1//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Pass to verify generated machine code. The following is checked:
10//
11// Operand counts: All explicit operands must be present.
12//
13// Register classes: All physical and virtual register operands must be
14// compatible with the register class required by the instruction descriptor.
15//
16// Register live intervals: Registers must be defined only once, and must be
17// defined before use.
18//
19// The machine code verifier is enabled with the command-line option
20// -verify-machineinstrs.
21//===----------------------------------------------------------------------===//
22
23#include "llvm/CodeGen/MachineVerifier.h"
24#include "llvm/ADT/BitVector.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DenseSet.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SetOperations.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringRef.h"
34#include "llvm/ADT/Twine.h"
35#include "llvm/CodeGen/CodeGenCommonISel.h"
36#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
37#include "llvm/CodeGen/LiveInterval.h"
38#include "llvm/CodeGen/LiveIntervals.h"
39#include "llvm/CodeGen/LiveRangeCalc.h"
40#include "llvm/CodeGen/LiveStacks.h"
41#include "llvm/CodeGen/LiveVariables.h"
42#include "llvm/CodeGen/MachineBasicBlock.h"
43#include "llvm/CodeGen/MachineConvergenceVerifier.h"
44#include "llvm/CodeGen/MachineDominators.h"
45#include "llvm/CodeGen/MachineFrameInfo.h"
46#include "llvm/CodeGen/MachineFunction.h"
47#include "llvm/CodeGen/MachineFunctionPass.h"
48#include "llvm/CodeGen/MachineInstr.h"
49#include "llvm/CodeGen/MachineInstrBundle.h"
50#include "llvm/CodeGen/MachineMemOperand.h"
51#include "llvm/CodeGen/MachineOperand.h"
52#include "llvm/CodeGen/MachineRegisterInfo.h"
53#include "llvm/CodeGen/PseudoSourceValue.h"
54#include "llvm/CodeGen/RegisterBank.h"
55#include "llvm/CodeGen/RegisterBankInfo.h"
56#include "llvm/CodeGen/SlotIndexes.h"
57#include "llvm/CodeGen/StackMaps.h"
58#include "llvm/CodeGen/TargetInstrInfo.h"
59#include "llvm/CodeGen/TargetLowering.h"
60#include "llvm/CodeGen/TargetOpcodes.h"
61#include "llvm/CodeGen/TargetRegisterInfo.h"
62#include "llvm/CodeGen/TargetSubtargetInfo.h"
63#include "llvm/CodeGenTypes/LowLevelType.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/EHPersonalities.h"
67#include "llvm/IR/Function.h"
68#include "llvm/IR/InlineAsm.h"
69#include "llvm/IR/Instructions.h"
70#include "llvm/InitializePasses.h"
71#include "llvm/MC/LaneBitmask.h"
72#include "llvm/MC/MCAsmInfo.h"
73#include "llvm/MC/MCDwarf.h"
74#include "llvm/MC/MCInstrDesc.h"
75#include "llvm/MC/MCRegisterInfo.h"
76#include "llvm/MC/MCTargetOptions.h"
77#include "llvm/Pass.h"
78#include "llvm/Support/Casting.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/ManagedStatic.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/ModRef.h"
83#include "llvm/Support/Mutex.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/Target/TargetMachine.h"
86#include <algorithm>
87#include <cassert>
88#include <cstddef>
89#include <cstdint>
90#include <iterator>
91#include <string>
92#include <utility>
93
94using namespace llvm;
95
96namespace {
97
98/// Used the by the ReportedErrors class to guarantee only one error is reported
99/// at one time.
100static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock;
101
102struct MachineVerifier {
103 MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b,
104 raw_ostream *OS, bool AbortOnError = true)
105 : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b),
106 ReportedErrs(AbortOnError) {}
107
108 MachineVerifier(Pass *pass, const char *b, raw_ostream *OS,
109 bool AbortOnError = true)
110 : PASS(pass), OS(OS ? *OS : nulls()), Banner(b),
111 ReportedErrs(AbortOnError) {}
112
113 MachineVerifier(const char *b, LiveVariables *LiveVars,
114 LiveIntervals *LiveInts, LiveStacks *LiveStks,
115 SlotIndexes *Indexes, raw_ostream *OS,
116 bool AbortOnError = true)
117 : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars),
118 LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes),
119 ReportedErrs(AbortOnError) {}
120
121 /// \returns true if no problems were found.
122 bool verify(const MachineFunction &MF);
123
124 MachineFunctionAnalysisManager *MFAM = nullptr;
125 Pass *const PASS = nullptr;
126 raw_ostream &OS;
127 const char *Banner;
128 const MachineFunction *MF = nullptr;
129 const TargetMachine *TM = nullptr;
130 const TargetInstrInfo *TII = nullptr;
131 const TargetRegisterInfo *TRI = nullptr;
132 const MachineRegisterInfo *MRI = nullptr;
133 const RegisterBankInfo *RBI = nullptr;
134
135 // Avoid querying the MachineFunctionProperties for each operand.
136 bool isFunctionRegBankSelected = false;
137 bool isFunctionSelected = false;
138 bool isFunctionTracksDebugUserValues = false;
139
140 using RegVector = SmallVector<Register, 16>;
141 using RegMaskVector = SmallVector<const uint32_t *, 4>;
142 using RegSet = DenseSet<Register>;
143 using RegMap = DenseMap<Register, const MachineInstr *>;
144 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
145
146 const MachineInstr *FirstNonPHI = nullptr;
147 const MachineInstr *FirstTerminator = nullptr;
148 BlockSet FunctionBlocks;
149
150 BitVector regsReserved;
151 RegSet regsLive;
152 RegVector regsDefined, regsDead, regsKilled;
153 RegMaskVector regMasks;
154
155 SlotIndex lastIndex;
156
157 // Add Reg and any sub-registers to RV
158 void addRegWithSubRegs(RegVector &RV, Register Reg) {
159 RV.push_back(Elt: Reg);
160 if (Reg.isPhysical())
161 append_range(C&: RV, R: TRI->subregs(Reg: Reg.asMCReg()));
162 }
163
164 struct BBInfo {
165 // Is this MBB reachable from the MF entry point?
166 bool reachable = false;
167
168 // Vregs that must be live in because they are used without being
169 // defined. Map value is the user. vregsLiveIn doesn't include regs
170 // that only are used by PHI nodes.
171 RegMap vregsLiveIn;
172
173 // Regs killed in MBB. They may be defined again, and will then be in both
174 // regsKilled and regsLiveOut.
175 RegSet regsKilled;
176
177 // Regs defined in MBB and live out. Note that vregs passing through may
178 // be live out without being mentioned here.
179 RegSet regsLiveOut;
180
181 // Vregs that pass through MBB untouched. This set is disjoint from
182 // regsKilled and regsLiveOut.
183 RegSet vregsPassed;
184
185 // Vregs that must pass through MBB because they are needed by a successor
186 // block. This set is disjoint from regsLiveOut.
187 RegSet vregsRequired;
188
189 // Set versions of block's predecessor and successor lists.
190 BlockSet Preds, Succs;
191
192 BBInfo() = default;
193
194 // Add register to vregsRequired if it belongs there. Return true if
195 // anything changed.
196 bool addRequired(Register Reg) {
197 if (!Reg.isVirtual())
198 return false;
199 if (regsLiveOut.count(V: Reg))
200 return false;
201 return vregsRequired.insert(V: Reg).second;
202 }
203
204 // Same for a full set.
205 bool addRequired(const RegSet &RS) {
206 bool Changed = false;
207 for (Register Reg : RS)
208 Changed |= addRequired(Reg);
209 return Changed;
210 }
211
212 // Same for a full map.
213 bool addRequired(const RegMap &RM) {
214 bool Changed = false;
215 for (const auto &I : RM)
216 Changed |= addRequired(Reg: I.first);
217 return Changed;
218 }
219
220 // Live-out registers are either in regsLiveOut or vregsPassed.
221 bool isLiveOut(Register Reg) const {
222 return regsLiveOut.count(V: Reg) || vregsPassed.count(V: Reg);
223 }
224 };
225
226 // Extra register info per MBB.
227 DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap;
228
229 bool isReserved(Register Reg) {
230 return Reg.id() < regsReserved.size() && regsReserved.test(Idx: Reg.id());
231 }
232
233 bool isAllocatable(Register Reg) const {
234 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(RegNo: Reg) &&
235 !regsReserved.test(Idx: Reg.id());
236 }
237
238 // Analysis information if available
239 LiveVariables *LiveVars = nullptr;
240 LiveIntervals *LiveInts = nullptr;
241 LiveStacks *LiveStks = nullptr;
242 SlotIndexes *Indexes = nullptr;
243
244 /// A class to track the number of reported error and to guarantee that only
245 /// one error is reported at one time.
246 class ReportedErrors {
247 unsigned NumReported = 0;
248 bool AbortOnError;
249
250 public:
251 /// \param AbortOnError -- If set, abort after printing the first error.
252 ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {}
253
254 ~ReportedErrors() {
255 if (!hasError())
256 return;
257 if (AbortOnError)
258 report_fatal_error(reason: "Found " + Twine(NumReported) +
259 " machine code errors.");
260 // Since we haven't aborted, release the lock to allow other threads to
261 // report errors.
262 ReportedErrorsLock->unlock();
263 }
264
265 /// Increment the number of reported errors.
266 /// \returns true if this is the first reported error.
267 bool increment() {
268 // If this is the first error this thread has encountered, grab the lock
269 // to prevent other threads from reporting errors at the same time.
270 // Otherwise we assume we already have the lock.
271 if (!hasError())
272 ReportedErrorsLock->lock();
273 ++NumReported;
274 return NumReported == 1;
275 }
276
277 /// \returns true if an error was reported.
278 bool hasError() { return NumReported; }
279 };
280 ReportedErrors ReportedErrs;
281
282 // This is calculated only when trying to verify convergence control tokens.
283 // Similar to the LLVM IR verifier, we calculate this locally instead of
284 // relying on the pass manager.
285 MachineDominatorTree DT;
286
287 void visitMachineFunctionBefore();
288 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
289 void visitMachineBundleBefore(const MachineInstr *MI);
290
291 /// Verify that all of \p MI's virtual register operands are scalars.
292 /// \returns True if all virtual register operands are scalar. False
293 /// otherwise.
294 bool verifyAllRegOpsScalar(const MachineInstr &MI,
295 const MachineRegisterInfo &MRI);
296 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
297
298 bool verifyGIntrinsicSideEffects(const MachineInstr *MI);
299 bool verifyGIntrinsicConvergence(const MachineInstr *MI);
300 void verifyPreISelGenericInstruction(const MachineInstr *MI);
301
302 void visitMachineInstrBefore(const MachineInstr *MI);
303 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
304 void visitMachineBundleAfter(const MachineInstr *MI);
305 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
306 void visitMachineFunctionAfter();
307
308 void report(const char *msg, const MachineFunction *MF);
309 void report(const char *msg, const MachineBasicBlock *MBB);
310 void report(const char *msg, const MachineInstr *MI);
311 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
312 LLT MOVRegType = LLT{});
313 void report(const Twine &Msg, const MachineInstr *MI);
314
315 void report_context(const LiveInterval &LI) const;
316 void report_context(const LiveRange &LR, VirtRegOrUnit VRegOrUnit,
317 LaneBitmask LaneMask) const;
318 void report_context(const LiveRange::Segment &S) const;
319 void report_context(const VNInfo &VNI) const;
320 void report_context(SlotIndex Pos) const;
321 void report_context(MCPhysReg PhysReg) const;
322 void report_context_liverange(const LiveRange &LR) const;
323 void report_context_lanemask(LaneBitmask LaneMask) const;
324 void report_context_vreg(Register VReg) const;
325 void report_context_vreg_regunit(VirtRegOrUnit VRegOrUnit) const;
326
327 void verifyInlineAsm(const MachineInstr *MI);
328
329 void checkLiveness(const MachineOperand *MO, unsigned MONum);
330 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
331 SlotIndex UseIdx, const LiveRange &LR,
332 VirtRegOrUnit VRegOrUnit,
333 LaneBitmask LaneMask = LaneBitmask::getNone());
334 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
335 SlotIndex DefIdx, const LiveRange &LR,
336 VirtRegOrUnit VRegOrUnit, bool SubRangeCheck = false,
337 LaneBitmask LaneMask = LaneBitmask::getNone());
338
339 void markReachable(const MachineBasicBlock *MBB);
340 void calcRegsPassed();
341 void checkPHIOps(const MachineBasicBlock &MBB);
342
343 void calcRegsRequired();
344 void verifyLiveVariables();
345 void verifyLiveIntervals();
346 void verifyLiveInterval(const LiveInterval &);
347 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, VirtRegOrUnit,
348 LaneBitmask);
349 void verifyLiveRangeSegment(const LiveRange &,
350 const LiveRange::const_iterator I, VirtRegOrUnit,
351 LaneBitmask);
352 void verifyLiveRange(const LiveRange &, VirtRegOrUnit,
353 LaneBitmask LaneMask = LaneBitmask::getNone());
354
355 void verifyStackFrame();
356 /// Check that the stack protector is the top-most object in the stack.
357 void verifyStackProtector();
358
359 void verifySlotIndexes() const;
360 void verifyProperties(const MachineFunction &MF);
361};
362
363struct MachineVerifierLegacyPass : public MachineFunctionPass {
364 static char ID; // Pass ID, replacement for typeid
365
366 const std::string Banner;
367
368 MachineVerifierLegacyPass(std::string banner = std::string())
369 : MachineFunctionPass(ID), Banner(std::move(banner)) {}
370
371 void getAnalysisUsage(AnalysisUsage &AU) const override {
372 AU.addUsedIfAvailable<LiveStacksWrapperLegacy>();
373 AU.addUsedIfAvailable<LiveVariablesWrapperPass>();
374 AU.addUsedIfAvailable<SlotIndexesWrapperPass>();
375 AU.addUsedIfAvailable<LiveIntervalsWrapperPass>();
376 AU.setPreservesAll();
377 MachineFunctionPass::getAnalysisUsage(AU);
378 }
379
380 bool runOnMachineFunction(MachineFunction &MF) override {
381 // Skip functions that have known verification problems.
382 // FIXME: Remove this mechanism when all problematic passes have been
383 // fixed.
384 if (MF.getProperties().hasFailsVerification())
385 return false;
386
387 MachineVerifier(this, Banner.c_str(), &errs()).verify(MF);
388 return false;
389 }
390};
391
392} // end anonymous namespace
393
394PreservedAnalyses
395MachineVerifierPass::run(MachineFunction &MF,
396 MachineFunctionAnalysisManager &MFAM) {
397 // Skip functions that have known verification problems.
398 // FIXME: Remove this mechanism when all problematic passes have been
399 // fixed.
400 if (MF.getProperties().hasFailsVerification())
401 return PreservedAnalyses::all();
402 MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF);
403 return PreservedAnalyses::all();
404}
405
406char MachineVerifierLegacyPass::ID = 0;
407
408INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier",
409 "Verify generated machine code", false, false)
410
411FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
412 return new MachineVerifierLegacyPass(Banner);
413}
414
415void llvm::verifyMachineFunction(const std::string &Banner,
416 const MachineFunction &MF) {
417 // TODO: Use MFAM after porting below analyses.
418 // LiveVariables *LiveVars;
419 // LiveIntervals *LiveInts;
420 // LiveStacks *LiveStks;
421 // SlotIndexes *Indexes;
422 MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF);
423}
424
425bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS,
426 bool AbortOnError) const {
427 return MachineVerifier(p, Banner, OS, AbortOnError).verify(MF: *this);
428}
429
430bool MachineFunction::verify(MachineFunctionAnalysisManager &MFAM,
431 const char *Banner, raw_ostream *OS,
432 bool AbortOnError) const {
433 return MachineVerifier(MFAM, Banner, OS, AbortOnError).verify(MF: *this);
434}
435
436bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
437 const char *Banner, raw_ostream *OS,
438 bool AbortOnError) const {
439 return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts,
440 /*LiveStks=*/nullptr, Indexes, OS, AbortOnError)
441 .verify(MF: *this);
442}
443
444void MachineVerifier::verifySlotIndexes() const {
445 if (Indexes == nullptr)
446 return;
447
448 // Ensure the IdxMBB list is sorted by slot indexes.
449 SlotIndex Last;
450 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
451 E = Indexes->MBBIndexEnd(); I != E; ++I) {
452 assert(!Last.isValid() || I->first > Last);
453 Last = I->first;
454 }
455}
456
457void MachineVerifier::verifyProperties(const MachineFunction &MF) {
458 // If a pass has introduced virtual registers without clearing the
459 // NoVRegs property (or set it without allocating the vregs)
460 // then report an error.
461 if (MF.getProperties().hasNoVRegs() && MRI->getNumVirtRegs())
462 report(msg: "Function has NoVRegs property but there are VReg operands", MF: &MF);
463}
464
465bool MachineVerifier::verify(const MachineFunction &MF) {
466 this->MF = &MF;
467 TM = &MF.getTarget();
468 TII = MF.getSubtarget().getInstrInfo();
469 TRI = MF.getSubtarget().getRegisterInfo();
470 RBI = MF.getSubtarget().getRegBankInfo();
471 MRI = &MF.getRegInfo();
472
473 const MachineFunctionProperties &Props = MF.getProperties();
474 const bool isFunctionFailedISel = Props.hasFailedISel();
475
476 // If we're mid-GlobalISel and we already triggered the fallback path then
477 // it's expected that the MIR is somewhat broken but that's ok since we'll
478 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
479 if (isFunctionFailedISel)
480 return true;
481
482 isFunctionRegBankSelected = Props.hasRegBankSelected();
483 isFunctionSelected = Props.hasSelected();
484 isFunctionTracksDebugUserValues = Props.hasTracksDebugUserValues();
485
486 if (PASS) {
487 auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>();
488 LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr;
489 // We don't want to verify LiveVariables if LiveIntervals is available.
490 auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>();
491 if (!LiveInts)
492 LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr;
493 auto *LSWrapper = PASS->getAnalysisIfAvailable<LiveStacksWrapperLegacy>();
494 LiveStks = LSWrapper ? &LSWrapper->getLS() : nullptr;
495 auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>();
496 Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr;
497 }
498 if (MFAM) {
499 MachineFunction &Func = const_cast<MachineFunction &>(MF);
500 LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(IR&: Func);
501 if (!LiveInts)
502 LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(IR&: Func);
503 // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func);
504 Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(IR&: Func);
505 }
506
507 verifySlotIndexes();
508
509 verifyProperties(MF);
510
511 visitMachineFunctionBefore();
512 for (const MachineBasicBlock &MBB : MF) {
513 visitMachineBasicBlockBefore(MBB: &MBB);
514 // Keep track of the current bundle header.
515 const MachineInstr *CurBundle = nullptr;
516 // Do we expect the next instruction to be part of the same bundle?
517 bool InBundle = false;
518
519 for (const MachineInstr &MI : MBB.instrs()) {
520 if (MI.getParent() != &MBB) {
521 report(msg: "Bad instruction parent pointer", MBB: &MBB);
522 OS << "Instruction: " << MI;
523 continue;
524 }
525
526 // Check for consistent bundle flags.
527 if (InBundle && !MI.isBundledWithPred())
528 report(msg: "Missing BundledPred flag, "
529 "BundledSucc was set on predecessor",
530 MI: &MI);
531 if (!InBundle && MI.isBundledWithPred())
532 report(msg: "BundledPred flag is set, "
533 "but BundledSucc not set on predecessor",
534 MI: &MI);
535
536 // Is this a bundle header?
537 if (!MI.isInsideBundle()) {
538 if (CurBundle)
539 visitMachineBundleAfter(MI: CurBundle);
540 CurBundle = &MI;
541 visitMachineBundleBefore(MI: CurBundle);
542 } else if (!CurBundle)
543 report(msg: "No bundle header", MI: &MI);
544 visitMachineInstrBefore(MI: &MI);
545 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
546 const MachineOperand &Op = MI.getOperand(i: I);
547 if (Op.getParent() != &MI) {
548 // Make sure to use correct addOperand / removeOperand / ChangeTo
549 // functions when replacing operands of a MachineInstr.
550 report(msg: "Instruction has operand with wrong parent set", MI: &MI);
551 }
552
553 visitMachineOperand(MO: &Op, MONum: I);
554 }
555
556 // Was this the last bundled instruction?
557 InBundle = MI.isBundledWithSucc();
558 }
559 if (CurBundle)
560 visitMachineBundleAfter(MI: CurBundle);
561 if (InBundle)
562 report(msg: "BundledSucc flag set on last instruction in block", MI: &MBB.back());
563 visitMachineBasicBlockAfter(MBB: &MBB);
564 }
565 visitMachineFunctionAfter();
566
567 // Clean up.
568 regsLive.clear();
569 regsDefined.clear();
570 regsDead.clear();
571 regsKilled.clear();
572 regMasks.clear();
573 MBBInfoMap.clear();
574
575 return !ReportedErrs.hasError();
576}
577
578void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
579 assert(MF);
580 OS << '\n';
581 if (ReportedErrs.increment()) {
582 if (Banner)
583 OS << "# " << Banner << '\n';
584
585 if (LiveInts != nullptr)
586 LiveInts->print(O&: OS);
587 else
588 MF->print(OS, Indexes);
589 }
590
591 OS << "*** Bad machine code: " << msg << " ***\n"
592 << "- function: " << MF->getName() << '\n';
593}
594
595void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
596 assert(MBB);
597 report(msg, MF: MBB->getParent());
598 OS << "- basic block: " << printMBBReference(MBB: *MBB) << ' ' << MBB->getName()
599 << " (" << (const void *)MBB << ')';
600 if (Indexes)
601 OS << " [" << Indexes->getMBBStartIdx(mbb: MBB) << ';'
602 << Indexes->getMBBEndIdx(mbb: MBB) << ')';
603 OS << '\n';
604}
605
606void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
607 assert(MI);
608 report(msg, MBB: MI->getParent());
609 OS << "- instruction: ";
610 if (Indexes && Indexes->hasIndex(instr: *MI))
611 OS << Indexes->getInstructionIndex(MI: *MI) << '\t';
612 MI->print(OS, /*IsStandalone=*/true);
613}
614
615void MachineVerifier::report(const char *msg, const MachineOperand *MO,
616 unsigned MONum, LLT MOVRegType) {
617 assert(MO);
618 report(msg, MI: MO->getParent());
619 OS << "- operand " << MONum << ": ";
620 MO->print(os&: OS, TypeToPrint: MOVRegType, TRI);
621 OS << '\n';
622}
623
624void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
625 report(msg: Msg.str().c_str(), MI);
626}
627
628void MachineVerifier::report_context(SlotIndex Pos) const {
629 OS << "- at: " << Pos << '\n';
630}
631
632void MachineVerifier::report_context(const LiveInterval &LI) const {
633 OS << "- interval: " << LI << '\n';
634}
635
636void MachineVerifier::report_context(const LiveRange &LR,
637 VirtRegOrUnit VRegOrUnit,
638 LaneBitmask LaneMask) const {
639 report_context_liverange(LR);
640 report_context_vreg_regunit(VRegOrUnit);
641 if (LaneMask.any())
642 report_context_lanemask(LaneMask);
643}
644
645void MachineVerifier::report_context(const LiveRange::Segment &S) const {
646 OS << "- segment: " << S << '\n';
647}
648
649void MachineVerifier::report_context(const VNInfo &VNI) const {
650 OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
651}
652
653void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
654 OS << "- liverange: " << LR << '\n';
655}
656
657void MachineVerifier::report_context(MCPhysReg PReg) const {
658 OS << "- p. register: " << printReg(Reg: PReg, TRI) << '\n';
659}
660
661void MachineVerifier::report_context_vreg(Register VReg) const {
662 OS << "- v. register: " << printReg(Reg: VReg, TRI) << '\n';
663}
664
665void MachineVerifier::report_context_vreg_regunit(
666 VirtRegOrUnit VRegOrUnit) const {
667 if (VRegOrUnit.isVirtualReg()) {
668 report_context_vreg(VReg: VRegOrUnit.asVirtualReg());
669 } else {
670 OS << "- regunit: " << printRegUnit(Unit: VRegOrUnit.asMCRegUnit(), TRI)
671 << '\n';
672 }
673}
674
675void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
676 OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
677}
678
679void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
680 BBInfo &MInfo = MBBInfoMap[MBB];
681 if (!MInfo.reachable) {
682 MInfo.reachable = true;
683 for (const MachineBasicBlock *Succ : MBB->successors())
684 markReachable(MBB: Succ);
685 }
686}
687
688void MachineVerifier::visitMachineFunctionBefore() {
689 lastIndex = SlotIndex();
690 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
691 : TRI->getReservedRegs(MF: *MF);
692
693 if (!MF->empty())
694 markReachable(MBB: &MF->front());
695
696 // Build a set of the basic blocks in the function.
697 FunctionBlocks.clear();
698 for (const auto &MBB : *MF) {
699 FunctionBlocks.insert(Ptr: &MBB);
700 BBInfo &MInfo = MBBInfoMap[&MBB];
701
702 MInfo.Preds.insert_range(R: MBB.predecessors());
703 if (MInfo.Preds.size() != MBB.pred_size())
704 report(msg: "MBB has duplicate entries in its predecessor list.", MBB: &MBB);
705
706 MInfo.Succs.insert_range(R: MBB.successors());
707 if (MInfo.Succs.size() != MBB.succ_size())
708 report(msg: "MBB has duplicate entries in its successor list.", MBB: &MBB);
709 }
710
711 // Check that the register use lists are sane.
712 MRI->verifyUseLists();
713
714 if (!MF->empty()) {
715 verifyStackFrame();
716 verifyStackProtector();
717 }
718}
719
720void
721MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
722 FirstTerminator = nullptr;
723 FirstNonPHI = nullptr;
724
725 if (!MF->getProperties().hasNoPHIs() && MRI->tracksLiveness()) {
726 // If this block has allocatable physical registers live-in, check that
727 // it is an entry block or landing pad.
728 for (const auto &LI : MBB->liveins()) {
729 if (isAllocatable(Reg: LI.PhysReg) && !MBB->isEHPad() &&
730 MBB->getIterator() != MBB->getParent()->begin() &&
731 !MBB->isInlineAsmBrIndirectTarget()) {
732 report(msg: "MBB has allocatable live-in, but isn't entry, landing-pad, or "
733 "inlineasm-br-indirect-target.",
734 MBB);
735 report_context(PReg: LI.PhysReg);
736 }
737 }
738 }
739
740 if (MBB->isIRBlockAddressTaken()) {
741 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken())
742 report(msg: "ir-block-address-taken is associated with basic block not used by "
743 "a blockaddress.",
744 MBB);
745 }
746
747 // Count the number of landing pad successors.
748 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
749 for (const auto *succ : MBB->successors()) {
750 if (succ->isEHPad())
751 LandingPadSuccs.insert(Ptr: succ);
752 if (!FunctionBlocks.count(Ptr: succ))
753 report(msg: "MBB has successor that isn't part of the function.", MBB);
754 if (!MBBInfoMap[succ].Preds.count(Ptr: MBB)) {
755 report(msg: "Inconsistent CFG", MBB);
756 OS << "MBB is not in the predecessor list of the successor "
757 << printMBBReference(MBB: *succ) << ".\n";
758 }
759 }
760
761 // Check the predecessor list.
762 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
763 if (!FunctionBlocks.count(Ptr: Pred))
764 report(msg: "MBB has predecessor that isn't part of the function.", MBB);
765 if (!MBBInfoMap[Pred].Succs.count(Ptr: MBB)) {
766 report(msg: "Inconsistent CFG", MBB);
767 OS << "MBB is not in the successor list of the predecessor "
768 << printMBBReference(MBB: *Pred) << ".\n";
769 }
770 }
771
772 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
773 const BasicBlock *BB = MBB->getBasicBlock();
774 const Function &F = MF->getFunction();
775 if (LandingPadSuccs.size() > 1 &&
776 !(AsmInfo &&
777 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
778 BB && isa<SwitchInst>(Val: BB->getTerminator())) &&
779 !isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F.getPersonalityFn())))
780 report(msg: "MBB has more than one landing pad successor", MBB);
781
782 // Call analyzeBranch. If it succeeds, there several more conditions to check.
783 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
784 SmallVector<MachineOperand, 4> Cond;
785 if (!TII->analyzeBranch(MBB&: *const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
786 Cond)) {
787 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
788 // check whether its answers match up with reality.
789 if (!TBB && !FBB) {
790 // Block falls through to its successor.
791 if (!MBB->empty() && MBB->back().isBarrier() &&
792 !TII->isPredicated(MI: MBB->back())) {
793 report(msg: "MBB exits via unconditional fall-through but ends with a "
794 "barrier instruction!", MBB);
795 }
796 if (!Cond.empty()) {
797 report(msg: "MBB exits via unconditional fall-through but has a condition!",
798 MBB);
799 }
800 } else if (TBB && !FBB && Cond.empty()) {
801 // Block unconditionally branches somewhere.
802 if (MBB->empty()) {
803 report(msg: "MBB exits via unconditional branch but doesn't contain "
804 "any instructions!", MBB);
805 } else if (!MBB->back().isBarrier()) {
806 report(msg: "MBB exits via unconditional branch but doesn't end with a "
807 "barrier instruction!", MBB);
808 } else if (!MBB->back().isTerminator()) {
809 report(msg: "MBB exits via unconditional branch but the branch isn't a "
810 "terminator instruction!", MBB);
811 }
812 } else if (TBB && !FBB && !Cond.empty()) {
813 // Block conditionally branches somewhere, otherwise falls through.
814 if (MBB->empty()) {
815 report(msg: "MBB exits via conditional branch/fall-through but doesn't "
816 "contain any instructions!", MBB);
817 } else if (MBB->back().isBarrier()) {
818 report(msg: "MBB exits via conditional branch/fall-through but ends with a "
819 "barrier instruction!", MBB);
820 } else if (!MBB->back().isTerminator()) {
821 report(msg: "MBB exits via conditional branch/fall-through but the branch "
822 "isn't a terminator instruction!", MBB);
823 }
824 } else if (TBB && FBB) {
825 // Block conditionally branches somewhere, otherwise branches
826 // somewhere else.
827 if (MBB->empty()) {
828 report(msg: "MBB exits via conditional branch/branch but doesn't "
829 "contain any instructions!", MBB);
830 } else if (!MBB->back().isBarrier()) {
831 report(msg: "MBB exits via conditional branch/branch but doesn't end with a "
832 "barrier instruction!", MBB);
833 } else if (!MBB->back().isTerminator()) {
834 report(msg: "MBB exits via conditional branch/branch but the branch "
835 "isn't a terminator instruction!", MBB);
836 }
837 if (Cond.empty()) {
838 report(msg: "MBB exits via conditional branch/branch but there's no "
839 "condition!", MBB);
840 }
841 } else {
842 report(msg: "analyzeBranch returned invalid data!", MBB);
843 }
844
845 // Now check that the successors match up with the answers reported by
846 // analyzeBranch.
847 if (TBB && !MBB->isSuccessor(MBB: TBB))
848 report(msg: "MBB exits via jump or conditional branch, but its target isn't a "
849 "CFG successor!",
850 MBB);
851 if (FBB && !MBB->isSuccessor(MBB: FBB))
852 report(msg: "MBB exits via conditional branch, but its target isn't a CFG "
853 "successor!",
854 MBB);
855
856 // There might be a fallthrough to the next block if there's either no
857 // unconditional true branch, or if there's a condition, and one of the
858 // branches is missing.
859 bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
860
861 // A conditional fallthrough must be an actual CFG successor, not
862 // unreachable. (Conversely, an unconditional fallthrough might not really
863 // be a successor, because the block might end in unreachable.)
864 if (!Cond.empty() && !FBB) {
865 MachineFunction::const_iterator MBBI = std::next(x: MBB->getIterator());
866 if (MBBI == MF->end()) {
867 report(msg: "MBB conditionally falls through out of function!", MBB);
868 } else if (!MBB->isSuccessor(MBB: &*MBBI))
869 report(msg: "MBB exits via conditional branch/fall-through but the CFG "
870 "successors don't match the actual successors!",
871 MBB);
872 }
873
874 // Verify that there aren't any extra un-accounted-for successors.
875 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
876 // If this successor is one of the branch targets, it's okay.
877 if (SuccMBB == TBB || SuccMBB == FBB)
878 continue;
879 // If we might have a fallthrough, and the successor is the fallthrough
880 // block, that's also ok.
881 if (Fallthrough && SuccMBB == MBB->getNextNode())
882 continue;
883 // Also accept successors which are for exception-handling or might be
884 // inlineasm_br targets.
885 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
886 continue;
887 report(msg: "MBB has unexpected successors which are not branch targets, "
888 "fallthrough, EHPads, or inlineasm_br targets.",
889 MBB);
890 }
891 }
892
893 regsLive.clear();
894 if (MRI->tracksLiveness()) {
895 for (const auto &LI : MBB->liveins()) {
896 if (!LI.PhysReg.isPhysical()) {
897 report(msg: "MBB live-in list contains non-physical register", MBB);
898 continue;
899 }
900 regsLive.insert_range(R: TRI->subregs_inclusive(Reg: LI.PhysReg));
901 }
902 }
903
904 const MachineFrameInfo &MFI = MF->getFrameInfo();
905 BitVector PR = MFI.getPristineRegs(MF: *MF);
906 for (unsigned I : PR.set_bits())
907 regsLive.insert_range(R: TRI->subregs_inclusive(Reg: I));
908
909 regsKilled.clear();
910 regsDefined.clear();
911
912 if (Indexes)
913 lastIndex = Indexes->getMBBStartIdx(mbb: MBB);
914}
915
916// This function gets called for all bundle headers, including normal
917// stand-alone unbundled instructions.
918void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
919 if (Indexes && Indexes->hasIndex(instr: *MI)) {
920 SlotIndex idx = Indexes->getInstructionIndex(MI: *MI);
921 if (!(idx > lastIndex)) {
922 report(msg: "Instruction index out of order", MI);
923 OS << "Last instruction was at " << lastIndex << '\n';
924 }
925 lastIndex = idx;
926 }
927
928 // Ensure non-terminators don't follow terminators.
929 if (MI->isTerminator()) {
930 if (!FirstTerminator)
931 FirstTerminator = MI;
932 } else if (FirstTerminator) {
933 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to
934 // precede non-terminators.
935 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) {
936 report(msg: "Non-terminator instruction after the first terminator", MI);
937 OS << "First terminator was:\t" << *FirstTerminator;
938 }
939 }
940}
941
942// The operands on an INLINEASM instruction must follow a template.
943// Verify that the flag operands make sense.
944void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
945 // The first two operands on INLINEASM are the asm string and global flags.
946 if (MI->getNumOperands() < 2) {
947 report(msg: "Too few operands on inline asm", MI);
948 return;
949 }
950 if (!MI->getOperand(i: 0).isSymbol())
951 report(msg: "Asm string must be an external symbol", MI);
952 if (!MI->getOperand(i: 1).isImm())
953 report(msg: "Asm flags must be an immediate", MI);
954 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
955 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
956 // and Extra_IsConvergent = 32, Extra_MayUnwind = 64.
957 if (!isUInt<7>(x: MI->getOperand(i: 1).getImm()))
958 report(msg: "Unknown asm flags", MO: &MI->getOperand(i: 1), MONum: 1);
959
960 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
961
962 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
963 unsigned NumOps;
964 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
965 const MachineOperand &MO = MI->getOperand(i: OpNo);
966 // There may be implicit ops after the fixed operands.
967 if (!MO.isImm())
968 break;
969 const InlineAsm::Flag F(MO.getImm());
970 NumOps = 1 + F.getNumOperandRegisters();
971 }
972
973 if (OpNo > MI->getNumOperands())
974 report(msg: "Missing operands in last group", MI);
975
976 // An optional MDNode follows the groups.
977 if (OpNo < MI->getNumOperands() && MI->getOperand(i: OpNo).isMetadata())
978 ++OpNo;
979
980 // All trailing operands must be implicit registers.
981 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
982 const MachineOperand &MO = MI->getOperand(i: OpNo);
983 if (!MO.isReg() || !MO.isImplicit())
984 report(msg: "Expected implicit register after groups", MO: &MO, MONum: OpNo);
985 }
986
987 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) {
988 const MachineBasicBlock *MBB = MI->getParent();
989
990 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
991 i != e; ++i) {
992 const MachineOperand &MO = MI->getOperand(i);
993
994 if (!MO.isMBB())
995 continue;
996
997 // Check the successor & predecessor lists look ok, assume they are
998 // not. Find the indirect target without going through the successors.
999 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB();
1000 if (!IndirectTargetMBB) {
1001 report(msg: "INLINEASM_BR indirect target does not exist", MO: &MO, MONum: i);
1002 break;
1003 }
1004
1005 if (!MBB->isSuccessor(MBB: IndirectTargetMBB))
1006 report(msg: "INLINEASM_BR indirect target missing from successor list", MO: &MO,
1007 MONum: i);
1008
1009 if (!IndirectTargetMBB->isPredecessor(MBB))
1010 report(msg: "INLINEASM_BR indirect target predecessor list missing parent",
1011 MO: &MO, MONum: i);
1012 }
1013 }
1014}
1015
1016bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
1017 const MachineRegisterInfo &MRI) {
1018 if (none_of(Range: MI.explicit_operands(), P: [&MRI](const MachineOperand &Op) {
1019 if (!Op.isReg())
1020 return false;
1021 const auto Reg = Op.getReg();
1022 if (Reg.isPhysical())
1023 return false;
1024 return !MRI.getType(Reg).isScalar();
1025 }))
1026 return true;
1027 report(msg: "All register operands must have scalar types", MI: &MI);
1028 return false;
1029}
1030
1031/// Check that types are consistent when two operands need to have the same
1032/// number of vector elements.
1033/// \return true if the types are valid.
1034bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
1035 const MachineInstr *MI) {
1036 if (Ty0.isVector() != Ty1.isVector()) {
1037 report(msg: "operand types must be all-vector or all-scalar", MI);
1038 // Generally we try to report as many issues as possible at once, but in
1039 // this case it's not clear what should we be comparing the size of the
1040 // scalar with: the size of the whole vector or its lane. Instead of
1041 // making an arbitrary choice and emitting not so helpful message, let's
1042 // avoid the extra noise and stop here.
1043 return false;
1044 }
1045
1046 if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) {
1047 report(msg: "operand types must preserve number of vector elements", MI);
1048 return false;
1049 }
1050
1051 return true;
1052}
1053
1054bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) {
1055 auto Opcode = MI->getOpcode();
1056 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC ||
1057 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT;
1058 unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID();
1059 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1060 AttributeSet Attrs = Intrinsic::getFnAttributes(
1061 C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID));
1062 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
1063 if (NoSideEffects && DeclHasSideEffects) {
1064 report(Msg: Twine(TII->getName(Opcode),
1065 " used with intrinsic that accesses memory"),
1066 MI);
1067 return false;
1068 }
1069 if (!NoSideEffects && !DeclHasSideEffects) {
1070 report(Msg: Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI);
1071 return false;
1072 }
1073 }
1074
1075 return true;
1076}
1077
1078bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) {
1079 auto Opcode = MI->getOpcode();
1080 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC ||
1081 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS;
1082 unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID();
1083 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1084 AttributeSet Attrs = Intrinsic::getFnAttributes(
1085 C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID));
1086 bool DeclIsConvergent = Attrs.hasAttribute(Kind: Attribute::Convergent);
1087 if (NotConvergent && DeclIsConvergent) {
1088 report(Msg: Twine(TII->getName(Opcode), " used with a convergent intrinsic"),
1089 MI);
1090 return false;
1091 }
1092 if (!NotConvergent && !DeclIsConvergent) {
1093 report(
1094 Msg: Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"),
1095 MI);
1096 return false;
1097 }
1098 }
1099
1100 return true;
1101}
1102
1103void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
1104 if (isFunctionSelected)
1105 report(msg: "Unexpected generic instruction in a Selected function", MI);
1106
1107 const MCInstrDesc &MCID = MI->getDesc();
1108 unsigned NumOps = MI->getNumOperands();
1109
1110 // Branches must reference a basic block if they are not indirect
1111 if (MI->isBranch() && !MI->isIndirectBranch()) {
1112 bool HasMBB = false;
1113 for (const MachineOperand &Op : MI->operands()) {
1114 if (Op.isMBB()) {
1115 HasMBB = true;
1116 break;
1117 }
1118 }
1119
1120 if (!HasMBB) {
1121 report(msg: "Branch instruction is missing a basic block operand or "
1122 "isIndirectBranch property",
1123 MI);
1124 }
1125 }
1126
1127 // Check types.
1128 SmallVector<LLT, 4> Types;
1129 for (unsigned I = 0, E = std::min(a: MCID.getNumOperands(), b: NumOps);
1130 I != E; ++I) {
1131 if (!MCID.operands()[I].isGenericType())
1132 continue;
1133 // Generic instructions specify type equality constraints between some of
1134 // their operands. Make sure these are consistent.
1135 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex();
1136 Types.resize(N: std::max(a: TypeIdx + 1, b: Types.size()));
1137
1138 const MachineOperand *MO = &MI->getOperand(i: I);
1139 if (!MO->isReg()) {
1140 report(msg: "generic instruction must use register operands", MI);
1141 continue;
1142 }
1143
1144 LLT OpTy = MRI->getType(Reg: MO->getReg());
1145 // Don't report a type mismatch if there is no actual mismatch, only a
1146 // type missing, to reduce noise:
1147 if (OpTy.isValid()) {
1148 // Only the first valid type for a type index will be printed: don't
1149 // overwrite it later so it's always clear which type was expected:
1150 if (!Types[TypeIdx].isValid())
1151 Types[TypeIdx] = OpTy;
1152 else if (Types[TypeIdx] != OpTy)
1153 report(msg: "Type mismatch in generic instruction", MO, MONum: I, MOVRegType: OpTy);
1154 } else {
1155 // Generic instructions must have types attached to their operands.
1156 report(msg: "Generic instruction is missing a virtual register type", MO, MONum: I);
1157 }
1158 }
1159
1160 // Generic opcodes must not have physical register operands.
1161 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
1162 const MachineOperand *MO = &MI->getOperand(i: I);
1163 if (MO->isReg() && MO->getReg().isPhysical())
1164 report(msg: "Generic instruction cannot have physical register", MO, MONum: I);
1165 }
1166
1167 // Avoid out of bounds in checks below. This was already reported earlier.
1168 if (MI->getNumOperands() < MCID.getNumOperands())
1169 return;
1170
1171 StringRef ErrorInfo;
1172 if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo))
1173 report(msg: ErrorInfo.data(), MI);
1174
1175 // Verify properties of various specific instruction types
1176 unsigned Opc = MI->getOpcode();
1177 switch (Opc) {
1178 case TargetOpcode::G_ASSERT_SEXT:
1179 case TargetOpcode::G_ASSERT_ZEXT: {
1180 std::string OpcName =
1181 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
1182 if (!MI->getOperand(i: 2).isImm()) {
1183 report(Msg: Twine(OpcName, " expects an immediate operand #2"), MI);
1184 break;
1185 }
1186
1187 Register Dst = MI->getOperand(i: 0).getReg();
1188 Register Src = MI->getOperand(i: 1).getReg();
1189 LLT SrcTy = MRI->getType(Reg: Src);
1190 int64_t Imm = MI->getOperand(i: 2).getImm();
1191 if (Imm <= 0) {
1192 report(Msg: Twine(OpcName, " size must be >= 1"), MI);
1193 break;
1194 }
1195
1196 if (Imm >= SrcTy.getScalarSizeInBits()) {
1197 report(Msg: Twine(OpcName, " size must be less than source bit width"), MI);
1198 break;
1199 }
1200
1201 const RegisterBank *SrcRB = RBI->getRegBank(Reg: Src, MRI: *MRI, TRI: *TRI);
1202 const RegisterBank *DstRB = RBI->getRegBank(Reg: Dst, MRI: *MRI, TRI: *TRI);
1203
1204 // Allow only the source bank to be set.
1205 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1206 report(Msg: Twine(OpcName, " cannot change register bank"), MI);
1207 break;
1208 }
1209
1210 // Don't allow a class change. Do allow member class->regbank.
1211 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Reg: Dst);
1212 if (DstRC && DstRC != MRI->getRegClassOrNull(Reg: Src)) {
1213 report(
1214 Msg: Twine(OpcName, " source and destination register classes must match"),
1215 MI);
1216 break;
1217 }
1218
1219 break;
1220 }
1221
1222 case TargetOpcode::G_CONSTANT:
1223 case TargetOpcode::G_FCONSTANT: {
1224 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1225 if (DstTy.isVector())
1226 report(msg: "Instruction cannot use a vector result type", MI);
1227
1228 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1229 if (!MI->getOperand(i: 1).isCImm()) {
1230 report(msg: "G_CONSTANT operand must be cimm", MI);
1231 break;
1232 }
1233
1234 const ConstantInt *CI = MI->getOperand(i: 1).getCImm();
1235 if (CI->getBitWidth() != DstTy.getSizeInBits())
1236 report(msg: "inconsistent constant size", MI);
1237 } else {
1238 if (!MI->getOperand(i: 1).isFPImm()) {
1239 report(msg: "G_FCONSTANT operand must be fpimm", MI);
1240 break;
1241 }
1242 const ConstantFP *CF = MI->getOperand(i: 1).getFPImm();
1243
1244 if (APFloat::getSizeInBits(Sem: CF->getValueAPF().getSemantics()) !=
1245 DstTy.getSizeInBits()) {
1246 report(msg: "inconsistent constant size", MI);
1247 }
1248 }
1249
1250 break;
1251 }
1252 case TargetOpcode::G_LOAD:
1253 case TargetOpcode::G_STORE:
1254 case TargetOpcode::G_ZEXTLOAD:
1255 case TargetOpcode::G_SEXTLOAD: {
1256 LLT ValTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1257 LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1258 if (!PtrTy.isPointer())
1259 report(msg: "Generic memory instruction must access a pointer", MI);
1260
1261 // Generic loads and stores must have a single MachineMemOperand
1262 // describing that access.
1263 if (!MI->hasOneMemOperand()) {
1264 report(msg: "Generic instruction accessing memory must have one mem operand",
1265 MI);
1266 } else {
1267 const MachineMemOperand &MMO = **MI->memoperands_begin();
1268 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1269 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1270 if (TypeSize::isKnownGE(LHS: MMO.getSizeInBits().getValue(),
1271 RHS: ValTy.getSizeInBits()))
1272 report(msg: "Generic extload must have a narrower memory type", MI);
1273 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1274 if (TypeSize::isKnownGT(LHS: MMO.getSize().getValue(),
1275 RHS: ValTy.getSizeInBytes()))
1276 report(msg: "load memory size cannot exceed result size", MI);
1277
1278 if (MMO.getRanges()) {
1279 ConstantInt *i =
1280 mdconst::extract<ConstantInt>(MD: MMO.getRanges()->getOperand(I: 0));
1281 const LLT RangeTy = LLT::scalar(SizeInBits: i->getIntegerType()->getBitWidth());
1282 const LLT MemTy = MMO.getMemoryType();
1283 if (MemTy.getScalarType() != RangeTy ||
1284 ValTy.isScalar() != MemTy.isScalar() ||
1285 (ValTy.isVector() &&
1286 ValTy.getNumElements() != MemTy.getNumElements())) {
1287 report(msg: "range is incompatible with the result type", MI);
1288 }
1289 }
1290 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1291 if (TypeSize::isKnownLT(LHS: ValTy.getSizeInBytes(),
1292 RHS: MMO.getSize().getValue()))
1293 report(msg: "store memory size cannot exceed value size", MI);
1294 }
1295
1296 const AtomicOrdering Order = MMO.getSuccessOrdering();
1297 if (Opc == TargetOpcode::G_STORE) {
1298 if (Order == AtomicOrdering::Acquire ||
1299 Order == AtomicOrdering::AcquireRelease)
1300 report(msg: "atomic store cannot use acquire ordering", MI);
1301
1302 } else {
1303 if (Order == AtomicOrdering::Release ||
1304 Order == AtomicOrdering::AcquireRelease)
1305 report(msg: "atomic load cannot use release ordering", MI);
1306 }
1307 }
1308
1309 break;
1310 }
1311 case TargetOpcode::G_PHI: {
1312 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1313 if (!DstTy.isValid() || !all_of(Range: drop_begin(RangeOrContainer: MI->operands()),
1314 P: [this, &DstTy](const MachineOperand &MO) {
1315 if (!MO.isReg())
1316 return true;
1317 LLT Ty = MRI->getType(Reg: MO.getReg());
1318 if (!Ty.isValid() || (Ty != DstTy))
1319 return false;
1320 return true;
1321 }))
1322 report(msg: "Generic Instruction G_PHI has operands with incompatible/missing "
1323 "types",
1324 MI);
1325 break;
1326 }
1327 case TargetOpcode::G_BITCAST: {
1328 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1329 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1330 if (!DstTy.isValid() || !SrcTy.isValid())
1331 break;
1332
1333 if (SrcTy.isPointer() != DstTy.isPointer())
1334 report(msg: "bitcast cannot convert between pointers and other types", MI);
1335
1336 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1337 report(msg: "bitcast sizes must match", MI);
1338
1339 if (SrcTy == DstTy)
1340 report(msg: "bitcast must change the type", MI);
1341
1342 break;
1343 }
1344 case TargetOpcode::G_INTTOPTR:
1345 case TargetOpcode::G_PTRTOINT:
1346 case TargetOpcode::G_ADDRSPACE_CAST: {
1347 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1348 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1349 if (!DstTy.isValid() || !SrcTy.isValid())
1350 break;
1351
1352 verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI);
1353
1354 DstTy = DstTy.getScalarType();
1355 SrcTy = SrcTy.getScalarType();
1356
1357 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1358 if (!DstTy.isPointer())
1359 report(msg: "inttoptr result type must be a pointer", MI);
1360 if (SrcTy.isPointer())
1361 report(msg: "inttoptr source type must not be a pointer", MI);
1362 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1363 if (!SrcTy.isPointer())
1364 report(msg: "ptrtoint source type must be a pointer", MI);
1365 if (DstTy.isPointer())
1366 report(msg: "ptrtoint result type must not be a pointer", MI);
1367 } else {
1368 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1369 if (!SrcTy.isPointer() || !DstTy.isPointer())
1370 report(msg: "addrspacecast types must be pointers", MI);
1371 else {
1372 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1373 report(msg: "addrspacecast must convert different address spaces", MI);
1374 }
1375 }
1376
1377 break;
1378 }
1379 case TargetOpcode::G_PTR_ADD: {
1380 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1381 LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1382 LLT OffsetTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
1383 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1384 break;
1385
1386 if (!PtrTy.isPointerOrPointerVector())
1387 report(msg: "gep first operand must be a pointer", MI);
1388
1389 if (OffsetTy.isPointerOrPointerVector())
1390 report(msg: "gep offset operand must not be a pointer", MI);
1391
1392 if (PtrTy.isPointerOrPointerVector()) {
1393 const DataLayout &DL = MF->getDataLayout();
1394 unsigned AS = PtrTy.getAddressSpace();
1395 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8;
1396 if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) {
1397 report(msg: "gep offset operand must match index size for address space",
1398 MI);
1399 }
1400 }
1401
1402 // TODO: Is the offset allowed to be a scalar with a vector?
1403 break;
1404 }
1405 case TargetOpcode::G_PTRMASK: {
1406 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1407 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1408 LLT MaskTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
1409 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1410 break;
1411
1412 if (!DstTy.isPointerOrPointerVector())
1413 report(msg: "ptrmask result type must be a pointer", MI);
1414
1415 if (!MaskTy.getScalarType().isScalar())
1416 report(msg: "ptrmask mask type must be an integer", MI);
1417
1418 verifyVectorElementMatch(Ty0: DstTy, Ty1: MaskTy, MI);
1419 break;
1420 }
1421 case TargetOpcode::G_SEXT:
1422 case TargetOpcode::G_ZEXT:
1423 case TargetOpcode::G_ANYEXT:
1424 case TargetOpcode::G_TRUNC:
1425 case TargetOpcode::G_TRUNC_SSAT_S:
1426 case TargetOpcode::G_TRUNC_SSAT_U:
1427 case TargetOpcode::G_TRUNC_USAT_U:
1428 case TargetOpcode::G_FPEXT:
1429 case TargetOpcode::G_FPTRUNC: {
1430 // Number of operands and presense of types is already checked (and
1431 // reported in case of any issues), so no need to report them again. As
1432 // we're trying to report as many issues as possible at once, however, the
1433 // instructions aren't guaranteed to have the right number of operands or
1434 // types attached to them at this point
1435 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1436 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1437 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1438 if (!DstTy.isValid() || !SrcTy.isValid())
1439 break;
1440
1441 if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector())
1442 report(msg: "Generic extend/truncate can not operate on pointers", MI);
1443
1444 verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI);
1445
1446 unsigned DstSize = DstTy.getScalarSizeInBits();
1447 unsigned SrcSize = SrcTy.getScalarSizeInBits();
1448 switch (MI->getOpcode()) {
1449 default:
1450 if (DstSize <= SrcSize)
1451 report(msg: "Generic extend has destination type no larger than source", MI);
1452 break;
1453 case TargetOpcode::G_TRUNC:
1454 case TargetOpcode::G_TRUNC_SSAT_S:
1455 case TargetOpcode::G_TRUNC_SSAT_U:
1456 case TargetOpcode::G_TRUNC_USAT_U:
1457 case TargetOpcode::G_FPTRUNC:
1458 if (DstSize >= SrcSize)
1459 report(msg: "Generic truncate has destination type no smaller than source",
1460 MI);
1461 break;
1462 }
1463 break;
1464 }
1465 case TargetOpcode::G_SELECT: {
1466 LLT SelTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1467 LLT CondTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1468 if (!SelTy.isValid() || !CondTy.isValid())
1469 break;
1470
1471 // Scalar condition select on a vector is valid.
1472 if (CondTy.isVector())
1473 verifyVectorElementMatch(Ty0: SelTy, Ty1: CondTy, MI);
1474 break;
1475 }
1476 case TargetOpcode::G_MERGE_VALUES: {
1477 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1478 // e.g. s2N = MERGE sN, sN
1479 // Merging multiple scalars into a vector is not allowed, should use
1480 // G_BUILD_VECTOR for that.
1481 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1482 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1483 if (DstTy.isVector() || SrcTy.isVector())
1484 report(msg: "G_MERGE_VALUES cannot operate on vectors", MI);
1485
1486 const unsigned NumOps = MI->getNumOperands();
1487 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1488 report(msg: "G_MERGE_VALUES result size is inconsistent", MI);
1489
1490 for (unsigned I = 2; I != NumOps; ++I) {
1491 if (MRI->getType(Reg: MI->getOperand(i: I).getReg()) != SrcTy)
1492 report(msg: "G_MERGE_VALUES source types do not match", MI);
1493 }
1494
1495 break;
1496 }
1497 case TargetOpcode::G_UNMERGE_VALUES: {
1498 unsigned NumDsts = MI->getNumOperands() - 1;
1499 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1500 for (unsigned i = 1; i < NumDsts; ++i) {
1501 if (MRI->getType(Reg: MI->getOperand(i).getReg()) != DstTy) {
1502 report(msg: "G_UNMERGE_VALUES destination types do not match", MI);
1503 break;
1504 }
1505 }
1506
1507 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: NumDsts).getReg());
1508 if (DstTy.isVector()) {
1509 // This case is the converse of G_CONCAT_VECTORS.
1510 if (!SrcTy.isVector() ||
1511 (SrcTy.getScalarType() != DstTy.getScalarType() &&
1512 !SrcTy.isPointerVector()) ||
1513 SrcTy.isScalableVector() != DstTy.isScalableVector() ||
1514 SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1515 report(msg: "G_UNMERGE_VALUES source operand does not match vector "
1516 "destination operands",
1517 MI);
1518 } else if (SrcTy.isVector()) {
1519 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow
1520 // mismatched types as long as the total size matches:
1521 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>)
1522 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1523 report(msg: "G_UNMERGE_VALUES vector source operand does not match scalar "
1524 "destination operands",
1525 MI);
1526 } else {
1527 // This case is the converse of G_MERGE_VALUES.
1528 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) {
1529 report(msg: "G_UNMERGE_VALUES scalar source operand does not match scalar "
1530 "destination operands",
1531 MI);
1532 }
1533 }
1534 break;
1535 }
1536 case TargetOpcode::G_BUILD_VECTOR: {
1537 // Source types must be scalars, dest type a vector. Total size of scalars
1538 // must match the dest vector size.
1539 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1540 LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1541 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1542 report(msg: "G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1543 break;
1544 }
1545
1546 if (DstTy.getElementType() != SrcEltTy)
1547 report(msg: "G_BUILD_VECTOR result element type must match source type", MI);
1548
1549 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1550 report(msg: "G_BUILD_VECTOR must have an operand for each element", MI);
1551
1552 for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2))
1553 if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg()))
1554 report(msg: "G_BUILD_VECTOR source operand types are not homogeneous", MI);
1555
1556 break;
1557 }
1558 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1559 // Source types must be scalars, dest type a vector. Scalar types must be
1560 // larger than the dest vector elt type, as this is a truncating operation.
1561 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1562 LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1563 if (!DstTy.isVector() || SrcEltTy.isVector())
1564 report(msg: "G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1565 MI);
1566 for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2))
1567 if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg()))
1568 report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1569 MI);
1570 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1571 report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1572 "dest elt type",
1573 MI);
1574 break;
1575 }
1576 case TargetOpcode::G_CONCAT_VECTORS: {
1577 // Source types should be vectors, and total size should match the dest
1578 // vector size.
1579 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1580 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1581 if (!DstTy.isVector() || !SrcTy.isVector())
1582 report(msg: "G_CONCAT_VECTOR requires vector source and destination operands",
1583 MI);
1584
1585 if (MI->getNumOperands() < 3)
1586 report(msg: "G_CONCAT_VECTOR requires at least 2 source operands", MI);
1587
1588 for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2))
1589 if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg()))
1590 report(msg: "G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1591 if (DstTy.getElementCount() !=
1592 SrcTy.getElementCount() * (MI->getNumOperands() - 1))
1593 report(msg: "G_CONCAT_VECTOR num dest and source elements should match", MI);
1594 break;
1595 }
1596 case TargetOpcode::G_ICMP:
1597 case TargetOpcode::G_FCMP: {
1598 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1599 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
1600
1601 if ((DstTy.isVector() != SrcTy.isVector()) ||
1602 (DstTy.isVector() &&
1603 DstTy.getElementCount() != SrcTy.getElementCount()))
1604 report(msg: "Generic vector icmp/fcmp must preserve number of lanes", MI);
1605
1606 break;
1607 }
1608 case TargetOpcode::G_SCMP:
1609 case TargetOpcode::G_UCMP: {
1610 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1611 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1612
1613 if (SrcTy.isPointerOrPointerVector()) {
1614 report(msg: "Generic scmp/ucmp does not support pointers as operands", MI);
1615 break;
1616 }
1617
1618 if (DstTy.isPointerOrPointerVector()) {
1619 report(msg: "Generic scmp/ucmp does not support pointers as a result", MI);
1620 break;
1621 }
1622
1623 if (DstTy.getScalarSizeInBits() < 2) {
1624 report(msg: "Result type must be at least 2 bits wide", MI);
1625 break;
1626 }
1627
1628 if ((DstTy.isVector() != SrcTy.isVector()) ||
1629 (DstTy.isVector() &&
1630 DstTy.getElementCount() != SrcTy.getElementCount())) {
1631 report(msg: "Generic vector scmp/ucmp must preserve number of lanes", MI);
1632 break;
1633 }
1634
1635 break;
1636 }
1637 case TargetOpcode::G_EXTRACT: {
1638 const MachineOperand &SrcOp = MI->getOperand(i: 1);
1639 if (!SrcOp.isReg()) {
1640 report(msg: "extract source must be a register", MI);
1641 break;
1642 }
1643
1644 const MachineOperand &OffsetOp = MI->getOperand(i: 2);
1645 if (!OffsetOp.isImm()) {
1646 report(msg: "extract offset must be a constant", MI);
1647 break;
1648 }
1649
1650 unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits();
1651 unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits();
1652 if (SrcSize == DstSize)
1653 report(msg: "extract source must be larger than result", MI);
1654
1655 if (DstSize + OffsetOp.getImm() > SrcSize)
1656 report(msg: "extract reads past end of register", MI);
1657 break;
1658 }
1659 case TargetOpcode::G_INSERT: {
1660 const MachineOperand &SrcOp = MI->getOperand(i: 2);
1661 if (!SrcOp.isReg()) {
1662 report(msg: "insert source must be a register", MI);
1663 break;
1664 }
1665
1666 const MachineOperand &OffsetOp = MI->getOperand(i: 3);
1667 if (!OffsetOp.isImm()) {
1668 report(msg: "insert offset must be a constant", MI);
1669 break;
1670 }
1671
1672 unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits();
1673 unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits();
1674
1675 if (DstSize <= SrcSize)
1676 report(msg: "inserted size must be smaller than total register", MI);
1677
1678 if (SrcSize + OffsetOp.getImm() > DstSize)
1679 report(msg: "insert writes past end of register", MI);
1680
1681 break;
1682 }
1683 case TargetOpcode::G_JUMP_TABLE: {
1684 if (!MI->getOperand(i: 1).isJTI())
1685 report(msg: "G_JUMP_TABLE source operand must be a jump table index", MI);
1686 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1687 if (!DstTy.isPointer())
1688 report(msg: "G_JUMP_TABLE dest operand must have a pointer type", MI);
1689 break;
1690 }
1691 case TargetOpcode::G_BRJT: {
1692 if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer())
1693 report(msg: "G_BRJT src operand 0 must be a pointer type", MI);
1694
1695 if (!MI->getOperand(i: 1).isJTI())
1696 report(msg: "G_BRJT src operand 1 must be a jump table index", MI);
1697
1698 const auto &IdxOp = MI->getOperand(i: 2);
1699 if (!IdxOp.isReg() || MRI->getType(Reg: IdxOp.getReg()).isPointer())
1700 report(msg: "G_BRJT src operand 2 must be a scalar reg type", MI);
1701 break;
1702 }
1703 case TargetOpcode::G_INTRINSIC:
1704 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
1705 case TargetOpcode::G_INTRINSIC_CONVERGENT:
1706 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: {
1707 // TODO: Should verify number of def and use operands, but the current
1708 // interface requires passing in IR types for mangling.
1709 const MachineOperand &IntrIDOp = MI->getOperand(i: MI->getNumExplicitDefs());
1710 if (!IntrIDOp.isIntrinsicID()) {
1711 report(msg: "G_INTRINSIC first src operand must be an intrinsic ID", MI);
1712 break;
1713 }
1714
1715 if (!verifyGIntrinsicSideEffects(MI))
1716 break;
1717 if (!verifyGIntrinsicConvergence(MI))
1718 break;
1719
1720 break;
1721 }
1722 case TargetOpcode::G_SEXT_INREG: {
1723 if (!MI->getOperand(i: 2).isImm()) {
1724 report(msg: "G_SEXT_INREG expects an immediate operand #2", MI);
1725 break;
1726 }
1727
1728 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1729 int64_t Imm = MI->getOperand(i: 2).getImm();
1730 if (Imm <= 0)
1731 report(msg: "G_SEXT_INREG size must be >= 1", MI);
1732 if (Imm >= SrcTy.getScalarSizeInBits())
1733 report(msg: "G_SEXT_INREG size must be less than source bit width", MI);
1734 break;
1735 }
1736 case TargetOpcode::G_BSWAP: {
1737 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1738 if (DstTy.getScalarSizeInBits() % 16 != 0)
1739 report(msg: "G_BSWAP size must be a multiple of 16 bits", MI);
1740 break;
1741 }
1742 case TargetOpcode::G_VSCALE: {
1743 if (!MI->getOperand(i: 1).isCImm()) {
1744 report(msg: "G_VSCALE operand must be cimm", MI);
1745 break;
1746 }
1747 if (MI->getOperand(i: 1).getCImm()->isZero()) {
1748 report(msg: "G_VSCALE immediate cannot be zero", MI);
1749 break;
1750 }
1751 break;
1752 }
1753 case TargetOpcode::G_STEP_VECTOR: {
1754 if (!MI->getOperand(i: 1).isCImm()) {
1755 report(msg: "operand must be cimm", MI);
1756 break;
1757 }
1758
1759 if (!MI->getOperand(i: 1).getCImm()->getValue().isStrictlyPositive()) {
1760 report(msg: "step must be > 0", MI);
1761 break;
1762 }
1763
1764 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1765 if (!DstTy.isScalableVector()) {
1766 report(msg: "Destination type must be a scalable vector", MI);
1767 break;
1768 }
1769
1770 // <vscale x 2 x p0>
1771 if (!DstTy.getElementType().isScalar()) {
1772 report(msg: "Destination element type must be scalar", MI);
1773 break;
1774 }
1775
1776 if (MI->getOperand(i: 1).getCImm()->getBitWidth() !=
1777 DstTy.getElementType().getScalarSizeInBits()) {
1778 report(msg: "step bitwidth differs from result type element bitwidth", MI);
1779 break;
1780 }
1781 break;
1782 }
1783 case TargetOpcode::G_INSERT_SUBVECTOR: {
1784 const MachineOperand &Src0Op = MI->getOperand(i: 1);
1785 if (!Src0Op.isReg()) {
1786 report(msg: "G_INSERT_SUBVECTOR first source must be a register", MI);
1787 break;
1788 }
1789
1790 const MachineOperand &Src1Op = MI->getOperand(i: 2);
1791 if (!Src1Op.isReg()) {
1792 report(msg: "G_INSERT_SUBVECTOR second source must be a register", MI);
1793 break;
1794 }
1795
1796 const MachineOperand &IndexOp = MI->getOperand(i: 3);
1797 if (!IndexOp.isImm()) {
1798 report(msg: "G_INSERT_SUBVECTOR index must be an immediate", MI);
1799 break;
1800 }
1801
1802 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1803 LLT Src1Ty = MRI->getType(Reg: Src1Op.getReg());
1804
1805 if (!DstTy.isVector()) {
1806 report(msg: "Destination type must be a vector", MI);
1807 break;
1808 }
1809
1810 if (!Src1Ty.isVector()) {
1811 report(msg: "Second source must be a vector", MI);
1812 break;
1813 }
1814
1815 if (DstTy.getElementType() != Src1Ty.getElementType()) {
1816 report(msg: "Element type of vectors must be the same", MI);
1817 break;
1818 }
1819
1820 if (Src1Ty.isScalable() != DstTy.isScalable()) {
1821 report(msg: "Vector types must both be fixed or both be scalable", MI);
1822 break;
1823 }
1824
1825 if (ElementCount::isKnownGT(LHS: Src1Ty.getElementCount(),
1826 RHS: DstTy.getElementCount())) {
1827 report(msg: "Second source must be smaller than destination vector", MI);
1828 break;
1829 }
1830
1831 uint64_t Idx = IndexOp.getImm();
1832 uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue();
1833 if (IndexOp.getImm() % Src1MinLen != 0) {
1834 report(msg: "Index must be a multiple of the second source vector's "
1835 "minimum vector length",
1836 MI);
1837 break;
1838 }
1839
1840 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue();
1841 if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) {
1842 report(msg: "Subvector type and index must not cause insert to overrun the "
1843 "vector being inserted into",
1844 MI);
1845 break;
1846 }
1847
1848 break;
1849 }
1850 case TargetOpcode::G_EXTRACT_SUBVECTOR: {
1851 const MachineOperand &SrcOp = MI->getOperand(i: 1);
1852 if (!SrcOp.isReg()) {
1853 report(msg: "G_EXTRACT_SUBVECTOR first source must be a register", MI);
1854 break;
1855 }
1856
1857 const MachineOperand &IndexOp = MI->getOperand(i: 2);
1858 if (!IndexOp.isImm()) {
1859 report(msg: "G_EXTRACT_SUBVECTOR index must be an immediate", MI);
1860 break;
1861 }
1862
1863 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1864 LLT SrcTy = MRI->getType(Reg: SrcOp.getReg());
1865
1866 if (!DstTy.isVector()) {
1867 report(msg: "Destination type must be a vector", MI);
1868 break;
1869 }
1870
1871 if (!SrcTy.isVector()) {
1872 report(msg: "Source must be a vector", MI);
1873 break;
1874 }
1875
1876 if (DstTy.getElementType() != SrcTy.getElementType()) {
1877 report(msg: "Element type of vectors must be the same", MI);
1878 break;
1879 }
1880
1881 if (SrcTy.isScalable() != DstTy.isScalable()) {
1882 report(msg: "Vector types must both be fixed or both be scalable", MI);
1883 break;
1884 }
1885
1886 if (ElementCount::isKnownGT(LHS: DstTy.getElementCount(),
1887 RHS: SrcTy.getElementCount())) {
1888 report(msg: "Destination vector must be smaller than source vector", MI);
1889 break;
1890 }
1891
1892 uint64_t Idx = IndexOp.getImm();
1893 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue();
1894 if (Idx % DstMinLen != 0) {
1895 report(msg: "Index must be a multiple of the destination vector's minimum "
1896 "vector length",
1897 MI);
1898 break;
1899 }
1900
1901 uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue();
1902 if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) {
1903 report(msg: "Destination type and index must not cause extract to overrun the "
1904 "source vector",
1905 MI);
1906 break;
1907 }
1908
1909 break;
1910 }
1911 case TargetOpcode::G_SHUFFLE_VECTOR: {
1912 const MachineOperand &MaskOp = MI->getOperand(i: 3);
1913 if (!MaskOp.isShuffleMask()) {
1914 report(msg: "Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1915 break;
1916 }
1917
1918 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1919 LLT Src0Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1920 LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
1921
1922 if (Src0Ty != Src1Ty)
1923 report(msg: "Source operands must be the same type", MI);
1924
1925 if (Src0Ty.getScalarType() != DstTy.getScalarType()) {
1926 report(msg: "G_SHUFFLE_VECTOR cannot change element type", MI);
1927 break;
1928 }
1929 if (!Src0Ty.isVector()) {
1930 report(msg: "G_SHUFFLE_VECTOR must have vector src", MI);
1931 break;
1932 }
1933 if (!DstTy.isVector()) {
1934 report(msg: "G_SHUFFLE_VECTOR must have vector dst", MI);
1935 break;
1936 }
1937
1938 // Don't check that all operands are vector because scalars are used in
1939 // place of 1 element vectors.
1940 int SrcNumElts = Src0Ty.getNumElements();
1941 int DstNumElts = DstTy.getNumElements();
1942
1943 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1944
1945 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1946 report(msg: "Wrong result type for shufflemask", MI);
1947
1948 for (int Idx : MaskIdxes) {
1949 if (Idx < 0)
1950 continue;
1951
1952 if (Idx >= 2 * SrcNumElts)
1953 report(msg: "Out of bounds shuffle index", MI);
1954 }
1955
1956 break;
1957 }
1958
1959 case TargetOpcode::G_SPLAT_VECTOR: {
1960 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1961 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1962
1963 if (!DstTy.isScalableVector()) {
1964 report(msg: "Destination type must be a scalable vector", MI);
1965 break;
1966 }
1967
1968 if (!SrcTy.isScalar() && !SrcTy.isPointer()) {
1969 report(msg: "Source type must be a scalar or pointer", MI);
1970 break;
1971 }
1972
1973 if (TypeSize::isKnownGT(LHS: DstTy.getElementType().getSizeInBits(),
1974 RHS: SrcTy.getSizeInBits())) {
1975 report(msg: "Element type of the destination must be the same size or smaller "
1976 "than the source type",
1977 MI);
1978 break;
1979 }
1980
1981 break;
1982 }
1983 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1984 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
1985 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
1986 LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
1987
1988 if (!DstTy.isScalar() && !DstTy.isPointer()) {
1989 report(msg: "Destination type must be a scalar or pointer", MI);
1990 break;
1991 }
1992
1993 if (!SrcTy.isVector()) {
1994 report(msg: "First source must be a vector", MI);
1995 break;
1996 }
1997
1998 auto TLI = MF->getSubtarget().getTargetLowering();
1999 if (IdxTy.getSizeInBits() != TLI->getVectorIdxWidth(DL: MF->getDataLayout())) {
2000 report(msg: "Index type must match VectorIdxTy", MI);
2001 break;
2002 }
2003
2004 break;
2005 }
2006 case TargetOpcode::G_INSERT_VECTOR_ELT: {
2007 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2008 LLT VecTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
2009 LLT ScaTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
2010 LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 3).getReg());
2011
2012 if (!DstTy.isVector()) {
2013 report(msg: "Destination type must be a vector", MI);
2014 break;
2015 }
2016
2017 if (VecTy != DstTy) {
2018 report(msg: "Destination type and vector type must match", MI);
2019 break;
2020 }
2021
2022 if (!ScaTy.isScalar() && !ScaTy.isPointer()) {
2023 report(msg: "Inserted element must be a scalar or pointer", MI);
2024 break;
2025 }
2026
2027 auto TLI = MF->getSubtarget().getTargetLowering();
2028 if (IdxTy.getSizeInBits() != TLI->getVectorIdxWidth(DL: MF->getDataLayout())) {
2029 report(msg: "Index type must match VectorIdxTy", MI);
2030 break;
2031 }
2032
2033 break;
2034 }
2035 case TargetOpcode::G_DYN_STACKALLOC: {
2036 const MachineOperand &DstOp = MI->getOperand(i: 0);
2037 const MachineOperand &AllocOp = MI->getOperand(i: 1);
2038 const MachineOperand &AlignOp = MI->getOperand(i: 2);
2039
2040 if (!DstOp.isReg() || !MRI->getType(Reg: DstOp.getReg()).isPointer()) {
2041 report(msg: "dst operand 0 must be a pointer type", MI);
2042 break;
2043 }
2044
2045 if (!AllocOp.isReg() || !MRI->getType(Reg: AllocOp.getReg()).isScalar()) {
2046 report(msg: "src operand 1 must be a scalar reg type", MI);
2047 break;
2048 }
2049
2050 if (!AlignOp.isImm()) {
2051 report(msg: "src operand 2 must be an immediate type", MI);
2052 break;
2053 }
2054 break;
2055 }
2056 case TargetOpcode::G_MEMCPY_INLINE:
2057 case TargetOpcode::G_MEMCPY:
2058 case TargetOpcode::G_MEMMOVE: {
2059 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
2060 if (MMOs.size() != 2) {
2061 report(msg: "memcpy/memmove must have 2 memory operands", MI);
2062 break;
2063 }
2064
2065 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
2066 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
2067 report(msg: "wrong memory operand types", MI);
2068 break;
2069 }
2070
2071 if (MMOs[0]->getSize() != MMOs[1]->getSize())
2072 report(msg: "inconsistent memory operand sizes", MI);
2073
2074 LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2075 LLT SrcPtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
2076
2077 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
2078 report(msg: "memory instruction operand must be a pointer", MI);
2079 break;
2080 }
2081
2082 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
2083 report(msg: "inconsistent store address space", MI);
2084 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
2085 report(msg: "inconsistent load address space", MI);
2086
2087 if (Opc != TargetOpcode::G_MEMCPY_INLINE)
2088 if (!MI->getOperand(i: 3).isImm() || (MI->getOperand(i: 3).getImm() & ~1LL))
2089 report(msg: "'tail' flag (operand 3) must be an immediate 0 or 1", MI);
2090
2091 break;
2092 }
2093 case TargetOpcode::G_BZERO:
2094 case TargetOpcode::G_MEMSET: {
2095 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
2096 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
2097 if (MMOs.size() != 1) {
2098 report(Msg: Twine(Name, " must have 1 memory operand"), MI);
2099 break;
2100 }
2101
2102 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
2103 report(Msg: Twine(Name, " memory operand must be a store"), MI);
2104 break;
2105 }
2106
2107 LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2108 if (!DstPtrTy.isPointer()) {
2109 report(Msg: Twine(Name, " operand must be a pointer"), MI);
2110 break;
2111 }
2112
2113 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
2114 report(Msg: "inconsistent " + Twine(Name, " address space"), MI);
2115
2116 if (!MI->getOperand(i: MI->getNumOperands() - 1).isImm() ||
2117 (MI->getOperand(i: MI->getNumOperands() - 1).getImm() & ~1LL))
2118 report(msg: "'tail' flag (last operand) must be an immediate 0 or 1", MI);
2119
2120 break;
2121 }
2122 case TargetOpcode::G_UBSANTRAP: {
2123 const MachineOperand &KindOp = MI->getOperand(i: 0);
2124 if (!MI->getOperand(i: 0).isImm()) {
2125 report(msg: "Crash kind must be an immediate", MO: &KindOp, MONum: 0);
2126 break;
2127 }
2128 int64_t Kind = MI->getOperand(i: 0).getImm();
2129 if (!isInt<8>(x: Kind))
2130 report(msg: "Crash kind must be 8 bit wide", MO: &KindOp, MONum: 0);
2131 break;
2132 }
2133 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
2134 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
2135 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2136 LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
2137 LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
2138 if (!DstTy.isScalar())
2139 report(msg: "Vector reduction requires a scalar destination type", MI);
2140 if (!Src1Ty.isScalar())
2141 report(msg: "Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
2142 if (!Src2Ty.isVector())
2143 report(msg: "Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
2144 break;
2145 }
2146 case TargetOpcode::G_VECREDUCE_FADD:
2147 case TargetOpcode::G_VECREDUCE_FMUL:
2148 case TargetOpcode::G_VECREDUCE_FMAX:
2149 case TargetOpcode::G_VECREDUCE_FMIN:
2150 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
2151 case TargetOpcode::G_VECREDUCE_FMINIMUM:
2152 case TargetOpcode::G_VECREDUCE_ADD:
2153 case TargetOpcode::G_VECREDUCE_MUL:
2154 case TargetOpcode::G_VECREDUCE_AND:
2155 case TargetOpcode::G_VECREDUCE_OR:
2156 case TargetOpcode::G_VECREDUCE_XOR:
2157 case TargetOpcode::G_VECREDUCE_SMAX:
2158 case TargetOpcode::G_VECREDUCE_SMIN:
2159 case TargetOpcode::G_VECREDUCE_UMAX:
2160 case TargetOpcode::G_VECREDUCE_UMIN: {
2161 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2162 if (!DstTy.isScalar())
2163 report(msg: "Vector reduction requires a scalar destination type", MI);
2164 break;
2165 }
2166
2167 case TargetOpcode::G_SBFX:
2168 case TargetOpcode::G_UBFX: {
2169 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2170 if (DstTy.isVector()) {
2171 report(msg: "Bitfield extraction is not supported on vectors", MI);
2172 break;
2173 }
2174 break;
2175 }
2176 case TargetOpcode::G_SHL:
2177 case TargetOpcode::G_LSHR:
2178 case TargetOpcode::G_ASHR:
2179 case TargetOpcode::G_ROTR:
2180 case TargetOpcode::G_ROTL: {
2181 LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
2182 LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg());
2183 if (Src1Ty.isVector() != Src2Ty.isVector()) {
2184 report(msg: "Shifts and rotates require operands to be either all scalars or "
2185 "all vectors",
2186 MI);
2187 break;
2188 }
2189 break;
2190 }
2191 case TargetOpcode::G_LLROUND:
2192 case TargetOpcode::G_LROUND: {
2193 LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2194 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
2195 if (!DstTy.isValid() || !SrcTy.isValid())
2196 break;
2197 if (SrcTy.isPointer() || DstTy.isPointer()) {
2198 StringRef Op = SrcTy.isPointer() ? "Source" : "Destination";
2199 report(Msg: Twine(Op, " operand must not be a pointer type"), MI);
2200 } else if (SrcTy.isScalar()) {
2201 verifyAllRegOpsScalar(MI: *MI, MRI: *MRI);
2202 break;
2203 } else if (SrcTy.isVector()) {
2204 verifyVectorElementMatch(Ty0: SrcTy, Ty1: DstTy, MI);
2205 break;
2206 }
2207 break;
2208 }
2209 case TargetOpcode::G_IS_FPCLASS: {
2210 LLT DestTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2211 LLT DestEltTy = DestTy.getScalarType();
2212 if (!DestEltTy.isScalar()) {
2213 report(msg: "Destination must be a scalar or vector of scalars", MI);
2214 break;
2215 }
2216 LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg());
2217 LLT SrcEltTy = SrcTy.getScalarType();
2218 if (!SrcEltTy.isScalar()) {
2219 report(msg: "Source must be a scalar or vector of scalars", MI);
2220 break;
2221 }
2222 if (!verifyVectorElementMatch(Ty0: DestTy, Ty1: SrcTy, MI))
2223 break;
2224 const MachineOperand &TestMO = MI->getOperand(i: 2);
2225 if (!TestMO.isImm()) {
2226 report(msg: "floating-point class set (operand 2) must be an immediate", MI);
2227 break;
2228 }
2229 int64_t Test = TestMO.getImm();
2230 if (Test < 0 || Test > fcAllFlags) {
2231 report(msg: "Incorrect floating-point class set (operand 2)", MI);
2232 break;
2233 }
2234 break;
2235 }
2236 case TargetOpcode::G_PREFETCH: {
2237 const MachineOperand &AddrOp = MI->getOperand(i: 0);
2238 if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) {
2239 report(msg: "addr operand must be a pointer", MO: &AddrOp, MONum: 0);
2240 break;
2241 }
2242 const MachineOperand &RWOp = MI->getOperand(i: 1);
2243 if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) {
2244 report(msg: "rw operand must be an immediate 0-1", MO: &RWOp, MONum: 1);
2245 break;
2246 }
2247 const MachineOperand &LocalityOp = MI->getOperand(i: 2);
2248 if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) {
2249 report(msg: "locality operand must be an immediate 0-3", MO: &LocalityOp, MONum: 2);
2250 break;
2251 }
2252 const MachineOperand &CacheTypeOp = MI->getOperand(i: 3);
2253 if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) {
2254 report(msg: "cache type operand must be an immediate 0-1", MO: &CacheTypeOp, MONum: 3);
2255 break;
2256 }
2257 break;
2258 }
2259 case TargetOpcode::G_ASSERT_ALIGN: {
2260 if (MI->getOperand(i: 2).getImm() < 1)
2261 report(msg: "alignment immediate must be >= 1", MI);
2262 break;
2263 }
2264 case TargetOpcode::G_CONSTANT_POOL: {
2265 if (!MI->getOperand(i: 1).isCPI())
2266 report(msg: "Src operand 1 must be a constant pool index", MI);
2267 if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer())
2268 report(msg: "Dst operand 0 must be a pointer", MI);
2269 break;
2270 }
2271 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: {
2272 const MachineOperand &AddrOp = MI->getOperand(i: 1);
2273 if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer())
2274 report(msg: "addr operand must be a pointer", MO: &AddrOp, MONum: 1);
2275 break;
2276 }
2277 case TargetOpcode::G_SMIN:
2278 case TargetOpcode::G_SMAX:
2279 case TargetOpcode::G_UMIN:
2280 case TargetOpcode::G_UMAX: {
2281 const LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg());
2282 if (DstTy.isPointerOrPointerVector())
2283 report(msg: "Generic smin/smax/umin/umax does not support pointer operands",
2284 MI);
2285 break;
2286 }
2287 default:
2288 break;
2289 }
2290}
2291
2292void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
2293 const MCInstrDesc &MCID = MI->getDesc();
2294 if (MI->getNumOperands() < MCID.getNumOperands()) {
2295 report(msg: "Too few operands", MI);
2296 OS << MCID.getNumOperands() << " operands expected, but "
2297 << MI->getNumOperands() << " given.\n";
2298 }
2299
2300 if (MI->getFlag(Flag: MachineInstr::NoConvergent) && !MCID.isConvergent())
2301 report(msg: "NoConvergent flag expected only on convergent instructions.", MI);
2302
2303 if (MI->isPHI()) {
2304 if (MF->getProperties().hasNoPHIs())
2305 report(msg: "Found PHI instruction with NoPHIs property set", MI);
2306
2307 if (FirstNonPHI)
2308 report(msg: "Found PHI instruction after non-PHI", MI);
2309 } else if (FirstNonPHI == nullptr)
2310 FirstNonPHI = MI;
2311
2312 // Check the tied operands.
2313 if (MI->isInlineAsm())
2314 verifyInlineAsm(MI);
2315
2316 // Check that unspillable terminators define a reg and have at most one use.
2317 if (TII->isUnspillableTerminator(MI)) {
2318 if (!MI->getOperand(i: 0).isReg() || !MI->getOperand(i: 0).isDef())
2319 report(msg: "Unspillable Terminator does not define a reg", MI);
2320 Register Def = MI->getOperand(i: 0).getReg();
2321 if (Def.isVirtual() && !MF->getProperties().hasNoPHIs() &&
2322 std::distance(first: MRI->use_nodbg_begin(RegNo: Def), last: MRI->use_nodbg_end()) > 1)
2323 report(msg: "Unspillable Terminator expected to have at most one use!", MI);
2324 }
2325
2326 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
2327 // DBG_VALUEs: these are convenient to use in tests, but should never get
2328 // generated.
2329 if (MI->isDebugValue() && MI->getNumOperands() == 4)
2330 if (!MI->getDebugLoc())
2331 report(msg: "Missing DebugLoc for debug instruction", MI);
2332
2333 // Meta instructions should never be the subject of debug value tracking,
2334 // they don't create a value in the output program at all.
2335 if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
2336 report(msg: "Metadata instruction should not have a value tracking number", MI);
2337
2338 // Check the MachineMemOperands for basic consistency.
2339 for (MachineMemOperand *Op : MI->memoperands()) {
2340 if (Op->isLoad() && !MI->mayLoad())
2341 report(msg: "Missing mayLoad flag", MI);
2342 if (Op->isStore() && !MI->mayStore())
2343 report(msg: "Missing mayStore flag", MI);
2344 }
2345
2346 // Debug values must not have a slot index.
2347 // Other instructions must have one, unless they are inside a bundle.
2348 if (LiveInts) {
2349 bool mapped = !LiveInts->isNotInMIMap(Instr: *MI);
2350 if (MI->isDebugOrPseudoInstr()) {
2351 if (mapped)
2352 report(msg: "Debug instruction has a slot index", MI);
2353 } else if (MI->isInsideBundle()) {
2354 if (mapped)
2355 report(msg: "Instruction inside bundle has a slot index", MI);
2356 } else {
2357 if (!mapped)
2358 report(msg: "Missing slot index", MI);
2359 }
2360 }
2361
2362 unsigned Opc = MCID.getOpcode();
2363 if (isPreISelGenericOpcode(Opcode: Opc) || isPreISelGenericOptimizationHint(Opcode: Opc)) {
2364 verifyPreISelGenericInstruction(MI);
2365 return;
2366 }
2367
2368 StringRef ErrorInfo;
2369 if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo))
2370 report(msg: ErrorInfo.data(), MI);
2371
2372 // Verify properties of various specific instruction types
2373 switch (MI->getOpcode()) {
2374 case TargetOpcode::COPY: {
2375 const MachineOperand &DstOp = MI->getOperand(i: 0);
2376 const MachineOperand &SrcOp = MI->getOperand(i: 1);
2377 const Register SrcReg = SrcOp.getReg();
2378 const Register DstReg = DstOp.getReg();
2379
2380 LLT DstTy = MRI->getType(Reg: DstReg);
2381 LLT SrcTy = MRI->getType(Reg: SrcReg);
2382 if (SrcTy.isValid() && DstTy.isValid()) {
2383 // If both types are valid, check that the types are the same.
2384 if (SrcTy != DstTy) {
2385 report(msg: "Copy Instruction is illegal with mismatching types", MI);
2386 OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n';
2387 }
2388
2389 break;
2390 }
2391
2392 if (!SrcTy.isValid() && !DstTy.isValid())
2393 break;
2394
2395 // If we have only one valid type, this is likely a copy between a virtual
2396 // and physical register.
2397 TypeSize SrcSize = TypeSize::getZero();
2398 TypeSize DstSize = TypeSize::getZero();
2399 if (SrcReg.isPhysical() && DstTy.isValid()) {
2400 const TargetRegisterClass *SrcRC =
2401 TRI->getMinimalPhysRegClassLLT(Reg: SrcReg, Ty: DstTy);
2402 if (!SrcRC)
2403 SrcSize = TRI->getRegSizeInBits(Reg: SrcReg, MRI: *MRI);
2404 } else {
2405 SrcSize = TRI->getRegSizeInBits(Reg: SrcReg, MRI: *MRI);
2406 }
2407
2408 if (DstReg.isPhysical() && SrcTy.isValid()) {
2409 const TargetRegisterClass *DstRC =
2410 TRI->getMinimalPhysRegClassLLT(Reg: DstReg, Ty: SrcTy);
2411 if (!DstRC)
2412 DstSize = TRI->getRegSizeInBits(Reg: DstReg, MRI: *MRI);
2413 } else {
2414 DstSize = TRI->getRegSizeInBits(Reg: DstReg, MRI: *MRI);
2415 }
2416
2417 // The next two checks allow COPY between physical and virtual registers,
2418 // when the virtual register has a scalable size and the physical register
2419 // has a fixed size. These checks allow COPY between *potentially*
2420 // mismatched sizes. However, once RegisterBankSelection occurs,
2421 // MachineVerifier should be able to resolve a fixed size for the scalable
2422 // vector, and at that point this function will know for sure whether the
2423 // sizes are mismatched and correctly report a size mismatch.
2424 if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() &&
2425 !SrcSize.isScalable())
2426 break;
2427 if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() &&
2428 !DstSize.isScalable())
2429 break;
2430
2431 if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) {
2432 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
2433 report(msg: "Copy Instruction is illegal with mismatching sizes", MI);
2434 OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n';
2435 }
2436 }
2437 break;
2438 }
2439 case TargetOpcode::COPY_LANEMASK: {
2440 const MachineOperand &DstOp = MI->getOperand(i: 0);
2441 const MachineOperand &SrcOp = MI->getOperand(i: 1);
2442 const MachineOperand &LaneMaskOp = MI->getOperand(i: 2);
2443 const Register SrcReg = SrcOp.getReg();
2444 const LaneBitmask LaneMask = LaneMaskOp.getLaneMask();
2445 LaneBitmask SrcMaxLaneMask = LaneBitmask::getAll();
2446
2447 if (DstOp.getSubReg())
2448 report(msg: "COPY_LANEMASK must not use a subregister index", MO: &DstOp, MONum: 0);
2449
2450 if (SrcOp.getSubReg())
2451 report(msg: "COPY_LANEMASK must not use a subregister index", MO: &SrcOp, MONum: 1);
2452
2453 if (LaneMask.none())
2454 report(msg: "COPY_LANEMASK must read at least one lane", MI);
2455
2456 if (SrcReg.isPhysical()) {
2457 const TargetRegisterClass *SrcRC = TRI->getMinimalPhysRegClass(Reg: SrcReg);
2458 if (SrcRC)
2459 SrcMaxLaneMask = SrcRC->getLaneMask();
2460 } else {
2461 SrcMaxLaneMask = MRI->getMaxLaneMaskForVReg(Reg: SrcReg);
2462 }
2463
2464 // COPY_LANEMASK should be used only for partial copy. For full
2465 // copy, one should strictly use the COPY instruction.
2466 if (SrcMaxLaneMask == LaneMask)
2467 report(msg: "COPY_LANEMASK cannot be used to do full copy", MI);
2468
2469 // If LaneMask is greater than the SrcMaxLaneMask, it implies
2470 // COPY_LANEMASK is attempting to read from the lanes that
2471 // don't exists in the source register.
2472 if (SrcMaxLaneMask < LaneMask)
2473 report(msg: "COPY_LANEMASK attempts to read from the lanes that "
2474 "don't exist in the source register",
2475 MI);
2476
2477 break;
2478 }
2479 case TargetOpcode::STATEPOINT: {
2480 StatepointOpers SO(MI);
2481 if (!MI->getOperand(i: SO.getIDPos()).isImm() ||
2482 !MI->getOperand(i: SO.getNBytesPos()).isImm() ||
2483 !MI->getOperand(i: SO.getNCallArgsPos()).isImm()) {
2484 report(msg: "meta operands to STATEPOINT not constant!", MI);
2485 break;
2486 }
2487
2488 auto VerifyStackMapConstant = [&](unsigned Offset) {
2489 if (Offset >= MI->getNumOperands()) {
2490 report(msg: "stack map constant to STATEPOINT is out of range!", MI);
2491 return;
2492 }
2493 if (!MI->getOperand(i: Offset - 1).isImm() ||
2494 MI->getOperand(i: Offset - 1).getImm() != StackMaps::ConstantOp ||
2495 !MI->getOperand(i: Offset).isImm())
2496 report(msg: "stack map constant to STATEPOINT not well formed!", MI);
2497 };
2498 VerifyStackMapConstant(SO.getCCIdx());
2499 VerifyStackMapConstant(SO.getFlagsIdx());
2500 VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
2501 VerifyStackMapConstant(SO.getNumGCPtrIdx());
2502 VerifyStackMapConstant(SO.getNumAllocaIdx());
2503 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
2504
2505 // Verify that all explicit statepoint defs are tied to gc operands as
2506 // they are expected to be a relocation of gc operands.
2507 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
2508 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
2509 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
2510 unsigned UseOpIdx;
2511 if (!MI->isRegTiedToUseOperand(DefOpIdx: Idx, UseOpIdx: &UseOpIdx)) {
2512 report(msg: "STATEPOINT defs expected to be tied", MI);
2513 break;
2514 }
2515 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
2516 report(msg: "STATEPOINT def tied to non-gc operand", MI);
2517 break;
2518 }
2519 }
2520
2521 // TODO: verify we have properly encoded deopt arguments
2522 } break;
2523 case TargetOpcode::INSERT_SUBREG: {
2524 unsigned InsertedSize;
2525 if (unsigned SubIdx = MI->getOperand(i: 2).getSubReg())
2526 InsertedSize = TRI->getSubRegIdxSize(Idx: SubIdx);
2527 else
2528 InsertedSize = TRI->getRegSizeInBits(Reg: MI->getOperand(i: 2).getReg(), MRI: *MRI);
2529 unsigned SubRegSize = TRI->getSubRegIdxSize(Idx: MI->getOperand(i: 3).getImm());
2530 if (SubRegSize < InsertedSize) {
2531 report(msg: "INSERT_SUBREG expected inserted value to have equal or lesser "
2532 "size than the subreg it was inserted into", MI);
2533 break;
2534 }
2535 } break;
2536 case TargetOpcode::REG_SEQUENCE: {
2537 unsigned NumOps = MI->getNumOperands();
2538 if (!(NumOps & 1)) {
2539 report(msg: "Invalid number of operands for REG_SEQUENCE", MI);
2540 break;
2541 }
2542
2543 for (unsigned I = 1; I != NumOps; I += 2) {
2544 const MachineOperand &RegOp = MI->getOperand(i: I);
2545 const MachineOperand &SubRegOp = MI->getOperand(i: I + 1);
2546
2547 if (!RegOp.isReg())
2548 report(msg: "Invalid register operand for REG_SEQUENCE", MO: &RegOp, MONum: I);
2549
2550 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 ||
2551 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) {
2552 report(msg: "Invalid subregister index operand for REG_SEQUENCE",
2553 MO: &SubRegOp, MONum: I + 1);
2554 }
2555 }
2556
2557 Register DstReg = MI->getOperand(i: 0).getReg();
2558 if (DstReg.isPhysical())
2559 report(msg: "REG_SEQUENCE does not support physical register results", MI);
2560
2561 if (MI->getOperand(i: 0).getSubReg())
2562 report(msg: "Invalid subreg result for REG_SEQUENCE", MI);
2563
2564 break;
2565 }
2566 }
2567}
2568
2569void
2570MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
2571 const MachineInstr *MI = MO->getParent();
2572 const MCInstrDesc &MCID = MI->getDesc();
2573 unsigned NumDefs = MCID.getNumDefs();
2574 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
2575 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
2576
2577 // The first MCID.NumDefs operands must be explicit register defines
2578 if (MONum < NumDefs) {
2579 const MCOperandInfo &MCOI = MCID.operands()[MONum];
2580 if (!MO->isReg())
2581 report(msg: "Explicit definition must be a register", MO, MONum);
2582 else if (!MO->isDef() && !MCOI.isOptionalDef())
2583 report(msg: "Explicit definition marked as use", MO, MONum);
2584 else if (MO->isImplicit())
2585 report(msg: "Explicit definition marked as implicit", MO, MONum);
2586 } else if (MONum < MCID.getNumOperands()) {
2587 const MCOperandInfo &MCOI = MCID.operands()[MONum];
2588 // Don't check if it's the last operand in a variadic instruction. See,
2589 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
2590 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
2591 if (!IsOptional) {
2592 if (MO->isReg()) {
2593 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
2594 report(msg: "Explicit operand marked as def", MO, MONum);
2595 if (MO->isImplicit())
2596 report(msg: "Explicit operand marked as implicit", MO, MONum);
2597 }
2598
2599 // Check that an instruction has register operands only as expected.
2600 if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
2601 !MO->isReg() && !MO->isFI())
2602 report(msg: "Expected a register operand.", MO, MONum);
2603 if (MO->isReg()) {
2604 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
2605 (MCOI.OperandType == MCOI::OPERAND_PCREL &&
2606 !TII->isPCRelRegisterOperandLegal(MO: *MO)))
2607 report(msg: "Expected a non-register operand.", MO, MONum);
2608 }
2609 }
2610
2611 int TiedTo = MCID.getOperandConstraint(OpNum: MONum, Constraint: MCOI::TIED_TO);
2612 if (TiedTo != -1) {
2613 if (!MO->isReg())
2614 report(msg: "Tied use must be a register", MO, MONum);
2615 else if (!MO->isTied())
2616 report(msg: "Operand should be tied", MO, MONum);
2617 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(OpIdx: MONum))
2618 report(msg: "Tied def doesn't match MCInstrDesc", MO, MONum);
2619 else if (MO->getReg().isPhysical()) {
2620 const MachineOperand &MOTied = MI->getOperand(i: TiedTo);
2621 if (!MOTied.isReg())
2622 report(msg: "Tied counterpart must be a register", MO: &MOTied, MONum: TiedTo);
2623 else if (MOTied.getReg().isPhysical() &&
2624 MO->getReg() != MOTied.getReg())
2625 report(msg: "Tied physical registers must match.", MO: &MOTied, MONum: TiedTo);
2626 }
2627 } else if (MO->isReg() && MO->isTied())
2628 report(msg: "Explicit operand should not be tied", MO, MONum);
2629 } else if (!MI->isVariadic()) {
2630 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
2631 if (!MO->isValidExcessOperand())
2632 report(msg: "Extra explicit operand on non-variadic instruction", MO, MONum);
2633 }
2634
2635 // Verify earlyClobber def operand
2636 if (MCID.getOperandConstraint(OpNum: MONum, Constraint: MCOI::EARLY_CLOBBER) != -1) {
2637 if (!MO->isReg())
2638 report(msg: "Early clobber must be a register", MI);
2639 if (!MO->isEarlyClobber())
2640 report(msg: "Missing earlyClobber flag", MI);
2641 }
2642
2643 switch (MO->getType()) {
2644 case MachineOperand::MO_Register: {
2645 // Verify debug flag on debug instructions. Check this first because reg0
2646 // indicates an undefined debug value.
2647 if (MI->isDebugInstr() && MO->isUse()) {
2648 if (!MO->isDebug())
2649 report(msg: "Register operand must be marked debug", MO, MONum);
2650 } else if (MO->isDebug()) {
2651 report(msg: "Register operand must not be marked debug", MO, MONum);
2652 }
2653
2654 const Register Reg = MO->getReg();
2655 if (!Reg)
2656 return;
2657 if (MRI->tracksLiveness() && !MI->isDebugInstr())
2658 checkLiveness(MO, MONum);
2659
2660 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
2661 MO->getReg().isVirtual()) // TODO: Apply to physregs too
2662 report(msg: "Undef virtual register def operands require a subregister", MO, MONum);
2663
2664 // Verify the consistency of tied operands.
2665 if (MO->isTied()) {
2666 unsigned OtherIdx = MI->findTiedOperandIdx(OpIdx: MONum);
2667 const MachineOperand &OtherMO = MI->getOperand(i: OtherIdx);
2668 if (!OtherMO.isReg())
2669 report(msg: "Must be tied to a register", MO, MONum);
2670 if (!OtherMO.isTied())
2671 report(msg: "Missing tie flags on tied operand", MO, MONum);
2672 if (MI->findTiedOperandIdx(OpIdx: OtherIdx) != MONum)
2673 report(msg: "Inconsistent tie links", MO, MONum);
2674 if (MONum < MCID.getNumDefs()) {
2675 if (OtherIdx < MCID.getNumOperands()) {
2676 if (-1 == MCID.getOperandConstraint(OpNum: OtherIdx, Constraint: MCOI::TIED_TO))
2677 report(msg: "Explicit def tied to explicit use without tie constraint",
2678 MO, MONum);
2679 } else {
2680 if (!OtherMO.isImplicit())
2681 report(msg: "Explicit def should be tied to implicit use", MO, MONum);
2682 }
2683 }
2684 }
2685
2686 // Verify two-address constraints after the twoaddressinstruction pass.
2687 // Both twoaddressinstruction pass and phi-node-elimination pass call
2688 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification
2689 // after twoaddressinstruction pass not after phi-node-elimination pass. So
2690 // we shouldn't use the IsSSA as the condition, we should based on
2691 // TiedOpsRewritten property to verify two-address constraints, this
2692 // property will be set in twoaddressinstruction pass.
2693 unsigned DefIdx;
2694 if (MF->getProperties().hasTiedOpsRewritten() && MO->isUse() &&
2695 MI->isRegTiedToDefOperand(UseOpIdx: MONum, DefOpIdx: &DefIdx) &&
2696 Reg != MI->getOperand(i: DefIdx).getReg())
2697 report(msg: "Two-address instruction operands must be identical", MO, MONum);
2698
2699 // Check register classes.
2700 unsigned SubIdx = MO->getSubReg();
2701
2702 if (Reg.isPhysical()) {
2703 if (SubIdx) {
2704 report(msg: "Illegal subregister index for physical register", MO, MONum);
2705 return;
2706 }
2707 if (MONum < MCID.getNumOperands()) {
2708 if (const TargetRegisterClass *DRC = TII->getRegClass(MCID, OpNum: MONum)) {
2709 if (!DRC->contains(Reg)) {
2710 report(msg: "Illegal physical register for instruction", MO, MONum);
2711 OS << printReg(Reg, TRI) << " is not a "
2712 << TRI->getRegClassName(Class: DRC) << " register.\n";
2713 }
2714 }
2715 }
2716 if (MO->isRenamable()) {
2717 if (MRI->isReserved(PhysReg: Reg)) {
2718 report(msg: "isRenamable set on reserved register", MO, MONum);
2719 return;
2720 }
2721 }
2722 } else {
2723 // Virtual register.
2724 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2725 if (!RC) {
2726 // This is a generic virtual register.
2727
2728 // Do not allow undef uses for generic virtual registers. This ensures
2729 // getVRegDef can never fail and return null on a generic register.
2730 //
2731 // FIXME: This restriction should probably be broadened to all SSA
2732 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2733 // run on the SSA function just before phi elimination.
2734 if (MO->isUndef())
2735 report(msg: "Generic virtual register use cannot be undef", MO, MONum);
2736
2737 // Debug value instruction is permitted to use undefined vregs.
2738 // This is a performance measure to skip the overhead of immediately
2739 // pruning unused debug operands. The final undef substitution occurs
2740 // when debug values are allocated in LDVImpl::handleDebugValue, so
2741 // these verifications always apply after this pass.
2742 if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2743 !MI->isDebugValue() || !MRI->def_empty(RegNo: Reg)) {
2744 // If we're post-Select, we can't have gvregs anymore.
2745 if (isFunctionSelected) {
2746 report(msg: "Generic virtual register invalid in a Selected function",
2747 MO, MONum);
2748 return;
2749 }
2750
2751 // The gvreg must have a type and it must not have a SubIdx.
2752 LLT Ty = MRI->getType(Reg);
2753 if (!Ty.isValid()) {
2754 report(msg: "Generic virtual register must have a valid type", MO,
2755 MONum);
2756 return;
2757 }
2758
2759 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2760 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo();
2761
2762 // If we're post-RegBankSelect, the gvreg must have a bank.
2763 if (!RegBank && isFunctionRegBankSelected) {
2764 report(msg: "Generic virtual register must have a bank in a "
2765 "RegBankSelected function",
2766 MO, MONum);
2767 return;
2768 }
2769
2770 // Make sure the register fits into its register bank if any.
2771 if (RegBank && Ty.isValid() && !Ty.isScalableVector() &&
2772 RBI->getMaximumSize(RegBankID: RegBank->getID()) < Ty.getSizeInBits()) {
2773 report(msg: "Register bank is too small for virtual register", MO,
2774 MONum);
2775 OS << "Register bank " << RegBank->getName() << " too small("
2776 << RBI->getMaximumSize(RegBankID: RegBank->getID()) << ") to fit "
2777 << Ty.getSizeInBits() << "-bits\n";
2778 return;
2779 }
2780 }
2781
2782 if (SubIdx) {
2783 report(msg: "Generic virtual register does not allow subregister index", MO,
2784 MONum);
2785 return;
2786 }
2787
2788 // If this is a target specific instruction and this operand
2789 // has register class constraint, the virtual register must
2790 // comply to it.
2791 if (!isPreISelGenericOpcode(Opcode: MCID.getOpcode()) &&
2792 MONum < MCID.getNumOperands() && TII->getRegClass(MCID, OpNum: MONum)) {
2793 report(msg: "Virtual register does not match instruction constraint", MO,
2794 MONum);
2795 OS << "Expect register class "
2796 << TRI->getRegClassName(Class: TII->getRegClass(MCID, OpNum: MONum))
2797 << " but got nothing\n";
2798 return;
2799 }
2800
2801 break;
2802 }
2803 if (SubIdx) {
2804 const TargetRegisterClass *SRC =
2805 TRI->getSubClassWithSubReg(RC, Idx: SubIdx);
2806 if (!SRC) {
2807 report(msg: "Invalid subregister index for virtual register", MO, MONum);
2808 OS << "Register class " << TRI->getRegClassName(Class: RC)
2809 << " does not support subreg index "
2810 << TRI->getSubRegIndexName(SubIdx) << '\n';
2811 return;
2812 }
2813 if (RC != SRC) {
2814 report(msg: "Invalid register class for subregister index", MO, MONum);
2815 OS << "Register class " << TRI->getRegClassName(Class: RC)
2816 << " does not fully support subreg index "
2817 << TRI->getSubRegIndexName(SubIdx) << '\n';
2818 return;
2819 }
2820 }
2821 if (MONum < MCID.getNumOperands()) {
2822 if (const TargetRegisterClass *DRC = TII->getRegClass(MCID, OpNum: MONum)) {
2823 if (SubIdx) {
2824 const TargetRegisterClass *SuperRC =
2825 TRI->getLargestLegalSuperClass(RC, *MF);
2826 if (!SuperRC) {
2827 report(msg: "No largest legal super class exists.", MO, MONum);
2828 return;
2829 }
2830 DRC = TRI->getMatchingSuperRegClass(A: SuperRC, B: DRC, Idx: SubIdx);
2831 if (!DRC) {
2832 report(msg: "No matching super-reg register class.", MO, MONum);
2833 return;
2834 }
2835 }
2836 if (!RC->hasSuperClassEq(RC: DRC)) {
2837 report(msg: "Illegal virtual register for instruction", MO, MONum);
2838 OS << "Expected a " << TRI->getRegClassName(Class: DRC)
2839 << " register, but got a " << TRI->getRegClassName(Class: RC)
2840 << " register\n";
2841 }
2842 }
2843 }
2844 }
2845 break;
2846 }
2847
2848 case MachineOperand::MO_RegisterMask:
2849 regMasks.push_back(Elt: MO->getRegMask());
2850 break;
2851
2852 case MachineOperand::MO_MachineBasicBlock:
2853 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MBB: MI->getParent()))
2854 report(msg: "PHI operand is not in the CFG", MO, MONum);
2855 break;
2856
2857 case MachineOperand::MO_FrameIndex:
2858 if (LiveStks && LiveStks->hasInterval(Slot: MO->getIndex()) &&
2859 LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) {
2860 int FI = MO->getIndex();
2861 LiveInterval &LI = LiveStks->getInterval(Slot: FI);
2862 SlotIndex Idx = LiveInts->getInstructionIndex(Instr: *MI);
2863
2864 bool stores = MI->mayStore();
2865 bool loads = MI->mayLoad();
2866 // For a memory-to-memory move, we need to check if the frame
2867 // index is used for storing or loading, by inspecting the
2868 // memory operands.
2869 if (stores && loads) {
2870 for (auto *MMO : MI->memoperands()) {
2871 const PseudoSourceValue *PSV = MMO->getPseudoValue();
2872 if (PSV == nullptr) continue;
2873 const FixedStackPseudoSourceValue *Value =
2874 dyn_cast<FixedStackPseudoSourceValue>(Val: PSV);
2875 if (Value == nullptr) continue;
2876 if (Value->getFrameIndex() != FI) continue;
2877
2878 if (MMO->isStore())
2879 loads = false;
2880 else
2881 stores = false;
2882 break;
2883 }
2884 if (loads == stores)
2885 report(msg: "Missing fixed stack memoperand.", MI);
2886 }
2887 if (loads && !LI.liveAt(index: Idx.getRegSlot(EC: true))) {
2888 report(msg: "Instruction loads from dead spill slot", MO, MONum);
2889 OS << "Live stack: " << LI << '\n';
2890 }
2891 if (stores && !LI.liveAt(index: Idx.getRegSlot())) {
2892 report(msg: "Instruction stores to dead spill slot", MO, MONum);
2893 OS << "Live stack: " << LI << '\n';
2894 }
2895 }
2896 break;
2897
2898 case MachineOperand::MO_CFIIndex:
2899 if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2900 report(msg: "CFI instruction has invalid index", MO, MONum);
2901 break;
2902
2903 default:
2904 break;
2905 }
2906}
2907
2908void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2909 unsigned MONum, SlotIndex UseIdx,
2910 const LiveRange &LR,
2911 VirtRegOrUnit VRegOrUnit,
2912 LaneBitmask LaneMask) {
2913 const MachineInstr *MI = MO->getParent();
2914
2915 if (!LR.verify()) {
2916 report(msg: "invalid live range", MO, MONum);
2917 report_context_liverange(LR);
2918 report_context_vreg_regunit(VRegOrUnit);
2919 report_context(Pos: UseIdx);
2920 return;
2921 }
2922
2923 LiveQueryResult LRQ = LR.Query(Idx: UseIdx);
2924 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut());
2925 // Check if we have a segment at the use, note however that we only need one
2926 // live subregister range, the others may be dead.
2927 if (!HasValue && LaneMask.none()) {
2928 report(msg: "No live segment at use", MO, MONum);
2929 report_context_liverange(LR);
2930 report_context_vreg_regunit(VRegOrUnit);
2931 report_context(Pos: UseIdx);
2932 }
2933 if (MO->isKill() && !LRQ.isKill()) {
2934 report(msg: "Live range continues after kill flag", MO, MONum);
2935 report_context_liverange(LR);
2936 report_context_vreg_regunit(VRegOrUnit);
2937 if (LaneMask.any())
2938 report_context_lanemask(LaneMask);
2939 report_context(Pos: UseIdx);
2940 }
2941}
2942
2943void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2944 unsigned MONum, SlotIndex DefIdx,
2945 const LiveRange &LR,
2946 VirtRegOrUnit VRegOrUnit,
2947 bool SubRangeCheck,
2948 LaneBitmask LaneMask) {
2949 if (!LR.verify()) {
2950 report(msg: "invalid live range", MO, MONum);
2951 report_context_liverange(LR);
2952 report_context_vreg_regunit(VRegOrUnit);
2953 if (LaneMask.any())
2954 report_context_lanemask(LaneMask);
2955 report_context(Pos: DefIdx);
2956 }
2957
2958 if (const VNInfo *VNI = LR.getVNInfoAt(Idx: DefIdx)) {
2959 // The LR can correspond to the whole reg and its def slot is not obliged
2960 // to be the same as the MO' def slot. E.g. when we check here "normal"
2961 // subreg MO but there is other EC subreg MO in the same instruction so the
2962 // whole reg has EC def slot and differs from the currently checked MO' def
2963 // slot. For example:
2964 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r
2965 // Check that there is an early-clobber def of the same superregister
2966 // somewhere is performed in visitMachineFunctionAfter()
2967 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) ||
2968 !SlotIndex::isSameInstr(A: VNI->def, B: DefIdx) ||
2969 (VNI->def != DefIdx &&
2970 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) {
2971 report(msg: "Inconsistent valno->def", MO, MONum);
2972 report_context_liverange(LR);
2973 report_context_vreg_regunit(VRegOrUnit);
2974 if (LaneMask.any())
2975 report_context_lanemask(LaneMask);
2976 report_context(VNI: *VNI);
2977 report_context(Pos: DefIdx);
2978 }
2979 } else {
2980 report(msg: "No live segment at def", MO, MONum);
2981 report_context_liverange(LR);
2982 report_context_vreg_regunit(VRegOrUnit);
2983 if (LaneMask.any())
2984 report_context_lanemask(LaneMask);
2985 report_context(Pos: DefIdx);
2986 }
2987 // Check that, if the dead def flag is present, LiveInts agree.
2988 if (MO->isDead()) {
2989 LiveQueryResult LRQ = LR.Query(Idx: DefIdx);
2990 if (!LRQ.isDeadDef()) {
2991 assert(VRegOrUnit.isVirtualReg() && "Expecting a virtual register.");
2992 // A dead subreg def only tells us that the specific subreg is dead. There
2993 // could be other non-dead defs of other subregs, or we could have other
2994 // parts of the register being live through the instruction. So unless we
2995 // are checking liveness for a subrange it is ok for the live range to
2996 // continue, given that we have a dead def of a subregister.
2997 if (SubRangeCheck || MO->getSubReg() == 0) {
2998 report(msg: "Live range continues after dead def flag", MO, MONum);
2999 report_context_liverange(LR);
3000 report_context_vreg_regunit(VRegOrUnit);
3001 if (LaneMask.any())
3002 report_context_lanemask(LaneMask);
3003 }
3004 }
3005 }
3006}
3007
3008void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
3009 const MachineInstr *MI = MO->getParent();
3010 const Register Reg = MO->getReg();
3011 const unsigned SubRegIdx = MO->getSubReg();
3012
3013 const LiveInterval *LI = nullptr;
3014 if (LiveInts && Reg.isVirtual()) {
3015 if (LiveInts->hasInterval(Reg)) {
3016 LI = &LiveInts->getInterval(Reg);
3017 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
3018 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(VReg: Reg))
3019 report(msg: "Live interval for subreg operand has no subranges", MO, MONum);
3020 } else {
3021 report(msg: "Virtual register has no live interval", MO, MONum);
3022 }
3023 }
3024
3025 // Both use and def operands can read a register.
3026 if (MO->readsReg()) {
3027 if (MO->isKill())
3028 addRegWithSubRegs(RV&: regsKilled, Reg);
3029
3030 // Check that LiveVars knows this kill (unless we are inside a bundle, in
3031 // which case we have already checked that LiveVars knows any kills on the
3032 // bundle header instead).
3033 if (LiveVars && Reg.isVirtual() && MO->isKill() &&
3034 !MI->isBundledWithPred()) {
3035 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
3036 if (!is_contained(Range&: VI.Kills, Element: MI))
3037 report(msg: "Kill missing from LiveVariables", MO, MONum);
3038 }
3039
3040 // Check LiveInts liveness and kill.
3041 if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) {
3042 SlotIndex UseIdx;
3043 if (MI->isPHI()) {
3044 // PHI use occurs on the edge, so check for live out here instead.
3045 UseIdx = LiveInts->getMBBEndIdx(
3046 mbb: MI->getOperand(i: MONum + 1).getMBB()).getPrevSlot();
3047 } else {
3048 UseIdx = LiveInts->getInstructionIndex(Instr: *MI);
3049 }
3050 // Check the cached regunit intervals.
3051 if (Reg.isPhysical() && !isReserved(Reg)) {
3052 for (MCRegUnit Unit : TRI->regunits(Reg: Reg.asMCReg())) {
3053 if (MRI->isReservedRegUnit(Unit))
3054 continue;
3055 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit))
3056 checkLivenessAtUse(MO, MONum, UseIdx, LR: *LR, VRegOrUnit: VirtRegOrUnit(Unit));
3057 }
3058 }
3059
3060 if (Reg.isVirtual()) {
3061 // This is a virtual register interval.
3062 checkLivenessAtUse(MO, MONum, UseIdx, LR: *LI, VRegOrUnit: VirtRegOrUnit(Reg));
3063
3064 if (LI->hasSubRanges() && !MO->isDef()) {
3065 LaneBitmask MOMask = SubRegIdx != 0
3066 ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx)
3067 : MRI->getMaxLaneMaskForVReg(Reg);
3068 LaneBitmask LiveInMask;
3069 for (const LiveInterval::SubRange &SR : LI->subranges()) {
3070 if ((MOMask & SR.LaneMask).none())
3071 continue;
3072 checkLivenessAtUse(MO, MONum, UseIdx, LR: SR, VRegOrUnit: VirtRegOrUnit(Reg),
3073 LaneMask: SR.LaneMask);
3074 LiveQueryResult LRQ = SR.Query(Idx: UseIdx);
3075 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()))
3076 LiveInMask |= SR.LaneMask;
3077 }
3078 // At least parts of the register has to be live at the use.
3079 if ((LiveInMask & MOMask).none()) {
3080 report(msg: "No live subrange at use", MO, MONum);
3081 report_context(LI: *LI);
3082 report_context(Pos: UseIdx);
3083 }
3084 // For PHIs all lanes should be live
3085 if (MI->isPHI() && LiveInMask != MOMask) {
3086 report(msg: "Not all lanes of PHI source live at use", MO, MONum);
3087 report_context(LI: *LI);
3088 report_context(Pos: UseIdx);
3089 }
3090 }
3091 }
3092 }
3093
3094 // Use of a dead register.
3095 if (!regsLive.count(V: Reg)) {
3096 if (Reg.isPhysical()) {
3097 // Reserved registers may be used even when 'dead'.
3098 bool Bad = !isReserved(Reg);
3099 // We are fine if just any subregister has a defined value.
3100 if (Bad) {
3101
3102 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
3103 if (regsLive.count(V: SubReg)) {
3104 Bad = false;
3105 break;
3106 }
3107 }
3108 }
3109 // If there is an additional implicit-use of a super register we stop
3110 // here. By definition we are fine if the super register is not
3111 // (completely) dead, if the complete super register is dead we will
3112 // get a report for its operand.
3113 if (Bad) {
3114 for (const MachineOperand &MOP : MI->uses()) {
3115 if (!MOP.isReg() || !MOP.isImplicit())
3116 continue;
3117
3118 if (!MOP.getReg().isPhysical())
3119 continue;
3120
3121 if (MOP.getReg() != Reg &&
3122 all_of(Range: TRI->regunits(Reg), P: [&](const MCRegUnit RegUnit) {
3123 return llvm::is_contained(Range: TRI->regunits(Reg: MOP.getReg()),
3124 Element: RegUnit);
3125 }))
3126 Bad = false;
3127 }
3128 }
3129 if (Bad)
3130 report(msg: "Using an undefined physical register", MO, MONum);
3131 } else if (MRI->def_empty(RegNo: Reg)) {
3132 report(msg: "Reading virtual register without a def", MO, MONum);
3133 } else {
3134 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
3135 // We don't know which virtual registers are live in, so only complain
3136 // if vreg was killed in this MBB. Otherwise keep track of vregs that
3137 // must be live in. PHI instructions are handled separately.
3138 if (MInfo.regsKilled.count(V: Reg))
3139 report(msg: "Using a killed virtual register", MO, MONum);
3140 else if (!MI->isPHI())
3141 MInfo.vregsLiveIn.insert(KV: std::make_pair(x: Reg, y&: MI));
3142 }
3143 }
3144 }
3145
3146 if (MO->isDef()) {
3147 // Register defined.
3148 // TODO: verify that earlyclobber ops are not used.
3149 if (MO->isDead())
3150 addRegWithSubRegs(RV&: regsDead, Reg);
3151 else
3152 addRegWithSubRegs(RV&: regsDefined, Reg);
3153
3154 // Verify SSA form.
3155 if (MRI->isSSA() && Reg.isVirtual() &&
3156 std::next(x: MRI->def_begin(RegNo: Reg)) != MRI->def_end())
3157 report(msg: "Multiple virtual register defs in SSA form", MO, MONum);
3158
3159 // Check LiveInts for a live segment, but only for virtual registers.
3160 if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) {
3161 SlotIndex DefIdx = LiveInts->getInstructionIndex(Instr: *MI);
3162 DefIdx = DefIdx.getRegSlot(EC: MO->isEarlyClobber());
3163
3164 if (Reg.isVirtual()) {
3165 checkLivenessAtDef(MO, MONum, DefIdx, LR: *LI, VRegOrUnit: VirtRegOrUnit(Reg));
3166
3167 if (LI->hasSubRanges()) {
3168 LaneBitmask MOMask = SubRegIdx != 0
3169 ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx)
3170 : MRI->getMaxLaneMaskForVReg(Reg);
3171 for (const LiveInterval::SubRange &SR : LI->subranges()) {
3172 if ((SR.LaneMask & MOMask).none())
3173 continue;
3174 checkLivenessAtDef(MO, MONum, DefIdx, LR: SR, VRegOrUnit: VirtRegOrUnit(Reg), SubRangeCheck: true,
3175 LaneMask: SR.LaneMask);
3176 }
3177 }
3178 }
3179 }
3180 }
3181}
3182
3183// This function gets called after visiting all instructions in a bundle. The
3184// argument points to the bundle header.
3185// Normal stand-alone instructions are also considered 'bundles', and this
3186// function is called for all of them.
3187void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
3188 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
3189 set_union(S1&: MInfo.regsKilled, S2: regsKilled);
3190 set_subtract(S1&: regsLive, S2: regsKilled); regsKilled.clear();
3191 // Kill any masked registers.
3192 while (!regMasks.empty()) {
3193 const uint32_t *Mask = regMasks.pop_back_val();
3194 for (Register Reg : regsLive)
3195 if (Reg.isPhysical() &&
3196 MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg: Reg.asMCReg()))
3197 regsDead.push_back(Elt: Reg);
3198 }
3199 set_subtract(S1&: regsLive, S2: regsDead); regsDead.clear();
3200 set_union(S1&: regsLive, S2: regsDefined); regsDefined.clear();
3201}
3202
3203void
3204MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
3205 MBBInfoMap[MBB].regsLiveOut = regsLive;
3206 regsLive.clear();
3207
3208 if (Indexes) {
3209 SlotIndex stop = Indexes->getMBBEndIdx(mbb: MBB);
3210 if (!(stop > lastIndex)) {
3211 report(msg: "Block ends before last instruction index", MBB);
3212 OS << "Block ends at " << stop << " last instruction was at " << lastIndex
3213 << '\n';
3214 }
3215 lastIndex = stop;
3216 }
3217}
3218
3219namespace {
3220// This implements a set of registers that serves as a filter: can filter other
3221// sets by passing through elements not in the filter and blocking those that
3222// are. Any filter implicitly includes the full set of physical registers upon
3223// creation, thus filtering them all out. The filter itself as a set only grows,
3224// and needs to be as efficient as possible.
3225struct VRegFilter {
3226 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
3227 // no duplicates. Both virtual and physical registers are fine.
3228 template <typename RegSetT> void add(const RegSetT &FromRegSet) {
3229 SmallVector<Register, 0> VRegsBuffer;
3230 filterAndAdd(FromRegSet, VRegsBuffer);
3231 }
3232 // Filter \p FromRegSet through the filter and append passed elements into \p
3233 // ToVRegs. All elements appended are then added to the filter itself.
3234 // \returns true if anything changed.
3235 template <typename RegSetT>
3236 bool filterAndAdd(const RegSetT &FromRegSet,
3237 SmallVectorImpl<Register> &ToVRegs) {
3238 unsigned SparseUniverse = Sparse.size();
3239 unsigned NewSparseUniverse = SparseUniverse;
3240 unsigned NewDenseSize = Dense.size();
3241 size_t Begin = ToVRegs.size();
3242 for (Register Reg : FromRegSet) {
3243 if (!Reg.isVirtual())
3244 continue;
3245 unsigned Index = Reg.virtRegIndex();
3246 if (Index < SparseUniverseMax) {
3247 if (Index < SparseUniverse && Sparse.test(Idx: Index))
3248 continue;
3249 NewSparseUniverse = std::max(a: NewSparseUniverse, b: Index + 1);
3250 } else {
3251 if (Dense.count(V: Reg))
3252 continue;
3253 ++NewDenseSize;
3254 }
3255 ToVRegs.push_back(Elt: Reg);
3256 }
3257 size_t End = ToVRegs.size();
3258 if (Begin == End)
3259 return false;
3260 // Reserving space in sets once performs better than doing so continuously
3261 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
3262 // tuned all the way down) and double iteration (the second one is over a
3263 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
3264 Sparse.resize(N: NewSparseUniverse);
3265 Dense.reserve(Size: NewDenseSize);
3266 for (unsigned I = Begin; I < End; ++I) {
3267 Register Reg = ToVRegs[I];
3268 unsigned Index = Reg.virtRegIndex();
3269 if (Index < SparseUniverseMax)
3270 Sparse.set(Index);
3271 else
3272 Dense.insert(V: Reg);
3273 }
3274 return true;
3275 }
3276
3277private:
3278 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
3279 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyond
3280 // are tracked by Dense. The only purpose of the threshold and the Dense set
3281 // is to have a reasonably growing memory usage in pathological cases (large
3282 // number of very sparse VRegFilter instances live at the same time). In
3283 // practice even in the worst-by-execution time cases having all elements
3284 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
3285 // space efficient than if tracked by Dense. The threshold is set to keep the
3286 // worst-case memory usage within 2x of figures determined empirically for
3287 // "all Dense" scenario in such worst-by-execution-time cases.
3288 BitVector Sparse;
3289 DenseSet<Register> Dense;
3290};
3291
3292// Implements both a transfer function and a (binary, in-place) join operator
3293// for a dataflow over register sets with set union join and filtering transfer
3294// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
3295// Maintains out_b as its state, allowing for O(n) iteration over it at any
3296// time, where n is the size of the set (as opposed to O(U) where U is the
3297// universe). filter_b implicitly contains all physical registers at all times.
3298class FilteringVRegSet {
3299 VRegFilter Filter;
3300 SmallVector<Register, 0> VRegs;
3301
3302public:
3303 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
3304 // Both virtual and physical registers are fine.
3305 template <typename RegSetT> void addToFilter(const RegSetT &RS) {
3306 Filter.add(RS);
3307 }
3308 // Passes \p RS through the filter_b (transfer function) and adds what's left
3309 // to itself (out_b).
3310 template <typename RegSetT> bool add(const RegSetT &RS) {
3311 // Double-duty the Filter: to maintain VRegs a set (and the join operation
3312 // a set union) just add everything being added here to the Filter as well.
3313 return Filter.filterAndAdd(RS, VRegs);
3314 }
3315 using const_iterator = decltype(VRegs)::const_iterator;
3316 const_iterator begin() const { return VRegs.begin(); }
3317 const_iterator end() const { return VRegs.end(); }
3318 size_t size() const { return VRegs.size(); }
3319};
3320} // namespace
3321
3322// Calculate the largest possible vregsPassed sets. These are the registers that
3323// can pass through an MBB live, but may not be live every time. It is assumed
3324// that all vregsPassed sets are empty before the call.
3325void MachineVerifier::calcRegsPassed() {
3326 if (MF->empty())
3327 // ReversePostOrderTraversal doesn't handle empty functions.
3328 return;
3329
3330 for (const MachineBasicBlock *MB :
3331 ReversePostOrderTraversal<const MachineFunction *>(MF)) {
3332 FilteringVRegSet VRegs;
3333 BBInfo &Info = MBBInfoMap[MB];
3334 assert(Info.reachable);
3335
3336 VRegs.addToFilter(RS: Info.regsKilled);
3337 VRegs.addToFilter(RS: Info.regsLiveOut);
3338 for (const MachineBasicBlock *Pred : MB->predecessors()) {
3339 const BBInfo &PredInfo = MBBInfoMap[Pred];
3340 if (!PredInfo.reachable)
3341 continue;
3342
3343 VRegs.add(RS: PredInfo.regsLiveOut);
3344 VRegs.add(RS: PredInfo.vregsPassed);
3345 }
3346 Info.vregsPassed.reserve(Size: VRegs.size());
3347 Info.vregsPassed.insert_range(R&: VRegs);
3348 }
3349}
3350
3351// Calculate the set of virtual registers that must be passed through each basic
3352// block in order to satisfy the requirements of successor blocks. This is very
3353// similar to calcRegsPassed, only backwards.
3354void MachineVerifier::calcRegsRequired() {
3355 // First push live-in regs to predecessors' vregsRequired.
3356 SmallPtrSet<const MachineBasicBlock*, 8> todo;
3357 for (const auto &MBB : *MF) {
3358 BBInfo &MInfo = MBBInfoMap[&MBB];
3359 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3360 BBInfo &PInfo = MBBInfoMap[Pred];
3361 if (PInfo.addRequired(RM: MInfo.vregsLiveIn))
3362 todo.insert(Ptr: Pred);
3363 }
3364
3365 // Handle the PHI node.
3366 for (const MachineInstr &MI : MBB.phis()) {
3367 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
3368 // Skip those Operands which are undef regs or not regs.
3369 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
3370 continue;
3371
3372 // Get register and predecessor for one PHI edge.
3373 Register Reg = MI.getOperand(i).getReg();
3374 const MachineBasicBlock *Pred = MI.getOperand(i: i + 1).getMBB();
3375
3376 BBInfo &PInfo = MBBInfoMap[Pred];
3377 if (PInfo.addRequired(Reg))
3378 todo.insert(Ptr: Pred);
3379 }
3380 }
3381 }
3382
3383 // Iteratively push vregsRequired to predecessors. This will converge to the
3384 // same final state regardless of DenseSet iteration order.
3385 while (!todo.empty()) {
3386 const MachineBasicBlock *MBB = *todo.begin();
3387 todo.erase(Ptr: MBB);
3388 BBInfo &MInfo = MBBInfoMap[MBB];
3389 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3390 if (Pred == MBB)
3391 continue;
3392 BBInfo &SInfo = MBBInfoMap[Pred];
3393 if (SInfo.addRequired(RS: MInfo.vregsRequired))
3394 todo.insert(Ptr: Pred);
3395 }
3396 }
3397}
3398
3399// Check PHI instructions at the beginning of MBB. It is assumed that
3400// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
3401void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
3402 BBInfo &MInfo = MBBInfoMap[&MBB];
3403
3404 SmallPtrSet<const MachineBasicBlock*, 8> seen;
3405 for (const MachineInstr &Phi : MBB) {
3406 if (!Phi.isPHI())
3407 break;
3408 seen.clear();
3409
3410 const MachineOperand &MODef = Phi.getOperand(i: 0);
3411 if (!MODef.isReg() || !MODef.isDef()) {
3412 report(msg: "Expected first PHI operand to be a register def", MO: &MODef, MONum: 0);
3413 continue;
3414 }
3415 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
3416 MODef.isEarlyClobber() || MODef.isDebug())
3417 report(msg: "Unexpected flag on PHI operand", MO: &MODef, MONum: 0);
3418 Register DefReg = MODef.getReg();
3419 if (!DefReg.isVirtual())
3420 report(msg: "Expected first PHI operand to be a virtual register", MO: &MODef, MONum: 0);
3421
3422 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
3423 const MachineOperand &MO0 = Phi.getOperand(i: I);
3424 if (!MO0.isReg()) {
3425 report(msg: "Expected PHI operand to be a register", MO: &MO0, MONum: I);
3426 continue;
3427 }
3428 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
3429 MO0.isDebug() || MO0.isTied())
3430 report(msg: "Unexpected flag on PHI operand", MO: &MO0, MONum: I);
3431
3432 const MachineOperand &MO1 = Phi.getOperand(i: I + 1);
3433 if (!MO1.isMBB()) {
3434 report(msg: "Expected PHI operand to be a basic block", MO: &MO1, MONum: I + 1);
3435 continue;
3436 }
3437
3438 const MachineBasicBlock &Pre = *MO1.getMBB();
3439 if (!Pre.isSuccessor(MBB: &MBB)) {
3440 report(msg: "PHI input is not a predecessor block", MO: &MO1, MONum: I + 1);
3441 continue;
3442 }
3443
3444 if (MInfo.reachable) {
3445 seen.insert(Ptr: &Pre);
3446 BBInfo &PrInfo = MBBInfoMap[&Pre];
3447 if (!MO0.isUndef() && PrInfo.reachable &&
3448 !PrInfo.isLiveOut(Reg: MO0.getReg()))
3449 report(msg: "PHI operand is not live-out from predecessor", MO: &MO0, MONum: I);
3450 }
3451 }
3452
3453 // Did we see all predecessors?
3454 if (MInfo.reachable) {
3455 for (MachineBasicBlock *Pred : MBB.predecessors()) {
3456 if (!seen.count(Ptr: Pred)) {
3457 report(msg: "Missing PHI operand", MI: &Phi);
3458 OS << printMBBReference(MBB: *Pred)
3459 << " is a predecessor according to the CFG.\n";
3460 }
3461 }
3462 }
3463 }
3464}
3465
3466static void
3467verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT,
3468 std::function<void(const Twine &Message)> FailureCB,
3469 raw_ostream &OS) {
3470 MachineConvergenceVerifier CV;
3471 CV.initialize(OS: &OS, FailureCB, F: MF);
3472
3473 for (const auto &MBB : MF) {
3474 CV.visit(BB: MBB);
3475 for (const auto &MI : MBB.instrs())
3476 CV.visit(I: MI);
3477 }
3478
3479 if (CV.sawTokens()) {
3480 DT.recalculate(Func&: const_cast<MachineFunction &>(MF));
3481 CV.verify(DT);
3482 }
3483}
3484
3485void MachineVerifier::visitMachineFunctionAfter() {
3486 auto FailureCB = [this](const Twine &Message) {
3487 report(msg: Message.str().c_str(), MF);
3488 };
3489 verifyConvergenceControl(MF: *MF, DT, FailureCB, OS);
3490
3491 calcRegsPassed();
3492
3493 for (const MachineBasicBlock &MBB : *MF)
3494 checkPHIOps(MBB);
3495
3496 // Now check liveness info if available
3497 calcRegsRequired();
3498
3499 // Check for killed virtual registers that should be live out.
3500 for (const auto &MBB : *MF) {
3501 BBInfo &MInfo = MBBInfoMap[&MBB];
3502 for (Register VReg : MInfo.vregsRequired)
3503 if (MInfo.regsKilled.count(V: VReg)) {
3504 report(msg: "Virtual register killed in block, but needed live out.", MBB: &MBB);
3505 OS << "Virtual register " << printReg(Reg: VReg)
3506 << " is used after the block.\n";
3507 }
3508 }
3509
3510 if (!MF->empty()) {
3511 BBInfo &MInfo = MBBInfoMap[&MF->front()];
3512 for (Register VReg : MInfo.vregsRequired) {
3513 report(msg: "Virtual register defs don't dominate all uses.", MF);
3514 report_context_vreg(VReg);
3515 }
3516 }
3517
3518 if (LiveVars)
3519 verifyLiveVariables();
3520 if (LiveInts)
3521 verifyLiveIntervals();
3522
3523 // Check live-in list of each MBB. If a register is live into MBB, check
3524 // that the register is in regsLiveOut of each predecessor block. Since
3525 // this must come from a definition in the predecessor or its live-in
3526 // list, this will catch a live-through case where the predecessor does not
3527 // have the register in its live-in list. This currently only checks
3528 // registers that have no aliases, are not allocatable and are not
3529 // reserved, which could mean a condition code register for instance.
3530 if (MRI->tracksLiveness())
3531 for (const auto &MBB : *MF)
3532 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
3533 MCRegister LiveInReg = P.PhysReg;
3534 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
3535 if (hasAliases || isAllocatable(Reg: LiveInReg) || isReserved(Reg: LiveInReg))
3536 continue;
3537 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3538 BBInfo &PInfo = MBBInfoMap[Pred];
3539 if (!PInfo.regsLiveOut.count(V: LiveInReg)) {
3540 report(msg: "Live in register not found to be live out from predecessor.",
3541 MBB: &MBB);
3542 OS << TRI->getName(RegNo: LiveInReg) << " not found to be live out from "
3543 << printMBBReference(MBB: *Pred) << '\n';
3544 }
3545 }
3546 }
3547
3548 for (auto CSInfo : MF->getCallSitesInfo())
3549 if (!CSInfo.first->isCall())
3550 report(msg: "Call site info referencing instruction that is not call", MF);
3551
3552 // If there's debug-info, check that we don't have any duplicate value
3553 // tracking numbers.
3554 if (MF->getFunction().getSubprogram()) {
3555 DenseSet<unsigned> SeenNumbers;
3556 for (const auto &MBB : *MF) {
3557 for (const auto &MI : MBB) {
3558 if (auto Num = MI.peekDebugInstrNum()) {
3559 auto Result = SeenNumbers.insert(V: (unsigned)Num);
3560 if (!Result.second)
3561 report(msg: "Instruction has a duplicated value tracking number", MI: &MI);
3562 }
3563 }
3564 }
3565 }
3566}
3567
3568void MachineVerifier::verifyLiveVariables() {
3569 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
3570 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3571 Register Reg = Register::index2VirtReg(Index: I);
3572 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
3573 for (const auto &MBB : *MF) {
3574 BBInfo &MInfo = MBBInfoMap[&MBB];
3575
3576 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
3577 if (MInfo.vregsRequired.count(V: Reg)) {
3578 if (!VI.AliveBlocks.test(Idx: MBB.getNumber())) {
3579 report(msg: "LiveVariables: Block missing from AliveBlocks", MBB: &MBB);
3580 OS << "Virtual register " << printReg(Reg)
3581 << " must be live through the block.\n";
3582 }
3583 } else {
3584 if (VI.AliveBlocks.test(Idx: MBB.getNumber())) {
3585 report(msg: "LiveVariables: Block should not be in AliveBlocks", MBB: &MBB);
3586 OS << "Virtual register " << printReg(Reg)
3587 << " is not needed live through the block.\n";
3588 }
3589 }
3590 }
3591 }
3592}
3593
3594void MachineVerifier::verifyLiveIntervals() {
3595 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
3596 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3597 Register Reg = Register::index2VirtReg(Index: I);
3598
3599 // Spilling and splitting may leave unused registers around. Skip them.
3600 if (MRI->reg_nodbg_empty(RegNo: Reg))
3601 continue;
3602
3603 if (!LiveInts->hasInterval(Reg)) {
3604 report(msg: "Missing live interval for virtual register", MF);
3605 OS << printReg(Reg, TRI) << " still has defs or uses\n";
3606 continue;
3607 }
3608
3609 const LiveInterval &LI = LiveInts->getInterval(Reg);
3610 assert(Reg == LI.reg() && "Invalid reg to interval mapping");
3611 verifyLiveInterval(LI);
3612 }
3613
3614 // Verify all the cached regunit intervals.
3615 for (MCRegUnit Unit : TRI->regunits())
3616 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit))
3617 verifyLiveRange(*LR, VirtRegOrUnit(Unit));
3618}
3619
3620void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
3621 const VNInfo *VNI,
3622 VirtRegOrUnit VRegOrUnit,
3623 LaneBitmask LaneMask) {
3624 if (VNI->isUnused())
3625 return;
3626
3627 const VNInfo *DefVNI = LR.getVNInfoAt(Idx: VNI->def);
3628
3629 if (!DefVNI) {
3630 report(msg: "Value not live at VNInfo def and not marked unused", MF);
3631 report_context(LR, VRegOrUnit, LaneMask);
3632 report_context(VNI: *VNI);
3633 return;
3634 }
3635
3636 if (DefVNI != VNI) {
3637 report(msg: "Live segment at def has different VNInfo", MF);
3638 report_context(LR, VRegOrUnit, LaneMask);
3639 report_context(VNI: *VNI);
3640 return;
3641 }
3642
3643 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: VNI->def);
3644 if (!MBB) {
3645 report(msg: "Invalid VNInfo definition index", MF);
3646 report_context(LR, VRegOrUnit, LaneMask);
3647 report_context(VNI: *VNI);
3648 return;
3649 }
3650
3651 if (VNI->isPHIDef()) {
3652 if (VNI->def != LiveInts->getMBBStartIdx(mbb: MBB)) {
3653 report(msg: "PHIDef VNInfo is not defined at MBB start", MBB);
3654 report_context(LR, VRegOrUnit, LaneMask);
3655 report_context(VNI: *VNI);
3656 }
3657 return;
3658 }
3659
3660 // Non-PHI def.
3661 const MachineInstr *MI = LiveInts->getInstructionFromIndex(index: VNI->def);
3662 if (!MI) {
3663 report(msg: "No instruction at VNInfo def index", MBB);
3664 report_context(LR, VRegOrUnit, LaneMask);
3665 report_context(VNI: *VNI);
3666 return;
3667 }
3668
3669 bool hasDef = false;
3670 bool isEarlyClobber = false;
3671 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3672 if (!MOI->isReg() || !MOI->isDef())
3673 continue;
3674 if (VRegOrUnit.isVirtualReg()) {
3675 if (MOI->getReg() != VRegOrUnit.asVirtualReg())
3676 continue;
3677 } else {
3678 if (!MOI->getReg().isPhysical() ||
3679 !TRI->hasRegUnit(Reg: MOI->getReg(), RegUnit: VRegOrUnit.asMCRegUnit()))
3680 continue;
3681 }
3682 if (LaneMask.any() &&
3683 (TRI->getSubRegIndexLaneMask(SubIdx: MOI->getSubReg()) & LaneMask).none())
3684 continue;
3685 hasDef = true;
3686 if (MOI->isEarlyClobber())
3687 isEarlyClobber = true;
3688 }
3689
3690 if (!hasDef) {
3691 report(msg: "Defining instruction does not modify register", MI);
3692 report_context(LR, VRegOrUnit, LaneMask);
3693 report_context(VNI: *VNI);
3694 }
3695
3696 // Early clobber defs begin at USE slots, but other defs must begin at
3697 // DEF slots.
3698 if (isEarlyClobber) {
3699 if (!VNI->def.isEarlyClobber()) {
3700 report(msg: "Early clobber def must be at an early-clobber slot", MBB);
3701 report_context(LR, VRegOrUnit, LaneMask);
3702 report_context(VNI: *VNI);
3703 }
3704 } else if (!VNI->def.isRegister()) {
3705 report(msg: "Non-PHI, non-early clobber def must be at a register slot", MBB);
3706 report_context(LR, VRegOrUnit, LaneMask);
3707 report_context(VNI: *VNI);
3708 }
3709}
3710
3711void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
3712 const LiveRange::const_iterator I,
3713 VirtRegOrUnit VRegOrUnit,
3714 LaneBitmask LaneMask) {
3715 const LiveRange::Segment &S = *I;
3716 const VNInfo *VNI = S.valno;
3717 assert(VNI && "Live segment has no valno");
3718
3719 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(ValNo: VNI->id)) {
3720 report(msg: "Foreign valno in live segment", MF);
3721 report_context(LR, VRegOrUnit, LaneMask);
3722 report_context(S);
3723 report_context(VNI: *VNI);
3724 }
3725
3726 if (VNI->isUnused()) {
3727 report(msg: "Live segment valno is marked unused", MF);
3728 report_context(LR, VRegOrUnit, LaneMask);
3729 report_context(S);
3730 }
3731
3732 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: S.start);
3733 if (!MBB) {
3734 report(msg: "Bad start of live segment, no basic block", MF);
3735 report_context(LR, VRegOrUnit, LaneMask);
3736 report_context(S);
3737 return;
3738 }
3739 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(mbb: MBB);
3740 if (S.start != MBBStartIdx && S.start != VNI->def) {
3741 report(msg: "Live segment must begin at MBB entry or valno def", MBB);
3742 report_context(LR, VRegOrUnit, LaneMask);
3743 report_context(S);
3744 }
3745
3746 const MachineBasicBlock *EndMBB =
3747 LiveInts->getMBBFromIndex(index: S.end.getPrevSlot());
3748 if (!EndMBB) {
3749 report(msg: "Bad end of live segment, no basic block", MF);
3750 report_context(LR, VRegOrUnit, LaneMask);
3751 report_context(S);
3752 return;
3753 }
3754
3755 // Checks for non-live-out segments.
3756 if (S.end != LiveInts->getMBBEndIdx(mbb: EndMBB)) {
3757 // RegUnit intervals are allowed dead phis.
3758 if (!VRegOrUnit.isVirtualReg() && VNI->isPHIDef() && S.start == VNI->def &&
3759 S.end == VNI->def.getDeadSlot())
3760 return;
3761
3762 // The live segment is ending inside EndMBB
3763 const MachineInstr *MI =
3764 LiveInts->getInstructionFromIndex(index: S.end.getPrevSlot());
3765 if (!MI) {
3766 report(msg: "Live segment doesn't end at a valid instruction", MBB: EndMBB);
3767 report_context(LR, VRegOrUnit, LaneMask);
3768 report_context(S);
3769 return;
3770 }
3771
3772 // The block slot must refer to a basic block boundary.
3773 if (S.end.isBlock()) {
3774 report(msg: "Live segment ends at B slot of an instruction", MBB: EndMBB);
3775 report_context(LR, VRegOrUnit, LaneMask);
3776 report_context(S);
3777 }
3778
3779 if (S.end.isDead()) {
3780 // Segment ends on the dead slot.
3781 // That means there must be a dead def.
3782 if (!SlotIndex::isSameInstr(A: S.start, B: S.end)) {
3783 report(msg: "Live segment ending at dead slot spans instructions", MBB: EndMBB);
3784 report_context(LR, VRegOrUnit, LaneMask);
3785 report_context(S);
3786 }
3787 }
3788
3789 // After tied operands are rewritten, a live segment can only end at an
3790 // early-clobber slot if it is being redefined by an early-clobber def.
3791 // TODO: Before tied operands are rewritten, a live segment can only end at
3792 // an early-clobber slot if the last use is tied to an early-clobber def.
3793 if (MF->getProperties().hasTiedOpsRewritten() && S.end.isEarlyClobber()) {
3794 if (I + 1 == LR.end() || (I + 1)->start != S.end) {
3795 report(msg: "Live segment ending at early clobber slot must be "
3796 "redefined by an EC def in the same instruction",
3797 MBB: EndMBB);
3798 report_context(LR, VRegOrUnit, LaneMask);
3799 report_context(S);
3800 }
3801 }
3802
3803 // The following checks only apply to virtual registers. Physreg liveness
3804 // is too weird to check.
3805 if (VRegOrUnit.isVirtualReg()) {
3806 // A live segment can end with either a redefinition, a kill flag on a
3807 // use, or a dead flag on a def.
3808 bool hasRead = false;
3809 bool hasSubRegDef = false;
3810 bool hasDeadDef = false;
3811 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3812 if (!MOI->isReg() || MOI->getReg() != VRegOrUnit.asVirtualReg())
3813 continue;
3814 unsigned Sub = MOI->getSubReg();
3815 LaneBitmask SLM =
3816 Sub != 0 ? TRI->getSubRegIndexLaneMask(SubIdx: Sub) : LaneBitmask::getAll();
3817 if (MOI->isDef()) {
3818 if (Sub != 0) {
3819 hasSubRegDef = true;
3820 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3821 // mask for subregister defs. Read-undef defs will be handled by
3822 // readsReg below.
3823 SLM = ~SLM;
3824 }
3825 if (MOI->isDead())
3826 hasDeadDef = true;
3827 }
3828 if (LaneMask.any() && (LaneMask & SLM).none())
3829 continue;
3830 if (MOI->readsReg())
3831 hasRead = true;
3832 }
3833 if (S.end.isDead()) {
3834 // Make sure that the corresponding machine operand for a "dead" live
3835 // range has the dead flag. We cannot perform this check for subregister
3836 // liveranges as partially dead values are allowed.
3837 if (LaneMask.none() && !hasDeadDef) {
3838 report(
3839 msg: "Instruction ending live segment on dead slot has no dead flag",
3840 MI);
3841 report_context(LR, VRegOrUnit, LaneMask);
3842 report_context(S);
3843 }
3844 } else {
3845 if (!hasRead) {
3846 // When tracking subregister liveness, the main range must start new
3847 // values on partial register writes, even if there is no read.
3848 if (!MRI->shouldTrackSubRegLiveness(VReg: VRegOrUnit.asVirtualReg()) ||
3849 LaneMask.any() || !hasSubRegDef) {
3850 report(msg: "Instruction ending live segment doesn't read the register",
3851 MI);
3852 report_context(LR, VRegOrUnit, LaneMask);
3853 report_context(S);
3854 }
3855 }
3856 }
3857 }
3858 }
3859
3860 // Now check all the basic blocks in this live segment.
3861 MachineFunction::const_iterator MFI = MBB->getIterator();
3862 // Is this live segment the beginning of a non-PHIDef VN?
3863 if (S.start == VNI->def && !VNI->isPHIDef()) {
3864 // Not live-in to any blocks.
3865 if (MBB == EndMBB)
3866 return;
3867 // Skip this block.
3868 ++MFI;
3869 }
3870
3871 SmallVector<SlotIndex, 4> Undefs;
3872 if (LaneMask.any()) {
3873 LiveInterval &OwnerLI = LiveInts->getInterval(Reg: VRegOrUnit.asVirtualReg());
3874 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, MRI: *MRI, Indexes: *Indexes);
3875 }
3876
3877 while (true) {
3878 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3879 // We don't know how to track physregs into a landing pad.
3880 if (!VRegOrUnit.isVirtualReg() && MFI->isEHPad()) {
3881 if (&*MFI == EndMBB)
3882 break;
3883 ++MFI;
3884 continue;
3885 }
3886
3887 // Is VNI a PHI-def in the current block?
3888 bool IsPHI = VNI->isPHIDef() &&
3889 VNI->def == LiveInts->getMBBStartIdx(mbb: &*MFI);
3890
3891 // Check that VNI is live-out of all predecessors.
3892 for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3893 SlotIndex PEnd = LiveInts->getMBBEndIdx(mbb: Pred);
3894 // Predecessor of landing pad live-out on last call.
3895 if (MFI->isEHPad()) {
3896 for (const MachineInstr &MI : llvm::reverse(C: *Pred)) {
3897 if (MI.isCall()) {
3898 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3899 break;
3900 }
3901 }
3902 }
3903 const VNInfo *PVNI = LR.getVNInfoBefore(Idx: PEnd);
3904
3905 // All predecessors must have a live-out value. However for a phi
3906 // instruction with subregister intervals
3907 // only one of the subregisters (not necessarily the current one) needs to
3908 // be defined.
3909 if (!PVNI && (LaneMask.none() || !IsPHI)) {
3910 if (LiveRangeCalc::isJointlyDominated(MBB: Pred, Defs: Undefs, Indexes: *Indexes))
3911 continue;
3912 report(msg: "Register not marked live out of predecessor", MBB: Pred);
3913 report_context(LR, VRegOrUnit, LaneMask);
3914 report_context(VNI: *VNI);
3915 OS << " live into " << printMBBReference(MBB: *MFI) << '@'
3916 << LiveInts->getMBBStartIdx(mbb: &*MFI) << ", not live before " << PEnd
3917 << '\n';
3918 continue;
3919 }
3920
3921 // Only PHI-defs can take different predecessor values.
3922 if (!IsPHI && PVNI != VNI) {
3923 report(msg: "Different value live out of predecessor", MBB: Pred);
3924 report_context(LR, VRegOrUnit, LaneMask);
3925 OS << "Valno #" << PVNI->id << " live out of "
3926 << printMBBReference(MBB: *Pred) << '@' << PEnd << "\nValno #" << VNI->id
3927 << " live into " << printMBBReference(MBB: *MFI) << '@'
3928 << LiveInts->getMBBStartIdx(mbb: &*MFI) << '\n';
3929 }
3930 }
3931 if (&*MFI == EndMBB)
3932 break;
3933 ++MFI;
3934 }
3935}
3936
3937void MachineVerifier::verifyLiveRange(const LiveRange &LR,
3938 VirtRegOrUnit VRegOrUnit,
3939 LaneBitmask LaneMask) {
3940 for (const VNInfo *VNI : LR.valnos)
3941 verifyLiveRangeValue(LR, VNI, VRegOrUnit, LaneMask);
3942
3943 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3944 verifyLiveRangeSegment(LR, I, VRegOrUnit, LaneMask);
3945}
3946
3947void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3948 Register Reg = LI.reg();
3949 assert(Reg.isVirtual());
3950 verifyLiveRange(LR: LI, VRegOrUnit: VirtRegOrUnit(Reg));
3951
3952 if (LI.hasSubRanges()) {
3953 LaneBitmask Mask;
3954 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3955 for (const LiveInterval::SubRange &SR : LI.subranges()) {
3956 if ((Mask & SR.LaneMask).any()) {
3957 report(msg: "Lane masks of sub ranges overlap in live interval", MF);
3958 report_context(LI);
3959 }
3960 if ((SR.LaneMask & ~MaxMask).any()) {
3961 report(msg: "Subrange lanemask is invalid", MF);
3962 report_context(LI);
3963 }
3964 if (SR.empty()) {
3965 report(msg: "Subrange must not be empty", MF);
3966 report_context(LR: SR, VRegOrUnit: VirtRegOrUnit(LI.reg()), LaneMask: SR.LaneMask);
3967 }
3968 Mask |= SR.LaneMask;
3969 verifyLiveRange(LR: SR, VRegOrUnit: VirtRegOrUnit(LI.reg()), LaneMask: SR.LaneMask);
3970 if (!LI.covers(Other: SR)) {
3971 report(msg: "A Subrange is not covered by the main range", MF);
3972 report_context(LI);
3973 }
3974 }
3975 }
3976
3977 // Check the LI only has one connected component.
3978 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3979 unsigned NumComp = ConEQ.Classify(LR: LI);
3980 if (NumComp > 1) {
3981 report(msg: "Multiple connected components in live interval", MF);
3982 report_context(LI);
3983 for (unsigned comp = 0; comp != NumComp; ++comp) {
3984 OS << comp << ": valnos";
3985 for (const VNInfo *I : LI.valnos)
3986 if (comp == ConEQ.getEqClass(VNI: I))
3987 OS << ' ' << I->id;
3988 OS << '\n';
3989 }
3990 }
3991}
3992
3993namespace {
3994
3995 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3996 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3997 // value is zero.
3998 // We use a bool plus an integer to capture the stack state.
3999struct StackStateOfBB {
4000 StackStateOfBB() = default;
4001 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup)
4002 : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
4003 ExitIsSetup(ExitSetup) {}
4004
4005 // Can be negative, which means we are setting up a frame.
4006 int EntryValue = 0;
4007 int ExitValue = 0;
4008 bool EntryIsSetup = false;
4009 bool ExitIsSetup = false;
4010};
4011
4012} // end anonymous namespace
4013
4014/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
4015/// by a FrameDestroy <n>, stack adjustments are identical on all
4016/// CFG edges to a merge point, and frame is destroyed at end of a return block.
4017void MachineVerifier::verifyStackFrame() {
4018 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
4019 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
4020 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
4021 return;
4022
4023 SmallVector<StackStateOfBB, 8> SPState;
4024 SPState.resize(N: MF->getNumBlockIDs());
4025 df_iterator_default_set<const MachineBasicBlock*> Reachable;
4026
4027 // Visit the MBBs in DFS order.
4028 for (df_ext_iterator<const MachineFunction *,
4029 df_iterator_default_set<const MachineBasicBlock *>>
4030 DFI = df_ext_begin(G: MF, S&: Reachable), DFE = df_ext_end(G: MF, S&: Reachable);
4031 DFI != DFE; ++DFI) {
4032 const MachineBasicBlock *MBB = *DFI;
4033
4034 StackStateOfBB BBState;
4035 // Check the exit state of the DFS stack predecessor.
4036 if (DFI.getPathLength() >= 2) {
4037 const MachineBasicBlock *StackPred = DFI.getPath(n: DFI.getPathLength() - 2);
4038 assert(Reachable.count(StackPred) &&
4039 "DFS stack predecessor is already visited.\n");
4040 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
4041 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
4042 BBState.ExitValue = BBState.EntryValue;
4043 BBState.ExitIsSetup = BBState.EntryIsSetup;
4044 }
4045
4046 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) {
4047 report(msg: "Call frame size on entry does not match value computed from "
4048 "predecessor",
4049 MBB);
4050 OS << "Call frame size on entry " << MBB->getCallFrameSize()
4051 << " does not match value computed from predecessor "
4052 << -BBState.EntryValue << '\n';
4053 }
4054
4055 // Update stack state by checking contents of MBB.
4056 for (const auto &I : *MBB) {
4057 if (I.getOpcode() == FrameSetupOpcode) {
4058 if (BBState.ExitIsSetup)
4059 report(msg: "FrameSetup is after another FrameSetup", MI: &I);
4060 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack())
4061 report(msg: "AdjustsStack not set in presence of a frame pseudo "
4062 "instruction.", MI: &I);
4063 BBState.ExitValue -= TII->getFrameTotalSize(I);
4064 BBState.ExitIsSetup = true;
4065 }
4066
4067 if (I.getOpcode() == FrameDestroyOpcode) {
4068 int Size = TII->getFrameTotalSize(I);
4069 if (!BBState.ExitIsSetup)
4070 report(msg: "FrameDestroy is not after a FrameSetup", MI: &I);
4071 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
4072 BBState.ExitValue;
4073 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
4074 report(msg: "FrameDestroy <n> is after FrameSetup <m>", MI: &I);
4075 OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
4076 << AbsSPAdj << ">.\n";
4077 }
4078 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack())
4079 report(msg: "AdjustsStack not set in presence of a frame pseudo "
4080 "instruction.", MI: &I);
4081 BBState.ExitValue += Size;
4082 BBState.ExitIsSetup = false;
4083 }
4084 }
4085 SPState[MBB->getNumber()] = BBState;
4086
4087 // Make sure the exit state of any predecessor is consistent with the entry
4088 // state.
4089 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
4090 if (Reachable.count(Ptr: Pred) &&
4091 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
4092 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
4093 report(msg: "The exit stack state of a predecessor is inconsistent.", MBB);
4094 OS << "Predecessor " << printMBBReference(MBB: *Pred) << " has exit state ("
4095 << SPState[Pred->getNumber()].ExitValue << ", "
4096 << SPState[Pred->getNumber()].ExitIsSetup << "), while "
4097 << printMBBReference(MBB: *MBB) << " has entry state ("
4098 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
4099 }
4100 }
4101
4102 // Make sure the entry state of any successor is consistent with the exit
4103 // state.
4104 for (const MachineBasicBlock *Succ : MBB->successors()) {
4105 if (Reachable.count(Ptr: Succ) &&
4106 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
4107 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
4108 report(msg: "The entry stack state of a successor is inconsistent.", MBB);
4109 OS << "Successor " << printMBBReference(MBB: *Succ) << " has entry state ("
4110 << SPState[Succ->getNumber()].EntryValue << ", "
4111 << SPState[Succ->getNumber()].EntryIsSetup << "), while "
4112 << printMBBReference(MBB: *MBB) << " has exit state ("
4113 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
4114 }
4115 }
4116
4117 // Make sure a basic block with return ends with zero stack adjustment.
4118 if (!MBB->empty() && MBB->back().isReturn()) {
4119 if (BBState.ExitIsSetup)
4120 report(msg: "A return block ends with a FrameSetup.", MBB);
4121 if (BBState.ExitValue)
4122 report(msg: "A return block ends with a nonzero stack adjustment.", MBB);
4123 }
4124 }
4125}
4126
4127void MachineVerifier::verifyStackProtector() {
4128 const MachineFrameInfo &MFI = MF->getFrameInfo();
4129 if (!MFI.hasStackProtectorIndex())
4130 return;
4131 // Only applicable when the offsets of frame objects have been determined,
4132 // which is indicated by a non-zero stack size.
4133 if (!MFI.getStackSize())
4134 return;
4135 const TargetFrameLowering &TFI = *MF->getSubtarget().getFrameLowering();
4136 bool StackGrowsDown =
4137 TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
4138 unsigned FI = MFI.getStackProtectorIndex();
4139 int64_t SPStart = MFI.getObjectOffset(ObjectIdx: FI);
4140 int64_t SPEnd = SPStart + MFI.getObjectSize(ObjectIdx: FI);
4141 for (unsigned I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
4142 if (I == FI)
4143 continue;
4144 if (MFI.isDeadObjectIndex(ObjectIdx: I))
4145 continue;
4146 // FIXME: Skip non-default stack objects, as some targets may place them
4147 // above the stack protector. This is a workaround for the fact that
4148 // backends such as AArch64 may place SVE stack objects *above* the stack
4149 // protector.
4150 if (MFI.getStackID(ObjectIdx: I) != TargetStackID::Default)
4151 continue;
4152 // Skip variable-sized objects because they do not have a fixed offset.
4153 if (MFI.isVariableSizedObjectIndex(ObjectIdx: I))
4154 continue;
4155 // FIXME: Skip spill slots which may be allocated above the stack protector.
4156 // Ideally this would only skip callee-saved registers, but we don't have
4157 // that information here. For example, spill-slots used for scavenging are
4158 // not described in CalleeSavedInfo.
4159 if (MFI.isSpillSlotObjectIndex(ObjectIdx: I))
4160 continue;
4161 int64_t ObjStart = MFI.getObjectOffset(ObjectIdx: I);
4162 int64_t ObjEnd = ObjStart + MFI.getObjectSize(ObjectIdx: I);
4163 if (SPStart < ObjEnd && ObjStart < SPEnd) {
4164 report(msg: "Stack protector overlaps with another stack object", MF);
4165 break;
4166 }
4167 if ((StackGrowsDown && SPStart <= ObjStart) ||
4168 (!StackGrowsDown && SPStart >= ObjStart)) {
4169 report(msg: "Stack protector is not the top-most object on the stack", MF);
4170 break;
4171 }
4172 }
4173}
4174