1//===- MachineFunction.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect native machine code information for a function. This allows
10// target-specific information about the generated code to be stored with each
11// function.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/ProfileSummaryInfo.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/PseudoSourceValueManager.h"
36#include "llvm/CodeGen/TargetFrameLowering.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetLowering.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/TargetSubtargetInfo.h"
41#include "llvm/CodeGen/WasmEHFuncInfo.h"
42#include "llvm/CodeGen/WinEHFuncInfo.h"
43#include "llvm/Config/llvm-config.h"
44#include "llvm/IR/Attributes.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/DataLayout.h"
48#include "llvm/IR/DerivedTypes.h"
49#include "llvm/IR/EHPersonalities.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalValue.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ModuleSlotTracker.h"
57#include "llvm/IR/Value.h"
58#include "llvm/MC/MCContext.h"
59#include "llvm/MC/MCSymbol.h"
60#include "llvm/MC/SectionKind.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/CommandLine.h"
63#include "llvm/Support/Compiler.h"
64#include "llvm/Support/DOTGraphTraits.h"
65#include "llvm/Support/ErrorHandling.h"
66#include "llvm/Support/GraphWriter.h"
67#include "llvm/Support/raw_ostream.h"
68#include "llvm/Target/TargetMachine.h"
69#include <algorithm>
70#include <cassert>
71#include <cstddef>
72#include <cstdint>
73#include <iterator>
74#include <string>
75#include <utility>
76#include <vector>
77
78#include "LiveDebugValues/LiveDebugValues.h"
79
80using namespace llvm;
81
82#define DEBUG_TYPE "codegen"
83
84static cl::opt<unsigned> AlignAllFunctions(
85 "align-all-functions",
86 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87 "means align on 16B boundaries)."),
88 cl::init(Val: 0), cl::Hidden);
89
90static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91 using P = MachineFunctionProperties::Property;
92
93 // clang-format off
94 switch(Prop) {
95 case P::FailedISel: return "FailedISel";
96 case P::IsSSA: return "IsSSA";
97 case P::Legalized: return "Legalized";
98 case P::NoPHIs: return "NoPHIs";
99 case P::NoVRegs: return "NoVRegs";
100 case P::RegBankSelected: return "RegBankSelected";
101 case P::Selected: return "Selected";
102 case P::TracksLiveness: return "TracksLiveness";
103 case P::TiedOpsRewritten: return "TiedOpsRewritten";
104 case P::FailsVerification: return "FailsVerification";
105 case P::FailedRegAlloc: return "FailedRegAlloc";
106 case P::TracksDebugUserValues: return "TracksDebugUserValues";
107 }
108 // clang-format on
109 llvm_unreachable("Invalid machine function property");
110}
111
112void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
113 if (!F.hasFnAttribute(Kind: Attribute::SafeStack))
114 return;
115
116 auto *Existing =
117 dyn_cast_or_null<MDTuple>(Val: F.getMetadata(KindID: LLVMContext::MD_annotation));
118
119 if (!Existing || Existing->getNumOperands() != 2)
120 return;
121
122 auto *MetadataName = "unsafe-stack-size";
123 if (auto &N = Existing->getOperand(I: 0)) {
124 if (N.equalsStr(Str: MetadataName)) {
125 if (auto &Op = Existing->getOperand(I: 1)) {
126 auto Val = mdconst::extract<ConstantInt>(MD: Op)->getZExtValue();
127 FrameInfo.setUnsafeStackSize(Val);
128 }
129 }
130 }
131}
132
133// Pin the vtable to this file.
134void MachineFunction::Delegate::anchor() {}
135
136void MachineFunctionProperties::print(raw_ostream &OS) const {
137 const char *Separator = "";
138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139 if (!Properties[I])
140 continue;
141 OS << Separator << getPropertyName(Prop: static_cast<Property>(I));
142 Separator = ", ";
143 }
144}
145
146//===----------------------------------------------------------------------===//
147// MachineFunction implementation
148//===----------------------------------------------------------------------===//
149
150// Out-of-line virtual method.
151MachineFunctionInfo::~MachineFunctionInfo() = default;
152
153void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
154 MBB->getParent()->deleteMachineBasicBlock(MBB);
155}
156
157static inline Align getFnStackAlignment(const TargetSubtargetInfo &STI,
158 const Function &F) {
159 if (auto MA = F.getFnStackAlign())
160 return *MA;
161 return STI.getFrameLowering()->getStackAlign();
162}
163
164MachineFunction::MachineFunction(Function &F, const TargetMachine &Target,
165 const TargetSubtargetInfo &STI, MCContext &Ctx,
166 unsigned FunctionNum)
167 : F(F), Target(Target), STI(STI), Ctx(Ctx) {
168 FunctionNumber = FunctionNum;
169 init();
170}
171
172void MachineFunction::handleInsertion(MachineInstr &MI) {
173 if (TheDelegate)
174 TheDelegate->MF_HandleInsertion(MI);
175}
176
177void MachineFunction::handleRemoval(MachineInstr &MI) {
178 if (TheDelegate)
179 TheDelegate->MF_HandleRemoval(MI);
180}
181
182void MachineFunction::handleChangeDesc(MachineInstr &MI,
183 const MCInstrDesc &TID) {
184 if (TheDelegate)
185 TheDelegate->MF_HandleChangeDesc(MI, TID);
186}
187
188void MachineFunction::init() {
189 // Assume the function starts in SSA form with correct liveness.
190 Properties.setIsSSA();
191 Properties.setTracksLiveness();
192 RegInfo = new (Allocator) MachineRegisterInfo(this);
193
194 MFInfo = nullptr;
195
196 // We can realign the stack if the target supports it and the user hasn't
197 // explicitly asked us not to.
198 bool CanRealignSP = STI.getFrameLowering()->isStackRealignable() &&
199 !F.hasFnAttribute(Kind: "no-realign-stack");
200 bool ForceRealignSP = F.hasFnAttribute(Kind: Attribute::StackAlignment) ||
201 F.hasFnAttribute(Kind: "stackrealign");
202 FrameInfo = new (Allocator) MachineFrameInfo(
203 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
204 /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
205
206 setUnsafeStackSize(F, FrameInfo&: *FrameInfo);
207
208 if (F.hasFnAttribute(Kind: Attribute::StackAlignment))
209 FrameInfo->ensureMaxAlignment(Alignment: *F.getFnStackAlign());
210
211 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
212 Alignment = STI.getTargetLowering()->getMinFunctionAlignment();
213
214 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
215 if (!F.hasOptSize())
216 Alignment = std::max(a: Alignment,
217 b: STI.getTargetLowering()->getPrefFunctionAlignment());
218
219 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
220 // to load a type hash before the function label. Ensure functions are aligned
221 // by a least 4 to avoid unaligned access, which is especially important for
222 // -mno-unaligned-access.
223 if (F.hasMetadata(KindID: LLVMContext::MD_func_sanitize) ||
224 F.getMetadata(KindID: LLVMContext::MD_kcfi_type))
225 Alignment = std::max(a: Alignment, b: Align(4));
226
227 if (AlignAllFunctions)
228 Alignment = Align(1ULL << AlignAllFunctions);
229
230 JumpTableInfo = nullptr;
231
232 if (isFuncletEHPersonality(Pers: classifyEHPersonality(
233 Pers: F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
234 WinEHInfo = new (Allocator) WinEHFuncInfo();
235 }
236
237 if (isScopedEHPersonality(Pers: classifyEHPersonality(
238 Pers: F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
239 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
240 }
241
242 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
243 "Can't create a MachineFunction using a Module with a "
244 "Target-incompatible DataLayout attached\n");
245
246 PSVManager = std::make_unique<PseudoSourceValueManager>(args: getTarget());
247}
248
249void MachineFunction::initTargetMachineFunctionInfo(
250 const TargetSubtargetInfo &STI) {
251 assert(!MFInfo && "MachineFunctionInfo already set");
252 MFInfo = Target.createMachineFunctionInfo(Allocator, F, STI: &STI);
253}
254
255MachineFunction::~MachineFunction() {
256 clear();
257}
258
259void MachineFunction::clear() {
260 Properties.reset();
261
262 // Clear JumpTableInfo first. Otherwise, every MBB we delete would do a
263 // linear search over the jump table entries to find and erase itself.
264 if (JumpTableInfo) {
265 JumpTableInfo->~MachineJumpTableInfo();
266 Allocator.Deallocate(Ptr: JumpTableInfo);
267 JumpTableInfo = nullptr;
268 }
269
270 // Don't call destructors on MachineInstr and MachineOperand. All of their
271 // memory comes from the BumpPtrAllocator which is about to be purged.
272 //
273 // Do call MachineBasicBlock destructors, it contains std::vectors.
274 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(where: I))
275 I->Insts.clearAndLeakNodesUnsafely();
276 MBBNumbering.clear();
277
278 InstructionRecycler.clear(Allocator);
279 OperandRecycler.clear(Allocator);
280 BasicBlockRecycler.clear(Allocator);
281 CodeViewAnnotations.clear();
282 VariableDbgInfos.clear();
283 if (RegInfo) {
284 RegInfo->~MachineRegisterInfo();
285 Allocator.Deallocate(Ptr: RegInfo);
286 }
287 if (MFInfo) {
288 MFInfo->~MachineFunctionInfo();
289 Allocator.Deallocate(Ptr: MFInfo);
290 }
291
292 FrameInfo->~MachineFrameInfo();
293 Allocator.Deallocate(Ptr: FrameInfo);
294
295 ConstantPool->~MachineConstantPool();
296 Allocator.Deallocate(Ptr: ConstantPool);
297
298 if (WinEHInfo) {
299 WinEHInfo->~WinEHFuncInfo();
300 Allocator.Deallocate(Ptr: WinEHInfo);
301 }
302
303 if (WasmEHInfo) {
304 WasmEHInfo->~WasmEHFuncInfo();
305 Allocator.Deallocate(Ptr: WasmEHInfo);
306 }
307}
308
309const DataLayout &MachineFunction::getDataLayout() const {
310 return F.getDataLayout();
311}
312
313/// Get the JumpTableInfo for this function.
314/// If it does not already exist, allocate one.
315MachineJumpTableInfo *MachineFunction::
316getOrCreateJumpTableInfo(unsigned EntryKind) {
317 if (JumpTableInfo) return JumpTableInfo;
318
319 JumpTableInfo = new (Allocator)
320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
321 return JumpTableInfo;
322}
323
324DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
325 return F.getDenormalMode(FPType);
326}
327
328/// Should we be emitting segmented stack stuff for the function
329bool MachineFunction::shouldSplitStack() const {
330 return getFunction().hasFnAttribute(Kind: "split-stack");
331}
332
333[[nodiscard]] unsigned
334MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
335 FrameInstructions.push_back(x: Inst);
336 return FrameInstructions.size() - 1;
337}
338
339/// This discards all of the MachineBasicBlock numbers and recomputes them.
340/// This guarantees that the MBB numbers are sequential, dense, and match the
341/// ordering of the blocks within the function. If a specific MachineBasicBlock
342/// is specified, only that block and those after it are renumbered.
343void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
344 if (empty()) { MBBNumbering.clear(); return; }
345 MachineFunction::iterator MBBI, E = end();
346 if (MBB == nullptr)
347 MBBI = begin();
348 else
349 MBBI = MBB->getIterator();
350
351 // Figure out the block number this should have.
352 unsigned BlockNo = 0;
353 if (MBBI != begin())
354 BlockNo = std::prev(x: MBBI)->getNumber() + 1;
355
356 for (; MBBI != E; ++MBBI, ++BlockNo) {
357 if (MBBI->getNumber() != (int)BlockNo) {
358 // Remove use of the old number.
359 if (MBBI->getNumber() != -1) {
360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
361 "MBB number mismatch!");
362 MBBNumbering[MBBI->getNumber()] = nullptr;
363 }
364
365 // If BlockNo is already taken, set that block's number to -1.
366 if (MBBNumbering[BlockNo])
367 MBBNumbering[BlockNo]->setNumber(-1);
368
369 MBBNumbering[BlockNo] = &*MBBI;
370 MBBI->setNumber(BlockNo);
371 }
372 }
373
374 // Okay, all the blocks are renumbered. If we have compactified the block
375 // numbering, shrink MBBNumbering now.
376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
377 MBBNumbering.resize(new_size: BlockNo);
378 MBBNumberingEpoch++;
379}
380
381int64_t MachineFunction::estimateFunctionSizeInBytes() {
382 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
383 const Align FunctionAlignment = getAlignment();
384 MachineFunction::iterator MBBI = begin(), E = end();
385 /// Offset - Distance from the beginning of the function to the end
386 /// of the basic block.
387 int64_t Offset = 0;
388
389 for (; MBBI != E; ++MBBI) {
390 const Align Alignment = MBBI->getAlignment();
391 int64_t BlockSize = 0;
392
393 for (auto &MI : *MBBI) {
394 BlockSize += TII.getInstSizeInBytes(MI);
395 }
396
397 int64_t OffsetBB;
398 if (Alignment <= FunctionAlignment) {
399 OffsetBB = alignTo(Size: Offset, A: Alignment);
400 } else {
401 // The alignment of this MBB is larger than the function's alignment, so
402 // we can't tell whether or not it will insert nops. Assume that it will.
403 OffsetBB = alignTo(Size: Offset, A: Alignment) + Alignment.value() -
404 FunctionAlignment.value();
405 }
406 Offset = OffsetBB + BlockSize;
407 }
408
409 return Offset;
410}
411
412/// This method iterates over the basic blocks and assigns their IsBeginSection
413/// and IsEndSection fields. This must be called after MBB layout is finalized
414/// and the SectionID's are assigned to MBBs.
415void MachineFunction::assignBeginEndSections() {
416 front().setIsBeginSection();
417 auto CurrentSectionID = front().getSectionID();
418 for (auto MBBI = std::next(x: begin()), E = end(); MBBI != E; ++MBBI) {
419 if (MBBI->getSectionID() == CurrentSectionID)
420 continue;
421 MBBI->setIsBeginSection();
422 std::prev(x: MBBI)->setIsEndSection();
423 CurrentSectionID = MBBI->getSectionID();
424 }
425 back().setIsEndSection();
426}
427
428/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
429MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
430 DebugLoc DL,
431 bool NoImplicit) {
432 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
433 MachineInstr(*this, MCID, std::move(DL), NoImplicit);
434}
435
436/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
437/// identical in all ways except the instruction has no parent, prev, or next.
438MachineInstr *
439MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
440 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
441 MachineInstr(*this, *Orig);
442}
443
444MachineInstr &MachineFunction::cloneMachineInstrBundle(
445 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
446 const MachineInstr &Orig) {
447 MachineInstr *FirstClone = nullptr;
448 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
449 while (true) {
450 MachineInstr *Cloned = CloneMachineInstr(Orig: &*I);
451 MBB.insert(I: InsertBefore, MI: Cloned);
452 if (FirstClone == nullptr) {
453 FirstClone = Cloned;
454 } else {
455 Cloned->bundleWithPred();
456 }
457
458 if (!I->isBundledWithSucc())
459 break;
460 ++I;
461 }
462 // Copy over call info to the cloned instruction if needed. If Orig is in
463 // a bundle, copyAdditionalCallInfo takes care of finding the call instruction
464 // in the bundle.
465 if (Orig.shouldUpdateAdditionalCallInfo())
466 copyAdditionalCallInfo(Old: &Orig, New: FirstClone);
467 return *FirstClone;
468}
469
470/// Delete the given MachineInstr.
471///
472/// This function also serves as the MachineInstr destructor - the real
473/// ~MachineInstr() destructor must be empty.
474void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
475 // Verify that a call site info is at valid state. This assertion should
476 // be triggered during the implementation of support for the
477 // call site info of a new architecture. If the assertion is triggered,
478 // back trace will tell where to insert a call to updateCallSiteInfo().
479 assert((!MI->isCandidateForAdditionalCallInfo() ||
480 !CallSitesInfo.contains(MI)) &&
481 "Call site info was not updated!");
482 // Verify that the "called globals" info is in a valid state.
483 assert((!MI->isCandidateForAdditionalCallInfo() ||
484 !CalledGlobalsInfo.contains(MI)) &&
485 "Called globals info was not updated!");
486 // Strip it for parts. The operand array and the MI object itself are
487 // independently recyclable.
488 if (MI->Operands)
489 deallocateOperandArray(Cap: MI->CapOperands, Array: MI->Operands);
490 // Don't call ~MachineInstr() which must be trivial anyway because
491 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
492 // destructors.
493 InstructionRecycler.Deallocate(Allocator, Element: MI);
494}
495
496/// Allocate a new MachineBasicBlock. Use this instead of
497/// `new MachineBasicBlock'.
498MachineBasicBlock *
499MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
500 std::optional<UniqueBBID> BBID) {
501 MachineBasicBlock *MBB =
502 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
503 MachineBasicBlock(*this, BB);
504 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to
505 // allow robust mapping of profiles to basic blocks.
506 if (Target.Options.BBAddrMap ||
507 Target.getBBSectionsType() == BasicBlockSection::List)
508 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{.BaseID: NextBBID++, .CloneID: 0});
509 return MBB;
510}
511
512/// Delete the given MachineBasicBlock.
513void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
514 assert(MBB->getParent() == this && "MBB parent mismatch!");
515 // Clean up any references to MBB in jump tables before deleting it.
516 if (JumpTableInfo)
517 JumpTableInfo->RemoveMBBFromJumpTables(MBB);
518 MBB->~MachineBasicBlock();
519 BasicBlockRecycler.Deallocate(Allocator, Element: MBB);
520}
521
522MachineMemOperand *MachineFunction::getMachineMemOperand(
523 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
524 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
525 SyncScope::ID SSID, AtomicOrdering Ordering,
526 AtomicOrdering FailureOrdering) {
527 assert((!Size.hasValue() ||
528 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
529 "Unexpected an unknown size to be represented using "
530 "LocationSize::beforeOrAfter()");
531 return new (Allocator)
532 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
533 Ordering, FailureOrdering);
534}
535
536MachineMemOperand *MachineFunction::getMachineMemOperand(
537 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
538 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
539 SyncScope::ID SSID, AtomicOrdering Ordering,
540 AtomicOrdering FailureOrdering) {
541 return new (Allocator)
542 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
543 Ordering, FailureOrdering);
544}
545
546MachineMemOperand *
547MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
548 const MachinePointerInfo &PtrInfo,
549 LocationSize Size) {
550 assert((!Size.hasValue() ||
551 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
552 "Unexpected an unknown size to be represented using "
553 "LocationSize::beforeOrAfter()");
554 return new (Allocator)
555 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
556 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
557 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
558}
559
560MachineMemOperand *MachineFunction::getMachineMemOperand(
561 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
562 return new (Allocator)
563 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
564 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
565 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
566}
567
568MachineMemOperand *
569MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
570 int64_t Offset, LLT Ty) {
571 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
572
573 // If there is no pointer value, the offset isn't tracked so we need to adjust
574 // the base alignment.
575 Align Alignment = PtrInfo.V.isNull()
576 ? commonAlignment(A: MMO->getBaseAlign(), Offset)
577 : MMO->getBaseAlign();
578
579 // Do not preserve ranges, since we don't necessarily know what the high bits
580 // are anymore.
581 return new (Allocator) MachineMemOperand(
582 PtrInfo.getWithOffset(O: Offset), MMO->getFlags(), Ty, Alignment,
583 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
584 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
585}
586
587MachineMemOperand *
588MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
589 const AAMDNodes &AAInfo) {
590 MachinePointerInfo MPI = MMO->getValue() ?
591 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
592 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
593
594 return new (Allocator) MachineMemOperand(
595 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
596 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
597 MMO->getFailureOrdering());
598}
599
600MachineMemOperand *
601MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
602 MachineMemOperand::Flags Flags) {
603 return new (Allocator) MachineMemOperand(
604 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
605 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
606 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
607}
608
609MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
610 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
611 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
612 uint32_t CFIType, MDNode *MMRAs, Value *DS) {
613 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
614 PostInstrSymbol, HeapAllocMarker,
615 PCSections, CFIType, MMRAs, DS);
616}
617
618const char *MachineFunction::createExternalSymbolName(StringRef Name) {
619 char *Dest = Allocator.Allocate<char>(Num: Name.size() + 1);
620 llvm::copy(Range&: Name, Out: Dest);
621 Dest[Name.size()] = 0;
622 return Dest;
623}
624
625uint32_t *MachineFunction::allocateRegMask() {
626 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
627 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
628 uint32_t *Mask = Allocator.Allocate<uint32_t>(Num: Size);
629 memset(s: Mask, c: 0, n: Size * sizeof(Mask[0]));
630 return Mask;
631}
632
633ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
634 int* AllocMask = Allocator.Allocate<int>(Num: Mask.size());
635 copy(Range&: Mask, Out: AllocMask);
636 return {AllocMask, Mask.size()};
637}
638
639#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
640LLVM_DUMP_METHOD void MachineFunction::dump() const {
641 print(dbgs());
642}
643#endif
644
645StringRef MachineFunction::getName() const {
646 return getFunction().getName();
647}
648
649void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
650 OS << "# Machine code for function " << getName() << ": ";
651 getProperties().print(OS);
652 OS << '\n';
653
654 // Print Frame Information
655 FrameInfo->print(MF: *this, OS);
656
657 // Print JumpTable Information
658 if (JumpTableInfo)
659 JumpTableInfo->print(OS);
660
661 // Print Constant Pool
662 ConstantPool->print(OS);
663
664 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
665
666 if (RegInfo && !RegInfo->livein_empty()) {
667 OS << "Function Live Ins: ";
668 for (MachineRegisterInfo::livein_iterator
669 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
670 OS << printReg(Reg: I->first, TRI);
671 if (I->second)
672 OS << " in " << printReg(Reg: I->second, TRI);
673 if (std::next(x: I) != E)
674 OS << ", ";
675 }
676 OS << '\n';
677 }
678
679 ModuleSlotTracker MST(getFunction().getParent());
680 MST.incorporateFunction(F: getFunction());
681 for (const auto &BB : *this) {
682 OS << '\n';
683 // If we print the whole function, print it at its most verbose level.
684 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
685 }
686
687 OS << "\n# End machine code for function " << getName() << ".\n\n";
688}
689
690/// True if this function needs frame moves for debug or exceptions.
691bool MachineFunction::needsFrameMoves() const {
692 // TODO: Ideally, what we'd like is to have a switch that allows emitting
693 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
694 // under this switch, we'd like .debug_frame to be precise when using -g. At
695 // this moment, there's no way to specify that some CFI directives go into
696 // .eh_frame only, while others go into .debug_frame only.
697 return getTarget().Options.ForceDwarfFrameSection ||
698 F.needsUnwindTableEntry() ||
699 !F.getParent()->debug_compile_units().empty();
700}
701
702MachineFunction::CallSiteInfo::CallSiteInfo(const CallBase &CB) {
703 // Numeric callee_type ids are only for indirect calls.
704 if (!CB.isIndirectCall())
705 return;
706
707 MDNode *CalleeTypeList = CB.getMetadata(KindID: LLVMContext::MD_callee_type);
708 if (!CalleeTypeList)
709 return;
710
711 for (const MDOperand &Op : CalleeTypeList->operands()) {
712 MDNode *TypeMD = cast<MDNode>(Val: Op);
713 MDString *TypeIdStr = cast<MDString>(Val: TypeMD->getOperand(I: 1));
714 // Compute numeric type id from generalized type id string
715 uint64_t TypeIdVal = MD5Hash(Str: TypeIdStr->getString());
716 IntegerType *Int64Ty = Type::getInt64Ty(C&: CB.getContext());
717 CalleeTypeIds.push_back(
718 Elt: ConstantInt::get(Ty: Int64Ty, V: TypeIdVal, /*IsSigned=*/false));
719 }
720}
721
722template <>
723struct llvm::DOTGraphTraits<const MachineFunction *>
724 : public DefaultDOTGraphTraits {
725 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
726
727 static std::string getGraphName(const MachineFunction *F) {
728 return ("CFG for '" + F->getName() + "' function").str();
729 }
730
731 std::string getNodeLabel(const MachineBasicBlock *Node,
732 const MachineFunction *Graph) {
733 std::string OutStr;
734 {
735 raw_string_ostream OSS(OutStr);
736
737 if (isSimple()) {
738 OSS << printMBBReference(MBB: *Node);
739 if (const BasicBlock *BB = Node->getBasicBlock())
740 OSS << ": " << BB->getName();
741 } else
742 Node->print(OS&: OSS);
743 }
744
745 if (OutStr[0] == '\n')
746 OutStr.erase(position: OutStr.begin());
747
748 // Process string output to make it nicer...
749 for (unsigned i = 0; i != OutStr.length(); ++i)
750 if (OutStr[i] == '\n') { // Left justify
751 OutStr[i] = '\\';
752 OutStr.insert(p: OutStr.begin() + i + 1, c: 'l');
753 }
754 return OutStr;
755 }
756};
757
758void MachineFunction::viewCFG() const
759{
760#ifndef NDEBUG
761 ViewGraph(this, "mf" + getName());
762#else
763 errs() << "MachineFunction::viewCFG is only available in debug builds on "
764 << "systems with Graphviz or gv!\n";
765#endif // NDEBUG
766}
767
768void MachineFunction::viewCFGOnly() const
769{
770#ifndef NDEBUG
771 ViewGraph(this, "mf" + getName(), true);
772#else
773 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
774 << "systems with Graphviz or gv!\n";
775#endif // NDEBUG
776}
777
778/// Add the specified physical register as a live-in value and
779/// create a corresponding virtual register for it.
780Register MachineFunction::addLiveIn(MCRegister PReg,
781 const TargetRegisterClass *RC) {
782 MachineRegisterInfo &MRI = getRegInfo();
783 Register VReg = MRI.getLiveInVirtReg(PReg);
784 if (VReg) {
785 const TargetRegisterClass *VRegRC = MRI.getRegClass(Reg: VReg);
786 (void)VRegRC;
787 // A physical register can be added several times.
788 // Between two calls, the register class of the related virtual register
789 // may have been constrained to match some operation constraints.
790 // In that case, check that the current register class includes the
791 // physical register and is a sub class of the specified RC.
792 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
793 RC->hasSubClassEq(VRegRC))) &&
794 "Register class mismatch!");
795 return VReg;
796 }
797 VReg = MRI.createVirtualRegister(RegClass: RC);
798 MRI.addLiveIn(Reg: PReg, vreg: VReg);
799 return VReg;
800}
801
802/// Return the MCSymbol for the specified non-empty jump table.
803/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
804/// normal 'L' label is returned.
805MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
806 bool isLinkerPrivate) const {
807 const DataLayout &DL = getDataLayout();
808 assert(JumpTableInfo && "No jump tables");
809 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
810
811 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
812 : DL.getPrivateGlobalPrefix();
813 SmallString<60> Name;
814 raw_svector_ostream(Name)
815 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
816 return Ctx.getOrCreateSymbol(Name);
817}
818
819/// Return a function-local symbol to represent the PIC base.
820MCSymbol *MachineFunction::getPICBaseSymbol() const {
821 const DataLayout &DL = getDataLayout();
822 return Ctx.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) +
823 Twine(getFunctionNumber()) + "$pb");
824}
825
826/// \name Exception Handling
827/// \{
828
829LandingPadInfo &
830MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
831 unsigned N = LandingPads.size();
832 for (unsigned i = 0; i < N; ++i) {
833 LandingPadInfo &LP = LandingPads[i];
834 if (LP.LandingPadBlock == LandingPad)
835 return LP;
836 }
837
838 LandingPads.push_back(x: LandingPadInfo(LandingPad));
839 return LandingPads[N];
840}
841
842void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
843 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
844 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
845 LP.BeginLabels.push_back(Elt: BeginLabel);
846 LP.EndLabels.push_back(Elt: EndLabel);
847}
848
849MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
850 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
851 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
852 LP.LandingPadLabel = LandingPadLabel;
853
854 BasicBlock::const_iterator FirstI =
855 LandingPad->getBasicBlock()->getFirstNonPHIIt();
856 if (const auto *LPI = dyn_cast<LandingPadInst>(Val&: FirstI)) {
857 // If there's no typeid list specified, then "cleanup" is implicit.
858 // Otherwise, id 0 is reserved for the cleanup action.
859 if (LPI->isCleanup() && LPI->getNumClauses() != 0)
860 LP.TypeIds.push_back(x: 0);
861
862 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
863 // correct, but we need to do it this way because of how the DWARF EH
864 // emitter processes the clauses.
865 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
866 Value *Val = LPI->getClause(Idx: I - 1);
867 if (LPI->isCatch(Idx: I - 1)) {
868 LP.TypeIds.push_back(
869 x: getTypeIDFor(TI: dyn_cast<GlobalValue>(Val: Val->stripPointerCasts())));
870 } else {
871 // Add filters in a list.
872 auto *CVal = cast<Constant>(Val);
873 SmallVector<unsigned, 4> FilterList;
874 for (const Use &U : CVal->operands())
875 FilterList.push_back(
876 Elt: getTypeIDFor(TI: cast<GlobalValue>(Val: U->stripPointerCasts())));
877
878 LP.TypeIds.push_back(x: getFilterIDFor(TyIds: FilterList));
879 }
880 }
881
882 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Val&: FirstI)) {
883 for (unsigned I = CPI->arg_size(); I != 0; --I) {
884 auto *TypeInfo =
885 dyn_cast<GlobalValue>(Val: CPI->getArgOperand(i: I - 1)->stripPointerCasts());
886 LP.TypeIds.push_back(x: getTypeIDFor(TI: TypeInfo));
887 }
888
889 } else {
890 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
891 }
892
893 return LandingPadLabel;
894}
895
896void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
897 ArrayRef<unsigned> Sites) {
898 LPadToCallSiteMap[Sym].append(in_start: Sites.begin(), in_end: Sites.end());
899}
900
901unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
902 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
903 if (TypeInfos[i] == TI) return i + 1;
904
905 TypeInfos.push_back(x: TI);
906 return TypeInfos.size();
907}
908
909int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
910 // If the new filter coincides with the tail of an existing filter, then
911 // re-use the existing filter. Folding filters more than this requires
912 // re-ordering filters and/or their elements - probably not worth it.
913 for (unsigned i : FilterEnds) {
914 unsigned j = TyIds.size();
915
916 while (i && j)
917 if (FilterIds[--i] != TyIds[--j])
918 goto try_next;
919
920 if (!j)
921 // The new filter coincides with range [i, end) of the existing filter.
922 return -(1 + i);
923
924try_next:;
925 }
926
927 // Add the new filter.
928 int FilterID = -(1 + FilterIds.size());
929 FilterIds.reserve(n: FilterIds.size() + TyIds.size() + 1);
930 llvm::append_range(C&: FilterIds, R&: TyIds);
931 FilterEnds.push_back(x: FilterIds.size());
932 FilterIds.push_back(x: 0); // terminator
933 return FilterID;
934}
935
936MachineFunction::CallSiteInfoMap::iterator
937MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
938 assert(MI->isCandidateForAdditionalCallInfo() &&
939 "Call site info refers only to call (MI) candidates");
940
941 if (!Target.Options.EmitCallSiteInfo && !Target.Options.EmitCallGraphSection)
942 return CallSitesInfo.end();
943 return CallSitesInfo.find(Val: MI);
944}
945
946/// Return the call machine instruction or find a call within bundle.
947static const MachineInstr *getCallInstr(const MachineInstr *MI) {
948 if (!MI->isBundle())
949 return MI;
950
951 for (const auto &BMI : make_range(x: getBundleStart(I: MI->getIterator()),
952 y: getBundleEnd(I: MI->getIterator())))
953 if (BMI.isCandidateForAdditionalCallInfo())
954 return &BMI;
955
956 llvm_unreachable("Unexpected bundle without a call site candidate");
957}
958
959void MachineFunction::eraseAdditionalCallInfo(const MachineInstr *MI) {
960 assert(MI->shouldUpdateAdditionalCallInfo() &&
961 "Call info refers only to call (MI) candidates or "
962 "candidates inside bundles");
963
964 const MachineInstr *CallMI = getCallInstr(MI);
965
966 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: CallMI);
967 if (CSIt != CallSitesInfo.end())
968 CallSitesInfo.erase(I: CSIt);
969
970 CalledGlobalsInfo.erase(Val: CallMI);
971}
972
973void MachineFunction::copyAdditionalCallInfo(const MachineInstr *Old,
974 const MachineInstr *New) {
975 assert(Old->shouldUpdateAdditionalCallInfo() &&
976 "Call info refers only to call (MI) candidates or "
977 "candidates inside bundles");
978
979 if (!New->isCandidateForAdditionalCallInfo())
980 return eraseAdditionalCallInfo(MI: Old);
981
982 const MachineInstr *OldCallMI = getCallInstr(MI: Old);
983 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: OldCallMI);
984 if (CSIt != CallSitesInfo.end()) {
985 CallSiteInfo CSInfo = CSIt->second;
986 CallSitesInfo[New] = std::move(CSInfo);
987 }
988
989 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(Val: OldCallMI);
990 if (CGIt != CalledGlobalsInfo.end()) {
991 CalledGlobalInfo CGInfo = CGIt->second;
992 CalledGlobalsInfo[New] = std::move(CGInfo);
993 }
994}
995
996void MachineFunction::moveAdditionalCallInfo(const MachineInstr *Old,
997 const MachineInstr *New) {
998 assert(Old->shouldUpdateAdditionalCallInfo() &&
999 "Call info refers only to call (MI) candidates or "
1000 "candidates inside bundles");
1001
1002 if (!New->isCandidateForAdditionalCallInfo())
1003 return eraseAdditionalCallInfo(MI: Old);
1004
1005 const MachineInstr *OldCallMI = getCallInstr(MI: Old);
1006 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: OldCallMI);
1007 if (CSIt != CallSitesInfo.end()) {
1008 CallSiteInfo CSInfo = std::move(CSIt->second);
1009 CallSitesInfo.erase(I: CSIt);
1010 CallSitesInfo[New] = std::move(CSInfo);
1011 }
1012
1013 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(Val: OldCallMI);
1014 if (CGIt != CalledGlobalsInfo.end()) {
1015 CalledGlobalInfo CGInfo = std::move(CGIt->second);
1016 CalledGlobalsInfo.erase(I: CGIt);
1017 CalledGlobalsInfo[New] = std::move(CGInfo);
1018 }
1019}
1020
1021void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
1022 DebugInstrNumberingCount = Num;
1023}
1024
1025void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
1026 DebugInstrOperandPair B,
1027 unsigned Subreg) {
1028 // Catch any accidental self-loops.
1029 assert(A.first != B.first);
1030 // Don't allow any substitutions _from_ the memory operand number.
1031 assert(A.second != DebugOperandMemNumber);
1032
1033 DebugValueSubstitutions.push_back(Elt: {A, B, Subreg});
1034}
1035
1036void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
1037 MachineInstr &New,
1038 unsigned MaxOperand) {
1039 // If the Old instruction wasn't tracked at all, there is no work to do.
1040 unsigned OldInstrNum = Old.peekDebugInstrNum();
1041 if (!OldInstrNum)
1042 return;
1043
1044 // Iterate over all operands looking for defs to create substitutions for.
1045 // Avoid creating new instr numbers unless we create a new substitution.
1046 // While this has no functional effect, it risks confusing someone reading
1047 // MIR output.
1048 // Examine all the operands, or the first N specified by the caller.
1049 MaxOperand = std::min(a: MaxOperand, b: Old.getNumOperands());
1050 for (unsigned int I = 0; I < MaxOperand; ++I) {
1051 const auto &OldMO = Old.getOperand(i: I);
1052 auto &NewMO = New.getOperand(i: I);
1053 (void)NewMO;
1054
1055 if (!OldMO.isReg() || !OldMO.isDef())
1056 continue;
1057 assert(NewMO.isDef());
1058
1059 unsigned NewInstrNum = New.getDebugInstrNum();
1060 makeDebugValueSubstitution(A: std::make_pair(x&: OldInstrNum, y&: I),
1061 B: std::make_pair(x&: NewInstrNum, y&: I));
1062 }
1063}
1064
1065auto MachineFunction::salvageCopySSA(
1066 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
1067 -> DebugInstrOperandPair {
1068 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1069
1070 // Check whether this copy-like instruction has already been salvaged into
1071 // an operand pair.
1072 Register Dest;
1073 if (auto CopyDstSrc = TII.isCopyLikeInstr(MI)) {
1074 Dest = CopyDstSrc->Destination->getReg();
1075 } else {
1076 assert(MI.isSubregToReg());
1077 Dest = MI.getOperand(i: 0).getReg();
1078 }
1079
1080 auto CacheIt = DbgPHICache.find(Val: Dest);
1081 if (CacheIt != DbgPHICache.end())
1082 return CacheIt->second;
1083
1084 // Calculate the instruction number to use, or install a DBG_PHI.
1085 auto OperandPair = salvageCopySSAImpl(MI);
1086 DbgPHICache.insert(KV: {Dest, OperandPair});
1087 return OperandPair;
1088}
1089
1090auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1091 -> DebugInstrOperandPair {
1092 MachineRegisterInfo &MRI = getRegInfo();
1093 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1094 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1095
1096 // Chase the value read by a copy-like instruction back to the instruction
1097 // that ultimately _defines_ that value. This may pass:
1098 // * Through multiple intermediate copies, including subregister moves /
1099 // copies,
1100 // * Copies from physical registers that must then be traced back to the
1101 // defining instruction,
1102 // * Or, physical registers may be live-in to (only) the entry block, which
1103 // requires a DBG_PHI to be created.
1104 // We can pursue this problem in that order: trace back through copies,
1105 // optionally through a physical register, to a defining instruction. We
1106 // should never move from physreg to vreg. As we're still in SSA form, no need
1107 // to worry about partial definitions of registers.
1108
1109 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1110 // returns the register read and any subregister identifying which part is
1111 // read.
1112 auto GetRegAndSubreg =
1113 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1114 Register NewReg, OldReg;
1115 unsigned SubReg;
1116 if (Cpy.isCopy()) {
1117 OldReg = Cpy.getOperand(i: 0).getReg();
1118 NewReg = Cpy.getOperand(i: 1).getReg();
1119 SubReg = Cpy.getOperand(i: 1).getSubReg();
1120 } else if (Cpy.isSubregToReg()) {
1121 OldReg = Cpy.getOperand(i: 0).getReg();
1122 NewReg = Cpy.getOperand(i: 2).getReg();
1123 SubReg = Cpy.getOperand(i: 3).getImm();
1124 } else {
1125 auto CopyDetails = *TII.isCopyInstr(MI: Cpy);
1126 const MachineOperand &Src = *CopyDetails.Source;
1127 const MachineOperand &Dest = *CopyDetails.Destination;
1128 OldReg = Dest.getReg();
1129 NewReg = Src.getReg();
1130 SubReg = Src.getSubReg();
1131 }
1132
1133 return {NewReg, SubReg};
1134 };
1135
1136 // First seek either the defining instruction, or a copy from a physreg.
1137 // During search, the current state is the current copy instruction, and which
1138 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1139 // deal with those later.
1140 auto State = GetRegAndSubreg(MI);
1141 auto CurInst = MI.getIterator();
1142 SmallVector<unsigned, 4> SubregsSeen;
1143 while (true) {
1144 // If we've found a copy from a physreg, first portion of search is over.
1145 if (!State.first.isVirtual())
1146 break;
1147
1148 // Record any subregister qualifier.
1149 if (State.second)
1150 SubregsSeen.push_back(Elt: State.second);
1151
1152 assert(MRI.hasOneDef(State.first));
1153 MachineInstr &Inst = *MRI.def_begin(RegNo: State.first)->getParent();
1154 CurInst = Inst.getIterator();
1155
1156 // Any non-copy instruction is the defining instruction we're seeking.
1157 if (!Inst.isCopyLike() && !TII.isCopyLikeInstr(MI: Inst))
1158 break;
1159 State = GetRegAndSubreg(Inst);
1160 };
1161
1162 // Helper lambda to apply additional subregister substitutions to a known
1163 // instruction/operand pair. Adds new (fake) substitutions so that we can
1164 // record the subregister. FIXME: this isn't very space efficient if multiple
1165 // values are tracked back through the same copies; cache something later.
1166 auto ApplySubregisters =
1167 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1168 for (unsigned Subreg : reverse(C&: SubregsSeen)) {
1169 // Fetch a new instruction number, not attached to an actual instruction.
1170 unsigned NewInstrNumber = getNewDebugInstrNum();
1171 // Add a substitution from the "new" number to the known one, with a
1172 // qualifying subreg.
1173 makeDebugValueSubstitution(A: {NewInstrNumber, 0}, B: P, Subreg);
1174 // Return the new number; to find the underlying value, consumers need to
1175 // deal with the qualifying subreg.
1176 P = {NewInstrNumber, 0};
1177 }
1178 return P;
1179 };
1180
1181 // If we managed to find the defining instruction after COPYs, return an
1182 // instruction / operand pair after adding subregister qualifiers.
1183 if (State.first.isVirtual()) {
1184 // Virtual register def -- we can just look up where this happens.
1185 MachineInstr *Inst = MRI.def_begin(RegNo: State.first)->getParent();
1186 for (auto &MO : Inst->all_defs()) {
1187 if (MO.getReg() != State.first)
1188 continue;
1189 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1190 }
1191
1192 llvm_unreachable("Vreg def with no corresponding operand?");
1193 }
1194
1195 // Our search ended in a copy from a physreg: walk back up the function
1196 // looking for whatever defines the physreg.
1197 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1198 State = GetRegAndSubreg(*CurInst);
1199 Register RegToSeek = State.first;
1200
1201 auto RMII = CurInst->getReverseIterator();
1202 auto PrevInstrs = make_range(x: RMII, y: CurInst->getParent()->instr_rend());
1203 for (auto &ToExamine : PrevInstrs) {
1204 for (auto &MO : ToExamine.all_defs()) {
1205 // Test for operand that defines something aliasing RegToSeek.
1206 if (!TRI.regsOverlap(RegA: RegToSeek, RegB: MO.getReg()))
1207 continue;
1208
1209 return ApplySubregisters(
1210 {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1211 }
1212 }
1213
1214 MachineBasicBlock &InsertBB = *CurInst->getParent();
1215
1216 // We reached the start of the block before finding a defining instruction.
1217 // There are numerous scenarios where this can happen:
1218 // * Constant physical registers,
1219 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1220 // * Arguments in the entry block,
1221 // * Exception handling landing pads.
1222 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1223 // the variable value at this position, rather than checking it makes sense.
1224
1225 // Create DBG_PHI for specified physreg.
1226 auto Builder = BuildMI(BB&: InsertBB, I: InsertBB.getFirstNonPHI(), MIMD: DebugLoc(),
1227 MCID: TII.get(Opcode: TargetOpcode::DBG_PHI));
1228 Builder.addReg(RegNo: State.first);
1229 unsigned NewNum = getNewDebugInstrNum();
1230 Builder.addImm(Val: NewNum);
1231 return ApplySubregisters({NewNum, 0u});
1232}
1233
1234void MachineFunction::finalizeDebugInstrRefs() {
1235 auto *TII = getSubtarget().getInstrInfo();
1236
1237 auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1238 const MCInstrDesc &RefII = TII->get(Opcode: TargetOpcode::DBG_VALUE_LIST);
1239 MI.setDesc(RefII);
1240 MI.setDebugValueUndef();
1241 };
1242
1243 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1244 for (auto &MBB : *this) {
1245 for (auto &MI : MBB) {
1246 if (!MI.isDebugRef())
1247 continue;
1248
1249 bool IsValidRef = true;
1250
1251 for (MachineOperand &MO : MI.debug_operands()) {
1252 if (!MO.isReg())
1253 continue;
1254
1255 Register Reg = MO.getReg();
1256
1257 // Some vregs can be deleted as redundant in the meantime. Mark those
1258 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1259 // quickly deleted, leaving dangling references to vregs with no def.
1260 if (Reg == 0 || !RegInfo->hasOneDef(RegNo: Reg)) {
1261 IsValidRef = false;
1262 break;
1263 }
1264
1265 assert(Reg.isVirtual());
1266 MachineInstr &DefMI = *RegInfo->def_instr_begin(RegNo: Reg);
1267
1268 // If we've found a copy-like instruction, follow it back to the
1269 // instruction that defines the source value, see salvageCopySSA docs
1270 // for why this is important.
1271 if (DefMI.isCopyLike() || TII->isCopyInstr(MI: DefMI)) {
1272 auto Result = salvageCopySSA(MI&: DefMI, DbgPHICache&: ArgDbgPHIs);
1273 MO.ChangeToDbgInstrRef(InstrIdx: Result.first, OpIdx: Result.second);
1274 } else {
1275 // Otherwise, identify the operand number that the VReg refers to.
1276 unsigned OperandIdx = 0;
1277 for (const auto &DefMO : DefMI.operands()) {
1278 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1279 break;
1280 ++OperandIdx;
1281 }
1282 assert(OperandIdx < DefMI.getNumOperands());
1283
1284 // Morph this instr ref to point at the given instruction and operand.
1285 unsigned ID = DefMI.getDebugInstrNum();
1286 MO.ChangeToDbgInstrRef(InstrIdx: ID, OpIdx: OperandIdx);
1287 }
1288 }
1289
1290 if (!IsValidRef)
1291 MakeUndefDbgValue(MI);
1292 }
1293 }
1294}
1295
1296bool MachineFunction::shouldUseDebugInstrRef() const {
1297 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1298 // have optimized code inlined into this unoptimized code, however with
1299 // fewer and less aggressive optimizations happening, coverage and accuracy
1300 // should not suffer.
1301 if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1302 return false;
1303
1304 // Don't use instr-ref if this function is marked optnone.
1305 if (F.hasFnAttribute(Kind: Attribute::OptimizeNone))
1306 return false;
1307
1308 if (llvm::debuginfoShouldUseDebugInstrRef(T: getTarget().getTargetTriple()))
1309 return true;
1310
1311 return false;
1312}
1313
1314bool MachineFunction::useDebugInstrRef() const {
1315 return UseDebugInstrRef;
1316}
1317
1318void MachineFunction::setUseDebugInstrRef(bool Use) {
1319 UseDebugInstrRef = Use;
1320}
1321
1322// Use one million as a high / reserved number.
1323const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1324
1325/// \}
1326
1327//===----------------------------------------------------------------------===//
1328// MachineJumpTableInfo implementation
1329//===----------------------------------------------------------------------===//
1330
1331MachineJumpTableEntry::MachineJumpTableEntry(
1332 const std::vector<MachineBasicBlock *> &MBBs)
1333 : MBBs(MBBs), Hotness(MachineFunctionDataHotness::Unknown) {}
1334
1335/// Return the size of each entry in the jump table.
1336unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1337 // The size of a jump table entry is 4 bytes unless the entry is just the
1338 // address of a block, in which case it is the pointer size.
1339 switch (getEntryKind()) {
1340 case MachineJumpTableInfo::EK_BlockAddress:
1341 return TD.getPointerSize();
1342 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1343 case MachineJumpTableInfo::EK_LabelDifference64:
1344 return 8;
1345 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1346 case MachineJumpTableInfo::EK_LabelDifference32:
1347 case MachineJumpTableInfo::EK_Custom32:
1348 return 4;
1349 case MachineJumpTableInfo::EK_Inline:
1350 return 0;
1351 }
1352 llvm_unreachable("Unknown jump table encoding!");
1353}
1354
1355/// Return the alignment of each entry in the jump table.
1356unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1357 // The alignment of a jump table entry is the alignment of int32 unless the
1358 // entry is just the address of a block, in which case it is the pointer
1359 // alignment.
1360 switch (getEntryKind()) {
1361 case MachineJumpTableInfo::EK_BlockAddress:
1362 return TD.getPointerABIAlignment(AS: 0).value();
1363 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1364 case MachineJumpTableInfo::EK_LabelDifference64:
1365 return TD.getABIIntegerTypeAlignment(BitWidth: 64).value();
1366 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1367 case MachineJumpTableInfo::EK_LabelDifference32:
1368 case MachineJumpTableInfo::EK_Custom32:
1369 return TD.getABIIntegerTypeAlignment(BitWidth: 32).value();
1370 case MachineJumpTableInfo::EK_Inline:
1371 return 1;
1372 }
1373 llvm_unreachable("Unknown jump table encoding!");
1374}
1375
1376/// Create a new jump table entry in the jump table info.
1377unsigned MachineJumpTableInfo::createJumpTableIndex(
1378 const std::vector<MachineBasicBlock*> &DestBBs) {
1379 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1380 JumpTables.push_back(x: MachineJumpTableEntry(DestBBs));
1381 return JumpTables.size()-1;
1382}
1383
1384bool MachineJumpTableInfo::updateJumpTableEntryHotness(
1385 size_t JTI, MachineFunctionDataHotness Hotness) {
1386 assert(JTI < JumpTables.size() && "Invalid JTI!");
1387 // Record the largest hotness value.
1388 if (Hotness <= JumpTables[JTI].Hotness)
1389 return false;
1390
1391 JumpTables[JTI].Hotness = Hotness;
1392 return true;
1393}
1394
1395/// If Old is the target of any jump tables, update the jump tables to branch
1396/// to New instead.
1397bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1398 MachineBasicBlock *New) {
1399 assert(Old != New && "Not making a change?");
1400 bool MadeChange = false;
1401 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1402 ReplaceMBBInJumpTable(Idx: i, Old, New);
1403 return MadeChange;
1404}
1405
1406/// If MBB is present in any jump tables, remove it.
1407bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1408 bool MadeChange = false;
1409 for (MachineJumpTableEntry &JTE : JumpTables) {
1410 auto removeBeginItr = std::remove(first: JTE.MBBs.begin(), last: JTE.MBBs.end(), value: MBB);
1411 MadeChange |= (removeBeginItr != JTE.MBBs.end());
1412 JTE.MBBs.erase(first: removeBeginItr, last: JTE.MBBs.end());
1413 }
1414 return MadeChange;
1415}
1416
1417/// If Old is a target of the jump tables, update the jump table to branch to
1418/// New instead.
1419bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1420 MachineBasicBlock *Old,
1421 MachineBasicBlock *New) {
1422 assert(Old != New && "Not making a change?");
1423 bool MadeChange = false;
1424 MachineJumpTableEntry &JTE = JumpTables[Idx];
1425 for (MachineBasicBlock *&MBB : JTE.MBBs)
1426 if (MBB == Old) {
1427 MBB = New;
1428 MadeChange = true;
1429 }
1430 return MadeChange;
1431}
1432
1433void MachineJumpTableInfo::print(raw_ostream &OS) const {
1434 if (JumpTables.empty()) return;
1435
1436 OS << "Jump Tables:\n";
1437
1438 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1439 OS << printJumpTableEntryReference(Idx: i) << ':';
1440 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1441 OS << ' ' << printMBBReference(MBB: *MBB);
1442 OS << '\n';
1443 }
1444
1445 OS << '\n';
1446}
1447
1448#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1449LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1450#endif
1451
1452Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1453 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1454}
1455
1456//===----------------------------------------------------------------------===//
1457// MachineConstantPool implementation
1458//===----------------------------------------------------------------------===//
1459
1460void MachineConstantPoolValue::anchor() {}
1461
1462unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1463 return DL.getTypeAllocSize(Ty);
1464}
1465
1466unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1467 if (isMachineConstantPoolEntry())
1468 return Val.MachineCPVal->getSizeInBytes(DL);
1469 return DL.getTypeAllocSize(Ty: Val.ConstVal->getType());
1470}
1471
1472bool MachineConstantPoolEntry::needsRelocation() const {
1473 if (isMachineConstantPoolEntry())
1474 return true;
1475 return Val.ConstVal->needsDynamicRelocation();
1476}
1477
1478SectionKind
1479MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1480 if (needsRelocation())
1481 return SectionKind::getReadOnlyWithRel();
1482 switch (getSizeInBytes(DL: *DL)) {
1483 case 4:
1484 return SectionKind::getMergeableConst4();
1485 case 8:
1486 return SectionKind::getMergeableConst8();
1487 case 16:
1488 return SectionKind::getMergeableConst16();
1489 case 32:
1490 return SectionKind::getMergeableConst32();
1491 default:
1492 return SectionKind::getReadOnly();
1493 }
1494}
1495
1496MachineConstantPool::~MachineConstantPool() {
1497 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1498 // so keep track of which we've deleted to avoid double deletions.
1499 DenseSet<MachineConstantPoolValue*> Deleted;
1500 for (const MachineConstantPoolEntry &C : Constants)
1501 if (C.isMachineConstantPoolEntry()) {
1502 Deleted.insert(V: C.Val.MachineCPVal);
1503 delete C.Val.MachineCPVal;
1504 }
1505 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1506 if (Deleted.count(V: CPV) == 0)
1507 delete CPV;
1508 }
1509}
1510
1511/// Test whether the given two constants can be allocated the same constant pool
1512/// entry referenced by \param A.
1513static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1514 const DataLayout &DL) {
1515 // Handle the trivial case quickly.
1516 if (A == B) return true;
1517
1518 // If they have the same type but weren't the same constant, quickly
1519 // reject them.
1520 if (A->getType() == B->getType()) return false;
1521
1522 // We can't handle structs or arrays.
1523 if (isa<StructType>(Val: A->getType()) || isa<ArrayType>(Val: A->getType()) ||
1524 isa<StructType>(Val: B->getType()) || isa<ArrayType>(Val: B->getType()))
1525 return false;
1526
1527 // For now, only support constants with the same size.
1528 uint64_t StoreSize = DL.getTypeStoreSize(Ty: A->getType());
1529 if (StoreSize != DL.getTypeStoreSize(Ty: B->getType()) || StoreSize > 128)
1530 return false;
1531
1532 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1533
1534 Type *IntTy = IntegerType::get(C&: A->getContext(), NumBits: StoreSize*8);
1535
1536 // Try constant folding a bitcast of both instructions to an integer. If we
1537 // get two identical ConstantInt's, then we are good to share them. We use
1538 // the constant folding APIs to do this so that we get the benefit of
1539 // DataLayout.
1540 if (isa<PointerType>(Val: A->getType()))
1541 A = ConstantFoldCastOperand(Opcode: Instruction::PtrToInt,
1542 C: const_cast<Constant *>(A), DestTy: IntTy, DL);
1543 else if (A->getType() != IntTy)
1544 A = ConstantFoldCastOperand(Opcode: Instruction::BitCast, C: const_cast<Constant *>(A),
1545 DestTy: IntTy, DL);
1546 if (isa<PointerType>(Val: B->getType()))
1547 B = ConstantFoldCastOperand(Opcode: Instruction::PtrToInt,
1548 C: const_cast<Constant *>(B), DestTy: IntTy, DL);
1549 else if (B->getType() != IntTy)
1550 B = ConstantFoldCastOperand(Opcode: Instruction::BitCast, C: const_cast<Constant *>(B),
1551 DestTy: IntTy, DL);
1552
1553 if (A != B)
1554 return false;
1555
1556 // Constants only safely match if A doesn't contain undef/poison.
1557 // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1558 // TODO: Handle cases where A and B have the same undef/poison elements.
1559 // TODO: Merge A and B with mismatching undef/poison elements.
1560 return !ContainsUndefOrPoisonA;
1561}
1562
1563/// Create a new entry in the constant pool or return an existing one.
1564/// User must specify the log2 of the minimum required alignment for the object.
1565unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1566 Align Alignment) {
1567 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1568
1569 // Check to see if we already have this constant.
1570 //
1571 // FIXME, this could be made much more efficient for large constant pools.
1572 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1573 if (!Constants[i].isMachineConstantPoolEntry() &&
1574 CanShareConstantPoolEntry(A: Constants[i].Val.ConstVal, B: C, DL)) {
1575 if (Constants[i].getAlign() < Alignment)
1576 Constants[i].Alignment = Alignment;
1577 return i;
1578 }
1579
1580 Constants.push_back(x: MachineConstantPoolEntry(C, Alignment));
1581 return Constants.size()-1;
1582}
1583
1584unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1585 Align Alignment) {
1586 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1587
1588 // Check to see if we already have this constant.
1589 //
1590 // FIXME, this could be made much more efficient for large constant pools.
1591 int Idx = V->getExistingMachineCPValue(CP: this, Alignment);
1592 if (Idx != -1) {
1593 MachineCPVsSharingEntries.insert(V);
1594 return (unsigned)Idx;
1595 }
1596
1597 Constants.push_back(x: MachineConstantPoolEntry(V, Alignment));
1598 return Constants.size()-1;
1599}
1600
1601void MachineConstantPool::print(raw_ostream &OS) const {
1602 if (Constants.empty()) return;
1603
1604 OS << "Constant Pool:\n";
1605 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1606 OS << " cp#" << i << ": ";
1607 if (Constants[i].isMachineConstantPoolEntry())
1608 Constants[i].Val.MachineCPVal->print(O&: OS);
1609 else
1610 Constants[i].Val.ConstVal->printAsOperand(O&: OS, /*PrintType=*/false);
1611 OS << ", align=" << Constants[i].getAlign().value();
1612 OS << "\n";
1613 }
1614}
1615
1616//===----------------------------------------------------------------------===//
1617// Template specialization for MachineFunction implementation of
1618// ProfileSummaryInfo::getEntryCount().
1619//===----------------------------------------------------------------------===//
1620template <>
1621std::optional<Function::ProfileCount>
1622ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1623 const llvm::MachineFunction *F) const {
1624 return F->getFunction().getEntryCount();
1625}
1626
1627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1628LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1629#endif
1630