| 1 | //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements basic block placement transformations using the CFG |
| 10 | // structure and branch probability estimates. |
| 11 | // |
| 12 | // The pass strives to preserve the structure of the CFG (that is, retain |
| 13 | // a topological ordering of basic blocks) in the absence of a *strong* signal |
| 14 | // to the contrary from probabilities. However, within the CFG structure, it |
| 15 | // attempts to choose an ordering which favors placing more likely sequences of |
| 16 | // blocks adjacent to each other. |
| 17 | // |
| 18 | // The algorithm works from the inner-most loop within a function outward, and |
| 19 | // at each stage walks through the basic blocks, trying to coalesce them into |
| 20 | // sequential chains where allowed by the CFG (or demanded by heavy |
| 21 | // probabilities). Finally, it walks the blocks in topological order, and the |
| 22 | // first time it reaches a chain of basic blocks, it schedules them in the |
| 23 | // function in-order. |
| 24 | // |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | #include "llvm/CodeGen/MachineBlockPlacement.h" |
| 28 | #include "BranchFolding.h" |
| 29 | #include "llvm/ADT/ArrayRef.h" |
| 30 | #include "llvm/ADT/DenseMap.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/ADT/SetVector.h" |
| 33 | #include "llvm/ADT/SmallPtrSet.h" |
| 34 | #include "llvm/ADT/SmallVector.h" |
| 35 | #include "llvm/ADT/Statistic.h" |
| 36 | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
| 37 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 38 | #include "llvm/CodeGen/MBFIWrapper.h" |
| 39 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 40 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 41 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 42 | #include "llvm/CodeGen/MachineFunction.h" |
| 43 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 44 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 45 | #include "llvm/CodeGen/MachinePostDominators.h" |
| 46 | #include "llvm/CodeGen/MachineSizeOpts.h" |
| 47 | #include "llvm/CodeGen/TailDuplicator.h" |
| 48 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 49 | #include "llvm/CodeGen/TargetLowering.h" |
| 50 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 51 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 52 | #include "llvm/IR/DebugLoc.h" |
| 53 | #include "llvm/IR/Function.h" |
| 54 | #include "llvm/IR/PrintPasses.h" |
| 55 | #include "llvm/InitializePasses.h" |
| 56 | #include "llvm/Pass.h" |
| 57 | #include "llvm/Support/Allocator.h" |
| 58 | #include "llvm/Support/BlockFrequency.h" |
| 59 | #include "llvm/Support/BranchProbability.h" |
| 60 | #include "llvm/Support/CodeGen.h" |
| 61 | #include "llvm/Support/CommandLine.h" |
| 62 | #include "llvm/Support/Compiler.h" |
| 63 | #include "llvm/Support/Debug.h" |
| 64 | #include "llvm/Support/raw_ostream.h" |
| 65 | #include "llvm/Target/TargetMachine.h" |
| 66 | #include "llvm/Transforms/Utils/CodeLayout.h" |
| 67 | #include <algorithm> |
| 68 | #include <cassert> |
| 69 | #include <cstdint> |
| 70 | #include <iterator> |
| 71 | #include <memory> |
| 72 | #include <string> |
| 73 | #include <tuple> |
| 74 | #include <utility> |
| 75 | #include <vector> |
| 76 | |
| 77 | using namespace llvm; |
| 78 | |
| 79 | #define DEBUG_TYPE "block-placement" |
| 80 | |
| 81 | STATISTIC(NumCondBranches, "Number of conditional branches" ); |
| 82 | STATISTIC(NumUncondBranches, "Number of unconditional branches" ); |
| 83 | STATISTIC(CondBranchTakenFreq, |
| 84 | "Potential frequency of taking conditional branches" ); |
| 85 | STATISTIC(UncondBranchTakenFreq, |
| 86 | "Potential frequency of taking unconditional branches" ); |
| 87 | |
| 88 | static cl::opt<unsigned> AlignAllBlock( |
| 89 | "align-all-blocks" , |
| 90 | cl::desc("Force the alignment of all blocks in the function in log2 format " |
| 91 | "(e.g 4 means align on 16B boundaries)." ), |
| 92 | cl::init(Val: 0), cl::Hidden); |
| 93 | |
| 94 | static cl::opt<unsigned> AlignAllNonFallThruBlocks( |
| 95 | "align-all-nofallthru-blocks" , |
| 96 | cl::desc("Force the alignment of all blocks that have no fall-through " |
| 97 | "predecessors (i.e. don't add nops that are executed). In log2 " |
| 98 | "format (e.g 4 means align on 16B boundaries)." ), |
| 99 | cl::init(Val: 0), cl::Hidden); |
| 100 | |
| 101 | static cl::opt<unsigned> MaxBytesForAlignmentOverride( |
| 102 | "max-bytes-for-alignment" , |
| 103 | cl::desc("Forces the maximum bytes allowed to be emitted when padding for " |
| 104 | "alignment" ), |
| 105 | cl::init(Val: 0), cl::Hidden); |
| 106 | |
| 107 | static cl::opt<unsigned> PredecessorLimit( |
| 108 | "block-placement-predecessor-limit" , |
| 109 | cl::desc("For blocks with more predecessors, certain layout optimizations" |
| 110 | "will be disabled to prevent quadratic compile time." ), |
| 111 | cl::init(Val: 1000), cl::Hidden); |
| 112 | |
| 113 | // FIXME: Find a good default for this flag and remove the flag. |
| 114 | static cl::opt<unsigned> ExitBlockBias( |
| 115 | "block-placement-exit-block-bias" , |
| 116 | cl::desc("Block frequency percentage a loop exit block needs " |
| 117 | "over the original exit to be considered the new exit." ), |
| 118 | cl::init(Val: 0), cl::Hidden); |
| 119 | |
| 120 | // Definition: |
| 121 | // - Outlining: placement of a basic block outside the chain or hot path. |
| 122 | |
| 123 | static cl::opt<unsigned> LoopToColdBlockRatio( |
| 124 | "loop-to-cold-block-ratio" , |
| 125 | cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " |
| 126 | "(frequency of block) is greater than this ratio" ), |
| 127 | cl::init(Val: 5), cl::Hidden); |
| 128 | |
| 129 | static cl::opt<bool> |
| 130 | ForceLoopColdBlock("force-loop-cold-block" , |
| 131 | cl::desc("Force outlining cold blocks from loops." ), |
| 132 | cl::init(Val: false), cl::Hidden); |
| 133 | |
| 134 | static cl::opt<bool> |
| 135 | PreciseRotationCost("precise-rotation-cost" , |
| 136 | cl::desc("Model the cost of loop rotation more " |
| 137 | "precisely by using profile data." ), |
| 138 | cl::init(Val: false), cl::Hidden); |
| 139 | |
| 140 | static cl::opt<bool> |
| 141 | ForcePreciseRotationCost("force-precise-rotation-cost" , |
| 142 | cl::desc("Force the use of precise cost " |
| 143 | "loop rotation strategy." ), |
| 144 | cl::init(Val: false), cl::Hidden); |
| 145 | |
| 146 | static cl::opt<unsigned> MisfetchCost( |
| 147 | "misfetch-cost" , |
| 148 | cl::desc("Cost that models the probabilistic risk of an instruction " |
| 149 | "misfetch due to a jump comparing to falling through, whose cost " |
| 150 | "is zero." ), |
| 151 | cl::init(Val: 1), cl::Hidden); |
| 152 | |
| 153 | static cl::opt<unsigned> JumpInstCost("jump-inst-cost" , |
| 154 | cl::desc("Cost of jump instructions." ), |
| 155 | cl::init(Val: 1), cl::Hidden); |
| 156 | static cl::opt<bool> |
| 157 | TailDupPlacement("tail-dup-placement" , |
| 158 | cl::desc("Perform tail duplication during placement. " |
| 159 | "Creates more fallthrough opportunities in " |
| 160 | "outline branches." ), |
| 161 | cl::init(Val: true), cl::Hidden); |
| 162 | |
| 163 | static cl::opt<bool> |
| 164 | BranchFoldPlacement("branch-fold-placement" , |
| 165 | cl::desc("Perform branch folding during placement. " |
| 166 | "Reduces code size." ), |
| 167 | cl::init(Val: true), cl::Hidden); |
| 168 | |
| 169 | // Heuristic for tail duplication. |
| 170 | static cl::opt<unsigned> TailDupPlacementThreshold( |
| 171 | "tail-dup-placement-threshold" , |
| 172 | cl::desc("Instruction cutoff for tail duplication during layout. " |
| 173 | "Tail merging during layout is forced to have a threshold " |
| 174 | "that won't conflict." ), |
| 175 | cl::init(Val: 2), cl::Hidden); |
| 176 | |
| 177 | // Heuristic for aggressive tail duplication. |
| 178 | static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( |
| 179 | "tail-dup-placement-aggressive-threshold" , |
| 180 | cl::desc("Instruction cutoff for aggressive tail duplication during " |
| 181 | "layout. Used at -O3. Tail merging during layout is forced to " |
| 182 | "have a threshold that won't conflict." ), |
| 183 | cl::init(Val: 4), cl::Hidden); |
| 184 | |
| 185 | // Heuristic for tail duplication. |
| 186 | static cl::opt<unsigned> TailDupPlacementPenalty( |
| 187 | "tail-dup-placement-penalty" , |
| 188 | cl::desc( |
| 189 | "Cost penalty for blocks that can avoid breaking CFG by copying. " |
| 190 | "Copying can increase fallthrough, but it also increases icache " |
| 191 | "pressure. This parameter controls the penalty to account for that. " |
| 192 | "Percent as integer." ), |
| 193 | cl::init(Val: 2), cl::Hidden); |
| 194 | |
| 195 | // Heuristic for tail duplication if profile count is used in cost model. |
| 196 | static cl::opt<unsigned> TailDupProfilePercentThreshold( |
| 197 | "tail-dup-profile-percent-threshold" , |
| 198 | cl::desc("If profile count information is used in tail duplication cost " |
| 199 | "model, the gained fall through number from tail duplication " |
| 200 | "should be at least this percent of hot count." ), |
| 201 | cl::init(Val: 50), cl::Hidden); |
| 202 | |
| 203 | // Heuristic for triangle chains. |
| 204 | static cl::opt<unsigned> TriangleChainCount( |
| 205 | "triangle-chain-count" , |
| 206 | cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " |
| 207 | "triangle tail duplication heuristic to kick in. 0 to disable." ), |
| 208 | cl::init(Val: 2), cl::Hidden); |
| 209 | |
| 210 | // Use case: When block layout is visualized after MBP pass, the basic blocks |
| 211 | // are labeled in layout order; meanwhile blocks could be numbered in a |
| 212 | // different order. It's hard to map between the graph and pass output. |
| 213 | // With this option on, the basic blocks are renumbered in function layout |
| 214 | // order. For debugging only. |
| 215 | static cl::opt<bool> RenumberBlocksBeforeView( |
| 216 | "renumber-blocks-before-view" , |
| 217 | cl::desc( |
| 218 | "If true, basic blocks are re-numbered before MBP layout is printed " |
| 219 | "into a dot graph. Only used when a function is being printed." ), |
| 220 | cl::init(Val: false), cl::Hidden); |
| 221 | |
| 222 | static cl::opt<unsigned> ExtTspBlockPlacementMaxBlocks( |
| 223 | "ext-tsp-block-placement-max-blocks" , |
| 224 | cl::desc("Maximum number of basic blocks in a function to run ext-TSP " |
| 225 | "block placement." ), |
| 226 | cl::init(UINT_MAX), cl::Hidden); |
| 227 | |
| 228 | // Apply the ext-tsp algorithm minimizing the size of a binary. |
| 229 | static cl::opt<bool> |
| 230 | ApplyExtTspForSize("apply-ext-tsp-for-size" , cl::init(Val: false), cl::Hidden, |
| 231 | cl::desc("Use ext-tsp for size-aware block placement." )); |
| 232 | |
| 233 | namespace llvm { |
| 234 | extern cl::opt<bool> EnableExtTspBlockPlacement; |
| 235 | extern cl::opt<bool> ApplyExtTspWithoutProfile; |
| 236 | extern cl::opt<unsigned> StaticLikelyProb; |
| 237 | extern cl::opt<unsigned> ProfileLikelyProb; |
| 238 | |
| 239 | // Internal option used to control BFI display only after MBP pass. |
| 240 | // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: |
| 241 | // -view-block-layout-with-bfi= |
| 242 | extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; |
| 243 | |
| 244 | // Command line option to specify the name of the function for CFG dump |
| 245 | // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= |
| 246 | extern cl::opt<std::string> ViewBlockFreqFuncName; |
| 247 | } // namespace llvm |
| 248 | |
| 249 | namespace { |
| 250 | |
| 251 | class BlockChain; |
| 252 | |
| 253 | /// Type for our function-wide basic block -> block chain mapping. |
| 254 | using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; |
| 255 | |
| 256 | /// A chain of blocks which will be laid out contiguously. |
| 257 | /// |
| 258 | /// This is the datastructure representing a chain of consecutive blocks that |
| 259 | /// are profitable to layout together in order to maximize fallthrough |
| 260 | /// probabilities and code locality. We also can use a block chain to represent |
| 261 | /// a sequence of basic blocks which have some external (correctness) |
| 262 | /// requirement for sequential layout. |
| 263 | /// |
| 264 | /// Chains can be built around a single basic block and can be merged to grow |
| 265 | /// them. They participate in a block-to-chain mapping, which is updated |
| 266 | /// automatically as chains are merged together. |
| 267 | class BlockChain { |
| 268 | /// The sequence of blocks belonging to this chain. |
| 269 | /// |
| 270 | /// This is the sequence of blocks for a particular chain. These will be laid |
| 271 | /// out in-order within the function. |
| 272 | SmallVector<MachineBasicBlock *, 4> Blocks; |
| 273 | |
| 274 | /// A handle to the function-wide basic block to block chain mapping. |
| 275 | /// |
| 276 | /// This is retained in each block chain to simplify the computation of child |
| 277 | /// block chains for SCC-formation and iteration. We store the edges to child |
| 278 | /// basic blocks, and map them back to their associated chains using this |
| 279 | /// structure. |
| 280 | BlockToChainMapType &BlockToChain; |
| 281 | |
| 282 | public: |
| 283 | /// Construct a new BlockChain. |
| 284 | /// |
| 285 | /// This builds a new block chain representing a single basic block in the |
| 286 | /// function. It also registers itself as the chain that block participates |
| 287 | /// in with the BlockToChain mapping. |
| 288 | BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) |
| 289 | : Blocks(1, BB), BlockToChain(BlockToChain) { |
| 290 | assert(BB && "Cannot create a chain with a null basic block" ); |
| 291 | BlockToChain[BB] = this; |
| 292 | } |
| 293 | |
| 294 | /// Iterator over blocks within the chain. |
| 295 | using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; |
| 296 | using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; |
| 297 | |
| 298 | /// Beginning of blocks within the chain. |
| 299 | iterator begin() { return Blocks.begin(); } |
| 300 | const_iterator begin() const { return Blocks.begin(); } |
| 301 | |
| 302 | /// End of blocks within the chain. |
| 303 | iterator end() { return Blocks.end(); } |
| 304 | const_iterator end() const { return Blocks.end(); } |
| 305 | |
| 306 | bool remove(MachineBasicBlock *BB) { |
| 307 | for (iterator i = begin(); i != end(); ++i) { |
| 308 | if (*i == BB) { |
| 309 | Blocks.erase(CI: i); |
| 310 | return true; |
| 311 | } |
| 312 | } |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | /// Merge a block chain into this one. |
| 317 | /// |
| 318 | /// This routine merges a block chain into this one. It takes care of forming |
| 319 | /// a contiguous sequence of basic blocks, updating the edge list, and |
| 320 | /// updating the block -> chain mapping. It does not free or tear down the |
| 321 | /// old chain, but the old chain's block list is no longer valid. |
| 322 | void merge(MachineBasicBlock *BB, BlockChain *Chain) { |
| 323 | assert(BB && "Can't merge a null block." ); |
| 324 | assert(!Blocks.empty() && "Can't merge into an empty chain." ); |
| 325 | |
| 326 | // Fast path in case we don't have a chain already. |
| 327 | if (!Chain) { |
| 328 | assert(!BlockToChain[BB] && |
| 329 | "Passed chain is null, but BB has entry in BlockToChain." ); |
| 330 | Blocks.push_back(Elt: BB); |
| 331 | BlockToChain[BB] = this; |
| 332 | return; |
| 333 | } |
| 334 | |
| 335 | assert(BB == *Chain->begin() && "Passed BB is not head of Chain." ); |
| 336 | assert(Chain->begin() != Chain->end()); |
| 337 | |
| 338 | // Update the incoming blocks to point to this chain, and add them to the |
| 339 | // chain structure. |
| 340 | for (MachineBasicBlock *ChainBB : *Chain) { |
| 341 | Blocks.push_back(Elt: ChainBB); |
| 342 | assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain." ); |
| 343 | BlockToChain[ChainBB] = this; |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | #ifndef NDEBUG |
| 348 | /// Dump the blocks in this chain. |
| 349 | LLVM_DUMP_METHOD void dump() { |
| 350 | for (MachineBasicBlock *MBB : *this) |
| 351 | MBB->dump(); |
| 352 | } |
| 353 | #endif // NDEBUG |
| 354 | |
| 355 | /// Count of predecessors of any block within the chain which have not |
| 356 | /// yet been scheduled. In general, we will delay scheduling this chain |
| 357 | /// until those predecessors are scheduled (or we find a sufficiently good |
| 358 | /// reason to override this heuristic.) Note that when forming loop chains, |
| 359 | /// blocks outside the loop are ignored and treated as if they were already |
| 360 | /// scheduled. |
| 361 | /// |
| 362 | /// Note: This field is reinitialized multiple times - once for each loop, |
| 363 | /// and then once for the function as a whole. |
| 364 | unsigned UnscheduledPredecessors = 0; |
| 365 | }; |
| 366 | |
| 367 | class MachineBlockPlacement { |
| 368 | /// A type for a block filter set. |
| 369 | using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; |
| 370 | |
| 371 | /// Pair struct containing basic block and taildup profitability |
| 372 | struct BlockAndTailDupResult { |
| 373 | MachineBasicBlock *BB = nullptr; |
| 374 | bool ShouldTailDup; |
| 375 | }; |
| 376 | |
| 377 | /// Triple struct containing edge weight and the edge. |
| 378 | struct WeightedEdge { |
| 379 | BlockFrequency Weight; |
| 380 | MachineBasicBlock *Src = nullptr; |
| 381 | MachineBasicBlock *Dest = nullptr; |
| 382 | }; |
| 383 | |
| 384 | /// work lists of blocks that are ready to be laid out |
| 385 | SmallVector<MachineBasicBlock *, 16> BlockWorkList; |
| 386 | SmallVector<MachineBasicBlock *, 16> EHPadWorkList; |
| 387 | |
| 388 | /// Edges that have already been computed as optimal. |
| 389 | DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; |
| 390 | |
| 391 | /// Machine Function |
| 392 | MachineFunction *F = nullptr; |
| 393 | |
| 394 | /// A handle to the branch probability pass. |
| 395 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
| 396 | |
| 397 | /// A handle to the function-wide block frequency pass. |
| 398 | std::unique_ptr<MBFIWrapper> MBFI; |
| 399 | |
| 400 | /// A handle to the loop info. |
| 401 | MachineLoopInfo *MLI = nullptr; |
| 402 | |
| 403 | /// Preferred loop exit. |
| 404 | /// Member variable for convenience. It may be removed by duplication deep |
| 405 | /// in the call stack. |
| 406 | MachineBasicBlock *PreferredLoopExit = nullptr; |
| 407 | |
| 408 | /// A handle to the target's instruction info. |
| 409 | const TargetInstrInfo *TII = nullptr; |
| 410 | |
| 411 | /// A handle to the target's lowering info. |
| 412 | const TargetLoweringBase *TLI = nullptr; |
| 413 | |
| 414 | /// A handle to the post dominator tree. |
| 415 | MachinePostDominatorTree *MPDT = nullptr; |
| 416 | |
| 417 | ProfileSummaryInfo *PSI = nullptr; |
| 418 | |
| 419 | // Tail merging is also determined based on |
| 420 | // whether structured CFG is required. |
| 421 | bool AllowTailMerge; |
| 422 | |
| 423 | CodeGenOptLevel OptLevel; |
| 424 | |
| 425 | /// Duplicator used to duplicate tails during placement. |
| 426 | /// |
| 427 | /// Placement decisions can open up new tail duplication opportunities, but |
| 428 | /// since tail duplication affects placement decisions of later blocks, it |
| 429 | /// must be done inline. |
| 430 | TailDuplicator TailDup; |
| 431 | |
| 432 | /// Partial tail duplication threshold. |
| 433 | BlockFrequency DupThreshold; |
| 434 | |
| 435 | unsigned TailDupSize; |
| 436 | |
| 437 | /// True: use block profile count to compute tail duplication cost. |
| 438 | /// False: use block frequency to compute tail duplication cost. |
| 439 | bool UseProfileCount = false; |
| 440 | |
| 441 | /// Allocator and owner of BlockChain structures. |
| 442 | /// |
| 443 | /// We build BlockChains lazily while processing the loop structure of |
| 444 | /// a function. To reduce malloc traffic, we allocate them using this |
| 445 | /// slab-like allocator, and destroy them after the pass completes. An |
| 446 | /// important guarantee is that this allocator produces stable pointers to |
| 447 | /// the chains. |
| 448 | SpecificBumpPtrAllocator<BlockChain> ChainAllocator; |
| 449 | |
| 450 | /// Function wide BasicBlock to BlockChain mapping. |
| 451 | /// |
| 452 | /// This mapping allows efficiently moving from any given basic block to the |
| 453 | /// BlockChain it participates in, if any. We use it to, among other things, |
| 454 | /// allow implicitly defining edges between chains as the existing edges |
| 455 | /// between basic blocks. |
| 456 | DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; |
| 457 | |
| 458 | #ifndef NDEBUG |
| 459 | /// The set of basic blocks that have terminators that cannot be fully |
| 460 | /// analyzed. These basic blocks cannot be re-ordered safely by |
| 461 | /// MachineBlockPlacement, and we must preserve physical layout of these |
| 462 | /// blocks and their successors through the pass. |
| 463 | SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; |
| 464 | #endif |
| 465 | |
| 466 | /// Get block profile count or frequency according to UseProfileCount. |
| 467 | /// The return value is used to model tail duplication cost. |
| 468 | BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { |
| 469 | if (UseProfileCount) { |
| 470 | auto Count = MBFI->getBlockProfileCount(MBB: BB); |
| 471 | if (Count) |
| 472 | return BlockFrequency(*Count); |
| 473 | else |
| 474 | return BlockFrequency(0); |
| 475 | } else |
| 476 | return MBFI->getBlockFreq(MBB: BB); |
| 477 | } |
| 478 | |
| 479 | /// Scale the DupThreshold according to basic block size. |
| 480 | BlockFrequency scaleThreshold(MachineBasicBlock *BB); |
| 481 | void initTailDupThreshold(); |
| 482 | |
| 483 | /// Decrease the UnscheduledPredecessors count for all blocks in chain, and |
| 484 | /// if the count goes to 0, add them to the appropriate work list. |
| 485 | void markChainSuccessors(const BlockChain &Chain, |
| 486 | const MachineBasicBlock *, |
| 487 | const BlockFilterSet *BlockFilter = nullptr); |
| 488 | |
| 489 | /// Decrease the UnscheduledPredecessors count for a single block, and |
| 490 | /// if the count goes to 0, add them to the appropriate work list. |
| 491 | void markBlockSuccessors(const BlockChain &Chain, const MachineBasicBlock *BB, |
| 492 | const MachineBasicBlock *, |
| 493 | const BlockFilterSet *BlockFilter = nullptr); |
| 494 | |
| 495 | BranchProbability |
| 496 | collectViableSuccessors(const MachineBasicBlock *BB, const BlockChain &Chain, |
| 497 | const BlockFilterSet *BlockFilter, |
| 498 | SmallVector<MachineBasicBlock *, 4> &Successors); |
| 499 | bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, |
| 500 | BlockFilterSet *BlockFilter); |
| 501 | void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, |
| 502 | MachineBasicBlock *BB, |
| 503 | BlockFilterSet *BlockFilter); |
| 504 | bool repeatedlyTailDuplicateBlock( |
| 505 | MachineBasicBlock *BB, MachineBasicBlock *&LPred, |
| 506 | const MachineBasicBlock *, BlockChain &Chain, |
| 507 | BlockFilterSet *BlockFilter, |
| 508 | MachineFunction::iterator &PrevUnplacedBlockIt, |
| 509 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt); |
| 510 | bool |
| 511 | maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, |
| 512 | BlockChain &Chain, BlockFilterSet *BlockFilter, |
| 513 | MachineFunction::iterator &PrevUnplacedBlockIt, |
| 514 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
| 515 | bool &DuplicatedToLPred); |
| 516 | bool hasBetterLayoutPredecessor(const MachineBasicBlock *BB, |
| 517 | const MachineBasicBlock *Succ, |
| 518 | const BlockChain &SuccChain, |
| 519 | BranchProbability SuccProb, |
| 520 | BranchProbability RealSuccProb, |
| 521 | const BlockChain &Chain, |
| 522 | const BlockFilterSet *BlockFilter); |
| 523 | BlockAndTailDupResult selectBestSuccessor(const MachineBasicBlock *BB, |
| 524 | const BlockChain &Chain, |
| 525 | const BlockFilterSet *BlockFilter); |
| 526 | MachineBasicBlock * |
| 527 | selectBestCandidateBlock(const BlockChain &Chain, |
| 528 | SmallVectorImpl<MachineBasicBlock *> &WorkList); |
| 529 | MachineBasicBlock * |
| 530 | getFirstUnplacedBlock(const BlockChain &PlacedChain, |
| 531 | MachineFunction::iterator &PrevUnplacedBlockIt); |
| 532 | MachineBasicBlock * |
| 533 | getFirstUnplacedBlock(const BlockChain &PlacedChain, |
| 534 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
| 535 | const BlockFilterSet *BlockFilter); |
| 536 | |
| 537 | /// Add a basic block to the work list if it is appropriate. |
| 538 | /// |
| 539 | /// If the optional parameter BlockFilter is provided, only MBB |
| 540 | /// present in the set will be added to the worklist. If nullptr |
| 541 | /// is provided, no filtering occurs. |
| 542 | void fillWorkLists(const MachineBasicBlock *MBB, |
| 543 | SmallPtrSetImpl<BlockChain *> &UpdatedPreds, |
| 544 | const BlockFilterSet *BlockFilter); |
| 545 | |
| 546 | void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, |
| 547 | BlockFilterSet *BlockFilter = nullptr); |
| 548 | bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, |
| 549 | const MachineBasicBlock *OldTop); |
| 550 | bool hasViableTopFallthrough(const MachineBasicBlock *Top, |
| 551 | const BlockFilterSet &LoopBlockSet); |
| 552 | BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, |
| 553 | const BlockFilterSet &LoopBlockSet); |
| 554 | BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, |
| 555 | const MachineBasicBlock *OldTop, |
| 556 | const MachineBasicBlock *ExitBB, |
| 557 | const BlockFilterSet &LoopBlockSet); |
| 558 | MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, |
| 559 | const MachineLoop &L, |
| 560 | const BlockFilterSet &LoopBlockSet); |
| 561 | MachineBasicBlock *findBestLoopTop(const MachineLoop &L, |
| 562 | const BlockFilterSet &LoopBlockSet); |
| 563 | MachineBasicBlock *findBestLoopExit(const MachineLoop &L, |
| 564 | const BlockFilterSet &LoopBlockSet, |
| 565 | BlockFrequency &ExitFreq); |
| 566 | BlockFilterSet collectLoopBlockSet(const MachineLoop &L); |
| 567 | void buildLoopChains(const MachineLoop &L); |
| 568 | void rotateLoop(BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, |
| 569 | BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); |
| 570 | void rotateLoopWithProfile(BlockChain &LoopChain, const MachineLoop &L, |
| 571 | const BlockFilterSet &LoopBlockSet); |
| 572 | void buildCFGChains(); |
| 573 | void optimizeBranches(); |
| 574 | void alignBlocks(); |
| 575 | /// Returns true if a block should be tail-duplicated to increase fallthrough |
| 576 | /// opportunities. |
| 577 | bool shouldTailDuplicate(MachineBasicBlock *BB); |
| 578 | /// Check the edge frequencies to see if tail duplication will increase |
| 579 | /// fallthroughs. |
| 580 | bool isProfitableToTailDup(const MachineBasicBlock *BB, |
| 581 | const MachineBasicBlock *Succ, |
| 582 | BranchProbability QProb, const BlockChain &Chain, |
| 583 | const BlockFilterSet *BlockFilter); |
| 584 | |
| 585 | /// Check for a trellis layout. |
| 586 | bool isTrellis(const MachineBasicBlock *BB, |
| 587 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
| 588 | const BlockChain &Chain, const BlockFilterSet *BlockFilter); |
| 589 | |
| 590 | /// Get the best successor given a trellis layout. |
| 591 | BlockAndTailDupResult getBestTrellisSuccessor( |
| 592 | const MachineBasicBlock *BB, |
| 593 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
| 594 | BranchProbability AdjustedSumProb, const BlockChain &Chain, |
| 595 | const BlockFilterSet *BlockFilter); |
| 596 | |
| 597 | /// Get the best pair of non-conflicting edges. |
| 598 | static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( |
| 599 | const MachineBasicBlock *BB, |
| 600 | MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); |
| 601 | |
| 602 | /// Returns true if a block can tail duplicate into all unplaced |
| 603 | /// predecessors. Filters based on loop. |
| 604 | bool canTailDuplicateUnplacedPreds(const MachineBasicBlock *BB, |
| 605 | MachineBasicBlock *Succ, |
| 606 | const BlockChain &Chain, |
| 607 | const BlockFilterSet *BlockFilter); |
| 608 | |
| 609 | /// Find chains of triangles to tail-duplicate where a global analysis works, |
| 610 | /// but a local analysis would not find them. |
| 611 | void precomputeTriangleChains(); |
| 612 | |
| 613 | /// Apply a post-processing step optimizing block placement. |
| 614 | void applyExtTsp(bool OptForSize); |
| 615 | |
| 616 | /// Modify the existing block placement in the function and adjust all jumps. |
| 617 | void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder); |
| 618 | |
| 619 | /// Create a single CFG chain from the current block order. |
| 620 | void createCFGChainExtTsp(); |
| 621 | |
| 622 | public: |
| 623 | MachineBlockPlacement(const MachineBranchProbabilityInfo *MBPI, |
| 624 | MachineLoopInfo *MLI, ProfileSummaryInfo *PSI, |
| 625 | std::unique_ptr<MBFIWrapper> MBFI, |
| 626 | MachinePostDominatorTree *MPDT, bool AllowTailMerge) |
| 627 | : MBPI(MBPI), MBFI(std::move(MBFI)), MLI(MLI), MPDT(MPDT), PSI(PSI), |
| 628 | AllowTailMerge(AllowTailMerge) {}; |
| 629 | |
| 630 | bool run(MachineFunction &F); |
| 631 | |
| 632 | static bool allowTailDupPlacement(MachineFunction &MF) { |
| 633 | return TailDupPlacement && !MF.getTarget().requiresStructuredCFG(); |
| 634 | } |
| 635 | }; |
| 636 | |
| 637 | class MachineBlockPlacementLegacy : public MachineFunctionPass { |
| 638 | public: |
| 639 | static char ID; // Pass identification, replacement for typeid |
| 640 | |
| 641 | MachineBlockPlacementLegacy() : MachineFunctionPass(ID) {} |
| 642 | |
| 643 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 644 | if (skipFunction(F: MF.getFunction())) |
| 645 | return false; |
| 646 | |
| 647 | auto *MBPI = |
| 648 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
| 649 | auto MBFI = std::make_unique<MBFIWrapper>( |
| 650 | args&: getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); |
| 651 | auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 652 | auto *MPDT = MachineBlockPlacement::allowTailDupPlacement(MF) |
| 653 | ? &getAnalysis<MachinePostDominatorTreeWrapperPass>() |
| 654 | .getPostDomTree() |
| 655 | : nullptr; |
| 656 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 657 | auto *PassConfig = &getAnalysis<TargetPassConfig>(); |
| 658 | bool AllowTailMerge = PassConfig->getEnableTailMerge(); |
| 659 | return MachineBlockPlacement(MBPI, MLI, PSI, std::move(MBFI), MPDT, |
| 660 | AllowTailMerge) |
| 661 | .run(F&: MF); |
| 662 | } |
| 663 | |
| 664 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 665 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
| 666 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 667 | if (TailDupPlacement) |
| 668 | AU.addRequired<MachinePostDominatorTreeWrapperPass>(); |
| 669 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 670 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 671 | AU.addRequired<TargetPassConfig>(); |
| 672 | MachineFunctionPass::getAnalysisUsage(AU); |
| 673 | } |
| 674 | }; |
| 675 | |
| 676 | } // end anonymous namespace |
| 677 | |
| 678 | char MachineBlockPlacementLegacy::ID = 0; |
| 679 | |
| 680 | char &llvm::MachineBlockPlacementID = MachineBlockPlacementLegacy::ID; |
| 681 | |
| 682 | INITIALIZE_PASS_BEGIN(MachineBlockPlacementLegacy, DEBUG_TYPE, |
| 683 | "Branch Probability Basic Block Placement" , false, false) |
| 684 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
| 685 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
| 686 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) |
| 687 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 688 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| 689 | INITIALIZE_PASS_END(MachineBlockPlacementLegacy, DEBUG_TYPE, |
| 690 | "Branch Probability Basic Block Placement" , false, false) |
| 691 | |
| 692 | #ifndef NDEBUG |
| 693 | /// Helper to print the name of a MBB. |
| 694 | /// |
| 695 | /// Only used by debug logging. |
| 696 | static std::string getBlockName(const MachineBasicBlock *BB) { |
| 697 | std::string Result; |
| 698 | raw_string_ostream OS(Result); |
| 699 | OS << printMBBReference(*BB); |
| 700 | OS << " ('" << BB->getName() << "')" ; |
| 701 | return Result; |
| 702 | } |
| 703 | #endif |
| 704 | |
| 705 | /// Mark a chain's successors as having one fewer preds. |
| 706 | /// |
| 707 | /// When a chain is being merged into the "placed" chain, this routine will |
| 708 | /// quickly walk the successors of each block in the chain and mark them as |
| 709 | /// having one fewer active predecessor. It also adds any successors of this |
| 710 | /// chain which reach the zero-predecessor state to the appropriate worklist. |
| 711 | void MachineBlockPlacement::markChainSuccessors( |
| 712 | const BlockChain &Chain, const MachineBasicBlock *, |
| 713 | const BlockFilterSet *BlockFilter) { |
| 714 | // Walk all the blocks in this chain, marking their successors as having |
| 715 | // a predecessor placed. |
| 716 | for (MachineBasicBlock *MBB : Chain) { |
| 717 | markBlockSuccessors(Chain, BB: MBB, LoopHeaderBB, BlockFilter); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | /// Mark a single block's successors as having one fewer preds. |
| 722 | /// |
| 723 | /// Under normal circumstances, this is only called by markChainSuccessors, |
| 724 | /// but if a block that was to be placed is completely tail-duplicated away, |
| 725 | /// and was duplicated into the chain end, we need to redo markBlockSuccessors |
| 726 | /// for just that block. |
| 727 | void MachineBlockPlacement::markBlockSuccessors( |
| 728 | const BlockChain &Chain, const MachineBasicBlock *MBB, |
| 729 | const MachineBasicBlock *, const BlockFilterSet *BlockFilter) { |
| 730 | // Add any successors for which this is the only un-placed in-loop |
| 731 | // predecessor to the worklist as a viable candidate for CFG-neutral |
| 732 | // placement. No subsequent placement of this block will violate the CFG |
| 733 | // shape, so we get to use heuristics to choose a favorable placement. |
| 734 | for (MachineBasicBlock *Succ : MBB->successors()) { |
| 735 | if (BlockFilter && !BlockFilter->count(key: Succ)) |
| 736 | continue; |
| 737 | BlockChain &SuccChain = *BlockToChain[Succ]; |
| 738 | // Disregard edges within a fixed chain, or edges to the loop header. |
| 739 | if (&Chain == &SuccChain || Succ == LoopHeaderBB) |
| 740 | continue; |
| 741 | |
| 742 | // This is a cross-chain edge that is within the loop, so decrement the |
| 743 | // loop predecessor count of the destination chain. |
| 744 | if (SuccChain.UnscheduledPredecessors == 0 || |
| 745 | --SuccChain.UnscheduledPredecessors > 0) |
| 746 | continue; |
| 747 | |
| 748 | auto *NewBB = *SuccChain.begin(); |
| 749 | if (NewBB->isEHPad()) |
| 750 | EHPadWorkList.push_back(Elt: NewBB); |
| 751 | else |
| 752 | BlockWorkList.push_back(Elt: NewBB); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | /// This helper function collects the set of successors of block |
| 757 | /// \p BB that are allowed to be its layout successors, and return |
| 758 | /// the total branch probability of edges from \p BB to those |
| 759 | /// blocks. |
| 760 | BranchProbability MachineBlockPlacement::collectViableSuccessors( |
| 761 | const MachineBasicBlock *BB, const BlockChain &Chain, |
| 762 | const BlockFilterSet *BlockFilter, |
| 763 | SmallVector<MachineBasicBlock *, 4> &Successors) { |
| 764 | // Adjust edge probabilities by excluding edges pointing to blocks that is |
| 765 | // either not in BlockFilter or is already in the current chain. Consider the |
| 766 | // following CFG: |
| 767 | // |
| 768 | // --->A |
| 769 | // | / \ |
| 770 | // | B C |
| 771 | // | \ / \ |
| 772 | // ----D E |
| 773 | // |
| 774 | // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after |
| 775 | // A->C is chosen as a fall-through, D won't be selected as a successor of C |
| 776 | // due to CFG constraint (the probability of C->D is not greater than |
| 777 | // HotProb to break topo-order). If we exclude E that is not in BlockFilter |
| 778 | // when calculating the probability of C->D, D will be selected and we |
| 779 | // will get A C D B as the layout of this loop. |
| 780 | auto AdjustedSumProb = BranchProbability::getOne(); |
| 781 | for (MachineBasicBlock *Succ : BB->successors()) { |
| 782 | bool SkipSucc = false; |
| 783 | if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(key: Succ))) { |
| 784 | SkipSucc = true; |
| 785 | } else { |
| 786 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 787 | if (SuccChain == &Chain) { |
| 788 | SkipSucc = true; |
| 789 | } else if (Succ != *SuccChain->begin()) { |
| 790 | LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) |
| 791 | << " -> Mid chain!\n" ); |
| 792 | continue; |
| 793 | } |
| 794 | } |
| 795 | if (SkipSucc) |
| 796 | AdjustedSumProb -= MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
| 797 | else |
| 798 | Successors.push_back(Elt: Succ); |
| 799 | } |
| 800 | |
| 801 | return AdjustedSumProb; |
| 802 | } |
| 803 | |
| 804 | /// The helper function returns the branch probability that is adjusted |
| 805 | /// or normalized over the new total \p AdjustedSumProb. |
| 806 | static BranchProbability |
| 807 | getAdjustedProbability(BranchProbability OrigProb, |
| 808 | BranchProbability AdjustedSumProb) { |
| 809 | BranchProbability SuccProb; |
| 810 | uint32_t SuccProbN = OrigProb.getNumerator(); |
| 811 | uint32_t SuccProbD = AdjustedSumProb.getNumerator(); |
| 812 | if (SuccProbN >= SuccProbD) |
| 813 | SuccProb = BranchProbability::getOne(); |
| 814 | else |
| 815 | SuccProb = BranchProbability(SuccProbN, SuccProbD); |
| 816 | |
| 817 | return SuccProb; |
| 818 | } |
| 819 | |
| 820 | /// Check if \p BB has exactly the successors in \p Successors. |
| 821 | static bool |
| 822 | hasSameSuccessors(MachineBasicBlock &BB, |
| 823 | SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { |
| 824 | if (BB.succ_size() != Successors.size()) |
| 825 | return false; |
| 826 | // We don't want to count self-loops |
| 827 | if (Successors.count(Ptr: &BB)) |
| 828 | return false; |
| 829 | for (MachineBasicBlock *Succ : BB.successors()) |
| 830 | if (!Successors.count(Ptr: Succ)) |
| 831 | return false; |
| 832 | return true; |
| 833 | } |
| 834 | |
| 835 | /// Check if a block should be tail duplicated to increase fallthrough |
| 836 | /// opportunities. |
| 837 | /// \p BB Block to check. |
| 838 | bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { |
| 839 | // Blocks with single successors don't create additional fallthrough |
| 840 | // opportunities. Don't duplicate them. TODO: When conditional exits are |
| 841 | // analyzable, allow them to be duplicated. |
| 842 | bool IsSimple = TailDup.isSimpleBB(TailBB: BB); |
| 843 | |
| 844 | if (BB->succ_size() == 1) |
| 845 | return false; |
| 846 | return TailDup.shouldTailDuplicate(IsSimple, TailBB&: *BB); |
| 847 | } |
| 848 | |
| 849 | /// Compare 2 BlockFrequency's with a small penalty for \p A. |
| 850 | /// In order to be conservative, we apply a X% penalty to account for |
| 851 | /// increased icache pressure and static heuristics. For small frequencies |
| 852 | /// we use only the numerators to improve accuracy. For simplicity, we assume |
| 853 | /// the penalty is less than 100% |
| 854 | /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. |
| 855 | static bool greaterWithBias(BlockFrequency A, BlockFrequency B, |
| 856 | BlockFrequency EntryFreq) { |
| 857 | BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); |
| 858 | BlockFrequency Gain = A - B; |
| 859 | return (Gain / ThresholdProb) >= EntryFreq; |
| 860 | } |
| 861 | |
| 862 | /// Check the edge frequencies to see if tail duplication will increase |
| 863 | /// fallthroughs. It only makes sense to call this function when |
| 864 | /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is |
| 865 | /// always locally profitable if we would have picked \p Succ without |
| 866 | /// considering duplication. |
| 867 | bool MachineBlockPlacement::isProfitableToTailDup( |
| 868 | const MachineBasicBlock *BB, const MachineBasicBlock *Succ, |
| 869 | BranchProbability QProb, const BlockChain &Chain, |
| 870 | const BlockFilterSet *BlockFilter) { |
| 871 | // We need to do a probability calculation to make sure this is profitable. |
| 872 | // First: does succ have a successor that post-dominates? This affects the |
| 873 | // calculation. The 2 relevant cases are: |
| 874 | // BB BB |
| 875 | // | \Qout | \Qout |
| 876 | // P| C |P C |
| 877 | // = C' = C' |
| 878 | // | /Qin | /Qin |
| 879 | // | / | / |
| 880 | // Succ Succ |
| 881 | // / \ | \ V |
| 882 | // U/ =V |U \ |
| 883 | // / \ = D |
| 884 | // D E | / |
| 885 | // | / |
| 886 | // |/ |
| 887 | // PDom |
| 888 | // '=' : Branch taken for that CFG edge |
| 889 | // In the second case, Placing Succ while duplicating it into C prevents the |
| 890 | // fallthrough of Succ into either D or PDom, because they now have C as an |
| 891 | // unplaced predecessor |
| 892 | |
| 893 | // Start by figuring out which case we fall into |
| 894 | MachineBasicBlock *PDom = nullptr; |
| 895 | SmallVector<MachineBasicBlock *, 4> SuccSuccs; |
| 896 | // Only scan the relevant successors |
| 897 | auto AdjustedSuccSumProb = |
| 898 | collectViableSuccessors(BB: Succ, Chain, BlockFilter, Successors&: SuccSuccs); |
| 899 | BranchProbability PProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
| 900 | auto BBFreq = MBFI->getBlockFreq(MBB: BB); |
| 901 | auto SuccFreq = MBFI->getBlockFreq(MBB: Succ); |
| 902 | BlockFrequency P = BBFreq * PProb; |
| 903 | BlockFrequency Qout = BBFreq * QProb; |
| 904 | BlockFrequency EntryFreq = MBFI->getEntryFreq(); |
| 905 | // If there are no more successors, it is profitable to copy, as it strictly |
| 906 | // increases fallthrough. |
| 907 | if (SuccSuccs.size() == 0) |
| 908 | return greaterWithBias(A: P, B: Qout, EntryFreq); |
| 909 | |
| 910 | auto BestSuccSucc = BranchProbability::getZero(); |
| 911 | // Find the PDom or the best Succ if no PDom exists. |
| 912 | for (MachineBasicBlock *SuccSucc : SuccSuccs) { |
| 913 | auto Prob = MBPI->getEdgeProbability(Src: Succ, Dst: SuccSucc); |
| 914 | if (Prob > BestSuccSucc) |
| 915 | BestSuccSucc = Prob; |
| 916 | if (PDom == nullptr) |
| 917 | if (MPDT->dominates(A: SuccSucc, B: Succ)) { |
| 918 | PDom = SuccSucc; |
| 919 | break; |
| 920 | } |
| 921 | } |
| 922 | // For the comparisons, we need to know Succ's best incoming edge that isn't |
| 923 | // from BB. |
| 924 | auto SuccBestPred = BlockFrequency(0); |
| 925 | for (MachineBasicBlock *SuccPred : Succ->predecessors()) { |
| 926 | if (SuccPred == Succ || SuccPred == BB || |
| 927 | BlockToChain[SuccPred] == &Chain || |
| 928 | (BlockFilter && !BlockFilter->count(key: SuccPred))) |
| 929 | continue; |
| 930 | auto Freq = |
| 931 | MBFI->getBlockFreq(MBB: SuccPred) * MBPI->getEdgeProbability(Src: SuccPred, Dst: Succ); |
| 932 | if (Freq > SuccBestPred) |
| 933 | SuccBestPred = Freq; |
| 934 | } |
| 935 | // Qin is Succ's best unplaced incoming edge that isn't BB |
| 936 | BlockFrequency Qin = SuccBestPred; |
| 937 | // If it doesn't have a post-dominating successor, here is the calculation: |
| 938 | // BB BB |
| 939 | // | \Qout | \ |
| 940 | // P| C | = |
| 941 | // = C' | C |
| 942 | // | /Qin | | |
| 943 | // | / | C' (+Succ) |
| 944 | // Succ Succ /| |
| 945 | // / \ | \/ | |
| 946 | // U/ =V | == | |
| 947 | // / \ | / \| |
| 948 | // D E D E |
| 949 | // '=' : Branch taken for that CFG edge |
| 950 | // Cost in the first case is: P + V |
| 951 | // For this calculation, we always assume P > Qout. If Qout > P |
| 952 | // The result of this function will be ignored at the caller. |
| 953 | // Let F = SuccFreq - Qin |
| 954 | // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V |
| 955 | |
| 956 | if (PDom == nullptr || !Succ->isSuccessor(MBB: PDom)) { |
| 957 | BranchProbability UProb = BestSuccSucc; |
| 958 | BranchProbability VProb = AdjustedSuccSumProb - UProb; |
| 959 | BlockFrequency F = SuccFreq - Qin; |
| 960 | BlockFrequency V = SuccFreq * VProb; |
| 961 | BlockFrequency QinU = std::min(a: Qin, b: F) * UProb; |
| 962 | BlockFrequency BaseCost = P + V; |
| 963 | BlockFrequency DupCost = Qout + QinU + std::max(a: Qin, b: F) * VProb; |
| 964 | return greaterWithBias(A: BaseCost, B: DupCost, EntryFreq); |
| 965 | } |
| 966 | BranchProbability UProb = MBPI->getEdgeProbability(Src: Succ, Dst: PDom); |
| 967 | BranchProbability VProb = AdjustedSuccSumProb - UProb; |
| 968 | BlockFrequency U = SuccFreq * UProb; |
| 969 | BlockFrequency V = SuccFreq * VProb; |
| 970 | BlockFrequency F = SuccFreq - Qin; |
| 971 | // If there is a post-dominating successor, here is the calculation: |
| 972 | // BB BB BB BB |
| 973 | // | \Qout | \ | \Qout | \ |
| 974 | // |P C | = |P C | = |
| 975 | // = C' |P C = C' |P C |
| 976 | // | /Qin | | | /Qin | | |
| 977 | // | / | C' (+Succ) | / | C' (+Succ) |
| 978 | // Succ Succ /| Succ Succ /| |
| 979 | // | \ V | \/ | | \ V | \/ | |
| 980 | // |U \ |U /\ =? |U = |U /\ | |
| 981 | // = D = = =?| | D | = =| |
| 982 | // | / |/ D | / |/ D |
| 983 | // | / | / | = | / |
| 984 | // |/ | / |/ | = |
| 985 | // Dom Dom Dom Dom |
| 986 | // '=' : Branch taken for that CFG edge |
| 987 | // The cost for taken branches in the first case is P + U |
| 988 | // Let F = SuccFreq - Qin |
| 989 | // The cost in the second case (assuming independence), given the layout: |
| 990 | // BB, Succ, (C+Succ), D, Dom or the layout: |
| 991 | // BB, Succ, D, Dom, (C+Succ) |
| 992 | // is Qout + max(F, Qin) * U + min(F, Qin) |
| 993 | // compare P + U vs Qout + P * U + Qin. |
| 994 | // |
| 995 | // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. |
| 996 | // |
| 997 | // For the 3rd case, the cost is P + 2 * V |
| 998 | // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V |
| 999 | // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V |
| 1000 | if (UProb > AdjustedSuccSumProb / 2 && |
| 1001 | !hasBetterLayoutPredecessor(BB: Succ, Succ: PDom, SuccChain: *BlockToChain[PDom], SuccProb: UProb, RealSuccProb: UProb, |
| 1002 | Chain, BlockFilter)) |
| 1003 | // Cases 3 & 4 |
| 1004 | return greaterWithBias( |
| 1005 | A: (P + V), B: (Qout + std::max(a: Qin, b: F) * VProb + std::min(a: Qin, b: F) * UProb), |
| 1006 | EntryFreq); |
| 1007 | // Cases 1 & 2 |
| 1008 | return greaterWithBias(A: (P + U), |
| 1009 | B: (Qout + std::min(a: Qin, b: F) * AdjustedSuccSumProb + |
| 1010 | std::max(a: Qin, b: F) * UProb), |
| 1011 | EntryFreq); |
| 1012 | } |
| 1013 | |
| 1014 | /// Check for a trellis layout. \p BB is the upper part of a trellis if its |
| 1015 | /// successors form the lower part of a trellis. A successor set S forms the |
| 1016 | /// lower part of a trellis if all of the predecessors of S are either in S or |
| 1017 | /// have all of S as successors. We ignore trellises where BB doesn't have 2 |
| 1018 | /// successors because for fewer than 2, it's trivial, and for 3 or greater they |
| 1019 | /// are very uncommon and complex to compute optimally. Allowing edges within S |
| 1020 | /// is not strictly a trellis, but the same algorithm works, so we allow it. |
| 1021 | bool MachineBlockPlacement::isTrellis( |
| 1022 | const MachineBasicBlock *BB, |
| 1023 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
| 1024 | const BlockChain &Chain, const BlockFilterSet *BlockFilter) { |
| 1025 | // Technically BB could form a trellis with branching factor higher than 2. |
| 1026 | // But that's extremely uncommon. |
| 1027 | if (BB->succ_size() != 2 || ViableSuccs.size() != 2) |
| 1028 | return false; |
| 1029 | |
| 1030 | SmallPtrSet<const MachineBasicBlock *, 2> Successors(llvm::from_range, |
| 1031 | BB->successors()); |
| 1032 | // To avoid reviewing the same predecessors twice. |
| 1033 | SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; |
| 1034 | |
| 1035 | for (MachineBasicBlock *Succ : ViableSuccs) { |
| 1036 | // Compile-time optimization: runtime is quadratic in the number of |
| 1037 | // predecessors. For such uncommon cases, exit early. |
| 1038 | if (Succ->pred_size() > PredecessorLimit) |
| 1039 | return false; |
| 1040 | |
| 1041 | int PredCount = 0; |
| 1042 | for (auto *SuccPred : Succ->predecessors()) { |
| 1043 | // Allow triangle successors, but don't count them. |
| 1044 | if (Successors.count(Ptr: SuccPred)) { |
| 1045 | // Make sure that it is actually a triangle. |
| 1046 | for (MachineBasicBlock *CheckSucc : SuccPred->successors()) |
| 1047 | if (!Successors.count(Ptr: CheckSucc)) |
| 1048 | return false; |
| 1049 | continue; |
| 1050 | } |
| 1051 | const BlockChain *PredChain = BlockToChain[SuccPred]; |
| 1052 | if (SuccPred == BB || (BlockFilter && !BlockFilter->count(key: SuccPred)) || |
| 1053 | PredChain == &Chain || PredChain == BlockToChain[Succ]) |
| 1054 | continue; |
| 1055 | ++PredCount; |
| 1056 | // Perform the successor check only once. |
| 1057 | if (!SeenPreds.insert(Ptr: SuccPred).second) |
| 1058 | continue; |
| 1059 | if (!hasSameSuccessors(BB&: *SuccPred, Successors)) |
| 1060 | return false; |
| 1061 | } |
| 1062 | // If one of the successors has only BB as a predecessor, it is not a |
| 1063 | // trellis. |
| 1064 | if (PredCount < 1) |
| 1065 | return false; |
| 1066 | } |
| 1067 | return true; |
| 1068 | } |
| 1069 | |
| 1070 | /// Pick the highest total weight pair of edges that can both be laid out. |
| 1071 | /// The edges in \p Edges[0] are assumed to have a different destination than |
| 1072 | /// the edges in \p Edges[1]. Simple counting shows that the best pair is either |
| 1073 | /// the individual highest weight edges to the 2 different destinations, or in |
| 1074 | /// case of a conflict, one of them should be replaced with a 2nd best edge. |
| 1075 | std::pair<MachineBlockPlacement::WeightedEdge, |
| 1076 | MachineBlockPlacement::WeightedEdge> |
| 1077 | MachineBlockPlacement::getBestNonConflictingEdges( |
| 1078 | const MachineBasicBlock *BB, |
| 1079 | MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> |
| 1080 | Edges) { |
| 1081 | // Sort the edges, and then for each successor, find the best incoming |
| 1082 | // predecessor. If the best incoming predecessors aren't the same, |
| 1083 | // then that is clearly the best layout. If there is a conflict, one of the |
| 1084 | // successors will have to fallthrough from the second best predecessor. We |
| 1085 | // compare which combination is better overall. |
| 1086 | |
| 1087 | // Sort for highest frequency. |
| 1088 | auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; |
| 1089 | |
| 1090 | llvm::stable_sort(Range&: Edges[0], C: Cmp); |
| 1091 | llvm::stable_sort(Range&: Edges[1], C: Cmp); |
| 1092 | auto BestA = Edges[0].begin(); |
| 1093 | auto BestB = Edges[1].begin(); |
| 1094 | // Arrange for the correct answer to be in BestA and BestB |
| 1095 | // If the 2 best edges don't conflict, the answer is already there. |
| 1096 | if (BestA->Src == BestB->Src) { |
| 1097 | // Compare the total fallthrough of (Best + Second Best) for both pairs |
| 1098 | auto SecondBestA = std::next(x: BestA); |
| 1099 | auto SecondBestB = std::next(x: BestB); |
| 1100 | BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; |
| 1101 | BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; |
| 1102 | if (BestAScore < BestBScore) |
| 1103 | BestA = SecondBestA; |
| 1104 | else |
| 1105 | BestB = SecondBestB; |
| 1106 | } |
| 1107 | // Arrange for the BB edge to be in BestA if it exists. |
| 1108 | if (BestB->Src == BB) |
| 1109 | std::swap(a&: BestA, b&: BestB); |
| 1110 | return std::make_pair(x&: *BestA, y&: *BestB); |
| 1111 | } |
| 1112 | |
| 1113 | /// Get the best successor from \p BB based on \p BB being part of a trellis. |
| 1114 | /// We only handle trellises with 2 successors, so the algorithm is |
| 1115 | /// straightforward: Find the best pair of edges that don't conflict. We find |
| 1116 | /// the best incoming edge for each successor in the trellis. If those conflict, |
| 1117 | /// we consider which of them should be replaced with the second best. |
| 1118 | /// Upon return the two best edges will be in \p BestEdges. If one of the edges |
| 1119 | /// comes from \p BB, it will be in \p BestEdges[0] |
| 1120 | MachineBlockPlacement::BlockAndTailDupResult |
| 1121 | MachineBlockPlacement::getBestTrellisSuccessor( |
| 1122 | const MachineBasicBlock *BB, |
| 1123 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
| 1124 | BranchProbability AdjustedSumProb, const BlockChain &Chain, |
| 1125 | const BlockFilterSet *BlockFilter) { |
| 1126 | |
| 1127 | BlockAndTailDupResult Result = {.BB: nullptr, .ShouldTailDup: false}; |
| 1128 | SmallPtrSet<const MachineBasicBlock *, 4> Successors(llvm::from_range, |
| 1129 | BB->successors()); |
| 1130 | |
| 1131 | // We assume size 2 because it's common. For general n, we would have to do |
| 1132 | // the Hungarian algorithm, but it's not worth the complexity because more |
| 1133 | // than 2 successors is fairly uncommon, and a trellis even more so. |
| 1134 | if (Successors.size() != 2 || ViableSuccs.size() != 2) |
| 1135 | return Result; |
| 1136 | |
| 1137 | // Collect the edge frequencies of all edges that form the trellis. |
| 1138 | SmallVector<WeightedEdge, 8> Edges[2]; |
| 1139 | int SuccIndex = 0; |
| 1140 | for (auto *Succ : ViableSuccs) { |
| 1141 | for (MachineBasicBlock *SuccPred : Succ->predecessors()) { |
| 1142 | // Skip any placed predecessors that are not BB |
| 1143 | if (SuccPred != BB) { |
| 1144 | if (BlockFilter && !BlockFilter->count(key: SuccPred)) |
| 1145 | continue; |
| 1146 | const BlockChain *SuccPredChain = BlockToChain[SuccPred]; |
| 1147 | if (SuccPredChain == &Chain || SuccPredChain == BlockToChain[Succ]) |
| 1148 | continue; |
| 1149 | } |
| 1150 | BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: SuccPred) * |
| 1151 | MBPI->getEdgeProbability(Src: SuccPred, Dst: Succ); |
| 1152 | Edges[SuccIndex].push_back(Elt: {.Weight: EdgeFreq, .Src: SuccPred, .Dest: Succ}); |
| 1153 | } |
| 1154 | ++SuccIndex; |
| 1155 | } |
| 1156 | |
| 1157 | // Pick the best combination of 2 edges from all the edges in the trellis. |
| 1158 | WeightedEdge BestA, BestB; |
| 1159 | std::tie(args&: BestA, args&: BestB) = getBestNonConflictingEdges(BB, Edges); |
| 1160 | |
| 1161 | if (BestA.Src != BB) { |
| 1162 | // If we have a trellis, and BB doesn't have the best fallthrough edges, |
| 1163 | // we shouldn't choose any successor. We've already looked and there's a |
| 1164 | // better fallthrough edge for all the successors. |
| 1165 | LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n" ); |
| 1166 | return Result; |
| 1167 | } |
| 1168 | |
| 1169 | // Did we pick the triangle edge? If tail-duplication is profitable, do |
| 1170 | // that instead. Otherwise merge the triangle edge now while we know it is |
| 1171 | // optimal. |
| 1172 | if (BestA.Dest == BestB.Src) { |
| 1173 | // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 |
| 1174 | // would be better. |
| 1175 | MachineBasicBlock *Succ1 = BestA.Dest; |
| 1176 | MachineBasicBlock *Succ2 = BestB.Dest; |
| 1177 | // Check to see if tail-duplication would be profitable. |
| 1178 | if (allowTailDupPlacement(MF&: *F) && shouldTailDuplicate(BB: Succ2) && |
| 1179 | canTailDuplicateUnplacedPreds(BB, Succ: Succ2, Chain, BlockFilter) && |
| 1180 | isProfitableToTailDup(BB, Succ: Succ2, QProb: MBPI->getEdgeProbability(Src: BB, Dst: Succ1), |
| 1181 | Chain, BlockFilter)) { |
| 1182 | LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( |
| 1183 | MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); |
| 1184 | dbgs() << " Selected: " << getBlockName(Succ2) |
| 1185 | << ", probability: " << Succ2Prob |
| 1186 | << " (Tail Duplicate)\n" ); |
| 1187 | Result.BB = Succ2; |
| 1188 | Result.ShouldTailDup = true; |
| 1189 | return Result; |
| 1190 | } |
| 1191 | } |
| 1192 | // We have already computed the optimal edge for the other side of the |
| 1193 | // trellis. |
| 1194 | ComputedEdges[BestB.Src] = {.BB: BestB.Dest, .ShouldTailDup: false}; |
| 1195 | |
| 1196 | auto TrellisSucc = BestA.Dest; |
| 1197 | LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( |
| 1198 | MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); |
| 1199 | dbgs() << " Selected: " << getBlockName(TrellisSucc) |
| 1200 | << ", probability: " << SuccProb << " (Trellis)\n" ); |
| 1201 | Result.BB = TrellisSucc; |
| 1202 | return Result; |
| 1203 | } |
| 1204 | |
| 1205 | /// When the option allowTailDupPlacement() is on, this method checks if the |
| 1206 | /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated |
| 1207 | /// into all of its unplaced, unfiltered predecessors, that are not BB. |
| 1208 | bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( |
| 1209 | const MachineBasicBlock *BB, MachineBasicBlock *Succ, |
| 1210 | const BlockChain &Chain, const BlockFilterSet *BlockFilter) { |
| 1211 | if (!shouldTailDuplicate(BB: Succ)) |
| 1212 | return false; |
| 1213 | |
| 1214 | // The result of canTailDuplicate. |
| 1215 | bool Duplicate = true; |
| 1216 | // Number of possible duplication. |
| 1217 | unsigned int NumDup = 0; |
| 1218 | |
| 1219 | // For CFG checking. |
| 1220 | SmallPtrSet<const MachineBasicBlock *, 4> Successors(llvm::from_range, |
| 1221 | BB->successors()); |
| 1222 | for (MachineBasicBlock *Pred : Succ->predecessors()) { |
| 1223 | // Make sure all unplaced and unfiltered predecessors can be |
| 1224 | // tail-duplicated into. |
| 1225 | // Skip any blocks that are already placed or not in this loop. |
| 1226 | if (Pred == BB || (BlockFilter && !BlockFilter->count(key: Pred)) || |
| 1227 | (BlockToChain[Pred] == &Chain && !Succ->succ_empty())) |
| 1228 | continue; |
| 1229 | if (!TailDup.canTailDuplicate(TailBB: Succ, PredBB: Pred)) { |
| 1230 | if (Successors.size() > 1 && hasSameSuccessors(BB&: *Pred, Successors)) |
| 1231 | // This will result in a trellis after tail duplication, so we don't |
| 1232 | // need to copy Succ into this predecessor. In the presence |
| 1233 | // of a trellis tail duplication can continue to be profitable. |
| 1234 | // For example: |
| 1235 | // A A |
| 1236 | // |\ |\ |
| 1237 | // | \ | \ |
| 1238 | // | C | C+BB |
| 1239 | // | / | | |
| 1240 | // |/ | | |
| 1241 | // BB => BB | |
| 1242 | // |\ |\/| |
| 1243 | // | \ |/\| |
| 1244 | // | D | D |
| 1245 | // | / | / |
| 1246 | // |/ |/ |
| 1247 | // Succ Succ |
| 1248 | // |
| 1249 | // After BB was duplicated into C, the layout looks like the one on the |
| 1250 | // right. BB and C now have the same successors. When considering |
| 1251 | // whether Succ can be duplicated into all its unplaced predecessors, we |
| 1252 | // ignore C. |
| 1253 | // We can do this because C already has a profitable fallthrough, namely |
| 1254 | // D. TODO(iteratee): ignore sufficiently cold predecessors for |
| 1255 | // duplication and for this test. |
| 1256 | // |
| 1257 | // This allows trellises to be laid out in 2 separate chains |
| 1258 | // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic |
| 1259 | // because it allows the creation of 2 fallthrough paths with links |
| 1260 | // between them, and we correctly identify the best layout for these |
| 1261 | // CFGs. We want to extend trellises that the user created in addition |
| 1262 | // to trellises created by tail-duplication, so we just look for the |
| 1263 | // CFG. |
| 1264 | continue; |
| 1265 | Duplicate = false; |
| 1266 | continue; |
| 1267 | } |
| 1268 | NumDup++; |
| 1269 | } |
| 1270 | |
| 1271 | // No possible duplication in current filter set. |
| 1272 | if (NumDup == 0) |
| 1273 | return false; |
| 1274 | |
| 1275 | // If profile information is available, findDuplicateCandidates can do more |
| 1276 | // precise benefit analysis. |
| 1277 | if (F->getFunction().hasProfileData()) |
| 1278 | return true; |
| 1279 | |
| 1280 | // This is mainly for function exit BB. |
| 1281 | // The integrated tail duplication is really designed for increasing |
| 1282 | // fallthrough from predecessors from Succ to its successors. We may need |
| 1283 | // other machanism to handle different cases. |
| 1284 | if (Succ->succ_empty()) |
| 1285 | return true; |
| 1286 | |
| 1287 | // Plus the already placed predecessor. |
| 1288 | NumDup++; |
| 1289 | |
| 1290 | // If the duplication candidate has more unplaced predecessors than |
| 1291 | // successors, the extra duplication can't bring more fallthrough. |
| 1292 | // |
| 1293 | // Pred1 Pred2 Pred3 |
| 1294 | // \ | / |
| 1295 | // \ | / |
| 1296 | // \ | / |
| 1297 | // Dup |
| 1298 | // / \ |
| 1299 | // / \ |
| 1300 | // Succ1 Succ2 |
| 1301 | // |
| 1302 | // In this example Dup has 2 successors and 3 predecessors, duplication of Dup |
| 1303 | // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, |
| 1304 | // but the duplication into Pred3 can't increase fallthrough. |
| 1305 | // |
| 1306 | // A small number of extra duplication may not hurt too much. We need a better |
| 1307 | // heuristic to handle it. |
| 1308 | if ((NumDup > Succ->succ_size()) || !Duplicate) |
| 1309 | return false; |
| 1310 | |
| 1311 | return true; |
| 1312 | } |
| 1313 | |
| 1314 | /// Find chains of triangles where we believe it would be profitable to |
| 1315 | /// tail-duplicate them all, but a local analysis would not find them. |
| 1316 | /// There are 3 ways this can be profitable: |
| 1317 | /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with |
| 1318 | /// longer chains) |
| 1319 | /// 2) The chains are statically correlated. Branch probabilities have a very |
| 1320 | /// U-shaped distribution. |
| 1321 | /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] |
| 1322 | /// If the branches in a chain are likely to be from the same side of the |
| 1323 | /// distribution as their predecessor, but are independent at runtime, this |
| 1324 | /// transformation is profitable. (Because the cost of being wrong is a small |
| 1325 | /// fixed cost, unlike the standard triangle layout where the cost of being |
| 1326 | /// wrong scales with the # of triangles.) |
| 1327 | /// 3) The chains are dynamically correlated. If the probability that a previous |
| 1328 | /// branch was taken positively influences whether the next branch will be |
| 1329 | /// taken |
| 1330 | /// We believe that 2 and 3 are common enough to justify the small margin in 1. |
| 1331 | void MachineBlockPlacement::precomputeTriangleChains() { |
| 1332 | struct TriangleChain { |
| 1333 | std::vector<MachineBasicBlock *> Edges; |
| 1334 | |
| 1335 | TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) |
| 1336 | : Edges({src, dst}) {} |
| 1337 | |
| 1338 | void append(MachineBasicBlock *dst) { |
| 1339 | assert(getKey()->isSuccessor(dst) && |
| 1340 | "Attempting to append a block that is not a successor." ); |
| 1341 | Edges.push_back(x: dst); |
| 1342 | } |
| 1343 | |
| 1344 | unsigned count() const { return Edges.size() - 1; } |
| 1345 | |
| 1346 | MachineBasicBlock *getKey() const { return Edges.back(); } |
| 1347 | }; |
| 1348 | |
| 1349 | if (TriangleChainCount == 0) |
| 1350 | return; |
| 1351 | |
| 1352 | LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n" ); |
| 1353 | // Map from last block to the chain that contains it. This allows us to extend |
| 1354 | // chains as we find new triangles. |
| 1355 | DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; |
| 1356 | for (MachineBasicBlock &BB : *F) { |
| 1357 | // If BB doesn't have 2 successors, it doesn't start a triangle. |
| 1358 | if (BB.succ_size() != 2) |
| 1359 | continue; |
| 1360 | MachineBasicBlock *PDom = nullptr; |
| 1361 | for (MachineBasicBlock *Succ : BB.successors()) { |
| 1362 | if (!MPDT->dominates(A: Succ, B: &BB)) |
| 1363 | continue; |
| 1364 | PDom = Succ; |
| 1365 | break; |
| 1366 | } |
| 1367 | // If BB doesn't have a post-dominating successor, it doesn't form a |
| 1368 | // triangle. |
| 1369 | if (PDom == nullptr) |
| 1370 | continue; |
| 1371 | // If PDom has a hint that it is low probability, skip this triangle. |
| 1372 | if (MBPI->getEdgeProbability(Src: &BB, Dst: PDom) < BranchProbability(50, 100)) |
| 1373 | continue; |
| 1374 | // If PDom isn't eligible for duplication, this isn't the kind of triangle |
| 1375 | // we're looking for. |
| 1376 | if (!shouldTailDuplicate(BB: PDom)) |
| 1377 | continue; |
| 1378 | bool CanTailDuplicate = true; |
| 1379 | // If PDom can't tail-duplicate into it's non-BB predecessors, then this |
| 1380 | // isn't the kind of triangle we're looking for. |
| 1381 | for (MachineBasicBlock *Pred : PDom->predecessors()) { |
| 1382 | if (Pred == &BB) |
| 1383 | continue; |
| 1384 | if (!TailDup.canTailDuplicate(TailBB: PDom, PredBB: Pred)) { |
| 1385 | CanTailDuplicate = false; |
| 1386 | break; |
| 1387 | } |
| 1388 | } |
| 1389 | // If we can't tail-duplicate PDom to its predecessors, then skip this |
| 1390 | // triangle. |
| 1391 | if (!CanTailDuplicate) |
| 1392 | continue; |
| 1393 | |
| 1394 | // Now we have an interesting triangle. Insert it if it's not part of an |
| 1395 | // existing chain. |
| 1396 | // Note: This cannot be replaced with a call insert() or emplace() because |
| 1397 | // the find key is BB, but the insert/emplace key is PDom. |
| 1398 | auto Found = TriangleChainMap.find(Val: &BB); |
| 1399 | // If it is, remove the chain from the map, grow it, and put it back in the |
| 1400 | // map with the end as the new key. |
| 1401 | if (Found != TriangleChainMap.end()) { |
| 1402 | TriangleChain Chain = std::move(Found->second); |
| 1403 | TriangleChainMap.erase(I: Found); |
| 1404 | Chain.append(dst: PDom); |
| 1405 | TriangleChainMap.insert(KV: std::make_pair(x: Chain.getKey(), y: std::move(Chain))); |
| 1406 | } else { |
| 1407 | auto InsertResult = TriangleChainMap.try_emplace(Key: PDom, Args: &BB, Args&: PDom); |
| 1408 | assert(InsertResult.second && "Block seen twice." ); |
| 1409 | (void)InsertResult; |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | // Iterating over a DenseMap is safe here, because the only thing in the body |
| 1414 | // of the loop is inserting into another DenseMap (ComputedEdges). |
| 1415 | // ComputedEdges is never iterated, so this doesn't lead to non-determinism. |
| 1416 | for (auto &ChainPair : TriangleChainMap) { |
| 1417 | TriangleChain &Chain = ChainPair.second; |
| 1418 | // Benchmarking has shown that due to branch correlation duplicating 2 or |
| 1419 | // more triangles is profitable, despite the calculations assuming |
| 1420 | // independence. |
| 1421 | if (Chain.count() < TriangleChainCount) |
| 1422 | continue; |
| 1423 | MachineBasicBlock *dst = Chain.Edges.back(); |
| 1424 | Chain.Edges.pop_back(); |
| 1425 | for (MachineBasicBlock *src : reverse(C&: Chain.Edges)) { |
| 1426 | LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" |
| 1427 | << getBlockName(dst) |
| 1428 | << " as pre-computed based on triangles.\n" ); |
| 1429 | |
| 1430 | auto InsertResult = ComputedEdges.insert(KV: {src, {.BB: dst, .ShouldTailDup: true}}); |
| 1431 | assert(InsertResult.second && "Block seen twice." ); |
| 1432 | (void)InsertResult; |
| 1433 | |
| 1434 | dst = src; |
| 1435 | } |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | // When profile is not present, return the StaticLikelyProb. |
| 1440 | // When profile is available, we need to handle the triangle-shape CFG. |
| 1441 | static BranchProbability |
| 1442 | getLayoutSuccessorProbThreshold(const MachineBasicBlock *BB) { |
| 1443 | if (!BB->getParent()->getFunction().hasProfileData()) |
| 1444 | return BranchProbability(StaticLikelyProb, 100); |
| 1445 | if (BB->succ_size() == 2) { |
| 1446 | const MachineBasicBlock *Succ1 = *BB->succ_begin(); |
| 1447 | const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); |
| 1448 | if (Succ1->isSuccessor(MBB: Succ2) || Succ2->isSuccessor(MBB: Succ1)) { |
| 1449 | /* See case 1 below for the cost analysis. For BB->Succ to |
| 1450 | * be taken with smaller cost, the following needs to hold: |
| 1451 | * Prob(BB->Succ) > 2 * Prob(BB->Pred) |
| 1452 | * So the threshold T in the calculation below |
| 1453 | * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) |
| 1454 | * So T / (1 - T) = 2, Yielding T = 2/3 |
| 1455 | * Also adding user specified branch bias, we have |
| 1456 | * T = (2/3)*(ProfileLikelyProb/50) |
| 1457 | * = (2*ProfileLikelyProb)/150) |
| 1458 | */ |
| 1459 | return BranchProbability(2 * ProfileLikelyProb, 150); |
| 1460 | } |
| 1461 | } |
| 1462 | return BranchProbability(ProfileLikelyProb, 100); |
| 1463 | } |
| 1464 | |
| 1465 | /// Checks to see if the layout candidate block \p Succ has a better layout |
| 1466 | /// predecessor than \c BB. If yes, returns true. |
| 1467 | /// \p SuccProb: The probability adjusted for only remaining blocks. |
| 1468 | /// Only used for logging |
| 1469 | /// \p RealSuccProb: The un-adjusted probability. |
| 1470 | /// \p Chain: The chain that BB belongs to and Succ is being considered for. |
| 1471 | /// \p BlockFilter: if non-null, the set of blocks that make up the loop being |
| 1472 | /// considered |
| 1473 | bool MachineBlockPlacement::hasBetterLayoutPredecessor( |
| 1474 | const MachineBasicBlock *BB, const MachineBasicBlock *Succ, |
| 1475 | const BlockChain &SuccChain, BranchProbability SuccProb, |
| 1476 | BranchProbability RealSuccProb, const BlockChain &Chain, |
| 1477 | const BlockFilterSet *BlockFilter) { |
| 1478 | |
| 1479 | // There isn't a better layout when there are no unscheduled predecessors. |
| 1480 | if (SuccChain.UnscheduledPredecessors == 0) |
| 1481 | return false; |
| 1482 | |
| 1483 | // Compile-time optimization: runtime is quadratic in the number of |
| 1484 | // predecessors. For such uncommon cases, exit early. |
| 1485 | if (Succ->pred_size() > PredecessorLimit) |
| 1486 | return false; |
| 1487 | |
| 1488 | // There are two basic scenarios here: |
| 1489 | // ------------------------------------- |
| 1490 | // Case 1: triangular shape CFG (if-then): |
| 1491 | // BB |
| 1492 | // | \ |
| 1493 | // | \ |
| 1494 | // | Pred |
| 1495 | // | / |
| 1496 | // Succ |
| 1497 | // In this case, we are evaluating whether to select edge -> Succ, e.g. |
| 1498 | // set Succ as the layout successor of BB. Picking Succ as BB's |
| 1499 | // successor breaks the CFG constraints (FIXME: define these constraints). |
| 1500 | // With this layout, Pred BB |
| 1501 | // is forced to be outlined, so the overall cost will be cost of the |
| 1502 | // branch taken from BB to Pred, plus the cost of back taken branch |
| 1503 | // from Pred to Succ, as well as the additional cost associated |
| 1504 | // with the needed unconditional jump instruction from Pred To Succ. |
| 1505 | |
| 1506 | // The cost of the topological order layout is the taken branch cost |
| 1507 | // from BB to Succ, so to make BB->Succ a viable candidate, the following |
| 1508 | // must hold: |
| 1509 | // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost |
| 1510 | // < freq(BB->Succ) * taken_branch_cost. |
| 1511 | // Ignoring unconditional jump cost, we get |
| 1512 | // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., |
| 1513 | // prob(BB->Succ) > 2 * prob(BB->Pred) |
| 1514 | // |
| 1515 | // When real profile data is available, we can precisely compute the |
| 1516 | // probability threshold that is needed for edge BB->Succ to be considered. |
| 1517 | // Without profile data, the heuristic requires the branch bias to be |
| 1518 | // a lot larger to make sure the signal is very strong (e.g. 80% default). |
| 1519 | // ----------------------------------------------------------------- |
| 1520 | // Case 2: diamond like CFG (if-then-else): |
| 1521 | // S |
| 1522 | // / \ |
| 1523 | // | \ |
| 1524 | // BB Pred |
| 1525 | // \ / |
| 1526 | // Succ |
| 1527 | // .. |
| 1528 | // |
| 1529 | // The current block is BB and edge BB->Succ is now being evaluated. |
| 1530 | // Note that edge S->BB was previously already selected because |
| 1531 | // prob(S->BB) > prob(S->Pred). |
| 1532 | // At this point, 2 blocks can be placed after BB: Pred or Succ. If we |
| 1533 | // choose Pred, we will have a topological ordering as shown on the left |
| 1534 | // in the picture below. If we choose Succ, we have the solution as shown |
| 1535 | // on the right: |
| 1536 | // |
| 1537 | // topo-order: |
| 1538 | // |
| 1539 | // S----- ---S |
| 1540 | // | | | | |
| 1541 | // ---BB | | BB |
| 1542 | // | | | | |
| 1543 | // | Pred-- | Succ-- |
| 1544 | // | | | | |
| 1545 | // ---Succ ---Pred-- |
| 1546 | // |
| 1547 | // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) |
| 1548 | // = freq(S->Pred) + freq(S->BB) |
| 1549 | // |
| 1550 | // If we have profile data (i.e, branch probabilities can be trusted), the |
| 1551 | // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * |
| 1552 | // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). |
| 1553 | // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which |
| 1554 | // means the cost of topological order is greater. |
| 1555 | // When profile data is not available, however, we need to be more |
| 1556 | // conservative. If the branch prediction is wrong, breaking the topo-order |
| 1557 | // will actually yield a layout with large cost. For this reason, we need |
| 1558 | // strong biased branch at block S with Prob(S->BB) in order to select |
| 1559 | // BB->Succ. This is equivalent to looking the CFG backward with backward |
| 1560 | // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without |
| 1561 | // profile data). |
| 1562 | // -------------------------------------------------------------------------- |
| 1563 | // Case 3: forked diamond |
| 1564 | // S |
| 1565 | // / \ |
| 1566 | // / \ |
| 1567 | // BB Pred |
| 1568 | // | \ / | |
| 1569 | // | \ / | |
| 1570 | // | X | |
| 1571 | // | / \ | |
| 1572 | // | / \ | |
| 1573 | // S1 S2 |
| 1574 | // |
| 1575 | // The current block is BB and edge BB->S1 is now being evaluated. |
| 1576 | // As above S->BB was already selected because |
| 1577 | // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). |
| 1578 | // |
| 1579 | // topo-order: |
| 1580 | // |
| 1581 | // S-------| ---S |
| 1582 | // | | | | |
| 1583 | // ---BB | | BB |
| 1584 | // | | | | |
| 1585 | // | Pred----| | S1---- |
| 1586 | // | | | | |
| 1587 | // --(S1 or S2) ---Pred-- |
| 1588 | // | |
| 1589 | // S2 |
| 1590 | // |
| 1591 | // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) |
| 1592 | // + min(freq(Pred->S1), freq(Pred->S2)) |
| 1593 | // Non-topo-order cost: |
| 1594 | // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). |
| 1595 | // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) |
| 1596 | // is 0. Then the non topo layout is better when |
| 1597 | // freq(S->Pred) < freq(BB->S1). |
| 1598 | // This is exactly what is checked below. |
| 1599 | // Note there are other shapes that apply (Pred may not be a single block, |
| 1600 | // but they all fit this general pattern.) |
| 1601 | BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); |
| 1602 | |
| 1603 | // Make sure that a hot successor doesn't have a globally more |
| 1604 | // important predecessor. |
| 1605 | BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(MBB: BB) * RealSuccProb; |
| 1606 | bool BadCFGConflict = false; |
| 1607 | |
| 1608 | for (MachineBasicBlock *Pred : Succ->predecessors()) { |
| 1609 | BlockChain *PredChain = BlockToChain[Pred]; |
| 1610 | if (Pred == Succ || PredChain == &SuccChain || |
| 1611 | (BlockFilter && !BlockFilter->count(key: Pred)) || PredChain == &Chain || |
| 1612 | Pred != *std::prev(x: PredChain->end()) || |
| 1613 | // This check is redundant except for look ahead. This function is |
| 1614 | // called for lookahead by isProfitableToTailDup when BB hasn't been |
| 1615 | // placed yet. |
| 1616 | (Pred == BB)) |
| 1617 | continue; |
| 1618 | // Do backward checking. |
| 1619 | // For all cases above, we need a backward checking to filter out edges that |
| 1620 | // are not 'strongly' biased. |
| 1621 | // BB Pred |
| 1622 | // \ / |
| 1623 | // Succ |
| 1624 | // We select edge BB->Succ if |
| 1625 | // freq(BB->Succ) > freq(Succ) * HotProb |
| 1626 | // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * |
| 1627 | // HotProb |
| 1628 | // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb |
| 1629 | // Case 1 is covered too, because the first equation reduces to: |
| 1630 | // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) |
| 1631 | BlockFrequency PredEdgeFreq = |
| 1632 | MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
| 1633 | if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { |
| 1634 | BadCFGConflict = true; |
| 1635 | break; |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | if (BadCFGConflict) { |
| 1640 | LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " |
| 1641 | << SuccProb << " (prob) (non-cold CFG conflict)\n" ); |
| 1642 | return true; |
| 1643 | } |
| 1644 | |
| 1645 | return false; |
| 1646 | } |
| 1647 | |
| 1648 | /// Select the best successor for a block. |
| 1649 | /// |
| 1650 | /// This looks across all successors of a particular block and attempts to |
| 1651 | /// select the "best" one to be the layout successor. It only considers direct |
| 1652 | /// successors which also pass the block filter. It will attempt to avoid |
| 1653 | /// breaking CFG structure, but cave and break such structures in the case of |
| 1654 | /// very hot successor edges. |
| 1655 | /// |
| 1656 | /// \returns The best successor block found, or null if none are viable, along |
| 1657 | /// with a boolean indicating if tail duplication is necessary. |
| 1658 | MachineBlockPlacement::BlockAndTailDupResult |
| 1659 | MachineBlockPlacement::selectBestSuccessor(const MachineBasicBlock *BB, |
| 1660 | const BlockChain &Chain, |
| 1661 | const BlockFilterSet *BlockFilter) { |
| 1662 | const BranchProbability HotProb(StaticLikelyProb, 100); |
| 1663 | |
| 1664 | BlockAndTailDupResult BestSucc = {.BB: nullptr, .ShouldTailDup: false}; |
| 1665 | auto BestProb = BranchProbability::getZero(); |
| 1666 | |
| 1667 | SmallVector<MachineBasicBlock *, 4> Successors; |
| 1668 | auto AdjustedSumProb = |
| 1669 | collectViableSuccessors(BB, Chain, BlockFilter, Successors); |
| 1670 | |
| 1671 | LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) |
| 1672 | << "\n" ); |
| 1673 | |
| 1674 | // if we already precomputed the best successor for BB, return that if still |
| 1675 | // applicable. |
| 1676 | auto FoundEdge = ComputedEdges.find(Val: BB); |
| 1677 | if (FoundEdge != ComputedEdges.end()) { |
| 1678 | MachineBasicBlock *Succ = FoundEdge->second.BB; |
| 1679 | ComputedEdges.erase(I: FoundEdge); |
| 1680 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 1681 | if (BB->isSuccessor(MBB: Succ) && (!BlockFilter || BlockFilter->count(key: Succ)) && |
| 1682 | SuccChain != &Chain && Succ == *SuccChain->begin()) |
| 1683 | return FoundEdge->second; |
| 1684 | } |
| 1685 | |
| 1686 | // if BB is part of a trellis, Use the trellis to determine the optimal |
| 1687 | // fallthrough edges |
| 1688 | if (isTrellis(BB, ViableSuccs: Successors, Chain, BlockFilter)) |
| 1689 | return getBestTrellisSuccessor(BB, ViableSuccs: Successors, AdjustedSumProb, Chain, |
| 1690 | BlockFilter); |
| 1691 | |
| 1692 | // For blocks with CFG violations, we may be able to lay them out anyway with |
| 1693 | // tail-duplication. We keep this vector so we can perform the probability |
| 1694 | // calculations the minimum number of times. |
| 1695 | SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> |
| 1696 | DupCandidates; |
| 1697 | for (MachineBasicBlock *Succ : Successors) { |
| 1698 | auto RealSuccProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
| 1699 | BranchProbability SuccProb = |
| 1700 | getAdjustedProbability(OrigProb: RealSuccProb, AdjustedSumProb); |
| 1701 | |
| 1702 | BlockChain &SuccChain = *BlockToChain[Succ]; |
| 1703 | // Skip the edge \c BB->Succ if block \c Succ has a better layout |
| 1704 | // predecessor that yields lower global cost. |
| 1705 | if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, |
| 1706 | Chain, BlockFilter)) { |
| 1707 | // If tail duplication would make Succ profitable, place it. |
| 1708 | if (allowTailDupPlacement(MF&: *F) && shouldTailDuplicate(BB: Succ)) |
| 1709 | DupCandidates.emplace_back(Args&: SuccProb, Args&: Succ); |
| 1710 | continue; |
| 1711 | } |
| 1712 | |
| 1713 | LLVM_DEBUG( |
| 1714 | dbgs() << " Candidate: " << getBlockName(Succ) |
| 1715 | << ", probability: " << SuccProb |
| 1716 | << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "" ) |
| 1717 | << "\n" ); |
| 1718 | |
| 1719 | if (BestSucc.BB && BestProb >= SuccProb) { |
| 1720 | LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n" ); |
| 1721 | continue; |
| 1722 | } |
| 1723 | |
| 1724 | LLVM_DEBUG(dbgs() << " Setting it as best candidate\n" ); |
| 1725 | BestSucc.BB = Succ; |
| 1726 | BestProb = SuccProb; |
| 1727 | } |
| 1728 | // Handle the tail duplication candidates in order of decreasing probability. |
| 1729 | // Stop at the first one that is profitable. Also stop if they are less |
| 1730 | // profitable than BestSucc. Position is important because we preserve it and |
| 1731 | // prefer first best match. Here we aren't comparing in order, so we capture |
| 1732 | // the position instead. |
| 1733 | llvm::stable_sort(Range&: DupCandidates, |
| 1734 | C: [](std::tuple<BranchProbability, MachineBasicBlock *> L, |
| 1735 | std::tuple<BranchProbability, MachineBasicBlock *> R) { |
| 1736 | return std::get<0>(t&: L) > std::get<0>(t&: R); |
| 1737 | }); |
| 1738 | for (auto &Tup : DupCandidates) { |
| 1739 | BranchProbability DupProb; |
| 1740 | MachineBasicBlock *Succ; |
| 1741 | std::tie(args&: DupProb, args&: Succ) = Tup; |
| 1742 | if (DupProb < BestProb) |
| 1743 | break; |
| 1744 | if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) && |
| 1745 | (isProfitableToTailDup(BB, Succ, QProb: BestProb, Chain, BlockFilter))) { |
| 1746 | LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) |
| 1747 | << ", probability: " << DupProb |
| 1748 | << " (Tail Duplicate)\n" ); |
| 1749 | BestSucc.BB = Succ; |
| 1750 | BestSucc.ShouldTailDup = true; |
| 1751 | break; |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | if (BestSucc.BB) |
| 1756 | LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n" ); |
| 1757 | |
| 1758 | return BestSucc; |
| 1759 | } |
| 1760 | |
| 1761 | /// Select the best block from a worklist. |
| 1762 | /// |
| 1763 | /// This looks through the provided worklist as a list of candidate basic |
| 1764 | /// blocks and select the most profitable one to place. The definition of |
| 1765 | /// profitable only really makes sense in the context of a loop. This returns |
| 1766 | /// the most frequently visited block in the worklist, which in the case of |
| 1767 | /// a loop, is the one most desirable to be physically close to the rest of the |
| 1768 | /// loop body in order to improve i-cache behavior. |
| 1769 | /// |
| 1770 | /// \returns The best block found, or null if none are viable. |
| 1771 | MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( |
| 1772 | const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { |
| 1773 | // Once we need to walk the worklist looking for a candidate, cleanup the |
| 1774 | // worklist of already placed entries. |
| 1775 | // FIXME: If this shows up on profiles, it could be folded (at the cost of |
| 1776 | // some code complexity) into the loop below. |
| 1777 | llvm::erase_if(C&: WorkList, P: [&](MachineBasicBlock *BB) { |
| 1778 | return BlockToChain.lookup(Val: BB) == &Chain; |
| 1779 | }); |
| 1780 | |
| 1781 | if (WorkList.empty()) |
| 1782 | return nullptr; |
| 1783 | |
| 1784 | bool IsEHPad = WorkList[0]->isEHPad(); |
| 1785 | |
| 1786 | MachineBasicBlock *BestBlock = nullptr; |
| 1787 | BlockFrequency BestFreq; |
| 1788 | for (MachineBasicBlock *MBB : WorkList) { |
| 1789 | assert(MBB->isEHPad() == IsEHPad && |
| 1790 | "EHPad mismatch between block and work list." ); |
| 1791 | |
| 1792 | BlockChain &SuccChain = *BlockToChain[MBB]; |
| 1793 | if (&SuccChain == &Chain) |
| 1794 | continue; |
| 1795 | |
| 1796 | assert(SuccChain.UnscheduledPredecessors == 0 && |
| 1797 | "Found CFG-violating block" ); |
| 1798 | |
| 1799 | BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); |
| 1800 | LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> " |
| 1801 | << printBlockFreq(MBFI->getMBFI(), CandidateFreq) |
| 1802 | << " (freq)\n" ); |
| 1803 | |
| 1804 | // For ehpad, we layout the least probable first as to avoid jumping back |
| 1805 | // from least probable landingpads to more probable ones. |
| 1806 | // |
| 1807 | // FIXME: Using probability is probably (!) not the best way to achieve |
| 1808 | // this. We should probably have a more principled approach to layout |
| 1809 | // cleanup code. |
| 1810 | // |
| 1811 | // The goal is to get: |
| 1812 | // |
| 1813 | // +--------------------------+ |
| 1814 | // | V |
| 1815 | // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume |
| 1816 | // |
| 1817 | // Rather than: |
| 1818 | // |
| 1819 | // +-------------------------------------+ |
| 1820 | // V | |
| 1821 | // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup |
| 1822 | if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) |
| 1823 | continue; |
| 1824 | |
| 1825 | BestBlock = MBB; |
| 1826 | BestFreq = CandidateFreq; |
| 1827 | } |
| 1828 | |
| 1829 | return BestBlock; |
| 1830 | } |
| 1831 | |
| 1832 | /// Retrieve the first unplaced basic block in the entire function. |
| 1833 | /// |
| 1834 | /// This routine is called when we are unable to use the CFG to walk through |
| 1835 | /// all of the basic blocks and form a chain due to unnatural loops in the CFG. |
| 1836 | /// We walk through the function's blocks in order, starting from the |
| 1837 | /// LastUnplacedBlockIt. We update this iterator on each call to avoid |
| 1838 | /// re-scanning the entire sequence on repeated calls to this routine. |
| 1839 | MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( |
| 1840 | const BlockChain &PlacedChain, |
| 1841 | MachineFunction::iterator &PrevUnplacedBlockIt) { |
| 1842 | |
| 1843 | for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; |
| 1844 | ++I) { |
| 1845 | if (BlockChain *Chain = BlockToChain[&*I]; Chain != &PlacedChain) { |
| 1846 | PrevUnplacedBlockIt = I; |
| 1847 | // Now select the head of the chain to which the unplaced block belongs |
| 1848 | // as the block to place. This will force the entire chain to be placed, |
| 1849 | // and satisfies the requirements of merging chains. |
| 1850 | return *Chain->begin(); |
| 1851 | } |
| 1852 | } |
| 1853 | return nullptr; |
| 1854 | } |
| 1855 | |
| 1856 | /// Retrieve the first unplaced basic block among the blocks in BlockFilter. |
| 1857 | /// |
| 1858 | /// This is similar to getFirstUnplacedBlock for the entire function, but since |
| 1859 | /// the size of BlockFilter is typically far less than the number of blocks in |
| 1860 | /// the entire function, iterating through the BlockFilter is more efficient. |
| 1861 | /// When processing the entire funciton, using the version without BlockFilter |
| 1862 | /// has a complexity of #(loops in function) * #(blocks in function), while this |
| 1863 | /// version has a complexity of sum(#(loops in block) foreach block in function) |
| 1864 | /// which is always smaller. For long function mostly sequential in structure, |
| 1865 | /// the complexity is amortized to 1 * #(blocks in function). |
| 1866 | MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( |
| 1867 | const BlockChain &PlacedChain, |
| 1868 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
| 1869 | const BlockFilterSet *BlockFilter) { |
| 1870 | assert(BlockFilter); |
| 1871 | for (; PrevUnplacedBlockInFilterIt != BlockFilter->end(); |
| 1872 | ++PrevUnplacedBlockInFilterIt) { |
| 1873 | BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt]; |
| 1874 | if (C != &PlacedChain) { |
| 1875 | return *C->begin(); |
| 1876 | } |
| 1877 | } |
| 1878 | return nullptr; |
| 1879 | } |
| 1880 | |
| 1881 | void MachineBlockPlacement::fillWorkLists( |
| 1882 | const MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds, |
| 1883 | const BlockFilterSet *BlockFilter = nullptr) { |
| 1884 | BlockChain &Chain = *BlockToChain[MBB]; |
| 1885 | if (!UpdatedPreds.insert(Ptr: &Chain).second) |
| 1886 | return; |
| 1887 | |
| 1888 | assert( |
| 1889 | Chain.UnscheduledPredecessors == 0 && |
| 1890 | "Attempting to place block with unscheduled predecessors in worklist." ); |
| 1891 | for (MachineBasicBlock *ChainBB : Chain) { |
| 1892 | assert(BlockToChain[ChainBB] == &Chain && |
| 1893 | "Block in chain doesn't match BlockToChain map." ); |
| 1894 | for (MachineBasicBlock *Pred : ChainBB->predecessors()) { |
| 1895 | if (BlockFilter && !BlockFilter->count(key: Pred)) |
| 1896 | continue; |
| 1897 | if (BlockToChain[Pred] == &Chain) |
| 1898 | continue; |
| 1899 | ++Chain.UnscheduledPredecessors; |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | if (Chain.UnscheduledPredecessors != 0) |
| 1904 | return; |
| 1905 | |
| 1906 | MachineBasicBlock *BB = *Chain.begin(); |
| 1907 | if (BB->isEHPad()) |
| 1908 | EHPadWorkList.push_back(Elt: BB); |
| 1909 | else |
| 1910 | BlockWorkList.push_back(Elt: BB); |
| 1911 | } |
| 1912 | |
| 1913 | void MachineBlockPlacement::buildChain(const MachineBasicBlock *HeadBB, |
| 1914 | BlockChain &Chain, |
| 1915 | BlockFilterSet *BlockFilter) { |
| 1916 | assert(HeadBB && "BB must not be null.\n" ); |
| 1917 | assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n" ); |
| 1918 | MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); |
| 1919 | BlockFilterSet::iterator PrevUnplacedBlockInFilterIt; |
| 1920 | if (BlockFilter) |
| 1921 | PrevUnplacedBlockInFilterIt = BlockFilter->begin(); |
| 1922 | |
| 1923 | const MachineBasicBlock * = HeadBB; |
| 1924 | markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); |
| 1925 | MachineBasicBlock *BB = *std::prev(x: Chain.end()); |
| 1926 | while (true) { |
| 1927 | assert(BB && "null block found at end of chain in loop." ); |
| 1928 | assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop." ); |
| 1929 | assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain." ); |
| 1930 | |
| 1931 | // Look for the best viable successor if there is one to place immediately |
| 1932 | // after this block. |
| 1933 | auto Result = selectBestSuccessor(BB, Chain, BlockFilter); |
| 1934 | MachineBasicBlock *BestSucc = Result.BB; |
| 1935 | bool ShouldTailDup = Result.ShouldTailDup; |
| 1936 | if (allowTailDupPlacement(MF&: *F)) |
| 1937 | ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds( |
| 1938 | BB, Succ: BestSucc, Chain, BlockFilter)); |
| 1939 | |
| 1940 | // If an immediate successor isn't available, look for the best viable |
| 1941 | // block among those we've identified as not violating the loop's CFG at |
| 1942 | // this point. This won't be a fallthrough, but it will increase locality. |
| 1943 | if (!BestSucc) |
| 1944 | BestSucc = selectBestCandidateBlock(Chain, WorkList&: BlockWorkList); |
| 1945 | if (!BestSucc) |
| 1946 | BestSucc = selectBestCandidateBlock(Chain, WorkList&: EHPadWorkList); |
| 1947 | |
| 1948 | if (!BestSucc) { |
| 1949 | if (BlockFilter) |
| 1950 | BestSucc = getFirstUnplacedBlock(PlacedChain: Chain, PrevUnplacedBlockInFilterIt, |
| 1951 | BlockFilter); |
| 1952 | else |
| 1953 | BestSucc = getFirstUnplacedBlock(PlacedChain: Chain, PrevUnplacedBlockIt); |
| 1954 | if (!BestSucc) |
| 1955 | break; |
| 1956 | |
| 1957 | LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " |
| 1958 | "layout successor until the CFG reduces\n" ); |
| 1959 | } |
| 1960 | |
| 1961 | // Placement may have changed tail duplication opportunities. |
| 1962 | // Check for that now. |
| 1963 | if (allowTailDupPlacement(MF&: *F) && BestSucc && ShouldTailDup) { |
| 1964 | repeatedlyTailDuplicateBlock(BB: BestSucc, LPred&: BB, LoopHeaderBB, Chain, |
| 1965 | BlockFilter, PrevUnplacedBlockIt, |
| 1966 | PrevUnplacedBlockInFilterIt); |
| 1967 | // If the chosen successor was duplicated into BB, don't bother laying |
| 1968 | // it out, just go round the loop again with BB as the chain end. |
| 1969 | if (!BB->isSuccessor(MBB: BestSucc)) |
| 1970 | continue; |
| 1971 | } |
| 1972 | |
| 1973 | // Place this block, updating the datastructures to reflect its placement. |
| 1974 | BlockChain &SuccChain = *BlockToChain[BestSucc]; |
| 1975 | // Zero out UnscheduledPredecessors for the successor we're about to merge |
| 1976 | // in case we selected a successor that didn't fit naturally into the CFG. |
| 1977 | SuccChain.UnscheduledPredecessors = 0; |
| 1978 | LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " |
| 1979 | << getBlockName(BestSucc) << "\n" ); |
| 1980 | markChainSuccessors(Chain: SuccChain, LoopHeaderBB, BlockFilter); |
| 1981 | Chain.merge(BB: BestSucc, Chain: &SuccChain); |
| 1982 | BB = *std::prev(x: Chain.end()); |
| 1983 | } |
| 1984 | |
| 1985 | LLVM_DEBUG(dbgs() << "Finished forming chain for header block " |
| 1986 | << getBlockName(*Chain.begin()) << "\n" ); |
| 1987 | } |
| 1988 | |
| 1989 | // If bottom of block BB has only one successor OldTop, in most cases it is |
| 1990 | // profitable to move it before OldTop, except the following case: |
| 1991 | // |
| 1992 | // -->OldTop<- |
| 1993 | // | . | |
| 1994 | // | . | |
| 1995 | // | . | |
| 1996 | // ---Pred | |
| 1997 | // | | |
| 1998 | // BB----- |
| 1999 | // |
| 2000 | // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't |
| 2001 | // layout the other successor below it, so it can't reduce taken branch. |
| 2002 | // In this case we keep its original layout. |
| 2003 | bool MachineBlockPlacement::canMoveBottomBlockToTop( |
| 2004 | const MachineBasicBlock *BottomBlock, const MachineBasicBlock *OldTop) { |
| 2005 | if (BottomBlock->pred_size() != 1) |
| 2006 | return true; |
| 2007 | MachineBasicBlock *Pred = *BottomBlock->pred_begin(); |
| 2008 | if (Pred->succ_size() != 2) |
| 2009 | return true; |
| 2010 | |
| 2011 | MachineBasicBlock *OtherBB = *Pred->succ_begin(); |
| 2012 | if (OtherBB == BottomBlock) |
| 2013 | OtherBB = *Pred->succ_rbegin(); |
| 2014 | if (OtherBB == OldTop) |
| 2015 | return false; |
| 2016 | |
| 2017 | return true; |
| 2018 | } |
| 2019 | |
| 2020 | // Find out the possible fall through frequence to the top of a loop. |
| 2021 | BlockFrequency |
| 2022 | MachineBlockPlacement::TopFallThroughFreq(const MachineBasicBlock *Top, |
| 2023 | const BlockFilterSet &LoopBlockSet) { |
| 2024 | BlockFrequency MaxFreq = BlockFrequency(0); |
| 2025 | for (MachineBasicBlock *Pred : Top->predecessors()) { |
| 2026 | BlockChain *PredChain = BlockToChain[Pred]; |
| 2027 | if (!LoopBlockSet.count(key: Pred) && |
| 2028 | (!PredChain || Pred == *std::prev(x: PredChain->end()))) { |
| 2029 | // Found a Pred block can be placed before Top. |
| 2030 | // Check if Top is the best successor of Pred. |
| 2031 | auto TopProb = MBPI->getEdgeProbability(Src: Pred, Dst: Top); |
| 2032 | bool TopOK = true; |
| 2033 | for (MachineBasicBlock *Succ : Pred->successors()) { |
| 2034 | auto SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
| 2035 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 2036 | // Check if Succ can be placed after Pred. |
| 2037 | // Succ should not be in any chain, or it is the head of some chain. |
| 2038 | if (!LoopBlockSet.count(key: Succ) && (SuccProb > TopProb) && |
| 2039 | (!SuccChain || Succ == *SuccChain->begin())) { |
| 2040 | TopOK = false; |
| 2041 | break; |
| 2042 | } |
| 2043 | } |
| 2044 | if (TopOK) { |
| 2045 | BlockFrequency EdgeFreq = |
| 2046 | MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: Top); |
| 2047 | if (EdgeFreq > MaxFreq) |
| 2048 | MaxFreq = EdgeFreq; |
| 2049 | } |
| 2050 | } |
| 2051 | } |
| 2052 | return MaxFreq; |
| 2053 | } |
| 2054 | |
| 2055 | // Compute the fall through gains when move NewTop before OldTop. |
| 2056 | // |
| 2057 | // In following diagram, edges marked as "-" are reduced fallthrough, edges |
| 2058 | // marked as "+" are increased fallthrough, this function computes |
| 2059 | // |
| 2060 | // SUM(increased fallthrough) - SUM(decreased fallthrough) |
| 2061 | // |
| 2062 | // | |
| 2063 | // | - |
| 2064 | // V |
| 2065 | // --->OldTop |
| 2066 | // | . |
| 2067 | // | . |
| 2068 | // +| . + |
| 2069 | // | Pred ---> |
| 2070 | // | |- |
| 2071 | // | V |
| 2072 | // --- NewTop <--- |
| 2073 | // |- |
| 2074 | // V |
| 2075 | // |
| 2076 | BlockFrequency MachineBlockPlacement::FallThroughGains( |
| 2077 | const MachineBasicBlock *NewTop, const MachineBasicBlock *OldTop, |
| 2078 | const MachineBasicBlock *ExitBB, const BlockFilterSet &LoopBlockSet) { |
| 2079 | BlockFrequency FallThrough2Top = TopFallThroughFreq(Top: OldTop, LoopBlockSet); |
| 2080 | BlockFrequency FallThrough2Exit = BlockFrequency(0); |
| 2081 | if (ExitBB) |
| 2082 | FallThrough2Exit = |
| 2083 | MBFI->getBlockFreq(MBB: NewTop) * MBPI->getEdgeProbability(Src: NewTop, Dst: ExitBB); |
| 2084 | BlockFrequency BackEdgeFreq = |
| 2085 | MBFI->getBlockFreq(MBB: NewTop) * MBPI->getEdgeProbability(Src: NewTop, Dst: OldTop); |
| 2086 | |
| 2087 | // Find the best Pred of NewTop. |
| 2088 | MachineBasicBlock *BestPred = nullptr; |
| 2089 | BlockFrequency FallThroughFromPred = BlockFrequency(0); |
| 2090 | for (MachineBasicBlock *Pred : NewTop->predecessors()) { |
| 2091 | if (!LoopBlockSet.count(key: Pred)) |
| 2092 | continue; |
| 2093 | BlockChain *PredChain = BlockToChain[Pred]; |
| 2094 | if (!PredChain || Pred == *std::prev(x: PredChain->end())) { |
| 2095 | BlockFrequency EdgeFreq = |
| 2096 | MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: NewTop); |
| 2097 | if (EdgeFreq > FallThroughFromPred) { |
| 2098 | FallThroughFromPred = EdgeFreq; |
| 2099 | BestPred = Pred; |
| 2100 | } |
| 2101 | } |
| 2102 | } |
| 2103 | |
| 2104 | // If NewTop is not placed after Pred, another successor can be placed |
| 2105 | // after Pred. |
| 2106 | BlockFrequency NewFreq = BlockFrequency(0); |
| 2107 | if (BestPred) { |
| 2108 | for (MachineBasicBlock *Succ : BestPred->successors()) { |
| 2109 | if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(key: Succ)) |
| 2110 | continue; |
| 2111 | if (ComputedEdges.contains(Val: Succ)) |
| 2112 | continue; |
| 2113 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 2114 | if ((SuccChain && (Succ != *SuccChain->begin())) || |
| 2115 | (SuccChain == BlockToChain[BestPred])) |
| 2116 | continue; |
| 2117 | BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: BestPred) * |
| 2118 | MBPI->getEdgeProbability(Src: BestPred, Dst: Succ); |
| 2119 | if (EdgeFreq > NewFreq) |
| 2120 | NewFreq = EdgeFreq; |
| 2121 | } |
| 2122 | BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(MBB: BestPred) * |
| 2123 | MBPI->getEdgeProbability(Src: BestPred, Dst: NewTop); |
| 2124 | if (NewFreq > OrigEdgeFreq) { |
| 2125 | // If NewTop is not the best successor of Pred, then Pred doesn't |
| 2126 | // fallthrough to NewTop. So there is no FallThroughFromPred and |
| 2127 | // NewFreq. |
| 2128 | NewFreq = BlockFrequency(0); |
| 2129 | FallThroughFromPred = BlockFrequency(0); |
| 2130 | } |
| 2131 | } |
| 2132 | |
| 2133 | BlockFrequency Result = BlockFrequency(0); |
| 2134 | BlockFrequency Gains = BackEdgeFreq + NewFreq; |
| 2135 | BlockFrequency Lost = |
| 2136 | FallThrough2Top + FallThrough2Exit + FallThroughFromPred; |
| 2137 | if (Gains > Lost) |
| 2138 | Result = Gains - Lost; |
| 2139 | return Result; |
| 2140 | } |
| 2141 | |
| 2142 | /// Helper function of findBestLoopTop. Find the best loop top block |
| 2143 | /// from predecessors of old top. |
| 2144 | /// |
| 2145 | /// Look for a block which is strictly better than the old top for laying |
| 2146 | /// out before the old top of the loop. This looks for only two patterns: |
| 2147 | /// |
| 2148 | /// 1. a block has only one successor, the old loop top |
| 2149 | /// |
| 2150 | /// Because such a block will always result in an unconditional jump, |
| 2151 | /// rotating it in front of the old top is always profitable. |
| 2152 | /// |
| 2153 | /// 2. a block has two successors, one is old top, another is exit |
| 2154 | /// and it has more than one predecessors |
| 2155 | /// |
| 2156 | /// If it is below one of its predecessors P, only P can fall through to |
| 2157 | /// it, all other predecessors need a jump to it, and another conditional |
| 2158 | /// jump to loop header. If it is moved before loop header, all its |
| 2159 | /// predecessors jump to it, then fall through to loop header. So all its |
| 2160 | /// predecessors except P can reduce one taken branch. |
| 2161 | /// At the same time, move it before old top increases the taken branch |
| 2162 | /// to loop exit block, so the reduced taken branch will be compared with |
| 2163 | /// the increased taken branch to the loop exit block. |
| 2164 | MachineBasicBlock *MachineBlockPlacement::findBestLoopTopHelper( |
| 2165 | MachineBasicBlock *OldTop, const MachineLoop &L, |
| 2166 | const BlockFilterSet &LoopBlockSet) { |
| 2167 | // Check that the header hasn't been fused with a preheader block due to |
| 2168 | // crazy branches. If it has, we need to start with the header at the top to |
| 2169 | // prevent pulling the preheader into the loop body. |
| 2170 | BlockChain & = *BlockToChain[OldTop]; |
| 2171 | if (!LoopBlockSet.count(key: *HeaderChain.begin())) |
| 2172 | return OldTop; |
| 2173 | if (OldTop != *HeaderChain.begin()) |
| 2174 | return OldTop; |
| 2175 | |
| 2176 | LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) |
| 2177 | << "\n" ); |
| 2178 | |
| 2179 | BlockFrequency BestGains = BlockFrequency(0); |
| 2180 | MachineBasicBlock *BestPred = nullptr; |
| 2181 | for (MachineBasicBlock *Pred : OldTop->predecessors()) { |
| 2182 | if (!LoopBlockSet.count(key: Pred)) |
| 2183 | continue; |
| 2184 | if (Pred == L.getHeader()) |
| 2185 | continue; |
| 2186 | LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " |
| 2187 | << Pred->succ_size() << " successors, " |
| 2188 | << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n" ); |
| 2189 | if (Pred->succ_size() > 2) |
| 2190 | continue; |
| 2191 | |
| 2192 | MachineBasicBlock *OtherBB = nullptr; |
| 2193 | if (Pred->succ_size() == 2) { |
| 2194 | OtherBB = *Pred->succ_begin(); |
| 2195 | if (OtherBB == OldTop) |
| 2196 | OtherBB = *Pred->succ_rbegin(); |
| 2197 | } |
| 2198 | |
| 2199 | if (!canMoveBottomBlockToTop(BottomBlock: Pred, OldTop)) |
| 2200 | continue; |
| 2201 | |
| 2202 | BlockFrequency Gains = |
| 2203 | FallThroughGains(NewTop: Pred, OldTop, ExitBB: OtherBB, LoopBlockSet); |
| 2204 | if ((Gains > BlockFrequency(0)) && |
| 2205 | (Gains > BestGains || |
| 2206 | ((Gains == BestGains) && Pred->isLayoutSuccessor(MBB: OldTop)))) { |
| 2207 | BestPred = Pred; |
| 2208 | BestGains = Gains; |
| 2209 | } |
| 2210 | } |
| 2211 | |
| 2212 | // If no direct predecessor is fine, just use the loop header. |
| 2213 | if (!BestPred) { |
| 2214 | LLVM_DEBUG(dbgs() << " final top unchanged\n" ); |
| 2215 | return OldTop; |
| 2216 | } |
| 2217 | |
| 2218 | // Walk backwards through any straight line of predecessors. |
| 2219 | while (BestPred->pred_size() == 1 && |
| 2220 | (*BestPred->pred_begin())->succ_size() == 1 && |
| 2221 | *BestPred->pred_begin() != L.getHeader()) |
| 2222 | BestPred = *BestPred->pred_begin(); |
| 2223 | |
| 2224 | LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n" ); |
| 2225 | return BestPred; |
| 2226 | } |
| 2227 | |
| 2228 | /// Find the best loop top block for layout. |
| 2229 | /// |
| 2230 | /// This function iteratively calls findBestLoopTopHelper, until no new better |
| 2231 | /// BB can be found. |
| 2232 | MachineBasicBlock * |
| 2233 | MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, |
| 2234 | const BlockFilterSet &LoopBlockSet) { |
| 2235 | // Placing the latch block before the header may introduce an extra branch |
| 2236 | // that skips this block the first time the loop is executed, which we want |
| 2237 | // to avoid when optimising for size. |
| 2238 | // FIXME: in theory there is a case that does not introduce a new branch, |
| 2239 | // i.e. when the layout predecessor does not fallthrough to the loop header. |
| 2240 | // In practice this never happens though: there always seems to be a preheader |
| 2241 | // that can fallthrough and that is also placed before the header. |
| 2242 | if (llvm::shouldOptimizeForSize(MBB: L.getHeader(), PSI, MBFIWrapper: MBFI.get())) |
| 2243 | return L.getHeader(); |
| 2244 | |
| 2245 | MachineBasicBlock *OldTop = nullptr; |
| 2246 | MachineBasicBlock *NewTop = L.getHeader(); |
| 2247 | while (NewTop != OldTop) { |
| 2248 | OldTop = NewTop; |
| 2249 | NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); |
| 2250 | if (NewTop != OldTop) |
| 2251 | ComputedEdges[NewTop] = {.BB: OldTop, .ShouldTailDup: false}; |
| 2252 | } |
| 2253 | return NewTop; |
| 2254 | } |
| 2255 | |
| 2256 | /// Find the best loop exiting block for layout. |
| 2257 | /// |
| 2258 | /// This routine implements the logic to analyze the loop looking for the best |
| 2259 | /// block to layout at the top of the loop. Typically this is done to maximize |
| 2260 | /// fallthrough opportunities. |
| 2261 | MachineBasicBlock * |
| 2262 | MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, |
| 2263 | const BlockFilterSet &LoopBlockSet, |
| 2264 | BlockFrequency &ExitFreq) { |
| 2265 | // We don't want to layout the loop linearly in all cases. If the loop header |
| 2266 | // is just a normal basic block in the loop, we want to look for what block |
| 2267 | // within the loop is the best one to layout at the top. However, if the loop |
| 2268 | // header has be pre-merged into a chain due to predecessors not having |
| 2269 | // analyzable branches, *and* the predecessor it is merged with is *not* part |
| 2270 | // of the loop, rotating the header into the middle of the loop will create |
| 2271 | // a non-contiguous range of blocks which is Very Bad. So start with the |
| 2272 | // header and only rotate if safe. |
| 2273 | BlockChain & = *BlockToChain[L.getHeader()]; |
| 2274 | if (!LoopBlockSet.count(key: *HeaderChain.begin())) |
| 2275 | return nullptr; |
| 2276 | |
| 2277 | BlockFrequency BestExitEdgeFreq; |
| 2278 | unsigned BestExitLoopDepth = 0; |
| 2279 | MachineBasicBlock *ExitingBB = nullptr; |
| 2280 | // If there are exits to outer loops, loop rotation can severely limit |
| 2281 | // fallthrough opportunities unless it selects such an exit. Keep a set of |
| 2282 | // blocks where rotating to exit with that block will reach an outer loop. |
| 2283 | SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; |
| 2284 | |
| 2285 | LLVM_DEBUG(dbgs() << "Finding best loop exit for: " |
| 2286 | << getBlockName(L.getHeader()) << "\n" ); |
| 2287 | for (MachineBasicBlock *MBB : L.getBlocks()) { |
| 2288 | BlockChain &Chain = *BlockToChain[MBB]; |
| 2289 | // Ensure that this block is at the end of a chain; otherwise it could be |
| 2290 | // mid-way through an inner loop or a successor of an unanalyzable branch. |
| 2291 | if (MBB != *std::prev(x: Chain.end())) |
| 2292 | continue; |
| 2293 | |
| 2294 | // Now walk the successors. We need to establish whether this has a viable |
| 2295 | // exiting successor and whether it has a viable non-exiting successor. |
| 2296 | // We store the old exiting state and restore it if a viable looping |
| 2297 | // successor isn't found. |
| 2298 | MachineBasicBlock *OldExitingBB = ExitingBB; |
| 2299 | BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; |
| 2300 | bool HasLoopingSucc = false; |
| 2301 | for (MachineBasicBlock *Succ : MBB->successors()) { |
| 2302 | if (Succ->isEHPad()) |
| 2303 | continue; |
| 2304 | if (Succ == MBB) |
| 2305 | continue; |
| 2306 | BlockChain &SuccChain = *BlockToChain[Succ]; |
| 2307 | // Don't split chains, either this chain or the successor's chain. |
| 2308 | if (&Chain == &SuccChain) { |
| 2309 | LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " |
| 2310 | << getBlockName(Succ) << " (chain conflict)\n" ); |
| 2311 | continue; |
| 2312 | } |
| 2313 | |
| 2314 | auto SuccProb = MBPI->getEdgeProbability(Src: MBB, Dst: Succ); |
| 2315 | if (LoopBlockSet.count(key: Succ)) { |
| 2316 | LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " |
| 2317 | << getBlockName(Succ) << " (" << SuccProb << ")\n" ); |
| 2318 | HasLoopingSucc = true; |
| 2319 | continue; |
| 2320 | } |
| 2321 | |
| 2322 | unsigned SuccLoopDepth = 0; |
| 2323 | if (MachineLoop *ExitLoop = MLI->getLoopFor(BB: Succ)) { |
| 2324 | SuccLoopDepth = ExitLoop->getLoopDepth(); |
| 2325 | if (ExitLoop->contains(L: &L)) |
| 2326 | BlocksExitingToOuterLoop.insert(Ptr: MBB); |
| 2327 | } |
| 2328 | |
| 2329 | BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; |
| 2330 | LLVM_DEBUG( |
| 2331 | dbgs() << " exiting: " << getBlockName(MBB) << " -> " |
| 2332 | << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (" |
| 2333 | << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n" ); |
| 2334 | // Note that we bias this toward an existing layout successor to retain |
| 2335 | // incoming order in the absence of better information. The exit must have |
| 2336 | // a frequency higher than the current exit before we consider breaking |
| 2337 | // the layout. |
| 2338 | BranchProbability Bias(100 - ExitBlockBias, 100); |
| 2339 | if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || |
| 2340 | ExitEdgeFreq > BestExitEdgeFreq || |
| 2341 | (MBB->isLayoutSuccessor(MBB: Succ) && |
| 2342 | !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { |
| 2343 | BestExitEdgeFreq = ExitEdgeFreq; |
| 2344 | ExitingBB = MBB; |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | if (!HasLoopingSucc) { |
| 2349 | // Restore the old exiting state, no viable looping successor was found. |
| 2350 | ExitingBB = OldExitingBB; |
| 2351 | BestExitEdgeFreq = OldBestExitEdgeFreq; |
| 2352 | } |
| 2353 | } |
| 2354 | // Without a candidate exiting block or with only a single block in the |
| 2355 | // loop, just use the loop header to layout the loop. |
| 2356 | if (!ExitingBB) { |
| 2357 | LLVM_DEBUG( |
| 2358 | dbgs() << " No other candidate exit blocks, using loop header\n" ); |
| 2359 | return nullptr; |
| 2360 | } |
| 2361 | if (L.getNumBlocks() == 1) { |
| 2362 | LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n" ); |
| 2363 | return nullptr; |
| 2364 | } |
| 2365 | |
| 2366 | // Also, if we have exit blocks which lead to outer loops but didn't select |
| 2367 | // one of them as the exiting block we are rotating toward, disable loop |
| 2368 | // rotation altogether. |
| 2369 | if (!BlocksExitingToOuterLoop.empty() && |
| 2370 | !BlocksExitingToOuterLoop.count(Ptr: ExitingBB)) |
| 2371 | return nullptr; |
| 2372 | |
| 2373 | LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) |
| 2374 | << "\n" ); |
| 2375 | ExitFreq = BestExitEdgeFreq; |
| 2376 | return ExitingBB; |
| 2377 | } |
| 2378 | |
| 2379 | /// Check if there is a fallthrough to loop header Top. |
| 2380 | /// |
| 2381 | /// 1. Look for a Pred that can be layout before Top. |
| 2382 | /// 2. Check if Top is the most possible successor of Pred. |
| 2383 | bool MachineBlockPlacement::hasViableTopFallthrough( |
| 2384 | const MachineBasicBlock *Top, const BlockFilterSet &LoopBlockSet) { |
| 2385 | for (MachineBasicBlock *Pred : Top->predecessors()) { |
| 2386 | BlockChain *PredChain = BlockToChain[Pred]; |
| 2387 | if (!LoopBlockSet.count(key: Pred) && |
| 2388 | (!PredChain || Pred == *std::prev(x: PredChain->end()))) { |
| 2389 | // Found a Pred block can be placed before Top. |
| 2390 | // Check if Top is the best successor of Pred. |
| 2391 | auto TopProb = MBPI->getEdgeProbability(Src: Pred, Dst: Top); |
| 2392 | bool TopOK = true; |
| 2393 | for (MachineBasicBlock *Succ : Pred->successors()) { |
| 2394 | auto SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
| 2395 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 2396 | // Check if Succ can be placed after Pred. |
| 2397 | // Succ should not be in any chain, or it is the head of some chain. |
| 2398 | if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { |
| 2399 | TopOK = false; |
| 2400 | break; |
| 2401 | } |
| 2402 | } |
| 2403 | if (TopOK) |
| 2404 | return true; |
| 2405 | } |
| 2406 | } |
| 2407 | return false; |
| 2408 | } |
| 2409 | |
| 2410 | /// Attempt to rotate an exiting block to the bottom of the loop. |
| 2411 | /// |
| 2412 | /// Once we have built a chain, try to rotate it to line up the hot exit block |
| 2413 | /// with fallthrough out of the loop if doing so doesn't introduce unnecessary |
| 2414 | /// branches. For example, if the loop has fallthrough into its header and out |
| 2415 | /// of its bottom already, don't rotate it. |
| 2416 | void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, |
| 2417 | const MachineBasicBlock *ExitingBB, |
| 2418 | BlockFrequency ExitFreq, |
| 2419 | const BlockFilterSet &LoopBlockSet) { |
| 2420 | if (!ExitingBB) |
| 2421 | return; |
| 2422 | |
| 2423 | MachineBasicBlock *Top = *LoopChain.begin(); |
| 2424 | MachineBasicBlock *Bottom = *std::prev(x: LoopChain.end()); |
| 2425 | |
| 2426 | // If ExitingBB is already the last one in a chain then nothing to do. |
| 2427 | if (Bottom == ExitingBB) |
| 2428 | return; |
| 2429 | |
| 2430 | // The entry block should always be the first BB in a function. |
| 2431 | if (Top->isEntryBlock()) |
| 2432 | return; |
| 2433 | |
| 2434 | bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); |
| 2435 | |
| 2436 | // If the header has viable fallthrough, check whether the current loop |
| 2437 | // bottom is a viable exiting block. If so, bail out as rotating will |
| 2438 | // introduce an unnecessary branch. |
| 2439 | if (ViableTopFallthrough) { |
| 2440 | for (MachineBasicBlock *Succ : Bottom->successors()) { |
| 2441 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 2442 | if (!LoopBlockSet.count(key: Succ) && |
| 2443 | (!SuccChain || Succ == *SuccChain->begin())) |
| 2444 | return; |
| 2445 | } |
| 2446 | |
| 2447 | // Rotate will destroy the top fallthrough, we need to ensure the new exit |
| 2448 | // frequency is larger than top fallthrough. |
| 2449 | BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); |
| 2450 | if (FallThrough2Top >= ExitFreq) |
| 2451 | return; |
| 2452 | } |
| 2453 | |
| 2454 | BlockChain::iterator ExitIt = llvm::find(Range&: LoopChain, Val: ExitingBB); |
| 2455 | if (ExitIt == LoopChain.end()) |
| 2456 | return; |
| 2457 | |
| 2458 | // Rotating a loop exit to the bottom when there is a fallthrough to top |
| 2459 | // trades the entry fallthrough for an exit fallthrough. |
| 2460 | // If there is no bottom->top edge, but the chosen exit block does have |
| 2461 | // a fallthrough, we break that fallthrough for nothing in return. |
| 2462 | |
| 2463 | // Let's consider an example. We have a built chain of basic blocks |
| 2464 | // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. |
| 2465 | // By doing a rotation we get |
| 2466 | // Bk+1, ..., Bn, B1, ..., Bk |
| 2467 | // Break of fallthrough to B1 is compensated by a fallthrough from Bk. |
| 2468 | // If we had a fallthrough Bk -> Bk+1 it is broken now. |
| 2469 | // It might be compensated by fallthrough Bn -> B1. |
| 2470 | // So we have a condition to avoid creation of extra branch by loop rotation. |
| 2471 | // All below must be true to avoid loop rotation: |
| 2472 | // If there is a fallthrough to top (B1) |
| 2473 | // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) |
| 2474 | // There is no fallthrough from bottom (Bn) to top (B1). |
| 2475 | // Please note that there is no exit fallthrough from Bn because we checked it |
| 2476 | // above. |
| 2477 | if (ViableTopFallthrough) { |
| 2478 | assert(std::next(ExitIt) != LoopChain.end() && |
| 2479 | "Exit should not be last BB" ); |
| 2480 | MachineBasicBlock *NextBlockInChain = *std::next(x: ExitIt); |
| 2481 | if (ExitingBB->isSuccessor(MBB: NextBlockInChain)) |
| 2482 | if (!Bottom->isSuccessor(MBB: Top)) |
| 2483 | return; |
| 2484 | } |
| 2485 | |
| 2486 | LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) |
| 2487 | << " at bottom\n" ); |
| 2488 | std::rotate(first: LoopChain.begin(), middle: std::next(x: ExitIt), last: LoopChain.end()); |
| 2489 | } |
| 2490 | |
| 2491 | /// Attempt to rotate a loop based on profile data to reduce branch cost. |
| 2492 | /// |
| 2493 | /// With profile data, we can determine the cost in terms of missed fall through |
| 2494 | /// opportunities when rotating a loop chain and select the best rotation. |
| 2495 | /// Basically, there are three kinds of cost to consider for each rotation: |
| 2496 | /// 1. The possibly missed fall through edge (if it exists) from BB out of |
| 2497 | /// the loop to the loop header. |
| 2498 | /// 2. The possibly missed fall through edges (if they exist) from the loop |
| 2499 | /// exits to BB out of the loop. |
| 2500 | /// 3. The missed fall through edge (if it exists) from the last BB to the |
| 2501 | /// first BB in the loop chain. |
| 2502 | /// Therefore, the cost for a given rotation is the sum of costs listed above. |
| 2503 | /// We select the best rotation with the smallest cost. |
| 2504 | void MachineBlockPlacement::rotateLoopWithProfile( |
| 2505 | BlockChain &LoopChain, const MachineLoop &L, |
| 2506 | const BlockFilterSet &LoopBlockSet) { |
| 2507 | auto RotationPos = LoopChain.end(); |
| 2508 | MachineBasicBlock * = *LoopChain.begin(); |
| 2509 | |
| 2510 | // The entry block should always be the first BB in a function. |
| 2511 | if (ChainHeaderBB->isEntryBlock()) |
| 2512 | return; |
| 2513 | |
| 2514 | BlockFrequency SmallestRotationCost = BlockFrequency::max(); |
| 2515 | |
| 2516 | // A utility lambda that scales up a block frequency by dividing it by a |
| 2517 | // branch probability which is the reciprocal of the scale. |
| 2518 | auto ScaleBlockFrequency = [](BlockFrequency Freq, |
| 2519 | unsigned Scale) -> BlockFrequency { |
| 2520 | if (Scale == 0) |
| 2521 | return BlockFrequency(0); |
| 2522 | // Use operator / between BlockFrequency and BranchProbability to implement |
| 2523 | // saturating multiplication. |
| 2524 | return Freq / BranchProbability(1, Scale); |
| 2525 | }; |
| 2526 | |
| 2527 | // Compute the cost of the missed fall-through edge to the loop header if the |
| 2528 | // chain head is not the loop header. As we only consider natural loops with |
| 2529 | // single header, this computation can be done only once. |
| 2530 | BlockFrequency (0); |
| 2531 | for (auto *Pred : ChainHeaderBB->predecessors()) { |
| 2532 | BlockChain *PredChain = BlockToChain[Pred]; |
| 2533 | if (!LoopBlockSet.count(key: Pred) && |
| 2534 | (!PredChain || Pred == *std::prev(x: PredChain->end()))) { |
| 2535 | auto EdgeFreq = MBFI->getBlockFreq(MBB: Pred) * |
| 2536 | MBPI->getEdgeProbability(Src: Pred, Dst: ChainHeaderBB); |
| 2537 | auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); |
| 2538 | // If the predecessor has only an unconditional jump to the header, we |
| 2539 | // need to consider the cost of this jump. |
| 2540 | if (Pred->succ_size() == 1) |
| 2541 | FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); |
| 2542 | HeaderFallThroughCost = std::max(a: HeaderFallThroughCost, b: FallThruCost); |
| 2543 | } |
| 2544 | } |
| 2545 | |
| 2546 | // Here we collect all exit blocks in the loop, and for each exit we find out |
| 2547 | // its hottest exit edge. For each loop rotation, we define the loop exit cost |
| 2548 | // as the sum of frequencies of exit edges we collect here, excluding the exit |
| 2549 | // edge from the tail of the loop chain. |
| 2550 | SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; |
| 2551 | for (auto *BB : LoopChain) { |
| 2552 | auto LargestExitEdgeProb = BranchProbability::getZero(); |
| 2553 | for (auto *Succ : BB->successors()) { |
| 2554 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 2555 | if (!LoopBlockSet.count(key: Succ) && |
| 2556 | (!SuccChain || Succ == *SuccChain->begin())) { |
| 2557 | auto SuccProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
| 2558 | LargestExitEdgeProb = std::max(a: LargestExitEdgeProb, b: SuccProb); |
| 2559 | } |
| 2560 | } |
| 2561 | if (LargestExitEdgeProb > BranchProbability::getZero()) { |
| 2562 | auto ExitFreq = MBFI->getBlockFreq(MBB: BB) * LargestExitEdgeProb; |
| 2563 | ExitsWithFreq.emplace_back(Args&: BB, Args&: ExitFreq); |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | // In this loop we iterate every block in the loop chain and calculate the |
| 2568 | // cost assuming the block is the head of the loop chain. When the loop ends, |
| 2569 | // we should have found the best candidate as the loop chain's head. |
| 2570 | for (auto Iter = LoopChain.begin(), TailIter = std::prev(x: LoopChain.end()), |
| 2571 | EndIter = LoopChain.end(); |
| 2572 | Iter != EndIter; Iter++, TailIter++) { |
| 2573 | // TailIter is used to track the tail of the loop chain if the block we are |
| 2574 | // checking (pointed by Iter) is the head of the chain. |
| 2575 | if (TailIter == LoopChain.end()) |
| 2576 | TailIter = LoopChain.begin(); |
| 2577 | |
| 2578 | auto TailBB = *TailIter; |
| 2579 | |
| 2580 | // Calculate the cost by putting this BB to the top. |
| 2581 | BlockFrequency Cost = BlockFrequency(0); |
| 2582 | |
| 2583 | // If the current BB is the loop header, we need to take into account the |
| 2584 | // cost of the missed fall through edge from outside of the loop to the |
| 2585 | // header. |
| 2586 | if (Iter != LoopChain.begin()) |
| 2587 | Cost += HeaderFallThroughCost; |
| 2588 | |
| 2589 | // Collect the loop exit cost by summing up frequencies of all exit edges |
| 2590 | // except the one from the chain tail. |
| 2591 | for (auto &ExitWithFreq : ExitsWithFreq) |
| 2592 | if (TailBB != ExitWithFreq.first) |
| 2593 | Cost += ExitWithFreq.second; |
| 2594 | |
| 2595 | // The cost of breaking the once fall-through edge from the tail to the top |
| 2596 | // of the loop chain. Here we need to consider three cases: |
| 2597 | // 1. If the tail node has only one successor, then we will get an |
| 2598 | // additional jmp instruction. So the cost here is (MisfetchCost + |
| 2599 | // JumpInstCost) * tail node frequency. |
| 2600 | // 2. If the tail node has two successors, then we may still get an |
| 2601 | // additional jmp instruction if the layout successor after the loop |
| 2602 | // chain is not its CFG successor. Note that the more frequently executed |
| 2603 | // jmp instruction will be put ahead of the other one. Assume the |
| 2604 | // frequency of those two branches are x and y, where x is the frequency |
| 2605 | // of the edge to the chain head, then the cost will be |
| 2606 | // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. |
| 2607 | // 3. If the tail node has more than two successors (this rarely happens), |
| 2608 | // we won't consider any additional cost. |
| 2609 | if (TailBB->isSuccessor(MBB: *Iter)) { |
| 2610 | auto TailBBFreq = MBFI->getBlockFreq(MBB: TailBB); |
| 2611 | if (TailBB->succ_size() == 1) |
| 2612 | Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost); |
| 2613 | else if (TailBB->succ_size() == 2) { |
| 2614 | auto TailToHeadProb = MBPI->getEdgeProbability(Src: TailBB, Dst: *Iter); |
| 2615 | auto TailToHeadFreq = TailBBFreq * TailToHeadProb; |
| 2616 | auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) |
| 2617 | ? TailBBFreq * TailToHeadProb.getCompl() |
| 2618 | : TailToHeadFreq; |
| 2619 | Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + |
| 2620 | ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); |
| 2621 | } |
| 2622 | } |
| 2623 | |
| 2624 | LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " |
| 2625 | << getBlockName(*Iter) << " to the top: " |
| 2626 | << printBlockFreq(MBFI->getMBFI(), Cost) << "\n" ); |
| 2627 | |
| 2628 | if (Cost < SmallestRotationCost) { |
| 2629 | SmallestRotationCost = Cost; |
| 2630 | RotationPos = Iter; |
| 2631 | } |
| 2632 | } |
| 2633 | |
| 2634 | if (RotationPos != LoopChain.end()) { |
| 2635 | LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) |
| 2636 | << " to the top\n" ); |
| 2637 | std::rotate(first: LoopChain.begin(), middle: RotationPos, last: LoopChain.end()); |
| 2638 | } |
| 2639 | } |
| 2640 | |
| 2641 | /// Collect blocks in the given loop that are to be placed. |
| 2642 | /// |
| 2643 | /// When profile data is available, exclude cold blocks from the returned set; |
| 2644 | /// otherwise, collect all blocks in the loop. |
| 2645 | MachineBlockPlacement::BlockFilterSet |
| 2646 | MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { |
| 2647 | // Collect the blocks in a set ordered by block number, as this gives the same |
| 2648 | // order as they appear in the function. |
| 2649 | struct MBBCompare { |
| 2650 | bool operator()(const MachineBasicBlock *X, |
| 2651 | const MachineBasicBlock *Y) const { |
| 2652 | return X->getNumber() < Y->getNumber(); |
| 2653 | } |
| 2654 | }; |
| 2655 | std::set<const MachineBasicBlock *, MBBCompare> LoopBlockSet; |
| 2656 | |
| 2657 | // Filter cold blocks off from LoopBlockSet when profile data is available. |
| 2658 | // Collect the sum of frequencies of incoming edges to the loop header from |
| 2659 | // outside. If we treat the loop as a super block, this is the frequency of |
| 2660 | // the loop. Then for each block in the loop, we calculate the ratio between |
| 2661 | // its frequency and the frequency of the loop block. When it is too small, |
| 2662 | // don't add it to the loop chain. If there are outer loops, then this block |
| 2663 | // will be merged into the first outer loop chain for which this block is not |
| 2664 | // cold anymore. This needs precise profile data and we only do this when |
| 2665 | // profile data is available. |
| 2666 | if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { |
| 2667 | BlockFrequency LoopFreq(0); |
| 2668 | for (auto *LoopPred : L.getHeader()->predecessors()) |
| 2669 | if (!L.contains(BB: LoopPred)) |
| 2670 | LoopFreq += MBFI->getBlockFreq(MBB: LoopPred) * |
| 2671 | MBPI->getEdgeProbability(Src: LoopPred, Dst: L.getHeader()); |
| 2672 | |
| 2673 | for (MachineBasicBlock *LoopBB : L.getBlocks()) { |
| 2674 | if (LoopBlockSet.count(x: LoopBB)) |
| 2675 | continue; |
| 2676 | auto Freq = MBFI->getBlockFreq(MBB: LoopBB).getFrequency(); |
| 2677 | if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) |
| 2678 | continue; |
| 2679 | BlockChain *Chain = BlockToChain[LoopBB]; |
| 2680 | for (MachineBasicBlock *ChainBB : *Chain) |
| 2681 | LoopBlockSet.insert(x: ChainBB); |
| 2682 | } |
| 2683 | } else |
| 2684 | LoopBlockSet.insert(first: L.block_begin(), last: L.block_end()); |
| 2685 | |
| 2686 | // Copy the blocks into a BlockFilterSet, as iterating it is faster than |
| 2687 | // std::set. We will only remove blocks and never insert them, which will |
| 2688 | // preserve the ordering. |
| 2689 | BlockFilterSet Ret(LoopBlockSet.begin(), LoopBlockSet.end()); |
| 2690 | return Ret; |
| 2691 | } |
| 2692 | |
| 2693 | /// Forms basic block chains from the natural loop structures. |
| 2694 | /// |
| 2695 | /// These chains are designed to preserve the existing *structure* of the code |
| 2696 | /// as much as possible. We can then stitch the chains together in a way which |
| 2697 | /// both preserves the topological structure and minimizes taken conditional |
| 2698 | /// branches. |
| 2699 | void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { |
| 2700 | // First recurse through any nested loops, building chains for those inner |
| 2701 | // loops. |
| 2702 | for (const MachineLoop *InnerLoop : L) |
| 2703 | buildLoopChains(L: *InnerLoop); |
| 2704 | |
| 2705 | assert(BlockWorkList.empty() && |
| 2706 | "BlockWorkList not empty when starting to build loop chains." ); |
| 2707 | assert(EHPadWorkList.empty() && |
| 2708 | "EHPadWorkList not empty when starting to build loop chains." ); |
| 2709 | BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); |
| 2710 | |
| 2711 | // Check if we have profile data for this function. If yes, we will rotate |
| 2712 | // this loop by modeling costs more precisely which requires the profile data |
| 2713 | // for better layout. |
| 2714 | bool RotateLoopWithProfile = |
| 2715 | ForcePreciseRotationCost || |
| 2716 | (PreciseRotationCost && F->getFunction().hasProfileData()); |
| 2717 | |
| 2718 | // First check to see if there is an obviously preferable top block for the |
| 2719 | // loop. This will default to the header, but may end up as one of the |
| 2720 | // predecessors to the header if there is one which will result in strictly |
| 2721 | // fewer branches in the loop body. |
| 2722 | MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); |
| 2723 | |
| 2724 | // If we selected just the header for the loop top, look for a potentially |
| 2725 | // profitable exit block in the event that rotating the loop can eliminate |
| 2726 | // branches by placing an exit edge at the bottom. |
| 2727 | // |
| 2728 | // Loops are processed innermost to uttermost, make sure we clear |
| 2729 | // PreferredLoopExit before processing a new loop. |
| 2730 | PreferredLoopExit = nullptr; |
| 2731 | BlockFrequency ExitFreq; |
| 2732 | if (!RotateLoopWithProfile && LoopTop == L.getHeader()) |
| 2733 | PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); |
| 2734 | |
| 2735 | BlockChain &LoopChain = *BlockToChain[LoopTop]; |
| 2736 | |
| 2737 | // FIXME: This is a really lame way of walking the chains in the loop: we |
| 2738 | // walk the blocks, and use a set to prevent visiting a particular chain |
| 2739 | // twice. |
| 2740 | SmallPtrSet<BlockChain *, 4> UpdatedPreds; |
| 2741 | assert(LoopChain.UnscheduledPredecessors == 0 && |
| 2742 | "LoopChain should not have unscheduled predecessors." ); |
| 2743 | UpdatedPreds.insert(Ptr: &LoopChain); |
| 2744 | |
| 2745 | for (const MachineBasicBlock *LoopBB : LoopBlockSet) |
| 2746 | fillWorkLists(MBB: LoopBB, UpdatedPreds, BlockFilter: &LoopBlockSet); |
| 2747 | |
| 2748 | buildChain(HeadBB: LoopTop, Chain&: LoopChain, BlockFilter: &LoopBlockSet); |
| 2749 | |
| 2750 | if (RotateLoopWithProfile) |
| 2751 | rotateLoopWithProfile(LoopChain, L, LoopBlockSet); |
| 2752 | else |
| 2753 | rotateLoop(LoopChain, ExitingBB: PreferredLoopExit, ExitFreq, LoopBlockSet); |
| 2754 | |
| 2755 | LLVM_DEBUG({ |
| 2756 | // Crash at the end so we get all of the debugging output first. |
| 2757 | bool BadLoop = false; |
| 2758 | if (LoopChain.UnscheduledPredecessors) { |
| 2759 | BadLoop = true; |
| 2760 | dbgs() << "Loop chain contains a block without its preds placed!\n" |
| 2761 | << " Loop header: " << getBlockName(*L.block_begin()) << "\n" |
| 2762 | << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" ; |
| 2763 | } |
| 2764 | for (MachineBasicBlock *ChainBB : LoopChain) { |
| 2765 | dbgs() << " ... " << getBlockName(ChainBB) << "\n" ; |
| 2766 | if (!LoopBlockSet.remove(ChainBB)) { |
| 2767 | // We don't mark the loop as bad here because there are real situations |
| 2768 | // where this can occur. For example, with an unanalyzable fallthrough |
| 2769 | // from a loop block to a non-loop block or vice versa. |
| 2770 | dbgs() << "Loop chain contains a block not contained by the loop!\n" |
| 2771 | << " Loop header: " << getBlockName(*L.block_begin()) << "\n" |
| 2772 | << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" |
| 2773 | << " Bad block: " << getBlockName(ChainBB) << "\n" ; |
| 2774 | } |
| 2775 | } |
| 2776 | |
| 2777 | if (!LoopBlockSet.empty()) { |
| 2778 | BadLoop = true; |
| 2779 | for (const MachineBasicBlock *LoopBB : LoopBlockSet) |
| 2780 | dbgs() << "Loop contains blocks never placed into a chain!\n" |
| 2781 | << " Loop header: " << getBlockName(*L.block_begin()) << "\n" |
| 2782 | << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" |
| 2783 | << " Bad block: " << getBlockName(LoopBB) << "\n" ; |
| 2784 | } |
| 2785 | assert(!BadLoop && "Detected problems with the placement of this loop." ); |
| 2786 | }); |
| 2787 | |
| 2788 | BlockWorkList.clear(); |
| 2789 | EHPadWorkList.clear(); |
| 2790 | } |
| 2791 | |
| 2792 | void MachineBlockPlacement::buildCFGChains() { |
| 2793 | // Ensure that every BB in the function has an associated chain to simplify |
| 2794 | // the assumptions of the remaining algorithm. |
| 2795 | SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. |
| 2796 | for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; |
| 2797 | ++FI) { |
| 2798 | MachineBasicBlock *BB = &*FI; |
| 2799 | BlockChain *Chain = |
| 2800 | new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); |
| 2801 | // Also, merge any blocks which we cannot reason about and must preserve |
| 2802 | // the exact fallthrough behavior for. |
| 2803 | while (true) { |
| 2804 | Cond.clear(); |
| 2805 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
| 2806 | if (!TII->analyzeBranch(MBB&: *BB, TBB, FBB, Cond) || !FI->canFallThrough()) |
| 2807 | break; |
| 2808 | |
| 2809 | MachineFunction::iterator NextFI = std::next(x: FI); |
| 2810 | MachineBasicBlock *NextBB = &*NextFI; |
| 2811 | // Ensure that the layout successor is a viable block, as we know that |
| 2812 | // fallthrough is a possibility. |
| 2813 | assert(NextFI != FE && "Can't fallthrough past the last block." ); |
| 2814 | LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " |
| 2815 | << getBlockName(BB) << " -> " << getBlockName(NextBB) |
| 2816 | << "\n" ); |
| 2817 | Chain->merge(BB: NextBB, Chain: nullptr); |
| 2818 | #ifndef NDEBUG |
| 2819 | BlocksWithUnanalyzableExits.insert(&*BB); |
| 2820 | #endif |
| 2821 | FI = NextFI; |
| 2822 | BB = NextBB; |
| 2823 | } |
| 2824 | } |
| 2825 | |
| 2826 | // Build any loop-based chains. |
| 2827 | PreferredLoopExit = nullptr; |
| 2828 | for (MachineLoop *L : *MLI) |
| 2829 | buildLoopChains(L: *L); |
| 2830 | |
| 2831 | assert(BlockWorkList.empty() && |
| 2832 | "BlockWorkList should be empty before building final chain." ); |
| 2833 | assert(EHPadWorkList.empty() && |
| 2834 | "EHPadWorkList should be empty before building final chain." ); |
| 2835 | |
| 2836 | SmallPtrSet<BlockChain *, 4> UpdatedPreds; |
| 2837 | for (MachineBasicBlock &MBB : *F) |
| 2838 | fillWorkLists(MBB: &MBB, UpdatedPreds); |
| 2839 | |
| 2840 | BlockChain &FunctionChain = *BlockToChain[&F->front()]; |
| 2841 | buildChain(HeadBB: &F->front(), Chain&: FunctionChain); |
| 2842 | |
| 2843 | #ifndef NDEBUG |
| 2844 | using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; |
| 2845 | #endif |
| 2846 | LLVM_DEBUG({ |
| 2847 | // Crash at the end so we get all of the debugging output first. |
| 2848 | bool BadFunc = false; |
| 2849 | FunctionBlockSetType FunctionBlockSet; |
| 2850 | for (MachineBasicBlock &MBB : *F) |
| 2851 | FunctionBlockSet.insert(&MBB); |
| 2852 | |
| 2853 | for (MachineBasicBlock *ChainBB : FunctionChain) |
| 2854 | if (!FunctionBlockSet.erase(ChainBB)) { |
| 2855 | BadFunc = true; |
| 2856 | dbgs() << "Function chain contains a block not in the function!\n" |
| 2857 | << " Bad block: " << getBlockName(ChainBB) << "\n" ; |
| 2858 | } |
| 2859 | |
| 2860 | if (!FunctionBlockSet.empty()) { |
| 2861 | BadFunc = true; |
| 2862 | for (MachineBasicBlock *RemainingBB : FunctionBlockSet) |
| 2863 | dbgs() << "Function contains blocks never placed into a chain!\n" |
| 2864 | << " Bad block: " << getBlockName(RemainingBB) << "\n" ; |
| 2865 | } |
| 2866 | assert(!BadFunc && "Detected problems with the block placement." ); |
| 2867 | }); |
| 2868 | |
| 2869 | // Remember original layout ordering, so we can update terminators after |
| 2870 | // reordering to point to the original layout successor. |
| 2871 | SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( |
| 2872 | F->getNumBlockIDs()); |
| 2873 | { |
| 2874 | MachineBasicBlock *LastMBB = nullptr; |
| 2875 | for (auto &MBB : *F) { |
| 2876 | if (LastMBB != nullptr) |
| 2877 | OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; |
| 2878 | LastMBB = &MBB; |
| 2879 | } |
| 2880 | OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; |
| 2881 | } |
| 2882 | |
| 2883 | // Splice the blocks into place. |
| 2884 | MachineFunction::iterator InsertPos = F->begin(); |
| 2885 | LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n" ); |
| 2886 | for (MachineBasicBlock *ChainBB : FunctionChain) { |
| 2887 | LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " |
| 2888 | : " ... " ) |
| 2889 | << getBlockName(ChainBB) << "\n" ); |
| 2890 | if (InsertPos != MachineFunction::iterator(ChainBB)) |
| 2891 | F->splice(InsertPt: InsertPos, MBB: ChainBB); |
| 2892 | else |
| 2893 | ++InsertPos; |
| 2894 | |
| 2895 | // Update the terminator of the previous block. |
| 2896 | if (ChainBB == *FunctionChain.begin()) |
| 2897 | continue; |
| 2898 | MachineBasicBlock *PrevBB = &*std::prev(x: MachineFunction::iterator(ChainBB)); |
| 2899 | |
| 2900 | // FIXME: It would be awesome of updateTerminator would just return rather |
| 2901 | // than assert when the branch cannot be analyzed in order to remove this |
| 2902 | // boiler plate. |
| 2903 | Cond.clear(); |
| 2904 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
| 2905 | |
| 2906 | #ifndef NDEBUG |
| 2907 | if (!BlocksWithUnanalyzableExits.count(PrevBB)) { |
| 2908 | // Given the exact block placement we chose, we may actually not _need_ to |
| 2909 | // be able to edit PrevBB's terminator sequence, but not being _able_ to |
| 2910 | // do that at this point is a bug. |
| 2911 | assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || |
| 2912 | !PrevBB->canFallThrough()) && |
| 2913 | "Unexpected block with un-analyzable fallthrough!" ); |
| 2914 | Cond.clear(); |
| 2915 | TBB = FBB = nullptr; |
| 2916 | } |
| 2917 | #endif |
| 2918 | |
| 2919 | // The "PrevBB" is not yet updated to reflect current code layout, so, |
| 2920 | // o. it may fall-through to a block without explicit "goto" instruction |
| 2921 | // before layout, and no longer fall-through it after layout; or |
| 2922 | // o. just opposite. |
| 2923 | // |
| 2924 | // analyzeBranch() may return erroneous value for FBB when these two |
| 2925 | // situations take place. For the first scenario FBB is mistakenly set NULL; |
| 2926 | // for the 2nd scenario, the FBB, which is expected to be NULL, is |
| 2927 | // mistakenly pointing to "*BI". |
| 2928 | // Thus, if the future change needs to use FBB before the layout is set, it |
| 2929 | // has to correct FBB first by using the code similar to the following: |
| 2930 | // |
| 2931 | // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { |
| 2932 | // PrevBB->updateTerminator(); |
| 2933 | // Cond.clear(); |
| 2934 | // TBB = FBB = nullptr; |
| 2935 | // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { |
| 2936 | // // FIXME: This should never take place. |
| 2937 | // TBB = FBB = nullptr; |
| 2938 | // } |
| 2939 | // } |
| 2940 | if (!TII->analyzeBranch(MBB&: *PrevBB, TBB, FBB, Cond)) { |
| 2941 | PrevBB->updateTerminator(PreviousLayoutSuccessor: OriginalLayoutSuccessors[PrevBB->getNumber()]); |
| 2942 | } |
| 2943 | } |
| 2944 | |
| 2945 | // Fixup the last block. |
| 2946 | Cond.clear(); |
| 2947 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
| 2948 | if (!TII->analyzeBranch(MBB&: F->back(), TBB, FBB, Cond)) { |
| 2949 | MachineBasicBlock *PrevBB = &F->back(); |
| 2950 | PrevBB->updateTerminator(PreviousLayoutSuccessor: OriginalLayoutSuccessors[PrevBB->getNumber()]); |
| 2951 | } |
| 2952 | |
| 2953 | BlockWorkList.clear(); |
| 2954 | EHPadWorkList.clear(); |
| 2955 | } |
| 2956 | |
| 2957 | void MachineBlockPlacement::optimizeBranches() { |
| 2958 | BlockChain &FunctionChain = *BlockToChain[&F->front()]; |
| 2959 | SmallVector<MachineOperand, 4> Cond; |
| 2960 | |
| 2961 | // Now that all the basic blocks in the chain have the proper layout, |
| 2962 | // make a final call to analyzeBranch with AllowModify set. |
| 2963 | // Indeed, the target may be able to optimize the branches in a way we |
| 2964 | // cannot because all branches may not be analyzable. |
| 2965 | // E.g., the target may be able to remove an unconditional branch to |
| 2966 | // a fallthrough when it occurs after predicated terminators. |
| 2967 | for (MachineBasicBlock *ChainBB : FunctionChain) { |
| 2968 | Cond.clear(); |
| 2969 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 2970 | if (TII->analyzeBranch(MBB&: *ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) |
| 2971 | continue; |
| 2972 | if (!TBB || !FBB || Cond.empty()) |
| 2973 | continue; |
| 2974 | // If we are optimizing for size we do not consider the runtime performance. |
| 2975 | // Instead, we retain the original branch condition so we have more uniform |
| 2976 | // instructions which will benefit ICF. |
| 2977 | if (llvm::shouldOptimizeForSize(MBB: ChainBB, PSI, MBFIWrapper: MBFI.get())) |
| 2978 | continue; |
| 2979 | // If ChainBB has a two-way branch, try to re-order the branches |
| 2980 | // such that we branch to the successor with higher probability first. |
| 2981 | if (MBPI->getEdgeProbability(Src: ChainBB, Dst: TBB) >= |
| 2982 | MBPI->getEdgeProbability(Src: ChainBB, Dst: FBB)) |
| 2983 | continue; |
| 2984 | if (TII->reverseBranchCondition(Cond)) |
| 2985 | continue; |
| 2986 | LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " |
| 2987 | << getBlockName(ChainBB) << "\n" ); |
| 2988 | LLVM_DEBUG(dbgs() << " " << getBlockName(TBB) << " < " << getBlockName(FBB) |
| 2989 | << "\n" ); |
| 2990 | auto Dl = ChainBB->findBranchDebugLoc(); |
| 2991 | TII->removeBranch(MBB&: *ChainBB); |
| 2992 | TII->insertBranch(MBB&: *ChainBB, TBB: FBB, FBB: TBB, Cond, DL: Dl); |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | void MachineBlockPlacement::alignBlocks() { |
| 2997 | // Walk through the backedges of the function now that we have fully laid out |
| 2998 | // the basic blocks and align the destination of each backedge. We don't rely |
| 2999 | // exclusively on the loop info here so that we can align backedges in |
| 3000 | // unnatural CFGs and backedges that were introduced purely because of the |
| 3001 | // loop rotations done during this layout pass. |
| 3002 | if (!AlignAllBlock && !AlignAllNonFallThruBlocks) { |
| 3003 | if (F->getFunction().hasMinSize() || |
| 3004 | (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) |
| 3005 | return; |
| 3006 | } |
| 3007 | |
| 3008 | BlockChain &FunctionChain = *BlockToChain[&F->front()]; |
| 3009 | // Empty chain. |
| 3010 | if (FunctionChain.begin() == FunctionChain.end()) |
| 3011 | return; |
| 3012 | |
| 3013 | const BranchProbability ColdProb(1, 5); // 20% |
| 3014 | BlockFrequency EntryFreq = MBFI->getBlockFreq(MBB: &F->front()); |
| 3015 | BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; |
| 3016 | for (MachineBasicBlock *ChainBB : FunctionChain) { |
| 3017 | if (ChainBB == *FunctionChain.begin()) |
| 3018 | continue; |
| 3019 | |
| 3020 | // Don't align non-looping basic blocks. These are unlikely to execute |
| 3021 | // enough times to matter in practice. Note that we'll still handle |
| 3022 | // unnatural CFGs inside of a natural outer loop (the common case) and |
| 3023 | // rotated loops. |
| 3024 | MachineLoop *L = MLI->getLoopFor(BB: ChainBB); |
| 3025 | if (!L) |
| 3026 | continue; |
| 3027 | |
| 3028 | const Align TLIAlign = TLI->getPrefLoopAlignment(ML: L); |
| 3029 | unsigned MDAlign = 1; |
| 3030 | MDNode *LoopID = L->getLoopID(); |
| 3031 | if (LoopID) { |
| 3032 | for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) { |
| 3033 | MDNode *MD = dyn_cast<MDNode>(Val: MDO); |
| 3034 | if (MD == nullptr) |
| 3035 | continue; |
| 3036 | MDString *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
| 3037 | if (S == nullptr) |
| 3038 | continue; |
| 3039 | if (S->getString() == "llvm.loop.align" ) { |
| 3040 | assert(MD->getNumOperands() == 2 && |
| 3041 | "per-loop align metadata should have two operands." ); |
| 3042 | MDAlign = |
| 3043 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue(); |
| 3044 | assert(MDAlign >= 1 && "per-loop align value must be positive." ); |
| 3045 | } |
| 3046 | } |
| 3047 | } |
| 3048 | |
| 3049 | // Use max of the TLIAlign and MDAlign |
| 3050 | const Align LoopAlign = std::max(a: TLIAlign, b: Align(MDAlign)); |
| 3051 | if (LoopAlign == 1) |
| 3052 | continue; // Don't care about loop alignment. |
| 3053 | |
| 3054 | // If the block is cold relative to the function entry don't waste space |
| 3055 | // aligning it. |
| 3056 | BlockFrequency Freq = MBFI->getBlockFreq(MBB: ChainBB); |
| 3057 | if (Freq < WeightedEntryFreq) |
| 3058 | continue; |
| 3059 | |
| 3060 | // If the block is cold relative to its loop header, don't align it |
| 3061 | // regardless of what edges into the block exist. |
| 3062 | MachineBasicBlock * = L->getHeader(); |
| 3063 | BlockFrequency = MBFI->getBlockFreq(MBB: LoopHeader); |
| 3064 | if (Freq < (LoopHeaderFreq * ColdProb)) |
| 3065 | continue; |
| 3066 | |
| 3067 | // If the global profiles indicates so, don't align it. |
| 3068 | if (llvm::shouldOptimizeForSize(MBB: ChainBB, PSI, MBFIWrapper: MBFI.get()) && |
| 3069 | !TLI->alignLoopsWithOptSize()) |
| 3070 | continue; |
| 3071 | |
| 3072 | // Check for the existence of a non-layout predecessor which would benefit |
| 3073 | // from aligning this block. |
| 3074 | MachineBasicBlock *LayoutPred = |
| 3075 | &*std::prev(x: MachineFunction::iterator(ChainBB)); |
| 3076 | |
| 3077 | auto DetermineMaxAlignmentPadding = [&]() { |
| 3078 | // Set the maximum bytes allowed to be emitted for alignment. |
| 3079 | unsigned MaxBytes; |
| 3080 | if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0) |
| 3081 | MaxBytes = MaxBytesForAlignmentOverride; |
| 3082 | else |
| 3083 | MaxBytes = TLI->getMaxPermittedBytesForAlignment(MBB: ChainBB); |
| 3084 | ChainBB->setMaxBytesForAlignment(MaxBytes); |
| 3085 | }; |
| 3086 | |
| 3087 | // Force alignment if all the predecessors are jumps. We already checked |
| 3088 | // that the block isn't cold above. |
| 3089 | if (!LayoutPred->isSuccessor(MBB: ChainBB)) { |
| 3090 | ChainBB->setAlignment(LoopAlign); |
| 3091 | DetermineMaxAlignmentPadding(); |
| 3092 | continue; |
| 3093 | } |
| 3094 | |
| 3095 | // Align this block if the layout predecessor's edge into this block is |
| 3096 | // cold relative to the block. When this is true, other predecessors make up |
| 3097 | // all of the hot entries into the block and thus alignment is likely to be |
| 3098 | // important. |
| 3099 | BranchProbability LayoutProb = |
| 3100 | MBPI->getEdgeProbability(Src: LayoutPred, Dst: ChainBB); |
| 3101 | BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(MBB: LayoutPred) * LayoutProb; |
| 3102 | if (LayoutEdgeFreq <= (Freq * ColdProb)) { |
| 3103 | ChainBB->setAlignment(LoopAlign); |
| 3104 | DetermineMaxAlignmentPadding(); |
| 3105 | } |
| 3106 | } |
| 3107 | |
| 3108 | const bool HasMaxBytesOverride = |
| 3109 | MaxBytesForAlignmentOverride.getNumOccurrences() > 0; |
| 3110 | |
| 3111 | if (AlignAllBlock) |
| 3112 | // Align all of the blocks in the function to a specific alignment. |
| 3113 | for (MachineBasicBlock &MBB : *F) { |
| 3114 | if (HasMaxBytesOverride) |
| 3115 | MBB.setAlignment(A: Align(1ULL << AlignAllBlock), |
| 3116 | MaxBytes: MaxBytesForAlignmentOverride); |
| 3117 | else |
| 3118 | MBB.setAlignment(Align(1ULL << AlignAllBlock)); |
| 3119 | } |
| 3120 | else if (AlignAllNonFallThruBlocks) { |
| 3121 | // Align all of the blocks that have no fall-through predecessors to a |
| 3122 | // specific alignment. |
| 3123 | for (auto MBI = std::next(x: F->begin()), MBE = F->end(); MBI != MBE; ++MBI) { |
| 3124 | auto LayoutPred = std::prev(x: MBI); |
| 3125 | if (!LayoutPred->isSuccessor(MBB: &*MBI)) { |
| 3126 | if (HasMaxBytesOverride) |
| 3127 | MBI->setAlignment(A: Align(1ULL << AlignAllNonFallThruBlocks), |
| 3128 | MaxBytes: MaxBytesForAlignmentOverride); |
| 3129 | else |
| 3130 | MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); |
| 3131 | } |
| 3132 | } |
| 3133 | } |
| 3134 | } |
| 3135 | |
| 3136 | /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if |
| 3137 | /// it was duplicated into its chain predecessor and removed. |
| 3138 | /// \p BB - Basic block that may be duplicated. |
| 3139 | /// |
| 3140 | /// \p LPred - Chosen layout predecessor of \p BB. |
| 3141 | /// Updated to be the chain end if LPred is removed. |
| 3142 | /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. |
| 3143 | /// \p BlockFilter - Set of blocks that belong to the loop being laid out. |
| 3144 | /// Used to identify which blocks to update predecessor |
| 3145 | /// counts. |
| 3146 | /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was |
| 3147 | /// chosen in the given order due to unnatural CFG |
| 3148 | /// only needed if \p BB is removed and |
| 3149 | /// \p PrevUnplacedBlockIt pointed to \p BB. |
| 3150 | /// @return true if \p BB was removed. |
| 3151 | bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( |
| 3152 | MachineBasicBlock *BB, MachineBasicBlock *&LPred, |
| 3153 | const MachineBasicBlock *, BlockChain &Chain, |
| 3154 | BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, |
| 3155 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) { |
| 3156 | bool Removed, DuplicatedToLPred; |
| 3157 | bool DuplicatedToOriginalLPred; |
| 3158 | Removed = maybeTailDuplicateBlock( |
| 3159 | BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt, |
| 3160 | PrevUnplacedBlockInFilterIt, DuplicatedToLPred); |
| 3161 | if (!Removed) |
| 3162 | return false; |
| 3163 | DuplicatedToOriginalLPred = DuplicatedToLPred; |
| 3164 | // Iteratively try to duplicate again. It can happen that a block that is |
| 3165 | // duplicated into is still small enough to be duplicated again. |
| 3166 | // No need to call markBlockSuccessors in this case, as the blocks being |
| 3167 | // duplicated from here on are already scheduled. |
| 3168 | while (DuplicatedToLPred && Removed) { |
| 3169 | MachineBasicBlock *DupBB, *DupPred; |
| 3170 | // The removal callback causes Chain.end() to be updated when a block is |
| 3171 | // removed. On the first pass through the loop, the chain end should be the |
| 3172 | // same as it was on function entry. On subsequent passes, because we are |
| 3173 | // duplicating the block at the end of the chain, if it is removed the |
| 3174 | // chain will have shrunk by one block. |
| 3175 | BlockChain::iterator ChainEnd = Chain.end(); |
| 3176 | DupBB = *(--ChainEnd); |
| 3177 | // Now try to duplicate again. |
| 3178 | if (ChainEnd == Chain.begin()) |
| 3179 | break; |
| 3180 | DupPred = *std::prev(x: ChainEnd); |
| 3181 | Removed = maybeTailDuplicateBlock( |
| 3182 | BB: DupBB, LPred: DupPred, Chain, BlockFilter, PrevUnplacedBlockIt, |
| 3183 | PrevUnplacedBlockInFilterIt, DuplicatedToLPred); |
| 3184 | } |
| 3185 | // If BB was duplicated into LPred, it is now scheduled. But because it was |
| 3186 | // removed, markChainSuccessors won't be called for its chain. Instead we |
| 3187 | // call markBlockSuccessors for LPred to achieve the same effect. This must go |
| 3188 | // at the end because repeating the tail duplication can increase the number |
| 3189 | // of unscheduled predecessors. |
| 3190 | LPred = *std::prev(x: Chain.end()); |
| 3191 | if (DuplicatedToOriginalLPred) |
| 3192 | markBlockSuccessors(Chain, MBB: LPred, LoopHeaderBB, BlockFilter); |
| 3193 | return true; |
| 3194 | } |
| 3195 | |
| 3196 | /// Tail duplicate \p BB into (some) predecessors if profitable. |
| 3197 | /// \p BB - Basic block that may be duplicated |
| 3198 | /// \p LPred - Chosen layout predecessor of \p BB |
| 3199 | /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. |
| 3200 | /// \p BlockFilter - Set of blocks that belong to the loop being laid out. |
| 3201 | /// Used to identify which blocks to update predecessor |
| 3202 | /// counts. |
| 3203 | /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was |
| 3204 | /// chosen in the given order due to unnatural CFG |
| 3205 | /// only needed if \p BB is removed and |
| 3206 | /// \p PrevUnplacedBlockIt pointed to \p BB. |
| 3207 | /// \p DuplicatedToLPred - True if the block was duplicated into LPred. |
| 3208 | /// \return - True if the block was duplicated into all preds and removed. |
| 3209 | bool MachineBlockPlacement::maybeTailDuplicateBlock( |
| 3210 | MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain, |
| 3211 | BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, |
| 3212 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
| 3213 | bool &DuplicatedToLPred) { |
| 3214 | DuplicatedToLPred = false; |
| 3215 | if (!shouldTailDuplicate(BB)) |
| 3216 | return false; |
| 3217 | |
| 3218 | LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() |
| 3219 | << "\n" ); |
| 3220 | |
| 3221 | // This has to be a callback because none of it can be done after |
| 3222 | // BB is deleted. |
| 3223 | bool Removed = false; |
| 3224 | auto RemovalCallback = [&](MachineBasicBlock *RemBB) { |
| 3225 | // Signal to outer function |
| 3226 | Removed = true; |
| 3227 | |
| 3228 | // Remove from the Chain and Chain Map |
| 3229 | if (auto It = BlockToChain.find(Val: RemBB); It != BlockToChain.end()) { |
| 3230 | It->second->remove(BB: RemBB); |
| 3231 | BlockToChain.erase(I: It); |
| 3232 | } |
| 3233 | |
| 3234 | // Handle the unplaced block iterator |
| 3235 | if (&(*PrevUnplacedBlockIt) == RemBB) { |
| 3236 | PrevUnplacedBlockIt++; |
| 3237 | } |
| 3238 | |
| 3239 | // Handle the Work Lists |
| 3240 | if (RemBB->isEHPad()) { |
| 3241 | llvm::erase(C&: EHPadWorkList, V: RemBB); |
| 3242 | } else { |
| 3243 | llvm::erase(C&: BlockWorkList, V: RemBB); |
| 3244 | } |
| 3245 | |
| 3246 | // Handle the filter set |
| 3247 | if (BlockFilter) { |
| 3248 | auto It = llvm::find(Range&: *BlockFilter, Val: RemBB); |
| 3249 | // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt |
| 3250 | // pointing to the same element as before. |
| 3251 | if (It != BlockFilter->end()) { |
| 3252 | if (It < PrevUnplacedBlockInFilterIt) { |
| 3253 | const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt; |
| 3254 | // BlockFilter is a SmallVector so all elements after RemBB are |
| 3255 | // shifted to the front by 1 after its deletion. |
| 3256 | auto Distance = PrevUnplacedBlockInFilterIt - It - 1; |
| 3257 | PrevUnplacedBlockInFilterIt = BlockFilter->erase(I: It) + Distance; |
| 3258 | assert(*PrevUnplacedBlockInFilterIt == PrevBB); |
| 3259 | (void)PrevBB; |
| 3260 | } else if (It == PrevUnplacedBlockInFilterIt) |
| 3261 | // The block pointed by PrevUnplacedBlockInFilterIt is erased, we |
| 3262 | // have to set it to the next element. |
| 3263 | PrevUnplacedBlockInFilterIt = BlockFilter->erase(I: It); |
| 3264 | else |
| 3265 | BlockFilter->erase(I: It); |
| 3266 | } |
| 3267 | } |
| 3268 | |
| 3269 | // Remove the block from loop info. |
| 3270 | MLI->removeBlock(BB: RemBB); |
| 3271 | if (RemBB == PreferredLoopExit) |
| 3272 | PreferredLoopExit = nullptr; |
| 3273 | |
| 3274 | LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " << getBlockName(RemBB) |
| 3275 | << "\n" ); |
| 3276 | }; |
| 3277 | auto RemovalCallbackRef = |
| 3278 | function_ref<void(MachineBasicBlock *)>(RemovalCallback); |
| 3279 | |
| 3280 | SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; |
| 3281 | bool IsSimple = TailDup.isSimpleBB(TailBB: BB); |
| 3282 | SmallVector<MachineBasicBlock *, 8> CandidatePreds; |
| 3283 | SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; |
| 3284 | if (F->getFunction().hasProfileData()) { |
| 3285 | // We can do partial duplication with precise profile information. |
| 3286 | findDuplicateCandidates(Candidates&: CandidatePreds, BB, BlockFilter); |
| 3287 | if (CandidatePreds.size() == 0) |
| 3288 | return false; |
| 3289 | if (CandidatePreds.size() < BB->pred_size()) |
| 3290 | CandidatePtr = &CandidatePreds; |
| 3291 | } |
| 3292 | TailDup.tailDuplicateAndUpdate(IsSimple, MBB: BB, ForcedLayoutPred: LPred, DuplicatedPreds: &DuplicatedPreds, |
| 3293 | RemovalCallback: &RemovalCallbackRef, CandidatePtr); |
| 3294 | |
| 3295 | // Update UnscheduledPredecessors to reflect tail-duplication. |
| 3296 | DuplicatedToLPred = false; |
| 3297 | for (MachineBasicBlock *Pred : DuplicatedPreds) { |
| 3298 | // We're only looking for unscheduled predecessors that match the filter. |
| 3299 | BlockChain *PredChain = BlockToChain[Pred]; |
| 3300 | if (Pred == LPred) |
| 3301 | DuplicatedToLPred = true; |
| 3302 | if (Pred == LPred || (BlockFilter && !BlockFilter->count(key: Pred)) || |
| 3303 | PredChain == &Chain) |
| 3304 | continue; |
| 3305 | for (MachineBasicBlock *NewSucc : Pred->successors()) { |
| 3306 | if (BlockFilter && !BlockFilter->count(key: NewSucc)) |
| 3307 | continue; |
| 3308 | BlockChain *NewChain = BlockToChain[NewSucc]; |
| 3309 | if (NewChain != &Chain && NewChain != PredChain) |
| 3310 | NewChain->UnscheduledPredecessors++; |
| 3311 | } |
| 3312 | } |
| 3313 | return Removed; |
| 3314 | } |
| 3315 | |
| 3316 | // Count the number of actual machine instructions. |
| 3317 | static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { |
| 3318 | uint64_t InstrCount = 0; |
| 3319 | for (MachineInstr &MI : *MBB) { |
| 3320 | if (!MI.isPHI() && !MI.isMetaInstruction()) |
| 3321 | InstrCount += 1; |
| 3322 | } |
| 3323 | return InstrCount; |
| 3324 | } |
| 3325 | |
| 3326 | // The size cost of duplication is the instruction size of the duplicated block. |
| 3327 | // So we should scale the threshold accordingly. But the instruction size is not |
| 3328 | // available on all targets, so we use the number of instructions instead. |
| 3329 | BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { |
| 3330 | return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(MBB: BB)); |
| 3331 | } |
| 3332 | |
| 3333 | // Returns true if BB is Pred's best successor. |
| 3334 | bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, |
| 3335 | MachineBasicBlock *Pred, |
| 3336 | BlockFilterSet *BlockFilter) { |
| 3337 | if (BB == Pred) |
| 3338 | return false; |
| 3339 | if (BlockFilter && !BlockFilter->count(key: Pred)) |
| 3340 | return false; |
| 3341 | BlockChain *PredChain = BlockToChain[Pred]; |
| 3342 | if (PredChain && (Pred != *std::prev(x: PredChain->end()))) |
| 3343 | return false; |
| 3344 | |
| 3345 | // Find the successor with largest probability excluding BB. |
| 3346 | BranchProbability BestProb = BranchProbability::getZero(); |
| 3347 | for (MachineBasicBlock *Succ : Pred->successors()) |
| 3348 | if (Succ != BB) { |
| 3349 | if (BlockFilter && !BlockFilter->count(key: Succ)) |
| 3350 | continue; |
| 3351 | BlockChain *SuccChain = BlockToChain[Succ]; |
| 3352 | if (SuccChain && (Succ != *SuccChain->begin())) |
| 3353 | continue; |
| 3354 | BranchProbability SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
| 3355 | if (SuccProb > BestProb) |
| 3356 | BestProb = SuccProb; |
| 3357 | } |
| 3358 | |
| 3359 | BranchProbability BBProb = MBPI->getEdgeProbability(Src: Pred, Dst: BB); |
| 3360 | if (BBProb <= BestProb) |
| 3361 | return false; |
| 3362 | |
| 3363 | // Compute the number of reduced taken branches if Pred falls through to BB |
| 3364 | // instead of another successor. Then compare it with threshold. |
| 3365 | BlockFrequency PredFreq = getBlockCountOrFrequency(BB: Pred); |
| 3366 | BlockFrequency Gain = PredFreq * (BBProb - BestProb); |
| 3367 | return Gain > scaleThreshold(BB); |
| 3368 | } |
| 3369 | |
| 3370 | // Find out the predecessors of BB and BB can be beneficially duplicated into |
| 3371 | // them. |
| 3372 | void MachineBlockPlacement::findDuplicateCandidates( |
| 3373 | SmallVectorImpl<MachineBasicBlock *> &Candidates, MachineBasicBlock *BB, |
| 3374 | BlockFilterSet *BlockFilter) { |
| 3375 | MachineBasicBlock *Fallthrough = nullptr; |
| 3376 | BranchProbability DefaultBranchProb = BranchProbability::getZero(); |
| 3377 | BlockFrequency BBDupThreshold(scaleThreshold(BB)); |
| 3378 | SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); |
| 3379 | SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); |
| 3380 | |
| 3381 | // Sort for highest frequency. |
| 3382 | auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { |
| 3383 | return MBPI->getEdgeProbability(Src: BB, Dst: A) > MBPI->getEdgeProbability(Src: BB, Dst: B); |
| 3384 | }; |
| 3385 | auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { |
| 3386 | return MBFI->getBlockFreq(MBB: A) > MBFI->getBlockFreq(MBB: B); |
| 3387 | }; |
| 3388 | llvm::stable_sort(Range&: Succs, C: CmpSucc); |
| 3389 | llvm::stable_sort(Range&: Preds, C: CmpPred); |
| 3390 | |
| 3391 | auto SuccIt = Succs.begin(); |
| 3392 | if (SuccIt != Succs.end()) { |
| 3393 | DefaultBranchProb = MBPI->getEdgeProbability(Src: BB, Dst: *SuccIt).getCompl(); |
| 3394 | } |
| 3395 | |
| 3396 | // For each predecessors of BB, compute the benefit of duplicating BB, |
| 3397 | // if it is larger than the threshold, add it into Candidates. |
| 3398 | // |
| 3399 | // If we have following control flow. |
| 3400 | // |
| 3401 | // PB1 PB2 PB3 PB4 |
| 3402 | // \ | / /\ |
| 3403 | // \ | / / \ |
| 3404 | // \ |/ / \ |
| 3405 | // BB----/ OB |
| 3406 | // /\ |
| 3407 | // / \ |
| 3408 | // SB1 SB2 |
| 3409 | // |
| 3410 | // And it can be partially duplicated as |
| 3411 | // |
| 3412 | // PB2+BB |
| 3413 | // | PB1 PB3 PB4 |
| 3414 | // | | / /\ |
| 3415 | // | | / / \ |
| 3416 | // | |/ / \ |
| 3417 | // | BB----/ OB |
| 3418 | // |\ /| |
| 3419 | // | X | |
| 3420 | // |/ \| |
| 3421 | // SB2 SB1 |
| 3422 | // |
| 3423 | // The benefit of duplicating into a predecessor is defined as |
| 3424 | // Orig_taken_branch - Duplicated_taken_branch |
| 3425 | // |
| 3426 | // The Orig_taken_branch is computed with the assumption that predecessor |
| 3427 | // jumps to BB and the most possible successor is laid out after BB. |
| 3428 | // |
| 3429 | // The Duplicated_taken_branch is computed with the assumption that BB is |
| 3430 | // duplicated into PB, and one successor is layout after it (SB1 for PB1 and |
| 3431 | // SB2 for PB2 in our case). If there is no available successor, the combined |
| 3432 | // block jumps to all BB's successor, like PB3 in this example. |
| 3433 | // |
| 3434 | // If a predecessor has multiple successors, so BB can't be duplicated into |
| 3435 | // it. But it can beneficially fall through to BB, and duplicate BB into other |
| 3436 | // predecessors. |
| 3437 | for (MachineBasicBlock *Pred : Preds) { |
| 3438 | BlockFrequency PredFreq = getBlockCountOrFrequency(BB: Pred); |
| 3439 | |
| 3440 | if (!TailDup.canTailDuplicate(TailBB: BB, PredBB: Pred)) { |
| 3441 | // BB can't be duplicated into Pred, but it is possible to be layout |
| 3442 | // below Pred. |
| 3443 | if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { |
| 3444 | Fallthrough = Pred; |
| 3445 | if (SuccIt != Succs.end()) |
| 3446 | SuccIt++; |
| 3447 | } |
| 3448 | continue; |
| 3449 | } |
| 3450 | |
| 3451 | BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; |
| 3452 | BlockFrequency DupCost; |
| 3453 | if (SuccIt == Succs.end()) { |
| 3454 | // Jump to all successors; |
| 3455 | if (Succs.size() > 0) |
| 3456 | DupCost += PredFreq; |
| 3457 | } else { |
| 3458 | // Fallthrough to *SuccIt, jump to all other successors; |
| 3459 | DupCost += PredFreq; |
| 3460 | DupCost -= PredFreq * MBPI->getEdgeProbability(Src: BB, Dst: *SuccIt); |
| 3461 | } |
| 3462 | |
| 3463 | assert(OrigCost >= DupCost); |
| 3464 | OrigCost -= DupCost; |
| 3465 | if (OrigCost > BBDupThreshold) { |
| 3466 | Candidates.push_back(Elt: Pred); |
| 3467 | if (SuccIt != Succs.end()) |
| 3468 | SuccIt++; |
| 3469 | } |
| 3470 | } |
| 3471 | |
| 3472 | // No predecessors can optimally fallthrough to BB. |
| 3473 | // So we can change one duplication into fallthrough. |
| 3474 | if (!Fallthrough) { |
| 3475 | if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { |
| 3476 | Candidates[0] = Candidates.back(); |
| 3477 | Candidates.pop_back(); |
| 3478 | } |
| 3479 | } |
| 3480 | } |
| 3481 | |
| 3482 | void MachineBlockPlacement::initTailDupThreshold() { |
| 3483 | DupThreshold = BlockFrequency(0); |
| 3484 | if (F->getFunction().hasProfileData()) { |
| 3485 | // We prefer to use prifile count. |
| 3486 | uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); |
| 3487 | if (HotThreshold != UINT64_MAX) { |
| 3488 | UseProfileCount = true; |
| 3489 | DupThreshold = |
| 3490 | BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100); |
| 3491 | } else { |
| 3492 | // Profile count is not available, we can use block frequency instead. |
| 3493 | BlockFrequency MaxFreq = BlockFrequency(0); |
| 3494 | for (MachineBasicBlock &MBB : *F) { |
| 3495 | BlockFrequency Freq = MBFI->getBlockFreq(MBB: &MBB); |
| 3496 | if (Freq > MaxFreq) |
| 3497 | MaxFreq = Freq; |
| 3498 | } |
| 3499 | |
| 3500 | BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); |
| 3501 | DupThreshold = BlockFrequency(MaxFreq * ThresholdProb); |
| 3502 | UseProfileCount = false; |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | TailDupSize = TailDupPlacementThreshold; |
| 3507 | // If only the aggressive threshold is explicitly set, use it. |
| 3508 | if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && |
| 3509 | TailDupPlacementThreshold.getNumOccurrences() == 0) |
| 3510 | TailDupSize = TailDupPlacementAggressiveThreshold; |
| 3511 | |
| 3512 | // For aggressive optimization, we can adjust some thresholds to be less |
| 3513 | // conservative. |
| 3514 | if (OptLevel >= CodeGenOptLevel::Aggressive) { |
| 3515 | // At O3 we should be more willing to copy blocks for tail duplication. This |
| 3516 | // increases size pressure, so we only do it at O3 |
| 3517 | // Do this unless only the regular threshold is explicitly set. |
| 3518 | if (TailDupPlacementThreshold.getNumOccurrences() == 0 || |
| 3519 | TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) |
| 3520 | TailDupSize = TailDupPlacementAggressiveThreshold; |
| 3521 | } |
| 3522 | |
| 3523 | // If there's no threshold provided through options, query the target |
| 3524 | // information for a threshold instead. |
| 3525 | if (TailDupPlacementThreshold.getNumOccurrences() == 0 && |
| 3526 | (OptLevel < CodeGenOptLevel::Aggressive || |
| 3527 | TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) |
| 3528 | TailDupSize = TII->getTailDuplicateSize(OptLevel); |
| 3529 | } |
| 3530 | |
| 3531 | PreservedAnalyses |
| 3532 | MachineBlockPlacementPass::run(MachineFunction &MF, |
| 3533 | MachineFunctionAnalysisManager &MFAM) { |
| 3534 | auto *MBPI = &MFAM.getResult<MachineBranchProbabilityAnalysis>(IR&: MF); |
| 3535 | auto MBFI = std::make_unique<MBFIWrapper>( |
| 3536 | args&: MFAM.getResult<MachineBlockFrequencyAnalysis>(IR&: MF)); |
| 3537 | auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
| 3538 | auto *MPDT = MachineBlockPlacement::allowTailDupPlacement(MF) |
| 3539 | ? &MFAM.getResult<MachinePostDominatorTreeAnalysis>(IR&: MF) |
| 3540 | : nullptr; |
| 3541 | auto *MDT = MFAM.getCachedResult<MachineDominatorTreeAnalysis>(IR&: MF); |
| 3542 | auto *PSI = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: MF) |
| 3543 | .getCachedResult<ProfileSummaryAnalysis>( |
| 3544 | IR&: *MF.getFunction().getParent()); |
| 3545 | if (!PSI) |
| 3546 | report_fatal_error(reason: "MachineBlockPlacement requires ProfileSummaryAnalysis" , |
| 3547 | gen_crash_diag: false); |
| 3548 | MachineBlockPlacement MBP(MBPI, MLI, PSI, std::move(MBFI), MPDT, |
| 3549 | AllowTailMerge); |
| 3550 | |
| 3551 | if (MBP.run(F&: MF)) |
| 3552 | return getMachineFunctionPassPreservedAnalyses(); |
| 3553 | |
| 3554 | if (MDT) |
| 3555 | MDT->updateBlockNumbers(); |
| 3556 | if (MPDT) |
| 3557 | MPDT->updateBlockNumbers(); |
| 3558 | return PreservedAnalyses::all(); |
| 3559 | } |
| 3560 | |
| 3561 | void MachineBlockPlacementPass::printPipeline( |
| 3562 | raw_ostream &OS, |
| 3563 | function_ref<StringRef(StringRef)> MapClassName2PassName) const { |
| 3564 | OS << MapClassName2PassName(name()); |
| 3565 | if (!AllowTailMerge) |
| 3566 | OS << "<no-tail-merge>" ; |
| 3567 | } |
| 3568 | |
| 3569 | bool MachineBlockPlacement::run(MachineFunction &MF) { |
| 3570 | |
| 3571 | // Check for single-block functions and skip them. |
| 3572 | if (std::next(x: MF.begin()) == MF.end()) |
| 3573 | return false; |
| 3574 | |
| 3575 | F = &MF; |
| 3576 | OptLevel = F->getTarget().getOptLevel(); |
| 3577 | |
| 3578 | TII = MF.getSubtarget().getInstrInfo(); |
| 3579 | TLI = MF.getSubtarget().getTargetLowering(); |
| 3580 | |
| 3581 | // Initialize PreferredLoopExit to nullptr here since it may never be set if |
| 3582 | // there are no MachineLoops. |
| 3583 | PreferredLoopExit = nullptr; |
| 3584 | |
| 3585 | assert(BlockToChain.empty() && |
| 3586 | "BlockToChain map should be empty before starting placement." ); |
| 3587 | assert(ComputedEdges.empty() && |
| 3588 | "Computed Edge map should be empty before starting placement." ); |
| 3589 | |
| 3590 | // Initialize tail duplication thresholds. |
| 3591 | initTailDupThreshold(); |
| 3592 | |
| 3593 | const bool OptForSize = |
| 3594 | llvm::shouldOptimizeForSize(MF: &MF, PSI, BFI: &MBFI->getMBFI()); |
| 3595 | // Determine whether to use ext-tsp for perf/size optimization. The method |
| 3596 | // is beneficial only for instances with at least 3 basic blocks and it can be |
| 3597 | // disabled for huge functions (exceeding a certain size). |
| 3598 | bool UseExtTspForPerf = false; |
| 3599 | bool UseExtTspForSize = false; |
| 3600 | if (3 <= MF.size() && MF.size() <= ExtTspBlockPlacementMaxBlocks) { |
| 3601 | UseExtTspForPerf = |
| 3602 | EnableExtTspBlockPlacement && |
| 3603 | (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData()); |
| 3604 | UseExtTspForSize = OptForSize && ApplyExtTspForSize; |
| 3605 | } |
| 3606 | |
| 3607 | // Apply tail duplication. |
| 3608 | if (allowTailDupPlacement(MF&: *F)) { |
| 3609 | if (OptForSize) |
| 3610 | TailDupSize = 1; |
| 3611 | const bool PreRegAlloc = false; |
| 3612 | TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI: MBFI.get(), PSI, |
| 3613 | /* LayoutMode */ true, TailDupSize); |
| 3614 | if (!UseExtTspForSize) |
| 3615 | precomputeTriangleChains(); |
| 3616 | } |
| 3617 | |
| 3618 | // Run the main block placement. |
| 3619 | if (!UseExtTspForSize) |
| 3620 | buildCFGChains(); |
| 3621 | |
| 3622 | // Changing the layout can create new tail merging opportunities. |
| 3623 | // TailMerge can create jump into if branches that make CFG irreducible for |
| 3624 | // HW that requires structured CFG. |
| 3625 | const bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && |
| 3626 | AllowTailMerge && BranchFoldPlacement && |
| 3627 | MF.size() > 3; |
| 3628 | // No tail merging opportunities if the block number is less than four. |
| 3629 | if (EnableTailMerge) { |
| 3630 | const unsigned TailMergeSize = TailDupSize + 1; |
| 3631 | BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, |
| 3632 | *MBFI, *MBPI, PSI, TailMergeSize); |
| 3633 | |
| 3634 | if (BF.OptimizeFunction(MF, tii: TII, tri: MF.getSubtarget().getRegisterInfo(), mli: MLI, |
| 3635 | /*AfterPlacement=*/true)) { |
| 3636 | // Must redo the post-dominator tree if blocks were changed. |
| 3637 | if (MPDT) |
| 3638 | MPDT->recalculate(Func&: MF); |
| 3639 | if (!UseExtTspForSize) { |
| 3640 | // Redo the layout if tail merging creates/removes/moves blocks. |
| 3641 | BlockToChain.clear(); |
| 3642 | ComputedEdges.clear(); |
| 3643 | ChainAllocator.DestroyAll(); |
| 3644 | buildCFGChains(); |
| 3645 | } |
| 3646 | } |
| 3647 | } |
| 3648 | |
| 3649 | // Apply a post-processing optimizing block placement: |
| 3650 | // - find a new placement and modify the layout of the blocks in the function; |
| 3651 | // - re-create CFG chains so that we can optimizeBranches and alignBlocks. |
| 3652 | if (UseExtTspForPerf || UseExtTspForSize) { |
| 3653 | assert( |
| 3654 | !(UseExtTspForPerf && UseExtTspForSize) && |
| 3655 | "UseExtTspForPerf and UseExtTspForSize can not be set simultaneously" ); |
| 3656 | applyExtTsp(/*OptForSize=*/UseExtTspForSize); |
| 3657 | createCFGChainExtTsp(); |
| 3658 | } |
| 3659 | |
| 3660 | optimizeBranches(); |
| 3661 | alignBlocks(); |
| 3662 | |
| 3663 | BlockToChain.clear(); |
| 3664 | ComputedEdges.clear(); |
| 3665 | ChainAllocator.DestroyAll(); |
| 3666 | |
| 3667 | // View the function. |
| 3668 | if (ViewBlockLayoutWithBFI != GVDT_None && |
| 3669 | (ViewBlockFreqFuncName.empty() || |
| 3670 | F->getFunction().getName() == ViewBlockFreqFuncName)) { |
| 3671 | if (RenumberBlocksBeforeView) |
| 3672 | MF.RenumberBlocks(); |
| 3673 | MBFI->view(Name: "MBP." + MF.getName(), isSimple: false); |
| 3674 | } |
| 3675 | |
| 3676 | // We always return true as we have no way to track whether the final order |
| 3677 | // differs from the original order. |
| 3678 | return true; |
| 3679 | } |
| 3680 | |
| 3681 | void MachineBlockPlacement::applyExtTsp(bool OptForSize) { |
| 3682 | // Prepare data; blocks are indexed by their index in the current ordering. |
| 3683 | DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex; |
| 3684 | BlockIndex.reserve(NumEntries: F->size()); |
| 3685 | std::vector<const MachineBasicBlock *> CurrentBlockOrder; |
| 3686 | CurrentBlockOrder.reserve(n: F->size()); |
| 3687 | size_t NumBlocks = 0; |
| 3688 | for (const MachineBasicBlock &MBB : *F) { |
| 3689 | BlockIndex[&MBB] = NumBlocks++; |
| 3690 | CurrentBlockOrder.push_back(x: &MBB); |
| 3691 | } |
| 3692 | |
| 3693 | SmallVector<uint64_t, 0> BlockCounts(F->size()); |
| 3694 | SmallVector<uint64_t, 0> BlockSizes(F->size()); |
| 3695 | SmallVector<codelayout::EdgeCount, 0> JumpCounts; |
| 3696 | SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. |
| 3697 | SmallVector<const MachineBasicBlock *, 4> Succs; |
| 3698 | for (MachineBasicBlock &MBB : *F) { |
| 3699 | // Getting the block frequency. |
| 3700 | BlockFrequency BlockFreq = MBFI->getBlockFreq(MBB: &MBB); |
| 3701 | BlockCounts[BlockIndex[&MBB]] = OptForSize ? 1 : BlockFreq.getFrequency(); |
| 3702 | // Getting the block size: |
| 3703 | // - approximate the size of an instruction by 4 bytes, and |
| 3704 | // - ignore debug instructions. |
| 3705 | // Note: getting the exact size of each block is target-dependent and can be |
| 3706 | // done by extending the interface of MCCodeEmitter. Experimentally we do |
| 3707 | // not see a perf improvement with the exact block sizes. |
| 3708 | auto NonDbgInsts = |
| 3709 | instructionsWithoutDebug(It: MBB.instr_begin(), End: MBB.instr_end()); |
| 3710 | size_t NumInsts = std::distance(first: NonDbgInsts.begin(), last: NonDbgInsts.end()); |
| 3711 | BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts; |
| 3712 | |
| 3713 | // Getting jump frequencies. |
| 3714 | if (OptForSize) { |
| 3715 | Cond.clear(); |
| 3716 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
| 3717 | if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) |
| 3718 | continue; |
| 3719 | |
| 3720 | const MachineBasicBlock *FTB = MBB.getFallThrough(); |
| 3721 | // Succs is a collection of distinct destinations of the block reachable |
| 3722 | // from MBB via a jump instruction; initialize the list using the three |
| 3723 | // (non-necessarily distinct) blocks, FTB, TBB, and FBB. |
| 3724 | Succs.clear(); |
| 3725 | if (TBB && TBB != FTB) |
| 3726 | Succs.push_back(Elt: TBB); |
| 3727 | if (FBB && FBB != FTB) |
| 3728 | Succs.push_back(Elt: FBB); |
| 3729 | if (FTB) |
| 3730 | Succs.push_back(Elt: FTB); |
| 3731 | // Absolute magnitude of non-zero counts does not matter for the |
| 3732 | // optimization; prioritize slightly jumps with a single successor, since |
| 3733 | // the corresponding jump instruction will be removed from the binary. |
| 3734 | const uint64_t Freq = Succs.size() == 1 ? 110 : 100; |
| 3735 | for (const MachineBasicBlock *Succ : Succs) |
| 3736 | JumpCounts.push_back(Elt: {.src: BlockIndex[&MBB], .dst: BlockIndex[Succ], .count: Freq}); |
| 3737 | } else { |
| 3738 | for (MachineBasicBlock *Succ : MBB.successors()) { |
| 3739 | auto EP = MBPI->getEdgeProbability(Src: &MBB, Dst: Succ); |
| 3740 | BlockFrequency JumpFreq = BlockFreq * EP; |
| 3741 | JumpCounts.push_back( |
| 3742 | Elt: {.src: BlockIndex[&MBB], .dst: BlockIndex[Succ], .count: JumpFreq.getFrequency()}); |
| 3743 | } |
| 3744 | } |
| 3745 | } |
| 3746 | |
| 3747 | LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size() |
| 3748 | << " with profile = " << F->getFunction().hasProfileData() |
| 3749 | << " (" << F->getName() << ")" << "\n" ); |
| 3750 | |
| 3751 | const double OrgScore = calcExtTspScore(NodeSizes: BlockSizes, EdgeCounts: JumpCounts); |
| 3752 | LLVM_DEBUG(dbgs() << format(" original layout score: %0.2f\n" , OrgScore)); |
| 3753 | |
| 3754 | // Run the layout algorithm. |
| 3755 | auto NewOrder = computeExtTspLayout(NodeSizes: BlockSizes, NodeCounts: BlockCounts, EdgeCounts: JumpCounts); |
| 3756 | std::vector<const MachineBasicBlock *> NewBlockOrder; |
| 3757 | NewBlockOrder.reserve(n: F->size()); |
| 3758 | for (uint64_t Node : NewOrder) { |
| 3759 | NewBlockOrder.push_back(x: CurrentBlockOrder[Node]); |
| 3760 | } |
| 3761 | const double OptScore = calcExtTspScore(Order: NewOrder, NodeSizes: BlockSizes, EdgeCounts: JumpCounts); |
| 3762 | LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n" , OptScore)); |
| 3763 | |
| 3764 | // If the optimization is unsuccessful, fall back to the original block order. |
| 3765 | if (OptForSize && OrgScore > OptScore) |
| 3766 | assignBlockOrder(NewOrder: CurrentBlockOrder); |
| 3767 | else |
| 3768 | assignBlockOrder(NewOrder: NewBlockOrder); |
| 3769 | } |
| 3770 | |
| 3771 | void MachineBlockPlacement::assignBlockOrder( |
| 3772 | const std::vector<const MachineBasicBlock *> &NewBlockOrder) { |
| 3773 | assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order" ); |
| 3774 | F->RenumberBlocks(); |
| 3775 | // At this point, we possibly removed blocks from the function, so we can't |
| 3776 | // renumber the domtree. At this point, we don't need it anymore, though. |
| 3777 | // TODO: move this to the point where the dominator tree is actually |
| 3778 | // invalidated (i.e., where blocks are removed without updating the domtree). |
| 3779 | MPDT = nullptr; |
| 3780 | |
| 3781 | bool HasChanges = false; |
| 3782 | for (size_t I = 0; I < NewBlockOrder.size(); I++) { |
| 3783 | if (NewBlockOrder[I] != F->getBlockNumbered(N: I)) { |
| 3784 | HasChanges = true; |
| 3785 | break; |
| 3786 | } |
| 3787 | } |
| 3788 | // Stop early if the new block order is identical to the existing one. |
| 3789 | if (!HasChanges) |
| 3790 | return; |
| 3791 | |
| 3792 | SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs()); |
| 3793 | for (auto &MBB : *F) { |
| 3794 | PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); |
| 3795 | } |
| 3796 | |
| 3797 | // Sort basic blocks in the function according to the computed order. |
| 3798 | DenseMap<const MachineBasicBlock *, size_t> NewIndex; |
| 3799 | for (const MachineBasicBlock *MBB : NewBlockOrder) { |
| 3800 | NewIndex[MBB] = NewIndex.size(); |
| 3801 | } |
| 3802 | F->sort(comp: [&](MachineBasicBlock &L, MachineBasicBlock &R) { |
| 3803 | return NewIndex[&L] < NewIndex[&R]; |
| 3804 | }); |
| 3805 | |
| 3806 | // Update basic block branches by inserting explicit fallthrough branches |
| 3807 | // when required and re-optimize branches when possible. |
| 3808 | const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); |
| 3809 | SmallVector<MachineOperand, 4> Cond; |
| 3810 | for (auto &MBB : *F) { |
| 3811 | MachineFunction::iterator NextMBB = std::next(x: MBB.getIterator()); |
| 3812 | MachineFunction::iterator EndIt = MBB.getParent()->end(); |
| 3813 | auto *FTMBB = PrevFallThroughs[MBB.getNumber()]; |
| 3814 | // If this block had a fallthrough before we need an explicit unconditional |
| 3815 | // branch to that block if the fallthrough block is not adjacent to the |
| 3816 | // block in the new order. |
| 3817 | if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) { |
| 3818 | TII->insertUnconditionalBranch(MBB, DestBB: FTMBB, DL: MBB.findBranchDebugLoc()); |
| 3819 | } |
| 3820 | |
| 3821 | // It might be possible to optimize branches by flipping the condition. |
| 3822 | Cond.clear(); |
| 3823 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 3824 | if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) |
| 3825 | continue; |
| 3826 | MBB.updateTerminator(PreviousLayoutSuccessor: FTMBB); |
| 3827 | } |
| 3828 | } |
| 3829 | |
| 3830 | void MachineBlockPlacement::createCFGChainExtTsp() { |
| 3831 | BlockToChain.clear(); |
| 3832 | ComputedEdges.clear(); |
| 3833 | ChainAllocator.DestroyAll(); |
| 3834 | |
| 3835 | MachineBasicBlock *HeadBB = &F->front(); |
| 3836 | BlockChain *FunctionChain = |
| 3837 | new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB); |
| 3838 | |
| 3839 | for (MachineBasicBlock &MBB : *F) { |
| 3840 | if (HeadBB == &MBB) |
| 3841 | continue; // Ignore head of the chain |
| 3842 | FunctionChain->merge(BB: &MBB, Chain: nullptr); |
| 3843 | } |
| 3844 | } |
| 3845 | |
| 3846 | namespace { |
| 3847 | |
| 3848 | /// A pass to compute block placement statistics. |
| 3849 | /// |
| 3850 | /// A separate pass to compute interesting statistics for evaluating block |
| 3851 | /// placement. This is separate from the actual placement pass so that they can |
| 3852 | /// be computed in the absence of any placement transformations or when using |
| 3853 | /// alternative placement strategies. |
| 3854 | class MachineBlockPlacementStats { |
| 3855 | /// A handle to the branch probability pass. |
| 3856 | const MachineBranchProbabilityInfo *MBPI; |
| 3857 | |
| 3858 | /// A handle to the function-wide block frequency pass. |
| 3859 | const MachineBlockFrequencyInfo *MBFI; |
| 3860 | |
| 3861 | public: |
| 3862 | MachineBlockPlacementStats(const MachineBranchProbabilityInfo *MBPI, |
| 3863 | const MachineBlockFrequencyInfo *MBFI) |
| 3864 | : MBPI(MBPI), MBFI(MBFI) {} |
| 3865 | bool run(MachineFunction &MF); |
| 3866 | }; |
| 3867 | |
| 3868 | class MachineBlockPlacementStatsLegacy : public MachineFunctionPass { |
| 3869 | public: |
| 3870 | static char ID; // Pass identification, replacement for typeid |
| 3871 | |
| 3872 | MachineBlockPlacementStatsLegacy() : MachineFunctionPass(ID) {} |
| 3873 | |
| 3874 | bool runOnMachineFunction(MachineFunction &F) override { |
| 3875 | auto *MBPI = |
| 3876 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
| 3877 | auto *MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
| 3878 | return MachineBlockPlacementStats(MBPI, MBFI).run(MF&: F); |
| 3879 | } |
| 3880 | |
| 3881 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 3882 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
| 3883 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 3884 | AU.setPreservesAll(); |
| 3885 | MachineFunctionPass::getAnalysisUsage(AU); |
| 3886 | } |
| 3887 | }; |
| 3888 | |
| 3889 | } // end anonymous namespace |
| 3890 | |
| 3891 | char MachineBlockPlacementStatsLegacy::ID = 0; |
| 3892 | |
| 3893 | char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStatsLegacy::ID; |
| 3894 | |
| 3895 | INITIALIZE_PASS_BEGIN(MachineBlockPlacementStatsLegacy, "block-placement-stats" , |
| 3896 | "Basic Block Placement Stats" , false, false) |
| 3897 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
| 3898 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
| 3899 | INITIALIZE_PASS_END(MachineBlockPlacementStatsLegacy, "block-placement-stats" , |
| 3900 | "Basic Block Placement Stats" , false, false) |
| 3901 | |
| 3902 | PreservedAnalyses |
| 3903 | MachineBlockPlacementStatsPass::run(MachineFunction &MF, |
| 3904 | MachineFunctionAnalysisManager &MFAM) { |
| 3905 | auto &MBPI = MFAM.getResult<MachineBranchProbabilityAnalysis>(IR&: MF); |
| 3906 | auto &MBFI = MFAM.getResult<MachineBlockFrequencyAnalysis>(IR&: MF); |
| 3907 | |
| 3908 | MachineBlockPlacementStats(&MBPI, &MBFI).run(MF); |
| 3909 | return PreservedAnalyses::all(); |
| 3910 | } |
| 3911 | |
| 3912 | bool MachineBlockPlacementStats::run(MachineFunction &F) { |
| 3913 | // Check for single-block functions and skip them. |
| 3914 | if (std::next(x: F.begin()) == F.end()) |
| 3915 | return false; |
| 3916 | |
| 3917 | if (!isFunctionInPrintList(FunctionName: F.getName())) |
| 3918 | return false; |
| 3919 | |
| 3920 | for (MachineBasicBlock &MBB : F) { |
| 3921 | BlockFrequency BlockFreq = MBFI->getBlockFreq(MBB: &MBB); |
| 3922 | Statistic &NumBranches = |
| 3923 | (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; |
| 3924 | Statistic &BranchTakenFreq = |
| 3925 | (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; |
| 3926 | for (MachineBasicBlock *Succ : MBB.successors()) { |
| 3927 | // Skip if this successor is a fallthrough. |
| 3928 | if (MBB.isLayoutSuccessor(MBB: Succ)) |
| 3929 | continue; |
| 3930 | |
| 3931 | BlockFrequency EdgeFreq = |
| 3932 | BlockFreq * MBPI->getEdgeProbability(Src: &MBB, Dst: Succ); |
| 3933 | ++NumBranches; |
| 3934 | BranchTakenFreq += EdgeFreq.getFrequency(); |
| 3935 | } |
| 3936 | } |
| 3937 | |
| 3938 | return false; |
| 3939 | } |
| 3940 | |