1 | //===-------------------- InterpBuiltinBitCast.cpp --------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "InterpBuiltinBitCast.h" |
9 | #include "BitcastBuffer.h" |
10 | #include "Boolean.h" |
11 | #include "Context.h" |
12 | #include "Floating.h" |
13 | #include "Integral.h" |
14 | #include "InterpState.h" |
15 | #include "MemberPointer.h" |
16 | #include "Pointer.h" |
17 | #include "Record.h" |
18 | #include "clang/AST/ASTContext.h" |
19 | #include "clang/AST/RecordLayout.h" |
20 | #include "clang/Basic/TargetInfo.h" |
21 | |
22 | #include <variant> |
23 | |
24 | using namespace clang; |
25 | using namespace clang::interp; |
26 | |
27 | /// Implement __builtin_bit_cast and related operations. |
28 | /// Since our internal representation for data is more complex than |
29 | /// something we can simply memcpy or memcmp, we first bitcast all the data |
30 | /// into a buffer, which we then later use to copy the data into the target. |
31 | |
32 | // TODO: |
33 | // - Try to minimize heap allocations. |
34 | // - Optimize the common case of only pushing and pulling full |
35 | // bytes to/from the buffer. |
36 | |
37 | /// Used to iterate over pointer fields. |
38 | using DataFunc = |
39 | llvm::function_ref<bool(const Pointer &P, PrimType Ty, Bits BitOffset, |
40 | Bits FullBitWidth, bool PackedBools)>; |
41 | |
42 | #define BITCAST_TYPE_SWITCH(Expr, B) \ |
43 | do { \ |
44 | switch (Expr) { \ |
45 | TYPE_SWITCH_CASE(PT_Sint8, B) \ |
46 | TYPE_SWITCH_CASE(PT_Uint8, B) \ |
47 | TYPE_SWITCH_CASE(PT_Sint16, B) \ |
48 | TYPE_SWITCH_CASE(PT_Uint16, B) \ |
49 | TYPE_SWITCH_CASE(PT_Sint32, B) \ |
50 | TYPE_SWITCH_CASE(PT_Uint32, B) \ |
51 | TYPE_SWITCH_CASE(PT_Sint64, B) \ |
52 | TYPE_SWITCH_CASE(PT_Uint64, B) \ |
53 | TYPE_SWITCH_CASE(PT_IntAP, B) \ |
54 | TYPE_SWITCH_CASE(PT_IntAPS, B) \ |
55 | TYPE_SWITCH_CASE(PT_Bool, B) \ |
56 | default: \ |
57 | llvm_unreachable("Unhandled bitcast type"); \ |
58 | } \ |
59 | } while (0) |
60 | |
61 | #define BITCAST_TYPE_SWITCH_FIXED_SIZE(Expr, B) \ |
62 | do { \ |
63 | switch (Expr) { \ |
64 | TYPE_SWITCH_CASE(PT_Sint8, B) \ |
65 | TYPE_SWITCH_CASE(PT_Uint8, B) \ |
66 | TYPE_SWITCH_CASE(PT_Sint16, B) \ |
67 | TYPE_SWITCH_CASE(PT_Uint16, B) \ |
68 | TYPE_SWITCH_CASE(PT_Sint32, B) \ |
69 | TYPE_SWITCH_CASE(PT_Uint32, B) \ |
70 | TYPE_SWITCH_CASE(PT_Sint64, B) \ |
71 | TYPE_SWITCH_CASE(PT_Uint64, B) \ |
72 | TYPE_SWITCH_CASE(PT_Bool, B) \ |
73 | default: \ |
74 | llvm_unreachable("Unhandled bitcast type"); \ |
75 | } \ |
76 | } while (0) |
77 | |
78 | /// We use this to recursively iterate over all fields and elements of a pointer |
79 | /// and extract relevant data for a bitcast. |
80 | static bool enumerateData(const Pointer &P, const Context &Ctx, Bits Offset, |
81 | Bits BitsToRead, DataFunc F) { |
82 | const Descriptor *FieldDesc = P.getFieldDesc(); |
83 | assert(FieldDesc); |
84 | |
85 | // Primitives. |
86 | if (FieldDesc->isPrimitive()) { |
87 | Bits FullBitWidth = |
88 | Bits(Ctx.getASTContext().getTypeSize(T: FieldDesc->getType())); |
89 | return F(P, FieldDesc->getPrimType(), Offset, FullBitWidth, |
90 | /*PackedBools=*/false); |
91 | } |
92 | |
93 | // Primitive arrays. |
94 | if (FieldDesc->isPrimitiveArray()) { |
95 | QualType ElemType = FieldDesc->getElemQualType(); |
96 | Bits ElemSize = Bits(Ctx.getASTContext().getTypeSize(T: ElemType)); |
97 | PrimType ElemT = *Ctx.classify(T: ElemType); |
98 | // Special case, since the bools here are packed. |
99 | bool PackedBools = |
100 | FieldDesc->getType()->isPackedVectorBoolType(ctx: Ctx.getASTContext()); |
101 | unsigned NumElems = FieldDesc->getNumElems(); |
102 | bool Ok = true; |
103 | for (unsigned I = P.getIndex(); I != NumElems; ++I) { |
104 | Ok = Ok && F(P.atIndex(Idx: I), ElemT, Offset, ElemSize, PackedBools); |
105 | Offset += PackedBools ? Bits(1) : ElemSize; |
106 | if (Offset >= BitsToRead) |
107 | break; |
108 | } |
109 | return Ok; |
110 | } |
111 | |
112 | // Composite arrays. |
113 | if (FieldDesc->isCompositeArray()) { |
114 | QualType ElemType = FieldDesc->getElemQualType(); |
115 | Bits ElemSize = Bits(Ctx.getASTContext().getTypeSize(T: ElemType)); |
116 | for (unsigned I = P.getIndex(); I != FieldDesc->getNumElems(); ++I) { |
117 | enumerateData(P: P.atIndex(Idx: I).narrow(), Ctx, Offset, BitsToRead, F); |
118 | Offset += ElemSize; |
119 | if (Offset >= BitsToRead) |
120 | break; |
121 | } |
122 | return true; |
123 | } |
124 | |
125 | // Records. |
126 | if (FieldDesc->isRecord()) { |
127 | const Record *R = FieldDesc->ElemRecord; |
128 | const ASTRecordLayout &Layout = |
129 | Ctx.getASTContext().getASTRecordLayout(D: R->getDecl()); |
130 | bool Ok = true; |
131 | |
132 | for (const Record::Field &Fi : R->fields()) { |
133 | if (Fi.isUnnamedBitField()) |
134 | continue; |
135 | Pointer Elem = P.atField(Off: Fi.Offset); |
136 | Bits BitOffset = |
137 | Offset + Bits(Layout.getFieldOffset(FieldNo: Fi.Decl->getFieldIndex())); |
138 | Ok = Ok && enumerateData(P: Elem, Ctx, Offset: BitOffset, BitsToRead, F); |
139 | } |
140 | for (const Record::Base &B : R->bases()) { |
141 | Pointer Elem = P.atField(Off: B.Offset); |
142 | CharUnits ByteOffset = |
143 | Layout.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: B.Decl)); |
144 | Bits BitOffset = Offset + Bits(Ctx.getASTContext().toBits(CharSize: ByteOffset)); |
145 | Ok = Ok && enumerateData(P: Elem, Ctx, Offset: BitOffset, BitsToRead, F); |
146 | // FIXME: We should only (need to) do this when bitcasting OUT of the |
147 | // buffer, not when copying data into it. |
148 | if (Ok) |
149 | Elem.initialize(); |
150 | } |
151 | |
152 | return Ok; |
153 | } |
154 | |
155 | llvm_unreachable("Unhandled data type" ); |
156 | } |
157 | |
158 | static bool enumeratePointerFields(const Pointer &P, const Context &Ctx, |
159 | Bits BitsToRead, DataFunc F) { |
160 | return enumerateData(P, Ctx, Offset: Bits::zero(), BitsToRead, F); |
161 | } |
162 | |
163 | // This function is constexpr if and only if To, From, and the types of |
164 | // all subobjects of To and From are types T such that... |
165 | // (3.1) - is_union_v<T> is false; |
166 | // (3.2) - is_pointer_v<T> is false; |
167 | // (3.3) - is_member_pointer_v<T> is false; |
168 | // (3.4) - is_volatile_v<T> is false; and |
169 | // (3.5) - T has no non-static data members of reference type |
170 | // |
171 | // NOTE: This is a version of checkBitCastConstexprEligibilityType() in |
172 | // ExprConstant.cpp. |
173 | static bool CheckBitcastType(InterpState &S, CodePtr OpPC, QualType T, |
174 | bool IsToType) { |
175 | enum { |
176 | E_Union = 0, |
177 | E_Pointer, |
178 | E_MemberPointer, |
179 | E_Volatile, |
180 | E_Reference, |
181 | }; |
182 | enum { C_Member, C_Base }; |
183 | |
184 | auto diag = [&](int Reason) -> bool { |
185 | const Expr *E = S.Current->getExpr(PC: OpPC); |
186 | S.FFDiag(E, DiagId: diag::note_constexpr_bit_cast_invalid_type) |
187 | << static_cast<int>(IsToType) << (Reason == E_Reference) << Reason |
188 | << E->getSourceRange(); |
189 | return false; |
190 | }; |
191 | auto note = [&](int Construct, QualType NoteType, SourceRange NoteRange) { |
192 | S.Note(Loc: NoteRange.getBegin(), DiagId: diag::note_constexpr_bit_cast_invalid_subtype) |
193 | << NoteType << Construct << T.getUnqualifiedType() << NoteRange; |
194 | return false; |
195 | }; |
196 | |
197 | T = T.getCanonicalType(); |
198 | |
199 | if (T->isUnionType()) |
200 | return diag(E_Union); |
201 | if (T->isPointerType()) |
202 | return diag(E_Pointer); |
203 | if (T->isMemberPointerType()) |
204 | return diag(E_MemberPointer); |
205 | if (T.isVolatileQualified()) |
206 | return diag(E_Volatile); |
207 | |
208 | if (const RecordDecl *RD = T->getAsRecordDecl()) { |
209 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
210 | for (const CXXBaseSpecifier &BS : CXXRD->bases()) { |
211 | if (!CheckBitcastType(S, OpPC, T: BS.getType(), IsToType)) |
212 | return note(C_Base, BS.getType(), BS.getBeginLoc()); |
213 | } |
214 | } |
215 | for (const FieldDecl *FD : RD->fields()) { |
216 | if (FD->getType()->isReferenceType()) |
217 | return diag(E_Reference); |
218 | if (!CheckBitcastType(S, OpPC, T: FD->getType(), IsToType)) |
219 | return note(C_Member, FD->getType(), FD->getSourceRange()); |
220 | } |
221 | } |
222 | |
223 | if (T->isArrayType() && |
224 | !CheckBitcastType(S, OpPC, T: S.getASTContext().getBaseElementType(QT: T), |
225 | IsToType)) |
226 | return false; |
227 | |
228 | if (const auto *VT = T->getAs<VectorType>()) { |
229 | const ASTContext &ASTCtx = S.getASTContext(); |
230 | QualType EltTy = VT->getElementType(); |
231 | unsigned NElts = VT->getNumElements(); |
232 | unsigned EltSize = |
233 | VT->isPackedVectorBoolType(ctx: ASTCtx) ? 1 : ASTCtx.getTypeSize(T: EltTy); |
234 | |
235 | if ((NElts * EltSize) % ASTCtx.getCharWidth() != 0) { |
236 | // The vector's size in bits is not a multiple of the target's byte size, |
237 | // so its layout is unspecified. For now, we'll simply treat these cases |
238 | // as unsupported (this should only be possible with OpenCL bool vectors |
239 | // whose element count isn't a multiple of the byte size). |
240 | const Expr *E = S.Current->getExpr(PC: OpPC); |
241 | S.FFDiag(E, DiagId: diag::note_constexpr_bit_cast_invalid_vector) |
242 | << QualType(VT, 0) << EltSize << NElts << ASTCtx.getCharWidth(); |
243 | return false; |
244 | } |
245 | |
246 | if (EltTy->isRealFloatingType() && |
247 | &ASTCtx.getFloatTypeSemantics(T: EltTy) == &APFloat::x87DoubleExtended()) { |
248 | // The layout for x86_fp80 vectors seems to be handled very inconsistently |
249 | // by both clang and LLVM, so for now we won't allow bit_casts involving |
250 | // it in a constexpr context. |
251 | const Expr *E = S.Current->getExpr(PC: OpPC); |
252 | S.FFDiag(E, DiagId: diag::note_constexpr_bit_cast_unsupported_type) << EltTy; |
253 | return false; |
254 | } |
255 | } |
256 | |
257 | return true; |
258 | } |
259 | |
260 | bool clang::interp::readPointerToBuffer(const Context &Ctx, |
261 | const Pointer &FromPtr, |
262 | BitcastBuffer &Buffer, |
263 | bool ReturnOnUninit) { |
264 | const ASTContext &ASTCtx = Ctx.getASTContext(); |
265 | Endian TargetEndianness = |
266 | ASTCtx.getTargetInfo().isLittleEndian() ? Endian::Little : Endian::Big; |
267 | |
268 | return enumeratePointerFields( |
269 | P: FromPtr, Ctx, BitsToRead: Buffer.size(), |
270 | F: [&](const Pointer &P, PrimType T, Bits BitOffset, Bits FullBitWidth, |
271 | bool PackedBools) -> bool { |
272 | Bits BitWidth = FullBitWidth; |
273 | |
274 | if (const FieldDecl *FD = P.getField(); FD && FD->isBitField()) |
275 | BitWidth = Bits(std::min(a: FD->getBitWidthValue(), |
276 | b: (unsigned)FullBitWidth.getQuantity())); |
277 | else if (T == PT_Bool && PackedBools) |
278 | BitWidth = Bits(1); |
279 | |
280 | if (BitWidth.isZero()) |
281 | return true; |
282 | |
283 | // Bits will be left uninitialized and diagnosed when reading. |
284 | if (!P.isInitialized()) |
285 | return true; |
286 | |
287 | if (T == PT_Ptr) { |
288 | assert(P.getType()->isNullPtrType()); |
289 | // Clang treats nullptr_t has having NO bits in its value |
290 | // representation. So, we accept it here and leave its bits |
291 | // uninitialized. |
292 | return true; |
293 | } |
294 | |
295 | assert(P.isInitialized()); |
296 | auto Buff = std::make_unique<std::byte[]>(num: FullBitWidth.roundToBytes()); |
297 | // Work around floating point types that contain unused padding bytes. |
298 | // This is really just `long double` on x86, which is the only |
299 | // fundamental type with padding bytes. |
300 | if (T == PT_Float) { |
301 | const Floating &F = P.deref<Floating>(); |
302 | Bits NumBits = Bits( |
303 | llvm::APFloatBase::getSizeInBits(Sem: F.getAPFloat().getSemantics())); |
304 | assert(NumBits.isFullByte()); |
305 | assert(NumBits.getQuantity() <= FullBitWidth.getQuantity()); |
306 | F.bitcastToMemory(Buff: Buff.get()); |
307 | // Now, only (maybe) swap the actual size of the float, excluding |
308 | // the padding bits. |
309 | if (llvm::sys::IsBigEndianHost) |
310 | swapBytes(M: Buff.get(), N: NumBits.roundToBytes()); |
311 | |
312 | Buffer.markInitialized(Start: BitOffset, Length: NumBits); |
313 | } else { |
314 | BITCAST_TYPE_SWITCH(T, { P.deref<T>().bitcastToMemory(Buff.get()); }); |
315 | |
316 | if (llvm::sys::IsBigEndianHost) |
317 | swapBytes(M: Buff.get(), N: FullBitWidth.roundToBytes()); |
318 | Buffer.markInitialized(Start: BitOffset, Length: BitWidth); |
319 | } |
320 | |
321 | Buffer.pushData(In: Buff.get(), BitOffset, BitWidth, TargetEndianness); |
322 | return true; |
323 | }); |
324 | } |
325 | |
326 | bool clang::interp::DoBitCast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
327 | std::byte *Buff, Bits BitWidth, Bits FullBitWidth, |
328 | bool &HasIndeterminateBits) { |
329 | assert(Ptr.isLive()); |
330 | assert(Ptr.isBlockPointer()); |
331 | assert(Buff); |
332 | assert(BitWidth <= FullBitWidth); |
333 | assert(FullBitWidth.isFullByte()); |
334 | assert(BitWidth.isFullByte()); |
335 | |
336 | BitcastBuffer Buffer(FullBitWidth); |
337 | size_t BuffSize = FullBitWidth.roundToBytes(); |
338 | QualType DataType = Ptr.getFieldDesc()->getDataType(Ctx: S.getASTContext()); |
339 | if (!CheckBitcastType(S, OpPC, T: DataType, /*IsToType=*/false)) |
340 | return false; |
341 | |
342 | bool Success = readPointerToBuffer(Ctx: S.getContext(), FromPtr: Ptr, Buffer, |
343 | /*ReturnOnUninit=*/false); |
344 | HasIndeterminateBits = !Buffer.rangeInitialized(Offset: Bits::zero(), Length: BitWidth); |
345 | |
346 | const ASTContext &ASTCtx = S.getASTContext(); |
347 | Endian TargetEndianness = |
348 | ASTCtx.getTargetInfo().isLittleEndian() ? Endian::Little : Endian::Big; |
349 | auto B = |
350 | Buffer.copyBits(BitOffset: Bits::zero(), BitWidth, FullBitWidth, TargetEndianness); |
351 | |
352 | std::memcpy(dest: Buff, src: B.get(), n: BuffSize); |
353 | |
354 | if (llvm::sys::IsBigEndianHost) |
355 | swapBytes(M: Buff, N: BitWidth.roundToBytes()); |
356 | |
357 | return Success; |
358 | } |
359 | bool clang::interp::DoBitCastPtr(InterpState &S, CodePtr OpPC, |
360 | const Pointer &FromPtr, Pointer &ToPtr) { |
361 | const ASTContext &ASTCtx = S.getASTContext(); |
362 | CharUnits ObjectReprChars = ASTCtx.getTypeSizeInChars(T: ToPtr.getType()); |
363 | |
364 | return DoBitCastPtr(S, OpPC, FromPtr, ToPtr, Size: ObjectReprChars.getQuantity()); |
365 | } |
366 | |
367 | bool clang::interp::DoBitCastPtr(InterpState &S, CodePtr OpPC, |
368 | const Pointer &FromPtr, Pointer &ToPtr, |
369 | size_t Size) { |
370 | assert(FromPtr.isLive()); |
371 | assert(FromPtr.isBlockPointer()); |
372 | assert(ToPtr.isBlockPointer()); |
373 | |
374 | QualType FromType = FromPtr.getFieldDesc()->getDataType(Ctx: S.getASTContext()); |
375 | QualType ToType = ToPtr.getFieldDesc()->getDataType(Ctx: S.getASTContext()); |
376 | |
377 | if (!CheckBitcastType(S, OpPC, T: ToType, /*IsToType=*/true)) |
378 | return false; |
379 | if (!CheckBitcastType(S, OpPC, T: FromType, /*IsToType=*/false)) |
380 | return false; |
381 | |
382 | const ASTContext &ASTCtx = S.getASTContext(); |
383 | BitcastBuffer Buffer(Bytes(Size).toBits()); |
384 | readPointerToBuffer(Ctx: S.getContext(), FromPtr, Buffer, |
385 | /*ReturnOnUninit=*/false); |
386 | |
387 | // Now read the values out of the buffer again and into ToPtr. |
388 | Endian TargetEndianness = |
389 | ASTCtx.getTargetInfo().isLittleEndian() ? Endian::Little : Endian::Big; |
390 | bool Success = enumeratePointerFields( |
391 | P: ToPtr, Ctx: S.getContext(), BitsToRead: Buffer.size(), |
392 | F: [&](const Pointer &P, PrimType T, Bits BitOffset, Bits FullBitWidth, |
393 | bool PackedBools) -> bool { |
394 | QualType PtrType = P.getType(); |
395 | if (T == PT_Float) { |
396 | const auto &Semantics = ASTCtx.getFloatTypeSemantics(T: PtrType); |
397 | Bits NumBits = Bits(llvm::APFloatBase::getSizeInBits(Sem: Semantics)); |
398 | assert(NumBits.isFullByte()); |
399 | assert(NumBits.getQuantity() <= FullBitWidth.getQuantity()); |
400 | auto M = Buffer.copyBits(BitOffset, BitWidth: NumBits, FullBitWidth, |
401 | TargetEndianness); |
402 | |
403 | if (llvm::sys::IsBigEndianHost) |
404 | swapBytes(M: M.get(), N: NumBits.roundToBytes()); |
405 | |
406 | Floating R = S.allocFloat(Sem: Semantics); |
407 | Floating::bitcastFromMemory(Buff: M.get(), Sem: Semantics, Result: &R); |
408 | P.deref<Floating>() = R; |
409 | P.initialize(); |
410 | return true; |
411 | } |
412 | |
413 | Bits BitWidth; |
414 | if (const FieldDecl *FD = P.getField(); FD && FD->isBitField()) |
415 | BitWidth = Bits(std::min(a: FD->getBitWidthValue(), |
416 | b: (unsigned)FullBitWidth.getQuantity())); |
417 | else if (T == PT_Bool && PackedBools) |
418 | BitWidth = Bits(1); |
419 | else |
420 | BitWidth = FullBitWidth; |
421 | |
422 | // If any of the bits are uninitialized, we need to abort unless the |
423 | // target type is std::byte or unsigned char. |
424 | bool Initialized = Buffer.rangeInitialized(Offset: BitOffset, Length: BitWidth); |
425 | if (!Initialized) { |
426 | if (!PtrType->isStdByteType() && |
427 | !PtrType->isSpecificBuiltinType(K: BuiltinType::UChar) && |
428 | !PtrType->isSpecificBuiltinType(K: BuiltinType::Char_U)) { |
429 | const Expr *E = S.Current->getExpr(PC: OpPC); |
430 | S.FFDiag(E, DiagId: diag::note_constexpr_bit_cast_indet_dest) |
431 | << PtrType << S.getLangOpts().CharIsSigned |
432 | << E->getSourceRange(); |
433 | |
434 | return false; |
435 | } |
436 | return true; |
437 | } |
438 | |
439 | auto Memory = Buffer.copyBits(BitOffset, BitWidth, FullBitWidth, |
440 | TargetEndianness); |
441 | if (llvm::sys::IsBigEndianHost) |
442 | swapBytes(M: Memory.get(), N: FullBitWidth.roundToBytes()); |
443 | |
444 | BITCAST_TYPE_SWITCH_FIXED_SIZE(T, { |
445 | if (BitWidth.nonZero()) |
446 | P.deref<T>() = T::bitcastFromMemory(Memory.get(), T::bitWidth()) |
447 | .truncate(BitWidth.getQuantity()); |
448 | else |
449 | P.deref<T>() = T::zero(); |
450 | }); |
451 | P.initialize(); |
452 | return true; |
453 | }); |
454 | |
455 | return Success; |
456 | } |
457 | |
458 | using PrimTypeVariant = |
459 | std::variant<Pointer, FunctionPointer, MemberPointer, FixedPoint, |
460 | Integral<8, false>, Integral<8, true>, Integral<16, false>, |
461 | Integral<16, true>, Integral<32, false>, Integral<32, true>, |
462 | Integral<64, false>, Integral<64, true>, IntegralAP<true>, |
463 | IntegralAP<false>, Boolean, Floating>; |
464 | |
465 | // NB: This implementation isn't exactly ideal, but: |
466 | // 1) We can't just do a bitcast here since we need to be able to |
467 | // copy pointers. |
468 | // 2) This also needs to handle overlapping regions. |
469 | // 3) We currently have no way of iterating over the fields of a pointer |
470 | // backwards. |
471 | bool clang::interp::DoMemcpy(InterpState &S, CodePtr OpPC, |
472 | const Pointer &SrcPtr, const Pointer &DestPtr, |
473 | Bits Size) { |
474 | assert(SrcPtr.isBlockPointer()); |
475 | assert(DestPtr.isBlockPointer()); |
476 | |
477 | llvm::SmallVector<PrimTypeVariant> Values; |
478 | enumeratePointerFields(P: SrcPtr, Ctx: S.getContext(), BitsToRead: Size, |
479 | F: [&](const Pointer &P, PrimType T, Bits BitOffset, |
480 | Bits FullBitWidth, bool PackedBools) -> bool { |
481 | TYPE_SWITCH(T, { Values.push_back(P.deref<T>()); }); |
482 | return true; |
483 | }); |
484 | |
485 | unsigned ValueIndex = 0; |
486 | enumeratePointerFields(P: DestPtr, Ctx: S.getContext(), BitsToRead: Size, |
487 | F: [&](const Pointer &P, PrimType T, Bits BitOffset, |
488 | Bits FullBitWidth, bool PackedBools) -> bool { |
489 | TYPE_SWITCH(T, { |
490 | P.deref<T>() = std::get<T>(Values[ValueIndex]); |
491 | P.initialize(); |
492 | }); |
493 | |
494 | ++ValueIndex; |
495 | return true; |
496 | }); |
497 | |
498 | // We should've read all the values into DestPtr. |
499 | assert(ValueIndex == Values.size()); |
500 | |
501 | return true; |
502 | } |
503 | |