| 1 | //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The LiveRangeEdit class represents changes done to a virtual register when it |
| 10 | // is spilled or split. |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/LiveRangeEdit.h" |
| 14 | #include "llvm/ADT/Statistic.h" |
| 15 | #include "llvm/CodeGen/CalcSpillWeights.h" |
| 16 | #include "llvm/CodeGen/LiveIntervals.h" |
| 17 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 18 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 19 | #include "llvm/CodeGen/VirtRegMap.h" |
| 20 | #include "llvm/Support/Debug.h" |
| 21 | #include "llvm/Support/raw_ostream.h" |
| 22 | |
| 23 | using namespace llvm; |
| 24 | |
| 25 | #define DEBUG_TYPE "regalloc" |
| 26 | |
| 27 | STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE" ); |
| 28 | STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE" ); |
| 29 | STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE" ); |
| 30 | STATISTIC(NumReMaterialization, "Number of instructions rematerialized" ); |
| 31 | |
| 32 | void LiveRangeEdit::Delegate::anchor() { } |
| 33 | |
| 34 | LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, |
| 35 | bool createSubRanges) { |
| 36 | Register VReg = MRI.cloneVirtualRegister(VReg: OldReg); |
| 37 | if (VRM) |
| 38 | VRM->setIsSplitFromReg(virtReg: VReg, SReg: VRM->getOriginal(VirtReg: OldReg)); |
| 39 | |
| 40 | LiveInterval &LI = LIS.createEmptyInterval(Reg: VReg); |
| 41 | if (Parent && !Parent->isSpillable()) |
| 42 | LI.markNotSpillable(); |
| 43 | if (createSubRanges) { |
| 44 | // Create empty subranges if the OldReg's interval has them. Do not create |
| 45 | // the main range here---it will be constructed later after the subranges |
| 46 | // have been finalized. |
| 47 | LiveInterval &OldLI = LIS.getInterval(Reg: OldReg); |
| 48 | VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); |
| 49 | for (LiveInterval::SubRange &S : OldLI.subranges()) |
| 50 | LI.createSubRange(Allocator&: Alloc, LaneMask: S.LaneMask); |
| 51 | } |
| 52 | return LI; |
| 53 | } |
| 54 | |
| 55 | Register LiveRangeEdit::createFrom(Register OldReg) { |
| 56 | Register VReg = MRI.cloneVirtualRegister(VReg: OldReg); |
| 57 | if (VRM) { |
| 58 | VRM->setIsSplitFromReg(virtReg: VReg, SReg: VRM->getOriginal(VirtReg: OldReg)); |
| 59 | } |
| 60 | // FIXME: Getting the interval here actually computes it. |
| 61 | // In theory, this may not be what we want, but in practice |
| 62 | // the createEmptyIntervalFrom API is used when this is not |
| 63 | // the case. Generally speaking we just want to annotate the |
| 64 | // LiveInterval when it gets created but we cannot do that at |
| 65 | // the moment. |
| 66 | if (Parent && !Parent->isSpillable()) |
| 67 | LIS.getInterval(Reg: VReg).markNotSpillable(); |
| 68 | return VReg; |
| 69 | } |
| 70 | |
| 71 | bool LiveRangeEdit::canRematerializeAt(Remat &RM, SlotIndex UseIdx) { |
| 72 | assert(RM.OrigMI && "No defining instruction for remattable value" ); |
| 73 | |
| 74 | if (!TII.isReMaterializable(MI: *RM.OrigMI)) |
| 75 | return false; |
| 76 | |
| 77 | // Verify that all used registers are available with the same values. |
| 78 | if (!VirtRegAuxInfo::allUsesAvailableAt(MI: RM.OrigMI, UseIdx, LIS, MRI, TII)) |
| 79 | return false; |
| 80 | |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, |
| 85 | MachineBasicBlock::iterator MI, |
| 86 | Register DestReg, const Remat &RM, |
| 87 | const TargetRegisterInfo &tri, |
| 88 | bool Late, unsigned SubIdx, |
| 89 | MachineInstr *ReplaceIndexMI) { |
| 90 | assert(RM.OrigMI && "Invalid remat" ); |
| 91 | TII.reMaterialize(MBB, MI, DestReg, SubIdx, Orig: *RM.OrigMI); |
| 92 | // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg |
| 93 | // to false anyway in case the isDead flag of RM.OrigMI's dest register |
| 94 | // is true. |
| 95 | (*--MI).clearRegisterDeads(Reg: DestReg); |
| 96 | Rematted.insert(Ptr: RM.ParentVNI); |
| 97 | ++NumReMaterialization; |
| 98 | |
| 99 | bool EarlyClobber = MI->getOperand(i: 0).isEarlyClobber(); |
| 100 | if (ReplaceIndexMI) |
| 101 | return LIS.ReplaceMachineInstrInMaps(MI&: *ReplaceIndexMI, NewMI&: *MI) |
| 102 | .getRegSlot(EC: EarlyClobber); |
| 103 | return LIS.getSlotIndexes()->insertMachineInstrInMaps(MI&: *MI, Late).getRegSlot( |
| 104 | EC: EarlyClobber); |
| 105 | } |
| 106 | |
| 107 | void LiveRangeEdit::eraseVirtReg(Register Reg) { |
| 108 | if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) |
| 109 | LIS.removeInterval(Reg); |
| 110 | } |
| 111 | |
| 112 | bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, |
| 113 | SmallVectorImpl<MachineInstr*> &Dead) { |
| 114 | MachineInstr *DefMI = nullptr, *UseMI = nullptr; |
| 115 | |
| 116 | // Check that there is a single def and a single use. |
| 117 | for (MachineOperand &MO : MRI.reg_nodbg_operands(Reg: LI->reg())) { |
| 118 | MachineInstr *MI = MO.getParent(); |
| 119 | if (MO.isDef()) { |
| 120 | if (DefMI && DefMI != MI) |
| 121 | return false; |
| 122 | if (!MI->canFoldAsLoad()) |
| 123 | return false; |
| 124 | DefMI = MI; |
| 125 | } else if (!MO.isUndef()) { |
| 126 | if (UseMI && UseMI != MI) |
| 127 | return false; |
| 128 | // FIXME: Targets don't know how to fold subreg uses. |
| 129 | if (MO.getSubReg()) |
| 130 | return false; |
| 131 | UseMI = MI; |
| 132 | } |
| 133 | } |
| 134 | if (!DefMI || !UseMI) |
| 135 | return false; |
| 136 | |
| 137 | // Since we're moving the DefMI load, make sure we're not extending any live |
| 138 | // ranges. |
| 139 | if (!VirtRegAuxInfo::allUsesAvailableAt( |
| 140 | MI: DefMI, UseIdx: LIS.getInstructionIndex(Instr: *UseMI), LIS, MRI, TII)) |
| 141 | return false; |
| 142 | |
| 143 | // We also need to make sure it is safe to move the load. |
| 144 | // Assume there are stores between DefMI and UseMI. |
| 145 | bool SawStore = true; |
| 146 | if (!DefMI->isSafeToMove(SawStore)) |
| 147 | return false; |
| 148 | |
| 149 | LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI |
| 150 | << " into single use: " << *UseMI); |
| 151 | |
| 152 | SmallVector<unsigned, 8> Ops; |
| 153 | if (UseMI->readsWritesVirtualRegister(Reg: LI->reg(), Ops: &Ops).second) |
| 154 | return false; |
| 155 | |
| 156 | MachineInstr *FoldMI = TII.foldMemoryOperand(MI&: *UseMI, Ops, LoadMI&: *DefMI, LIS: &LIS); |
| 157 | if (!FoldMI) |
| 158 | return false; |
| 159 | LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); |
| 160 | LIS.ReplaceMachineInstrInMaps(MI&: *UseMI, NewMI&: *FoldMI); |
| 161 | // Update the call info. |
| 162 | if (UseMI->shouldUpdateAdditionalCallInfo()) |
| 163 | UseMI->getMF()->moveAdditionalCallInfo(Old: UseMI, New: FoldMI); |
| 164 | UseMI->eraseFromParent(); |
| 165 | DefMI->addRegisterDead(Reg: LI->reg(), RegInfo: nullptr); |
| 166 | Dead.push_back(Elt: DefMI); |
| 167 | ++NumDCEFoldedLoads; |
| 168 | return true; |
| 169 | } |
| 170 | |
| 171 | bool LiveRangeEdit::useIsKill(const LiveInterval &LI, |
| 172 | const MachineOperand &MO) const { |
| 173 | const MachineInstr &MI = *MO.getParent(); |
| 174 | SlotIndex Idx = LIS.getInstructionIndex(Instr: MI).getRegSlot(); |
| 175 | if (LI.Query(Idx).isKill()) |
| 176 | return true; |
| 177 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 178 | unsigned SubReg = MO.getSubReg(); |
| 179 | LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx: SubReg); |
| 180 | for (const LiveInterval::SubRange &S : LI.subranges()) { |
| 181 | if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) |
| 182 | return true; |
| 183 | } |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | /// Find all live intervals that need to shrink, then remove the instruction. |
| 188 | void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { |
| 189 | assert(MI->allDefsAreDead() && "Def isn't really dead" ); |
| 190 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI).getRegSlot(); |
| 191 | |
| 192 | // Never delete a bundled instruction. |
| 193 | if (MI->isBundled()) { |
| 194 | // TODO: Handle deleting copy bundles |
| 195 | LLVM_DEBUG(dbgs() << "Won't delete dead bundled inst: " << Idx << '\t' |
| 196 | << *MI); |
| 197 | return; |
| 198 | } |
| 199 | |
| 200 | // Never delete inline asm. |
| 201 | if (MI->isInlineAsm()) { |
| 202 | LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); |
| 203 | return; |
| 204 | } |
| 205 | |
| 206 | // Use the same criteria as DeadMachineInstructionElim. |
| 207 | bool SawStore = false; |
| 208 | if (!MI->isSafeToMove(SawStore)) { |
| 209 | LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); |
| 210 | return; |
| 211 | } |
| 212 | |
| 213 | LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); |
| 214 | |
| 215 | // Collect virtual registers to be erased after MI is gone. |
| 216 | SmallVector<Register, 8> RegsToErase; |
| 217 | bool ReadsPhysRegs = false; |
| 218 | bool isOrigDef = false; |
| 219 | Register Dest; |
| 220 | unsigned DestSubReg; |
| 221 | // Only optimize rematerialize case when the instruction has one def, since |
| 222 | // otherwise we could leave some dead defs in the code. This case is |
| 223 | // extremely rare. |
| 224 | if (VRM && MI->getOperand(i: 0).isReg() && MI->getOperand(i: 0).isDef() && |
| 225 | MI->getDesc().getNumDefs() == 1) { |
| 226 | Dest = MI->getOperand(i: 0).getReg(); |
| 227 | DestSubReg = MI->getOperand(i: 0).getSubReg(); |
| 228 | Register Original = VRM->getOriginal(VirtReg: Dest); |
| 229 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 230 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); |
| 231 | // The original live-range may have been shrunk to |
| 232 | // an empty live-range. It happens when it is dead, but |
| 233 | // we still keep it around to be able to rematerialize |
| 234 | // other values that depend on it. |
| 235 | if (OrigVNI) |
| 236 | isOrigDef = SlotIndex::isSameInstr(A: OrigVNI->def, B: Idx); |
| 237 | } |
| 238 | |
| 239 | bool HasLiveVRegUses = false; |
| 240 | |
| 241 | // Check for live intervals that may shrink |
| 242 | for (const MachineOperand &MO : MI->operands()) { |
| 243 | if (!MO.isReg()) |
| 244 | continue; |
| 245 | Register Reg = MO.getReg(); |
| 246 | if (!Reg.isVirtual()) { |
| 247 | // Check if MI reads any unreserved physregs. |
| 248 | if (Reg && MO.readsReg() && !MRI.isReserved(PhysReg: Reg)) |
| 249 | ReadsPhysRegs = true; |
| 250 | else if (MO.isDef()) |
| 251 | LIS.removePhysRegDefAt(Reg: Reg.asMCReg(), Pos: Idx); |
| 252 | continue; |
| 253 | } |
| 254 | LiveInterval &LI = LIS.getInterval(Reg); |
| 255 | |
| 256 | // Shrink read registers, unless it is likely to be expensive and |
| 257 | // unlikely to change anything. We typically don't want to shrink the |
| 258 | // PIC base register that has lots of uses everywhere. |
| 259 | // Always shrink COPY uses that probably come from live range splitting. |
| 260 | if ((MI->readsVirtualRegister(Reg) && |
| 261 | (MO.isDef() || TII.isCopyInstr(MI: *MI))) || |
| 262 | (MO.readsReg() && (MRI.hasOneNonDBGUse(RegNo: Reg) || useIsKill(LI, MO)))) |
| 263 | ToShrink.insert(X: &LI); |
| 264 | else if (MO.readsReg()) |
| 265 | HasLiveVRegUses = true; |
| 266 | |
| 267 | // Remove defined value. |
| 268 | if (MO.isDef()) { |
| 269 | if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) |
| 270 | TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); |
| 271 | LIS.removeVRegDefAt(LI, Pos: Idx); |
| 272 | if (LI.empty()) |
| 273 | RegsToErase.push_back(Elt: Reg); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // If the dest of MI is an original reg and MI is reMaterializable, |
| 278 | // don't delete the inst. Replace the dest with a new reg, and keep |
| 279 | // the inst for remat of other siblings. The inst is saved in |
| 280 | // LiveRangeEdit::DeadRemats and will be deleted after all the |
| 281 | // allocations of the func are done. Note that if we keep the |
| 282 | // instruction with the original operands, that handles the physreg |
| 283 | // operand case (described just below) as well. |
| 284 | // However, immediately delete instructions which have unshrunk virtual |
| 285 | // register uses. That may provoke RA to split an interval at the KILL |
| 286 | // and later result in an invalid live segment end. |
| 287 | if (isOrigDef && DeadRemats && !HasLiveVRegUses && |
| 288 | TII.isReMaterializable(MI: *MI)) { |
| 289 | LiveInterval &NewLI = createEmptyIntervalFrom(OldReg: Dest, createSubRanges: false); |
| 290 | VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); |
| 291 | VNInfo *VNI = NewLI.getNextValue(Def: Idx, VNInfoAllocator&: Alloc); |
| 292 | NewLI.addSegment(S: LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); |
| 293 | |
| 294 | if (DestSubReg) { |
| 295 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| 296 | auto *SR = |
| 297 | NewLI.createSubRange(Allocator&: Alloc, LaneMask: TRI->getSubRegIndexLaneMask(SubIdx: DestSubReg)); |
| 298 | SR->addSegment(S: LiveInterval::Segment(Idx, Idx.getDeadSlot(), |
| 299 | SR->getNextValue(Def: Idx, VNInfoAllocator&: Alloc))); |
| 300 | } |
| 301 | |
| 302 | pop_back(); |
| 303 | DeadRemats->insert(Ptr: MI); |
| 304 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 305 | MI->substituteRegister(FromReg: Dest, ToReg: NewLI.reg(), SubIdx: 0, RegInfo: TRI); |
| 306 | assert(MI->registerDefIsDead(NewLI.reg(), &TRI)); |
| 307 | } |
| 308 | // Currently, we don't support DCE of physreg live ranges. If MI reads |
| 309 | // any unreserved physregs, don't erase the instruction, but turn it into |
| 310 | // a KILL instead. This way, the physreg live ranges don't end up |
| 311 | // dangling. |
| 312 | // FIXME: It would be better to have something like shrinkToUses() for |
| 313 | // physregs. That could potentially enable more DCE and it would free up |
| 314 | // the physreg. It would not happen often, though. |
| 315 | else if (ReadsPhysRegs) { |
| 316 | MI->setDesc(TII.get(Opcode: TargetOpcode::KILL)); |
| 317 | // Remove all operands that aren't physregs. |
| 318 | for (unsigned i = MI->getNumOperands(); i; --i) { |
| 319 | const MachineOperand &MO = MI->getOperand(i: i-1); |
| 320 | if (MO.isReg() && MO.getReg().isPhysical()) |
| 321 | continue; |
| 322 | MI->removeOperand(OpNo: i-1); |
| 323 | } |
| 324 | MI->dropMemRefs(MF&: *MI->getMF()); |
| 325 | LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); |
| 326 | } else { |
| 327 | if (TheDelegate) |
| 328 | TheDelegate->LRE_WillEraseInstruction(MI); |
| 329 | LIS.RemoveMachineInstrFromMaps(MI&: *MI); |
| 330 | MI->eraseFromParent(); |
| 331 | ++NumDCEDeleted; |
| 332 | } |
| 333 | |
| 334 | // Erase any virtregs that are now empty and unused. There may be <undef> |
| 335 | // uses around. Keep the empty live range in that case. |
| 336 | for (Register Reg : RegsToErase) { |
| 337 | if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(RegNo: Reg)) { |
| 338 | ToShrink.remove(X: &LIS.getInterval(Reg)); |
| 339 | eraseVirtReg(Reg); |
| 340 | } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, |
| 345 | ArrayRef<Register> RegsBeingSpilled) { |
| 346 | ToShrinkSet ToShrink; |
| 347 | |
| 348 | for (;;) { |
| 349 | // Erase all dead defs. |
| 350 | while (!Dead.empty()) |
| 351 | eliminateDeadDef(MI: Dead.pop_back_val(), ToShrink); |
| 352 | |
| 353 | if (ToShrink.empty()) |
| 354 | break; |
| 355 | |
| 356 | // Shrink just one live interval. Then delete new dead defs. |
| 357 | LiveInterval *LI = ToShrink.pop_back_val(); |
| 358 | if (foldAsLoad(LI, Dead)) |
| 359 | continue; |
| 360 | Register VReg = LI->reg(); |
| 361 | if (TheDelegate) |
| 362 | TheDelegate->LRE_WillShrinkVirtReg(VReg); |
| 363 | if (!LIS.shrinkToUses(li: LI, dead: &Dead)) |
| 364 | continue; |
| 365 | |
| 366 | // Don't create new intervals for a register being spilled. |
| 367 | // The new intervals would have to be spilled anyway so its not worth it. |
| 368 | // Also they currently aren't spilled so creating them and not spilling |
| 369 | // them results in incorrect code. |
| 370 | if (llvm::is_contained(Range&: RegsBeingSpilled, Element: VReg)) |
| 371 | continue; |
| 372 | |
| 373 | // LI may have been separated, create new intervals. |
| 374 | LI->RenumberValues(); |
| 375 | SmallVector<LiveInterval*, 8> SplitLIs; |
| 376 | LIS.splitSeparateComponents(LI&: *LI, SplitLIs); |
| 377 | if (!SplitLIs.empty()) |
| 378 | ++NumFracRanges; |
| 379 | |
| 380 | Register Original = VRM ? VRM->getOriginal(VirtReg: VReg) : Register(); |
| 381 | for (const LiveInterval *SplitLI : SplitLIs) { |
| 382 | // If LI is an original interval that hasn't been split yet, make the new |
| 383 | // intervals their own originals instead of referring to LI. The original |
| 384 | // interval must contain all the split products, and LI doesn't. |
| 385 | if (Original != VReg && Original != 0) |
| 386 | VRM->setIsSplitFromReg(virtReg: SplitLI->reg(), SReg: Original); |
| 387 | if (TheDelegate) |
| 388 | TheDelegate->LRE_DidCloneVirtReg(New: SplitLI->reg(), Old: VReg); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | // Keep track of new virtual registers created via |
| 394 | // MachineRegisterInfo::createVirtualRegister. |
| 395 | void |
| 396 | LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { |
| 397 | if (VRM) |
| 398 | VRM->grow(); |
| 399 | |
| 400 | NewRegs.push_back(Elt: VReg); |
| 401 | } |
| 402 | |
| 403 | void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, |
| 404 | VirtRegAuxInfo &VRAI) { |
| 405 | for (unsigned I = 0, Size = size(); I < Size; ++I) { |
| 406 | LiveInterval &LI = LIS.getInterval(Reg: get(idx: I)); |
| 407 | if (MRI.recomputeRegClass(Reg: LI.reg())) |
| 408 | LLVM_DEBUG({ |
| 409 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 410 | dbgs() << "Inflated " << printReg(LI.reg()) << " to " |
| 411 | << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; |
| 412 | }); |
| 413 | VRAI.calculateSpillWeightAndHint(LI); |
| 414 | } |
| 415 | } |
| 416 | |