelectKind; |
| 7732 | if (SI->getType()->isVectorTy()) |
| 7733 | SelectKind = TargetLowering::ScalarCondVectorVal; |
| 7734 | else |
| 7735 | SelectKind = TargetLowering::ScalarValSelect; |
| 7736 | |
| 7737 | if (TLI->isSelectSupported(SelectKind) && |
| 7738 | (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || |
| 7739 | llvm::shouldOptimizeForSize(BB: SI->getParent(), PSI, BFI: BFI.get()))) |
| 7740 | return false; |
| 7741 | |
| 7742 | // The DominatorTree needs to be rebuilt by any consumers after this |
| 7743 | // transformation. We simply reset here rather than setting the ModifiedDT |
| 7744 | // flag to avoid restarting the function walk in runOnFunction for each |
| 7745 | // select optimized. |
| 7746 | DT.reset(); |
| 7747 | |
| 7748 | // Transform a sequence like this: |
| 7749 | // start: |
| 7750 | // %cmp = cmp uge i32 %a, %b |
| 7751 | // %sel = select i1 %cmp, i32 %c, i32 %d |
| 7752 | // |
| 7753 | // Into: |
| 7754 | // start: |
| 7755 | // %cmp = cmp uge i32 %a, %b |
| 7756 | // %cmp.frozen = freeze %cmp |
| 7757 | // br i1 %cmp.frozen, label %select.true, label %select.false |
| 7758 | // select.true: |
| 7759 | // br label %select.end |
| 7760 | // select.false: |
| 7761 | // br label %select.end |
| 7762 | // select.end: |
| 7763 | // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] |
| 7764 | // |
| 7765 | // %cmp should be frozen, otherwise it may introduce undefined behavior. |
| 7766 | // In addition, we may sink instructions that produce %c or %d from |
| 7767 | // the entry block into the destination(s) of the new branch. |
| 7768 | // If the true or false blocks do not contain a sunken instruction, that |
| 7769 | // block and its branch may be optimized away. In that case, one side of the |
| 7770 | // first branch will point directly to select.end, and the corresponding PHI |
| 7771 | // predecessor block will be the start block. |
| 7772 | |
| 7773 | // Collect values that go on the true side and the values that go on the false |
| 7774 | // side. |
| 7775 | SmallVector<Instruction *> TrueInstrs, FalseInstrs; |
| 7776 | for (SelectInst *SI : ASI) { |
| 7777 | if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) |
| 7778 | TrueInstrs.push_back(Elt: cast<Instruction>(Val: V)); |
| 7779 | if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) |
| 7780 | FalseInstrs.push_back(Elt: cast<Instruction>(Val: V)); |
| 7781 | } |
| 7782 | |
| 7783 | // Split the select block, according to how many (if any) values go on each |
| 7784 | // side. |
| 7785 | BasicBlock *StartBlock = SI->getParent(); |
| 7786 | BasicBlock::iterator SplitPt = std::next(x: BasicBlock::iterator(LastSI)); |
| 7787 | // We should split before any debug-info. |
| 7788 | SplitPt.setHeadBit(true); |
| 7789 | |
| 7790 | IRBuilder<> IB(SI); |
| 7791 | auto *CondFr = IB.CreateFreeze(V: SI->getCondition(), Name: SI->getName() + ".frozen" ); |
| 7792 | |
| 7793 | BasicBlock *TrueBlock = nullptr; |
| 7794 | BasicBlock *FalseBlock = nullptr; |
| 7795 | BasicBlock *EndBlock = nullptr; |
| 7796 | BranchInst *TrueBranch = nullptr; |
| 7797 | BranchInst *FalseBranch = nullptr; |
| 7798 | if (TrueInstrs.size() == 0) { |
| 7799 | FalseBranch = cast<BranchInst>(Val: SplitBlockAndInsertIfElse( |
| 7800 | Cond: CondFr, SplitBefore: SplitPt, Unreachable: false, BranchWeights: nullptr, DTU: nullptr, LI)); |
| 7801 | FalseBlock = FalseBranch->getParent(); |
| 7802 | EndBlock = cast<BasicBlock>(Val: FalseBranch->getOperand(i_nocapture: 0)); |
| 7803 | } else if (FalseInstrs.size() == 0) { |
| 7804 | TrueBranch = cast<BranchInst>(Val: SplitBlockAndInsertIfThen( |
| 7805 | Cond: CondFr, SplitBefore: SplitPt, Unreachable: false, BranchWeights: nullptr, DTU: nullptr, LI)); |
| 7806 | TrueBlock = TrueBranch->getParent(); |
| 7807 | EndBlock = cast<BasicBlock>(Val: TrueBranch->getOperand(i_nocapture: 0)); |
| 7808 | } else { |
| 7809 | Instruction *ThenTerm = nullptr; |
| 7810 | Instruction *ElseTerm = nullptr; |
| 7811 | SplitBlockAndInsertIfThenElse(Cond: CondFr, SplitBefore: SplitPt, ThenTerm: &ThenTerm, ElseTerm: &ElseTerm, |
| 7812 | BranchWeights: nullptr, DTU: nullptr, LI); |
| 7813 | TrueBranch = cast<BranchInst>(Val: ThenTerm); |
| 7814 | FalseBranch = cast<BranchInst>(Val: ElseTerm); |
| 7815 | TrueBlock = TrueBranch->getParent(); |
| 7816 | FalseBlock = FalseBranch->getParent(); |
| 7817 | EndBlock = cast<BasicBlock>(Val: TrueBranch->getOperand(i_nocapture: 0)); |
| 7818 | } |
| 7819 | |
| 7820 | EndBlock->setName("select.end" ); |
| 7821 | if (TrueBlock) |
| 7822 | TrueBlock->setName("select.true.sink" ); |
| 7823 | if (FalseBlock) |
| 7824 | FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" |
| 7825 | : "select.false.sink" ); |
| 7826 | |
| 7827 | if (IsHugeFunc) { |
| 7828 | if (TrueBlock) |
| 7829 | FreshBBs.insert(Ptr: TrueBlock); |
| 7830 | if (FalseBlock) |
| 7831 | FreshBBs.insert(Ptr: FalseBlock); |
| 7832 | FreshBBs.insert(Ptr: EndBlock); |
| 7833 | } |
| 7834 | |
| 7835 | BFI->setBlockFreq(BB: EndBlock, Freq: BFI->getBlockFreq(BB: StartBlock)); |
| 7836 | |
| 7837 | static const unsigned MD[] = { |
| 7838 | LLVMContext::MD_prof, LLVMContext::MD_unpredictable, |
| 7839 | LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; |
| 7840 | StartBlock->getTerminator()->copyMetadata(SrcInst: *SI, WL: MD); |
| 7841 | |
| 7842 | // Sink expensive instructions into the conditional blocks to avoid executing |
| 7843 | // them speculatively. |
| 7844 | for (Instruction *I : TrueInstrs) |
| 7845 | I->moveBefore(InsertPos: TrueBranch->getIterator()); |
| 7846 | for (Instruction *I : FalseInstrs) |
| 7847 | I->moveBefore(InsertPos: FalseBranch->getIterator()); |
| 7848 | |
| 7849 | // If we did not create a new block for one of the 'true' or 'false' paths |
| 7850 | // of the condition, it means that side of the branch goes to the end block |
| 7851 | // directly and the path originates from the start block from the point of |
| 7852 | // view of the new PHI. |
| 7853 | if (TrueBlock == nullptr) |
| 7854 | TrueBlock = StartBlock; |
| 7855 | else if (FalseBlock == nullptr) |
| 7856 | FalseBlock = StartBlock; |
| 7857 | |
| 7858 | SmallPtrSet<const Instruction *, 2> INS(llvm::from_range, ASI); |
| 7859 | // Use reverse iterator because later select may use the value of the |
| 7860 | // earlier select, and we need to propagate value through earlier select |
| 7861 | // to get the PHI operand. |
| 7862 | for (SelectInst *SI : llvm::reverse(C&: ASI)) { |
| 7863 | // The select itself is replaced with a PHI Node. |
| 7864 | PHINode *PN = PHINode::Create(Ty: SI->getType(), NumReservedValues: 2, NameStr: "" ); |
| 7865 | PN->insertBefore(InsertPos: EndBlock->begin()); |
| 7866 | PN->takeName(V: SI); |
| 7867 | PN->addIncoming(V: getTrueOrFalseValue(SI, isTrue: true, Selects: INS), BB: TrueBlock); |
| 7868 | PN->addIncoming(V: getTrueOrFalseValue(SI, isTrue: false, Selects: INS), BB: FalseBlock); |
| 7869 | PN->setDebugLoc(SI->getDebugLoc()); |
| 7870 | |
| 7871 | replaceAllUsesWith(Old: SI, New: PN, FreshBBs, IsHuge: IsHugeFunc); |
| 7872 | SI->eraseFromParent(); |
| 7873 | INS.erase(Ptr: SI); |
| 7874 | ++NumSelectsExpanded; |
| 7875 | } |
| 7876 | |
| 7877 | // Instruct OptimizeBlock to skip to the next block. |
| 7878 | CurInstIterator = StartBlock->end(); |
| 7879 | return true; |
| 7880 | } |
| 7881 | |
| 7882 | /// Some targets only accept certain types for splat inputs. For example a VDUP |
| 7883 | /// in MVE takes a GPR (integer) register, and the instruction that incorporate |
| 7884 | /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. |
| 7885 | bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { |
| 7886 | // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only |
| 7887 | if (!match(V: SVI, P: m_Shuffle(v1: m_InsertElt(Val: m_Undef(), Elt: m_Value(), Idx: m_ZeroInt()), |
| 7888 | v2: m_Undef(), mask: m_ZeroMask()))) |
| 7889 | return false; |
| 7890 | Type *NewType = TLI->shouldConvertSplatType(SVI); |
| 7891 | if (!NewType) |
| 7892 | return false; |
| 7893 | |
| 7894 | auto *SVIVecType = cast<FixedVectorType>(Val: SVI->getType()); |
| 7895 | assert(!NewType->isVectorTy() && "Expected a scalar type!" ); |
| 7896 | assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && |
| 7897 | "Expected a type of the same size!" ); |
| 7898 | auto *NewVecType = |
| 7899 | FixedVectorType::get(ElementType: NewType, NumElts: SVIVecType->getNumElements()); |
| 7900 | |
| 7901 | // Create a bitcast (shuffle (insert (bitcast(..)))) |
| 7902 | IRBuilder<> Builder(SVI->getContext()); |
| 7903 | Builder.SetInsertPoint(SVI); |
| 7904 | Value *BC1 = Builder.CreateBitCast( |
| 7905 | V: cast<Instruction>(Val: SVI->getOperand(i_nocapture: 0))->getOperand(i: 1), DestTy: NewType); |
| 7906 | Value *Shuffle = Builder.CreateVectorSplat(NumElts: NewVecType->getNumElements(), V: BC1); |
| 7907 | Value *BC2 = Builder.CreateBitCast(V: Shuffle, DestTy: SVIVecType); |
| 7908 | |
| 7909 | replaceAllUsesWith(Old: SVI, New: BC2, FreshBBs, IsHuge: IsHugeFunc); |
| 7910 | RecursivelyDeleteTriviallyDeadInstructions( |
| 7911 | V: SVI, TLI: TLInfo, MSSAU: nullptr, |
| 7912 | AboutToDeleteCallback: [&](Value *V) { removeAllAssertingVHReferences(V); }); |
| 7913 | |
| 7914 | // Also hoist the bitcast up to its operand if it they are not in the same |
| 7915 | // block. |
| 7916 | if (auto *BCI = dyn_cast<Instruction>(Val: BC1)) |
| 7917 | if (auto *Op = dyn_cast<Instruction>(Val: BCI->getOperand(i: 0))) |
| 7918 | if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Val: Op) && |
| 7919 | !Op->isTerminator() && !Op->isEHPad()) |
| 7920 | BCI->moveAfter(MovePos: Op); |
| 7921 | |
| 7922 | return true; |
| 7923 | } |
| 7924 | |
| 7925 | bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { |
| 7926 | // If the operands of I can be folded into a target instruction together with |
| 7927 | // I, duplicate and sink them. |
| 7928 | SmallVector<Use *, 4> OpsToSink; |
| 7929 | if (!TTI->isProfitableToSinkOperands(I, Ops&: OpsToSink)) |
| 7930 | return false; |
| 7931 | |
| 7932 | // OpsToSink can contain multiple uses in a use chain (e.g. |
| 7933 | // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating |
| 7934 | // uses must come first, so we process the ops in reverse order so as to not |
| 7935 | // create invalid IR. |
| 7936 | BasicBlock *TargetBB = I->getParent(); |
| 7937 | bool Changed = false; |
| 7938 | SmallVector<Use *, 4> ToReplace; |
| 7939 | Instruction *InsertPoint = I; |
| 7940 | DenseMap<const Instruction *, unsigned long> InstOrdering; |
| 7941 | unsigned long InstNumber = 0; |
| 7942 | for (const auto &I : *TargetBB) |
| 7943 | InstOrdering[&I] = InstNumber++; |
| 7944 | |
| 7945 | for (Use *U : reverse(C&: OpsToSink)) { |
| 7946 | auto *UI = cast<Instruction>(Val: U->get()); |
| 7947 | if (isa<PHINode>(Val: UI) || UI->mayHaveSideEffects() || UI->mayReadFromMemory()) |
| 7948 | continue; |
| 7949 | if (UI->getParent() == TargetBB) { |
| 7950 | if (InstOrdering[UI] < InstOrdering[InsertPoint]) |
| 7951 | InsertPoint = UI; |
| 7952 | continue; |
| 7953 | } |
| 7954 | ToReplace.push_back(Elt: U); |
| 7955 | } |
| 7956 | |
| 7957 | SetVector<Instruction *> MaybeDead; |
| 7958 | DenseMap<Instruction *, Instruction *> NewInstructions; |
| 7959 | for (Use *U : ToReplace) { |
| 7960 | auto *UI = cast<Instruction>(Val: U->get()); |
| 7961 | Instruction *NI = UI->clone(); |
| 7962 | |
| 7963 | if (IsHugeFunc) { |
| 7964 | // Now we clone an instruction, its operands' defs may sink to this BB |
| 7965 | // now. So we put the operands defs' BBs into FreshBBs to do optimization. |
| 7966 | for (Value *Op : NI->operands()) |
| 7967 | if (auto *OpDef = dyn_cast<Instruction>(Val: Op)) |
| 7968 | FreshBBs.insert(Ptr: OpDef->getParent()); |
| 7969 | } |
| 7970 | |
| 7971 | NewInstructions[UI] = NI; |
| 7972 | MaybeDead.insert(X: UI); |
| 7973 | LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n" ); |
| 7974 | NI->insertBefore(InsertPos: InsertPoint->getIterator()); |
| 7975 | InsertPoint = NI; |
| 7976 | InsertedInsts.insert(Ptr: NI); |
| 7977 | |
| 7978 | // Update the use for the new instruction, making sure that we update the |
| 7979 | // sunk instruction uses, if it is part of a chain that has already been |
| 7980 | // sunk. |
| 7981 | Instruction *OldI = cast<Instruction>(Val: U->getUser()); |
| 7982 | if (auto It = NewInstructions.find(Val: OldI); It != NewInstructions.end()) |
| 7983 | It->second->setOperand(i: U->getOperandNo(), Val: NI); |
| 7984 | else |
| 7985 | U->set(NI); |
| 7986 | Changed = true; |
| 7987 | } |
| 7988 | |
| 7989 | // Remove instructions that are dead after sinking. |
| 7990 | for (auto *I : MaybeDead) { |
| 7991 | if (!I->hasNUsesOrMore(N: 1)) { |
| 7992 | LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n" ); |
| 7993 | I->eraseFromParent(); |
| 7994 | } |
| 7995 | } |
| 7996 | |
| 7997 | return Changed; |
| 7998 | } |
| 7999 | |
| 8000 | bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { |
| 8001 | Value *Cond = SI->getCondition(); |
| 8002 | Type *OldType = Cond->getType(); |
| 8003 | LLVMContext &Context = Cond->getContext(); |
| 8004 | EVT OldVT = TLI->getValueType(DL: *DL, Ty: OldType); |
| 8005 | MVT RegType = TLI->getPreferredSwitchConditionType(Context, ConditionVT: OldVT); |
| 8006 | unsigned RegWidth = RegType.getSizeInBits(); |
| 8007 | |
| 8008 | if (RegWidth <= cast<IntegerType>(Val: OldType)->getBitWidth()) |
| 8009 | return false; |
| 8010 | |
| 8011 | // If the register width is greater than the type width, expand the condition |
| 8012 | // of the switch instruction and each case constant to the width of the |
| 8013 | // register. By widening the type of the switch condition, subsequent |
| 8014 | // comparisons (for case comparisons) will not need to be extended to the |
| 8015 | // preferred register width, so we will potentially eliminate N-1 extends, |
| 8016 | // where N is the number of cases in the switch. |
| 8017 | auto *NewType = Type::getIntNTy(C&: Context, N: RegWidth); |
| 8018 | |
| 8019 | // Extend the switch condition and case constants using the target preferred |
| 8020 | // extend unless the switch condition is a function argument with an extend |
| 8021 | // attribute. In that case, we can avoid an unnecessary mask/extension by |
| 8022 | // matching the argument extension instead. |
| 8023 | Instruction::CastOps ExtType = Instruction::ZExt; |
| 8024 | // Some targets prefer SExt over ZExt. |
| 8025 | if (TLI->isSExtCheaperThanZExt(FromTy: OldVT, ToTy: RegType)) |
| 8026 | ExtType = Instruction::SExt; |
| 8027 | |
| 8028 | if (auto *Arg = dyn_cast<Argument>(Val: Cond)) { |
| 8029 | if (Arg->hasSExtAttr()) |
| 8030 | ExtType = Instruction::SExt; |
| 8031 | if (Arg->hasZExtAttr()) |
| 8032 | ExtType = Instruction::ZExt; |
| 8033 | } |
| 8034 | |
| 8035 | auto *ExtInst = CastInst::Create(ExtType, S: Cond, Ty: NewType); |
| 8036 | ExtInst->insertBefore(InsertPos: SI->getIterator()); |
| 8037 | ExtInst->setDebugLoc(SI->getDebugLoc()); |
| 8038 | SI->setCondition(ExtInst); |
| 8039 | for (auto Case : SI->cases()) { |
| 8040 | const APInt &NarrowConst = Case.getCaseValue()->getValue(); |
| 8041 | APInt WideConst = (ExtType == Instruction::ZExt) |
| 8042 | ? NarrowConst.zext(width: RegWidth) |
| 8043 | : NarrowConst.sext(width: RegWidth); |
| 8044 | Case.setValue(ConstantInt::get(Context, V: WideConst)); |
| 8045 | } |
| 8046 | |
| 8047 | return true; |
| 8048 | } |
| 8049 | |
| 8050 | bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { |
| 8051 | // The SCCP optimization tends to produce code like this: |
| 8052 | // switch(x) { case 42: phi(42, ...) } |
| 8053 | // Materializing the constant for the phi-argument needs instructions; So we |
| 8054 | // change the code to: |
| 8055 | // switch(x) { case 42: phi(x, ...) } |
| 8056 | |
| 8057 | Value *Condition = SI->getCondition(); |
| 8058 | // Avoid endless loop in degenerate case. |
| 8059 | if (isa<ConstantInt>(Val: *Condition)) |
| 8060 | return false; |
| 8061 | |
| 8062 | bool Changed = false; |
| 8063 | BasicBlock *SwitchBB = SI->getParent(); |
| 8064 | Type *ConditionType = Condition->getType(); |
| 8065 | |
| 8066 | for (const SwitchInst::CaseHandle &Case : SI->cases()) { |
| 8067 | ConstantInt *CaseValue = Case.getCaseValue(); |
| 8068 | BasicBlock *CaseBB = Case.getCaseSuccessor(); |
| 8069 | // Set to true if we previously checked that `CaseBB` is only reached by |
| 8070 | // a single case from this switch. |
| 8071 | bool CheckedForSinglePred = false; |
| 8072 | for (PHINode &PHI : CaseBB->phis()) { |
| 8073 | Type *PHIType = PHI.getType(); |
| 8074 | // If ZExt is free then we can also catch patterns like this: |
| 8075 | // switch((i32)x) { case 42: phi((i64)42, ...); } |
| 8076 | // and replace `(i64)42` with `zext i32 %x to i64`. |
| 8077 | bool TryZExt = |
| 8078 | PHIType->isIntegerTy() && |
| 8079 | PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && |
| 8080 | TLI->isZExtFree(FromTy: ConditionType, ToTy: PHIType); |
| 8081 | if (PHIType == ConditionType || TryZExt) { |
| 8082 | // Set to true to skip this case because of multiple preds. |
| 8083 | bool SkipCase = false; |
| 8084 | Value *Replacement = nullptr; |
| 8085 | for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { |
| 8086 | Value *PHIValue = PHI.getIncomingValue(i: I); |
| 8087 | if (PHIValue != CaseValue) { |
| 8088 | if (!TryZExt) |
| 8089 | continue; |
| 8090 | ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(Val: PHIValue); |
| 8091 | if (!PHIValueInt || |
| 8092 | PHIValueInt->getValue() != |
| 8093 | CaseValue->getValue().zext(width: PHIType->getIntegerBitWidth())) |
| 8094 | continue; |
| 8095 | } |
| 8096 | if (PHI.getIncomingBlock(i: I) != SwitchBB) |
| 8097 | continue; |
| 8098 | // We cannot optimize if there are multiple case labels jumping to |
| 8099 | // this block. This check may get expensive when there are many |
| 8100 | // case labels so we test for it last. |
| 8101 | if (!CheckedForSinglePred) { |
| 8102 | CheckedForSinglePred = true; |
| 8103 | if (SI->findCaseDest(BB: CaseBB) == nullptr) { |
| 8104 | SkipCase = true; |
| 8105 | break; |
| 8106 | } |
| 8107 | } |
| 8108 | |
| 8109 | if (Replacement == nullptr) { |
| 8110 | if (PHIValue == CaseValue) { |
| 8111 | Replacement = Condition; |
| 8112 | } else { |
| 8113 | IRBuilder<> Builder(SI); |
| 8114 | Replacement = Builder.CreateZExt(V: Condition, DestTy: PHIType); |
| 8115 | } |
| 8116 | } |
| 8117 | PHI.setIncomingValue(i: I, V: Replacement); |
| 8118 | Changed = true; |
| 8119 | } |
| 8120 | if (SkipCase) |
| 8121 | break; |
| 8122 | } |
| 8123 | } |
| 8124 | } |
| 8125 | return Changed; |
| 8126 | } |
| 8127 | |
| 8128 | bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { |
| 8129 | bool Changed = optimizeSwitchType(SI); |
| 8130 | Changed |= optimizeSwitchPhiConstants(SI); |
| 8131 | return Changed; |
| 8132 | } |
| 8133 | |
| 8134 | namespace { |
| 8135 | |
| 8136 | /// Helper class to promote a scalar operation to a vector one. |
| 8137 | /// This class is used to move downward extractelement transition. |
| 8138 | /// E.g., |
| 8139 | /// a = vector_op <2 x i32> |
| 8140 | /// b = extractelement <2 x i32> a, i32 0 |
| 8141 | /// c = scalar_op b |
| 8142 | /// store c |
| 8143 | /// |
| 8144 | /// => |
| 8145 | /// a = vector_op <2 x i32> |
| 8146 | /// c = vector_op a (equivalent to scalar_op on the related lane) |
| 8147 | /// * d = extractelement <2 x i32> c, i32 0 |
| 8148 | /// * store d |
| 8149 | /// Assuming both extractelement and store can be combine, we get rid of the |
| 8150 | /// transition. |
| 8151 | class VectorPromoteHelper { |
| 8152 | /// DataLayout associated with the current module. |
| 8153 | const DataLayout &DL; |
| 8154 | |
| 8155 | /// Used to perform some checks on the legality of vector operations. |
| 8156 | const TargetLowering &TLI; |
| 8157 | |
| 8158 | /// Used to estimated the cost of the promoted chain. |
| 8159 | const TargetTransformInfo &TTI; |
| 8160 | |
| 8161 | /// The transition being moved downwards. |
| 8162 | Instruction *Transition; |
| 8163 | |
| 8164 | /// The sequence of instructions to be promoted. |
| 8165 | SmallVector<Instruction *, 4> InstsToBePromoted; |
| 8166 | |
| 8167 | /// Cost of combining a store and an extract. |
| 8168 | unsigned ; |
| 8169 | |
| 8170 | /// Instruction that will be combined with the transition. |
| 8171 | Instruction *CombineInst = nullptr; |
| 8172 | |
| 8173 | /// The instruction that represents the current end of the transition. |
| 8174 | /// Since we are faking the promotion until we reach the end of the chain |
| 8175 | /// of computation, we need a way to get the current end of the transition. |
| 8176 | Instruction *getEndOfTransition() const { |
| 8177 | if (InstsToBePromoted.empty()) |
| 8178 | return Transition; |
| 8179 | return InstsToBePromoted.back(); |
| 8180 | } |
| 8181 | |
| 8182 | /// Return the index of the original value in the transition. |
| 8183 | /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, |
| 8184 | /// c, is at index 0. |
| 8185 | unsigned getTransitionOriginalValueIdx() const { |
| 8186 | assert(isa<ExtractElementInst>(Transition) && |
| 8187 | "Other kind of transitions are not supported yet" ); |
| 8188 | return 0; |
| 8189 | } |
| 8190 | |
| 8191 | /// Return the index of the index in the transition. |
| 8192 | /// E.g., for "extractelement <2 x i32> c, i32 0" the index |
| 8193 | /// is at index 1. |
| 8194 | unsigned getTransitionIdx() const { |
| 8195 | assert(isa<ExtractElementInst>(Transition) && |
| 8196 | "Other kind of transitions are not supported yet" ); |
| 8197 | return 1; |
| 8198 | } |
| 8199 | |
| 8200 | /// Get the type of the transition. |
| 8201 | /// This is the type of the original value. |
| 8202 | /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the |
| 8203 | /// transition is <2 x i32>. |
| 8204 | Type *getTransitionType() const { |
| 8205 | return Transition->getOperand(i: getTransitionOriginalValueIdx())->getType(); |
| 8206 | } |
| 8207 | |
| 8208 | /// Promote \p ToBePromoted by moving \p Def downward through. |
| 8209 | /// I.e., we have the following sequence: |
| 8210 | /// Def = Transition <ty1> a to <ty2> |
| 8211 | /// b = ToBePromoted <ty2> Def, ... |
| 8212 | /// => |
| 8213 | /// b = ToBePromoted <ty1> a, ... |
| 8214 | /// Def = Transition <ty1> ToBePromoted to <ty2> |
| 8215 | void promoteImpl(Instruction *ToBePromoted); |
| 8216 | |
| 8217 | /// Check whether or not it is profitable to promote all the |
| 8218 | /// instructions enqueued to be promoted. |
| 8219 | bool isProfitableToPromote() { |
| 8220 | Value *ValIdx = Transition->getOperand(i: getTransitionOriginalValueIdx()); |
| 8221 | unsigned Index = isa<ConstantInt>(Val: ValIdx) |
| 8222 | ? cast<ConstantInt>(Val: ValIdx)->getZExtValue() |
| 8223 | : -1; |
| 8224 | Type *PromotedType = getTransitionType(); |
| 8225 | |
| 8226 | StoreInst *ST = cast<StoreInst>(Val: CombineInst); |
| 8227 | unsigned AS = ST->getPointerAddressSpace(); |
| 8228 | // Check if this store is supported. |
| 8229 | if (!TLI.allowsMisalignedMemoryAccesses( |
| 8230 | TLI.getValueType(DL, Ty: ST->getValueOperand()->getType()), AddrSpace: AS, |
| 8231 | Alignment: ST->getAlign())) { |
| 8232 | // If this is not supported, there is no way we can combine |
| 8233 | // the extract with the store. |
| 8234 | return false; |
| 8235 | } |
| 8236 | |
| 8237 | // The scalar chain of computation has to pay for the transition |
| 8238 | // scalar to vector. |
| 8239 | // The vector chain has to account for the combining cost. |
| 8240 | enum TargetTransformInfo::TargetCostKind CostKind = |
| 8241 | TargetTransformInfo::TCK_RecipThroughput; |
| 8242 | InstructionCost ScalarCost = |
| 8243 | TTI.getVectorInstrCost(I: *Transition, Val: PromotedType, CostKind, Index); |
| 8244 | InstructionCost VectorCost = StoreExtractCombineCost; |
| 8245 | for (const auto &Inst : InstsToBePromoted) { |
| 8246 | // Compute the cost. |
| 8247 | // By construction, all instructions being promoted are arithmetic ones. |
| 8248 | // Moreover, one argument is a constant that can be viewed as a splat |
| 8249 | // constant. |
| 8250 | Value *Arg0 = Inst->getOperand(i: 0); |
| 8251 | bool IsArg0Constant = isa<UndefValue>(Val: Arg0) || isa<ConstantInt>(Val: Arg0) || |
| 8252 | isa<ConstantFP>(Val: Arg0); |
| 8253 | TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; |
| 8254 | if (IsArg0Constant) |
| 8255 | Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; |
| 8256 | else |
| 8257 | Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; |
| 8258 | |
| 8259 | ScalarCost += TTI.getArithmeticInstrCost( |
| 8260 | Opcode: Inst->getOpcode(), Ty: Inst->getType(), CostKind, Opd1Info: Arg0Info, Opd2Info: Arg1Info); |
| 8261 | VectorCost += TTI.getArithmeticInstrCost(Opcode: Inst->getOpcode(), Ty: PromotedType, |
| 8262 | CostKind, Opd1Info: Arg0Info, Opd2Info: Arg1Info); |
| 8263 | } |
| 8264 | LLVM_DEBUG( |
| 8265 | dbgs() << "Estimated cost of computation to be promoted:\nScalar: " |
| 8266 | << ScalarCost << "\nVector: " << VectorCost << '\n'); |
| 8267 | return ScalarCost > VectorCost; |
| 8268 | } |
| 8269 | |
| 8270 | /// Generate a constant vector with \p Val with the same |
| 8271 | /// number of elements as the transition. |
| 8272 | /// \p UseSplat defines whether or not \p Val should be replicated |
| 8273 | /// across the whole vector. |
| 8274 | /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, |
| 8275 | /// otherwise we generate a vector with as many poison as possible: |
| 8276 | /// <poison, ..., poison, Val, poison, ..., poison> where \p Val is only |
| 8277 | /// used at the index of the extract. |
| 8278 | Value *getConstantVector(Constant *Val, bool UseSplat) const { |
| 8279 | unsigned = std::numeric_limits<unsigned>::max(); |
| 8280 | if (!UseSplat) { |
| 8281 | // If we cannot determine where the constant must be, we have to |
| 8282 | // use a splat constant. |
| 8283 | Value * = Transition->getOperand(i: getTransitionIdx()); |
| 8284 | if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Val: ValExtractIdx)) |
| 8285 | ExtractIdx = CstVal->getSExtValue(); |
| 8286 | else |
| 8287 | UseSplat = true; |
| 8288 | } |
| 8289 | |
| 8290 | ElementCount EC = cast<VectorType>(Val: getTransitionType())->getElementCount(); |
| 8291 | if (UseSplat) |
| 8292 | return ConstantVector::getSplat(EC, Elt: Val); |
| 8293 | |
| 8294 | if (!EC.isScalable()) { |
| 8295 | SmallVector<Constant *, 4> ConstVec; |
| 8296 | PoisonValue *PoisonVal = PoisonValue::get(T: Val->getType()); |
| 8297 | for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { |
| 8298 | if (Idx == ExtractIdx) |
| 8299 | ConstVec.push_back(Elt: Val); |
| 8300 | else |
| 8301 | ConstVec.push_back(Elt: PoisonVal); |
| 8302 | } |
| 8303 | return ConstantVector::get(V: ConstVec); |
| 8304 | } else |
| 8305 | llvm_unreachable( |
| 8306 | "Generate scalable vector for non-splat is unimplemented" ); |
| 8307 | } |
| 8308 | |
| 8309 | /// Check if promoting to a vector type an operand at \p OperandIdx |
| 8310 | /// in \p Use can trigger undefined behavior. |
| 8311 | static bool canCauseUndefinedBehavior(const Instruction *Use, |
| 8312 | unsigned OperandIdx) { |
| 8313 | // This is not safe to introduce undef when the operand is on |
| 8314 | // the right hand side of a division-like instruction. |
| 8315 | if (OperandIdx != 1) |
| 8316 | return false; |
| 8317 | switch (Use->getOpcode()) { |
| 8318 | default: |
| 8319 | return false; |
| 8320 | case Instruction::SDiv: |
| 8321 | case Instruction::UDiv: |
| 8322 | case Instruction::SRem: |
| 8323 | case Instruction::URem: |
| 8324 | return true; |
| 8325 | case Instruction::FDiv: |
| 8326 | case Instruction::FRem: |
| 8327 | return !Use->hasNoNaNs(); |
| 8328 | } |
| 8329 | llvm_unreachable(nullptr); |
| 8330 | } |
| 8331 | |
| 8332 | public: |
| 8333 | VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, |
| 8334 | const TargetTransformInfo &TTI, Instruction *Transition, |
| 8335 | unsigned CombineCost) |
| 8336 | : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), |
| 8337 | StoreExtractCombineCost(CombineCost) { |
| 8338 | assert(Transition && "Do not know how to promote null" ); |
| 8339 | } |
| 8340 | |
| 8341 | /// Check if we can promote \p ToBePromoted to \p Type. |
| 8342 | bool canPromote(const Instruction *ToBePromoted) const { |
| 8343 | // We could support CastInst too. |
| 8344 | return isa<BinaryOperator>(Val: ToBePromoted); |
| 8345 | } |
| 8346 | |
| 8347 | /// Check if it is profitable to promote \p ToBePromoted |
| 8348 | /// by moving downward the transition through. |
| 8349 | bool shouldPromote(const Instruction *ToBePromoted) const { |
| 8350 | // Promote only if all the operands can be statically expanded. |
| 8351 | // Indeed, we do not want to introduce any new kind of transitions. |
| 8352 | for (const Use &U : ToBePromoted->operands()) { |
| 8353 | const Value *Val = U.get(); |
| 8354 | if (Val == getEndOfTransition()) { |
| 8355 | // If the use is a division and the transition is on the rhs, |
| 8356 | // we cannot promote the operation, otherwise we may create a |
| 8357 | // division by zero. |
| 8358 | if (canCauseUndefinedBehavior(Use: ToBePromoted, OperandIdx: U.getOperandNo())) |
| 8359 | return false; |
| 8360 | continue; |
| 8361 | } |
| 8362 | if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && |
| 8363 | !isa<ConstantFP>(Val)) |
| 8364 | return false; |
| 8365 | } |
| 8366 | // Check that the resulting operation is legal. |
| 8367 | int ISDOpcode = TLI.InstructionOpcodeToISD(Opcode: ToBePromoted->getOpcode()); |
| 8368 | if (!ISDOpcode) |
| 8369 | return false; |
| 8370 | return StressStoreExtract || |
| 8371 | TLI.isOperationLegalOrCustom( |
| 8372 | Op: ISDOpcode, VT: TLI.getValueType(DL, Ty: getTransitionType(), AllowUnknown: true)); |
| 8373 | } |
| 8374 | |
| 8375 | /// Check whether or not \p Use can be combined |
| 8376 | /// with the transition. |
| 8377 | /// I.e., is it possible to do Use(Transition) => AnotherUse? |
| 8378 | bool canCombine(const Instruction *Use) { return isa<StoreInst>(Val: Use); } |
| 8379 | |
| 8380 | /// Record \p ToBePromoted as part of the chain to be promoted. |
| 8381 | void enqueueForPromotion(Instruction *ToBePromoted) { |
| 8382 | InstsToBePromoted.push_back(Elt: ToBePromoted); |
| 8383 | } |
| 8384 | |
| 8385 | /// Set the instruction that will be combined with the transition. |
| 8386 | void recordCombineInstruction(Instruction *ToBeCombined) { |
| 8387 | assert(canCombine(ToBeCombined) && "Unsupported instruction to combine" ); |
| 8388 | CombineInst = ToBeCombined; |
| 8389 | } |
| 8390 | |
| 8391 | /// Promote all the instructions enqueued for promotion if it is |
| 8392 | /// is profitable. |
| 8393 | /// \return True if the promotion happened, false otherwise. |
| 8394 | bool promote() { |
| 8395 | // Check if there is something to promote. |
| 8396 | // Right now, if we do not have anything to combine with, |
| 8397 | // we assume the promotion is not profitable. |
| 8398 | if (InstsToBePromoted.empty() || !CombineInst) |
| 8399 | return false; |
| 8400 | |
| 8401 | // Check cost. |
| 8402 | if (!StressStoreExtract && !isProfitableToPromote()) |
| 8403 | return false; |
| 8404 | |
| 8405 | // Promote. |
| 8406 | for (auto &ToBePromoted : InstsToBePromoted) |
| 8407 | promoteImpl(ToBePromoted); |
| 8408 | InstsToBePromoted.clear(); |
| 8409 | return true; |
| 8410 | } |
| 8411 | }; |
| 8412 | |
| 8413 | } // end anonymous namespace |
| 8414 | |
| 8415 | void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { |
| 8416 | // At this point, we know that all the operands of ToBePromoted but Def |
| 8417 | // can be statically promoted. |
| 8418 | // For Def, we need to use its parameter in ToBePromoted: |
| 8419 | // b = ToBePromoted ty1 a |
| 8420 | // Def = Transition ty1 b to ty2 |
| 8421 | // Move the transition down. |
| 8422 | // 1. Replace all uses of the promoted operation by the transition. |
| 8423 | // = ... b => = ... Def. |
| 8424 | assert(ToBePromoted->getType() == Transition->getType() && |
| 8425 | "The type of the result of the transition does not match " |
| 8426 | "the final type" ); |
| 8427 | ToBePromoted->replaceAllUsesWith(V: Transition); |
| 8428 | // 2. Update the type of the uses. |
| 8429 | // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. |
| 8430 | Type *TransitionTy = getTransitionType(); |
| 8431 | ToBePromoted->mutateType(Ty: TransitionTy); |
| 8432 | // 3. Update all the operands of the promoted operation with promoted |
| 8433 | // operands. |
| 8434 | // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. |
| 8435 | for (Use &U : ToBePromoted->operands()) { |
| 8436 | Value *Val = U.get(); |
| 8437 | Value *NewVal = nullptr; |
| 8438 | if (Val == Transition) |
| 8439 | NewVal = Transition->getOperand(i: getTransitionOriginalValueIdx()); |
| 8440 | else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || |
| 8441 | isa<ConstantFP>(Val)) { |
| 8442 | // Use a splat constant if it is not safe to use undef. |
| 8443 | NewVal = getConstantVector( |
| 8444 | Val: cast<Constant>(Val), |
| 8445 | UseSplat: isa<UndefValue>(Val) || |
| 8446 | canCauseUndefinedBehavior(Use: ToBePromoted, OperandIdx: U.getOperandNo())); |
| 8447 | } else |
| 8448 | llvm_unreachable("Did you modified shouldPromote and forgot to update " |
| 8449 | "this?" ); |
| 8450 | ToBePromoted->setOperand(i: U.getOperandNo(), Val: NewVal); |
| 8451 | } |
| 8452 | Transition->moveAfter(MovePos: ToBePromoted); |
| 8453 | Transition->setOperand(i: getTransitionOriginalValueIdx(), Val: ToBePromoted); |
| 8454 | } |
| 8455 | |
| 8456 | /// Some targets can do store(extractelement) with one instruction. |
| 8457 | /// Try to push the extractelement towards the stores when the target |
| 8458 | /// has this feature and this is profitable. |
| 8459 | bool CodeGenPrepare::(Instruction *Inst) { |
| 8460 | unsigned CombineCost = std::numeric_limits<unsigned>::max(); |
| 8461 | if (DisableStoreExtract || |
| 8462 | (!StressStoreExtract && |
| 8463 | !TLI->canCombineStoreAndExtract(VectorTy: Inst->getOperand(i: 0)->getType(), |
| 8464 | Idx: Inst->getOperand(i: 1), Cost&: CombineCost))) |
| 8465 | return false; |
| 8466 | |
| 8467 | // At this point we know that Inst is a vector to scalar transition. |
| 8468 | // Try to move it down the def-use chain, until: |
| 8469 | // - We can combine the transition with its single use |
| 8470 | // => we got rid of the transition. |
| 8471 | // - We escape the current basic block |
| 8472 | // => we would need to check that we are moving it at a cheaper place and |
| 8473 | // we do not do that for now. |
| 8474 | BasicBlock *Parent = Inst->getParent(); |
| 8475 | LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); |
| 8476 | VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); |
| 8477 | // If the transition has more than one use, assume this is not going to be |
| 8478 | // beneficial. |
| 8479 | while (Inst->hasOneUse()) { |
| 8480 | Instruction *ToBePromoted = cast<Instruction>(Val: *Inst->user_begin()); |
| 8481 | LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); |
| 8482 | |
| 8483 | if (ToBePromoted->getParent() != Parent) { |
| 8484 | LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" |
| 8485 | << ToBePromoted->getParent()->getName() |
| 8486 | << ") than the transition (" << Parent->getName() |
| 8487 | << ").\n" ); |
| 8488 | return false; |
| 8489 | } |
| 8490 | |
| 8491 | if (VPH.canCombine(Use: ToBePromoted)) { |
| 8492 | LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' |
| 8493 | << "will be combined with: " << *ToBePromoted << '\n'); |
| 8494 | VPH.recordCombineInstruction(ToBeCombined: ToBePromoted); |
| 8495 | bool Changed = VPH.promote(); |
| 8496 | NumStoreExtractExposed += Changed; |
| 8497 | return Changed; |
| 8498 | } |
| 8499 | |
| 8500 | LLVM_DEBUG(dbgs() << "Try promoting.\n" ); |
| 8501 | if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) |
| 8502 | return false; |
| 8503 | |
| 8504 | LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n" ); |
| 8505 | |
| 8506 | VPH.enqueueForPromotion(ToBePromoted); |
| 8507 | Inst = ToBePromoted; |
| 8508 | } |
| 8509 | return false; |
| 8510 | } |
| 8511 | |
| 8512 | /// For the instruction sequence of store below, F and I values |
| 8513 | /// are bundled together as an i64 value before being stored into memory. |
| 8514 | /// Sometimes it is more efficient to generate separate stores for F and I, |
| 8515 | /// which can remove the bitwise instructions or sink them to colder places. |
| 8516 | /// |
| 8517 | /// (store (or (zext (bitcast F to i32) to i64), |
| 8518 | /// (shl (zext I to i64), 32)), addr) --> |
| 8519 | /// (store F, addr) and (store I, addr+4) |
| 8520 | /// |
| 8521 | /// Similarly, splitting for other merged store can also be beneficial, like: |
| 8522 | /// For pair of {i32, i32}, i64 store --> two i32 stores. |
| 8523 | /// For pair of {i32, i16}, i64 store --> two i32 stores. |
| 8524 | /// For pair of {i16, i16}, i32 store --> two i16 stores. |
| 8525 | /// For pair of {i16, i8}, i32 store --> two i16 stores. |
| 8526 | /// For pair of {i8, i8}, i16 store --> two i8 stores. |
| 8527 | /// |
| 8528 | /// We allow each target to determine specifically which kind of splitting is |
| 8529 | /// supported. |
| 8530 | /// |
| 8531 | /// The store patterns are commonly seen from the simple code snippet below |
| 8532 | /// if only std::make_pair(...) is sroa transformed before inlined into hoo. |
| 8533 | /// void goo(const std::pair<int, float> &); |
| 8534 | /// hoo() { |
| 8535 | /// ... |
| 8536 | /// goo(std::make_pair(tmp, ftmp)); |
| 8537 | /// ... |
| 8538 | /// } |
| 8539 | /// |
| 8540 | /// Although we already have similar splitting in DAG Combine, we duplicate |
| 8541 | /// it in CodeGenPrepare to catch the case in which pattern is across |
| 8542 | /// multiple BBs. The logic in DAG Combine is kept to catch case generated |
| 8543 | /// during code expansion. |
| 8544 | static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, |
| 8545 | const TargetLowering &TLI) { |
| 8546 | // Handle simple but common cases only. |
| 8547 | Type *StoreType = SI.getValueOperand()->getType(); |
| 8548 | |
| 8549 | // The code below assumes shifting a value by <number of bits>, |
| 8550 | // whereas scalable vectors would have to be shifted by |
| 8551 | // <2log(vscale) + number of bits> in order to store the |
| 8552 | // low/high parts. Bailing out for now. |
| 8553 | if (StoreType->isScalableTy()) |
| 8554 | return false; |
| 8555 | |
| 8556 | if (!DL.typeSizeEqualsStoreSize(Ty: StoreType) || |
| 8557 | DL.getTypeSizeInBits(Ty: StoreType) == 0) |
| 8558 | return false; |
| 8559 | |
| 8560 | unsigned HalfValBitSize = DL.getTypeSizeInBits(Ty: StoreType) / 2; |
| 8561 | Type *SplitStoreType = Type::getIntNTy(C&: SI.getContext(), N: HalfValBitSize); |
| 8562 | if (!DL.typeSizeEqualsStoreSize(Ty: SplitStoreType)) |
| 8563 | return false; |
| 8564 | |
| 8565 | // Don't split the store if it is volatile. |
| 8566 | if (SI.isVolatile()) |
| 8567 | return false; |
| 8568 | |
| 8569 | // Match the following patterns: |
| 8570 | // (store (or (zext LValue to i64), |
| 8571 | // (shl (zext HValue to i64), 32)), HalfValBitSize) |
| 8572 | // or |
| 8573 | // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) |
| 8574 | // (zext LValue to i64), |
| 8575 | // Expect both operands of OR and the first operand of SHL have only |
| 8576 | // one use. |
| 8577 | Value *LValue, *HValue; |
| 8578 | if (!match(V: SI.getValueOperand(), |
| 8579 | P: m_c_Or(L: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: LValue))), |
| 8580 | R: m_OneUse(SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: HValue))), |
| 8581 | R: m_SpecificInt(V: HalfValBitSize)))))) |
| 8582 | return false; |
| 8583 | |
| 8584 | // Check LValue and HValue are int with size less or equal than 32. |
| 8585 | if (!LValue->getType()->isIntegerTy() || |
| 8586 | DL.getTypeSizeInBits(Ty: LValue->getType()) > HalfValBitSize || |
| 8587 | !HValue->getType()->isIntegerTy() || |
| 8588 | DL.getTypeSizeInBits(Ty: HValue->getType()) > HalfValBitSize) |
| 8589 | return false; |
| 8590 | |
| 8591 | // If LValue/HValue is a bitcast instruction, use the EVT before bitcast |
| 8592 | // as the input of target query. |
| 8593 | auto *LBC = dyn_cast<BitCastInst>(Val: LValue); |
| 8594 | auto *HBC = dyn_cast<BitCastInst>(Val: HValue); |
| 8595 | EVT LowTy = LBC ? EVT::getEVT(Ty: LBC->getOperand(i_nocapture: 0)->getType()) |
| 8596 | : EVT::getEVT(Ty: LValue->getType()); |
| 8597 | EVT HighTy = HBC ? EVT::getEVT(Ty: HBC->getOperand(i_nocapture: 0)->getType()) |
| 8598 | : EVT::getEVT(Ty: HValue->getType()); |
| 8599 | if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LTy: LowTy, HTy: HighTy)) |
| 8600 | return false; |
| 8601 | |
| 8602 | // Start to split store. |
| 8603 | IRBuilder<> Builder(SI.getContext()); |
| 8604 | Builder.SetInsertPoint(&SI); |
| 8605 | |
| 8606 | // If LValue/HValue is a bitcast in another BB, create a new one in current |
| 8607 | // BB so it may be merged with the splitted stores by dag combiner. |
| 8608 | if (LBC && LBC->getParent() != SI.getParent()) |
| 8609 | LValue = Builder.CreateBitCast(V: LBC->getOperand(i_nocapture: 0), DestTy: LBC->getType()); |
| 8610 | if (HBC && HBC->getParent() != SI.getParent()) |
| 8611 | HValue = Builder.CreateBitCast(V: HBC->getOperand(i_nocapture: 0), DestTy: HBC->getType()); |
| 8612 | |
| 8613 | bool IsLE = SI.getDataLayout().isLittleEndian(); |
| 8614 | auto CreateSplitStore = [&](Value *V, bool Upper) { |
| 8615 | V = Builder.CreateZExtOrBitCast(V, DestTy: SplitStoreType); |
| 8616 | Value *Addr = SI.getPointerOperand(); |
| 8617 | Align Alignment = SI.getAlign(); |
| 8618 | const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); |
| 8619 | if (IsOffsetStore) { |
| 8620 | Addr = Builder.CreateGEP( |
| 8621 | Ty: SplitStoreType, Ptr: Addr, |
| 8622 | IdxList: ConstantInt::get(Ty: Type::getInt32Ty(C&: SI.getContext()), V: 1)); |
| 8623 | |
| 8624 | // When splitting the store in half, naturally one half will retain the |
| 8625 | // alignment of the original wider store, regardless of whether it was |
| 8626 | // over-aligned or not, while the other will require adjustment. |
| 8627 | Alignment = commonAlignment(A: Alignment, Offset: HalfValBitSize / 8); |
| 8628 | } |
| 8629 | Builder.CreateAlignedStore(Val: V, Ptr: Addr, Align: Alignment); |
| 8630 | }; |
| 8631 | |
| 8632 | CreateSplitStore(LValue, false); |
| 8633 | CreateSplitStore(HValue, true); |
| 8634 | |
| 8635 | // Delete the old store. |
| 8636 | SI.eraseFromParent(); |
| 8637 | return true; |
| 8638 | } |
| 8639 | |
| 8640 | // Return true if the GEP has two operands, the first operand is of a sequential |
| 8641 | // type, and the second operand is a constant. |
| 8642 | static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { |
| 8643 | gep_type_iterator I = gep_type_begin(GEP: *GEP); |
| 8644 | return GEP->getNumOperands() == 2 && I.isSequential() && |
| 8645 | isa<ConstantInt>(Val: GEP->getOperand(i_nocapture: 1)); |
| 8646 | } |
| 8647 | |
| 8648 | // Try unmerging GEPs to reduce liveness interference (register pressure) across |
| 8649 | // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, |
| 8650 | // reducing liveness interference across those edges benefits global register |
| 8651 | // allocation. Currently handles only certain cases. |
| 8652 | // |
| 8653 | // For example, unmerge %GEPI and %UGEPI as below. |
| 8654 | // |
| 8655 | // ---------- BEFORE ---------- |
| 8656 | // SrcBlock: |
| 8657 | // ... |
| 8658 | // %GEPIOp = ... |
| 8659 | // ... |
| 8660 | // %GEPI = gep %GEPIOp, Idx |
| 8661 | // ... |
| 8662 | // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] |
| 8663 | // (* %GEPI is alive on the indirectbr edges due to other uses ahead) |
| 8664 | // (* %GEPIOp is alive on the indirectbr edges only because of it's used by |
| 8665 | // %UGEPI) |
| 8666 | // |
| 8667 | // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) |
| 8668 | // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) |
| 8669 | // ... |
| 8670 | // |
| 8671 | // DstBi: |
| 8672 | // ... |
| 8673 | // %UGEPI = gep %GEPIOp, UIdx |
| 8674 | // ... |
| 8675 | // --------------------------- |
| 8676 | // |
| 8677 | // ---------- AFTER ---------- |
| 8678 | // SrcBlock: |
| 8679 | // ... (same as above) |
| 8680 | // (* %GEPI is still alive on the indirectbr edges) |
| 8681 | // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the |
| 8682 | // unmerging) |
| 8683 | // ... |
| 8684 | // |
| 8685 | // DstBi: |
| 8686 | // ... |
| 8687 | // %UGEPI = gep %GEPI, (UIdx-Idx) |
| 8688 | // ... |
| 8689 | // --------------------------- |
| 8690 | // |
| 8691 | // The register pressure on the IndirectBr edges is reduced because %GEPIOp is |
| 8692 | // no longer alive on them. |
| 8693 | // |
| 8694 | // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging |
| 8695 | // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as |
| 8696 | // not to disable further simplications and optimizations as a result of GEP |
| 8697 | // merging. |
| 8698 | // |
| 8699 | // Note this unmerging may increase the length of the data flow critical path |
| 8700 | // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff |
| 8701 | // between the register pressure and the length of data-flow critical |
| 8702 | // path. Restricting this to the uncommon IndirectBr case would minimize the |
| 8703 | // impact of potentially longer critical path, if any, and the impact on compile |
| 8704 | // time. |
| 8705 | static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, |
| 8706 | const TargetTransformInfo *TTI) { |
| 8707 | BasicBlock *SrcBlock = GEPI->getParent(); |
| 8708 | // Check that SrcBlock ends with an IndirectBr. If not, give up. The common |
| 8709 | // (non-IndirectBr) cases exit early here. |
| 8710 | if (!isa<IndirectBrInst>(Val: SrcBlock->getTerminator())) |
| 8711 | return false; |
| 8712 | // Check that GEPI is a simple gep with a single constant index. |
| 8713 | if (!GEPSequentialConstIndexed(GEP: GEPI)) |
| 8714 | return false; |
| 8715 | ConstantInt *GEPIIdx = cast<ConstantInt>(Val: GEPI->getOperand(i_nocapture: 1)); |
| 8716 | // Check that GEPI is a cheap one. |
| 8717 | if (TTI->getIntImmCost(Imm: GEPIIdx->getValue(), Ty: GEPIIdx->getType(), |
| 8718 | CostKind: TargetTransformInfo::TCK_SizeAndLatency) > |
| 8719 | TargetTransformInfo::TCC_Basic) |
| 8720 | return false; |
| 8721 | Value *GEPIOp = GEPI->getOperand(i_nocapture: 0); |
| 8722 | // Check that GEPIOp is an instruction that's also defined in SrcBlock. |
| 8723 | if (!isa<Instruction>(Val: GEPIOp)) |
| 8724 | return false; |
| 8725 | auto *GEPIOpI = cast<Instruction>(Val: GEPIOp); |
| 8726 | if (GEPIOpI->getParent() != SrcBlock) |
| 8727 | return false; |
| 8728 | // Check that GEP is used outside the block, meaning it's alive on the |
| 8729 | // IndirectBr edge(s). |
| 8730 | if (llvm::none_of(Range: GEPI->users(), P: [&](User *Usr) { |
| 8731 | if (auto *I = dyn_cast<Instruction>(Val: Usr)) { |
| 8732 | if (I->getParent() != SrcBlock) { |
| 8733 | return true; |
| 8734 | } |
| 8735 | } |
| 8736 | return false; |
| 8737 | })) |
| 8738 | return false; |
| 8739 | // The second elements of the GEP chains to be unmerged. |
| 8740 | std::vector<GetElementPtrInst *> UGEPIs; |
| 8741 | // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive |
| 8742 | // on IndirectBr edges. |
| 8743 | for (User *Usr : GEPIOp->users()) { |
| 8744 | if (Usr == GEPI) |
| 8745 | continue; |
| 8746 | // Check if Usr is an Instruction. If not, give up. |
| 8747 | if (!isa<Instruction>(Val: Usr)) |
| 8748 | return false; |
| 8749 | auto *UI = cast<Instruction>(Val: Usr); |
| 8750 | // Check if Usr in the same block as GEPIOp, which is fine, skip. |
| 8751 | if (UI->getParent() == SrcBlock) |
| 8752 | continue; |
| 8753 | // Check if Usr is a GEP. If not, give up. |
| 8754 | if (!isa<GetElementPtrInst>(Val: Usr)) |
| 8755 | return false; |
| 8756 | auto *UGEPI = cast<GetElementPtrInst>(Val: Usr); |
| 8757 | // Check if UGEPI is a simple gep with a single constant index and GEPIOp is |
| 8758 | // the pointer operand to it. If so, record it in the vector. If not, give |
| 8759 | // up. |
| 8760 | if (!GEPSequentialConstIndexed(GEP: UGEPI)) |
| 8761 | return false; |
| 8762 | if (UGEPI->getOperand(i_nocapture: 0) != GEPIOp) |
| 8763 | return false; |
| 8764 | if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) |
| 8765 | return false; |
| 8766 | if (GEPIIdx->getType() != |
| 8767 | cast<ConstantInt>(Val: UGEPI->getOperand(i_nocapture: 1))->getType()) |
| 8768 | return false; |
| 8769 | ConstantInt *UGEPIIdx = cast<ConstantInt>(Val: UGEPI->getOperand(i_nocapture: 1)); |
| 8770 | if (TTI->getIntImmCost(Imm: UGEPIIdx->getValue(), Ty: UGEPIIdx->getType(), |
| 8771 | CostKind: TargetTransformInfo::TCK_SizeAndLatency) > |
| 8772 | TargetTransformInfo::TCC_Basic) |
| 8773 | return false; |
| 8774 | UGEPIs.push_back(x: UGEPI); |
| 8775 | } |
| 8776 | if (UGEPIs.size() == 0) |
| 8777 | return false; |
| 8778 | // Check the materializing cost of (Uidx-Idx). |
| 8779 | for (GetElementPtrInst *UGEPI : UGEPIs) { |
| 8780 | ConstantInt *UGEPIIdx = cast<ConstantInt>(Val: UGEPI->getOperand(i_nocapture: 1)); |
| 8781 | APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); |
| 8782 | InstructionCost ImmCost = TTI->getIntImmCost( |
| 8783 | Imm: NewIdx, Ty: GEPIIdx->getType(), CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
| 8784 | if (ImmCost > TargetTransformInfo::TCC_Basic) |
| 8785 | return false; |
| 8786 | } |
| 8787 | // Now unmerge between GEPI and UGEPIs. |
| 8788 | for (GetElementPtrInst *UGEPI : UGEPIs) { |
| 8789 | UGEPI->setOperand(i_nocapture: 0, Val_nocapture: GEPI); |
| 8790 | ConstantInt *UGEPIIdx = cast<ConstantInt>(Val: UGEPI->getOperand(i_nocapture: 1)); |
| 8791 | Constant *NewUGEPIIdx = ConstantInt::get( |
| 8792 | Ty: GEPIIdx->getType(), V: UGEPIIdx->getValue() - GEPIIdx->getValue()); |
| 8793 | UGEPI->setOperand(i_nocapture: 1, Val_nocapture: NewUGEPIIdx); |
| 8794 | // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not |
| 8795 | // inbounds to avoid UB. |
| 8796 | if (!GEPI->isInBounds()) { |
| 8797 | UGEPI->setIsInBounds(false); |
| 8798 | } |
| 8799 | } |
| 8800 | // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not |
| 8801 | // alive on IndirectBr edges). |
| 8802 | assert(llvm::none_of(GEPIOp->users(), |
| 8803 | [&](User *Usr) { |
| 8804 | return cast<Instruction>(Usr)->getParent() != SrcBlock; |
| 8805 | }) && |
| 8806 | "GEPIOp is used outside SrcBlock" ); |
| 8807 | return true; |
| 8808 | } |
| 8809 | |
| 8810 | static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, |
| 8811 | SmallPtrSet<BasicBlock *, 32> &FreshBBs, |
| 8812 | bool IsHugeFunc) { |
| 8813 | // Try and convert |
| 8814 | // %c = icmp ult %x, 8 |
| 8815 | // br %c, bla, blb |
| 8816 | // %tc = lshr %x, 3 |
| 8817 | // to |
| 8818 | // %tc = lshr %x, 3 |
| 8819 | // %c = icmp eq %tc, 0 |
| 8820 | // br %c, bla, blb |
| 8821 | // Creating the cmp to zero can be better for the backend, especially if the |
| 8822 | // lshr produces flags that can be used automatically. |
| 8823 | if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) |
| 8824 | return false; |
| 8825 | |
| 8826 | ICmpInst *Cmp = dyn_cast<ICmpInst>(Val: Branch->getCondition()); |
| 8827 | if (!Cmp || !isa<ConstantInt>(Val: Cmp->getOperand(i_nocapture: 1)) || !Cmp->hasOneUse()) |
| 8828 | return false; |
| 8829 | |
| 8830 | Value *X = Cmp->getOperand(i_nocapture: 0); |
| 8831 | if (!X->hasUseList()) |
| 8832 | return false; |
| 8833 | |
| 8834 | APInt CmpC = cast<ConstantInt>(Val: Cmp->getOperand(i_nocapture: 1))->getValue(); |
| 8835 | |
| 8836 | for (auto *U : X->users()) { |
| 8837 | Instruction *UI = dyn_cast<Instruction>(Val: U); |
| 8838 | // A quick dominance check |
| 8839 | if (!UI || |
| 8840 | (UI->getParent() != Branch->getParent() && |
| 8841 | UI->getParent() != Branch->getSuccessor(i: 0) && |
| 8842 | UI->getParent() != Branch->getSuccessor(i: 1)) || |
| 8843 | (UI->getParent() != Branch->getParent() && |
| 8844 | !UI->getParent()->getSinglePredecessor())) |
| 8845 | continue; |
| 8846 | |
| 8847 | if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && |
| 8848 | match(V: UI, P: m_Shr(L: m_Specific(V: X), R: m_SpecificInt(V: CmpC.logBase2())))) { |
| 8849 | IRBuilder<> Builder(Branch); |
| 8850 | if (UI->getParent() != Branch->getParent()) |
| 8851 | UI->moveBefore(InsertPos: Branch->getIterator()); |
| 8852 | UI->dropPoisonGeneratingFlags(); |
| 8853 | Value *NewCmp = Builder.CreateCmp(Pred: ICmpInst::ICMP_EQ, LHS: UI, |
| 8854 | RHS: ConstantInt::get(Ty: UI->getType(), V: 0)); |
| 8855 | LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n" ); |
| 8856 | LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n" ); |
| 8857 | replaceAllUsesWith(Old: Cmp, New: NewCmp, FreshBBs, IsHuge: IsHugeFunc); |
| 8858 | return true; |
| 8859 | } |
| 8860 | if (Cmp->isEquality() && |
| 8861 | (match(V: UI, P: m_Add(L: m_Specific(V: X), R: m_SpecificInt(V: -CmpC))) || |
| 8862 | match(V: UI, P: m_Sub(L: m_Specific(V: X), R: m_SpecificInt(V: CmpC))) || |
| 8863 | match(V: UI, P: m_Xor(L: m_Specific(V: X), R: m_SpecificInt(V: CmpC))))) { |
| 8864 | IRBuilder<> Builder(Branch); |
| 8865 | if (UI->getParent() != Branch->getParent()) |
| 8866 | UI->moveBefore(InsertPos: Branch->getIterator()); |
| 8867 | UI->dropPoisonGeneratingFlags(); |
| 8868 | Value *NewCmp = Builder.CreateCmp(Pred: Cmp->getPredicate(), LHS: UI, |
| 8869 | RHS: ConstantInt::get(Ty: UI->getType(), V: 0)); |
| 8870 | LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n" ); |
| 8871 | LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n" ); |
| 8872 | replaceAllUsesWith(Old: Cmp, New: NewCmp, FreshBBs, IsHuge: IsHugeFunc); |
| 8873 | return true; |
| 8874 | } |
| 8875 | } |
| 8876 | return false; |
| 8877 | } |
| 8878 | |
| 8879 | bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { |
| 8880 | bool AnyChange = false; |
| 8881 | AnyChange = fixupDbgVariableRecordsOnInst(I&: *I); |
| 8882 | |
| 8883 | // Bail out if we inserted the instruction to prevent optimizations from |
| 8884 | // stepping on each other's toes. |
| 8885 | if (InsertedInsts.count(Ptr: I)) |
| 8886 | return AnyChange; |
| 8887 | |
| 8888 | // TODO: Move into the switch on opcode below here. |
| 8889 | if (PHINode *P = dyn_cast<PHINode>(Val: I)) { |
| 8890 | // It is possible for very late stage optimizations (such as SimplifyCFG) |
| 8891 | // to introduce PHI nodes too late to be cleaned up. If we detect such a |
| 8892 | // trivial PHI, go ahead and zap it here. |
| 8893 | if (Value *V = simplifyInstruction(I: P, Q: {*DL, TLInfo})) { |
| 8894 | LargeOffsetGEPMap.erase(Key: P); |
| 8895 | replaceAllUsesWith(Old: P, New: V, FreshBBs, IsHuge: IsHugeFunc); |
| 8896 | P->eraseFromParent(); |
| 8897 | ++NumPHIsElim; |
| 8898 | return true; |
| 8899 | } |
| 8900 | return AnyChange; |
| 8901 | } |
| 8902 | |
| 8903 | if (CastInst *CI = dyn_cast<CastInst>(Val: I)) { |
| 8904 | // If the source of the cast is a constant, then this should have |
| 8905 | // already been constant folded. The only reason NOT to constant fold |
| 8906 | // it is if something (e.g. LSR) was careful to place the constant |
| 8907 | // evaluation in a block other than then one that uses it (e.g. to hoist |
| 8908 | // the address of globals out of a loop). If this is the case, we don't |
| 8909 | // want to forward-subst the cast. |
| 8910 | if (isa<Constant>(Val: CI->getOperand(i_nocapture: 0))) |
| 8911 | return AnyChange; |
| 8912 | |
| 8913 | if (OptimizeNoopCopyExpression(CI, TLI: *TLI, DL: *DL)) |
| 8914 | return true; |
| 8915 | |
| 8916 | if ((isa<UIToFPInst>(Val: I) || isa<SIToFPInst>(Val: I) || isa<FPToUIInst>(Val: I) || |
| 8917 | isa<TruncInst>(Val: I)) && |
| 8918 | TLI->optimizeExtendOrTruncateConversion( |
| 8919 | I, L: LI->getLoopFor(BB: I->getParent()), TTI: *TTI)) |
| 8920 | return true; |
| 8921 | |
| 8922 | if (isa<ZExtInst>(Val: I) || isa<SExtInst>(Val: I)) { |
| 8923 | /// Sink a zext or sext into its user blocks if the target type doesn't |
| 8924 | /// fit in one register |
| 8925 | if (TLI->getTypeAction(Context&: CI->getContext(), |
| 8926 | VT: TLI->getValueType(DL: *DL, Ty: CI->getType())) == |
| 8927 | TargetLowering::TypeExpandInteger) { |
| 8928 | return SinkCast(CI); |
| 8929 | } else { |
| 8930 | if (TLI->optimizeExtendOrTruncateConversion( |
| 8931 | I, L: LI->getLoopFor(BB: I->getParent()), TTI: *TTI)) |
| 8932 | return true; |
| 8933 | |
| 8934 | bool MadeChange = optimizeExt(Inst&: I); |
| 8935 | return MadeChange | optimizeExtUses(I); |
| 8936 | } |
| 8937 | } |
| 8938 | return AnyChange; |
| 8939 | } |
| 8940 | |
| 8941 | if (auto *Cmp = dyn_cast<CmpInst>(Val: I)) |
| 8942 | if (optimizeCmp(Cmp, ModifiedDT)) |
| 8943 | return true; |
| 8944 | |
| 8945 | if (match(V: I, P: m_URem(L: m_Value(), R: m_Value()))) |
| 8946 | if (optimizeURem(Rem: I)) |
| 8947 | return true; |
| 8948 | |
| 8949 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 8950 | LI->setMetadata(KindID: LLVMContext::MD_invariant_group, Node: nullptr); |
| 8951 | bool Modified = optimizeLoadExt(Load: LI); |
| 8952 | unsigned AS = LI->getPointerAddressSpace(); |
| 8953 | Modified |= optimizeMemoryInst(MemoryInst: I, Addr: I->getOperand(i: 0), AccessTy: LI->getType(), AddrSpace: AS); |
| 8954 | return Modified; |
| 8955 | } |
| 8956 | |
| 8957 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
| 8958 | if (splitMergedValStore(SI&: *SI, DL: *DL, TLI: *TLI)) |
| 8959 | return true; |
| 8960 | SI->setMetadata(KindID: LLVMContext::MD_invariant_group, Node: nullptr); |
| 8961 | unsigned AS = SI->getPointerAddressSpace(); |
| 8962 | return optimizeMemoryInst(MemoryInst: I, Addr: SI->getOperand(i_nocapture: 1), |
| 8963 | AccessTy: SI->getOperand(i_nocapture: 0)->getType(), AddrSpace: AS); |
| 8964 | } |
| 8965 | |
| 8966 | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 8967 | unsigned AS = RMW->getPointerAddressSpace(); |
| 8968 | return optimizeMemoryInst(MemoryInst: I, Addr: RMW->getPointerOperand(), AccessTy: RMW->getType(), AddrSpace: AS); |
| 8969 | } |
| 8970 | |
| 8971 | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 8972 | unsigned AS = CmpX->getPointerAddressSpace(); |
| 8973 | return optimizeMemoryInst(MemoryInst: I, Addr: CmpX->getPointerOperand(), |
| 8974 | AccessTy: CmpX->getCompareOperand()->getType(), AddrSpace: AS); |
| 8975 | } |
| 8976 | |
| 8977 | BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: I); |
| 8978 | |
| 8979 | if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && |
| 8980 | sinkAndCmp0Expression(AndI: BinOp, TLI: *TLI, InsertedInsts)) |
| 8981 | return true; |
| 8982 | |
| 8983 | // TODO: Move this into the switch on opcode - it handles shifts already. |
| 8984 | if (BinOp && (BinOp->getOpcode() == Instruction::AShr || |
| 8985 | BinOp->getOpcode() == Instruction::LShr)) { |
| 8986 | ConstantInt *CI = dyn_cast<ConstantInt>(Val: BinOp->getOperand(i_nocapture: 1)); |
| 8987 | if (CI && TLI->hasExtractBitsInsn()) |
| 8988 | if (OptimizeExtractBits(ShiftI: BinOp, CI, TLI: *TLI, DL: *DL)) |
| 8989 | return true; |
| 8990 | } |
| 8991 | |
| 8992 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 8993 | if (GEPI->hasAllZeroIndices()) { |
| 8994 | /// The GEP operand must be a pointer, so must its result -> BitCast |
| 8995 | Instruction *NC = new BitCastInst(GEPI->getOperand(i_nocapture: 0), GEPI->getType(), |
| 8996 | GEPI->getName(), GEPI->getIterator()); |
| 8997 | NC->setDebugLoc(GEPI->getDebugLoc()); |
| 8998 | replaceAllUsesWith(Old: GEPI, New: NC, FreshBBs, IsHuge: IsHugeFunc); |
| 8999 | RecursivelyDeleteTriviallyDeadInstructions( |
| 9000 | V: GEPI, TLI: TLInfo, MSSAU: nullptr, |
| 9001 | AboutToDeleteCallback: [&](Value *V) { removeAllAssertingVHReferences(V); }); |
| 9002 | ++NumGEPsElim; |
| 9003 | optimizeInst(I: NC, ModifiedDT); |
| 9004 | return true; |
| 9005 | } |
| 9006 | if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { |
| 9007 | return true; |
| 9008 | } |
| 9009 | } |
| 9010 | |
| 9011 | if (FreezeInst *FI = dyn_cast<FreezeInst>(Val: I)) { |
| 9012 | // freeze(icmp a, const)) -> icmp (freeze a), const |
| 9013 | // This helps generate efficient conditional jumps. |
| 9014 | Instruction *CmpI = nullptr; |
| 9015 | if (ICmpInst *II = dyn_cast<ICmpInst>(Val: FI->getOperand(i_nocapture: 0))) |
| 9016 | CmpI = II; |
| 9017 | else if (FCmpInst *F = dyn_cast<FCmpInst>(Val: FI->getOperand(i_nocapture: 0))) |
| 9018 | CmpI = F->getFastMathFlags().none() ? F : nullptr; |
| 9019 | |
| 9020 | if (CmpI && CmpI->hasOneUse()) { |
| 9021 | auto Op0 = CmpI->getOperand(i: 0), Op1 = CmpI->getOperand(i: 1); |
| 9022 | bool Const0 = isa<ConstantInt>(Val: Op0) || isa<ConstantFP>(Val: Op0) || |
| 9023 | isa<ConstantPointerNull>(Val: Op0); |
| 9024 | bool Const1 = isa<ConstantInt>(Val: Op1) || isa<ConstantFP>(Val: Op1) || |
| 9025 | isa<ConstantPointerNull>(Val: Op1); |
| 9026 | if (Const0 || Const1) { |
| 9027 | if (!Const0 || !Const1) { |
| 9028 | auto *F = new FreezeInst(Const0 ? Op1 : Op0, "" , CmpI->getIterator()); |
| 9029 | F->takeName(V: FI); |
| 9030 | CmpI->setOperand(i: Const0 ? 1 : 0, Val: F); |
| 9031 | } |
| 9032 | replaceAllUsesWith(Old: FI, New: CmpI, FreshBBs, IsHuge: IsHugeFunc); |
| 9033 | FI->eraseFromParent(); |
| 9034 | return true; |
| 9035 | } |
| 9036 | } |
| 9037 | return AnyChange; |
| 9038 | } |
| 9039 | |
| 9040 | if (tryToSinkFreeOperands(I)) |
| 9041 | return true; |
| 9042 | |
| 9043 | switch (I->getOpcode()) { |
| 9044 | case Instruction::Shl: |
| 9045 | case Instruction::LShr: |
| 9046 | case Instruction::AShr: |
| 9047 | return optimizeShiftInst(Shift: cast<BinaryOperator>(Val: I)); |
| 9048 | case Instruction::Call: |
| 9049 | return optimizeCallInst(CI: cast<CallInst>(Val: I), ModifiedDT); |
| 9050 | case Instruction::Select: |
| 9051 | return optimizeSelectInst(SI: cast<SelectInst>(Val: I)); |
| 9052 | case Instruction::ShuffleVector: |
| 9053 | return optimizeShuffleVectorInst(SVI: cast<ShuffleVectorInst>(Val: I)); |
| 9054 | case Instruction::Switch: |
| 9055 | return optimizeSwitchInst(SI: cast<SwitchInst>(Val: I)); |
| 9056 | case Instruction::ExtractElement: |
| 9057 | return optimizeExtractElementInst(Inst: cast<ExtractElementInst>(Val: I)); |
| 9058 | case Instruction::Br: |
| 9059 | return optimizeBranch(Branch: cast<BranchInst>(Val: I), TLI: *TLI, FreshBBs, IsHugeFunc); |
| 9060 | } |
| 9061 | |
| 9062 | return AnyChange; |
| 9063 | } |
| 9064 | |
| 9065 | /// Given an OR instruction, check to see if this is a bitreverse |
| 9066 | /// idiom. If so, insert the new intrinsic and return true. |
| 9067 | bool CodeGenPrepare::makeBitReverse(Instruction &I) { |
| 9068 | if (!I.getType()->isIntegerTy() || |
| 9069 | !TLI->isOperationLegalOrCustom(Op: ISD::BITREVERSE, |
| 9070 | VT: TLI->getValueType(DL: *DL, Ty: I.getType(), AllowUnknown: true))) |
| 9071 | return false; |
| 9072 | |
| 9073 | SmallVector<Instruction *, 4> Insts; |
| 9074 | if (!recognizeBSwapOrBitReverseIdiom(I: &I, MatchBSwaps: false, MatchBitReversals: true, InsertedInsts&: Insts)) |
| 9075 | return false; |
| 9076 | Instruction *LastInst = Insts.back(); |
| 9077 | replaceAllUsesWith(Old: &I, New: LastInst, FreshBBs, IsHuge: IsHugeFunc); |
| 9078 | RecursivelyDeleteTriviallyDeadInstructions( |
| 9079 | V: &I, TLI: TLInfo, MSSAU: nullptr, |
| 9080 | AboutToDeleteCallback: [&](Value *V) { removeAllAssertingVHReferences(V); }); |
| 9081 | return true; |
| 9082 | } |
| 9083 | |
| 9084 | // In this pass we look for GEP and cast instructions that are used |
| 9085 | // across basic blocks and rewrite them to improve basic-block-at-a-time |
| 9086 | // selection. |
| 9087 | bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { |
| 9088 | SunkAddrs.clear(); |
| 9089 | bool MadeChange = false; |
| 9090 | |
| 9091 | do { |
| 9092 | CurInstIterator = BB.begin(); |
| 9093 | ModifiedDT = ModifyDT::NotModifyDT; |
| 9094 | while (CurInstIterator != BB.end()) { |
| 9095 | MadeChange |= optimizeInst(I: &*CurInstIterator++, ModifiedDT); |
| 9096 | if (ModifiedDT != ModifyDT::NotModifyDT) { |
| 9097 | // For huge function we tend to quickly go though the inner optmization |
| 9098 | // opportunities in the BB. So we go back to the BB head to re-optimize |
| 9099 | // each instruction instead of go back to the function head. |
| 9100 | if (IsHugeFunc) { |
| 9101 | DT.reset(); |
| 9102 | getDT(F&: *BB.getParent()); |
| 9103 | break; |
| 9104 | } else { |
| 9105 | return true; |
| 9106 | } |
| 9107 | } |
| 9108 | } |
| 9109 | } while (ModifiedDT == ModifyDT::ModifyInstDT); |
| 9110 | |
| 9111 | bool MadeBitReverse = true; |
| 9112 | while (MadeBitReverse) { |
| 9113 | MadeBitReverse = false; |
| 9114 | for (auto &I : reverse(C&: BB)) { |
| 9115 | if (makeBitReverse(I)) { |
| 9116 | MadeBitReverse = MadeChange = true; |
| 9117 | break; |
| 9118 | } |
| 9119 | } |
| 9120 | } |
| 9121 | MadeChange |= dupRetToEnableTailCallOpts(BB: &BB, ModifiedDT); |
| 9122 | |
| 9123 | return MadeChange; |
| 9124 | } |
| 9125 | |
| 9126 | bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { |
| 9127 | bool AnyChange = false; |
| 9128 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) |
| 9129 | AnyChange |= fixupDbgVariableRecord(I&: DVR); |
| 9130 | return AnyChange; |
| 9131 | } |
| 9132 | |
| 9133 | // FIXME: should updating debug-info really cause the "changed" flag to fire, |
| 9134 | // which can cause a function to be reprocessed? |
| 9135 | bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { |
| 9136 | if (DVR.Type != DbgVariableRecord::LocationType::Value && |
| 9137 | DVR.Type != DbgVariableRecord::LocationType::Assign) |
| 9138 | return false; |
| 9139 | |
| 9140 | // Does this DbgVariableRecord refer to a sunk address calculation? |
| 9141 | bool AnyChange = false; |
| 9142 | SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), |
| 9143 | DVR.location_ops().end()); |
| 9144 | for (Value *Location : LocationOps) { |
| 9145 | WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; |
| 9146 | Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; |
| 9147 | if (SunkAddr) { |
| 9148 | // Point dbg.value at locally computed address, which should give the best |
| 9149 | // opportunity to be accurately lowered. This update may change the type |
| 9150 | // of pointer being referred to; however this makes no difference to |
| 9151 | // debugging information, and we can't generate bitcasts that may affect |
| 9152 | // codegen. |
| 9153 | DVR.replaceVariableLocationOp(OldValue: Location, NewValue: SunkAddr); |
| 9154 | AnyChange = true; |
| 9155 | } |
| 9156 | } |
| 9157 | return AnyChange; |
| 9158 | } |
| 9159 | |
| 9160 | static void DbgInserterHelper(DbgVariableRecord *DVR, BasicBlock::iterator VI) { |
| 9161 | DVR->removeFromParent(); |
| 9162 | BasicBlock *VIBB = VI->getParent(); |
| 9163 | if (isa<PHINode>(Val: VI)) |
| 9164 | VIBB->insertDbgRecordBefore(DR: DVR, Here: VIBB->getFirstInsertionPt()); |
| 9165 | else |
| 9166 | VIBB->insertDbgRecordAfter(DR: DVR, I: &*VI); |
| 9167 | } |
| 9168 | |
| 9169 | // A llvm.dbg.value may be using a value before its definition, due to |
| 9170 | // optimizations in this pass and others. Scan for such dbg.values, and rescue |
| 9171 | // them by moving the dbg.value to immediately after the value definition. |
| 9172 | // FIXME: Ideally this should never be necessary, and this has the potential |
| 9173 | // to re-order dbg.value intrinsics. |
| 9174 | bool CodeGenPrepare::placeDbgValues(Function &F) { |
| 9175 | bool MadeChange = false; |
| 9176 | DominatorTree DT(F); |
| 9177 | |
| 9178 | auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { |
| 9179 | SmallVector<Instruction *, 4> VIs; |
| 9180 | for (Value *V : DbgItem->location_ops()) |
| 9181 | if (Instruction *VI = dyn_cast_or_null<Instruction>(Val: V)) |
| 9182 | VIs.push_back(Elt: VI); |
| 9183 | |
| 9184 | // This item may depend on multiple instructions, complicating any |
| 9185 | // potential sink. This block takes the defensive approach, opting to |
| 9186 | // "undef" the item if it has more than one instruction and any of them do |
| 9187 | // not dominate iem. |
| 9188 | for (Instruction *VI : VIs) { |
| 9189 | if (VI->isTerminator()) |
| 9190 | continue; |
| 9191 | |
| 9192 | // If VI is a phi in a block with an EHPad terminator, we can't insert |
| 9193 | // after it. |
| 9194 | if (isa<PHINode>(Val: VI) && VI->getParent()->getTerminator()->isEHPad()) |
| 9195 | continue; |
| 9196 | |
| 9197 | // If the defining instruction dominates the dbg.value, we do not need |
| 9198 | // to move the dbg.value. |
| 9199 | if (DT.dominates(Def: VI, User: Position)) |
| 9200 | continue; |
| 9201 | |
| 9202 | // If we depend on multiple instructions and any of them doesn't |
| 9203 | // dominate this DVI, we probably can't salvage it: moving it to |
| 9204 | // after any of the instructions could cause us to lose the others. |
| 9205 | if (VIs.size() > 1) { |
| 9206 | LLVM_DEBUG( |
| 9207 | dbgs() |
| 9208 | << "Unable to find valid location for Debug Value, undefing:\n" |
| 9209 | << *DbgItem); |
| 9210 | DbgItem->setKillLocation(); |
| 9211 | break; |
| 9212 | } |
| 9213 | |
| 9214 | LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" |
| 9215 | << *DbgItem << ' ' << *VI); |
| 9216 | DbgInserterHelper(DbgItem, VI->getIterator()); |
| 9217 | MadeChange = true; |
| 9218 | ++NumDbgValueMoved; |
| 9219 | } |
| 9220 | }; |
| 9221 | |
| 9222 | for (BasicBlock &BB : F) { |
| 9223 | for (Instruction &Insn : llvm::make_early_inc_range(Range&: BB)) { |
| 9224 | // Process any DbgVariableRecord records attached to this |
| 9225 | // instruction. |
| 9226 | for (DbgVariableRecord &DVR : llvm::make_early_inc_range( |
| 9227 | Range: filterDbgVars(R: Insn.getDbgRecordRange()))) { |
| 9228 | if (DVR.Type != DbgVariableRecord::LocationType::Value) |
| 9229 | continue; |
| 9230 | DbgProcessor(&DVR, &Insn); |
| 9231 | } |
| 9232 | } |
| 9233 | } |
| 9234 | |
| 9235 | return MadeChange; |
| 9236 | } |
| 9237 | |
| 9238 | // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered |
| 9239 | // probes can be chained dependencies of other regular DAG nodes and block DAG |
| 9240 | // combine optimizations. |
| 9241 | bool CodeGenPrepare::placePseudoProbes(Function &F) { |
| 9242 | bool MadeChange = false; |
| 9243 | for (auto &Block : F) { |
| 9244 | // Move the rest probes to the beginning of the block. |
| 9245 | auto FirstInst = Block.getFirstInsertionPt(); |
| 9246 | while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) |
| 9247 | ++FirstInst; |
| 9248 | BasicBlock::iterator I(FirstInst); |
| 9249 | I++; |
| 9250 | while (I != Block.end()) { |
| 9251 | if (auto *II = dyn_cast<PseudoProbeInst>(Val: I++)) { |
| 9252 | II->moveBefore(InsertPos: FirstInst); |
| 9253 | MadeChange = true; |
| 9254 | } |
| 9255 | } |
| 9256 | } |
| 9257 | return MadeChange; |
| 9258 | } |
| 9259 | |
| 9260 | /// Scale down both weights to fit into uint32_t. |
| 9261 | static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { |
| 9262 | uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; |
| 9263 | uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; |
| 9264 | NewTrue = NewTrue / Scale; |
| 9265 | NewFalse = NewFalse / Scale; |
| 9266 | } |
| 9267 | |
| 9268 | /// Some targets prefer to split a conditional branch like: |
| 9269 | /// \code |
| 9270 | /// %0 = icmp ne i32 %a, 0 |
| 9271 | /// %1 = icmp ne i32 %b, 0 |
| 9272 | /// %or.cond = or i1 %0, %1 |
| 9273 | /// br i1 %or.cond, label %TrueBB, label %FalseBB |
| 9274 | /// \endcode |
| 9275 | /// into multiple branch instructions like: |
| 9276 | /// \code |
| 9277 | /// bb1: |
| 9278 | /// %0 = icmp ne i32 %a, 0 |
| 9279 | /// br i1 %0, label %TrueBB, label %bb2 |
| 9280 | /// bb2: |
| 9281 | /// %1 = icmp ne i32 %b, 0 |
| 9282 | /// br i1 %1, label %TrueBB, label %FalseBB |
| 9283 | /// \endcode |
| 9284 | /// This usually allows instruction selection to do even further optimizations |
| 9285 | /// and combine the compare with the branch instruction. Currently this is |
| 9286 | /// applied for targets which have "cheap" jump instructions. |
| 9287 | /// |
| 9288 | /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. |
| 9289 | /// |
| 9290 | bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { |
| 9291 | if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) |
| 9292 | return false; |
| 9293 | |
| 9294 | bool MadeChange = false; |
| 9295 | for (auto &BB : F) { |
| 9296 | // Does this BB end with the following? |
| 9297 | // %cond1 = icmp|fcmp|binary instruction ... |
| 9298 | // %cond2 = icmp|fcmp|binary instruction ... |
| 9299 | // %cond.or = or|and i1 %cond1, cond2 |
| 9300 | // br i1 %cond.or label %dest1, label %dest2" |
| 9301 | Instruction *LogicOp; |
| 9302 | BasicBlock *TBB, *FBB; |
| 9303 | if (!match(V: BB.getTerminator(), |
| 9304 | P: m_Br(C: m_OneUse(SubPattern: m_Instruction(I&: LogicOp)), T&: TBB, F&: FBB))) |
| 9305 | continue; |
| 9306 | |
| 9307 | auto *Br1 = cast<BranchInst>(Val: BB.getTerminator()); |
| 9308 | if (Br1->getMetadata(KindID: LLVMContext::MD_unpredictable)) |
| 9309 | continue; |
| 9310 | |
| 9311 | // The merging of mostly empty BB can cause a degenerate branch. |
| 9312 | if (TBB == FBB) |
| 9313 | continue; |
| 9314 | |
| 9315 | unsigned Opc; |
| 9316 | Value *Cond1, *Cond2; |
| 9317 | if (match(V: LogicOp, |
| 9318 | P: m_LogicalAnd(L: m_OneUse(SubPattern: m_Value(V&: Cond1)), R: m_OneUse(SubPattern: m_Value(V&: Cond2))))) |
| 9319 | Opc = Instruction::And; |
| 9320 | else if (match(V: LogicOp, P: m_LogicalOr(L: m_OneUse(SubPattern: m_Value(V&: Cond1)), |
| 9321 | R: m_OneUse(SubPattern: m_Value(V&: Cond2))))) |
| 9322 | Opc = Instruction::Or; |
| 9323 | else |
| 9324 | continue; |
| 9325 | |
| 9326 | auto IsGoodCond = [](Value *Cond) { |
| 9327 | return match( |
| 9328 | V: Cond, |
| 9329 | P: m_CombineOr(L: m_Cmp(), R: m_CombineOr(L: m_LogicalAnd(L: m_Value(), R: m_Value()), |
| 9330 | R: m_LogicalOr(L: m_Value(), R: m_Value())))); |
| 9331 | }; |
| 9332 | if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) |
| 9333 | continue; |
| 9334 | |
| 9335 | LLVM_DEBUG(dbgs() << "Before branch condition splitting\n" ; BB.dump()); |
| 9336 | |
| 9337 | // Create a new BB. |
| 9338 | auto *TmpBB = |
| 9339 | BasicBlock::Create(Context&: BB.getContext(), Name: BB.getName() + ".cond.split" , |
| 9340 | Parent: BB.getParent(), InsertBefore: BB.getNextNode()); |
| 9341 | if (IsHugeFunc) |
| 9342 | FreshBBs.insert(Ptr: TmpBB); |
| 9343 | |
| 9344 | // Update original basic block by using the first condition directly by the |
| 9345 | // branch instruction and removing the no longer needed and/or instruction. |
| 9346 | Br1->setCondition(Cond1); |
| 9347 | LogicOp->eraseFromParent(); |
| 9348 | |
| 9349 | // Depending on the condition we have to either replace the true or the |
| 9350 | // false successor of the original branch instruction. |
| 9351 | if (Opc == Instruction::And) |
| 9352 | Br1->setSuccessor(idx: 0, NewSucc: TmpBB); |
| 9353 | else |
| 9354 | Br1->setSuccessor(idx: 1, NewSucc: TmpBB); |
| 9355 | |
| 9356 | // Fill in the new basic block. |
| 9357 | auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond: Cond2, True: TBB, False: FBB); |
| 9358 | if (auto *I = dyn_cast<Instruction>(Val: Cond2)) { |
| 9359 | I->removeFromParent(); |
| 9360 | I->insertBefore(InsertPos: Br2->getIterator()); |
| 9361 | } |
| 9362 | |
| 9363 | // Update PHI nodes in both successors. The original BB needs to be |
| 9364 | // replaced in one successor's PHI nodes, because the branch comes now from |
| 9365 | // the newly generated BB (NewBB). In the other successor we need to add one |
| 9366 | // incoming edge to the PHI nodes, because both branch instructions target |
| 9367 | // now the same successor. Depending on the original branch condition |
| 9368 | // (and/or) we have to swap the successors (TrueDest, FalseDest), so that |
| 9369 | // we perform the correct update for the PHI nodes. |
| 9370 | // This doesn't change the successor order of the just created branch |
| 9371 | // instruction (or any other instruction). |
| 9372 | if (Opc == Instruction::Or) |
| 9373 | std::swap(a&: TBB, b&: FBB); |
| 9374 | |
| 9375 | // Replace the old BB with the new BB. |
| 9376 | TBB->replacePhiUsesWith(Old: &BB, New: TmpBB); |
| 9377 | |
| 9378 | // Add another incoming edge from the new BB. |
| 9379 | for (PHINode &PN : FBB->phis()) { |
| 9380 | auto *Val = PN.getIncomingValueForBlock(BB: &BB); |
| 9381 | PN.addIncoming(V: Val, BB: TmpBB); |
| 9382 | } |
| 9383 | |
| 9384 | // Update the branch weights (from SelectionDAGBuilder:: |
| 9385 | // FindMergedConditions). |
| 9386 | if (Opc == Instruction::Or) { |
| 9387 | // Codegen X | Y as: |
| 9388 | // BB1: |
| 9389 | // jmp_if_X TBB |
| 9390 | // jmp TmpBB |
| 9391 | // TmpBB: |
| 9392 | // jmp_if_Y TBB |
| 9393 | // jmp FBB |
| 9394 | // |
| 9395 | |
| 9396 | // We have flexibility in setting Prob for BB1 and Prob for NewBB. |
| 9397 | // The requirement is that |
| 9398 | // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) |
| 9399 | // = TrueProb for original BB. |
| 9400 | // Assuming the original weights are A and B, one choice is to set BB1's |
| 9401 | // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice |
| 9402 | // assumes that |
| 9403 | // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. |
| 9404 | // Another choice is to assume TrueProb for BB1 equals to TrueProb for |
| 9405 | // TmpBB, but the math is more complicated. |
| 9406 | uint64_t TrueWeight, FalseWeight; |
| 9407 | if (extractBranchWeights(I: *Br1, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
| 9408 | uint64_t NewTrueWeight = TrueWeight; |
| 9409 | uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; |
| 9410 | scaleWeights(NewTrue&: NewTrueWeight, NewFalse&: NewFalseWeight); |
| 9411 | Br1->setMetadata(KindID: LLVMContext::MD_prof, |
| 9412 | Node: MDBuilder(Br1->getContext()) |
| 9413 | .createBranchWeights(TrueWeight, FalseWeight, |
| 9414 | IsExpected: hasBranchWeightOrigin(I: *Br1))); |
| 9415 | |
| 9416 | NewTrueWeight = TrueWeight; |
| 9417 | NewFalseWeight = 2 * FalseWeight; |
| 9418 | scaleWeights(NewTrue&: NewTrueWeight, NewFalse&: NewFalseWeight); |
| 9419 | Br2->setMetadata(KindID: LLVMContext::MD_prof, |
| 9420 | Node: MDBuilder(Br2->getContext()) |
| 9421 | .createBranchWeights(TrueWeight, FalseWeight)); |
| 9422 | } |
| 9423 | } else { |
| 9424 | // Codegen X & Y as: |
| 9425 | // BB1: |
| 9426 | // jmp_if_X TmpBB |
| 9427 | // jmp FBB |
| 9428 | // TmpBB: |
| 9429 | // jmp_if_Y TBB |
| 9430 | // jmp FBB |
| 9431 | // |
| 9432 | // This requires creation of TmpBB after CurBB. |
| 9433 | |
| 9434 | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. |
| 9435 | // The requirement is that |
| 9436 | // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) |
| 9437 | // = FalseProb for original BB. |
| 9438 | // Assuming the original weights are A and B, one choice is to set BB1's |
| 9439 | // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice |
| 9440 | // assumes that |
| 9441 | // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. |
| 9442 | uint64_t TrueWeight, FalseWeight; |
| 9443 | if (extractBranchWeights(I: *Br1, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
| 9444 | uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; |
| 9445 | uint64_t NewFalseWeight = FalseWeight; |
| 9446 | scaleWeights(NewTrue&: NewTrueWeight, NewFalse&: NewFalseWeight); |
| 9447 | Br1->setMetadata(KindID: LLVMContext::MD_prof, |
| 9448 | Node: MDBuilder(Br1->getContext()) |
| 9449 | .createBranchWeights(TrueWeight, FalseWeight)); |
| 9450 | |
| 9451 | NewTrueWeight = 2 * TrueWeight; |
| 9452 | NewFalseWeight = FalseWeight; |
| 9453 | scaleWeights(NewTrue&: NewTrueWeight, NewFalse&: NewFalseWeight); |
| 9454 | Br2->setMetadata(KindID: LLVMContext::MD_prof, |
| 9455 | Node: MDBuilder(Br2->getContext()) |
| 9456 | .createBranchWeights(TrueWeight, FalseWeight)); |
| 9457 | } |
| 9458 | } |
| 9459 | |
| 9460 | ModifiedDT = ModifyDT::ModifyBBDT; |
| 9461 | MadeChange = true; |
| 9462 | |
| 9463 | LLVM_DEBUG(dbgs() << "After branch condition splitting\n" ; BB.dump(); |
| 9464 | TmpBB->dump()); |
| 9465 | } |
| 9466 | return MadeChange; |
| 9467 | } |
| 9468 | |