| 1 | //===- VPlanPatternMatch.h - Match on VPValues and recipes ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides a simple and efficient mechanism for performing general |
| 10 | // tree-based pattern matches on the VPlan values and recipes, based on |
| 11 | // LLVM's IR pattern matchers. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H |
| 16 | #define LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H |
| 17 | |
| 18 | #include "VPlan.h" |
| 19 | |
| 20 | namespace llvm::VPlanPatternMatch { |
| 21 | |
| 22 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
| 23 | return P.match(V); |
| 24 | } |
| 25 | |
| 26 | /// A match functor that can be used as a UnaryPredicate in functional |
| 27 | /// algorithms like all_of. |
| 28 | template <typename Val, typename Pattern> auto match_fn(const Pattern &P) { |
| 29 | return bind_back<match<Val, Pattern>>(P); |
| 30 | } |
| 31 | |
| 32 | template <typename Pattern> bool match(VPUser *U, const Pattern &P) { |
| 33 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 34 | return R && match(R, P); |
| 35 | } |
| 36 | |
| 37 | /// Match functor for VPUser. |
| 38 | template <typename Pattern> auto match_fn(const Pattern &P) { |
| 39 | return bind_back<match<Pattern>>(P); |
| 40 | } |
| 41 | |
| 42 | template <typename Pattern> bool match(VPSingleDefRecipe *R, const Pattern &P) { |
| 43 | return P.match(static_cast<const VPRecipeBase *>(R)); |
| 44 | } |
| 45 | |
| 46 | template <typename... Classes> struct class_match { |
| 47 | template <typename ITy> bool match(ITy *V) const { |
| 48 | return isa<Classes...>(V); |
| 49 | } |
| 50 | }; |
| 51 | |
| 52 | /// Match an arbitrary VPValue and ignore it. |
| 53 | inline class_match<VPValue> m_VPValue() { return class_match<VPValue>(); } |
| 54 | |
| 55 | template <typename Class> struct bind_ty { |
| 56 | Class *&VR; |
| 57 | |
| 58 | bind_ty(Class *&V) : VR(V) {} |
| 59 | |
| 60 | template <typename ITy> bool match(ITy *V) const { |
| 61 | if (auto *CV = dyn_cast<Class>(V)) { |
| 62 | VR = CV; |
| 63 | return true; |
| 64 | } |
| 65 | return false; |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | /// Match a specified VPValue. |
| 70 | struct specificval_ty { |
| 71 | const VPValue *Val; |
| 72 | |
| 73 | specificval_ty(const VPValue *V) : Val(V) {} |
| 74 | |
| 75 | bool match(VPValue *VPV) const { return VPV == Val; } |
| 76 | }; |
| 77 | |
| 78 | inline specificval_ty m_Specific(const VPValue *VPV) { return VPV; } |
| 79 | |
| 80 | /// Stores a reference to the VPValue *, not the VPValue * itself, |
| 81 | /// thus can be used in commutative matchers. |
| 82 | struct deferredval_ty { |
| 83 | VPValue *const &Val; |
| 84 | |
| 85 | deferredval_ty(VPValue *const &V) : Val(V) {} |
| 86 | |
| 87 | bool match(VPValue *const V) const { return V == Val; } |
| 88 | }; |
| 89 | |
| 90 | /// Like m_Specific(), but works if the specific value to match is determined |
| 91 | /// as part of the same match() expression. For example: |
| 92 | /// m_Mul(m_VPValue(X), m_Specific(X)) is incorrect, because m_Specific() will |
| 93 | /// bind X before the pattern match starts. |
| 94 | /// m_Mul(m_VPValue(X), m_Deferred(X)) is correct, and will check against |
| 95 | /// whichever value m_VPValue(X) populated. |
| 96 | inline deferredval_ty m_Deferred(VPValue *const &V) { return V; } |
| 97 | |
| 98 | /// Match an integer constant or vector of constants if Pred::isValue returns |
| 99 | /// true for the APInt. \p BitWidth optionally specifies the bitwidth the |
| 100 | /// matched constant must have. If it is 0, the matched constant can have any |
| 101 | /// bitwidth. |
| 102 | template <typename Pred, unsigned BitWidth = 0> struct int_pred_ty { |
| 103 | Pred P; |
| 104 | |
| 105 | int_pred_ty(Pred P) : P(std::move(P)) {} |
| 106 | int_pred_ty() : P() {} |
| 107 | |
| 108 | bool match(VPValue *VPV) const { |
| 109 | auto *VPI = dyn_cast<VPInstruction>(Val: VPV); |
| 110 | if (VPI && VPI->getOpcode() == VPInstruction::Broadcast) |
| 111 | VPV = VPI->getOperand(N: 0); |
| 112 | auto *CI = dyn_cast<VPConstantInt>(Val: VPV); |
| 113 | if (!CI) |
| 114 | return false; |
| 115 | |
| 116 | if (BitWidth != 0 && CI->getBitWidth() != BitWidth) |
| 117 | return false; |
| 118 | return P.isValue(CI->getAPInt()); |
| 119 | } |
| 120 | }; |
| 121 | |
| 122 | /// Match a specified integer value or vector of all elements of that |
| 123 | /// value. \p BitWidth optionally specifies the bitwidth the matched constant |
| 124 | /// must have. If it is 0, the matched constant can have any bitwidth. |
| 125 | struct is_specific_int { |
| 126 | APInt Val; |
| 127 | |
| 128 | is_specific_int(APInt Val) : Val(std::move(Val)) {} |
| 129 | |
| 130 | bool isValue(const APInt &C) const { return APInt::isSameValue(I1: Val, I2: C); } |
| 131 | }; |
| 132 | |
| 133 | template <unsigned Bitwidth = 0> |
| 134 | using specific_intval = int_pred_ty<is_specific_int, Bitwidth>; |
| 135 | |
| 136 | inline specific_intval<0> m_SpecificInt(uint64_t V) { |
| 137 | return specific_intval<0>(is_specific_int(APInt(64, V))); |
| 138 | } |
| 139 | |
| 140 | inline specific_intval<1> m_False() { |
| 141 | return specific_intval<1>(is_specific_int(APInt(64, 0))); |
| 142 | } |
| 143 | |
| 144 | inline specific_intval<1> m_True() { |
| 145 | return specific_intval<1>(is_specific_int(APInt(64, 1))); |
| 146 | } |
| 147 | |
| 148 | struct is_all_ones { |
| 149 | bool isValue(const APInt &C) const { return C.isAllOnes(); } |
| 150 | }; |
| 151 | |
| 152 | /// Match an integer or vector with all bits set. |
| 153 | /// For vectors, this includes constants with undefined elements. |
| 154 | inline int_pred_ty<is_all_ones> m_AllOnes() { |
| 155 | return int_pred_ty<is_all_ones>(); |
| 156 | } |
| 157 | |
| 158 | struct is_zero_int { |
| 159 | bool isValue(const APInt &C) const { return C.isZero(); } |
| 160 | }; |
| 161 | |
| 162 | struct is_one { |
| 163 | bool isValue(const APInt &C) const { return C.isOne(); } |
| 164 | }; |
| 165 | |
| 166 | /// Match an integer 0 or a vector with all elements equal to 0. |
| 167 | /// For vectors, this includes constants with undefined elements. |
| 168 | inline int_pred_ty<is_zero_int> m_ZeroInt() { |
| 169 | return int_pred_ty<is_zero_int>(); |
| 170 | } |
| 171 | |
| 172 | /// Match an integer 1 or a vector with all elements equal to 1. |
| 173 | /// For vectors, this includes constants with undefined elements. |
| 174 | inline int_pred_ty<is_one> m_One() { return int_pred_ty<is_one>(); } |
| 175 | |
| 176 | struct bind_apint { |
| 177 | const APInt *&Res; |
| 178 | |
| 179 | bind_apint(const APInt *&Res) : Res(Res) {} |
| 180 | |
| 181 | bool match(VPValue *VPV) const { |
| 182 | auto *CI = dyn_cast<VPConstantInt>(Val: VPV); |
| 183 | if (!CI) |
| 184 | return false; |
| 185 | Res = &CI->getAPInt(); |
| 186 | return true; |
| 187 | } |
| 188 | }; |
| 189 | |
| 190 | inline bind_apint m_APInt(const APInt *&C) { return C; } |
| 191 | |
| 192 | struct bind_const_int { |
| 193 | uint64_t &Res; |
| 194 | |
| 195 | bind_const_int(uint64_t &Res) : Res(Res) {} |
| 196 | |
| 197 | bool match(VPValue *VPV) const { |
| 198 | const APInt *APConst; |
| 199 | if (!bind_apint(APConst).match(VPV)) |
| 200 | return false; |
| 201 | if (auto C = APConst->tryZExtValue()) { |
| 202 | Res = *C; |
| 203 | return true; |
| 204 | } |
| 205 | return false; |
| 206 | } |
| 207 | }; |
| 208 | |
| 209 | /// Match a plain integer constant no wider than 64-bits, capturing it if we |
| 210 | /// match. |
| 211 | inline bind_const_int m_ConstantInt(uint64_t &C) { return C; } |
| 212 | |
| 213 | /// Matching combinators |
| 214 | template <typename LTy, typename RTy> struct match_combine_or { |
| 215 | LTy L; |
| 216 | RTy R; |
| 217 | |
| 218 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 219 | |
| 220 | template <typename ITy> bool match(ITy *V) const { |
| 221 | return L.match(V) || R.match(V); |
| 222 | } |
| 223 | }; |
| 224 | |
| 225 | template <typename LTy, typename RTy> struct match_combine_and { |
| 226 | LTy L; |
| 227 | RTy R; |
| 228 | |
| 229 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 230 | |
| 231 | template <typename ITy> bool match(ITy *V) const { |
| 232 | return L.match(V) && R.match(V); |
| 233 | } |
| 234 | }; |
| 235 | |
| 236 | /// Combine two pattern matchers matching L || R |
| 237 | template <typename LTy, typename RTy> |
| 238 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
| 239 | return match_combine_or<LTy, RTy>(L, R); |
| 240 | } |
| 241 | |
| 242 | /// Combine two pattern matchers matching L && R |
| 243 | template <typename LTy, typename RTy> |
| 244 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
| 245 | return match_combine_and<LTy, RTy>(L, R); |
| 246 | } |
| 247 | |
| 248 | /// Match a VPValue, capturing it if we match. |
| 249 | inline bind_ty<VPValue> m_VPValue(VPValue *&V) { return V; } |
| 250 | |
| 251 | /// Match a VPIRValue. |
| 252 | inline bind_ty<VPIRValue> m_VPIRValue(VPIRValue *&V) { return V; } |
| 253 | |
| 254 | /// Match a VPInstruction, capturing if we match. |
| 255 | inline bind_ty<VPInstruction> m_VPInstruction(VPInstruction *&V) { return V; } |
| 256 | |
| 257 | template <typename Ops_t, unsigned Opcode, bool Commutative, |
| 258 | typename... RecipeTys> |
| 259 | struct Recipe_match { |
| 260 | Ops_t Ops; |
| 261 | |
| 262 | template <typename... OpTy> Recipe_match(OpTy... Ops) : Ops(Ops...) { |
| 263 | static_assert(std::tuple_size<Ops_t>::value == sizeof...(Ops) && |
| 264 | "number of operands in constructor doesn't match Ops_t" ); |
| 265 | static_assert((!Commutative || std::tuple_size<Ops_t>::value == 2) && |
| 266 | "only binary ops can be commutative" ); |
| 267 | } |
| 268 | |
| 269 | bool match(const VPValue *V) const { |
| 270 | auto *DefR = V->getDefiningRecipe(); |
| 271 | return DefR && match(DefR); |
| 272 | } |
| 273 | |
| 274 | bool match(const VPSingleDefRecipe *R) const { |
| 275 | return match(static_cast<const VPRecipeBase *>(R)); |
| 276 | } |
| 277 | |
| 278 | bool match(const VPRecipeBase *R) const { |
| 279 | if (std::tuple_size_v<Ops_t> == 0) { |
| 280 | auto *VPI = dyn_cast<VPInstruction>(Val: R); |
| 281 | return VPI && VPI->getOpcode() == Opcode; |
| 282 | } |
| 283 | |
| 284 | if ((!matchRecipeAndOpcode<RecipeTys>(R) && ...)) |
| 285 | return false; |
| 286 | |
| 287 | if (R->getNumOperands() != std::tuple_size_v<Ops_t>) { |
| 288 | [[maybe_unused]] auto *RepR = dyn_cast<VPReplicateRecipe>(Val: R); |
| 289 | assert(((isa<VPInstruction>(R) && |
| 290 | VPInstruction::getNumOperandsForOpcode(Opcode) == -1u) || |
| 291 | (RepR && std::tuple_size_v<Ops_t> == |
| 292 | RepR->getNumOperands() - RepR->isPredicated())) && |
| 293 | "non-variadic recipe with matched opcode does not have the " |
| 294 | "expected number of operands" ); |
| 295 | return false; |
| 296 | } |
| 297 | |
| 298 | auto IdxSeq = std::make_index_sequence<std::tuple_size<Ops_t>::value>(); |
| 299 | if (all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) { |
| 300 | return Op.match(R->getOperand(N: Idx)); |
| 301 | })) |
| 302 | return true; |
| 303 | |
| 304 | return Commutative && |
| 305 | all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) { |
| 306 | return Op.match(R->getOperand(N: R->getNumOperands() - Idx - 1)); |
| 307 | }); |
| 308 | } |
| 309 | |
| 310 | private: |
| 311 | template <typename RecipeTy> |
| 312 | static bool matchRecipeAndOpcode(const VPRecipeBase *R) { |
| 313 | auto *DefR = dyn_cast<RecipeTy>(R); |
| 314 | // Check for recipes that do not have opcodes. |
| 315 | if constexpr (std::is_same_v<RecipeTy, VPScalarIVStepsRecipe> || |
| 316 | std::is_same_v<RecipeTy, VPCanonicalIVPHIRecipe> || |
| 317 | std::is_same_v<RecipeTy, VPDerivedIVRecipe> || |
| 318 | std::is_same_v<RecipeTy, VPVectorEndPointerRecipe>) |
| 319 | return DefR; |
| 320 | else |
| 321 | return DefR && DefR->getOpcode() == Opcode; |
| 322 | } |
| 323 | |
| 324 | /// Helper to check if predicate \p P holds on all tuple elements in Ops using |
| 325 | /// the provided index sequence. |
| 326 | template <typename Fn, std::size_t... Is> |
| 327 | bool all_of_tuple_elements(std::index_sequence<Is...>, Fn P) const { |
| 328 | return (P(std::get<Is>(Ops), Is) && ...); |
| 329 | } |
| 330 | }; |
| 331 | |
| 332 | template <unsigned Opcode, typename... OpTys> |
| 333 | using AllRecipe_match = |
| 334 | Recipe_match<std::tuple<OpTys...>, Opcode, /*Commutative*/ false, |
| 335 | VPWidenRecipe, VPReplicateRecipe, VPWidenCastRecipe, |
| 336 | VPInstruction>; |
| 337 | |
| 338 | template <unsigned Opcode, typename... OpTys> |
| 339 | using AllRecipe_commutative_match = |
| 340 | Recipe_match<std::tuple<OpTys...>, Opcode, /*Commutative*/ true, |
| 341 | VPWidenRecipe, VPReplicateRecipe, VPInstruction>; |
| 342 | |
| 343 | template <unsigned Opcode, typename... OpTys> |
| 344 | using VPInstruction_match = Recipe_match<std::tuple<OpTys...>, Opcode, |
| 345 | /*Commutative*/ false, VPInstruction>; |
| 346 | |
| 347 | template <unsigned Opcode, typename... OpTys> |
| 348 | inline VPInstruction_match<Opcode, OpTys...> |
| 349 | m_VPInstruction(const OpTys &...Ops) { |
| 350 | return VPInstruction_match<Opcode, OpTys...>(Ops...); |
| 351 | } |
| 352 | |
| 353 | /// BuildVector is matches only its opcode, w/o matching its operands as the |
| 354 | /// number of operands is not fixed. |
| 355 | inline VPInstruction_match<VPInstruction::BuildVector> m_BuildVector() { |
| 356 | return m_VPInstruction<VPInstruction::BuildVector>(); |
| 357 | } |
| 358 | |
| 359 | template <typename Op0_t> |
| 360 | inline VPInstruction_match<Instruction::Freeze, Op0_t> |
| 361 | m_Freeze(const Op0_t &Op0) { |
| 362 | return m_VPInstruction<Instruction::Freeze>(Op0); |
| 363 | } |
| 364 | |
| 365 | inline VPInstruction_match<VPInstruction::BranchOnCond> m_BranchOnCond() { |
| 366 | return m_VPInstruction<VPInstruction::BranchOnCond>(); |
| 367 | } |
| 368 | |
| 369 | template <typename Op0_t> |
| 370 | inline VPInstruction_match<VPInstruction::BranchOnCond, Op0_t> |
| 371 | m_BranchOnCond(const Op0_t &Op0) { |
| 372 | return m_VPInstruction<VPInstruction::BranchOnCond>(Op0); |
| 373 | } |
| 374 | |
| 375 | inline VPInstruction_match<VPInstruction::BranchOnTwoConds> |
| 376 | m_BranchOnTwoConds() { |
| 377 | return m_VPInstruction<VPInstruction::BranchOnTwoConds>(); |
| 378 | } |
| 379 | |
| 380 | template <typename Op0_t, typename Op1_t> |
| 381 | inline VPInstruction_match<VPInstruction::BranchOnTwoConds, Op0_t, Op1_t> |
| 382 | m_BranchOnTwoConds(const Op0_t &Op0, const Op1_t &Op1) { |
| 383 | return m_VPInstruction<VPInstruction::BranchOnTwoConds>(Op0, Op1); |
| 384 | } |
| 385 | |
| 386 | template <typename Op0_t> |
| 387 | inline VPInstruction_match<VPInstruction::Broadcast, Op0_t> |
| 388 | m_Broadcast(const Op0_t &Op0) { |
| 389 | return m_VPInstruction<VPInstruction::Broadcast>(Op0); |
| 390 | } |
| 391 | |
| 392 | template <typename Op0_t> |
| 393 | inline VPInstruction_match<VPInstruction::ExplicitVectorLength, Op0_t> |
| 394 | m_EVL(const Op0_t &Op0) { |
| 395 | return m_VPInstruction<VPInstruction::ExplicitVectorLength>(Op0); |
| 396 | } |
| 397 | |
| 398 | template <typename Op0_t> |
| 399 | inline VPInstruction_match<VPInstruction::ExtractLastLane, Op0_t> |
| 400 | (const Op0_t &Op0) { |
| 401 | return m_VPInstruction<VPInstruction::ExtractLastLane>(Op0); |
| 402 | } |
| 403 | |
| 404 | template <typename Op0_t, typename Op1_t> |
| 405 | inline VPInstruction_match<Instruction::ExtractElement, Op0_t, Op1_t> |
| 406 | (const Op0_t &Op0, const Op1_t &Op1) { |
| 407 | return m_VPInstruction<Instruction::ExtractElement>(Op0, Op1); |
| 408 | } |
| 409 | |
| 410 | template <typename Op0_t, typename Op1_t> |
| 411 | inline VPInstruction_match<VPInstruction::ExtractLane, Op0_t, Op1_t> |
| 412 | (const Op0_t &Op0, const Op1_t &Op1) { |
| 413 | return m_VPInstruction<VPInstruction::ExtractLane>(Op0, Op1); |
| 414 | } |
| 415 | |
| 416 | template <typename Op0_t> |
| 417 | inline VPInstruction_match<VPInstruction::ExtractLastPart, Op0_t> |
| 418 | (const Op0_t &Op0) { |
| 419 | return m_VPInstruction<VPInstruction::ExtractLastPart>(Op0); |
| 420 | } |
| 421 | |
| 422 | template <typename Op0_t> |
| 423 | inline VPInstruction_match< |
| 424 | VPInstruction::ExtractLastLane, |
| 425 | VPInstruction_match<VPInstruction::ExtractLastPart, Op0_t>> |
| 426 | (const Op0_t &Op0) { |
| 427 | return m_ExtractLastLane(m_ExtractLastPart(Op0)); |
| 428 | } |
| 429 | |
| 430 | template <typename Op0_t> |
| 431 | inline VPInstruction_match<VPInstruction::ExtractPenultimateElement, Op0_t> |
| 432 | (const Op0_t &Op0) { |
| 433 | return m_VPInstruction<VPInstruction::ExtractPenultimateElement>(Op0); |
| 434 | } |
| 435 | |
| 436 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 437 | inline VPInstruction_match<VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t> |
| 438 | m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) { |
| 439 | return m_VPInstruction<VPInstruction::ActiveLaneMask>(Op0, Op1, Op2); |
| 440 | } |
| 441 | |
| 442 | inline VPInstruction_match<VPInstruction::BranchOnCount> m_BranchOnCount() { |
| 443 | return m_VPInstruction<VPInstruction::BranchOnCount>(); |
| 444 | } |
| 445 | |
| 446 | template <typename Op0_t, typename Op1_t> |
| 447 | inline VPInstruction_match<VPInstruction::BranchOnCount, Op0_t, Op1_t> |
| 448 | m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1) { |
| 449 | return m_VPInstruction<VPInstruction::BranchOnCount>(Op0, Op1); |
| 450 | } |
| 451 | |
| 452 | inline VPInstruction_match<VPInstruction::AnyOf> m_AnyOf() { |
| 453 | return m_VPInstruction<VPInstruction::AnyOf>(); |
| 454 | } |
| 455 | |
| 456 | template <typename Op0_t> |
| 457 | inline VPInstruction_match<VPInstruction::AnyOf, Op0_t> |
| 458 | m_AnyOf(const Op0_t &Op0) { |
| 459 | return m_VPInstruction<VPInstruction::AnyOf>(Op0); |
| 460 | } |
| 461 | |
| 462 | template <typename Op0_t> |
| 463 | inline VPInstruction_match<VPInstruction::FirstActiveLane, Op0_t> |
| 464 | m_FirstActiveLane(const Op0_t &Op0) { |
| 465 | return m_VPInstruction<VPInstruction::FirstActiveLane>(Op0); |
| 466 | } |
| 467 | |
| 468 | template <typename Op0_t> |
| 469 | inline VPInstruction_match<VPInstruction::LastActiveLane, Op0_t> |
| 470 | m_LastActiveLane(const Op0_t &Op0) { |
| 471 | return m_VPInstruction<VPInstruction::LastActiveLane>(Op0); |
| 472 | } |
| 473 | |
| 474 | template <typename Op0_t> |
| 475 | inline VPInstruction_match<VPInstruction::ComputeReductionResult, Op0_t> |
| 476 | m_ComputeReductionResult(const Op0_t &Op0) { |
| 477 | return m_VPInstruction<VPInstruction::ComputeReductionResult>(Op0); |
| 478 | } |
| 479 | |
| 480 | /// Match FindIV result pattern: |
| 481 | /// select(icmp ne ComputeReductionResult(ReducedIV), Sentinel), |
| 482 | /// ComputeReductionResult(ReducedIV), Start. |
| 483 | template <typename Op0_t, typename Op1_t> |
| 484 | inline bool matchFindIVResult(VPInstruction *VPI, Op0_t ReducedIV, Op1_t Start) { |
| 485 | return match(VPI, m_Select(m_SpecificICmp(ICmpInst::ICMP_NE, |
| 486 | m_ComputeReductionResult(ReducedIV), |
| 487 | m_VPValue()), |
| 488 | m_ComputeReductionResult(ReducedIV), Start)); |
| 489 | } |
| 490 | |
| 491 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 492 | inline VPInstruction_match<VPInstruction::ComputeAnyOfResult, Op0_t, Op1_t, |
| 493 | Op2_t> |
| 494 | m_ComputeAnyOfResult(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) { |
| 495 | return m_VPInstruction<VPInstruction::ComputeAnyOfResult>(Op0, Op1, Op2); |
| 496 | } |
| 497 | |
| 498 | template <typename Op0_t> |
| 499 | inline VPInstruction_match<VPInstruction::Reverse, Op0_t> |
| 500 | m_Reverse(const Op0_t &Op0) { |
| 501 | return m_VPInstruction<VPInstruction::Reverse>(Op0); |
| 502 | } |
| 503 | |
| 504 | inline VPInstruction_match<VPInstruction::StepVector> m_StepVector() { |
| 505 | return m_VPInstruction<VPInstruction::StepVector>(); |
| 506 | } |
| 507 | |
| 508 | template <unsigned Opcode, typename Op0_t> |
| 509 | inline AllRecipe_match<Opcode, Op0_t> m_Unary(const Op0_t &Op0) { |
| 510 | return AllRecipe_match<Opcode, Op0_t>(Op0); |
| 511 | } |
| 512 | |
| 513 | template <typename Op0_t> |
| 514 | inline AllRecipe_match<Instruction::Trunc, Op0_t> m_Trunc(const Op0_t &Op0) { |
| 515 | return m_Unary<Instruction::Trunc, Op0_t>(Op0); |
| 516 | } |
| 517 | |
| 518 | template <typename Op0_t> |
| 519 | inline match_combine_or<AllRecipe_match<Instruction::Trunc, Op0_t>, Op0_t> |
| 520 | m_TruncOrSelf(const Op0_t &Op0) { |
| 521 | return m_CombineOr(m_Trunc(Op0), Op0); |
| 522 | } |
| 523 | |
| 524 | template <typename Op0_t> |
| 525 | inline AllRecipe_match<Instruction::ZExt, Op0_t> m_ZExt(const Op0_t &Op0) { |
| 526 | return m_Unary<Instruction::ZExt, Op0_t>(Op0); |
| 527 | } |
| 528 | |
| 529 | template <typename Op0_t> |
| 530 | inline AllRecipe_match<Instruction::SExt, Op0_t> m_SExt(const Op0_t &Op0) { |
| 531 | return m_Unary<Instruction::SExt, Op0_t>(Op0); |
| 532 | } |
| 533 | |
| 534 | template <typename Op0_t> |
| 535 | inline AllRecipe_match<Instruction::FPExt, Op0_t> m_FPExt(const Op0_t &Op0) { |
| 536 | return m_Unary<Instruction::FPExt, Op0_t>(Op0); |
| 537 | } |
| 538 | |
| 539 | template <typename Op0_t> |
| 540 | inline match_combine_or<AllRecipe_match<Instruction::ZExt, Op0_t>, |
| 541 | AllRecipe_match<Instruction::SExt, Op0_t>> |
| 542 | m_ZExtOrSExt(const Op0_t &Op0) { |
| 543 | return m_CombineOr(m_ZExt(Op0), m_SExt(Op0)); |
| 544 | } |
| 545 | |
| 546 | template <typename Op0_t> |
| 547 | inline match_combine_or<AllRecipe_match<Instruction::ZExt, Op0_t>, Op0_t> |
| 548 | m_ZExtOrSelf(const Op0_t &Op0) { |
| 549 | return m_CombineOr(m_ZExt(Op0), Op0); |
| 550 | } |
| 551 | |
| 552 | template <unsigned Opcode, typename Op0_t, typename Op1_t> |
| 553 | inline AllRecipe_match<Opcode, Op0_t, Op1_t> m_Binary(const Op0_t &Op0, |
| 554 | const Op1_t &Op1) { |
| 555 | return AllRecipe_match<Opcode, Op0_t, Op1_t>(Op0, Op1); |
| 556 | } |
| 557 | |
| 558 | template <unsigned Opcode, typename Op0_t, typename Op1_t> |
| 559 | inline AllRecipe_commutative_match<Opcode, Op0_t, Op1_t> |
| 560 | m_c_Binary(const Op0_t &Op0, const Op1_t &Op1) { |
| 561 | return AllRecipe_commutative_match<Opcode, Op0_t, Op1_t>(Op0, Op1); |
| 562 | } |
| 563 | |
| 564 | template <typename Op0_t, typename Op1_t> |
| 565 | inline AllRecipe_match<Instruction::Add, Op0_t, Op1_t> m_Add(const Op0_t &Op0, |
| 566 | const Op1_t &Op1) { |
| 567 | return m_Binary<Instruction::Add, Op0_t, Op1_t>(Op0, Op1); |
| 568 | } |
| 569 | |
| 570 | template <typename Op0_t, typename Op1_t> |
| 571 | inline AllRecipe_commutative_match<Instruction::Add, Op0_t, Op1_t> |
| 572 | m_c_Add(const Op0_t &Op0, const Op1_t &Op1) { |
| 573 | return m_c_Binary<Instruction::Add, Op0_t, Op1_t>(Op0, Op1); |
| 574 | } |
| 575 | |
| 576 | template <typename Op0_t, typename Op1_t> |
| 577 | inline AllRecipe_match<Instruction::Sub, Op0_t, Op1_t> m_Sub(const Op0_t &Op0, |
| 578 | const Op1_t &Op1) { |
| 579 | return m_Binary<Instruction::Sub, Op0_t, Op1_t>(Op0, Op1); |
| 580 | } |
| 581 | |
| 582 | template <typename Op0_t, typename Op1_t> |
| 583 | inline AllRecipe_match<Instruction::Mul, Op0_t, Op1_t> m_Mul(const Op0_t &Op0, |
| 584 | const Op1_t &Op1) { |
| 585 | return m_Binary<Instruction::Mul, Op0_t, Op1_t>(Op0, Op1); |
| 586 | } |
| 587 | |
| 588 | template <typename Op0_t, typename Op1_t> |
| 589 | inline AllRecipe_commutative_match<Instruction::Mul, Op0_t, Op1_t> |
| 590 | m_c_Mul(const Op0_t &Op0, const Op1_t &Op1) { |
| 591 | return m_c_Binary<Instruction::Mul, Op0_t, Op1_t>(Op0, Op1); |
| 592 | } |
| 593 | |
| 594 | template <typename Op0_t, typename Op1_t> |
| 595 | inline AllRecipe_match<Instruction::FMul, Op0_t, Op1_t> |
| 596 | m_FMul(const Op0_t &Op0, const Op1_t &Op1) { |
| 597 | return m_Binary<Instruction::FMul, Op0_t, Op1_t>(Op0, Op1); |
| 598 | } |
| 599 | |
| 600 | template <typename Op0_t, typename Op1_t> |
| 601 | inline AllRecipe_match<Instruction::FAdd, Op0_t, Op1_t> |
| 602 | m_FAdd(const Op0_t &Op0, const Op1_t &Op1) { |
| 603 | return m_Binary<Instruction::FAdd, Op0_t, Op1_t>(Op0, Op1); |
| 604 | } |
| 605 | |
| 606 | template <typename Op0_t, typename Op1_t> |
| 607 | inline AllRecipe_commutative_match<Instruction::FAdd, Op0_t, Op1_t> |
| 608 | m_c_FAdd(const Op0_t &Op0, const Op1_t &Op1) { |
| 609 | return m_c_Binary<Instruction::FAdd, Op0_t, Op1_t>(Op0, Op1); |
| 610 | } |
| 611 | |
| 612 | template <typename Op0_t, typename Op1_t> |
| 613 | inline AllRecipe_match<Instruction::UDiv, Op0_t, Op1_t> |
| 614 | m_UDiv(const Op0_t &Op0, const Op1_t &Op1) { |
| 615 | return m_Binary<Instruction::UDiv, Op0_t, Op1_t>(Op0, Op1); |
| 616 | } |
| 617 | |
| 618 | /// Match a binary AND operation. |
| 619 | template <typename Op0_t, typename Op1_t> |
| 620 | inline AllRecipe_commutative_match<Instruction::And, Op0_t, Op1_t> |
| 621 | m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1) { |
| 622 | return m_c_Binary<Instruction::And, Op0_t, Op1_t>(Op0, Op1); |
| 623 | } |
| 624 | |
| 625 | /// Match a binary OR operation. Note that while conceptually the operands can |
| 626 | /// be matched commutatively, \p Commutative defaults to false in line with the |
| 627 | /// IR-based pattern matching infrastructure. Use m_c_BinaryOr for a commutative |
| 628 | /// version of the matcher. |
| 629 | template <typename Op0_t, typename Op1_t> |
| 630 | inline AllRecipe_match<Instruction::Or, Op0_t, Op1_t> |
| 631 | m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) { |
| 632 | return m_Binary<Instruction::Or, Op0_t, Op1_t>(Op0, Op1); |
| 633 | } |
| 634 | |
| 635 | template <typename Op0_t, typename Op1_t> |
| 636 | inline AllRecipe_commutative_match<Instruction::Or, Op0_t, Op1_t> |
| 637 | m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) { |
| 638 | return m_c_Binary<Instruction::Or, Op0_t, Op1_t>(Op0, Op1); |
| 639 | } |
| 640 | |
| 641 | /// Cmp_match is a variant of BinaryRecipe_match that also binds the comparison |
| 642 | /// predicate. Opcodes must either be Instruction::ICmp or Instruction::FCmp, or |
| 643 | /// both. |
| 644 | template <typename Op0_t, typename Op1_t, unsigned... Opcodes> |
| 645 | struct Cmp_match { |
| 646 | static_assert((sizeof...(Opcodes) == 1 || sizeof...(Opcodes) == 2) && |
| 647 | "Expected one or two opcodes" ); |
| 648 | static_assert( |
| 649 | ((Opcodes == Instruction::ICmp || Opcodes == Instruction::FCmp) && ...) && |
| 650 | "Expected a compare instruction opcode" ); |
| 651 | |
| 652 | CmpPredicate *Predicate = nullptr; |
| 653 | Op0_t Op0; |
| 654 | Op1_t Op1; |
| 655 | |
| 656 | Cmp_match(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) |
| 657 | : Predicate(&Pred), Op0(Op0), Op1(Op1) {} |
| 658 | Cmp_match(const Op0_t &Op0, const Op1_t &Op1) : Op0(Op0), Op1(Op1) {} |
| 659 | |
| 660 | bool match(const VPValue *V) const { |
| 661 | auto *DefR = V->getDefiningRecipe(); |
| 662 | return DefR && match(DefR); |
| 663 | } |
| 664 | |
| 665 | bool match(const VPRecipeBase *V) const { |
| 666 | if ((m_Binary<Opcodes>(Op0, Op1).match(V) || ...)) { |
| 667 | if (Predicate) |
| 668 | *Predicate = cast<VPRecipeWithIRFlags>(Val: V)->getPredicate(); |
| 669 | return true; |
| 670 | } |
| 671 | return false; |
| 672 | } |
| 673 | }; |
| 674 | |
| 675 | /// SpecificCmp_match is a variant of Cmp_match that matches the comparison |
| 676 | /// predicate, instead of binding it. |
| 677 | template <typename Op0_t, typename Op1_t, unsigned... Opcodes> |
| 678 | struct SpecificCmp_match { |
| 679 | const CmpPredicate Predicate; |
| 680 | Op0_t Op0; |
| 681 | Op1_t Op1; |
| 682 | |
| 683 | SpecificCmp_match(CmpPredicate Pred, const Op0_t &LHS, const Op1_t &RHS) |
| 684 | : Predicate(Pred), Op0(LHS), Op1(RHS) {} |
| 685 | |
| 686 | bool match(const VPValue *V) const { |
| 687 | auto *DefR = V->getDefiningRecipe(); |
| 688 | return DefR && match(DefR); |
| 689 | } |
| 690 | |
| 691 | bool match(const VPRecipeBase *V) const { |
| 692 | CmpPredicate CurrentPred; |
| 693 | return Cmp_match<Op0_t, Op1_t, Opcodes...>(CurrentPred, Op0, Op1) |
| 694 | .match(V) && |
| 695 | CmpPredicate::getMatching(A: CurrentPred, B: Predicate); |
| 696 | } |
| 697 | }; |
| 698 | |
| 699 | template <typename Op0_t, typename Op1_t> |
| 700 | inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp> m_ICmp(const Op0_t &Op0, |
| 701 | const Op1_t &Op1) { |
| 702 | return Cmp_match<Op0_t, Op1_t, Instruction::ICmp>(Op0, Op1); |
| 703 | } |
| 704 | |
| 705 | template <typename Op0_t, typename Op1_t> |
| 706 | inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp> |
| 707 | m_ICmp(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) { |
| 708 | return Cmp_match<Op0_t, Op1_t, Instruction::ICmp>(Pred, Op0, Op1); |
| 709 | } |
| 710 | |
| 711 | template <typename Op0_t, typename Op1_t> |
| 712 | inline SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp> |
| 713 | m_SpecificICmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1) { |
| 714 | return SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp>(MatchPred, Op0, |
| 715 | Op1); |
| 716 | } |
| 717 | |
| 718 | template <typename Op0_t, typename Op1_t> |
| 719 | inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp> |
| 720 | m_Cmp(const Op0_t &Op0, const Op1_t &Op1) { |
| 721 | return Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>(Op0, |
| 722 | Op1); |
| 723 | } |
| 724 | |
| 725 | template <typename Op0_t, typename Op1_t> |
| 726 | inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp> |
| 727 | m_Cmp(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) { |
| 728 | return Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>( |
| 729 | Pred, Op0, Op1); |
| 730 | } |
| 731 | |
| 732 | template <typename Op0_t, typename Op1_t> |
| 733 | inline SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp> |
| 734 | m_SpecificCmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1) { |
| 735 | return SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>( |
| 736 | MatchPred, Op0, Op1); |
| 737 | } |
| 738 | |
| 739 | template <typename Op0_t, typename Op1_t> |
| 740 | using GEPLikeRecipe_match = match_combine_or< |
| 741 | Recipe_match<std::tuple<Op0_t, Op1_t>, Instruction::GetElementPtr, |
| 742 | /*Commutative*/ false, VPReplicateRecipe, VPWidenGEPRecipe>, |
| 743 | match_combine_or< |
| 744 | VPInstruction_match<VPInstruction::PtrAdd, Op0_t, Op1_t>, |
| 745 | VPInstruction_match<VPInstruction::WidePtrAdd, Op0_t, Op1_t>>>; |
| 746 | |
| 747 | template <typename Op0_t, typename Op1_t> |
| 748 | inline GEPLikeRecipe_match<Op0_t, Op1_t> m_GetElementPtr(const Op0_t &Op0, |
| 749 | const Op1_t &Op1) { |
| 750 | return m_CombineOr( |
| 751 | Recipe_match<std::tuple<Op0_t, Op1_t>, Instruction::GetElementPtr, |
| 752 | /*Commutative*/ false, VPReplicateRecipe, VPWidenGEPRecipe>( |
| 753 | Op0, Op1), |
| 754 | m_CombineOr( |
| 755 | VPInstruction_match<VPInstruction::PtrAdd, Op0_t, Op1_t>(Op0, Op1), |
| 756 | VPInstruction_match<VPInstruction::WidePtrAdd, Op0_t, Op1_t>(Op0, |
| 757 | Op1))); |
| 758 | } |
| 759 | |
| 760 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 761 | inline AllRecipe_match<Instruction::Select, Op0_t, Op1_t, Op2_t> |
| 762 | m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) { |
| 763 | return AllRecipe_match<Instruction::Select, Op0_t, Op1_t, Op2_t>( |
| 764 | {Op0, Op1, Op2}); |
| 765 | } |
| 766 | |
| 767 | template <typename Op0_t> |
| 768 | inline match_combine_or<VPInstruction_match<VPInstruction::Not, Op0_t>, |
| 769 | AllRecipe_commutative_match< |
| 770 | Instruction::Xor, int_pred_ty<is_all_ones>, Op0_t>> |
| 771 | m_Not(const Op0_t &Op0) { |
| 772 | return m_CombineOr(m_VPInstruction<VPInstruction::Not>(Op0), |
| 773 | m_c_Binary<Instruction::Xor>(m_AllOnes(), Op0)); |
| 774 | } |
| 775 | |
| 776 | template <typename Op0_t, typename Op1_t> |
| 777 | inline match_combine_or< |
| 778 | VPInstruction_match<VPInstruction::LogicalAnd, Op0_t, Op1_t>, |
| 779 | AllRecipe_match<Instruction::Select, Op0_t, Op1_t, specific_intval<1>>> |
| 780 | m_LogicalAnd(const Op0_t &Op0, const Op1_t &Op1) { |
| 781 | return m_CombineOr( |
| 782 | m_VPInstruction<VPInstruction::LogicalAnd, Op0_t, Op1_t>(Op0, Op1), |
| 783 | m_Select(Op0, Op1, m_False())); |
| 784 | } |
| 785 | |
| 786 | template <typename Op0_t, typename Op1_t> |
| 787 | inline AllRecipe_match<Instruction::Select, Op0_t, specific_intval<1>, Op1_t> |
| 788 | m_LogicalOr(const Op0_t &Op0, const Op1_t &Op1) { |
| 789 | return m_Select(Op0, m_True(), Op1); |
| 790 | } |
| 791 | |
| 792 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 793 | using VPScalarIVSteps_match = Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>, 0, |
| 794 | false, VPScalarIVStepsRecipe>; |
| 795 | |
| 796 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 797 | inline VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t> |
| 798 | m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) { |
| 799 | return VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2}); |
| 800 | } |
| 801 | |
| 802 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 803 | using VPDerivedIV_match = |
| 804 | Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>, 0, false, VPDerivedIVRecipe>; |
| 805 | |
| 806 | template <typename Op0_t, typename Op1_t, typename Op2_t> |
| 807 | inline VPDerivedIV_match<Op0_t, Op1_t, Op2_t> |
| 808 | m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) { |
| 809 | return VPDerivedIV_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2}); |
| 810 | } |
| 811 | |
| 812 | template <typename Addr_t, typename Mask_t> struct Load_match { |
| 813 | Addr_t Addr; |
| 814 | Mask_t Mask; |
| 815 | |
| 816 | Load_match(Addr_t Addr, Mask_t Mask) : Addr(Addr), Mask(Mask) {} |
| 817 | |
| 818 | template <typename OpTy> bool match(const OpTy *V) const { |
| 819 | auto *Load = dyn_cast<VPWidenLoadRecipe>(V); |
| 820 | if (!Load || !Addr.match(Load->getAddr()) || !Load->isMasked() || |
| 821 | !Mask.match(Load->getMask())) |
| 822 | return false; |
| 823 | return true; |
| 824 | } |
| 825 | }; |
| 826 | |
| 827 | /// Match a (possibly reversed) masked load. |
| 828 | template <typename Addr_t, typename Mask_t> |
| 829 | inline Load_match<Addr_t, Mask_t> m_MaskedLoad(const Addr_t &Addr, |
| 830 | const Mask_t &Mask) { |
| 831 | return Load_match<Addr_t, Mask_t>(Addr, Mask); |
| 832 | } |
| 833 | |
| 834 | template <typename Addr_t, typename Val_t, typename Mask_t> struct Store_match { |
| 835 | Addr_t Addr; |
| 836 | Val_t Val; |
| 837 | Mask_t Mask; |
| 838 | |
| 839 | Store_match(Addr_t Addr, Val_t Val, Mask_t Mask) |
| 840 | : Addr(Addr), Val(Val), Mask(Mask) {} |
| 841 | |
| 842 | template <typename OpTy> bool match(const OpTy *V) const { |
| 843 | auto *Store = dyn_cast<VPWidenStoreRecipe>(V); |
| 844 | if (!Store || !Addr.match(Store->getAddr()) || |
| 845 | !Val.match(Store->getStoredValue()) || !Store->isMasked() || |
| 846 | !Mask.match(Store->getMask())) |
| 847 | return false; |
| 848 | return true; |
| 849 | } |
| 850 | }; |
| 851 | |
| 852 | /// Match a (possibly reversed) masked store. |
| 853 | template <typename Addr_t, typename Val_t, typename Mask_t> |
| 854 | inline Store_match<Addr_t, Val_t, Mask_t> |
| 855 | m_MaskedStore(const Addr_t &Addr, const Val_t &Val, const Mask_t &Mask) { |
| 856 | return Store_match<Addr_t, Val_t, Mask_t>(Addr, Val, Mask); |
| 857 | } |
| 858 | |
| 859 | template <typename Op0_t, typename Op1_t> |
| 860 | using VectorEndPointerRecipe_match = |
| 861 | Recipe_match<std::tuple<Op0_t, Op1_t>, 0, |
| 862 | /*Commutative*/ false, VPVectorEndPointerRecipe>; |
| 863 | |
| 864 | template <typename Op0_t, typename Op1_t> |
| 865 | VectorEndPointerRecipe_match<Op0_t, Op1_t> m_VecEndPtr(const Op0_t &Op0, |
| 866 | const Op1_t &Op1) { |
| 867 | return VectorEndPointerRecipe_match<Op0_t, Op1_t>(Op0, Op1); |
| 868 | } |
| 869 | |
| 870 | /// Match a call argument at a given argument index. |
| 871 | template <typename Opnd_t> struct Argument_match { |
| 872 | /// Call argument index to match. |
| 873 | unsigned OpI; |
| 874 | Opnd_t Val; |
| 875 | |
| 876 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
| 877 | |
| 878 | template <typename OpTy> bool match(OpTy *V) const { |
| 879 | if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V)) |
| 880 | return Val.match(R->getOperand(OpI)); |
| 881 | if (const auto *R = dyn_cast<VPWidenCallRecipe>(V)) |
| 882 | return Val.match(R->getOperand(OpI)); |
| 883 | if (const auto *R = dyn_cast<VPReplicateRecipe>(V)) |
| 884 | if (R->getOpcode() == Instruction::Call) |
| 885 | return Val.match(R->getOperand(OpI)); |
| 886 | if (const auto *R = dyn_cast<VPInstruction>(V)) |
| 887 | if (R->getOpcode() == Instruction::Call) |
| 888 | return Val.match(R->getOperand(OpI)); |
| 889 | return false; |
| 890 | } |
| 891 | }; |
| 892 | |
| 893 | /// Match a call argument. |
| 894 | template <unsigned OpI, typename Opnd_t> |
| 895 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
| 896 | return Argument_match<Opnd_t>(OpI, Op); |
| 897 | } |
| 898 | |
| 899 | /// Intrinsic matchers. |
| 900 | struct IntrinsicID_match { |
| 901 | unsigned ID; |
| 902 | |
| 903 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
| 904 | |
| 905 | template <typename OpTy> bool match(OpTy *V) const { |
| 906 | if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V)) |
| 907 | return R->getVectorIntrinsicID() == ID; |
| 908 | if (const auto *R = dyn_cast<VPWidenCallRecipe>(V)) |
| 909 | return R->getCalledScalarFunction()->getIntrinsicID() == ID; |
| 910 | |
| 911 | auto MatchCalleeIntrinsic = [&](VPValue *CalleeOp) { |
| 912 | if (!isa<VPIRValue>(Val: CalleeOp)) |
| 913 | return false; |
| 914 | auto *F = cast<Function>(Val: CalleeOp->getLiveInIRValue()); |
| 915 | return F->getIntrinsicID() == ID; |
| 916 | }; |
| 917 | if (const auto *R = dyn_cast<VPReplicateRecipe>(V)) |
| 918 | if (R->getOpcode() == Instruction::Call) { |
| 919 | // The mask is always the last operand if predicated. |
| 920 | return MatchCalleeIntrinsic( |
| 921 | R->getOperand(R->getNumOperands() - 1 - R->isPredicated())); |
| 922 | } |
| 923 | if (const auto *R = dyn_cast<VPInstruction>(V)) |
| 924 | if (R->getOpcode() == Instruction::Call) |
| 925 | return MatchCalleeIntrinsic(R->getOperand(R->getNumOperands() - 1)); |
| 926 | return false; |
| 927 | } |
| 928 | }; |
| 929 | |
| 930 | /// Intrinsic matches are combinations of ID matchers, and argument |
| 931 | /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
| 932 | /// them with lower arity matchers. Here's some convenient typedefs for up to |
| 933 | /// several arguments, and more can be added as needed |
| 934 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
| 935 | typename T3 = void> |
| 936 | struct m_Intrinsic_Ty; |
| 937 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
| 938 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
| 939 | }; |
| 940 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
| 941 | using Ty = |
| 942 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
| 943 | }; |
| 944 | template <typename T0, typename T1, typename T2> |
| 945 | struct m_Intrinsic_Ty<T0, T1, T2> { |
| 946 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
| 947 | Argument_match<T2>>; |
| 948 | }; |
| 949 | template <typename T0, typename T1, typename T2, typename T3> |
| 950 | struct m_Intrinsic_Ty { |
| 951 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
| 952 | Argument_match<T3>>; |
| 953 | }; |
| 954 | |
| 955 | /// Match intrinsic calls like this: |
| 956 | /// m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...) |
| 957 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
| 958 | return IntrinsicID_match(IntrID); |
| 959 | } |
| 960 | |
| 961 | /// Match intrinsic calls with a runtime intrinsic ID. |
| 962 | inline IntrinsicID_match m_Intrinsic(Intrinsic::ID IntrID) { |
| 963 | return IntrinsicID_match(IntrID); |
| 964 | } |
| 965 | |
| 966 | template <Intrinsic::ID IntrID, typename T0> |
| 967 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
| 968 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
| 969 | } |
| 970 | |
| 971 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
| 972 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
| 973 | const T1 &Op1) { |
| 974 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
| 975 | } |
| 976 | |
| 977 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
| 978 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
| 979 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
| 980 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
| 981 | } |
| 982 | |
| 983 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| 984 | typename T3> |
| 985 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
| 986 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
| 987 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
| 988 | } |
| 989 | |
| 990 | inline auto m_LiveIn() { return class_match<VPIRValue, VPSymbolicValue>(); } |
| 991 | |
| 992 | /// Match a GEP recipe (VPWidenGEPRecipe, VPInstruction, or VPReplicateRecipe) |
| 993 | /// and bind the source element type and operands. |
| 994 | struct GetElementPtr_match { |
| 995 | Type *&SourceElementType; |
| 996 | ArrayRef<VPValue *> &Operands; |
| 997 | |
| 998 | GetElementPtr_match(Type *&SourceElementType, ArrayRef<VPValue *> &Operands) |
| 999 | : SourceElementType(SourceElementType), Operands(Operands) {} |
| 1000 | |
| 1001 | template <typename ITy> bool match(ITy *V) const { |
| 1002 | return matchRecipeAndBind<VPWidenGEPRecipe>(V) || |
| 1003 | matchRecipeAndBind<VPInstruction>(V) || |
| 1004 | matchRecipeAndBind<VPReplicateRecipe>(V); |
| 1005 | } |
| 1006 | |
| 1007 | private: |
| 1008 | template <typename RecipeTy> bool matchRecipeAndBind(const VPValue *V) const { |
| 1009 | auto *DefR = dyn_cast<RecipeTy>(V); |
| 1010 | if (!DefR) |
| 1011 | return false; |
| 1012 | |
| 1013 | if constexpr (std::is_same_v<RecipeTy, VPWidenGEPRecipe>) { |
| 1014 | SourceElementType = DefR->getSourceElementType(); |
| 1015 | } else if (DefR->getOpcode() == Instruction::GetElementPtr) { |
| 1016 | SourceElementType = cast<GetElementPtrInst>(DefR->getUnderlyingInstr()) |
| 1017 | ->getSourceElementType(); |
| 1018 | } else if constexpr (std::is_same_v<RecipeTy, VPInstruction>) { |
| 1019 | if (DefR->getOpcode() == VPInstruction::PtrAdd) { |
| 1020 | // PtrAdd is a byte-offset GEP with i8 element type. |
| 1021 | LLVMContext &Ctx = DefR->getParent()->getPlan()->getContext(); |
| 1022 | SourceElementType = Type::getInt8Ty(C&: Ctx); |
| 1023 | } else { |
| 1024 | return false; |
| 1025 | } |
| 1026 | } else { |
| 1027 | return false; |
| 1028 | } |
| 1029 | |
| 1030 | Operands = ArrayRef<VPValue *>(DefR->op_begin(), DefR->op_end()); |
| 1031 | return true; |
| 1032 | } |
| 1033 | }; |
| 1034 | |
| 1035 | /// Match a GEP recipe with any number of operands and bind source element type |
| 1036 | /// and operands. |
| 1037 | inline GetElementPtr_match m_GetElementPtr(Type *&SourceElementType, |
| 1038 | ArrayRef<VPValue *> &Operands) { |
| 1039 | return GetElementPtr_match(SourceElementType, Operands); |
| 1040 | } |
| 1041 | |
| 1042 | template <typename SubPattern_t> struct OneUse_match { |
| 1043 | SubPattern_t SubPattern; |
| 1044 | |
| 1045 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 1046 | |
| 1047 | template <typename OpTy> bool match(OpTy *V) { |
| 1048 | return V->hasOneUse() && SubPattern.match(V); |
| 1049 | } |
| 1050 | }; |
| 1051 | |
| 1052 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
| 1053 | return SubPattern; |
| 1054 | } |
| 1055 | |
| 1056 | } // namespace llvm::VPlanPatternMatch |
| 1057 | |
| 1058 | #endif |
| 1059 | |