| 1 | //===--- Integral.h - Wrapper for numeric types for the VM ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Defines the VM types and helpers operating on types. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CLANG_AST_INTERP_INTEGRAL_AP_H |
| 14 | #define LLVM_CLANG_AST_INTERP_INTEGRAL_AP_H |
| 15 | |
| 16 | #include "clang/AST/APValue.h" |
| 17 | #include "clang/AST/ComparisonCategories.h" |
| 18 | #include "llvm/ADT/APSInt.h" |
| 19 | #include "llvm/Support/MathExtras.h" |
| 20 | #include "llvm/Support/raw_ostream.h" |
| 21 | #include <cstddef> |
| 22 | #include <cstdint> |
| 23 | |
| 24 | #include "Primitives.h" |
| 25 | |
| 26 | namespace clang { |
| 27 | namespace interp { |
| 28 | |
| 29 | using APInt = llvm::APInt; |
| 30 | using APSInt = llvm::APSInt; |
| 31 | |
| 32 | /// If an IntegralAP is constructed from Memory, it DOES NOT OWN THAT MEMORY. |
| 33 | /// It will NOT copy the memory (unless, of course, copy() is called) and it |
| 34 | /// won't alllocate anything. The allocation should happen via InterpState or |
| 35 | /// Program. |
| 36 | template <bool Signed> class IntegralAP final { |
| 37 | public: |
| 38 | union { |
| 39 | uint64_t *Memory = nullptr; |
| 40 | uint64_t Val; |
| 41 | }; |
| 42 | uint32_t BitWidth = 0; |
| 43 | friend IntegralAP<!Signed>; |
| 44 | |
| 45 | template <typename T, bool InputSigned> |
| 46 | static T truncateCast(const APInt &V) { |
| 47 | constexpr unsigned BitSize = sizeof(T) * 8; |
| 48 | if (BitSize >= V.getBitWidth()) { |
| 49 | APInt Extended; |
| 50 | if constexpr (InputSigned) |
| 51 | Extended = V.sext(width: BitSize); |
| 52 | else |
| 53 | Extended = V.zext(width: BitSize); |
| 54 | return std::is_signed_v<T> ? Extended.getSExtValue() |
| 55 | : Extended.getZExtValue(); |
| 56 | } |
| 57 | |
| 58 | return std::is_signed_v<T> ? V.trunc(width: BitSize).getSExtValue() |
| 59 | : V.trunc(width: BitSize).getZExtValue(); |
| 60 | } |
| 61 | |
| 62 | APInt getValue() const { |
| 63 | if (singleWord()) |
| 64 | return APInt(BitWidth, Val, Signed); |
| 65 | unsigned NumWords = llvm::APInt::getNumWords(BitWidth); |
| 66 | return llvm::APInt(BitWidth, NumWords, Memory); |
| 67 | } |
| 68 | |
| 69 | public: |
| 70 | using AsUnsigned = IntegralAP<false>; |
| 71 | |
| 72 | void take(uint64_t *NewMemory) { |
| 73 | assert(!singleWord()); |
| 74 | std::memcpy(dest: NewMemory, src: Memory, n: numWords() * sizeof(uint64_t)); |
| 75 | Memory = NewMemory; |
| 76 | } |
| 77 | |
| 78 | void copy(const APInt &V) { |
| 79 | assert(BitWidth == V.getBitWidth()); |
| 80 | assert(numWords() == V.getNumWords()); |
| 81 | |
| 82 | if (V.isSingleWord()) { |
| 83 | if constexpr (Signed) |
| 84 | Val = V.getSExtValue(); |
| 85 | else |
| 86 | Val = V.getZExtValue(); |
| 87 | return; |
| 88 | } |
| 89 | assert(Memory); |
| 90 | std::memcpy(dest: Memory, src: V.getRawData(), n: V.getNumWords() * sizeof(uint64_t)); |
| 91 | } |
| 92 | |
| 93 | IntegralAP() = default; |
| 94 | /// Zeroed, single-word IntegralAP of the given bitwidth. |
| 95 | IntegralAP(unsigned BitWidth) : Val(0), BitWidth(BitWidth) { |
| 96 | assert(singleWord()); |
| 97 | } |
| 98 | IntegralAP(uint64_t *Memory, unsigned BitWidth) |
| 99 | : Memory(Memory), BitWidth(BitWidth) {} |
| 100 | IntegralAP(const APInt &V) : BitWidth(V.getBitWidth()) { |
| 101 | if (V.isSingleWord()) { |
| 102 | Val = Signed ? V.getSExtValue() : V.getZExtValue(); |
| 103 | } else { |
| 104 | Memory = const_cast<uint64_t *>(V.getRawData()); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | IntegralAP operator-() const { return IntegralAP(-getValue()); } |
| 109 | bool operator>(const IntegralAP &RHS) const { |
| 110 | if constexpr (Signed) |
| 111 | return getValue().sgt(RHS.getValue()); |
| 112 | return getValue().ugt(RHS.getValue()); |
| 113 | } |
| 114 | bool operator>=(unsigned RHS) const { |
| 115 | if constexpr (Signed) |
| 116 | return getValue().sge(RHS); |
| 117 | return getValue().uge(RHS); |
| 118 | } |
| 119 | bool operator<(IntegralAP RHS) const { |
| 120 | if constexpr (Signed) |
| 121 | return getValue().slt(RHS.getValue()); |
| 122 | return getValue().ult(RHS.getValue()); |
| 123 | } |
| 124 | |
| 125 | template <typename Ty, typename = std::enable_if_t<std::is_integral_v<Ty>>> |
| 126 | explicit operator Ty() const { |
| 127 | return truncateCast<Ty, Signed>(getValue()); |
| 128 | } |
| 129 | |
| 130 | template <typename T> static IntegralAP from(T Value, unsigned NumBits = 0) { |
| 131 | if (NumBits == 0) |
| 132 | NumBits = sizeof(T) * 8; |
| 133 | assert(NumBits > 0); |
| 134 | assert(APInt::getNumWords(NumBits) == 1); |
| 135 | APInt Copy = APInt(NumBits, static_cast<uint64_t>(Value), Signed); |
| 136 | return IntegralAP<Signed>(Copy); |
| 137 | } |
| 138 | |
| 139 | constexpr uint32_t bitWidth() const { return BitWidth; } |
| 140 | constexpr unsigned numWords() const { return APInt::getNumWords(BitWidth); } |
| 141 | constexpr bool singleWord() const { return numWords() == 1; } |
| 142 | |
| 143 | APSInt toAPSInt(unsigned Bits = 0) const { |
| 144 | if (Bits == 0) |
| 145 | Bits = bitWidth(); |
| 146 | |
| 147 | APInt V = getValue(); |
| 148 | if constexpr (Signed) |
| 149 | return APSInt(getValue().sext(Bits), !Signed); |
| 150 | else |
| 151 | return APSInt(getValue().zext(Bits), !Signed); |
| 152 | } |
| 153 | APValue toAPValue(const ASTContext &) const { return APValue(toAPSInt()); } |
| 154 | |
| 155 | bool isZero() const { return getValue().isZero(); } |
| 156 | bool isPositive() const { |
| 157 | if constexpr (Signed) |
| 158 | return getValue().isNonNegative(); |
| 159 | return true; |
| 160 | } |
| 161 | bool isNegative() const { |
| 162 | if constexpr (Signed) |
| 163 | return !getValue().isNonNegative(); |
| 164 | return false; |
| 165 | } |
| 166 | bool isMin() const { |
| 167 | if constexpr (Signed) |
| 168 | return getValue().isMinSignedValue(); |
| 169 | return getValue().isMinValue(); |
| 170 | } |
| 171 | bool isMax() const { |
| 172 | if constexpr (Signed) |
| 173 | return getValue().isMaxSignedValue(); |
| 174 | return getValue().isMaxValue(); |
| 175 | } |
| 176 | static constexpr bool isSigned() { return Signed; } |
| 177 | bool isMinusOne() const { return Signed && getValue().isAllOnes(); } |
| 178 | |
| 179 | unsigned countLeadingZeros() const { return getValue().countl_zero(); } |
| 180 | |
| 181 | void print(llvm::raw_ostream &OS) const { getValue().print(OS, Signed); } |
| 182 | std::string toDiagnosticString(const ASTContext &Ctx) const { |
| 183 | std::string NameStr; |
| 184 | llvm::raw_string_ostream OS(NameStr); |
| 185 | print(OS); |
| 186 | return NameStr; |
| 187 | } |
| 188 | |
| 189 | IntegralAP truncate(unsigned BitWidth) const { |
| 190 | if constexpr (Signed) |
| 191 | return IntegralAP( |
| 192 | getValue().trunc(BitWidth).sextOrTrunc(this->bitWidth())); |
| 193 | else |
| 194 | return IntegralAP( |
| 195 | getValue().trunc(BitWidth).zextOrTrunc(this->bitWidth())); |
| 196 | } |
| 197 | |
| 198 | IntegralAP<false> toUnsigned() const { |
| 199 | return IntegralAP<false>(Memory, BitWidth); |
| 200 | } |
| 201 | |
| 202 | void bitcastToMemory(std::byte *Dest) const { |
| 203 | llvm::StoreIntToMemory(IntVal: getValue(), Dst: (uint8_t *)Dest, StoreBytes: bitWidth() / 8); |
| 204 | } |
| 205 | |
| 206 | static void bitcastFromMemory(const std::byte *Src, unsigned BitWidth, |
| 207 | IntegralAP *Result) { |
| 208 | APInt V(BitWidth, static_cast<uint64_t>(0), Signed); |
| 209 | llvm::LoadIntFromMemory(IntVal&: V, Src: (const uint8_t *)Src, LoadBytes: BitWidth / 8); |
| 210 | Result->copy(V); |
| 211 | } |
| 212 | |
| 213 | ComparisonCategoryResult compare(const IntegralAP &RHS) const { |
| 214 | assert(Signed == RHS.isSigned()); |
| 215 | assert(bitWidth() == RHS.bitWidth()); |
| 216 | APInt V1 = getValue(); |
| 217 | APInt V2 = RHS.getValue(); |
| 218 | if constexpr (Signed) { |
| 219 | if (V1.slt(RHS: V2)) |
| 220 | return ComparisonCategoryResult::Less; |
| 221 | if (V1.sgt(RHS: V2)) |
| 222 | return ComparisonCategoryResult::Greater; |
| 223 | return ComparisonCategoryResult::Equal; |
| 224 | } |
| 225 | |
| 226 | assert(!Signed); |
| 227 | if (V1.ult(RHS: V2)) |
| 228 | return ComparisonCategoryResult::Less; |
| 229 | if (V1.ugt(RHS: V2)) |
| 230 | return ComparisonCategoryResult::Greater; |
| 231 | return ComparisonCategoryResult::Equal; |
| 232 | } |
| 233 | |
| 234 | static bool increment(IntegralAP A, IntegralAP *R) { |
| 235 | APSInt One(APInt(A.bitWidth(), 1ull, Signed), !Signed); |
| 236 | return add(A, B: IntegralAP<Signed>(One), OpBits: A.bitWidth() + 1, R); |
| 237 | } |
| 238 | |
| 239 | static bool decrement(IntegralAP A, IntegralAP *R) { |
| 240 | APSInt One(APInt(A.bitWidth(), 1ull, Signed), !Signed); |
| 241 | return sub(A, B: IntegralAP<Signed>(One), OpBits: A.bitWidth() + 1, R); |
| 242 | } |
| 243 | |
| 244 | static bool add(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) { |
| 245 | return CheckAddSubMulUB<std::plus>(A, B, OpBits, R); |
| 246 | } |
| 247 | |
| 248 | static bool sub(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) { |
| 249 | return CheckAddSubMulUB<std::minus>(A, B, OpBits, R); |
| 250 | } |
| 251 | |
| 252 | static bool mul(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) { |
| 253 | return CheckAddSubMulUB<std::multiplies>(A, B, OpBits, R); |
| 254 | } |
| 255 | |
| 256 | static bool rem(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) { |
| 257 | if constexpr (Signed) |
| 258 | R->copy(A.getValue().srem(B.getValue())); |
| 259 | else |
| 260 | R->copy(A.getValue().urem(B.getValue())); |
| 261 | return false; |
| 262 | } |
| 263 | |
| 264 | static bool div(IntegralAP A, IntegralAP B, unsigned OpBits, IntegralAP *R) { |
| 265 | if constexpr (Signed) |
| 266 | R->copy(A.getValue().sdiv(B.getValue())); |
| 267 | else |
| 268 | R->copy(A.getValue().udiv(B.getValue())); |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | static bool bitAnd(IntegralAP A, IntegralAP B, unsigned OpBits, |
| 273 | IntegralAP *R) { |
| 274 | R->copy(A.getValue() & B.getValue()); |
| 275 | return false; |
| 276 | } |
| 277 | |
| 278 | static bool bitOr(IntegralAP A, IntegralAP B, unsigned OpBits, |
| 279 | IntegralAP *R) { |
| 280 | R->copy(A.getValue() | B.getValue()); |
| 281 | return false; |
| 282 | } |
| 283 | |
| 284 | static bool bitXor(IntegralAP A, IntegralAP B, unsigned OpBits, |
| 285 | IntegralAP *R) { |
| 286 | R->copy(A.getValue() ^ B.getValue()); |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | static bool neg(const IntegralAP &A, IntegralAP *R) { |
| 291 | APInt AI = A.getValue(); |
| 292 | AI.negate(); |
| 293 | R->copy(AI); |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | static bool comp(IntegralAP A, IntegralAP *R) { |
| 298 | R->copy(~A.getValue()); |
| 299 | return false; |
| 300 | } |
| 301 | |
| 302 | static void shiftLeft(const IntegralAP A, const IntegralAP B, unsigned OpBits, |
| 303 | IntegralAP *R) { |
| 304 | *R = IntegralAP(A.getValue().shl(B.getValue().getZExtValue())); |
| 305 | } |
| 306 | |
| 307 | static void shiftRight(const IntegralAP A, const IntegralAP B, |
| 308 | unsigned OpBits, IntegralAP *R) { |
| 309 | unsigned ShiftAmount = B.getValue().getZExtValue(); |
| 310 | if constexpr (Signed) |
| 311 | R->copy(A.getValue().ashr(ShiftAmount)); |
| 312 | else |
| 313 | R->copy(A.getValue().lshr(ShiftAmount)); |
| 314 | } |
| 315 | |
| 316 | // === Serialization support === |
| 317 | size_t bytesToSerialize() const { |
| 318 | assert(BitWidth != 0); |
| 319 | return sizeof(uint32_t) + (numWords() * sizeof(uint64_t)); |
| 320 | } |
| 321 | |
| 322 | void serialize(std::byte *Buff) const { |
| 323 | std::memcpy(dest: Buff, src: &BitWidth, n: sizeof(uint32_t)); |
| 324 | if (singleWord()) |
| 325 | std::memcpy(dest: Buff + sizeof(uint32_t), src: &Val, n: sizeof(uint64_t)); |
| 326 | else { |
| 327 | std::memcpy(dest: Buff + sizeof(uint32_t), src: Memory, |
| 328 | n: numWords() * sizeof(uint64_t)); |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | static uint32_t deserializeSize(const std::byte *Buff) { |
| 333 | return *reinterpret_cast<const uint32_t *>(Buff); |
| 334 | } |
| 335 | |
| 336 | static void deserialize(const std::byte *Buff, IntegralAP<Signed> *Result) { |
| 337 | uint32_t BitWidth = Result->BitWidth; |
| 338 | assert(BitWidth != 0); |
| 339 | unsigned NumWords = llvm::APInt::getNumWords(BitWidth); |
| 340 | |
| 341 | if (NumWords == 1) |
| 342 | std::memcpy(dest: &Result->Val, src: Buff + sizeof(uint32_t), n: sizeof(uint64_t)); |
| 343 | else { |
| 344 | assert(Result->Memory); |
| 345 | std::memcpy(dest: Result->Memory, src: Buff + sizeof(uint32_t), |
| 346 | n: NumWords * sizeof(uint64_t)); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | private: |
| 351 | template <template <typename T> class Op> |
| 352 | static bool CheckAddSubMulUB(const IntegralAP &A, const IntegralAP &B, |
| 353 | unsigned BitWidth, IntegralAP *R) { |
| 354 | if constexpr (!Signed) { |
| 355 | R->copy(Op<APInt>{}(A.getValue(), B.getValue())); |
| 356 | return false; |
| 357 | } |
| 358 | |
| 359 | const APSInt &LHS = A.toAPSInt(); |
| 360 | const APSInt &RHS = B.toAPSInt(); |
| 361 | APSInt Value = Op<APSInt>{}(LHS.extend(width: BitWidth), RHS.extend(width: BitWidth)); |
| 362 | APSInt Result = Value.trunc(width: LHS.getBitWidth()); |
| 363 | R->copy(Result); |
| 364 | |
| 365 | return Result.extend(width: BitWidth) != Value; |
| 366 | } |
| 367 | }; |
| 368 | |
| 369 | template <bool Signed> |
| 370 | inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, |
| 371 | IntegralAP<Signed> I) { |
| 372 | I.print(OS); |
| 373 | return OS; |
| 374 | } |
| 375 | |
| 376 | template <bool Signed> |
| 377 | IntegralAP<Signed> getSwappedBytes(IntegralAP<Signed> F) { |
| 378 | return F; |
| 379 | } |
| 380 | |
| 381 | } // namespace interp |
| 382 | } // namespace clang |
| 383 | |
| 384 | #endif |
| 385 | |