| 1 | //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains support for writing BTF debug info. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "BTFDebug.h" |
| 14 | #include "BPF.h" |
| 15 | #include "BPFCORE.h" |
| 16 | #include "MCTargetDesc/BPFMCTargetDesc.h" |
| 17 | #include "llvm/BinaryFormat/Dwarf.h" |
| 18 | #include "llvm/BinaryFormat/ELF.h" |
| 19 | #include "llvm/CodeGen/AsmPrinter.h" |
| 20 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 21 | #include "llvm/CodeGen/MachineOperand.h" |
| 22 | #include "llvm/IR/Module.h" |
| 23 | #include "llvm/MC/MCContext.h" |
| 24 | #include "llvm/MC/MCObjectFileInfo.h" |
| 25 | #include "llvm/MC/MCSectionELF.h" |
| 26 | #include "llvm/MC/MCStreamer.h" |
| 27 | #include "llvm/Support/ErrorHandling.h" |
| 28 | #include "llvm/Support/IOSandbox.h" |
| 29 | #include "llvm/Support/LineIterator.h" |
| 30 | #include "llvm/Support/MemoryBuffer.h" |
| 31 | #include "llvm/Target/TargetLoweringObjectFile.h" |
| 32 | #include <optional> |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | static const char *BTFKindStr[] = { |
| 37 | #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, |
| 38 | #include "llvm/DebugInfo/BTF/BTF.def" |
| 39 | }; |
| 40 | |
| 41 | static const DIType *tryRemoveAtomicType(const DIType *Ty) { |
| 42 | if (!Ty) |
| 43 | return Ty; |
| 44 | auto DerivedTy = dyn_cast<DIDerivedType>(Val: Ty); |
| 45 | if (DerivedTy && DerivedTy->getTag() == dwarf::DW_TAG_atomic_type) |
| 46 | return DerivedTy->getBaseType(); |
| 47 | return Ty; |
| 48 | } |
| 49 | |
| 50 | /// Emit a BTF common type. |
| 51 | void BTFTypeBase::emitType(MCStreamer &OS) { |
| 52 | OS.AddComment(T: std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(val: Id) + |
| 53 | ")" ); |
| 54 | OS.emitInt32(Value: BTFType.NameOff); |
| 55 | OS.AddComment(T: "0x" + Twine::utohexstr(Val: BTFType.Info)); |
| 56 | OS.emitInt32(Value: BTFType.Info); |
| 57 | OS.emitInt32(Value: BTFType.Size); |
| 58 | } |
| 59 | |
| 60 | BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, |
| 61 | bool NeedsFixup) |
| 62 | : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { |
| 63 | switch (Tag) { |
| 64 | case dwarf::DW_TAG_pointer_type: |
| 65 | Kind = BTF::BTF_KIND_PTR; |
| 66 | break; |
| 67 | case dwarf::DW_TAG_const_type: |
| 68 | Kind = BTF::BTF_KIND_CONST; |
| 69 | break; |
| 70 | case dwarf::DW_TAG_volatile_type: |
| 71 | Kind = BTF::BTF_KIND_VOLATILE; |
| 72 | break; |
| 73 | case dwarf::DW_TAG_typedef: |
| 74 | Kind = BTF::BTF_KIND_TYPEDEF; |
| 75 | break; |
| 76 | case dwarf::DW_TAG_restrict_type: |
| 77 | Kind = BTF::BTF_KIND_RESTRICT; |
| 78 | break; |
| 79 | default: |
| 80 | llvm_unreachable("Unknown DIDerivedType Tag" ); |
| 81 | } |
| 82 | BTFType.Info = Kind << 24; |
| 83 | } |
| 84 | |
| 85 | /// Used by DW_TAG_pointer_type only. |
| 86 | BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, |
| 87 | StringRef Name) |
| 88 | : DTy(nullptr), NeedsFixup(false), Name(Name) { |
| 89 | Kind = BTF::BTF_KIND_PTR; |
| 90 | BTFType.Info = Kind << 24; |
| 91 | BTFType.Type = NextTypeId; |
| 92 | } |
| 93 | |
| 94 | void BTFTypeDerived::completeType(BTFDebug &BDebug) { |
| 95 | if (IsCompleted) |
| 96 | return; |
| 97 | IsCompleted = true; |
| 98 | |
| 99 | switch (Kind) { |
| 100 | case BTF::BTF_KIND_PTR: |
| 101 | case BTF::BTF_KIND_CONST: |
| 102 | case BTF::BTF_KIND_VOLATILE: |
| 103 | case BTF::BTF_KIND_RESTRICT: |
| 104 | // Debug info might contain names for these types, but given that we want |
| 105 | // to keep BTF minimal and naming reference types doesn't bring any value |
| 106 | // (what matters is the completeness of the base type), we don't emit them. |
| 107 | // |
| 108 | // Furthermore, the Linux kernel refuses to load BPF programs that contain |
| 109 | // BTF with these types named: |
| 110 | // https://elixir.bootlin.com/linux/v6.17.1/source/kernel/bpf/btf.c#L2586 |
| 111 | BTFType.NameOff = 0; |
| 112 | break; |
| 113 | default: |
| 114 | BTFType.NameOff = BDebug.addString(S: Name); |
| 115 | break; |
| 116 | } |
| 117 | |
| 118 | if (NeedsFixup || !DTy) |
| 119 | return; |
| 120 | |
| 121 | // The base type for PTR/CONST/VOLATILE could be void. |
| 122 | const DIType *ResolvedType = tryRemoveAtomicType(Ty: DTy->getBaseType()); |
| 123 | if (!ResolvedType) { |
| 124 | assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || |
| 125 | Kind == BTF::BTF_KIND_VOLATILE) && |
| 126 | "Invalid null basetype" ); |
| 127 | BTFType.Type = 0; |
| 128 | } else { |
| 129 | BTFType.Type = BDebug.getTypeId(Ty: ResolvedType); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } |
| 134 | |
| 135 | void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { |
| 136 | BTFType.Type = PointeeType; |
| 137 | } |
| 138 | |
| 139 | /// Represent a struct/union forward declaration. |
| 140 | BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { |
| 141 | Kind = BTF::BTF_KIND_FWD; |
| 142 | BTFType.Info = IsUnion << 31 | Kind << 24; |
| 143 | BTFType.Type = 0; |
| 144 | } |
| 145 | |
| 146 | void BTFTypeFwd::completeType(BTFDebug &BDebug) { |
| 147 | if (IsCompleted) |
| 148 | return; |
| 149 | IsCompleted = true; |
| 150 | |
| 151 | BTFType.NameOff = BDebug.addString(S: Name); |
| 152 | } |
| 153 | |
| 154 | void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } |
| 155 | |
| 156 | BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, |
| 157 | uint32_t OffsetInBits, StringRef TypeName) |
| 158 | : Name(TypeName) { |
| 159 | // Translate IR int encoding to BTF int encoding. |
| 160 | uint8_t BTFEncoding; |
| 161 | switch (Encoding) { |
| 162 | case dwarf::DW_ATE_boolean: |
| 163 | BTFEncoding = BTF::INT_BOOL; |
| 164 | break; |
| 165 | case dwarf::DW_ATE_signed: |
| 166 | case dwarf::DW_ATE_signed_char: |
| 167 | BTFEncoding = BTF::INT_SIGNED; |
| 168 | break; |
| 169 | case dwarf::DW_ATE_unsigned: |
| 170 | case dwarf::DW_ATE_unsigned_char: |
| 171 | BTFEncoding = 0; |
| 172 | break; |
| 173 | default: |
| 174 | llvm_unreachable("Unknown BTFTypeInt Encoding" ); |
| 175 | } |
| 176 | |
| 177 | Kind = BTF::BTF_KIND_INT; |
| 178 | BTFType.Info = Kind << 24; |
| 179 | BTFType.Size = roundupToBytes(NumBits: SizeInBits); |
| 180 | IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; |
| 181 | } |
| 182 | |
| 183 | void BTFTypeInt::completeType(BTFDebug &BDebug) { |
| 184 | if (IsCompleted) |
| 185 | return; |
| 186 | IsCompleted = true; |
| 187 | |
| 188 | BTFType.NameOff = BDebug.addString(S: Name); |
| 189 | } |
| 190 | |
| 191 | void BTFTypeInt::emitType(MCStreamer &OS) { |
| 192 | BTFTypeBase::emitType(OS); |
| 193 | OS.AddComment(T: "0x" + Twine::utohexstr(Val: IntVal)); |
| 194 | OS.emitInt32(Value: IntVal); |
| 195 | } |
| 196 | |
| 197 | BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen, |
| 198 | bool IsSigned) : ETy(ETy) { |
| 199 | Kind = BTF::BTF_KIND_ENUM; |
| 200 | BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; |
| 201 | BTFType.Size = roundupToBytes(NumBits: ETy->getSizeInBits()); |
| 202 | } |
| 203 | |
| 204 | void BTFTypeEnum::completeType(BTFDebug &BDebug) { |
| 205 | if (IsCompleted) |
| 206 | return; |
| 207 | IsCompleted = true; |
| 208 | |
| 209 | BTFType.NameOff = BDebug.addString(S: ETy->getName()); |
| 210 | |
| 211 | DINodeArray Elements = ETy->getElements(); |
| 212 | for (const auto Element : Elements) { |
| 213 | const auto *Enum = cast<DIEnumerator>(Val: Element); |
| 214 | |
| 215 | struct BTF::BTFEnum BTFEnum; |
| 216 | BTFEnum.NameOff = BDebug.addString(S: Enum->getName()); |
| 217 | // BTF enum value is 32bit, enforce it. |
| 218 | uint32_t Value; |
| 219 | if (Enum->isUnsigned()) |
| 220 | Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); |
| 221 | else |
| 222 | Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); |
| 223 | BTFEnum.Val = Value; |
| 224 | EnumValues.push_back(x: BTFEnum); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | void BTFTypeEnum::emitType(MCStreamer &OS) { |
| 229 | BTFTypeBase::emitType(OS); |
| 230 | for (const auto &Enum : EnumValues) { |
| 231 | OS.emitInt32(Value: Enum.NameOff); |
| 232 | OS.emitInt32(Value: Enum.Val); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen, |
| 237 | bool IsSigned) : ETy(ETy) { |
| 238 | Kind = BTF::BTF_KIND_ENUM64; |
| 239 | BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; |
| 240 | BTFType.Size = roundupToBytes(NumBits: ETy->getSizeInBits()); |
| 241 | } |
| 242 | |
| 243 | void BTFTypeEnum64::completeType(BTFDebug &BDebug) { |
| 244 | if (IsCompleted) |
| 245 | return; |
| 246 | IsCompleted = true; |
| 247 | |
| 248 | BTFType.NameOff = BDebug.addString(S: ETy->getName()); |
| 249 | |
| 250 | DINodeArray Elements = ETy->getElements(); |
| 251 | for (const auto Element : Elements) { |
| 252 | const auto *Enum = cast<DIEnumerator>(Val: Element); |
| 253 | |
| 254 | struct BTF::BTFEnum64 BTFEnum; |
| 255 | BTFEnum.NameOff = BDebug.addString(S: Enum->getName()); |
| 256 | uint64_t Value; |
| 257 | if (Enum->isUnsigned()) |
| 258 | Value = Enum->getValue().getZExtValue(); |
| 259 | else |
| 260 | Value = static_cast<uint64_t>(Enum->getValue().getSExtValue()); |
| 261 | BTFEnum.Val_Lo32 = Value; |
| 262 | BTFEnum.Val_Hi32 = Value >> 32; |
| 263 | EnumValues.push_back(x: BTFEnum); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | void BTFTypeEnum64::emitType(MCStreamer &OS) { |
| 268 | BTFTypeBase::emitType(OS); |
| 269 | for (const auto &Enum : EnumValues) { |
| 270 | OS.emitInt32(Value: Enum.NameOff); |
| 271 | OS.AddComment(T: "0x" + Twine::utohexstr(Val: Enum.Val_Lo32)); |
| 272 | OS.emitInt32(Value: Enum.Val_Lo32); |
| 273 | OS.AddComment(T: "0x" + Twine::utohexstr(Val: Enum.Val_Hi32)); |
| 274 | OS.emitInt32(Value: Enum.Val_Hi32); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { |
| 279 | Kind = BTF::BTF_KIND_ARRAY; |
| 280 | BTFType.NameOff = 0; |
| 281 | BTFType.Info = Kind << 24; |
| 282 | BTFType.Size = 0; |
| 283 | |
| 284 | ArrayInfo.ElemType = ElemTypeId; |
| 285 | ArrayInfo.Nelems = NumElems; |
| 286 | } |
| 287 | |
| 288 | /// Represent a BTF array. |
| 289 | void BTFTypeArray::completeType(BTFDebug &BDebug) { |
| 290 | if (IsCompleted) |
| 291 | return; |
| 292 | IsCompleted = true; |
| 293 | |
| 294 | // The IR does not really have a type for the index. |
| 295 | // A special type for array index should have been |
| 296 | // created during initial type traversal. Just |
| 297 | // retrieve that type id. |
| 298 | ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); |
| 299 | } |
| 300 | |
| 301 | void BTFTypeArray::emitType(MCStreamer &OS) { |
| 302 | BTFTypeBase::emitType(OS); |
| 303 | OS.emitInt32(Value: ArrayInfo.ElemType); |
| 304 | OS.emitInt32(Value: ArrayInfo.IndexType); |
| 305 | OS.emitInt32(Value: ArrayInfo.Nelems); |
| 306 | } |
| 307 | |
| 308 | /// Represent either a struct or a union. |
| 309 | BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, |
| 310 | bool HasBitField, uint32_t Vlen) |
| 311 | : STy(STy), HasBitField(HasBitField) { |
| 312 | Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; |
| 313 | BTFType.Size = roundupToBytes(NumBits: STy->getSizeInBits()); |
| 314 | BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; |
| 315 | } |
| 316 | |
| 317 | void BTFTypeStruct::completeType(BTFDebug &BDebug) { |
| 318 | if (IsCompleted) |
| 319 | return; |
| 320 | IsCompleted = true; |
| 321 | |
| 322 | BTFType.NameOff = BDebug.addString(S: STy->getName()); |
| 323 | |
| 324 | if (STy->getTag() == dwarf::DW_TAG_variant_part) { |
| 325 | // Variant parts might have a discriminator, which has its own memory |
| 326 | // location, and variants, which share the memory location afterwards. LLVM |
| 327 | // DI doesn't consider discriminator as an element and instead keeps |
| 328 | // it as a separate reference. |
| 329 | // To keep BTF simple, let's represent the structure as an union with |
| 330 | // discriminator as the first element. |
| 331 | // The offsets inside variant types are already handled correctly in the |
| 332 | // DI. |
| 333 | const auto *DTy = STy->getDiscriminator(); |
| 334 | if (DTy) { |
| 335 | struct BTF::BTFMember Discriminator; |
| 336 | |
| 337 | Discriminator.NameOff = BDebug.addString(S: DTy->getName()); |
| 338 | Discriminator.Offset = DTy->getOffsetInBits(); |
| 339 | const auto *BaseTy = DTy->getBaseType(); |
| 340 | Discriminator.Type = BDebug.getTypeId(Ty: BaseTy); |
| 341 | |
| 342 | Members.push_back(x: Discriminator); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | // Add struct/union members. |
| 347 | const DINodeArray Elements = STy->getElements(); |
| 348 | for (const auto *Element : Elements) { |
| 349 | struct BTF::BTFMember BTFMember; |
| 350 | |
| 351 | switch (Element->getTag()) { |
| 352 | case dwarf::DW_TAG_member: { |
| 353 | const auto *DDTy = cast<DIDerivedType>(Val: Element); |
| 354 | |
| 355 | BTFMember.NameOff = BDebug.addString(S: DDTy->getName()); |
| 356 | if (HasBitField) { |
| 357 | uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; |
| 358 | BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); |
| 359 | } else { |
| 360 | BTFMember.Offset = DDTy->getOffsetInBits(); |
| 361 | } |
| 362 | const auto *BaseTy = tryRemoveAtomicType(Ty: DDTy->getBaseType()); |
| 363 | BTFMember.Type = BDebug.getTypeId(Ty: BaseTy); |
| 364 | break; |
| 365 | } |
| 366 | case dwarf::DW_TAG_variant_part: { |
| 367 | const auto *DCTy = dyn_cast<DICompositeType>(Val: Element); |
| 368 | |
| 369 | BTFMember.NameOff = BDebug.addString(S: DCTy->getName()); |
| 370 | BTFMember.Offset = DCTy->getOffsetInBits(); |
| 371 | BTFMember.Type = BDebug.getTypeId(Ty: DCTy); |
| 372 | break; |
| 373 | } |
| 374 | default: |
| 375 | llvm_unreachable("Unexpected DI tag of a struct/union element" ); |
| 376 | } |
| 377 | Members.push_back(x: BTFMember); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | void BTFTypeStruct::emitType(MCStreamer &OS) { |
| 382 | BTFTypeBase::emitType(OS); |
| 383 | for (const auto &Member : Members) { |
| 384 | OS.emitInt32(Value: Member.NameOff); |
| 385 | OS.emitInt32(Value: Member.Type); |
| 386 | OS.AddComment(T: "0x" + Twine::utohexstr(Val: Member.Offset)); |
| 387 | OS.emitInt32(Value: Member.Offset); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } |
| 392 | |
| 393 | /// The Func kind represents both subprogram and pointee of function |
| 394 | /// pointers. If the FuncName is empty, it represents a pointee of function |
| 395 | /// pointer. Otherwise, it represents a subprogram. The func arg names |
| 396 | /// are empty for pointee of function pointer case, and are valid names |
| 397 | /// for subprogram. |
| 398 | BTFTypeFuncProto::BTFTypeFuncProto( |
| 399 | const DISubroutineType *STy, uint32_t VLen, |
| 400 | const std::unordered_map<uint32_t, StringRef> &FuncArgNames) |
| 401 | : STy(STy), FuncArgNames(FuncArgNames) { |
| 402 | Kind = BTF::BTF_KIND_FUNC_PROTO; |
| 403 | BTFType.Info = (Kind << 24) | VLen; |
| 404 | } |
| 405 | |
| 406 | void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { |
| 407 | if (IsCompleted) |
| 408 | return; |
| 409 | IsCompleted = true; |
| 410 | |
| 411 | DITypeArray Elements = STy->getTypeArray(); |
| 412 | auto RetType = tryRemoveAtomicType(Ty: Elements[0]); |
| 413 | BTFType.Type = RetType ? BDebug.getTypeId(Ty: RetType) : 0; |
| 414 | BTFType.NameOff = 0; |
| 415 | |
| 416 | // For null parameter which is typically the last one |
| 417 | // to represent the vararg, encode the NameOff/Type to be 0. |
| 418 | for (unsigned I = 1, N = Elements.size(); I < N; ++I) { |
| 419 | struct BTF::BTFParam Param; |
| 420 | auto Element = tryRemoveAtomicType(Ty: Elements[I]); |
| 421 | if (Element) { |
| 422 | Param.NameOff = BDebug.addString(S: FuncArgNames[I]); |
| 423 | Param.Type = BDebug.getTypeId(Ty: Element); |
| 424 | } else { |
| 425 | Param.NameOff = 0; |
| 426 | Param.Type = 0; |
| 427 | } |
| 428 | Parameters.push_back(x: Param); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | void BTFTypeFuncProto::emitType(MCStreamer &OS) { |
| 433 | BTFTypeBase::emitType(OS); |
| 434 | for (const auto &Param : Parameters) { |
| 435 | OS.emitInt32(Value: Param.NameOff); |
| 436 | OS.emitInt32(Value: Param.Type); |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, |
| 441 | uint32_t Scope) |
| 442 | : Name(FuncName) { |
| 443 | Kind = BTF::BTF_KIND_FUNC; |
| 444 | BTFType.Info = (Kind << 24) | Scope; |
| 445 | BTFType.Type = ProtoTypeId; |
| 446 | } |
| 447 | |
| 448 | void BTFTypeFunc::completeType(BTFDebug &BDebug) { |
| 449 | if (IsCompleted) |
| 450 | return; |
| 451 | IsCompleted = true; |
| 452 | |
| 453 | BTFType.NameOff = BDebug.addString(S: Name); |
| 454 | } |
| 455 | |
| 456 | void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } |
| 457 | |
| 458 | BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) |
| 459 | : Name(VarName) { |
| 460 | Kind = BTF::BTF_KIND_VAR; |
| 461 | BTFType.Info = Kind << 24; |
| 462 | BTFType.Type = TypeId; |
| 463 | Info = VarInfo; |
| 464 | } |
| 465 | |
| 466 | void BTFKindVar::completeType(BTFDebug &BDebug) { |
| 467 | BTFType.NameOff = BDebug.addString(S: Name); |
| 468 | } |
| 469 | |
| 470 | void BTFKindVar::emitType(MCStreamer &OS) { |
| 471 | BTFTypeBase::emitType(OS); |
| 472 | OS.emitInt32(Value: Info); |
| 473 | } |
| 474 | |
| 475 | BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) |
| 476 | : Asm(AsmPrt), Name(SecName) { |
| 477 | Kind = BTF::BTF_KIND_DATASEC; |
| 478 | BTFType.Info = Kind << 24; |
| 479 | BTFType.Size = 0; |
| 480 | } |
| 481 | |
| 482 | void BTFKindDataSec::completeType(BTFDebug &BDebug) { |
| 483 | BTFType.NameOff = BDebug.addString(S: Name); |
| 484 | BTFType.Info |= Vars.size(); |
| 485 | } |
| 486 | |
| 487 | void BTFKindDataSec::emitType(MCStreamer &OS) { |
| 488 | BTFTypeBase::emitType(OS); |
| 489 | |
| 490 | for (const auto &V : Vars) { |
| 491 | OS.emitInt32(Value: std::get<0>(t: V)); |
| 492 | Asm->emitLabelReference(Label: std::get<1>(t: V), Size: 4); |
| 493 | OS.emitInt32(Value: std::get<2>(t: V)); |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) |
| 498 | : Name(TypeName) { |
| 499 | Kind = BTF::BTF_KIND_FLOAT; |
| 500 | BTFType.Info = Kind << 24; |
| 501 | BTFType.Size = roundupToBytes(NumBits: SizeInBits); |
| 502 | } |
| 503 | |
| 504 | void BTFTypeFloat::completeType(BTFDebug &BDebug) { |
| 505 | if (IsCompleted) |
| 506 | return; |
| 507 | IsCompleted = true; |
| 508 | |
| 509 | BTFType.NameOff = BDebug.addString(S: Name); |
| 510 | } |
| 511 | |
| 512 | BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, |
| 513 | StringRef Tag) |
| 514 | : Tag(Tag) { |
| 515 | Kind = BTF::BTF_KIND_DECL_TAG; |
| 516 | BTFType.Info = Kind << 24; |
| 517 | BTFType.Type = BaseTypeId; |
| 518 | Info = ComponentIdx; |
| 519 | } |
| 520 | |
| 521 | void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { |
| 522 | if (IsCompleted) |
| 523 | return; |
| 524 | IsCompleted = true; |
| 525 | |
| 526 | BTFType.NameOff = BDebug.addString(S: Tag); |
| 527 | } |
| 528 | |
| 529 | void BTFTypeDeclTag::emitType(MCStreamer &OS) { |
| 530 | BTFTypeBase::emitType(OS); |
| 531 | OS.emitInt32(Value: Info); |
| 532 | } |
| 533 | |
| 534 | BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) |
| 535 | : DTy(nullptr), Tag(Tag) { |
| 536 | Kind = BTF::BTF_KIND_TYPE_TAG; |
| 537 | BTFType.Info = Kind << 24; |
| 538 | BTFType.Type = NextTypeId; |
| 539 | } |
| 540 | |
| 541 | BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) |
| 542 | : DTy(DTy), Tag(Tag) { |
| 543 | Kind = BTF::BTF_KIND_TYPE_TAG; |
| 544 | BTFType.Info = Kind << 24; |
| 545 | } |
| 546 | |
| 547 | void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { |
| 548 | if (IsCompleted) |
| 549 | return; |
| 550 | IsCompleted = true; |
| 551 | BTFType.NameOff = BDebug.addString(S: Tag); |
| 552 | if (DTy) { |
| 553 | const DIType *ResolvedType = tryRemoveAtomicType(Ty: DTy->getBaseType()); |
| 554 | if (!ResolvedType) |
| 555 | BTFType.Type = 0; |
| 556 | else |
| 557 | BTFType.Type = BDebug.getTypeId(Ty: ResolvedType); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | uint32_t BTFStringTable::addString(StringRef S) { |
| 562 | // Check whether the string already exists. |
| 563 | for (auto &OffsetM : OffsetToIdMap) { |
| 564 | if (Table[OffsetM.second] == S) |
| 565 | return OffsetM.first; |
| 566 | } |
| 567 | // Not find, add to the string table. |
| 568 | uint32_t Offset = Size; |
| 569 | OffsetToIdMap[Offset] = Table.size(); |
| 570 | Table.push_back(x: std::string(S)); |
| 571 | Size += S.size() + 1; |
| 572 | return Offset; |
| 573 | } |
| 574 | |
| 575 | BTFDebug::BTFDebug(AsmPrinter *AP) |
| 576 | : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), |
| 577 | LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), |
| 578 | MapDefNotCollected(true) { |
| 579 | addString(S: "\0" ); |
| 580 | } |
| 581 | |
| 582 | uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, |
| 583 | const DIType *Ty) { |
| 584 | TypeEntry->setId(TypeEntries.size() + 1); |
| 585 | uint32_t Id = TypeEntry->getId(); |
| 586 | DIToIdMap[Ty] = Id; |
| 587 | TypeEntries.push_back(x: std::move(TypeEntry)); |
| 588 | return Id; |
| 589 | } |
| 590 | |
| 591 | uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { |
| 592 | TypeEntry->setId(TypeEntries.size() + 1); |
| 593 | uint32_t Id = TypeEntry->getId(); |
| 594 | TypeEntries.push_back(x: std::move(TypeEntry)); |
| 595 | return Id; |
| 596 | } |
| 597 | |
| 598 | void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { |
| 599 | // Only int and binary floating point types are supported in BTF. |
| 600 | uint32_t Encoding = BTy->getEncoding(); |
| 601 | std::unique_ptr<BTFTypeBase> TypeEntry; |
| 602 | switch (Encoding) { |
| 603 | case dwarf::DW_ATE_boolean: |
| 604 | case dwarf::DW_ATE_signed: |
| 605 | case dwarf::DW_ATE_signed_char: |
| 606 | case dwarf::DW_ATE_unsigned: |
| 607 | case dwarf::DW_ATE_unsigned_char: |
| 608 | // Create a BTF type instance for this DIBasicType and put it into |
| 609 | // DIToIdMap for cross-type reference check. |
| 610 | TypeEntry = std::make_unique<BTFTypeInt>( |
| 611 | args&: Encoding, args: BTy->getSizeInBits(), args: BTy->getOffsetInBits(), args: BTy->getName()); |
| 612 | break; |
| 613 | case dwarf::DW_ATE_float: |
| 614 | TypeEntry = |
| 615 | std::make_unique<BTFTypeFloat>(args: BTy->getSizeInBits(), args: BTy->getName()); |
| 616 | break; |
| 617 | default: |
| 618 | return; |
| 619 | } |
| 620 | |
| 621 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: BTy); |
| 622 | } |
| 623 | |
| 624 | /// Handle subprogram or subroutine types. |
| 625 | void BTFDebug::visitSubroutineType( |
| 626 | const DISubroutineType *STy, bool ForSubprog, |
| 627 | const std::unordered_map<uint32_t, StringRef> &FuncArgNames, |
| 628 | uint32_t &TypeId) { |
| 629 | DITypeArray Elements = STy->getTypeArray(); |
| 630 | uint32_t VLen = Elements.size() - 1; |
| 631 | if (VLen > BTF::MAX_VLEN) |
| 632 | return; |
| 633 | |
| 634 | // Subprogram has a valid non-zero-length name, and the pointee of |
| 635 | // a function pointer has an empty name. The subprogram type will |
| 636 | // not be added to DIToIdMap as it should not be referenced by |
| 637 | // any other types. |
| 638 | auto TypeEntry = std::make_unique<BTFTypeFuncProto>(args&: STy, args&: VLen, args: FuncArgNames); |
| 639 | if (ForSubprog) |
| 640 | TypeId = addType(TypeEntry: std::move(TypeEntry)); // For subprogram |
| 641 | else |
| 642 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: STy); // For func ptr |
| 643 | |
| 644 | // Visit return type and func arg types. |
| 645 | for (const auto Element : Elements) { |
| 646 | visitTypeEntry(Ty: Element); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | void BTFDebug::processDeclAnnotations(DINodeArray Annotations, |
| 651 | uint32_t BaseTypeId, |
| 652 | int ComponentIdx) { |
| 653 | if (!Annotations) |
| 654 | return; |
| 655 | |
| 656 | for (const Metadata *Annotation : Annotations->operands()) { |
| 657 | const MDNode *MD = cast<MDNode>(Val: Annotation); |
| 658 | const MDString *Name = cast<MDString>(Val: MD->getOperand(I: 0)); |
| 659 | if (Name->getString() != "btf_decl_tag" ) |
| 660 | continue; |
| 661 | |
| 662 | const MDString *Value = cast<MDString>(Val: MD->getOperand(I: 1)); |
| 663 | auto TypeEntry = std::make_unique<BTFTypeDeclTag>(args&: BaseTypeId, args&: ComponentIdx, |
| 664 | args: Value->getString()); |
| 665 | addType(TypeEntry: std::move(TypeEntry)); |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | uint32_t BTFDebug::processDISubprogram(const DISubprogram *SP, |
| 670 | uint32_t ProtoTypeId, uint8_t Scope) { |
| 671 | auto FuncTypeEntry = |
| 672 | std::make_unique<BTFTypeFunc>(args: SP->getName(), args&: ProtoTypeId, args&: Scope); |
| 673 | uint32_t FuncId = addType(TypeEntry: std::move(FuncTypeEntry)); |
| 674 | |
| 675 | // Process argument annotations. |
| 676 | for (const DINode *DN : SP->getRetainedNodes()) { |
| 677 | if (const auto *DV = dyn_cast<DILocalVariable>(Val: DN)) { |
| 678 | uint32_t Arg = DV->getArg(); |
| 679 | if (Arg) |
| 680 | processDeclAnnotations(Annotations: DV->getAnnotations(), BaseTypeId: FuncId, ComponentIdx: Arg - 1); |
| 681 | } |
| 682 | } |
| 683 | processDeclAnnotations(Annotations: SP->getAnnotations(), BaseTypeId: FuncId, ComponentIdx: -1); |
| 684 | |
| 685 | return FuncId; |
| 686 | } |
| 687 | |
| 688 | /// Generate btf_type_tag chains. |
| 689 | int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { |
| 690 | SmallVector<const MDString *, 4> MDStrs; |
| 691 | DINodeArray Annots = DTy->getAnnotations(); |
| 692 | if (Annots) { |
| 693 | // For type with "int __tag1 __tag2 *p", the MDStrs will have |
| 694 | // content: [__tag1, __tag2]. |
| 695 | for (const Metadata *Annotations : Annots->operands()) { |
| 696 | const MDNode *MD = cast<MDNode>(Val: Annotations); |
| 697 | const MDString *Name = cast<MDString>(Val: MD->getOperand(I: 0)); |
| 698 | if (Name->getString() != "btf_type_tag" ) |
| 699 | continue; |
| 700 | MDStrs.push_back(Elt: cast<MDString>(Val: MD->getOperand(I: 1))); |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | if (MDStrs.size() == 0) |
| 705 | return -1; |
| 706 | |
| 707 | // With MDStrs [__tag1, __tag2], the output type chain looks like |
| 708 | // PTR -> __tag2 -> __tag1 -> BaseType |
| 709 | // In the below, we construct BTF types with the order of __tag1, __tag2 |
| 710 | // and PTR. |
| 711 | unsigned TmpTypeId; |
| 712 | std::unique_ptr<BTFTypeTypeTag> TypeEntry; |
| 713 | if (BaseTypeId >= 0) |
| 714 | TypeEntry = |
| 715 | std::make_unique<BTFTypeTypeTag>(args&: BaseTypeId, args: MDStrs[0]->getString()); |
| 716 | else |
| 717 | TypeEntry = std::make_unique<BTFTypeTypeTag>(args&: DTy, args: MDStrs[0]->getString()); |
| 718 | TmpTypeId = addType(TypeEntry: std::move(TypeEntry)); |
| 719 | |
| 720 | for (unsigned I = 1; I < MDStrs.size(); I++) { |
| 721 | const MDString *Value = MDStrs[I]; |
| 722 | TypeEntry = std::make_unique<BTFTypeTypeTag>(args&: TmpTypeId, args: Value->getString()); |
| 723 | TmpTypeId = addType(TypeEntry: std::move(TypeEntry)); |
| 724 | } |
| 725 | return TmpTypeId; |
| 726 | } |
| 727 | |
| 728 | /// Handle structure/union types. |
| 729 | void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, |
| 730 | uint32_t &TypeId) { |
| 731 | const DINodeArray Elements = CTy->getElements(); |
| 732 | uint32_t VLen = Elements.size(); |
| 733 | // Variant parts might have a discriminator. LLVM DI doesn't consider it as |
| 734 | // an element and instead keeps it as a separate reference. But we represent |
| 735 | // it as an element in BTF. |
| 736 | if (CTy->getTag() == dwarf::DW_TAG_variant_part) { |
| 737 | const auto *DTy = CTy->getDiscriminator(); |
| 738 | if (DTy) { |
| 739 | visitTypeEntry(Ty: DTy); |
| 740 | VLen++; |
| 741 | } |
| 742 | } |
| 743 | if (VLen > BTF::MAX_VLEN) |
| 744 | return; |
| 745 | |
| 746 | // Check whether we have any bitfield members or not |
| 747 | bool HasBitField = false; |
| 748 | for (const auto *Element : Elements) { |
| 749 | if (Element->getTag() == dwarf::DW_TAG_member) { |
| 750 | auto E = cast<DIDerivedType>(Val: Element); |
| 751 | if (E->isBitField()) { |
| 752 | HasBitField = true; |
| 753 | break; |
| 754 | } |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | auto TypeEntry = |
| 759 | std::make_unique<BTFTypeStruct>(args&: CTy, args&: IsStruct, args&: HasBitField, args&: VLen); |
| 760 | StructTypes.push_back(x: TypeEntry.get()); |
| 761 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: CTy); |
| 762 | |
| 763 | // Check struct/union annotations |
| 764 | processDeclAnnotations(Annotations: CTy->getAnnotations(), BaseTypeId: TypeId, ComponentIdx: -1); |
| 765 | |
| 766 | // Visit all struct members. |
| 767 | int FieldNo = 0; |
| 768 | for (const auto *Element : Elements) { |
| 769 | switch (Element->getTag()) { |
| 770 | case dwarf::DW_TAG_member: { |
| 771 | const auto Elem = cast<DIDerivedType>(Val: Element); |
| 772 | visitTypeEntry(Ty: Elem); |
| 773 | processDeclAnnotations(Annotations: Elem->getAnnotations(), BaseTypeId: TypeId, ComponentIdx: FieldNo); |
| 774 | break; |
| 775 | } |
| 776 | case dwarf::DW_TAG_variant_part: { |
| 777 | const auto Elem = cast<DICompositeType>(Val: Element); |
| 778 | visitTypeEntry(Ty: Elem); |
| 779 | processDeclAnnotations(Annotations: Elem->getAnnotations(), BaseTypeId: TypeId, ComponentIdx: FieldNo); |
| 780 | break; |
| 781 | } |
| 782 | default: |
| 783 | llvm_unreachable("Unexpected DI tag of a struct/union element" ); |
| 784 | } |
| 785 | FieldNo++; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { |
| 790 | // Visit array element type. |
| 791 | uint32_t ElemTypeId; |
| 792 | const DIType *ElemType = CTy->getBaseType(); |
| 793 | visitTypeEntry(Ty: ElemType, TypeId&: ElemTypeId, CheckPointer: false, SeenPointer: false); |
| 794 | |
| 795 | // Visit array dimensions. |
| 796 | DINodeArray Elements = CTy->getElements(); |
| 797 | for (int I = Elements.size() - 1; I >= 0; --I) { |
| 798 | if (auto *Element = dyn_cast_or_null<DINode>(Val: Elements[I])) |
| 799 | if (Element->getTag() == dwarf::DW_TAG_subrange_type) { |
| 800 | const DISubrange *SR = cast<DISubrange>(Val: Element); |
| 801 | auto *CI = dyn_cast<ConstantInt *>(Val: SR->getCount()); |
| 802 | int64_t Count = CI->getSExtValue(); |
| 803 | |
| 804 | // For struct s { int b; char c[]; }, the c[] will be represented |
| 805 | // as an array with Count = -1. |
| 806 | auto TypeEntry = |
| 807 | std::make_unique<BTFTypeArray>(args&: ElemTypeId, |
| 808 | args: Count >= 0 ? Count : 0); |
| 809 | if (I == 0) |
| 810 | ElemTypeId = addType(TypeEntry: std::move(TypeEntry), Ty: CTy); |
| 811 | else |
| 812 | ElemTypeId = addType(TypeEntry: std::move(TypeEntry)); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | // The array TypeId is the type id of the outermost dimension. |
| 817 | TypeId = ElemTypeId; |
| 818 | |
| 819 | // The IR does not have a type for array index while BTF wants one. |
| 820 | // So create an array index type if there is none. |
| 821 | if (!ArrayIndexTypeId) { |
| 822 | auto TypeEntry = std::make_unique<BTFTypeInt>(args: dwarf::DW_ATE_unsigned, args: 32, |
| 823 | args: 0, args: "__ARRAY_SIZE_TYPE__" ); |
| 824 | ArrayIndexTypeId = addType(TypeEntry: std::move(TypeEntry)); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { |
| 829 | DINodeArray Elements = CTy->getElements(); |
| 830 | uint32_t VLen = Elements.size(); |
| 831 | if (VLen > BTF::MAX_VLEN) |
| 832 | return; |
| 833 | |
| 834 | bool IsSigned = false; |
| 835 | unsigned NumBits = 32; |
| 836 | // No BaseType implies forward declaration in which case a |
| 837 | // BTFTypeEnum with Vlen = 0 is emitted. |
| 838 | if (CTy->getBaseType() != nullptr) { |
| 839 | const auto *BTy = cast<DIBasicType>(Val: CTy->getBaseType()); |
| 840 | IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed || |
| 841 | BTy->getEncoding() == dwarf::DW_ATE_signed_char; |
| 842 | NumBits = BTy->getSizeInBits(); |
| 843 | } |
| 844 | |
| 845 | if (NumBits <= 32) { |
| 846 | auto TypeEntry = std::make_unique<BTFTypeEnum>(args&: CTy, args&: VLen, args&: IsSigned); |
| 847 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: CTy); |
| 848 | } else { |
| 849 | assert(NumBits == 64); |
| 850 | auto TypeEntry = std::make_unique<BTFTypeEnum64>(args&: CTy, args&: VLen, args&: IsSigned); |
| 851 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: CTy); |
| 852 | } |
| 853 | // No need to visit base type as BTF does not encode it. |
| 854 | } |
| 855 | |
| 856 | /// Handle structure/union forward declarations. |
| 857 | void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, |
| 858 | uint32_t &TypeId) { |
| 859 | auto TypeEntry = std::make_unique<BTFTypeFwd>(args: CTy->getName(), args&: IsUnion); |
| 860 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: CTy); |
| 861 | } |
| 862 | |
| 863 | /// Handle structure, union, array and enumeration types. |
| 864 | void BTFDebug::visitCompositeType(const DICompositeType *CTy, |
| 865 | uint32_t &TypeId) { |
| 866 | auto Tag = CTy->getTag(); |
| 867 | switch (Tag) { |
| 868 | case dwarf::DW_TAG_structure_type: |
| 869 | case dwarf::DW_TAG_union_type: |
| 870 | case dwarf::DW_TAG_variant_part: |
| 871 | // Handle forward declaration differently as it does not have members. |
| 872 | if (CTy->isForwardDecl()) |
| 873 | visitFwdDeclType(CTy, IsUnion: Tag == dwarf::DW_TAG_union_type, TypeId); |
| 874 | else |
| 875 | visitStructType(CTy, IsStruct: Tag == dwarf::DW_TAG_structure_type, TypeId); |
| 876 | break; |
| 877 | case dwarf::DW_TAG_array_type: |
| 878 | visitArrayType(CTy, TypeId); |
| 879 | break; |
| 880 | case dwarf::DW_TAG_enumeration_type: |
| 881 | visitEnumType(CTy, TypeId); |
| 882 | break; |
| 883 | default: |
| 884 | llvm_unreachable("Unexpected DI tag of a composite type" ); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | bool BTFDebug::IsForwardDeclCandidate(const DIType *Base) { |
| 889 | if (const auto *CTy = dyn_cast<DICompositeType>(Val: Base)) { |
| 890 | auto CTag = CTy->getTag(); |
| 891 | if ((CTag == dwarf::DW_TAG_structure_type || |
| 892 | CTag == dwarf::DW_TAG_union_type) && |
| 893 | !CTy->getName().empty() && !CTy->isForwardDecl()) |
| 894 | return true; |
| 895 | } |
| 896 | return false; |
| 897 | } |
| 898 | |
| 899 | /// Handle pointer, typedef, const, volatile, restrict and member types. |
| 900 | void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, |
| 901 | bool CheckPointer, bool SeenPointer) { |
| 902 | unsigned Tag = DTy->getTag(); |
| 903 | |
| 904 | if (Tag == dwarf::DW_TAG_atomic_type) |
| 905 | return visitTypeEntry(Ty: DTy->getBaseType(), TypeId, CheckPointer, |
| 906 | SeenPointer); |
| 907 | |
| 908 | /// Try to avoid chasing pointees, esp. structure pointees which may |
| 909 | /// unnecessary bring in a lot of types. |
| 910 | if (CheckPointer && !SeenPointer) { |
| 911 | SeenPointer = Tag == dwarf::DW_TAG_pointer_type && !DTy->getAnnotations(); |
| 912 | } |
| 913 | |
| 914 | if (CheckPointer && SeenPointer) { |
| 915 | const DIType *Base = DTy->getBaseType(); |
| 916 | if (Base) { |
| 917 | if (IsForwardDeclCandidate(Base)) { |
| 918 | /// Find a candidate, generate a fixup. Later on the struct/union |
| 919 | /// pointee type will be replaced with either a real type or |
| 920 | /// a forward declaration. |
| 921 | auto TypeEntry = std::make_unique<BTFTypeDerived>(args&: DTy, args&: Tag, args: true); |
| 922 | auto &Fixup = FixupDerivedTypes[cast<DICompositeType>(Val: Base)]; |
| 923 | Fixup.push_back(x: std::make_pair(x&: DTy, y: TypeEntry.get())); |
| 924 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: DTy); |
| 925 | return; |
| 926 | } |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | if (Tag == dwarf::DW_TAG_pointer_type) { |
| 931 | int TmpTypeId = genBTFTypeTags(DTy, BaseTypeId: -1); |
| 932 | if (TmpTypeId >= 0) { |
| 933 | auto TypeDEntry = |
| 934 | std::make_unique<BTFTypeDerived>(args&: TmpTypeId, args&: Tag, args: DTy->getName()); |
| 935 | TypeId = addType(TypeEntry: std::move(TypeDEntry), Ty: DTy); |
| 936 | } else { |
| 937 | auto TypeEntry = std::make_unique<BTFTypeDerived>(args&: DTy, args&: Tag, args: false); |
| 938 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: DTy); |
| 939 | } |
| 940 | } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || |
| 941 | Tag == dwarf::DW_TAG_volatile_type || |
| 942 | Tag == dwarf::DW_TAG_restrict_type) { |
| 943 | auto TypeEntry = std::make_unique<BTFTypeDerived>(args&: DTy, args&: Tag, args: false); |
| 944 | TypeId = addType(TypeEntry: std::move(TypeEntry), Ty: DTy); |
| 945 | if (Tag == dwarf::DW_TAG_typedef) |
| 946 | processDeclAnnotations(Annotations: DTy->getAnnotations(), BaseTypeId: TypeId, ComponentIdx: -1); |
| 947 | } else if (Tag != dwarf::DW_TAG_member) { |
| 948 | return; |
| 949 | } |
| 950 | |
| 951 | // Visit base type of pointer, typedef, const, volatile, restrict or |
| 952 | // struct/union member. |
| 953 | uint32_t TempTypeId = 0; |
| 954 | if (Tag == dwarf::DW_TAG_member) |
| 955 | visitTypeEntry(Ty: DTy->getBaseType(), TypeId&: TempTypeId, CheckPointer: true, SeenPointer: false); |
| 956 | else |
| 957 | visitTypeEntry(Ty: DTy->getBaseType(), TypeId&: TempTypeId, CheckPointer, SeenPointer); |
| 958 | } |
| 959 | |
| 960 | /// Visit a type entry. CheckPointer is true if the type has |
| 961 | /// one of its predecessors as one struct/union member. SeenPointer |
| 962 | /// is true if CheckPointer is true and one of its predecessors |
| 963 | /// is a pointer. The goal of CheckPointer and SeenPointer is to |
| 964 | /// do pruning for struct/union types so some of these types |
| 965 | /// will not be emitted in BTF and rather forward declarations |
| 966 | /// will be generated. |
| 967 | void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, |
| 968 | bool CheckPointer, bool SeenPointer) { |
| 969 | if (!Ty || DIToIdMap.find(x: Ty) != DIToIdMap.end()) { |
| 970 | TypeId = DIToIdMap[Ty]; |
| 971 | |
| 972 | // To handle the case like the following: |
| 973 | // struct t; |
| 974 | // typedef struct t _t; |
| 975 | // struct s1 { _t *c; }; |
| 976 | // int test1(struct s1 *arg) { ... } |
| 977 | // |
| 978 | // struct t { int a; int b; }; |
| 979 | // struct s2 { _t c; } |
| 980 | // int test2(struct s2 *arg) { ... } |
| 981 | // |
| 982 | // During traversing test1() argument, "_t" is recorded |
| 983 | // in DIToIdMap and a forward declaration fixup is created |
| 984 | // for "struct t" to avoid pointee type traversal. |
| 985 | // |
| 986 | // During traversing test2() argument, even if we see "_t" is |
| 987 | // already defined, we should keep moving to eventually |
| 988 | // bring in types for "struct t". Otherwise, the "struct s2" |
| 989 | // definition won't be correct. |
| 990 | // |
| 991 | // In the above, we have following debuginfo: |
| 992 | // {ptr, struct_member} -> typedef -> struct |
| 993 | // and BTF type for 'typedef' is generated while 'struct' may |
| 994 | // be in FixUp. But let us generalize the above to handle |
| 995 | // {different types} -> [various derived types]+ -> another type. |
| 996 | // For example, |
| 997 | // {func_param, struct_member} -> const -> ptr -> volatile -> struct |
| 998 | // We will traverse const/ptr/volatile which already have corresponding |
| 999 | // BTF types and generate type for 'struct' which might be in Fixup |
| 1000 | // state. |
| 1001 | if (Ty && (!CheckPointer || !SeenPointer)) { |
| 1002 | if (const auto *DTy = dyn_cast<DIDerivedType>(Val: Ty)) { |
| 1003 | while (DTy) { |
| 1004 | const DIType *BaseTy = DTy->getBaseType(); |
| 1005 | if (!BaseTy) |
| 1006 | break; |
| 1007 | |
| 1008 | if (DIToIdMap.find(x: BaseTy) != DIToIdMap.end()) { |
| 1009 | DTy = dyn_cast<DIDerivedType>(Val: BaseTy); |
| 1010 | } else { |
| 1011 | if (CheckPointer && DTy->getTag() == dwarf::DW_TAG_pointer_type && |
| 1012 | !DTy->getAnnotations()) { |
| 1013 | SeenPointer = true; |
| 1014 | if (IsForwardDeclCandidate(Base: BaseTy)) |
| 1015 | break; |
| 1016 | } |
| 1017 | uint32_t TmpTypeId; |
| 1018 | visitTypeEntry(Ty: BaseTy, TypeId&: TmpTypeId, CheckPointer, SeenPointer); |
| 1019 | break; |
| 1020 | } |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | return; |
| 1026 | } |
| 1027 | |
| 1028 | if (const auto *BTy = dyn_cast<DIBasicType>(Val: Ty)) |
| 1029 | visitBasicType(BTy, TypeId); |
| 1030 | else if (const auto *STy = dyn_cast<DISubroutineType>(Val: Ty)) |
| 1031 | visitSubroutineType(STy, ForSubprog: false, FuncArgNames: std::unordered_map<uint32_t, StringRef>(), |
| 1032 | TypeId); |
| 1033 | else if (const auto *CTy = dyn_cast<DICompositeType>(Val: Ty)) |
| 1034 | visitCompositeType(CTy, TypeId); |
| 1035 | else if (const auto *DTy = dyn_cast<DIDerivedType>(Val: Ty)) |
| 1036 | visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); |
| 1037 | else |
| 1038 | llvm_unreachable("Unknown DIType" ); |
| 1039 | } |
| 1040 | |
| 1041 | void BTFDebug::visitTypeEntry(const DIType *Ty) { |
| 1042 | uint32_t TypeId; |
| 1043 | visitTypeEntry(Ty, TypeId, CheckPointer: false, SeenPointer: false); |
| 1044 | } |
| 1045 | |
| 1046 | void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { |
| 1047 | if (!Ty || DIToIdMap.find(x: Ty) != DIToIdMap.end()) { |
| 1048 | TypeId = DIToIdMap[Ty]; |
| 1049 | return; |
| 1050 | } |
| 1051 | |
| 1052 | uint32_t TmpId; |
| 1053 | switch (Ty->getTag()) { |
| 1054 | case dwarf::DW_TAG_typedef: |
| 1055 | case dwarf::DW_TAG_const_type: |
| 1056 | case dwarf::DW_TAG_volatile_type: |
| 1057 | case dwarf::DW_TAG_restrict_type: |
| 1058 | case dwarf::DW_TAG_pointer_type: |
| 1059 | visitMapDefType(Ty: dyn_cast<DIDerivedType>(Val: Ty)->getBaseType(), TypeId&: TmpId); |
| 1060 | break; |
| 1061 | case dwarf::DW_TAG_array_type: |
| 1062 | // Visit nested map array and jump to the element type |
| 1063 | visitMapDefType(Ty: dyn_cast<DICompositeType>(Val: Ty)->getBaseType(), TypeId&: TmpId); |
| 1064 | break; |
| 1065 | case dwarf::DW_TAG_structure_type: { |
| 1066 | // Visit all struct members to ensure their types are visited. |
| 1067 | const auto *CTy = cast<DICompositeType>(Val: Ty); |
| 1068 | const DINodeArray Elements = CTy->getElements(); |
| 1069 | for (const auto *Element : Elements) { |
| 1070 | const auto *MemberType = cast<DIDerivedType>(Val: Element); |
| 1071 | const DIType *MemberBaseType = MemberType->getBaseType(); |
| 1072 | // If the member is a composite type, that may indicate the currently |
| 1073 | // visited composite type is a wrapper, and the member represents the |
| 1074 | // actual map definition. |
| 1075 | // In that case, visit the member with `visitMapDefType` instead of |
| 1076 | // `visitTypeEntry`, treating it specifically as a map definition rather |
| 1077 | // than as a regular composite type. |
| 1078 | const auto *MemberCTy = dyn_cast<DICompositeType>(Val: MemberBaseType); |
| 1079 | if (MemberCTy) { |
| 1080 | visitMapDefType(Ty: MemberBaseType, TypeId&: TmpId); |
| 1081 | } else { |
| 1082 | visitTypeEntry(Ty: MemberBaseType); |
| 1083 | } |
| 1084 | } |
| 1085 | break; |
| 1086 | } |
| 1087 | default: |
| 1088 | break; |
| 1089 | } |
| 1090 | |
| 1091 | // Visit this type, struct or a const/typedef/volatile/restrict type |
| 1092 | visitTypeEntry(Ty, TypeId, CheckPointer: false, SeenPointer: false); |
| 1093 | } |
| 1094 | |
| 1095 | /// Read file contents from the actual file or from the source |
| 1096 | std::string BTFDebug::populateFileContent(const DIFile *File) { |
| 1097 | std::string FileName; |
| 1098 | |
| 1099 | if (!File->getFilename().starts_with(Prefix: "/" ) && File->getDirectory().size()) |
| 1100 | FileName = File->getDirectory().str() + "/" + File->getFilename().str(); |
| 1101 | else |
| 1102 | FileName = std::string(File->getFilename()); |
| 1103 | |
| 1104 | // No need to populate the contends if it has been populated! |
| 1105 | if (FileContent.contains(Key: FileName)) |
| 1106 | return FileName; |
| 1107 | |
| 1108 | std::vector<std::string> Content; |
| 1109 | std::string Line; |
| 1110 | Content.push_back(x: Line); // Line 0 for empty string |
| 1111 | |
| 1112 | auto LoadFile = [](StringRef FileName) { |
| 1113 | // FIXME(sandboxing): Propagating vfs::FileSystem here is lots of work. |
| 1114 | auto BypassSandbox = sys::sandbox::scopedDisable(); |
| 1115 | return MemoryBuffer::getFile(Filename: FileName); |
| 1116 | }; |
| 1117 | |
| 1118 | std::unique_ptr<MemoryBuffer> Buf; |
| 1119 | auto Source = File->getSource(); |
| 1120 | if (Source) |
| 1121 | Buf = MemoryBuffer::getMemBufferCopy(InputData: *Source); |
| 1122 | else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = LoadFile(FileName)) |
| 1123 | Buf = std::move(*BufOrErr); |
| 1124 | if (Buf) |
| 1125 | for (line_iterator I(*Buf, false), E; I != E; ++I) |
| 1126 | Content.push_back(x: std::string(*I)); |
| 1127 | |
| 1128 | FileContent[FileName] = Content; |
| 1129 | return FileName; |
| 1130 | } |
| 1131 | |
| 1132 | void BTFDebug::constructLineInfo(MCSymbol *Label, const DIFile *File, |
| 1133 | uint32_t Line, uint32_t Column) { |
| 1134 | std::string FileName = populateFileContent(File); |
| 1135 | BTFLineInfo LineInfo; |
| 1136 | |
| 1137 | LineInfo.Label = Label; |
| 1138 | LineInfo.FileNameOff = addString(S: FileName); |
| 1139 | // If file content is not available, let LineOff = 0. |
| 1140 | const auto &Content = FileContent[FileName]; |
| 1141 | if (Line < Content.size()) |
| 1142 | LineInfo.LineOff = addString(S: Content[Line]); |
| 1143 | else |
| 1144 | LineInfo.LineOff = 0; |
| 1145 | LineInfo.LineNum = Line; |
| 1146 | LineInfo.ColumnNum = Column; |
| 1147 | LineInfoTable[SecNameOff].push_back(x: LineInfo); |
| 1148 | } |
| 1149 | |
| 1150 | void BTFDebug::() { |
| 1151 | OS.AddComment(T: "0x" + Twine::utohexstr(Val: BTF::MAGIC)); |
| 1152 | OS.emitIntValue(Value: BTF::MAGIC, Size: 2); |
| 1153 | OS.emitInt8(Value: BTF::VERSION); |
| 1154 | OS.emitInt8(Value: 0); |
| 1155 | } |
| 1156 | |
| 1157 | void BTFDebug::emitBTFSection() { |
| 1158 | // Do not emit section if no types and only "" string. |
| 1159 | if (!TypeEntries.size() && StringTable.getSize() == 1) |
| 1160 | return; |
| 1161 | |
| 1162 | MCContext &Ctx = OS.getContext(); |
| 1163 | MCSectionELF *Sec = Ctx.getELFSection(Section: ".BTF" , Type: ELF::SHT_PROGBITS, Flags: 0); |
| 1164 | Sec->setAlignment(Align(4)); |
| 1165 | OS.switchSection(Section: Sec); |
| 1166 | |
| 1167 | // Emit header. |
| 1168 | emitCommonHeader(); |
| 1169 | OS.emitInt32(Value: BTF::HeaderSize); |
| 1170 | |
| 1171 | uint32_t TypeLen = 0, StrLen; |
| 1172 | for (const auto &TypeEntry : TypeEntries) |
| 1173 | TypeLen += TypeEntry->getSize(); |
| 1174 | StrLen = StringTable.getSize(); |
| 1175 | |
| 1176 | OS.emitInt32(Value: 0); |
| 1177 | OS.emitInt32(Value: TypeLen); |
| 1178 | OS.emitInt32(Value: TypeLen); |
| 1179 | OS.emitInt32(Value: StrLen); |
| 1180 | |
| 1181 | // Emit type table. |
| 1182 | for (const auto &TypeEntry : TypeEntries) |
| 1183 | TypeEntry->emitType(OS); |
| 1184 | |
| 1185 | // Emit string table. |
| 1186 | uint32_t StringOffset = 0; |
| 1187 | for (const auto &S : StringTable.getTable()) { |
| 1188 | OS.AddComment(T: "string offset=" + std::to_string(val: StringOffset)); |
| 1189 | OS.emitBytes(Data: S); |
| 1190 | OS.emitBytes(Data: StringRef("\0" , 1)); |
| 1191 | StringOffset += S.size() + 1; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | void BTFDebug::emitBTFExtSection() { |
| 1196 | // Do not emit section if empty FuncInfoTable and LineInfoTable |
| 1197 | // and FieldRelocTable. |
| 1198 | if (!FuncInfoTable.size() && !LineInfoTable.size() && |
| 1199 | !FieldRelocTable.size()) |
| 1200 | return; |
| 1201 | |
| 1202 | MCContext &Ctx = OS.getContext(); |
| 1203 | MCSectionELF *Sec = Ctx.getELFSection(Section: ".BTF.ext" , Type: ELF::SHT_PROGBITS, Flags: 0); |
| 1204 | Sec->setAlignment(Align(4)); |
| 1205 | OS.switchSection(Section: Sec); |
| 1206 | |
| 1207 | // Emit header. |
| 1208 | emitCommonHeader(); |
| 1209 | OS.emitInt32(Value: BTF::ExtHeaderSize); |
| 1210 | |
| 1211 | // Account for FuncInfo/LineInfo record size as well. |
| 1212 | uint32_t FuncLen = 4, LineLen = 4; |
| 1213 | // Do not account for optional FieldReloc. |
| 1214 | uint32_t FieldRelocLen = 0; |
| 1215 | for (const auto &FuncSec : FuncInfoTable) { |
| 1216 | FuncLen += BTF::SecFuncInfoSize; |
| 1217 | FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; |
| 1218 | } |
| 1219 | for (const auto &LineSec : LineInfoTable) { |
| 1220 | LineLen += BTF::SecLineInfoSize; |
| 1221 | LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; |
| 1222 | } |
| 1223 | for (const auto &FieldRelocSec : FieldRelocTable) { |
| 1224 | FieldRelocLen += BTF::SecFieldRelocSize; |
| 1225 | FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; |
| 1226 | } |
| 1227 | |
| 1228 | if (FieldRelocLen) |
| 1229 | FieldRelocLen += 4; |
| 1230 | |
| 1231 | OS.emitInt32(Value: 0); |
| 1232 | OS.emitInt32(Value: FuncLen); |
| 1233 | OS.emitInt32(Value: FuncLen); |
| 1234 | OS.emitInt32(Value: LineLen); |
| 1235 | OS.emitInt32(Value: FuncLen + LineLen); |
| 1236 | OS.emitInt32(Value: FieldRelocLen); |
| 1237 | |
| 1238 | // Emit func_info table. |
| 1239 | OS.AddComment(T: "FuncInfo" ); |
| 1240 | OS.emitInt32(Value: BTF::BPFFuncInfoSize); |
| 1241 | for (const auto &FuncSec : FuncInfoTable) { |
| 1242 | OS.AddComment(T: "FuncInfo section string offset=" + |
| 1243 | std::to_string(val: FuncSec.first)); |
| 1244 | OS.emitInt32(Value: FuncSec.first); |
| 1245 | OS.emitInt32(Value: FuncSec.second.size()); |
| 1246 | for (const auto &FuncInfo : FuncSec.second) { |
| 1247 | Asm->emitLabelReference(Label: FuncInfo.Label, Size: 4); |
| 1248 | OS.emitInt32(Value: FuncInfo.TypeId); |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | // Emit line_info table. |
| 1253 | OS.AddComment(T: "LineInfo" ); |
| 1254 | OS.emitInt32(Value: BTF::BPFLineInfoSize); |
| 1255 | for (const auto &LineSec : LineInfoTable) { |
| 1256 | OS.AddComment(T: "LineInfo section string offset=" + |
| 1257 | std::to_string(val: LineSec.first)); |
| 1258 | OS.emitInt32(Value: LineSec.first); |
| 1259 | OS.emitInt32(Value: LineSec.second.size()); |
| 1260 | for (const auto &LineInfo : LineSec.second) { |
| 1261 | Asm->emitLabelReference(Label: LineInfo.Label, Size: 4); |
| 1262 | OS.emitInt32(Value: LineInfo.FileNameOff); |
| 1263 | OS.emitInt32(Value: LineInfo.LineOff); |
| 1264 | OS.AddComment(T: "Line " + std::to_string(val: LineInfo.LineNum) + " Col " + |
| 1265 | std::to_string(val: LineInfo.ColumnNum)); |
| 1266 | OS.emitInt32(Value: LineInfo.LineNum << 10 | LineInfo.ColumnNum); |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | // Emit field reloc table. |
| 1271 | if (FieldRelocLen) { |
| 1272 | OS.AddComment(T: "FieldReloc" ); |
| 1273 | OS.emitInt32(Value: BTF::BPFFieldRelocSize); |
| 1274 | for (const auto &FieldRelocSec : FieldRelocTable) { |
| 1275 | OS.AddComment(T: "Field reloc section string offset=" + |
| 1276 | std::to_string(val: FieldRelocSec.first)); |
| 1277 | OS.emitInt32(Value: FieldRelocSec.first); |
| 1278 | OS.emitInt32(Value: FieldRelocSec.second.size()); |
| 1279 | for (const auto &FieldRelocInfo : FieldRelocSec.second) { |
| 1280 | Asm->emitLabelReference(Label: FieldRelocInfo.Label, Size: 4); |
| 1281 | OS.emitInt32(Value: FieldRelocInfo.TypeID); |
| 1282 | OS.emitInt32(Value: FieldRelocInfo.OffsetNameOff); |
| 1283 | OS.emitInt32(Value: FieldRelocInfo.RelocKind); |
| 1284 | } |
| 1285 | } |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { |
| 1290 | auto *SP = MF->getFunction().getSubprogram(); |
| 1291 | auto *Unit = SP->getUnit(); |
| 1292 | |
| 1293 | if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { |
| 1294 | SkipInstruction = true; |
| 1295 | return; |
| 1296 | } |
| 1297 | SkipInstruction = false; |
| 1298 | |
| 1299 | // Collect MapDef types. Map definition needs to collect |
| 1300 | // pointee types. Do it first. Otherwise, for the following |
| 1301 | // case: |
| 1302 | // struct m { ...}; |
| 1303 | // struct t { |
| 1304 | // struct m *key; |
| 1305 | // }; |
| 1306 | // foo(struct t *arg); |
| 1307 | // |
| 1308 | // struct mapdef { |
| 1309 | // ... |
| 1310 | // struct m *key; |
| 1311 | // ... |
| 1312 | // } __attribute__((section(".maps"))) hash_map; |
| 1313 | // |
| 1314 | // If subroutine foo is traversed first, a type chain |
| 1315 | // "ptr->struct m(fwd)" will be created and later on |
| 1316 | // when traversing mapdef, since "ptr->struct m" exists, |
| 1317 | // the traversal of "struct m" will be omitted. |
| 1318 | if (MapDefNotCollected) { |
| 1319 | processGlobals(ProcessingMapDef: true); |
| 1320 | MapDefNotCollected = false; |
| 1321 | } |
| 1322 | |
| 1323 | // Collect all types locally referenced in this function. |
| 1324 | // Use RetainedNodes so we can collect all argument names |
| 1325 | // even if the argument is not used. |
| 1326 | std::unordered_map<uint32_t, StringRef> FuncArgNames; |
| 1327 | for (const DINode *DN : SP->getRetainedNodes()) { |
| 1328 | if (const auto *DV = dyn_cast<DILocalVariable>(Val: DN)) { |
| 1329 | // Collect function arguments for subprogram func type. |
| 1330 | uint32_t Arg = DV->getArg(); |
| 1331 | if (Arg) { |
| 1332 | visitTypeEntry(Ty: DV->getType()); |
| 1333 | FuncArgNames[Arg] = DV->getName(); |
| 1334 | } |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | // Construct subprogram func proto type. |
| 1339 | uint32_t ProtoTypeId; |
| 1340 | visitSubroutineType(STy: SP->getType(), ForSubprog: true, FuncArgNames, TypeId&: ProtoTypeId); |
| 1341 | |
| 1342 | // Construct subprogram func type |
| 1343 | uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; |
| 1344 | uint32_t FuncTypeId = processDISubprogram(SP, ProtoTypeId, Scope); |
| 1345 | |
| 1346 | for (const auto &TypeEntry : TypeEntries) |
| 1347 | TypeEntry->completeType(BDebug&: *this); |
| 1348 | |
| 1349 | // Construct funcinfo and the first lineinfo for the function. |
| 1350 | MCSymbol *FuncLabel = Asm->getFunctionBegin(); |
| 1351 | BTFFuncInfo FuncInfo; |
| 1352 | FuncInfo.Label = FuncLabel; |
| 1353 | FuncInfo.TypeId = FuncTypeId; |
| 1354 | if (FuncLabel->isInSection()) { |
| 1355 | auto &Sec = static_cast<const MCSectionELF &>(FuncLabel->getSection()); |
| 1356 | SecNameOff = addString(S: Sec.getName()); |
| 1357 | } else { |
| 1358 | SecNameOff = addString(S: ".text" ); |
| 1359 | } |
| 1360 | FuncInfoTable[SecNameOff].push_back(x: FuncInfo); |
| 1361 | } |
| 1362 | |
| 1363 | void BTFDebug::endFunctionImpl(const MachineFunction *MF) { |
| 1364 | SkipInstruction = false; |
| 1365 | LineInfoGenerated = false; |
| 1366 | SecNameOff = 0; |
| 1367 | } |
| 1368 | |
| 1369 | /// On-demand populate types as requested from abstract member |
| 1370 | /// accessing or preserve debuginfo type. |
| 1371 | unsigned BTFDebug::populateType(const DIType *Ty) { |
| 1372 | unsigned Id; |
| 1373 | visitTypeEntry(Ty, TypeId&: Id, CheckPointer: false, SeenPointer: false); |
| 1374 | for (const auto &TypeEntry : TypeEntries) |
| 1375 | TypeEntry->completeType(BDebug&: *this); |
| 1376 | return Id; |
| 1377 | } |
| 1378 | |
| 1379 | /// Generate a struct member field relocation. |
| 1380 | void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, |
| 1381 | const GlobalVariable *GVar, bool IsAma) { |
| 1382 | BTFFieldReloc FieldReloc; |
| 1383 | FieldReloc.Label = ORSym; |
| 1384 | FieldReloc.TypeID = RootId; |
| 1385 | |
| 1386 | StringRef AccessPattern = GVar->getName(); |
| 1387 | size_t FirstDollar = AccessPattern.find_first_of(C: '$'); |
| 1388 | if (IsAma) { |
| 1389 | size_t FirstColon = AccessPattern.find_first_of(C: ':'); |
| 1390 | size_t SecondColon = AccessPattern.find_first_of(C: ':', From: FirstColon + 1); |
| 1391 | StringRef IndexPattern = AccessPattern.substr(Start: FirstDollar + 1); |
| 1392 | StringRef RelocKindStr = AccessPattern.substr(Start: FirstColon + 1, |
| 1393 | N: SecondColon - FirstColon); |
| 1394 | StringRef PatchImmStr = AccessPattern.substr(Start: SecondColon + 1, |
| 1395 | N: FirstDollar - SecondColon); |
| 1396 | |
| 1397 | FieldReloc.OffsetNameOff = addString(S: IndexPattern); |
| 1398 | FieldReloc.RelocKind = std::stoull(str: std::string(RelocKindStr)); |
| 1399 | PatchImms[GVar] = std::make_pair(x: std::stoll(str: std::string(PatchImmStr)), |
| 1400 | y&: FieldReloc.RelocKind); |
| 1401 | } else { |
| 1402 | StringRef RelocStr = AccessPattern.substr(Start: FirstDollar + 1); |
| 1403 | FieldReloc.OffsetNameOff = addString(S: "0" ); |
| 1404 | FieldReloc.RelocKind = std::stoull(str: std::string(RelocStr)); |
| 1405 | PatchImms[GVar] = std::make_pair(x&: RootId, y&: FieldReloc.RelocKind); |
| 1406 | } |
| 1407 | FieldRelocTable[SecNameOff].push_back(x: FieldReloc); |
| 1408 | } |
| 1409 | |
| 1410 | void BTFDebug::processGlobalValue(const MachineOperand &MO) { |
| 1411 | // check whether this is a candidate or not |
| 1412 | if (MO.isGlobal()) { |
| 1413 | const GlobalValue *GVal = MO.getGlobal(); |
| 1414 | auto *GVar = dyn_cast<GlobalVariable>(Val: GVal); |
| 1415 | if (!GVar) { |
| 1416 | // Not a global variable. Maybe an extern function reference. |
| 1417 | processFuncPrototypes(dyn_cast<Function>(Val: GVal)); |
| 1418 | return; |
| 1419 | } |
| 1420 | |
| 1421 | if (!GVar->hasAttribute(Kind: BPFCoreSharedInfo::AmaAttr) && |
| 1422 | !GVar->hasAttribute(Kind: BPFCoreSharedInfo::TypeIdAttr)) |
| 1423 | return; |
| 1424 | |
| 1425 | MCSymbol *ORSym = OS.getContext().createTempSymbol(); |
| 1426 | OS.emitLabel(Symbol: ORSym); |
| 1427 | |
| 1428 | MDNode *MDN = GVar->getMetadata(KindID: LLVMContext::MD_preserve_access_index); |
| 1429 | uint32_t RootId = populateType(Ty: dyn_cast<DIType>(Val: MDN)); |
| 1430 | generatePatchImmReloc(ORSym, RootId, GVar, |
| 1431 | IsAma: GVar->hasAttribute(Kind: BPFCoreSharedInfo::AmaAttr)); |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | void BTFDebug::beginInstruction(const MachineInstr *MI) { |
| 1436 | DebugHandlerBase::beginInstruction(MI); |
| 1437 | |
| 1438 | if (SkipInstruction || MI->isMetaInstruction() || |
| 1439 | MI->getFlag(Flag: MachineInstr::FrameSetup)) |
| 1440 | return; |
| 1441 | |
| 1442 | if (MI->isInlineAsm()) { |
| 1443 | // Count the number of register definitions to find the asm string. |
| 1444 | unsigned NumDefs = 0; |
| 1445 | while (true) { |
| 1446 | const MachineOperand &MO = MI->getOperand(i: NumDefs); |
| 1447 | if (MO.isReg() && MO.isDef()) { |
| 1448 | ++NumDefs; |
| 1449 | continue; |
| 1450 | } |
| 1451 | // Skip this inline asm instruction if the asmstr is empty. |
| 1452 | const char *AsmStr = MO.getSymbolName(); |
| 1453 | if (AsmStr[0] == 0) |
| 1454 | return; |
| 1455 | break; |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | if (MI->getOpcode() == BPF::LD_imm64) { |
| 1460 | // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", |
| 1461 | // add this insn into the .BTF.ext FieldReloc subsection. |
| 1462 | // Relocation looks like: |
| 1463 | // . SecName: |
| 1464 | // . InstOffset |
| 1465 | // . TypeID |
| 1466 | // . OffSetNameOff |
| 1467 | // . RelocType |
| 1468 | // Later, the insn is replaced with "r2 = <offset>" |
| 1469 | // where "<offset>" equals to the offset based on current |
| 1470 | // type definitions. |
| 1471 | // |
| 1472 | // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", |
| 1473 | // The LD_imm64 result will be replaced with a btf type id. |
| 1474 | processGlobalValue(MO: MI->getOperand(i: 1)); |
| 1475 | } else if (MI->getOpcode() == BPF::CORE_LD64 || |
| 1476 | MI->getOpcode() == BPF::CORE_LD32 || |
| 1477 | MI->getOpcode() == BPF::CORE_ST || |
| 1478 | MI->getOpcode() == BPF::CORE_SHIFT) { |
| 1479 | // relocation insn is a load, store or shift insn. |
| 1480 | processGlobalValue(MO: MI->getOperand(i: 3)); |
| 1481 | } else if (MI->getOpcode() == BPF::JAL) { |
| 1482 | // check extern function references |
| 1483 | const MachineOperand &MO = MI->getOperand(i: 0); |
| 1484 | if (MO.isGlobal()) { |
| 1485 | processFuncPrototypes(dyn_cast<Function>(Val: MO.getGlobal())); |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | if (!CurMI) // no debug info |
| 1490 | return; |
| 1491 | |
| 1492 | // Skip this instruction if no DebugLoc, the DebugLoc |
| 1493 | // is the same as the previous instruction or Line is 0. |
| 1494 | const DebugLoc &DL = MI->getDebugLoc(); |
| 1495 | if (!DL || PrevInstLoc == DL || DL.getLine() == 0) { |
| 1496 | // This instruction will be skipped, no LineInfo has |
| 1497 | // been generated, construct one based on function signature. |
| 1498 | if (LineInfoGenerated == false) { |
| 1499 | auto *S = MI->getMF()->getFunction().getSubprogram(); |
| 1500 | if (!S) |
| 1501 | return; |
| 1502 | MCSymbol *FuncLabel = Asm->getFunctionBegin(); |
| 1503 | constructLineInfo(Label: FuncLabel, File: S->getFile(), Line: S->getLine(), Column: 0); |
| 1504 | LineInfoGenerated = true; |
| 1505 | } |
| 1506 | |
| 1507 | return; |
| 1508 | } |
| 1509 | |
| 1510 | // Create a temporary label to remember the insn for lineinfo. |
| 1511 | MCSymbol *LineSym = OS.getContext().createTempSymbol(); |
| 1512 | OS.emitLabel(Symbol: LineSym); |
| 1513 | |
| 1514 | // Construct the lineinfo. |
| 1515 | constructLineInfo(Label: LineSym, File: DL->getFile(), Line: DL.getLine(), Column: DL.getCol()); |
| 1516 | |
| 1517 | LineInfoGenerated = true; |
| 1518 | PrevInstLoc = DL; |
| 1519 | } |
| 1520 | |
| 1521 | void BTFDebug::processGlobals(bool ProcessingMapDef) { |
| 1522 | // Collect all types referenced by globals. |
| 1523 | const Module *M = MMI->getModule(); |
| 1524 | for (const GlobalVariable &Global : M->globals()) { |
| 1525 | // Decide the section name. |
| 1526 | StringRef SecName; |
| 1527 | std::optional<SectionKind> GVKind; |
| 1528 | |
| 1529 | if (!Global.isDeclarationForLinker()) |
| 1530 | GVKind = TargetLoweringObjectFile::getKindForGlobal(GO: &Global, TM: Asm->TM); |
| 1531 | |
| 1532 | if (Global.isDeclarationForLinker()) |
| 1533 | SecName = Global.hasSection() ? Global.getSection() : "" ; |
| 1534 | else if (GVKind->isCommon()) |
| 1535 | SecName = ".bss" ; |
| 1536 | else { |
| 1537 | TargetLoweringObjectFile *TLOF = Asm->TM.getObjFileLowering(); |
| 1538 | MCSection *Sec = TLOF->SectionForGlobal(GO: &Global, TM: Asm->TM); |
| 1539 | SecName = Sec->getName(); |
| 1540 | } |
| 1541 | |
| 1542 | if (ProcessingMapDef != SecName.starts_with(Prefix: ".maps" )) |
| 1543 | continue; |
| 1544 | |
| 1545 | // Create a .rodata datasec if the global variable is an initialized |
| 1546 | // constant with private linkage and if it won't be in .rodata.str<#> |
| 1547 | // and .rodata.cst<#> sections. |
| 1548 | if (SecName == ".rodata" && Global.hasPrivateLinkage() && |
| 1549 | DataSecEntries.find(x: SecName) == DataSecEntries.end()) { |
| 1550 | // skip .rodata.str<#> and .rodata.cst<#> sections |
| 1551 | if (!GVKind->isMergeableCString() && !GVKind->isMergeableConst()) { |
| 1552 | DataSecEntries[std::string(SecName)] = |
| 1553 | std::make_unique<BTFKindDataSec>(args&: Asm, args: std::string(SecName)); |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | SmallVector<DIGlobalVariableExpression *, 1> GVs; |
| 1558 | Global.getDebugInfo(GVs); |
| 1559 | |
| 1560 | // No type information, mostly internal, skip it. |
| 1561 | if (GVs.size() == 0) |
| 1562 | continue; |
| 1563 | |
| 1564 | uint32_t GVTypeId = 0; |
| 1565 | DIGlobalVariable *DIGlobal = nullptr; |
| 1566 | for (auto *GVE : GVs) { |
| 1567 | DIGlobal = GVE->getVariable(); |
| 1568 | if (SecName.starts_with(Prefix: ".maps" )) |
| 1569 | visitMapDefType(Ty: DIGlobal->getType(), TypeId&: GVTypeId); |
| 1570 | else { |
| 1571 | const DIType *Ty = tryRemoveAtomicType(Ty: DIGlobal->getType()); |
| 1572 | visitTypeEntry(Ty, TypeId&: GVTypeId, CheckPointer: false, SeenPointer: false); |
| 1573 | } |
| 1574 | break; |
| 1575 | } |
| 1576 | |
| 1577 | // Only support the following globals: |
| 1578 | // . static variables |
| 1579 | // . non-static weak or non-weak global variables |
| 1580 | // . weak or non-weak extern global variables |
| 1581 | // Whether DataSec is readonly or not can be found from corresponding ELF |
| 1582 | // section flags. Whether a BTF_KIND_VAR is a weak symbol or not |
| 1583 | // can be found from the corresponding ELF symbol table. |
| 1584 | auto Linkage = Global.getLinkage(); |
| 1585 | if (Linkage != GlobalValue::InternalLinkage && |
| 1586 | Linkage != GlobalValue::ExternalLinkage && |
| 1587 | Linkage != GlobalValue::WeakAnyLinkage && |
| 1588 | Linkage != GlobalValue::WeakODRLinkage && |
| 1589 | Linkage != GlobalValue::ExternalWeakLinkage) |
| 1590 | continue; |
| 1591 | |
| 1592 | uint32_t GVarInfo; |
| 1593 | if (Linkage == GlobalValue::InternalLinkage) { |
| 1594 | GVarInfo = BTF::VAR_STATIC; |
| 1595 | } else if (Global.hasInitializer()) { |
| 1596 | GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; |
| 1597 | } else { |
| 1598 | GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; |
| 1599 | } |
| 1600 | |
| 1601 | auto VarEntry = |
| 1602 | std::make_unique<BTFKindVar>(args: Global.getName(), args&: GVTypeId, args&: GVarInfo); |
| 1603 | uint32_t VarId = addType(TypeEntry: std::move(VarEntry)); |
| 1604 | |
| 1605 | processDeclAnnotations(Annotations: DIGlobal->getAnnotations(), BaseTypeId: VarId, ComponentIdx: -1); |
| 1606 | |
| 1607 | // An empty SecName means an extern variable without section attribute. |
| 1608 | if (SecName.empty()) |
| 1609 | continue; |
| 1610 | |
| 1611 | // Find or create a DataSec |
| 1612 | auto [It, Inserted] = DataSecEntries.try_emplace(k: std::string(SecName)); |
| 1613 | if (Inserted) |
| 1614 | It->second = std::make_unique<BTFKindDataSec>(args&: Asm, args: std::string(SecName)); |
| 1615 | |
| 1616 | // Calculate symbol size |
| 1617 | const DataLayout &DL = Global.getDataLayout(); |
| 1618 | uint32_t Size = Global.getGlobalSize(DL); |
| 1619 | |
| 1620 | It->second->addDataSecEntry(Id: VarId, Sym: Asm->getSymbol(GV: &Global), Size); |
| 1621 | |
| 1622 | if (Global.hasInitializer()) |
| 1623 | processGlobalInitializer(C: Global.getInitializer()); |
| 1624 | } |
| 1625 | } |
| 1626 | |
| 1627 | /// Process global variable initializer in pursuit for function |
| 1628 | /// pointers. Add discovered (extern) functions to BTF. Some (extern) |
| 1629 | /// functions might have been missed otherwise. Every symbol needs BTF |
| 1630 | /// info when linking with bpftool. Primary use case: "static" |
| 1631 | /// initialization of BPF maps. |
| 1632 | /// |
| 1633 | /// struct { |
| 1634 | /// __uint(type, BPF_MAP_TYPE_PROG_ARRAY); |
| 1635 | /// ... |
| 1636 | /// } prog_map SEC(".maps") = { .values = { extern_func } }; |
| 1637 | /// |
| 1638 | void BTFDebug::processGlobalInitializer(const Constant *C) { |
| 1639 | if (auto *Fn = dyn_cast<Function>(Val: C)) |
| 1640 | processFuncPrototypes(Fn); |
| 1641 | if (auto *CA = dyn_cast<ConstantAggregate>(Val: C)) { |
| 1642 | for (unsigned I = 0, N = CA->getNumOperands(); I < N; ++I) |
| 1643 | processGlobalInitializer(C: CA->getOperand(i_nocapture: I)); |
| 1644 | } |
| 1645 | } |
| 1646 | |
| 1647 | /// Emit proper patchable instructions. |
| 1648 | bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { |
| 1649 | if (MI->getOpcode() == BPF::LD_imm64) { |
| 1650 | const MachineOperand &MO = MI->getOperand(i: 1); |
| 1651 | if (MO.isGlobal()) { |
| 1652 | const GlobalValue *GVal = MO.getGlobal(); |
| 1653 | auto *GVar = dyn_cast<GlobalVariable>(Val: GVal); |
| 1654 | if (GVar) { |
| 1655 | if (!GVar->hasAttribute(Kind: BPFCoreSharedInfo::AmaAttr) && |
| 1656 | !GVar->hasAttribute(Kind: BPFCoreSharedInfo::TypeIdAttr)) |
| 1657 | return false; |
| 1658 | |
| 1659 | // Emit "mov ri, <imm>" |
| 1660 | auto [Imm, Reloc] = PatchImms[GVar]; |
| 1661 | if (Reloc == BTF::ENUM_VALUE_EXISTENCE || Reloc == BTF::ENUM_VALUE || |
| 1662 | Reloc == BTF::BTF_TYPE_ID_LOCAL || Reloc == BTF::BTF_TYPE_ID_REMOTE) |
| 1663 | OutMI.setOpcode(BPF::LD_imm64); |
| 1664 | else |
| 1665 | OutMI.setOpcode(BPF::MOV_ri); |
| 1666 | OutMI.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
| 1667 | OutMI.addOperand(Op: MCOperand::createImm(Val: Imm)); |
| 1668 | return true; |
| 1669 | } |
| 1670 | } |
| 1671 | } else if (MI->getOpcode() == BPF::CORE_LD64 || |
| 1672 | MI->getOpcode() == BPF::CORE_LD32 || |
| 1673 | MI->getOpcode() == BPF::CORE_ST || |
| 1674 | MI->getOpcode() == BPF::CORE_SHIFT) { |
| 1675 | const MachineOperand &MO = MI->getOperand(i: 3); |
| 1676 | if (MO.isGlobal()) { |
| 1677 | const GlobalValue *GVal = MO.getGlobal(); |
| 1678 | auto *GVar = dyn_cast<GlobalVariable>(Val: GVal); |
| 1679 | if (GVar && GVar->hasAttribute(Kind: BPFCoreSharedInfo::AmaAttr)) { |
| 1680 | uint32_t Imm = PatchImms[GVar].first; |
| 1681 | OutMI.setOpcode(MI->getOperand(i: 1).getImm()); |
| 1682 | if (MI->getOperand(i: 0).isImm()) |
| 1683 | OutMI.addOperand(Op: MCOperand::createImm(Val: MI->getOperand(i: 0).getImm())); |
| 1684 | else |
| 1685 | OutMI.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
| 1686 | OutMI.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 2).getReg())); |
| 1687 | OutMI.addOperand(Op: MCOperand::createImm(Val: Imm)); |
| 1688 | return true; |
| 1689 | } |
| 1690 | } |
| 1691 | } |
| 1692 | return false; |
| 1693 | } |
| 1694 | |
| 1695 | void BTFDebug::processFuncPrototypes(const Function *F) { |
| 1696 | if (!F) |
| 1697 | return; |
| 1698 | |
| 1699 | const DISubprogram *SP = F->getSubprogram(); |
| 1700 | if (!SP || SP->isDefinition()) |
| 1701 | return; |
| 1702 | |
| 1703 | // Do not emit again if already emitted. |
| 1704 | if (!ProtoFunctions.insert(x: F).second) |
| 1705 | return; |
| 1706 | |
| 1707 | uint32_t ProtoTypeId; |
| 1708 | const std::unordered_map<uint32_t, StringRef> FuncArgNames; |
| 1709 | visitSubroutineType(STy: SP->getType(), ForSubprog: false, FuncArgNames, TypeId&: ProtoTypeId); |
| 1710 | uint32_t FuncId = processDISubprogram(SP, ProtoTypeId, Scope: BTF::FUNC_EXTERN); |
| 1711 | |
| 1712 | if (F->hasSection()) { |
| 1713 | StringRef SecName = F->getSection(); |
| 1714 | |
| 1715 | auto [It, Inserted] = DataSecEntries.try_emplace(k: std::string(SecName)); |
| 1716 | if (Inserted) |
| 1717 | It->second = std::make_unique<BTFKindDataSec>(args&: Asm, args: std::string(SecName)); |
| 1718 | |
| 1719 | // We really don't know func size, set it to 0. |
| 1720 | It->second->addDataSecEntry(Id: FuncId, Sym: Asm->getSymbol(GV: F), Size: 0); |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | void BTFDebug::endModule() { |
| 1725 | // Collect MapDef globals if not collected yet. |
| 1726 | if (MapDefNotCollected) { |
| 1727 | processGlobals(ProcessingMapDef: true); |
| 1728 | MapDefNotCollected = false; |
| 1729 | } |
| 1730 | |
| 1731 | // Collect global types/variables except MapDef globals. |
| 1732 | processGlobals(ProcessingMapDef: false); |
| 1733 | |
| 1734 | // In case that BPF_TRAP usage is removed during machine-level optimization, |
| 1735 | // generate btf for BPF_TRAP function here. |
| 1736 | for (const Function &F : *MMI->getModule()) { |
| 1737 | if (F.getName() == BPF_TRAP) |
| 1738 | processFuncPrototypes(F: &F); |
| 1739 | } |
| 1740 | |
| 1741 | for (auto &DataSec : DataSecEntries) |
| 1742 | addType(TypeEntry: std::move(DataSec.second)); |
| 1743 | |
| 1744 | // Fixups |
| 1745 | for (auto &Fixup : FixupDerivedTypes) { |
| 1746 | const DICompositeType *CTy = Fixup.first; |
| 1747 | StringRef TypeName = CTy->getName(); |
| 1748 | bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; |
| 1749 | |
| 1750 | // Search through struct types |
| 1751 | uint32_t StructTypeId = 0; |
| 1752 | for (const auto &StructType : StructTypes) { |
| 1753 | if (StructType->getName() == TypeName) { |
| 1754 | StructTypeId = StructType->getId(); |
| 1755 | break; |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | if (StructTypeId == 0) { |
| 1760 | auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(args&: TypeName, args&: IsUnion); |
| 1761 | StructTypeId = addType(TypeEntry: std::move(FwdTypeEntry)); |
| 1762 | } |
| 1763 | |
| 1764 | for (auto &TypeInfo : Fixup.second) { |
| 1765 | const DIDerivedType *DTy = TypeInfo.first; |
| 1766 | BTFTypeDerived *BDType = TypeInfo.second; |
| 1767 | |
| 1768 | int TmpTypeId = genBTFTypeTags(DTy, BaseTypeId: StructTypeId); |
| 1769 | if (TmpTypeId >= 0) |
| 1770 | BDType->setPointeeType(TmpTypeId); |
| 1771 | else |
| 1772 | BDType->setPointeeType(StructTypeId); |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | // Complete BTF type cross refereences. |
| 1777 | for (const auto &TypeEntry : TypeEntries) |
| 1778 | TypeEntry->completeType(BDebug&: *this); |
| 1779 | |
| 1780 | // Emit BTF sections. |
| 1781 | emitBTFSection(); |
| 1782 | emitBTFExtSection(); |
| 1783 | } |
| 1784 | |