1 | //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the ASTContext interface. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "ByteCode/Context.h" |
15 | #include "CXXABI.h" |
16 | #include "clang/AST/APValue.h" |
17 | #include "clang/AST/ASTConcept.h" |
18 | #include "clang/AST/ASTMutationListener.h" |
19 | #include "clang/AST/ASTStructuralEquivalence.h" |
20 | #include "clang/AST/ASTTypeTraits.h" |
21 | #include "clang/AST/Attr.h" |
22 | #include "clang/AST/AttrIterator.h" |
23 | #include "clang/AST/CharUnits.h" |
24 | #include "clang/AST/Comment.h" |
25 | #include "clang/AST/Decl.h" |
26 | #include "clang/AST/DeclBase.h" |
27 | #include "clang/AST/DeclCXX.h" |
28 | #include "clang/AST/DeclContextInternals.h" |
29 | #include "clang/AST/DeclObjC.h" |
30 | #include "clang/AST/DeclOpenMP.h" |
31 | #include "clang/AST/DeclTemplate.h" |
32 | #include "clang/AST/DeclarationName.h" |
33 | #include "clang/AST/DependenceFlags.h" |
34 | #include "clang/AST/Expr.h" |
35 | #include "clang/AST/ExprCXX.h" |
36 | #include "clang/AST/ExternalASTSource.h" |
37 | #include "clang/AST/Mangle.h" |
38 | #include "clang/AST/MangleNumberingContext.h" |
39 | #include "clang/AST/NestedNameSpecifier.h" |
40 | #include "clang/AST/ParentMapContext.h" |
41 | #include "clang/AST/RawCommentList.h" |
42 | #include "clang/AST/RecordLayout.h" |
43 | #include "clang/AST/Stmt.h" |
44 | #include "clang/AST/TemplateBase.h" |
45 | #include "clang/AST/TemplateName.h" |
46 | #include "clang/AST/Type.h" |
47 | #include "clang/AST/TypeLoc.h" |
48 | #include "clang/AST/UnresolvedSet.h" |
49 | #include "clang/AST/VTableBuilder.h" |
50 | #include "clang/Basic/AddressSpaces.h" |
51 | #include "clang/Basic/Builtins.h" |
52 | #include "clang/Basic/CommentOptions.h" |
53 | #include "clang/Basic/ExceptionSpecificationType.h" |
54 | #include "clang/Basic/IdentifierTable.h" |
55 | #include "clang/Basic/LLVM.h" |
56 | #include "clang/Basic/LangOptions.h" |
57 | #include "clang/Basic/Linkage.h" |
58 | #include "clang/Basic/Module.h" |
59 | #include "clang/Basic/NoSanitizeList.h" |
60 | #include "clang/Basic/ObjCRuntime.h" |
61 | #include "clang/Basic/ProfileList.h" |
62 | #include "clang/Basic/SourceLocation.h" |
63 | #include "clang/Basic/SourceManager.h" |
64 | #include "clang/Basic/Specifiers.h" |
65 | #include "clang/Basic/TargetCXXABI.h" |
66 | #include "clang/Basic/TargetInfo.h" |
67 | #include "clang/Basic/XRayLists.h" |
68 | #include "llvm/ADT/APFixedPoint.h" |
69 | #include "llvm/ADT/APInt.h" |
70 | #include "llvm/ADT/APSInt.h" |
71 | #include "llvm/ADT/ArrayRef.h" |
72 | #include "llvm/ADT/DenseMap.h" |
73 | #include "llvm/ADT/DenseSet.h" |
74 | #include "llvm/ADT/FoldingSet.h" |
75 | #include "llvm/ADT/PointerUnion.h" |
76 | #include "llvm/ADT/STLExtras.h" |
77 | #include "llvm/ADT/SmallPtrSet.h" |
78 | #include "llvm/ADT/SmallVector.h" |
79 | #include "llvm/ADT/StringExtras.h" |
80 | #include "llvm/ADT/StringRef.h" |
81 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
82 | #include "llvm/Support/Capacity.h" |
83 | #include "llvm/Support/Compiler.h" |
84 | #include "llvm/Support/ErrorHandling.h" |
85 | #include "llvm/Support/MD5.h" |
86 | #include "llvm/Support/MathExtras.h" |
87 | #include "llvm/Support/SipHash.h" |
88 | #include "llvm/Support/raw_ostream.h" |
89 | #include "llvm/TargetParser/AArch64TargetParser.h" |
90 | #include "llvm/TargetParser/Triple.h" |
91 | #include <algorithm> |
92 | #include <cassert> |
93 | #include <cstddef> |
94 | #include <cstdint> |
95 | #include <cstdlib> |
96 | #include <map> |
97 | #include <memory> |
98 | #include <optional> |
99 | #include <string> |
100 | #include <tuple> |
101 | #include <utility> |
102 | |
103 | using namespace clang; |
104 | |
105 | enum FloatingRank { |
106 | BFloat16Rank, |
107 | Float16Rank, |
108 | HalfRank, |
109 | FloatRank, |
110 | DoubleRank, |
111 | LongDoubleRank, |
112 | Float128Rank, |
113 | Ibm128Rank |
114 | }; |
115 | |
116 | template <> struct llvm::DenseMapInfo<llvm::FoldingSetNodeID> { |
117 | static FoldingSetNodeID getEmptyKey() { return FoldingSetNodeID{}; } |
118 | |
119 | static FoldingSetNodeID getTombstoneKey() { |
120 | FoldingSetNodeID id; |
121 | for (size_t i = 0; i < sizeof(id) / sizeof(unsigned); ++i) { |
122 | id.AddInteger(I: std::numeric_limits<unsigned>::max()); |
123 | } |
124 | return id; |
125 | } |
126 | |
127 | static unsigned getHashValue(const FoldingSetNodeID &Val) { |
128 | return Val.ComputeHash(); |
129 | } |
130 | |
131 | static bool isEqual(const FoldingSetNodeID &LHS, |
132 | const FoldingSetNodeID &RHS) { |
133 | return LHS == RHS; |
134 | } |
135 | }; |
136 | |
137 | /// \returns The locations that are relevant when searching for Doc comments |
138 | /// related to \p D. |
139 | static SmallVector<SourceLocation, 2> |
140 | (const Decl *D, SourceManager &SourceMgr) { |
141 | assert(D); |
142 | |
143 | // User can not attach documentation to implicit declarations. |
144 | if (D->isImplicit()) |
145 | return {}; |
146 | |
147 | // User can not attach documentation to implicit instantiations. |
148 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
149 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
150 | return {}; |
151 | } |
152 | |
153 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
154 | if (VD->isStaticDataMember() && |
155 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
156 | return {}; |
157 | } |
158 | |
159 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: D)) { |
160 | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
161 | return {}; |
162 | } |
163 | |
164 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: D)) { |
165 | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); |
166 | if (TSK == TSK_ImplicitInstantiation || |
167 | TSK == TSK_Undeclared) |
168 | return {}; |
169 | } |
170 | |
171 | if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
172 | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
173 | return {}; |
174 | } |
175 | if (const auto *TD = dyn_cast<TagDecl>(Val: D)) { |
176 | // When tag declaration (but not definition!) is part of the |
177 | // decl-specifier-seq of some other declaration, it doesn't get comment |
178 | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) |
179 | return {}; |
180 | } |
181 | // TODO: handle comments for function parameters properly. |
182 | if (isa<ParmVarDecl>(Val: D)) |
183 | return {}; |
184 | |
185 | // TODO: we could look up template parameter documentation in the template |
186 | // documentation. |
187 | if (isa<TemplateTypeParmDecl>(Val: D) || |
188 | isa<NonTypeTemplateParmDecl>(Val: D) || |
189 | isa<TemplateTemplateParmDecl>(Val: D)) |
190 | return {}; |
191 | |
192 | SmallVector<SourceLocation, 2> Locations; |
193 | // Find declaration location. |
194 | // For Objective-C declarations we generally don't expect to have multiple |
195 | // declarators, thus use declaration starting location as the "declaration |
196 | // location". |
197 | // For all other declarations multiple declarators are used quite frequently, |
198 | // so we use the location of the identifier as the "declaration location". |
199 | SourceLocation BaseLocation; |
200 | if (isa<ObjCMethodDecl>(Val: D) || isa<ObjCContainerDecl>(Val: D) || |
201 | isa<ObjCPropertyDecl>(Val: D) || isa<RedeclarableTemplateDecl>(Val: D) || |
202 | isa<ClassTemplateSpecializationDecl>(Val: D) || |
203 | // Allow association with Y across {} in `typedef struct X {} Y`. |
204 | isa<TypedefDecl>(Val: D)) |
205 | BaseLocation = D->getBeginLoc(); |
206 | else |
207 | BaseLocation = D->getLocation(); |
208 | |
209 | if (!D->getLocation().isMacroID()) { |
210 | Locations.emplace_back(Args&: BaseLocation); |
211 | } else { |
212 | const auto *DeclCtx = D->getDeclContext(); |
213 | |
214 | // When encountering definitions generated from a macro (that are not |
215 | // contained by another declaration in the macro) we need to try and find |
216 | // the comment at the location of the expansion but if there is no comment |
217 | // there we should retry to see if there is a comment inside the macro as |
218 | // well. To this end we return first BaseLocation to first look at the |
219 | // expansion site, the second value is the spelling location of the |
220 | // beginning of the declaration defined inside the macro. |
221 | if (!(DeclCtx && |
222 | Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) { |
223 | Locations.emplace_back(Args: SourceMgr.getExpansionLoc(Loc: BaseLocation)); |
224 | } |
225 | |
226 | // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that |
227 | // we don't refer to the macro argument location at the expansion site (this |
228 | // can happen if the name's spelling is provided via macro argument), and |
229 | // always to the declaration itself. |
230 | Locations.emplace_back(Args: SourceMgr.getSpellingLoc(Loc: D->getBeginLoc())); |
231 | } |
232 | |
233 | return Locations; |
234 | } |
235 | |
236 | RawComment *ASTContext::( |
237 | const Decl *D, const SourceLocation RepresentativeLocForDecl, |
238 | const std::map<unsigned, RawComment *> &) const { |
239 | // If the declaration doesn't map directly to a location in a file, we |
240 | // can't find the comment. |
241 | if (RepresentativeLocForDecl.isInvalid() || |
242 | !RepresentativeLocForDecl.isFileID()) |
243 | return nullptr; |
244 | |
245 | // If there are no comments anywhere, we won't find anything. |
246 | if (CommentsInTheFile.empty()) |
247 | return nullptr; |
248 | |
249 | // Decompose the location for the declaration and find the beginning of the |
250 | // file buffer. |
251 | const FileIDAndOffset DeclLocDecomp = |
252 | SourceMgr.getDecomposedLoc(Loc: RepresentativeLocForDecl); |
253 | |
254 | // Slow path. |
255 | auto = |
256 | CommentsInTheFile.lower_bound(x: DeclLocDecomp.second); |
257 | |
258 | // First check whether we have a trailing comment. |
259 | if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { |
260 | RawComment * = OffsetCommentBehindDecl->second; |
261 | if ((CommentBehindDecl->isDocumentation() || |
262 | LangOpts.CommentOpts.ParseAllComments) && |
263 | CommentBehindDecl->isTrailingComment() && |
264 | (isa<FieldDecl>(Val: D) || isa<EnumConstantDecl>(Val: D) || isa<VarDecl>(Val: D) || |
265 | isa<ObjCMethodDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D))) { |
266 | |
267 | // Check that Doxygen trailing comment comes after the declaration, starts |
268 | // on the same line and in the same file as the declaration. |
269 | if (SourceMgr.getLineNumber(FID: DeclLocDecomp.first, FilePos: DeclLocDecomp.second) == |
270 | Comments.getCommentBeginLine(C: CommentBehindDecl, File: DeclLocDecomp.first, |
271 | Offset: OffsetCommentBehindDecl->first)) { |
272 | return CommentBehindDecl; |
273 | } |
274 | } |
275 | } |
276 | |
277 | // The comment just after the declaration was not a trailing comment. |
278 | // Let's look at the previous comment. |
279 | if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) |
280 | return nullptr; |
281 | |
282 | auto = --OffsetCommentBehindDecl; |
283 | RawComment * = OffsetCommentBeforeDecl->second; |
284 | |
285 | // Check that we actually have a non-member Doxygen comment. |
286 | if (!(CommentBeforeDecl->isDocumentation() || |
287 | LangOpts.CommentOpts.ParseAllComments) || |
288 | CommentBeforeDecl->isTrailingComment()) |
289 | return nullptr; |
290 | |
291 | // Decompose the end of the comment. |
292 | const unsigned = |
293 | Comments.getCommentEndOffset(C: CommentBeforeDecl); |
294 | |
295 | // Get the corresponding buffer. |
296 | bool Invalid = false; |
297 | const char *Buffer = SourceMgr.getBufferData(FID: DeclLocDecomp.first, |
298 | Invalid: &Invalid).data(); |
299 | if (Invalid) |
300 | return nullptr; |
301 | |
302 | // Extract text between the comment and declaration. |
303 | StringRef Text(Buffer + CommentEndOffset, |
304 | DeclLocDecomp.second - CommentEndOffset); |
305 | |
306 | // There should be no other declarations or preprocessor directives between |
307 | // comment and declaration. |
308 | if (Text.find_last_of(Chars: ";{}#@" ) != StringRef::npos) |
309 | return nullptr; |
310 | |
311 | return CommentBeforeDecl; |
312 | } |
313 | |
314 | RawComment *ASTContext::(const Decl *D) const { |
315 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
316 | |
317 | for (const auto DeclLoc : DeclLocs) { |
318 | // If the declaration doesn't map directly to a location in a file, we |
319 | // can't find the comment. |
320 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
321 | continue; |
322 | |
323 | if (ExternalSource && !CommentsLoaded) { |
324 | ExternalSource->ReadComments(); |
325 | CommentsLoaded = true; |
326 | } |
327 | |
328 | if (Comments.empty()) |
329 | continue; |
330 | |
331 | const FileID File = SourceMgr.getDecomposedLoc(Loc: DeclLoc).first; |
332 | if (!File.isValid()) |
333 | continue; |
334 | |
335 | const auto = Comments.getCommentsInFile(File); |
336 | if (!CommentsInThisFile || CommentsInThisFile->empty()) |
337 | continue; |
338 | |
339 | if (RawComment * = |
340 | getRawCommentForDeclNoCacheImpl(D, RepresentativeLocForDecl: DeclLoc, CommentsInTheFile: *CommentsInThisFile)) |
341 | return Comment; |
342 | } |
343 | |
344 | return nullptr; |
345 | } |
346 | |
347 | void ASTContext::(const RawComment &RC) { |
348 | assert(LangOpts.RetainCommentsFromSystemHeaders || |
349 | !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); |
350 | Comments.addComment(RC, CommentOpts: LangOpts.CommentOpts, Allocator&: BumpAlloc); |
351 | } |
352 | |
353 | /// If we have a 'templated' declaration for a template, adjust 'D' to |
354 | /// refer to the actual template. |
355 | /// If we have an implicit instantiation, adjust 'D' to refer to template. |
356 | static const Decl &adjustDeclToTemplate(const Decl &D) { |
357 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: &D)) { |
358 | // Is this function declaration part of a function template? |
359 | if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
360 | return *FTD; |
361 | |
362 | // Nothing to do if function is not an implicit instantiation. |
363 | if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
364 | return D; |
365 | |
366 | // Function is an implicit instantiation of a function template? |
367 | if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
368 | return *FTD; |
369 | |
370 | // Function is instantiated from a member definition of a class template? |
371 | if (const FunctionDecl *MemberDecl = |
372 | FD->getInstantiatedFromMemberFunction()) |
373 | return *MemberDecl; |
374 | |
375 | return D; |
376 | } |
377 | if (const auto *VD = dyn_cast<VarDecl>(Val: &D)) { |
378 | // Static data member is instantiated from a member definition of a class |
379 | // template? |
380 | if (VD->isStaticDataMember()) |
381 | if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) |
382 | return *MemberDecl; |
383 | |
384 | return D; |
385 | } |
386 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: &D)) { |
387 | // Is this class declaration part of a class template? |
388 | if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) |
389 | return *CTD; |
390 | |
391 | // Class is an implicit instantiation of a class template or partial |
392 | // specialization? |
393 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: CRD)) { |
394 | if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) |
395 | return D; |
396 | llvm::PointerUnion<ClassTemplateDecl *, |
397 | ClassTemplatePartialSpecializationDecl *> |
398 | PU = CTSD->getSpecializedTemplateOrPartial(); |
399 | return isa<ClassTemplateDecl *>(Val: PU) |
400 | ? *static_cast<const Decl *>(cast<ClassTemplateDecl *>(Val&: PU)) |
401 | : *static_cast<const Decl *>( |
402 | cast<ClassTemplatePartialSpecializationDecl *>(Val&: PU)); |
403 | } |
404 | |
405 | // Class is instantiated from a member definition of a class template? |
406 | if (const MemberSpecializationInfo *Info = |
407 | CRD->getMemberSpecializationInfo()) |
408 | return *Info->getInstantiatedFrom(); |
409 | |
410 | return D; |
411 | } |
412 | if (const auto *ED = dyn_cast<EnumDecl>(Val: &D)) { |
413 | // Enum is instantiated from a member definition of a class template? |
414 | if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) |
415 | return *MemberDecl; |
416 | |
417 | return D; |
418 | } |
419 | // FIXME: Adjust alias templates? |
420 | return D; |
421 | } |
422 | |
423 | const RawComment *ASTContext::( |
424 | const Decl *D, |
425 | const Decl **OriginalDecl) const { |
426 | if (!D) { |
427 | if (OriginalDecl) |
428 | OriginalDecl = nullptr; |
429 | return nullptr; |
430 | } |
431 | |
432 | D = &adjustDeclToTemplate(D: *D); |
433 | |
434 | // Any comment directly attached to D? |
435 | { |
436 | auto = DeclRawComments.find(Val: D); |
437 | if (DeclComment != DeclRawComments.end()) { |
438 | if (OriginalDecl) |
439 | *OriginalDecl = D; |
440 | return DeclComment->second; |
441 | } |
442 | } |
443 | |
444 | // Any comment attached to any redeclaration of D? |
445 | const Decl *CanonicalD = D->getCanonicalDecl(); |
446 | if (!CanonicalD) |
447 | return nullptr; |
448 | |
449 | { |
450 | auto = RedeclChainComments.find(Val: CanonicalD); |
451 | if (RedeclComment != RedeclChainComments.end()) { |
452 | if (OriginalDecl) |
453 | *OriginalDecl = RedeclComment->second; |
454 | auto = DeclRawComments.find(Val: RedeclComment->second); |
455 | assert(CommentAtRedecl != DeclRawComments.end() && |
456 | "This decl is supposed to have comment attached." ); |
457 | return CommentAtRedecl->second; |
458 | } |
459 | } |
460 | |
461 | // Any redeclarations of D that we haven't checked for comments yet? |
462 | const Decl *LastCheckedRedecl = [&]() { |
463 | const Decl *LastChecked = CommentlessRedeclChains.lookup(Val: CanonicalD); |
464 | bool = false; |
465 | if (LastChecked) { |
466 | for (auto *Redecl : CanonicalD->redecls()) { |
467 | if (Redecl == D) { |
468 | CanUseCommentlessCache = true; |
469 | break; |
470 | } |
471 | if (Redecl == LastChecked) |
472 | break; |
473 | } |
474 | } |
475 | // FIXME: This could be improved so that even if CanUseCommentlessCache |
476 | // is false, once we've traversed past CanonicalD we still skip ahead |
477 | // LastChecked. |
478 | return CanUseCommentlessCache ? LastChecked : nullptr; |
479 | }(); |
480 | |
481 | for (const Decl *Redecl : D->redecls()) { |
482 | assert(Redecl); |
483 | // Skip all redeclarations that have been checked previously. |
484 | if (LastCheckedRedecl) { |
485 | if (LastCheckedRedecl == Redecl) { |
486 | LastCheckedRedecl = nullptr; |
487 | } |
488 | continue; |
489 | } |
490 | const RawComment * = getRawCommentForDeclNoCache(D: Redecl); |
491 | if (RedeclComment) { |
492 | cacheRawCommentForDecl(OriginalD: *Redecl, Comment: *RedeclComment); |
493 | if (OriginalDecl) |
494 | *OriginalDecl = Redecl; |
495 | return RedeclComment; |
496 | } |
497 | CommentlessRedeclChains[CanonicalD] = Redecl; |
498 | } |
499 | |
500 | if (OriginalDecl) |
501 | *OriginalDecl = nullptr; |
502 | return nullptr; |
503 | } |
504 | |
505 | void ASTContext::(const Decl &OriginalD, |
506 | const RawComment &) const { |
507 | assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); |
508 | DeclRawComments.try_emplace(Key: &OriginalD, Args: &Comment); |
509 | const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); |
510 | RedeclChainComments.try_emplace(Key: CanonicalDecl, Args: &OriginalD); |
511 | CommentlessRedeclChains.erase(Val: CanonicalDecl); |
512 | } |
513 | |
514 | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, |
515 | SmallVectorImpl<const NamedDecl *> &Redeclared) { |
516 | const DeclContext *DC = ObjCMethod->getDeclContext(); |
517 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(Val: DC)) { |
518 | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); |
519 | if (!ID) |
520 | return; |
521 | // Add redeclared method here. |
522 | for (const auto *Ext : ID->known_extensions()) { |
523 | if (ObjCMethodDecl *RedeclaredMethod = |
524 | Ext->getMethod(Sel: ObjCMethod->getSelector(), |
525 | isInstance: ObjCMethod->isInstanceMethod())) |
526 | Redeclared.push_back(Elt: RedeclaredMethod); |
527 | } |
528 | } |
529 | } |
530 | |
531 | void ASTContext::(ArrayRef<Decl *> Decls, |
532 | const Preprocessor *PP) { |
533 | if (Comments.empty() || Decls.empty()) |
534 | return; |
535 | |
536 | FileID File; |
537 | for (const Decl *D : Decls) { |
538 | if (D->isInvalidDecl()) |
539 | continue; |
540 | |
541 | D = &adjustDeclToTemplate(D: *D); |
542 | SourceLocation Loc = D->getLocation(); |
543 | if (Loc.isValid()) { |
544 | // See if there are any new comments that are not attached to a decl. |
545 | // The location doesn't have to be precise - we care only about the file. |
546 | File = SourceMgr.getDecomposedLoc(Loc).first; |
547 | break; |
548 | } |
549 | } |
550 | |
551 | if (File.isInvalid()) |
552 | return; |
553 | |
554 | auto = Comments.getCommentsInFile(File); |
555 | if (!CommentsInThisFile || CommentsInThisFile->empty() || |
556 | CommentsInThisFile->rbegin()->second->isAttached()) |
557 | return; |
558 | |
559 | // There is at least one comment not attached to a decl. |
560 | // Maybe it should be attached to one of Decls? |
561 | // |
562 | // Note that this way we pick up not only comments that precede the |
563 | // declaration, but also comments that *follow* the declaration -- thanks to |
564 | // the lookahead in the lexer: we've consumed the semicolon and looked |
565 | // ahead through comments. |
566 | for (const Decl *D : Decls) { |
567 | assert(D); |
568 | if (D->isInvalidDecl()) |
569 | continue; |
570 | |
571 | D = &adjustDeclToTemplate(D: *D); |
572 | |
573 | if (DeclRawComments.count(Val: D) > 0) |
574 | continue; |
575 | |
576 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
577 | |
578 | for (const auto DeclLoc : DeclLocs) { |
579 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
580 | continue; |
581 | |
582 | if (RawComment *const = getRawCommentForDeclNoCacheImpl( |
583 | D, RepresentativeLocForDecl: DeclLoc, CommentsInTheFile: *CommentsInThisFile)) { |
584 | cacheRawCommentForDecl(OriginalD: *D, Comment: *DocComment); |
585 | comments::FullComment *FC = DocComment->parse(Context: *this, PP, D); |
586 | ParsedComments[D->getCanonicalDecl()] = FC; |
587 | break; |
588 | } |
589 | } |
590 | } |
591 | } |
592 | |
593 | comments::FullComment *ASTContext::(comments::FullComment *FC, |
594 | const Decl *D) const { |
595 | auto *ThisDeclInfo = new (*this) comments::DeclInfo; |
596 | ThisDeclInfo->CommentDecl = D; |
597 | ThisDeclInfo->IsFilled = false; |
598 | ThisDeclInfo->fill(); |
599 | ThisDeclInfo->CommentDecl = FC->getDecl(); |
600 | if (!ThisDeclInfo->TemplateParameters) |
601 | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; |
602 | comments::FullComment *CFC = |
603 | new (*this) comments::FullComment(FC->getBlocks(), |
604 | ThisDeclInfo); |
605 | return CFC; |
606 | } |
607 | |
608 | comments::FullComment *ASTContext::(const Decl *D) const { |
609 | const RawComment *RC = getRawCommentForDeclNoCache(D); |
610 | return RC ? RC->parse(Context: *this, PP: nullptr, D) : nullptr; |
611 | } |
612 | |
613 | comments::FullComment *ASTContext::( |
614 | const Decl *D, |
615 | const Preprocessor *PP) const { |
616 | if (!D || D->isInvalidDecl()) |
617 | return nullptr; |
618 | D = &adjustDeclToTemplate(D: *D); |
619 | |
620 | const Decl *Canonical = D->getCanonicalDecl(); |
621 | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = |
622 | ParsedComments.find(Val: Canonical); |
623 | |
624 | if (Pos != ParsedComments.end()) { |
625 | if (Canonical != D) { |
626 | comments::FullComment *FC = Pos->second; |
627 | comments::FullComment *CFC = cloneFullComment(FC, D); |
628 | return CFC; |
629 | } |
630 | return Pos->second; |
631 | } |
632 | |
633 | const Decl *OriginalDecl = nullptr; |
634 | |
635 | const RawComment *RC = getRawCommentForAnyRedecl(D, OriginalDecl: &OriginalDecl); |
636 | if (!RC) { |
637 | if (isa<ObjCMethodDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
638 | SmallVector<const NamedDecl*, 8> Overridden; |
639 | const auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D); |
640 | if (OMD && OMD->isPropertyAccessor()) |
641 | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) |
642 | if (comments::FullComment *FC = getCommentForDecl(D: PDecl, PP)) |
643 | return cloneFullComment(FC, D); |
644 | if (OMD) |
645 | addRedeclaredMethods(ObjCMethod: OMD, Redeclared&: Overridden); |
646 | getOverriddenMethods(Method: dyn_cast<NamedDecl>(Val: D), Overridden); |
647 | for (unsigned i = 0, e = Overridden.size(); i < e; i++) |
648 | if (comments::FullComment *FC = getCommentForDecl(D: Overridden[i], PP)) |
649 | return cloneFullComment(FC, D); |
650 | } |
651 | else if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
652 | // Attach any tag type's documentation to its typedef if latter |
653 | // does not have one of its own. |
654 | QualType QT = TD->getUnderlyingType(); |
655 | if (const auto *TT = QT->getAs<TagType>()) |
656 | if (const Decl *TD = TT->getDecl()) |
657 | if (comments::FullComment *FC = getCommentForDecl(D: TD, PP)) |
658 | return cloneFullComment(FC, D); |
659 | } |
660 | else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(Val: D)) { |
661 | while (IC->getSuperClass()) { |
662 | IC = IC->getSuperClass(); |
663 | if (comments::FullComment *FC = getCommentForDecl(D: IC, PP)) |
664 | return cloneFullComment(FC, D); |
665 | } |
666 | } |
667 | else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: D)) { |
668 | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) |
669 | if (comments::FullComment *FC = getCommentForDecl(D: IC, PP)) |
670 | return cloneFullComment(FC, D); |
671 | } |
672 | else if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
673 | if (!(RD = RD->getDefinition())) |
674 | return nullptr; |
675 | // Check non-virtual bases. |
676 | for (const auto &I : RD->bases()) { |
677 | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) |
678 | continue; |
679 | QualType Ty = I.getType(); |
680 | if (Ty.isNull()) |
681 | continue; |
682 | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { |
683 | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) |
684 | continue; |
685 | |
686 | if (comments::FullComment *FC = getCommentForDecl(D: (NonVirtualBase), PP)) |
687 | return cloneFullComment(FC, D); |
688 | } |
689 | } |
690 | // Check virtual bases. |
691 | for (const auto &I : RD->vbases()) { |
692 | if (I.getAccessSpecifier() != AS_public) |
693 | continue; |
694 | QualType Ty = I.getType(); |
695 | if (Ty.isNull()) |
696 | continue; |
697 | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { |
698 | if (!(VirtualBase= VirtualBase->getDefinition())) |
699 | continue; |
700 | if (comments::FullComment *FC = getCommentForDecl(D: (VirtualBase), PP)) |
701 | return cloneFullComment(FC, D); |
702 | } |
703 | } |
704 | } |
705 | return nullptr; |
706 | } |
707 | |
708 | // If the RawComment was attached to other redeclaration of this Decl, we |
709 | // should parse the comment in context of that other Decl. This is important |
710 | // because comments can contain references to parameter names which can be |
711 | // different across redeclarations. |
712 | if (D != OriginalDecl && OriginalDecl) |
713 | return getCommentForDecl(D: OriginalDecl, PP); |
714 | |
715 | comments::FullComment *FC = RC->parse(Context: *this, PP, D); |
716 | ParsedComments[Canonical] = FC; |
717 | return FC; |
718 | } |
719 | |
720 | void |
721 | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
722 | const ASTContext &C, |
723 | TemplateTemplateParmDecl *Parm) { |
724 | ID.AddInteger(I: Parm->getDepth()); |
725 | ID.AddInteger(I: Parm->getPosition()); |
726 | ID.AddBoolean(B: Parm->isParameterPack()); |
727 | |
728 | TemplateParameterList *Params = Parm->getTemplateParameters(); |
729 | ID.AddInteger(I: Params->size()); |
730 | for (TemplateParameterList::const_iterator P = Params->begin(), |
731 | PEnd = Params->end(); |
732 | P != PEnd; ++P) { |
733 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *P)) { |
734 | ID.AddInteger(I: 0); |
735 | ID.AddBoolean(B: TTP->isParameterPack()); |
736 | ID.AddInteger( |
737 | I: TTP->getNumExpansionParameters().toInternalRepresentation()); |
738 | continue; |
739 | } |
740 | |
741 | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: *P)) { |
742 | ID.AddInteger(I: 1); |
743 | ID.AddBoolean(B: NTTP->isParameterPack()); |
744 | ID.AddPointer(Ptr: C.getUnconstrainedType(T: C.getCanonicalType(T: NTTP->getType())) |
745 | .getAsOpaquePtr()); |
746 | if (NTTP->isExpandedParameterPack()) { |
747 | ID.AddBoolean(B: true); |
748 | ID.AddInteger(I: NTTP->getNumExpansionTypes()); |
749 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
750 | QualType T = NTTP->getExpansionType(I); |
751 | ID.AddPointer(Ptr: T.getCanonicalType().getAsOpaquePtr()); |
752 | } |
753 | } else |
754 | ID.AddBoolean(B: false); |
755 | continue; |
756 | } |
757 | |
758 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: *P); |
759 | ID.AddInteger(I: 2); |
760 | Profile(ID, C, Parm: TTP); |
761 | } |
762 | } |
763 | |
764 | TemplateTemplateParmDecl * |
765 | ASTContext::getCanonicalTemplateTemplateParmDecl( |
766 | TemplateTemplateParmDecl *TTP) const { |
767 | // Check if we already have a canonical template template parameter. |
768 | llvm::FoldingSetNodeID ID; |
769 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: TTP); |
770 | void *InsertPos = nullptr; |
771 | CanonicalTemplateTemplateParm *Canonical |
772 | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
773 | if (Canonical) |
774 | return Canonical->getParam(); |
775 | |
776 | // Build a canonical template parameter list. |
777 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
778 | SmallVector<NamedDecl *, 4> CanonParams; |
779 | CanonParams.reserve(N: Params->size()); |
780 | for (TemplateParameterList::const_iterator P = Params->begin(), |
781 | PEnd = Params->end(); |
782 | P != PEnd; ++P) { |
783 | // Note that, per C++20 [temp.over.link]/6, when determining whether |
784 | // template-parameters are equivalent, constraints are ignored. |
785 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *P)) { |
786 | TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create( |
787 | C: *this, DC: getTranslationUnitDecl(), KeyLoc: SourceLocation(), NameLoc: SourceLocation(), |
788 | D: TTP->getDepth(), P: TTP->getIndex(), Id: nullptr, Typename: false, |
789 | ParameterPack: TTP->isParameterPack(), /*HasTypeConstraint=*/false, |
790 | NumExpanded: TTP->getNumExpansionParameters()); |
791 | CanonParams.push_back(Elt: NewTTP); |
792 | } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: *P)) { |
793 | QualType T = getUnconstrainedType(T: getCanonicalType(T: NTTP->getType())); |
794 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
795 | NonTypeTemplateParmDecl *Param; |
796 | if (NTTP->isExpandedParameterPack()) { |
797 | SmallVector<QualType, 2> ExpandedTypes; |
798 | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
799 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
800 | ExpandedTypes.push_back(Elt: getCanonicalType(T: NTTP->getExpansionType(I))); |
801 | ExpandedTInfos.push_back( |
802 | Elt: getTrivialTypeSourceInfo(T: ExpandedTypes.back())); |
803 | } |
804 | |
805 | Param = NonTypeTemplateParmDecl::Create(C: *this, DC: getTranslationUnitDecl(), |
806 | StartLoc: SourceLocation(), |
807 | IdLoc: SourceLocation(), |
808 | D: NTTP->getDepth(), |
809 | P: NTTP->getPosition(), Id: nullptr, |
810 | T, |
811 | TInfo, |
812 | ExpandedTypes, |
813 | ExpandedTInfos); |
814 | } else { |
815 | Param = NonTypeTemplateParmDecl::Create(C: *this, DC: getTranslationUnitDecl(), |
816 | StartLoc: SourceLocation(), |
817 | IdLoc: SourceLocation(), |
818 | D: NTTP->getDepth(), |
819 | P: NTTP->getPosition(), Id: nullptr, |
820 | T, |
821 | ParameterPack: NTTP->isParameterPack(), |
822 | TInfo); |
823 | } |
824 | CanonParams.push_back(Elt: Param); |
825 | } else |
826 | CanonParams.push_back(Elt: getCanonicalTemplateTemplateParmDecl( |
827 | TTP: cast<TemplateTemplateParmDecl>(Val: *P))); |
828 | } |
829 | |
830 | TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create( |
831 | C: *this, DC: getTranslationUnitDecl(), L: SourceLocation(), D: TTP->getDepth(), |
832 | P: TTP->getPosition(), ParameterPack: TTP->isParameterPack(), Id: nullptr, /*Typename=*/false, |
833 | Params: TemplateParameterList::Create(C: *this, TemplateLoc: SourceLocation(), LAngleLoc: SourceLocation(), |
834 | Params: CanonParams, RAngleLoc: SourceLocation(), |
835 | /*RequiresClause=*/nullptr)); |
836 | |
837 | // Get the new insert position for the node we care about. |
838 | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
839 | assert(!Canonical && "Shouldn't be in the map!" ); |
840 | (void)Canonical; |
841 | |
842 | // Create the canonical template template parameter entry. |
843 | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
844 | CanonTemplateTemplateParms.InsertNode(N: Canonical, InsertPos); |
845 | return CanonTTP; |
846 | } |
847 | |
848 | TemplateTemplateParmDecl * |
849 | ASTContext::findCanonicalTemplateTemplateParmDeclInternal( |
850 | TemplateTemplateParmDecl *TTP) const { |
851 | llvm::FoldingSetNodeID ID; |
852 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: TTP); |
853 | void *InsertPos = nullptr; |
854 | CanonicalTemplateTemplateParm *Canonical = |
855 | CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
856 | return Canonical ? Canonical->getParam() : nullptr; |
857 | } |
858 | |
859 | TemplateTemplateParmDecl * |
860 | ASTContext::insertCanonicalTemplateTemplateParmDeclInternal( |
861 | TemplateTemplateParmDecl *CanonTTP) const { |
862 | llvm::FoldingSetNodeID ID; |
863 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: CanonTTP); |
864 | void *InsertPos = nullptr; |
865 | if (auto *Existing = |
866 | CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos)) |
867 | return Existing->getParam(); |
868 | CanonTemplateTemplateParms.InsertNode( |
869 | N: new (*this) CanonicalTemplateTemplateParm(CanonTTP), InsertPos); |
870 | return CanonTTP; |
871 | } |
872 | |
873 | /// Check if a type can have its sanitizer instrumentation elided based on its |
874 | /// presence within an ignorelist. |
875 | bool ASTContext::isTypeIgnoredBySanitizer(const SanitizerMask &Mask, |
876 | const QualType &Ty) const { |
877 | std::string TyName = Ty.getUnqualifiedType().getAsString(Policy: getPrintingPolicy()); |
878 | return NoSanitizeL->containsType(Mask, MangledTypeName: TyName); |
879 | } |
880 | |
881 | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { |
882 | auto Kind = getTargetInfo().getCXXABI().getKind(); |
883 | return getLangOpts().CXXABI.value_or(u&: Kind); |
884 | } |
885 | |
886 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
887 | if (!LangOpts.CPlusPlus) return nullptr; |
888 | |
889 | switch (getCXXABIKind()) { |
890 | case TargetCXXABI::AppleARM64: |
891 | case TargetCXXABI::Fuchsia: |
892 | case TargetCXXABI::GenericARM: // Same as Itanium at this level |
893 | case TargetCXXABI::iOS: |
894 | case TargetCXXABI::WatchOS: |
895 | case TargetCXXABI::GenericAArch64: |
896 | case TargetCXXABI::GenericMIPS: |
897 | case TargetCXXABI::GenericItanium: |
898 | case TargetCXXABI::WebAssembly: |
899 | case TargetCXXABI::XL: |
900 | return CreateItaniumCXXABI(Ctx&: *this); |
901 | case TargetCXXABI::Microsoft: |
902 | return CreateMicrosoftCXXABI(Ctx&: *this); |
903 | } |
904 | llvm_unreachable("Invalid CXXABI type!" ); |
905 | } |
906 | |
907 | interp::Context &ASTContext::getInterpContext() { |
908 | if (!InterpContext) { |
909 | InterpContext.reset(p: new interp::Context(*this)); |
910 | } |
911 | return *InterpContext; |
912 | } |
913 | |
914 | ParentMapContext &ASTContext::getParentMapContext() { |
915 | if (!ParentMapCtx) |
916 | ParentMapCtx.reset(p: new ParentMapContext(*this)); |
917 | return *ParentMapCtx; |
918 | } |
919 | |
920 | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, |
921 | const LangOptions &LangOpts) { |
922 | switch (LangOpts.getAddressSpaceMapMangling()) { |
923 | case LangOptions::ASMM_Target: |
924 | return TI.useAddressSpaceMapMangling(); |
925 | case LangOptions::ASMM_On: |
926 | return true; |
927 | case LangOptions::ASMM_Off: |
928 | return false; |
929 | } |
930 | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything." ); |
931 | } |
932 | |
933 | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, |
934 | IdentifierTable &idents, SelectorTable &sels, |
935 | Builtin::Context &builtins, TranslationUnitKind TUKind) |
936 | : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize), |
937 | DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()), |
938 | DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()), |
939 | DependentSizedMatrixTypes(this_()), |
940 | FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize), |
941 | DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()), |
942 | DependentPackIndexingTypes(this_()), TemplateSpecializationTypes(this_()), |
943 | DependentTemplateSpecializationTypes(this_()), |
944 | DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()), |
945 | DeducedTemplates(this_()), ArrayParameterTypes(this_()), |
946 | CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), |
947 | NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), |
948 | XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, |
949 | LangOpts.XRayNeverInstrumentFiles, |
950 | LangOpts.XRayAttrListFiles, SM)), |
951 | ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), |
952 | PrintingPolicy(LOpts), Idents(idents), Selectors(sels), |
953 | BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), |
954 | Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), |
955 | CompCategories(this_()), LastSDM(nullptr, 0) { |
956 | addTranslationUnitDecl(); |
957 | } |
958 | |
959 | void ASTContext::cleanup() { |
960 | // Release the DenseMaps associated with DeclContext objects. |
961 | // FIXME: Is this the ideal solution? |
962 | ReleaseDeclContextMaps(); |
963 | |
964 | // Call all of the deallocation functions on all of their targets. |
965 | for (auto &Pair : Deallocations) |
966 | (Pair.first)(Pair.second); |
967 | Deallocations.clear(); |
968 | |
969 | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
970 | // because they can contain DenseMaps. |
971 | for (llvm::DenseMap<const ObjCInterfaceDecl *, |
972 | const ASTRecordLayout *>::iterator |
973 | I = ObjCLayouts.begin(), |
974 | E = ObjCLayouts.end(); |
975 | I != E;) |
976 | // Increment in loop to prevent using deallocated memory. |
977 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
978 | R->Destroy(Ctx&: *this); |
979 | ObjCLayouts.clear(); |
980 | |
981 | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
982 | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
983 | // Increment in loop to prevent using deallocated memory. |
984 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
985 | R->Destroy(Ctx&: *this); |
986 | } |
987 | ASTRecordLayouts.clear(); |
988 | |
989 | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
990 | AEnd = DeclAttrs.end(); |
991 | A != AEnd; ++A) |
992 | A->second->~AttrVec(); |
993 | DeclAttrs.clear(); |
994 | |
995 | for (const auto &Value : ModuleInitializers) |
996 | Value.second->~PerModuleInitializers(); |
997 | ModuleInitializers.clear(); |
998 | } |
999 | |
1000 | ASTContext::~ASTContext() { cleanup(); } |
1001 | |
1002 | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { |
1003 | TraversalScope = TopLevelDecls; |
1004 | getParentMapContext().clear(); |
1005 | } |
1006 | |
1007 | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { |
1008 | Deallocations.push_back(Elt: {Callback, Data}); |
1009 | } |
1010 | |
1011 | void |
1012 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { |
1013 | ExternalSource = std::move(Source); |
1014 | } |
1015 | |
1016 | void ASTContext::PrintStats() const { |
1017 | llvm::errs() << "\n*** AST Context Stats:\n" ; |
1018 | llvm::errs() << " " << Types.size() << " types total.\n" ; |
1019 | |
1020 | unsigned counts[] = { |
1021 | #define TYPE(Name, Parent) 0, |
1022 | #define ABSTRACT_TYPE(Name, Parent) |
1023 | #include "clang/AST/TypeNodes.inc" |
1024 | 0 // Extra |
1025 | }; |
1026 | |
1027 | for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
1028 | Type *T = Types[i]; |
1029 | counts[(unsigned)T->getTypeClass()]++; |
1030 | } |
1031 | |
1032 | unsigned Idx = 0; |
1033 | unsigned TotalBytes = 0; |
1034 | #define TYPE(Name, Parent) \ |
1035 | if (counts[Idx]) \ |
1036 | llvm::errs() << " " << counts[Idx] << " " << #Name \ |
1037 | << " types, " << sizeof(Name##Type) << " each " \ |
1038 | << "(" << counts[Idx] * sizeof(Name##Type) \ |
1039 | << " bytes)\n"; \ |
1040 | TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
1041 | ++Idx; |
1042 | #define ABSTRACT_TYPE(Name, Parent) |
1043 | #include "clang/AST/TypeNodes.inc" |
1044 | |
1045 | llvm::errs() << "Total bytes = " << TotalBytes << "\n" ; |
1046 | |
1047 | // Implicit special member functions. |
1048 | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
1049 | << NumImplicitDefaultConstructors |
1050 | << " implicit default constructors created\n" ; |
1051 | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
1052 | << NumImplicitCopyConstructors |
1053 | << " implicit copy constructors created\n" ; |
1054 | if (getLangOpts().CPlusPlus) |
1055 | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
1056 | << NumImplicitMoveConstructors |
1057 | << " implicit move constructors created\n" ; |
1058 | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
1059 | << NumImplicitCopyAssignmentOperators |
1060 | << " implicit copy assignment operators created\n" ; |
1061 | if (getLangOpts().CPlusPlus) |
1062 | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
1063 | << NumImplicitMoveAssignmentOperators |
1064 | << " implicit move assignment operators created\n" ; |
1065 | llvm::errs() << NumImplicitDestructorsDeclared << "/" |
1066 | << NumImplicitDestructors |
1067 | << " implicit destructors created\n" ; |
1068 | |
1069 | if (ExternalSource) { |
1070 | llvm::errs() << "\n" ; |
1071 | ExternalSource->PrintStats(); |
1072 | } |
1073 | |
1074 | BumpAlloc.PrintStats(); |
1075 | } |
1076 | |
1077 | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, |
1078 | bool NotifyListeners) { |
1079 | if (NotifyListeners) |
1080 | if (auto *Listener = getASTMutationListener(); |
1081 | Listener && !ND->isUnconditionallyVisible()) |
1082 | Listener->RedefinedHiddenDefinition(D: ND, M); |
1083 | |
1084 | MergedDefModules[cast<NamedDecl>(Val: ND->getCanonicalDecl())].push_back(NewVal: M); |
1085 | } |
1086 | |
1087 | void ASTContext::deduplicateMergedDefinitionsFor(NamedDecl *ND) { |
1088 | auto It = MergedDefModules.find(Val: cast<NamedDecl>(Val: ND->getCanonicalDecl())); |
1089 | if (It == MergedDefModules.end()) |
1090 | return; |
1091 | |
1092 | auto &Merged = It->second; |
1093 | llvm::DenseSet<Module*> Found; |
1094 | for (Module *&M : Merged) |
1095 | if (!Found.insert(V: M).second) |
1096 | M = nullptr; |
1097 | llvm::erase(C&: Merged, V: nullptr); |
1098 | } |
1099 | |
1100 | ArrayRef<Module *> |
1101 | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { |
1102 | auto MergedIt = |
1103 | MergedDefModules.find(Val: cast<NamedDecl>(Val: Def->getCanonicalDecl())); |
1104 | if (MergedIt == MergedDefModules.end()) |
1105 | return {}; |
1106 | return MergedIt->second; |
1107 | } |
1108 | |
1109 | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { |
1110 | if (LazyInitializers.empty()) |
1111 | return; |
1112 | |
1113 | auto *Source = Ctx.getExternalSource(); |
1114 | assert(Source && "lazy initializers but no external source" ); |
1115 | |
1116 | auto LazyInits = std::move(LazyInitializers); |
1117 | LazyInitializers.clear(); |
1118 | |
1119 | for (auto ID : LazyInits) |
1120 | Initializers.push_back(Elt: Source->GetExternalDecl(ID)); |
1121 | |
1122 | assert(LazyInitializers.empty() && |
1123 | "GetExternalDecl for lazy module initializer added more inits" ); |
1124 | } |
1125 | |
1126 | void ASTContext::addModuleInitializer(Module *M, Decl *D) { |
1127 | // One special case: if we add a module initializer that imports another |
1128 | // module, and that module's only initializer is an ImportDecl, simplify. |
1129 | if (const auto *ID = dyn_cast<ImportDecl>(Val: D)) { |
1130 | auto It = ModuleInitializers.find(Val: ID->getImportedModule()); |
1131 | |
1132 | // Maybe the ImportDecl does nothing at all. (Common case.) |
1133 | if (It == ModuleInitializers.end()) |
1134 | return; |
1135 | |
1136 | // Maybe the ImportDecl only imports another ImportDecl. |
1137 | auto &Imported = *It->second; |
1138 | if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { |
1139 | Imported.resolve(Ctx&: *this); |
1140 | auto *OnlyDecl = Imported.Initializers.front(); |
1141 | if (isa<ImportDecl>(Val: OnlyDecl)) |
1142 | D = OnlyDecl; |
1143 | } |
1144 | } |
1145 | |
1146 | auto *&Inits = ModuleInitializers[M]; |
1147 | if (!Inits) |
1148 | Inits = new (*this) PerModuleInitializers; |
1149 | Inits->Initializers.push_back(Elt: D); |
1150 | } |
1151 | |
1152 | void ASTContext::addLazyModuleInitializers(Module *M, |
1153 | ArrayRef<GlobalDeclID> IDs) { |
1154 | auto *&Inits = ModuleInitializers[M]; |
1155 | if (!Inits) |
1156 | Inits = new (*this) PerModuleInitializers; |
1157 | Inits->LazyInitializers.insert(I: Inits->LazyInitializers.end(), |
1158 | From: IDs.begin(), To: IDs.end()); |
1159 | } |
1160 | |
1161 | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { |
1162 | auto It = ModuleInitializers.find(Val: M); |
1163 | if (It == ModuleInitializers.end()) |
1164 | return {}; |
1165 | |
1166 | auto *Inits = It->second; |
1167 | Inits->resolve(Ctx&: *this); |
1168 | return Inits->Initializers; |
1169 | } |
1170 | |
1171 | void ASTContext::setCurrentNamedModule(Module *M) { |
1172 | assert(M->isNamedModule()); |
1173 | assert(!CurrentCXXNamedModule && |
1174 | "We should set named module for ASTContext for only once" ); |
1175 | CurrentCXXNamedModule = M; |
1176 | } |
1177 | |
1178 | bool ASTContext::isInSameModule(const Module *M1, const Module *M2) const { |
1179 | if (!M1 != !M2) |
1180 | return false; |
1181 | |
1182 | /// Get the representative module for M. The representative module is the |
1183 | /// first module unit for a specific primary module name. So that the module |
1184 | /// units have the same representative module belongs to the same module. |
1185 | /// |
1186 | /// The process is helpful to reduce the expensive string operations. |
1187 | auto GetRepresentativeModule = [this](const Module *M) { |
1188 | auto Iter = SameModuleLookupSet.find(Val: M); |
1189 | if (Iter != SameModuleLookupSet.end()) |
1190 | return Iter->second; |
1191 | |
1192 | const Module *RepresentativeModule = |
1193 | PrimaryModuleNameMap.try_emplace(Key: M->getPrimaryModuleInterfaceName(), Args&: M) |
1194 | .first->second; |
1195 | SameModuleLookupSet[M] = RepresentativeModule; |
1196 | return RepresentativeModule; |
1197 | }; |
1198 | |
1199 | assert(M1 && "Shouldn't call `isInSameModule` if both M1 and M2 are none." ); |
1200 | return GetRepresentativeModule(M1) == GetRepresentativeModule(M2); |
1201 | } |
1202 | |
1203 | ExternCContextDecl *ASTContext::getExternCContextDecl() const { |
1204 | if (!ExternCContext) |
1205 | ExternCContext = ExternCContextDecl::Create(C: *this, TU: getTranslationUnitDecl()); |
1206 | |
1207 | return ExternCContext; |
1208 | } |
1209 | |
1210 | BuiltinTemplateDecl * |
1211 | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, |
1212 | const IdentifierInfo *II) const { |
1213 | auto *BuiltinTemplate = |
1214 | BuiltinTemplateDecl::Create(C: *this, DC: getTranslationUnitDecl(), Name: II, BTK); |
1215 | BuiltinTemplate->setImplicit(); |
1216 | getTranslationUnitDecl()->addDecl(D: BuiltinTemplate); |
1217 | |
1218 | return BuiltinTemplate; |
1219 | } |
1220 | |
1221 | #define BuiltinTemplate(BTName) \ |
1222 | BuiltinTemplateDecl *ASTContext::get##BTName##Decl() const { \ |
1223 | if (!Decl##BTName) \ |
1224 | Decl##BTName = \ |
1225 | buildBuiltinTemplateDecl(BTK##BTName, get##BTName##Name()); \ |
1226 | return Decl##BTName; \ |
1227 | } |
1228 | #include "clang/Basic/BuiltinTemplates.inc" |
1229 | |
1230 | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, |
1231 | RecordDecl::TagKind TK) const { |
1232 | SourceLocation Loc; |
1233 | RecordDecl *NewDecl; |
1234 | if (getLangOpts().CPlusPlus) |
1235 | NewDecl = CXXRecordDecl::Create(C: *this, TK, DC: getTranslationUnitDecl(), StartLoc: Loc, |
1236 | IdLoc: Loc, Id: &Idents.get(Name)); |
1237 | else |
1238 | NewDecl = RecordDecl::Create(C: *this, TK, DC: getTranslationUnitDecl(), StartLoc: Loc, IdLoc: Loc, |
1239 | Id: &Idents.get(Name)); |
1240 | NewDecl->setImplicit(); |
1241 | NewDecl->addAttr(A: TypeVisibilityAttr::CreateImplicit( |
1242 | Ctx&: const_cast<ASTContext &>(*this), Visibility: TypeVisibilityAttr::Default)); |
1243 | return NewDecl; |
1244 | } |
1245 | |
1246 | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, |
1247 | StringRef Name) const { |
1248 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
1249 | TypedefDecl *NewDecl = TypedefDecl::Create( |
1250 | C&: const_cast<ASTContext &>(*this), DC: getTranslationUnitDecl(), |
1251 | StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: &Idents.get(Name), TInfo); |
1252 | NewDecl->setImplicit(); |
1253 | return NewDecl; |
1254 | } |
1255 | |
1256 | TypedefDecl *ASTContext::getInt128Decl() const { |
1257 | if (!Int128Decl) |
1258 | Int128Decl = buildImplicitTypedef(T: Int128Ty, Name: "__int128_t" ); |
1259 | return Int128Decl; |
1260 | } |
1261 | |
1262 | TypedefDecl *ASTContext::getUInt128Decl() const { |
1263 | if (!UInt128Decl) |
1264 | UInt128Decl = buildImplicitTypedef(T: UnsignedInt128Ty, Name: "__uint128_t" ); |
1265 | return UInt128Decl; |
1266 | } |
1267 | |
1268 | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
1269 | auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K); |
1270 | R = CanQualType::CreateUnsafe(Other: QualType(Ty, 0)); |
1271 | Types.push_back(Elt: Ty); |
1272 | } |
1273 | |
1274 | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, |
1275 | const TargetInfo *AuxTarget) { |
1276 | assert((!this->Target || this->Target == &Target) && |
1277 | "Incorrect target reinitialization" ); |
1278 | assert(VoidTy.isNull() && "Context reinitialized?" ); |
1279 | |
1280 | this->Target = &Target; |
1281 | this->AuxTarget = AuxTarget; |
1282 | |
1283 | ABI.reset(p: createCXXABI(T: Target)); |
1284 | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(TI: Target, LangOpts); |
1285 | |
1286 | // C99 6.2.5p19. |
1287 | InitBuiltinType(R&: VoidTy, K: BuiltinType::Void); |
1288 | |
1289 | // C99 6.2.5p2. |
1290 | InitBuiltinType(R&: BoolTy, K: BuiltinType::Bool); |
1291 | // C99 6.2.5p3. |
1292 | if (LangOpts.CharIsSigned) |
1293 | InitBuiltinType(R&: CharTy, K: BuiltinType::Char_S); |
1294 | else |
1295 | InitBuiltinType(R&: CharTy, K: BuiltinType::Char_U); |
1296 | // C99 6.2.5p4. |
1297 | InitBuiltinType(R&: SignedCharTy, K: BuiltinType::SChar); |
1298 | InitBuiltinType(R&: ShortTy, K: BuiltinType::Short); |
1299 | InitBuiltinType(R&: IntTy, K: BuiltinType::Int); |
1300 | InitBuiltinType(R&: LongTy, K: BuiltinType::Long); |
1301 | InitBuiltinType(R&: LongLongTy, K: BuiltinType::LongLong); |
1302 | |
1303 | // C99 6.2.5p6. |
1304 | InitBuiltinType(R&: UnsignedCharTy, K: BuiltinType::UChar); |
1305 | InitBuiltinType(R&: UnsignedShortTy, K: BuiltinType::UShort); |
1306 | InitBuiltinType(R&: UnsignedIntTy, K: BuiltinType::UInt); |
1307 | InitBuiltinType(R&: UnsignedLongTy, K: BuiltinType::ULong); |
1308 | InitBuiltinType(R&: UnsignedLongLongTy, K: BuiltinType::ULongLong); |
1309 | |
1310 | // C99 6.2.5p10. |
1311 | InitBuiltinType(R&: FloatTy, K: BuiltinType::Float); |
1312 | InitBuiltinType(R&: DoubleTy, K: BuiltinType::Double); |
1313 | InitBuiltinType(R&: LongDoubleTy, K: BuiltinType::LongDouble); |
1314 | |
1315 | // GNU extension, __float128 for IEEE quadruple precision |
1316 | InitBuiltinType(R&: Float128Ty, K: BuiltinType::Float128); |
1317 | |
1318 | // __ibm128 for IBM extended precision |
1319 | InitBuiltinType(R&: Ibm128Ty, K: BuiltinType::Ibm128); |
1320 | |
1321 | // C11 extension ISO/IEC TS 18661-3 |
1322 | InitBuiltinType(R&: Float16Ty, K: BuiltinType::Float16); |
1323 | |
1324 | // ISO/IEC JTC1 SC22 WG14 N1169 Extension |
1325 | InitBuiltinType(R&: ShortAccumTy, K: BuiltinType::ShortAccum); |
1326 | InitBuiltinType(R&: AccumTy, K: BuiltinType::Accum); |
1327 | InitBuiltinType(R&: LongAccumTy, K: BuiltinType::LongAccum); |
1328 | InitBuiltinType(R&: UnsignedShortAccumTy, K: BuiltinType::UShortAccum); |
1329 | InitBuiltinType(R&: UnsignedAccumTy, K: BuiltinType::UAccum); |
1330 | InitBuiltinType(R&: UnsignedLongAccumTy, K: BuiltinType::ULongAccum); |
1331 | InitBuiltinType(R&: ShortFractTy, K: BuiltinType::ShortFract); |
1332 | InitBuiltinType(R&: FractTy, K: BuiltinType::Fract); |
1333 | InitBuiltinType(R&: LongFractTy, K: BuiltinType::LongFract); |
1334 | InitBuiltinType(R&: UnsignedShortFractTy, K: BuiltinType::UShortFract); |
1335 | InitBuiltinType(R&: UnsignedFractTy, K: BuiltinType::UFract); |
1336 | InitBuiltinType(R&: UnsignedLongFractTy, K: BuiltinType::ULongFract); |
1337 | InitBuiltinType(R&: SatShortAccumTy, K: BuiltinType::SatShortAccum); |
1338 | InitBuiltinType(R&: SatAccumTy, K: BuiltinType::SatAccum); |
1339 | InitBuiltinType(R&: SatLongAccumTy, K: BuiltinType::SatLongAccum); |
1340 | InitBuiltinType(R&: SatUnsignedShortAccumTy, K: BuiltinType::SatUShortAccum); |
1341 | InitBuiltinType(R&: SatUnsignedAccumTy, K: BuiltinType::SatUAccum); |
1342 | InitBuiltinType(R&: SatUnsignedLongAccumTy, K: BuiltinType::SatULongAccum); |
1343 | InitBuiltinType(R&: SatShortFractTy, K: BuiltinType::SatShortFract); |
1344 | InitBuiltinType(R&: SatFractTy, K: BuiltinType::SatFract); |
1345 | InitBuiltinType(R&: SatLongFractTy, K: BuiltinType::SatLongFract); |
1346 | InitBuiltinType(R&: SatUnsignedShortFractTy, K: BuiltinType::SatUShortFract); |
1347 | InitBuiltinType(R&: SatUnsignedFractTy, K: BuiltinType::SatUFract); |
1348 | InitBuiltinType(R&: SatUnsignedLongFractTy, K: BuiltinType::SatULongFract); |
1349 | |
1350 | // GNU extension, 128-bit integers. |
1351 | InitBuiltinType(R&: Int128Ty, K: BuiltinType::Int128); |
1352 | InitBuiltinType(R&: UnsignedInt128Ty, K: BuiltinType::UInt128); |
1353 | |
1354 | // C++ 3.9.1p5 |
1355 | if (TargetInfo::isTypeSigned(T: Target.getWCharType())) |
1356 | InitBuiltinType(R&: WCharTy, K: BuiltinType::WChar_S); |
1357 | else // -fshort-wchar makes wchar_t be unsigned. |
1358 | InitBuiltinType(R&: WCharTy, K: BuiltinType::WChar_U); |
1359 | if (LangOpts.CPlusPlus && LangOpts.WChar) |
1360 | WideCharTy = WCharTy; |
1361 | else { |
1362 | // C99 (or C++ using -fno-wchar). |
1363 | WideCharTy = getFromTargetType(Type: Target.getWCharType()); |
1364 | } |
1365 | |
1366 | WIntTy = getFromTargetType(Type: Target.getWIntType()); |
1367 | |
1368 | // C++20 (proposed) |
1369 | InitBuiltinType(R&: Char8Ty, K: BuiltinType::Char8); |
1370 | |
1371 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
1372 | InitBuiltinType(R&: Char16Ty, K: BuiltinType::Char16); |
1373 | else // C99 |
1374 | Char16Ty = getFromTargetType(Type: Target.getChar16Type()); |
1375 | |
1376 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
1377 | InitBuiltinType(R&: Char32Ty, K: BuiltinType::Char32); |
1378 | else // C99 |
1379 | Char32Ty = getFromTargetType(Type: Target.getChar32Type()); |
1380 | |
1381 | // Placeholder type for type-dependent expressions whose type is |
1382 | // completely unknown. No code should ever check a type against |
1383 | // DependentTy and users should never see it; however, it is here to |
1384 | // help diagnose failures to properly check for type-dependent |
1385 | // expressions. |
1386 | InitBuiltinType(R&: DependentTy, K: BuiltinType::Dependent); |
1387 | |
1388 | // Placeholder type for functions. |
1389 | InitBuiltinType(R&: OverloadTy, K: BuiltinType::Overload); |
1390 | |
1391 | // Placeholder type for bound members. |
1392 | InitBuiltinType(R&: BoundMemberTy, K: BuiltinType::BoundMember); |
1393 | |
1394 | // Placeholder type for unresolved templates. |
1395 | InitBuiltinType(R&: UnresolvedTemplateTy, K: BuiltinType::UnresolvedTemplate); |
1396 | |
1397 | // Placeholder type for pseudo-objects. |
1398 | InitBuiltinType(R&: PseudoObjectTy, K: BuiltinType::PseudoObject); |
1399 | |
1400 | // "any" type; useful for debugger-like clients. |
1401 | InitBuiltinType(R&: UnknownAnyTy, K: BuiltinType::UnknownAny); |
1402 | |
1403 | // Placeholder type for unbridged ARC casts. |
1404 | InitBuiltinType(R&: ARCUnbridgedCastTy, K: BuiltinType::ARCUnbridgedCast); |
1405 | |
1406 | // Placeholder type for builtin functions. |
1407 | InitBuiltinType(R&: BuiltinFnTy, K: BuiltinType::BuiltinFn); |
1408 | |
1409 | // Placeholder type for OMP array sections. |
1410 | if (LangOpts.OpenMP) { |
1411 | InitBuiltinType(R&: ArraySectionTy, K: BuiltinType::ArraySection); |
1412 | InitBuiltinType(R&: OMPArrayShapingTy, K: BuiltinType::OMPArrayShaping); |
1413 | InitBuiltinType(R&: OMPIteratorTy, K: BuiltinType::OMPIterator); |
1414 | } |
1415 | // Placeholder type for OpenACC array sections, if we are ALSO in OMP mode, |
1416 | // don't bother, as we're just using the same type as OMP. |
1417 | if (LangOpts.OpenACC && !LangOpts.OpenMP) { |
1418 | InitBuiltinType(R&: ArraySectionTy, K: BuiltinType::ArraySection); |
1419 | } |
1420 | if (LangOpts.MatrixTypes) |
1421 | InitBuiltinType(R&: IncompleteMatrixIdxTy, K: BuiltinType::IncompleteMatrixIdx); |
1422 | |
1423 | // Builtin types for 'id', 'Class', and 'SEL'. |
1424 | InitBuiltinType(R&: ObjCBuiltinIdTy, K: BuiltinType::ObjCId); |
1425 | InitBuiltinType(R&: ObjCBuiltinClassTy, K: BuiltinType::ObjCClass); |
1426 | InitBuiltinType(R&: ObjCBuiltinSelTy, K: BuiltinType::ObjCSel); |
1427 | |
1428 | if (LangOpts.OpenCL) { |
1429 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
1430 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1431 | #include "clang/Basic/OpenCLImageTypes.def" |
1432 | |
1433 | InitBuiltinType(R&: OCLSamplerTy, K: BuiltinType::OCLSampler); |
1434 | InitBuiltinType(R&: OCLEventTy, K: BuiltinType::OCLEvent); |
1435 | InitBuiltinType(R&: OCLClkEventTy, K: BuiltinType::OCLClkEvent); |
1436 | InitBuiltinType(R&: OCLQueueTy, K: BuiltinType::OCLQueue); |
1437 | InitBuiltinType(R&: OCLReserveIDTy, K: BuiltinType::OCLReserveID); |
1438 | |
1439 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
1440 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1441 | #include "clang/Basic/OpenCLExtensionTypes.def" |
1442 | } |
1443 | |
1444 | if (LangOpts.HLSL) { |
1445 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
1446 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1447 | #include "clang/Basic/HLSLIntangibleTypes.def" |
1448 | } |
1449 | |
1450 | if (Target.hasAArch64ACLETypes() || |
1451 | (AuxTarget && AuxTarget->hasAArch64ACLETypes())) { |
1452 | #define SVE_TYPE(Name, Id, SingletonId) \ |
1453 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1454 | #include "clang/Basic/AArch64ACLETypes.def" |
1455 | } |
1456 | |
1457 | if (Target.getTriple().isPPC64()) { |
1458 | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ |
1459 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1460 | #include "clang/Basic/PPCTypes.def" |
1461 | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ |
1462 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1463 | #include "clang/Basic/PPCTypes.def" |
1464 | } |
1465 | |
1466 | if (Target.hasRISCVVTypes()) { |
1467 | #define RVV_TYPE(Name, Id, SingletonId) \ |
1468 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1469 | #include "clang/Basic/RISCVVTypes.def" |
1470 | } |
1471 | |
1472 | if (Target.getTriple().isWasm() && Target.hasFeature(Feature: "reference-types" )) { |
1473 | #define WASM_TYPE(Name, Id, SingletonId) \ |
1474 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1475 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
1476 | } |
1477 | |
1478 | if (Target.getTriple().isAMDGPU() || |
1479 | (AuxTarget && AuxTarget->getTriple().isAMDGPU())) { |
1480 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) \ |
1481 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1482 | #include "clang/Basic/AMDGPUTypes.def" |
1483 | } |
1484 | |
1485 | // Builtin type for __objc_yes and __objc_no |
1486 | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
1487 | SignedCharTy : BoolTy); |
1488 | |
1489 | ObjCConstantStringType = QualType(); |
1490 | |
1491 | ObjCSuperType = QualType(); |
1492 | |
1493 | // void * type |
1494 | if (LangOpts.OpenCLGenericAddressSpace) { |
1495 | auto Q = VoidTy.getQualifiers(); |
1496 | Q.setAddressSpace(LangAS::opencl_generic); |
1497 | VoidPtrTy = getPointerType(T: getCanonicalType( |
1498 | T: getQualifiedType(T: VoidTy.getUnqualifiedType(), Qs: Q))); |
1499 | } else { |
1500 | VoidPtrTy = getPointerType(T: VoidTy); |
1501 | } |
1502 | |
1503 | // nullptr type (C++0x 2.14.7) |
1504 | InitBuiltinType(R&: NullPtrTy, K: BuiltinType::NullPtr); |
1505 | |
1506 | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
1507 | InitBuiltinType(R&: HalfTy, K: BuiltinType::Half); |
1508 | |
1509 | InitBuiltinType(R&: BFloat16Ty, K: BuiltinType::BFloat16); |
1510 | |
1511 | // Builtin type used to help define __builtin_va_list. |
1512 | VaListTagDecl = nullptr; |
1513 | |
1514 | // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. |
1515 | if (LangOpts.MicrosoftExt || LangOpts.Borland) { |
1516 | MSGuidTagDecl = buildImplicitRecord(Name: "_GUID" ); |
1517 | getTranslationUnitDecl()->addDecl(D: MSGuidTagDecl); |
1518 | } |
1519 | } |
1520 | |
1521 | DiagnosticsEngine &ASTContext::getDiagnostics() const { |
1522 | return SourceMgr.getDiagnostics(); |
1523 | } |
1524 | |
1525 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
1526 | AttrVec *&Result = DeclAttrs[D]; |
1527 | if (!Result) { |
1528 | void *Mem = Allocate(Size: sizeof(AttrVec)); |
1529 | Result = new (Mem) AttrVec; |
1530 | } |
1531 | |
1532 | return *Result; |
1533 | } |
1534 | |
1535 | /// Erase the attributes corresponding to the given declaration. |
1536 | void ASTContext::eraseDeclAttrs(const Decl *D) { |
1537 | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(Val: D); |
1538 | if (Pos != DeclAttrs.end()) { |
1539 | Pos->second->~AttrVec(); |
1540 | DeclAttrs.erase(I: Pos); |
1541 | } |
1542 | } |
1543 | |
1544 | // FIXME: Remove ? |
1545 | MemberSpecializationInfo * |
1546 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
1547 | assert(Var->isStaticDataMember() && "Not a static data member" ); |
1548 | return getTemplateOrSpecializationInfo(Var) |
1549 | .dyn_cast<MemberSpecializationInfo *>(); |
1550 | } |
1551 | |
1552 | ASTContext::TemplateOrSpecializationInfo |
1553 | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { |
1554 | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = |
1555 | TemplateOrInstantiation.find(Val: Var); |
1556 | if (Pos == TemplateOrInstantiation.end()) |
1557 | return {}; |
1558 | |
1559 | return Pos->second; |
1560 | } |
1561 | |
1562 | void |
1563 | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
1564 | TemplateSpecializationKind TSK, |
1565 | SourceLocation PointOfInstantiation) { |
1566 | assert(Inst->isStaticDataMember() && "Not a static data member" ); |
1567 | assert(Tmpl->isStaticDataMember() && "Not a static data member" ); |
1568 | setTemplateOrSpecializationInfo(Inst, TSI: new (*this) MemberSpecializationInfo( |
1569 | Tmpl, TSK, PointOfInstantiation)); |
1570 | } |
1571 | |
1572 | void |
1573 | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, |
1574 | TemplateOrSpecializationInfo TSI) { |
1575 | assert(!TemplateOrInstantiation[Inst] && |
1576 | "Already noted what the variable was instantiated from" ); |
1577 | TemplateOrInstantiation[Inst] = TSI; |
1578 | } |
1579 | |
1580 | NamedDecl * |
1581 | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { |
1582 | return InstantiatedFromUsingDecl.lookup(Val: UUD); |
1583 | } |
1584 | |
1585 | void |
1586 | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { |
1587 | assert((isa<UsingDecl>(Pattern) || |
1588 | isa<UnresolvedUsingValueDecl>(Pattern) || |
1589 | isa<UnresolvedUsingTypenameDecl>(Pattern)) && |
1590 | "pattern decl is not a using decl" ); |
1591 | assert((isa<UsingDecl>(Inst) || |
1592 | isa<UnresolvedUsingValueDecl>(Inst) || |
1593 | isa<UnresolvedUsingTypenameDecl>(Inst)) && |
1594 | "instantiation did not produce a using decl" ); |
1595 | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists" ); |
1596 | InstantiatedFromUsingDecl[Inst] = Pattern; |
1597 | } |
1598 | |
1599 | UsingEnumDecl * |
1600 | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { |
1601 | return InstantiatedFromUsingEnumDecl.lookup(Val: UUD); |
1602 | } |
1603 | |
1604 | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, |
1605 | UsingEnumDecl *Pattern) { |
1606 | assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists" ); |
1607 | InstantiatedFromUsingEnumDecl[Inst] = Pattern; |
1608 | } |
1609 | |
1610 | UsingShadowDecl * |
1611 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
1612 | return InstantiatedFromUsingShadowDecl.lookup(Val: Inst); |
1613 | } |
1614 | |
1615 | void |
1616 | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
1617 | UsingShadowDecl *Pattern) { |
1618 | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists" ); |
1619 | InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
1620 | } |
1621 | |
1622 | FieldDecl * |
1623 | ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) const { |
1624 | return InstantiatedFromUnnamedFieldDecl.lookup(Val: Field); |
1625 | } |
1626 | |
1627 | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
1628 | FieldDecl *Tmpl) { |
1629 | assert((!Inst->getDeclName() || Inst->isPlaceholderVar(getLangOpts())) && |
1630 | "Instantiated field decl is not unnamed" ); |
1631 | assert((!Inst->getDeclName() || Inst->isPlaceholderVar(getLangOpts())) && |
1632 | "Template field decl is not unnamed" ); |
1633 | assert(!InstantiatedFromUnnamedFieldDecl[Inst] && |
1634 | "Already noted what unnamed field was instantiated from" ); |
1635 | |
1636 | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
1637 | } |
1638 | |
1639 | ASTContext::overridden_cxx_method_iterator |
1640 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
1641 | return overridden_methods(Method).begin(); |
1642 | } |
1643 | |
1644 | ASTContext::overridden_cxx_method_iterator |
1645 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
1646 | return overridden_methods(Method).end(); |
1647 | } |
1648 | |
1649 | unsigned |
1650 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
1651 | auto Range = overridden_methods(Method); |
1652 | return Range.end() - Range.begin(); |
1653 | } |
1654 | |
1655 | ASTContext::overridden_method_range |
1656 | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { |
1657 | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = |
1658 | OverriddenMethods.find(Val: Method->getCanonicalDecl()); |
1659 | if (Pos == OverriddenMethods.end()) |
1660 | return overridden_method_range(nullptr, nullptr); |
1661 | return overridden_method_range(Pos->second.begin(), Pos->second.end()); |
1662 | } |
1663 | |
1664 | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
1665 | const CXXMethodDecl *Overridden) { |
1666 | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); |
1667 | OverriddenMethods[Method].push_back(NewVal: Overridden); |
1668 | } |
1669 | |
1670 | void ASTContext::getOverriddenMethods( |
1671 | const NamedDecl *D, |
1672 | SmallVectorImpl<const NamedDecl *> &Overridden) const { |
1673 | assert(D); |
1674 | |
1675 | if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(Val: D)) { |
1676 | Overridden.append(in_start: overridden_methods_begin(Method: CXXMethod), |
1677 | in_end: overridden_methods_end(Method: CXXMethod)); |
1678 | return; |
1679 | } |
1680 | |
1681 | const auto *Method = dyn_cast<ObjCMethodDecl>(Val: D); |
1682 | if (!Method) |
1683 | return; |
1684 | |
1685 | SmallVector<const ObjCMethodDecl *, 8> OverDecls; |
1686 | Method->getOverriddenMethods(Overridden&: OverDecls); |
1687 | Overridden.append(in_start: OverDecls.begin(), in_end: OverDecls.end()); |
1688 | } |
1689 | |
1690 | std::optional<ASTContext::CXXRecordDeclRelocationInfo> |
1691 | ASTContext::getRelocationInfoForCXXRecord(const CXXRecordDecl *RD) const { |
1692 | assert(RD); |
1693 | CXXRecordDecl *D = RD->getDefinition(); |
1694 | auto it = RelocatableClasses.find(Val: D); |
1695 | if (it != RelocatableClasses.end()) |
1696 | return it->getSecond(); |
1697 | return std::nullopt; |
1698 | } |
1699 | |
1700 | void ASTContext::setRelocationInfoForCXXRecord( |
1701 | const CXXRecordDecl *RD, CXXRecordDeclRelocationInfo Info) { |
1702 | assert(RD); |
1703 | CXXRecordDecl *D = RD->getDefinition(); |
1704 | assert(RelocatableClasses.find(D) == RelocatableClasses.end()); |
1705 | RelocatableClasses.insert(KV: {D, Info}); |
1706 | } |
1707 | |
1708 | static bool primaryBaseHaseAddressDiscriminatedVTableAuthentication( |
1709 | ASTContext &Context, const CXXRecordDecl *Class) { |
1710 | if (!Class->isPolymorphic()) |
1711 | return false; |
1712 | const CXXRecordDecl *BaseType = Context.baseForVTableAuthentication(ThisClass: Class); |
1713 | using AuthAttr = VTablePointerAuthenticationAttr; |
1714 | const AuthAttr *ExplicitAuth = BaseType->getAttr<AuthAttr>(); |
1715 | if (!ExplicitAuth) |
1716 | return Context.getLangOpts().PointerAuthVTPtrAddressDiscrimination; |
1717 | AuthAttr::AddressDiscriminationMode AddressDiscrimination = |
1718 | ExplicitAuth->getAddressDiscrimination(); |
1719 | if (AddressDiscrimination == AuthAttr::DefaultAddressDiscrimination) |
1720 | return Context.getLangOpts().PointerAuthVTPtrAddressDiscrimination; |
1721 | return AddressDiscrimination == AuthAttr::AddressDiscrimination; |
1722 | } |
1723 | |
1724 | ASTContext::PointerAuthContent ASTContext::findPointerAuthContent(QualType T) { |
1725 | assert(isPointerAuthenticationAvailable()); |
1726 | |
1727 | T = T.getCanonicalType(); |
1728 | if (T.hasAddressDiscriminatedPointerAuth()) |
1729 | return PointerAuthContent::AddressDiscriminatedData; |
1730 | const RecordDecl *RD = T->getAsRecordDecl(); |
1731 | if (!RD) |
1732 | return PointerAuthContent::None; |
1733 | |
1734 | if (auto Existing = RecordContainsAddressDiscriminatedPointerAuth.find(Val: RD); |
1735 | Existing != RecordContainsAddressDiscriminatedPointerAuth.end()) |
1736 | return Existing->second; |
1737 | |
1738 | PointerAuthContent Result = PointerAuthContent::None; |
1739 | |
1740 | auto SaveResultAndReturn = [&]() -> PointerAuthContent { |
1741 | auto [ResultIter, DidAdd] = |
1742 | RecordContainsAddressDiscriminatedPointerAuth.try_emplace(Key: RD, Args&: Result); |
1743 | (void)ResultIter; |
1744 | (void)DidAdd; |
1745 | assert(DidAdd); |
1746 | return Result; |
1747 | }; |
1748 | auto ShouldContinueAfterUpdate = [&](PointerAuthContent NewResult) { |
1749 | static_assert(PointerAuthContent::None < |
1750 | PointerAuthContent::AddressDiscriminatedVTable); |
1751 | static_assert(PointerAuthContent::AddressDiscriminatedVTable < |
1752 | PointerAuthContent::AddressDiscriminatedData); |
1753 | if (NewResult > Result) |
1754 | Result = NewResult; |
1755 | return Result != PointerAuthContent::AddressDiscriminatedData; |
1756 | }; |
1757 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
1758 | if (primaryBaseHaseAddressDiscriminatedVTableAuthentication(Context&: *this, Class: CXXRD) && |
1759 | !ShouldContinueAfterUpdate( |
1760 | PointerAuthContent::AddressDiscriminatedVTable)) |
1761 | return SaveResultAndReturn(); |
1762 | for (auto Base : CXXRD->bases()) { |
1763 | if (!ShouldContinueAfterUpdate(findPointerAuthContent(T: Base.getType()))) |
1764 | return SaveResultAndReturn(); |
1765 | } |
1766 | } |
1767 | for (auto *FieldDecl : RD->fields()) { |
1768 | if (!ShouldContinueAfterUpdate( |
1769 | findPointerAuthContent(T: FieldDecl->getType()))) |
1770 | return SaveResultAndReturn(); |
1771 | } |
1772 | return SaveResultAndReturn(); |
1773 | } |
1774 | |
1775 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
1776 | assert(!Import->getNextLocalImport() && |
1777 | "Import declaration already in the chain" ); |
1778 | assert(!Import->isFromASTFile() && "Non-local import declaration" ); |
1779 | if (!FirstLocalImport) { |
1780 | FirstLocalImport = Import; |
1781 | LastLocalImport = Import; |
1782 | return; |
1783 | } |
1784 | |
1785 | LastLocalImport->setNextLocalImport(Import); |
1786 | LastLocalImport = Import; |
1787 | } |
1788 | |
1789 | //===----------------------------------------------------------------------===// |
1790 | // Type Sizing and Analysis |
1791 | //===----------------------------------------------------------------------===// |
1792 | |
1793 | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
1794 | /// scalar floating point type. |
1795 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
1796 | switch (T->castAs<BuiltinType>()->getKind()) { |
1797 | default: |
1798 | llvm_unreachable("Not a floating point type!" ); |
1799 | case BuiltinType::BFloat16: |
1800 | return Target->getBFloat16Format(); |
1801 | case BuiltinType::Float16: |
1802 | return Target->getHalfFormat(); |
1803 | case BuiltinType::Half: |
1804 | return Target->getHalfFormat(); |
1805 | case BuiltinType::Float: return Target->getFloatFormat(); |
1806 | case BuiltinType::Double: return Target->getDoubleFormat(); |
1807 | case BuiltinType::Ibm128: |
1808 | return Target->getIbm128Format(); |
1809 | case BuiltinType::LongDouble: |
1810 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
1811 | return AuxTarget->getLongDoubleFormat(); |
1812 | return Target->getLongDoubleFormat(); |
1813 | case BuiltinType::Float128: |
1814 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
1815 | return AuxTarget->getFloat128Format(); |
1816 | return Target->getFloat128Format(); |
1817 | } |
1818 | } |
1819 | |
1820 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { |
1821 | unsigned Align = Target->getCharWidth(); |
1822 | |
1823 | const unsigned AlignFromAttr = D->getMaxAlignment(); |
1824 | if (AlignFromAttr) |
1825 | Align = AlignFromAttr; |
1826 | |
1827 | // __attribute__((aligned)) can increase or decrease alignment |
1828 | // *except* on a struct or struct member, where it only increases |
1829 | // alignment unless 'packed' is also specified. |
1830 | // |
1831 | // It is an error for alignas to decrease alignment, so we can |
1832 | // ignore that possibility; Sema should diagnose it. |
1833 | bool UseAlignAttrOnly; |
1834 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) |
1835 | UseAlignAttrOnly = |
1836 | FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>(); |
1837 | else |
1838 | UseAlignAttrOnly = AlignFromAttr != 0; |
1839 | // If we're using the align attribute only, just ignore everything |
1840 | // else about the declaration and its type. |
1841 | if (UseAlignAttrOnly) { |
1842 | // do nothing |
1843 | } else if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) { |
1844 | QualType T = VD->getType(); |
1845 | if (const auto *RT = T->getAs<ReferenceType>()) { |
1846 | if (ForAlignof) |
1847 | T = RT->getPointeeType(); |
1848 | else |
1849 | T = getPointerType(T: RT->getPointeeType()); |
1850 | } |
1851 | QualType BaseT = getBaseElementType(QT: T); |
1852 | if (T->isFunctionType()) |
1853 | Align = getTypeInfoImpl(T: T.getTypePtr()).Align; |
1854 | else if (!BaseT->isIncompleteType()) { |
1855 | // Adjust alignments of declarations with array type by the |
1856 | // large-array alignment on the target. |
1857 | if (const ArrayType *arrayType = getAsArrayType(T)) { |
1858 | unsigned MinWidth = Target->getLargeArrayMinWidth(); |
1859 | if (!ForAlignof && MinWidth) { |
1860 | if (isa<VariableArrayType>(Val: arrayType)) |
1861 | Align = std::max(a: Align, b: Target->getLargeArrayAlign()); |
1862 | else if (isa<ConstantArrayType>(Val: arrayType) && |
1863 | MinWidth <= getTypeSize(T: cast<ConstantArrayType>(Val: arrayType))) |
1864 | Align = std::max(a: Align, b: Target->getLargeArrayAlign()); |
1865 | } |
1866 | } |
1867 | Align = std::max(a: Align, b: getPreferredTypeAlign(T: T.getTypePtr())); |
1868 | if (BaseT.getQualifiers().hasUnaligned()) |
1869 | Align = Target->getCharWidth(); |
1870 | } |
1871 | |
1872 | // Ensure minimum alignment for global variables. |
1873 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
1874 | if (VD->hasGlobalStorage() && !ForAlignof) { |
1875 | uint64_t TypeSize = |
1876 | !BaseT->isIncompleteType() ? getTypeSize(T: T.getTypePtr()) : 0; |
1877 | Align = std::max(a: Align, b: getMinGlobalAlignOfVar(Size: TypeSize, VD)); |
1878 | } |
1879 | |
1880 | // Fields can be subject to extra alignment constraints, like if |
1881 | // the field is packed, the struct is packed, or the struct has a |
1882 | // a max-field-alignment constraint (#pragma pack). So calculate |
1883 | // the actual alignment of the field within the struct, and then |
1884 | // (as we're expected to) constrain that by the alignment of the type. |
1885 | if (const auto *Field = dyn_cast<FieldDecl>(Val: VD)) { |
1886 | const RecordDecl *Parent = Field->getParent(); |
1887 | // We can only produce a sensible answer if the record is valid. |
1888 | if (!Parent->isInvalidDecl()) { |
1889 | const ASTRecordLayout &Layout = getASTRecordLayout(D: Parent); |
1890 | |
1891 | // Start with the record's overall alignment. |
1892 | unsigned FieldAlign = toBits(CharSize: Layout.getAlignment()); |
1893 | |
1894 | // Use the GCD of that and the offset within the record. |
1895 | uint64_t Offset = Layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
1896 | if (Offset > 0) { |
1897 | // Alignment is always a power of 2, so the GCD will be a power of 2, |
1898 | // which means we get to do this crazy thing instead of Euclid's. |
1899 | uint64_t LowBitOfOffset = Offset & (~Offset + 1); |
1900 | if (LowBitOfOffset < FieldAlign) |
1901 | FieldAlign = static_cast<unsigned>(LowBitOfOffset); |
1902 | } |
1903 | |
1904 | Align = std::min(a: Align, b: FieldAlign); |
1905 | } |
1906 | } |
1907 | } |
1908 | |
1909 | // Some targets have hard limitation on the maximum requestable alignment in |
1910 | // aligned attribute for static variables. |
1911 | const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); |
1912 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
1913 | if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) |
1914 | Align = std::min(a: Align, b: MaxAlignedAttr); |
1915 | |
1916 | return toCharUnitsFromBits(BitSize: Align); |
1917 | } |
1918 | |
1919 | CharUnits ASTContext::getExnObjectAlignment() const { |
1920 | return toCharUnitsFromBits(BitSize: Target->getExnObjectAlignment()); |
1921 | } |
1922 | |
1923 | // getTypeInfoDataSizeInChars - Return the size of a type, in |
1924 | // chars. If the type is a record, its data size is returned. This is |
1925 | // the size of the memcpy that's performed when assigning this type |
1926 | // using a trivial copy/move assignment operator. |
1927 | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { |
1928 | TypeInfoChars Info = getTypeInfoInChars(T); |
1929 | |
1930 | // In C++, objects can sometimes be allocated into the tail padding |
1931 | // of a base-class subobject. We decide whether that's possible |
1932 | // during class layout, so here we can just trust the layout results. |
1933 | if (getLangOpts().CPlusPlus) { |
1934 | if (const auto *RT = T->getAs<RecordType>(); |
1935 | RT && !RT->getDecl()->isInvalidDecl()) { |
1936 | const ASTRecordLayout &layout = getASTRecordLayout(D: RT->getDecl()); |
1937 | Info.Width = layout.getDataSize(); |
1938 | } |
1939 | } |
1940 | |
1941 | return Info; |
1942 | } |
1943 | |
1944 | /// getConstantArrayInfoInChars - Performing the computation in CharUnits |
1945 | /// instead of in bits prevents overflowing the uint64_t for some large arrays. |
1946 | TypeInfoChars |
1947 | static getConstantArrayInfoInChars(const ASTContext &Context, |
1948 | const ConstantArrayType *CAT) { |
1949 | TypeInfoChars EltInfo = Context.getTypeInfoInChars(T: CAT->getElementType()); |
1950 | uint64_t Size = CAT->getZExtSize(); |
1951 | assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= |
1952 | (uint64_t)(-1)/Size) && |
1953 | "Overflow in array type char size evaluation" ); |
1954 | uint64_t Width = EltInfo.Width.getQuantity() * Size; |
1955 | unsigned Align = EltInfo.Align.getQuantity(); |
1956 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || |
1957 | Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) == 64) |
1958 | Width = llvm::alignTo(Value: Width, Align); |
1959 | return TypeInfoChars(CharUnits::fromQuantity(Quantity: Width), |
1960 | CharUnits::fromQuantity(Quantity: Align), |
1961 | EltInfo.AlignRequirement); |
1962 | } |
1963 | |
1964 | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { |
1965 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: T)) |
1966 | return getConstantArrayInfoInChars(Context: *this, CAT); |
1967 | TypeInfo Info = getTypeInfo(T); |
1968 | return TypeInfoChars(toCharUnitsFromBits(BitSize: Info.Width), |
1969 | toCharUnitsFromBits(BitSize: Info.Align), Info.AlignRequirement); |
1970 | } |
1971 | |
1972 | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { |
1973 | return getTypeInfoInChars(T: T.getTypePtr()); |
1974 | } |
1975 | |
1976 | bool ASTContext::isPromotableIntegerType(QualType T) const { |
1977 | // HLSL doesn't promote all small integer types to int, it |
1978 | // just uses the rank-based promotion rules for all types. |
1979 | if (getLangOpts().HLSL) |
1980 | return false; |
1981 | |
1982 | if (const auto *BT = T->getAs<BuiltinType>()) |
1983 | switch (BT->getKind()) { |
1984 | case BuiltinType::Bool: |
1985 | case BuiltinType::Char_S: |
1986 | case BuiltinType::Char_U: |
1987 | case BuiltinType::SChar: |
1988 | case BuiltinType::UChar: |
1989 | case BuiltinType::Short: |
1990 | case BuiltinType::UShort: |
1991 | case BuiltinType::WChar_S: |
1992 | case BuiltinType::WChar_U: |
1993 | case BuiltinType::Char8: |
1994 | case BuiltinType::Char16: |
1995 | case BuiltinType::Char32: |
1996 | return true; |
1997 | default: |
1998 | return false; |
1999 | } |
2000 | |
2001 | // Enumerated types are promotable to their compatible integer types |
2002 | // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). |
2003 | if (const auto *ET = T->getAs<EnumType>()) { |
2004 | if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() || |
2005 | ET->getDecl()->isScoped()) |
2006 | return false; |
2007 | |
2008 | return true; |
2009 | } |
2010 | |
2011 | return false; |
2012 | } |
2013 | |
2014 | bool ASTContext::isAlignmentRequired(const Type *T) const { |
2015 | return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None; |
2016 | } |
2017 | |
2018 | bool ASTContext::isAlignmentRequired(QualType T) const { |
2019 | return isAlignmentRequired(T: T.getTypePtr()); |
2020 | } |
2021 | |
2022 | unsigned ASTContext::getTypeAlignIfKnown(QualType T, |
2023 | bool NeedsPreferredAlignment) const { |
2024 | // An alignment on a typedef overrides anything else. |
2025 | if (const auto *TT = T->getAs<TypedefType>()) |
2026 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
2027 | return Align; |
2028 | |
2029 | // If we have an (array of) complete type, we're done. |
2030 | T = getBaseElementType(QT: T); |
2031 | if (!T->isIncompleteType()) |
2032 | return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); |
2033 | |
2034 | // If we had an array type, its element type might be a typedef |
2035 | // type with an alignment attribute. |
2036 | if (const auto *TT = T->getAs<TypedefType>()) |
2037 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
2038 | return Align; |
2039 | |
2040 | // Otherwise, see if the declaration of the type had an attribute. |
2041 | if (const auto *TT = T->getAs<TagType>()) |
2042 | return TT->getDecl()->getMaxAlignment(); |
2043 | |
2044 | return 0; |
2045 | } |
2046 | |
2047 | TypeInfo ASTContext::getTypeInfo(const Type *T) const { |
2048 | TypeInfoMap::iterator I = MemoizedTypeInfo.find(Val: T); |
2049 | if (I != MemoizedTypeInfo.end()) |
2050 | return I->second; |
2051 | |
2052 | // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. |
2053 | TypeInfo TI = getTypeInfoImpl(T); |
2054 | MemoizedTypeInfo[T] = TI; |
2055 | return TI; |
2056 | } |
2057 | |
2058 | /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
2059 | /// method does not work on incomplete types. |
2060 | /// |
2061 | /// FIXME: Pointers into different addr spaces could have different sizes and |
2062 | /// alignment requirements: getPointerInfo should take an AddrSpace, this |
2063 | /// should take a QualType, &c. |
2064 | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { |
2065 | uint64_t Width = 0; |
2066 | unsigned Align = 8; |
2067 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; |
2068 | LangAS AS = LangAS::Default; |
2069 | switch (T->getTypeClass()) { |
2070 | #define TYPE(Class, Base) |
2071 | #define ABSTRACT_TYPE(Class, Base) |
2072 | #define NON_CANONICAL_TYPE(Class, Base) |
2073 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
2074 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ |
2075 | case Type::Class: \ |
2076 | assert(!T->isDependentType() && "should not see dependent types here"); \ |
2077 | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); |
2078 | #include "clang/AST/TypeNodes.inc" |
2079 | llvm_unreachable("Should not see dependent types" ); |
2080 | |
2081 | case Type::FunctionNoProto: |
2082 | case Type::FunctionProto: |
2083 | // GCC extension: alignof(function) = 32 bits |
2084 | Width = 0; |
2085 | Align = 32; |
2086 | break; |
2087 | |
2088 | case Type::IncompleteArray: |
2089 | case Type::VariableArray: |
2090 | case Type::ConstantArray: |
2091 | case Type::ArrayParameter: { |
2092 | // Model non-constant sized arrays as size zero, but track the alignment. |
2093 | uint64_t Size = 0; |
2094 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: T)) |
2095 | Size = CAT->getZExtSize(); |
2096 | |
2097 | TypeInfo EltInfo = getTypeInfo(T: cast<ArrayType>(Val: T)->getElementType()); |
2098 | assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && |
2099 | "Overflow in array type bit size evaluation" ); |
2100 | Width = EltInfo.Width * Size; |
2101 | Align = EltInfo.Align; |
2102 | AlignRequirement = EltInfo.AlignRequirement; |
2103 | if (!getTargetInfo().getCXXABI().isMicrosoft() || |
2104 | getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) == 64) |
2105 | Width = llvm::alignTo(Value: Width, Align); |
2106 | break; |
2107 | } |
2108 | |
2109 | case Type::ExtVector: |
2110 | case Type::Vector: { |
2111 | const auto *VT = cast<VectorType>(Val: T); |
2112 | TypeInfo EltInfo = getTypeInfo(T: VT->getElementType()); |
2113 | Width = VT->isPackedVectorBoolType(ctx: *this) |
2114 | ? VT->getNumElements() |
2115 | : EltInfo.Width * VT->getNumElements(); |
2116 | // Enforce at least byte size and alignment. |
2117 | Width = std::max<unsigned>(a: 8, b: Width); |
2118 | Align = std::max<unsigned>(a: 8, b: Width); |
2119 | |
2120 | // If the alignment is not a power of 2, round up to the next power of 2. |
2121 | // This happens for non-power-of-2 length vectors. |
2122 | if (Align & (Align-1)) { |
2123 | Align = llvm::bit_ceil(Value: Align); |
2124 | Width = llvm::alignTo(Value: Width, Align); |
2125 | } |
2126 | // Adjust the alignment based on the target max. |
2127 | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); |
2128 | if (TargetVectorAlign && TargetVectorAlign < Align) |
2129 | Align = TargetVectorAlign; |
2130 | if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
2131 | // Adjust the alignment for fixed-length SVE vectors. This is important |
2132 | // for non-power-of-2 vector lengths. |
2133 | Align = 128; |
2134 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
2135 | // Adjust the alignment for fixed-length SVE predicates. |
2136 | Align = 16; |
2137 | else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
2138 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask || |
2139 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || |
2140 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || |
2141 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_4) |
2142 | // Adjust the alignment for fixed-length RVV vectors. |
2143 | Align = std::min<unsigned>(a: 64, b: Width); |
2144 | break; |
2145 | } |
2146 | |
2147 | case Type::ConstantMatrix: { |
2148 | const auto *MT = cast<ConstantMatrixType>(Val: T); |
2149 | TypeInfo ElementInfo = getTypeInfo(T: MT->getElementType()); |
2150 | // The internal layout of a matrix value is implementation defined. |
2151 | // Initially be ABI compatible with arrays with respect to alignment and |
2152 | // size. |
2153 | Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); |
2154 | Align = ElementInfo.Align; |
2155 | break; |
2156 | } |
2157 | |
2158 | case Type::Builtin: |
2159 | switch (cast<BuiltinType>(Val: T)->getKind()) { |
2160 | default: llvm_unreachable("Unknown builtin type!" ); |
2161 | case BuiltinType::Void: |
2162 | // GCC extension: alignof(void) = 8 bits. |
2163 | Width = 0; |
2164 | Align = 8; |
2165 | break; |
2166 | case BuiltinType::Bool: |
2167 | Width = Target->getBoolWidth(); |
2168 | Align = Target->getBoolAlign(); |
2169 | break; |
2170 | case BuiltinType::Char_S: |
2171 | case BuiltinType::Char_U: |
2172 | case BuiltinType::UChar: |
2173 | case BuiltinType::SChar: |
2174 | case BuiltinType::Char8: |
2175 | Width = Target->getCharWidth(); |
2176 | Align = Target->getCharAlign(); |
2177 | break; |
2178 | case BuiltinType::WChar_S: |
2179 | case BuiltinType::WChar_U: |
2180 | Width = Target->getWCharWidth(); |
2181 | Align = Target->getWCharAlign(); |
2182 | break; |
2183 | case BuiltinType::Char16: |
2184 | Width = Target->getChar16Width(); |
2185 | Align = Target->getChar16Align(); |
2186 | break; |
2187 | case BuiltinType::Char32: |
2188 | Width = Target->getChar32Width(); |
2189 | Align = Target->getChar32Align(); |
2190 | break; |
2191 | case BuiltinType::UShort: |
2192 | case BuiltinType::Short: |
2193 | Width = Target->getShortWidth(); |
2194 | Align = Target->getShortAlign(); |
2195 | break; |
2196 | case BuiltinType::UInt: |
2197 | case BuiltinType::Int: |
2198 | Width = Target->getIntWidth(); |
2199 | Align = Target->getIntAlign(); |
2200 | break; |
2201 | case BuiltinType::ULong: |
2202 | case BuiltinType::Long: |
2203 | Width = Target->getLongWidth(); |
2204 | Align = Target->getLongAlign(); |
2205 | break; |
2206 | case BuiltinType::ULongLong: |
2207 | case BuiltinType::LongLong: |
2208 | Width = Target->getLongLongWidth(); |
2209 | Align = Target->getLongLongAlign(); |
2210 | break; |
2211 | case BuiltinType::Int128: |
2212 | case BuiltinType::UInt128: |
2213 | Width = 128; |
2214 | Align = Target->getInt128Align(); |
2215 | break; |
2216 | case BuiltinType::ShortAccum: |
2217 | case BuiltinType::UShortAccum: |
2218 | case BuiltinType::SatShortAccum: |
2219 | case BuiltinType::SatUShortAccum: |
2220 | Width = Target->getShortAccumWidth(); |
2221 | Align = Target->getShortAccumAlign(); |
2222 | break; |
2223 | case BuiltinType::Accum: |
2224 | case BuiltinType::UAccum: |
2225 | case BuiltinType::SatAccum: |
2226 | case BuiltinType::SatUAccum: |
2227 | Width = Target->getAccumWidth(); |
2228 | Align = Target->getAccumAlign(); |
2229 | break; |
2230 | case BuiltinType::LongAccum: |
2231 | case BuiltinType::ULongAccum: |
2232 | case BuiltinType::SatLongAccum: |
2233 | case BuiltinType::SatULongAccum: |
2234 | Width = Target->getLongAccumWidth(); |
2235 | Align = Target->getLongAccumAlign(); |
2236 | break; |
2237 | case BuiltinType::ShortFract: |
2238 | case BuiltinType::UShortFract: |
2239 | case BuiltinType::SatShortFract: |
2240 | case BuiltinType::SatUShortFract: |
2241 | Width = Target->getShortFractWidth(); |
2242 | Align = Target->getShortFractAlign(); |
2243 | break; |
2244 | case BuiltinType::Fract: |
2245 | case BuiltinType::UFract: |
2246 | case BuiltinType::SatFract: |
2247 | case BuiltinType::SatUFract: |
2248 | Width = Target->getFractWidth(); |
2249 | Align = Target->getFractAlign(); |
2250 | break; |
2251 | case BuiltinType::LongFract: |
2252 | case BuiltinType::ULongFract: |
2253 | case BuiltinType::SatLongFract: |
2254 | case BuiltinType::SatULongFract: |
2255 | Width = Target->getLongFractWidth(); |
2256 | Align = Target->getLongFractAlign(); |
2257 | break; |
2258 | case BuiltinType::BFloat16: |
2259 | if (Target->hasBFloat16Type()) { |
2260 | Width = Target->getBFloat16Width(); |
2261 | Align = Target->getBFloat16Align(); |
2262 | } else if ((getLangOpts().SYCLIsDevice || |
2263 | (getLangOpts().OpenMP && |
2264 | getLangOpts().OpenMPIsTargetDevice)) && |
2265 | AuxTarget->hasBFloat16Type()) { |
2266 | Width = AuxTarget->getBFloat16Width(); |
2267 | Align = AuxTarget->getBFloat16Align(); |
2268 | } |
2269 | break; |
2270 | case BuiltinType::Float16: |
2271 | case BuiltinType::Half: |
2272 | if (Target->hasFloat16Type() || !getLangOpts().OpenMP || |
2273 | !getLangOpts().OpenMPIsTargetDevice) { |
2274 | Width = Target->getHalfWidth(); |
2275 | Align = Target->getHalfAlign(); |
2276 | } else { |
2277 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2278 | "Expected OpenMP device compilation." ); |
2279 | Width = AuxTarget->getHalfWidth(); |
2280 | Align = AuxTarget->getHalfAlign(); |
2281 | } |
2282 | break; |
2283 | case BuiltinType::Float: |
2284 | Width = Target->getFloatWidth(); |
2285 | Align = Target->getFloatAlign(); |
2286 | break; |
2287 | case BuiltinType::Double: |
2288 | Width = Target->getDoubleWidth(); |
2289 | Align = Target->getDoubleAlign(); |
2290 | break; |
2291 | case BuiltinType::Ibm128: |
2292 | Width = Target->getIbm128Width(); |
2293 | Align = Target->getIbm128Align(); |
2294 | break; |
2295 | case BuiltinType::LongDouble: |
2296 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2297 | (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || |
2298 | Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { |
2299 | Width = AuxTarget->getLongDoubleWidth(); |
2300 | Align = AuxTarget->getLongDoubleAlign(); |
2301 | } else { |
2302 | Width = Target->getLongDoubleWidth(); |
2303 | Align = Target->getLongDoubleAlign(); |
2304 | } |
2305 | break; |
2306 | case BuiltinType::Float128: |
2307 | if (Target->hasFloat128Type() || !getLangOpts().OpenMP || |
2308 | !getLangOpts().OpenMPIsTargetDevice) { |
2309 | Width = Target->getFloat128Width(); |
2310 | Align = Target->getFloat128Align(); |
2311 | } else { |
2312 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2313 | "Expected OpenMP device compilation." ); |
2314 | Width = AuxTarget->getFloat128Width(); |
2315 | Align = AuxTarget->getFloat128Align(); |
2316 | } |
2317 | break; |
2318 | case BuiltinType::NullPtr: |
2319 | // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*) |
2320 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2321 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2322 | break; |
2323 | case BuiltinType::ObjCId: |
2324 | case BuiltinType::ObjCClass: |
2325 | case BuiltinType::ObjCSel: |
2326 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2327 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2328 | break; |
2329 | case BuiltinType::OCLSampler: |
2330 | case BuiltinType::OCLEvent: |
2331 | case BuiltinType::OCLClkEvent: |
2332 | case BuiltinType::OCLQueue: |
2333 | case BuiltinType::OCLReserveID: |
2334 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
2335 | case BuiltinType::Id: |
2336 | #include "clang/Basic/OpenCLImageTypes.def" |
2337 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
2338 | case BuiltinType::Id: |
2339 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2340 | AS = Target->getOpenCLTypeAddrSpace(TK: getOpenCLTypeKind(T)); |
2341 | Width = Target->getPointerWidth(AddrSpace: AS); |
2342 | Align = Target->getPointerAlign(AddrSpace: AS); |
2343 | break; |
2344 | // The SVE types are effectively target-specific. The length of an |
2345 | // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple |
2346 | // of 128 bits. There is one predicate bit for each vector byte, so the |
2347 | // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. |
2348 | // |
2349 | // Because the length is only known at runtime, we use a dummy value |
2350 | // of 0 for the static length. The alignment values are those defined |
2351 | // by the Procedure Call Standard for the Arm Architecture. |
2352 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ |
2353 | case BuiltinType::Id: \ |
2354 | Width = 0; \ |
2355 | Align = 128; \ |
2356 | break; |
2357 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \ |
2358 | case BuiltinType::Id: \ |
2359 | Width = 0; \ |
2360 | Align = 16; \ |
2361 | break; |
2362 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
2363 | case BuiltinType::Id: \ |
2364 | Width = 0; \ |
2365 | Align = 16; \ |
2366 | break; |
2367 | #define SVE_SCALAR_TYPE(Name, MangledName, Id, SingletonId, Bits) \ |
2368 | case BuiltinType::Id: \ |
2369 | Width = Bits; \ |
2370 | Align = Bits; \ |
2371 | break; |
2372 | #include "clang/Basic/AArch64ACLETypes.def" |
2373 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
2374 | case BuiltinType::Id: \ |
2375 | Width = Size; \ |
2376 | Align = Size; \ |
2377 | break; |
2378 | #include "clang/Basic/PPCTypes.def" |
2379 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \ |
2380 | IsFP, IsBF) \ |
2381 | case BuiltinType::Id: \ |
2382 | Width = 0; \ |
2383 | Align = ElBits; \ |
2384 | break; |
2385 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \ |
2386 | case BuiltinType::Id: \ |
2387 | Width = 0; \ |
2388 | Align = 8; \ |
2389 | break; |
2390 | #include "clang/Basic/RISCVVTypes.def" |
2391 | #define WASM_TYPE(Name, Id, SingletonId) \ |
2392 | case BuiltinType::Id: \ |
2393 | Width = 0; \ |
2394 | Align = 8; \ |
2395 | break; |
2396 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2397 | #define AMDGPU_TYPE(NAME, ID, SINGLETONID, WIDTH, ALIGN) \ |
2398 | case BuiltinType::ID: \ |
2399 | Width = WIDTH; \ |
2400 | Align = ALIGN; \ |
2401 | break; |
2402 | #include "clang/Basic/AMDGPUTypes.def" |
2403 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2404 | #include "clang/Basic/HLSLIntangibleTypes.def" |
2405 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2406 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2407 | break; |
2408 | } |
2409 | break; |
2410 | case Type::ObjCObjectPointer: |
2411 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
2412 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
2413 | break; |
2414 | case Type::BlockPointer: |
2415 | AS = cast<BlockPointerType>(Val: T)->getPointeeType().getAddressSpace(); |
2416 | Width = Target->getPointerWidth(AddrSpace: AS); |
2417 | Align = Target->getPointerAlign(AddrSpace: AS); |
2418 | break; |
2419 | case Type::LValueReference: |
2420 | case Type::RValueReference: |
2421 | // alignof and sizeof should never enter this code path here, so we go |
2422 | // the pointer route. |
2423 | AS = cast<ReferenceType>(Val: T)->getPointeeType().getAddressSpace(); |
2424 | Width = Target->getPointerWidth(AddrSpace: AS); |
2425 | Align = Target->getPointerAlign(AddrSpace: AS); |
2426 | break; |
2427 | case Type::Pointer: |
2428 | AS = cast<PointerType>(Val: T)->getPointeeType().getAddressSpace(); |
2429 | Width = Target->getPointerWidth(AddrSpace: AS); |
2430 | Align = Target->getPointerAlign(AddrSpace: AS); |
2431 | break; |
2432 | case Type::MemberPointer: { |
2433 | const auto *MPT = cast<MemberPointerType>(Val: T); |
2434 | CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); |
2435 | Width = MPI.Width; |
2436 | Align = MPI.Align; |
2437 | break; |
2438 | } |
2439 | case Type::Complex: { |
2440 | // Complex types have the same alignment as their elements, but twice the |
2441 | // size. |
2442 | TypeInfo EltInfo = getTypeInfo(T: cast<ComplexType>(Val: T)->getElementType()); |
2443 | Width = EltInfo.Width * 2; |
2444 | Align = EltInfo.Align; |
2445 | break; |
2446 | } |
2447 | case Type::ObjCObject: |
2448 | return getTypeInfo(T: cast<ObjCObjectType>(Val: T)->getBaseType().getTypePtr()); |
2449 | case Type::Adjusted: |
2450 | case Type::Decayed: |
2451 | return getTypeInfo(T: cast<AdjustedType>(Val: T)->getAdjustedType().getTypePtr()); |
2452 | case Type::ObjCInterface: { |
2453 | const auto *ObjCI = cast<ObjCInterfaceType>(Val: T); |
2454 | if (ObjCI->getDecl()->isInvalidDecl()) { |
2455 | Width = 8; |
2456 | Align = 8; |
2457 | break; |
2458 | } |
2459 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(D: ObjCI->getDecl()); |
2460 | Width = toBits(CharSize: Layout.getSize()); |
2461 | Align = toBits(CharSize: Layout.getAlignment()); |
2462 | break; |
2463 | } |
2464 | case Type::BitInt: { |
2465 | const auto *EIT = cast<BitIntType>(Val: T); |
2466 | Align = Target->getBitIntAlign(NumBits: EIT->getNumBits()); |
2467 | Width = Target->getBitIntWidth(NumBits: EIT->getNumBits()); |
2468 | break; |
2469 | } |
2470 | case Type::Record: |
2471 | case Type::Enum: { |
2472 | const auto *TT = cast<TagType>(Val: T); |
2473 | |
2474 | if (TT->getDecl()->isInvalidDecl()) { |
2475 | Width = 8; |
2476 | Align = 8; |
2477 | break; |
2478 | } |
2479 | |
2480 | if (const auto *ET = dyn_cast<EnumType>(Val: TT)) { |
2481 | const EnumDecl *ED = ET->getDecl(); |
2482 | TypeInfo Info = |
2483 | getTypeInfo(T: ED->getIntegerType()->getUnqualifiedDesugaredType()); |
2484 | if (unsigned AttrAlign = ED->getMaxAlignment()) { |
2485 | Info.Align = AttrAlign; |
2486 | Info.AlignRequirement = AlignRequirementKind::RequiredByEnum; |
2487 | } |
2488 | return Info; |
2489 | } |
2490 | |
2491 | const auto *RT = cast<RecordType>(Val: TT); |
2492 | const RecordDecl *RD = RT->getDecl(); |
2493 | const ASTRecordLayout &Layout = getASTRecordLayout(D: RD); |
2494 | Width = toBits(CharSize: Layout.getSize()); |
2495 | Align = toBits(CharSize: Layout.getAlignment()); |
2496 | AlignRequirement = RD->hasAttr<AlignedAttr>() |
2497 | ? AlignRequirementKind::RequiredByRecord |
2498 | : AlignRequirementKind::None; |
2499 | break; |
2500 | } |
2501 | |
2502 | case Type::SubstTemplateTypeParm: |
2503 | return getTypeInfo(T: cast<SubstTemplateTypeParmType>(Val: T)-> |
2504 | getReplacementType().getTypePtr()); |
2505 | |
2506 | case Type::Auto: |
2507 | case Type::DeducedTemplateSpecialization: { |
2508 | const auto *A = cast<DeducedType>(Val: T); |
2509 | assert(!A->getDeducedType().isNull() && |
2510 | "cannot request the size of an undeduced or dependent auto type" ); |
2511 | return getTypeInfo(T: A->getDeducedType().getTypePtr()); |
2512 | } |
2513 | |
2514 | case Type::Paren: |
2515 | return getTypeInfo(T: cast<ParenType>(Val: T)->getInnerType().getTypePtr()); |
2516 | |
2517 | case Type::MacroQualified: |
2518 | return getTypeInfo( |
2519 | T: cast<MacroQualifiedType>(Val: T)->getUnderlyingType().getTypePtr()); |
2520 | |
2521 | case Type::ObjCTypeParam: |
2522 | return getTypeInfo(T: cast<ObjCTypeParamType>(Val: T)->desugar().getTypePtr()); |
2523 | |
2524 | case Type::Using: |
2525 | return getTypeInfo(T: cast<UsingType>(Val: T)->desugar().getTypePtr()); |
2526 | |
2527 | case Type::Typedef: { |
2528 | const auto *TT = cast<TypedefType>(Val: T); |
2529 | TypeInfo Info = getTypeInfo(T: TT->desugar().getTypePtr()); |
2530 | // If the typedef has an aligned attribute on it, it overrides any computed |
2531 | // alignment we have. This violates the GCC documentation (which says that |
2532 | // attribute(aligned) can only round up) but matches its implementation. |
2533 | if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) { |
2534 | Align = AttrAlign; |
2535 | AlignRequirement = AlignRequirementKind::RequiredByTypedef; |
2536 | } else { |
2537 | Align = Info.Align; |
2538 | AlignRequirement = Info.AlignRequirement; |
2539 | } |
2540 | Width = Info.Width; |
2541 | break; |
2542 | } |
2543 | |
2544 | case Type::Elaborated: |
2545 | return getTypeInfo(T: cast<ElaboratedType>(Val: T)->getNamedType().getTypePtr()); |
2546 | |
2547 | case Type::Attributed: |
2548 | return getTypeInfo( |
2549 | T: cast<AttributedType>(Val: T)->getEquivalentType().getTypePtr()); |
2550 | |
2551 | case Type::CountAttributed: |
2552 | return getTypeInfo(T: cast<CountAttributedType>(Val: T)->desugar().getTypePtr()); |
2553 | |
2554 | case Type::BTFTagAttributed: |
2555 | return getTypeInfo( |
2556 | T: cast<BTFTagAttributedType>(Val: T)->getWrappedType().getTypePtr()); |
2557 | |
2558 | case Type::HLSLAttributedResource: |
2559 | return getTypeInfo( |
2560 | T: cast<HLSLAttributedResourceType>(Val: T)->getWrappedType().getTypePtr()); |
2561 | |
2562 | case Type::HLSLInlineSpirv: { |
2563 | const auto *ST = cast<HLSLInlineSpirvType>(Val: T); |
2564 | // Size is specified in bytes, convert to bits |
2565 | Width = ST->getSize() * 8; |
2566 | Align = ST->getAlignment(); |
2567 | if (Width == 0 && Align == 0) { |
2568 | // We are defaulting to laying out opaque SPIR-V types as 32-bit ints. |
2569 | Width = 32; |
2570 | Align = 32; |
2571 | } |
2572 | break; |
2573 | } |
2574 | |
2575 | case Type::Atomic: { |
2576 | // Start with the base type information. |
2577 | TypeInfo Info = getTypeInfo(T: cast<AtomicType>(Val: T)->getValueType()); |
2578 | Width = Info.Width; |
2579 | Align = Info.Align; |
2580 | |
2581 | if (!Width) { |
2582 | // An otherwise zero-sized type should still generate an |
2583 | // atomic operation. |
2584 | Width = Target->getCharWidth(); |
2585 | assert(Align); |
2586 | } else if (Width <= Target->getMaxAtomicPromoteWidth()) { |
2587 | // If the size of the type doesn't exceed the platform's max |
2588 | // atomic promotion width, make the size and alignment more |
2589 | // favorable to atomic operations: |
2590 | |
2591 | // Round the size up to a power of 2. |
2592 | Width = llvm::bit_ceil(Value: Width); |
2593 | |
2594 | // Set the alignment equal to the size. |
2595 | Align = static_cast<unsigned>(Width); |
2596 | } |
2597 | } |
2598 | break; |
2599 | |
2600 | case Type::Pipe: |
2601 | Width = Target->getPointerWidth(AddrSpace: LangAS::opencl_global); |
2602 | Align = Target->getPointerAlign(AddrSpace: LangAS::opencl_global); |
2603 | break; |
2604 | } |
2605 | |
2606 | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2" ); |
2607 | return TypeInfo(Width, Align, AlignRequirement); |
2608 | } |
2609 | |
2610 | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { |
2611 | UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(Val: T); |
2612 | if (I != MemoizedUnadjustedAlign.end()) |
2613 | return I->second; |
2614 | |
2615 | unsigned UnadjustedAlign; |
2616 | if (const auto *RT = T->getAs<RecordType>()) { |
2617 | const RecordDecl *RD = RT->getDecl(); |
2618 | const ASTRecordLayout &Layout = getASTRecordLayout(D: RD); |
2619 | UnadjustedAlign = toBits(CharSize: Layout.getUnadjustedAlignment()); |
2620 | } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { |
2621 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(D: ObjCI->getDecl()); |
2622 | UnadjustedAlign = toBits(CharSize: Layout.getUnadjustedAlignment()); |
2623 | } else { |
2624 | UnadjustedAlign = getTypeAlign(T: T->getUnqualifiedDesugaredType()); |
2625 | } |
2626 | |
2627 | MemoizedUnadjustedAlign[T] = UnadjustedAlign; |
2628 | return UnadjustedAlign; |
2629 | } |
2630 | |
2631 | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { |
2632 | unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign( |
2633 | TargetTriple: getTargetInfo().getTriple(), Features: Target->getTargetOpts().FeatureMap); |
2634 | return SimdAlign; |
2635 | } |
2636 | |
2637 | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
2638 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
2639 | return CharUnits::fromQuantity(Quantity: BitSize / getCharWidth()); |
2640 | } |
2641 | |
2642 | /// toBits - Convert a size in characters to a size in characters. |
2643 | int64_t ASTContext::toBits(CharUnits CharSize) const { |
2644 | return CharSize.getQuantity() * getCharWidth(); |
2645 | } |
2646 | |
2647 | /// getTypeSizeInChars - Return the size of the specified type, in characters. |
2648 | /// This method does not work on incomplete types. |
2649 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
2650 | return getTypeInfoInChars(T).Width; |
2651 | } |
2652 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
2653 | return getTypeInfoInChars(T).Width; |
2654 | } |
2655 | |
2656 | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
2657 | /// characters. This method does not work on incomplete types. |
2658 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
2659 | return toCharUnitsFromBits(BitSize: getTypeAlign(T)); |
2660 | } |
2661 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
2662 | return toCharUnitsFromBits(BitSize: getTypeAlign(T)); |
2663 | } |
2664 | |
2665 | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a |
2666 | /// type, in characters, before alignment adjustments. This method does |
2667 | /// not work on incomplete types. |
2668 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { |
2669 | return toCharUnitsFromBits(BitSize: getTypeUnadjustedAlign(T)); |
2670 | } |
2671 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { |
2672 | return toCharUnitsFromBits(BitSize: getTypeUnadjustedAlign(T)); |
2673 | } |
2674 | |
2675 | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
2676 | /// type for the current target in bits. This can be different than the ABI |
2677 | /// alignment in cases where it is beneficial for performance or backwards |
2678 | /// compatibility preserving to overalign a data type. (Note: despite the name, |
2679 | /// the preferred alignment is ABI-impacting, and not an optimization.) |
2680 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
2681 | TypeInfo TI = getTypeInfo(T); |
2682 | unsigned ABIAlign = TI.Align; |
2683 | |
2684 | T = T->getBaseElementTypeUnsafe(); |
2685 | |
2686 | // The preferred alignment of member pointers is that of a pointer. |
2687 | if (T->isMemberPointerType()) |
2688 | return getPreferredTypeAlign(T: getPointerDiffType().getTypePtr()); |
2689 | |
2690 | if (!Target->allowsLargerPreferedTypeAlignment()) |
2691 | return ABIAlign; |
2692 | |
2693 | if (const auto *RT = T->getAs<RecordType>()) { |
2694 | const RecordDecl *RD = RT->getDecl(); |
2695 | |
2696 | // When used as part of a typedef, or together with a 'packed' attribute, |
2697 | // the 'aligned' attribute can be used to decrease alignment. Note that the |
2698 | // 'packed' case is already taken into consideration when computing the |
2699 | // alignment, we only need to handle the typedef case here. |
2700 | if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef || |
2701 | RD->isInvalidDecl()) |
2702 | return ABIAlign; |
2703 | |
2704 | unsigned PreferredAlign = static_cast<unsigned>( |
2705 | toBits(CharSize: getASTRecordLayout(D: RD).PreferredAlignment)); |
2706 | assert(PreferredAlign >= ABIAlign && |
2707 | "PreferredAlign should be at least as large as ABIAlign." ); |
2708 | return PreferredAlign; |
2709 | } |
2710 | |
2711 | // Double (and, for targets supporting AIX `power` alignment, long double) and |
2712 | // long long should be naturally aligned (despite requiring less alignment) if |
2713 | // possible. |
2714 | if (const auto *CT = T->getAs<ComplexType>()) |
2715 | T = CT->getElementType().getTypePtr(); |
2716 | if (const auto *ET = T->getAs<EnumType>()) |
2717 | T = ET->getDecl()->getIntegerType().getTypePtr(); |
2718 | if (T->isSpecificBuiltinType(K: BuiltinType::Double) || |
2719 | T->isSpecificBuiltinType(K: BuiltinType::LongLong) || |
2720 | T->isSpecificBuiltinType(K: BuiltinType::ULongLong) || |
2721 | (T->isSpecificBuiltinType(K: BuiltinType::LongDouble) && |
2722 | Target->defaultsToAIXPowerAlignment())) |
2723 | // Don't increase the alignment if an alignment attribute was specified on a |
2724 | // typedef declaration. |
2725 | if (!TI.isAlignRequired()) |
2726 | return std::max(a: ABIAlign, b: (unsigned)getTypeSize(T)); |
2727 | |
2728 | return ABIAlign; |
2729 | } |
2730 | |
2731 | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment |
2732 | /// for __attribute__((aligned)) on this target, to be used if no alignment |
2733 | /// value is specified. |
2734 | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { |
2735 | return getTargetInfo().getDefaultAlignForAttributeAligned(); |
2736 | } |
2737 | |
2738 | /// getAlignOfGlobalVar - Return the alignment in bits that should be given |
2739 | /// to a global variable of the specified type. |
2740 | unsigned ASTContext::getAlignOfGlobalVar(QualType T, const VarDecl *VD) const { |
2741 | uint64_t TypeSize = getTypeSize(T: T.getTypePtr()); |
2742 | return std::max(a: getPreferredTypeAlign(T), |
2743 | b: getMinGlobalAlignOfVar(Size: TypeSize, VD)); |
2744 | } |
2745 | |
2746 | /// getAlignOfGlobalVarInChars - Return the alignment in characters that |
2747 | /// should be given to a global variable of the specified type. |
2748 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T, |
2749 | const VarDecl *VD) const { |
2750 | return toCharUnitsFromBits(BitSize: getAlignOfGlobalVar(T, VD)); |
2751 | } |
2752 | |
2753 | unsigned ASTContext::getMinGlobalAlignOfVar(uint64_t Size, |
2754 | const VarDecl *VD) const { |
2755 | // Make the default handling as that of a non-weak definition in the |
2756 | // current translation unit. |
2757 | bool HasNonWeakDef = !VD || (VD->hasDefinition() && !VD->isWeak()); |
2758 | return getTargetInfo().getMinGlobalAlign(Size, HasNonWeakDef); |
2759 | } |
2760 | |
2761 | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { |
2762 | CharUnits Offset = CharUnits::Zero(); |
2763 | const ASTRecordLayout *Layout = &getASTRecordLayout(D: RD); |
2764 | while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { |
2765 | Offset += Layout->getBaseClassOffset(Base); |
2766 | Layout = &getASTRecordLayout(D: Base); |
2767 | } |
2768 | return Offset; |
2769 | } |
2770 | |
2771 | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { |
2772 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
2773 | CharUnits ThisAdjustment = CharUnits::Zero(); |
2774 | ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); |
2775 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
2776 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: MPD->getDeclContext()); |
2777 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
2778 | const CXXRecordDecl *Base = RD; |
2779 | const CXXRecordDecl *Derived = Path[I]; |
2780 | if (DerivedMember) |
2781 | std::swap(a&: Base, b&: Derived); |
2782 | ThisAdjustment += getASTRecordLayout(D: Derived).getBaseClassOffset(Base); |
2783 | RD = Path[I]; |
2784 | } |
2785 | if (DerivedMember) |
2786 | ThisAdjustment = -ThisAdjustment; |
2787 | return ThisAdjustment; |
2788 | } |
2789 | |
2790 | /// DeepCollectObjCIvars - |
2791 | /// This routine first collects all declared, but not synthesized, ivars in |
2792 | /// super class and then collects all ivars, including those synthesized for |
2793 | /// current class. This routine is used for implementation of current class |
2794 | /// when all ivars, declared and synthesized are known. |
2795 | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
2796 | bool leafClass, |
2797 | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
2798 | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
2799 | DeepCollectObjCIvars(OI: SuperClass, leafClass: false, Ivars); |
2800 | if (!leafClass) { |
2801 | llvm::append_range(C&: Ivars, R: OI->ivars()); |
2802 | } else { |
2803 | auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
2804 | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
2805 | Iv= Iv->getNextIvar()) |
2806 | Ivars.push_back(Elt: Iv); |
2807 | } |
2808 | } |
2809 | |
2810 | /// CollectInheritedProtocols - Collect all protocols in current class and |
2811 | /// those inherited by it. |
2812 | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
2813 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
2814 | if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
2815 | // We can use protocol_iterator here instead of |
2816 | // all_referenced_protocol_iterator since we are walking all categories. |
2817 | for (auto *Proto : OI->all_referenced_protocols()) { |
2818 | CollectInheritedProtocols(CDecl: Proto, Protocols); |
2819 | } |
2820 | |
2821 | // Categories of this Interface. |
2822 | for (const auto *Cat : OI->visible_categories()) |
2823 | CollectInheritedProtocols(CDecl: Cat, Protocols); |
2824 | |
2825 | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
2826 | while (SD) { |
2827 | CollectInheritedProtocols(CDecl: SD, Protocols); |
2828 | SD = SD->getSuperClass(); |
2829 | } |
2830 | } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
2831 | for (auto *Proto : OC->protocols()) { |
2832 | CollectInheritedProtocols(CDecl: Proto, Protocols); |
2833 | } |
2834 | } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(Val: CDecl)) { |
2835 | // Insert the protocol. |
2836 | if (!Protocols.insert( |
2837 | Ptr: const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) |
2838 | return; |
2839 | |
2840 | for (auto *Proto : OP->protocols()) |
2841 | CollectInheritedProtocols(CDecl: Proto, Protocols); |
2842 | } |
2843 | } |
2844 | |
2845 | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, |
2846 | const RecordDecl *RD, |
2847 | bool CheckIfTriviallyCopyable) { |
2848 | assert(RD->isUnion() && "Must be union type" ); |
2849 | CharUnits UnionSize = Context.getTypeSizeInChars(T: RD->getTypeForDecl()); |
2850 | |
2851 | for (const auto *Field : RD->fields()) { |
2852 | if (!Context.hasUniqueObjectRepresentations(Ty: Field->getType(), |
2853 | CheckIfTriviallyCopyable)) |
2854 | return false; |
2855 | CharUnits FieldSize = Context.getTypeSizeInChars(T: Field->getType()); |
2856 | if (FieldSize != UnionSize) |
2857 | return false; |
2858 | } |
2859 | return !RD->field_empty(); |
2860 | } |
2861 | |
2862 | static int64_t getSubobjectOffset(const FieldDecl *Field, |
2863 | const ASTContext &Context, |
2864 | const clang::ASTRecordLayout & /*Layout*/) { |
2865 | return Context.getFieldOffset(FD: Field); |
2866 | } |
2867 | |
2868 | static int64_t getSubobjectOffset(const CXXRecordDecl *RD, |
2869 | const ASTContext &Context, |
2870 | const clang::ASTRecordLayout &Layout) { |
2871 | return Context.toBits(CharSize: Layout.getBaseClassOffset(Base: RD)); |
2872 | } |
2873 | |
2874 | static std::optional<int64_t> |
2875 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
2876 | const RecordDecl *RD, |
2877 | bool CheckIfTriviallyCopyable); |
2878 | |
2879 | static std::optional<int64_t> |
2880 | getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context, |
2881 | bool CheckIfTriviallyCopyable) { |
2882 | if (Field->getType()->isRecordType()) { |
2883 | const RecordDecl *RD = Field->getType()->getAsRecordDecl(); |
2884 | if (!RD->isUnion()) |
2885 | return structHasUniqueObjectRepresentations(Context, RD, |
2886 | CheckIfTriviallyCopyable); |
2887 | } |
2888 | |
2889 | // A _BitInt type may not be unique if it has padding bits |
2890 | // but if it is a bitfield the padding bits are not used. |
2891 | bool IsBitIntType = Field->getType()->isBitIntType(); |
2892 | if (!Field->getType()->isReferenceType() && !IsBitIntType && |
2893 | !Context.hasUniqueObjectRepresentations(Ty: Field->getType(), |
2894 | CheckIfTriviallyCopyable)) |
2895 | return std::nullopt; |
2896 | |
2897 | int64_t FieldSizeInBits = |
2898 | Context.toBits(CharSize: Context.getTypeSizeInChars(T: Field->getType())); |
2899 | if (Field->isBitField()) { |
2900 | // If we have explicit padding bits, they don't contribute bits |
2901 | // to the actual object representation, so return 0. |
2902 | if (Field->isUnnamedBitField()) |
2903 | return 0; |
2904 | |
2905 | int64_t BitfieldSize = Field->getBitWidthValue(); |
2906 | if (IsBitIntType) { |
2907 | if ((unsigned)BitfieldSize > |
2908 | cast<BitIntType>(Val: Field->getType())->getNumBits()) |
2909 | return std::nullopt; |
2910 | } else if (BitfieldSize > FieldSizeInBits) { |
2911 | return std::nullopt; |
2912 | } |
2913 | FieldSizeInBits = BitfieldSize; |
2914 | } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations( |
2915 | Ty: Field->getType(), CheckIfTriviallyCopyable)) { |
2916 | return std::nullopt; |
2917 | } |
2918 | return FieldSizeInBits; |
2919 | } |
2920 | |
2921 | static std::optional<int64_t> |
2922 | getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context, |
2923 | bool CheckIfTriviallyCopyable) { |
2924 | return structHasUniqueObjectRepresentations(Context, RD, |
2925 | CheckIfTriviallyCopyable); |
2926 | } |
2927 | |
2928 | template <typename RangeT> |
2929 | static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations( |
2930 | const RangeT &Subobjects, int64_t CurOffsetInBits, |
2931 | const ASTContext &Context, const clang::ASTRecordLayout &Layout, |
2932 | bool CheckIfTriviallyCopyable) { |
2933 | for (const auto *Subobject : Subobjects) { |
2934 | std::optional<int64_t> SizeInBits = |
2935 | getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable); |
2936 | if (!SizeInBits) |
2937 | return std::nullopt; |
2938 | if (*SizeInBits != 0) { |
2939 | int64_t Offset = getSubobjectOffset(Subobject, Context, Layout); |
2940 | if (Offset != CurOffsetInBits) |
2941 | return std::nullopt; |
2942 | CurOffsetInBits += *SizeInBits; |
2943 | } |
2944 | } |
2945 | return CurOffsetInBits; |
2946 | } |
2947 | |
2948 | static std::optional<int64_t> |
2949 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
2950 | const RecordDecl *RD, |
2951 | bool CheckIfTriviallyCopyable) { |
2952 | assert(!RD->isUnion() && "Must be struct/class type" ); |
2953 | const auto &Layout = Context.getASTRecordLayout(D: RD); |
2954 | |
2955 | int64_t CurOffsetInBits = 0; |
2956 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RD)) { |
2957 | if (ClassDecl->isDynamicClass()) |
2958 | return std::nullopt; |
2959 | |
2960 | SmallVector<CXXRecordDecl *, 4> Bases; |
2961 | for (const auto &Base : ClassDecl->bases()) { |
2962 | // Empty types can be inherited from, and non-empty types can potentially |
2963 | // have tail padding, so just make sure there isn't an error. |
2964 | Bases.emplace_back(Args: Base.getType()->getAsCXXRecordDecl()); |
2965 | } |
2966 | |
2967 | llvm::sort(C&: Bases, Comp: [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { |
2968 | return Layout.getBaseClassOffset(Base: L) < Layout.getBaseClassOffset(Base: R); |
2969 | }); |
2970 | |
2971 | std::optional<int64_t> OffsetAfterBases = |
2972 | structSubobjectsHaveUniqueObjectRepresentations( |
2973 | Subobjects: Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable); |
2974 | if (!OffsetAfterBases) |
2975 | return std::nullopt; |
2976 | CurOffsetInBits = *OffsetAfterBases; |
2977 | } |
2978 | |
2979 | std::optional<int64_t> OffsetAfterFields = |
2980 | structSubobjectsHaveUniqueObjectRepresentations( |
2981 | Subobjects: RD->fields(), CurOffsetInBits, Context, Layout, |
2982 | CheckIfTriviallyCopyable); |
2983 | if (!OffsetAfterFields) |
2984 | return std::nullopt; |
2985 | CurOffsetInBits = *OffsetAfterFields; |
2986 | |
2987 | return CurOffsetInBits; |
2988 | } |
2989 | |
2990 | bool ASTContext::hasUniqueObjectRepresentations( |
2991 | QualType Ty, bool CheckIfTriviallyCopyable) const { |
2992 | // C++17 [meta.unary.prop]: |
2993 | // The predicate condition for a template specialization |
2994 | // has_unique_object_representations<T> shall be satisfied if and only if: |
2995 | // (9.1) - T is trivially copyable, and |
2996 | // (9.2) - any two objects of type T with the same value have the same |
2997 | // object representation, where: |
2998 | // - two objects of array or non-union class type are considered to have |
2999 | // the same value if their respective sequences of direct subobjects |
3000 | // have the same values, and |
3001 | // - two objects of union type are considered to have the same value if |
3002 | // they have the same active member and the corresponding members have |
3003 | // the same value. |
3004 | // The set of scalar types for which this condition holds is |
3005 | // implementation-defined. [ Note: If a type has padding bits, the condition |
3006 | // does not hold; otherwise, the condition holds true for unsigned integral |
3007 | // types. -- end note ] |
3008 | assert(!Ty.isNull() && "Null QualType sent to unique object rep check" ); |
3009 | |
3010 | // Arrays are unique only if their element type is unique. |
3011 | if (Ty->isArrayType()) |
3012 | return hasUniqueObjectRepresentations(Ty: getBaseElementType(QT: Ty), |
3013 | CheckIfTriviallyCopyable); |
3014 | |
3015 | assert((Ty->isVoidType() || !Ty->isIncompleteType()) && |
3016 | "hasUniqueObjectRepresentations should not be called with an " |
3017 | "incomplete type" ); |
3018 | |
3019 | // (9.1) - T is trivially copyable... |
3020 | if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(Context: *this)) |
3021 | return false; |
3022 | |
3023 | // All integrals and enums are unique. |
3024 | if (Ty->isIntegralOrEnumerationType()) { |
3025 | // Address discriminated integer types are not unique. |
3026 | if (Ty.hasAddressDiscriminatedPointerAuth()) |
3027 | return false; |
3028 | // Except _BitInt types that have padding bits. |
3029 | if (const auto *BIT = Ty->getAs<BitIntType>()) |
3030 | return getTypeSize(T: BIT) == BIT->getNumBits(); |
3031 | |
3032 | return true; |
3033 | } |
3034 | |
3035 | // All other pointers (except __ptrauth pointers) are unique. |
3036 | if (Ty->isPointerType()) |
3037 | return !Ty.hasAddressDiscriminatedPointerAuth(); |
3038 | |
3039 | if (const auto *MPT = Ty->getAs<MemberPointerType>()) |
3040 | return !ABI->getMemberPointerInfo(MPT).HasPadding; |
3041 | |
3042 | if (Ty->isRecordType()) { |
3043 | const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); |
3044 | |
3045 | if (Record->isInvalidDecl()) |
3046 | return false; |
3047 | |
3048 | if (Record->isUnion()) |
3049 | return unionHasUniqueObjectRepresentations(Context: *this, RD: Record, |
3050 | CheckIfTriviallyCopyable); |
3051 | |
3052 | std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations( |
3053 | Context: *this, RD: Record, CheckIfTriviallyCopyable); |
3054 | |
3055 | return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(T: Ty)); |
3056 | } |
3057 | |
3058 | // FIXME: More cases to handle here (list by rsmith): |
3059 | // vectors (careful about, eg, vector of 3 foo) |
3060 | // _Complex int and friends |
3061 | // _Atomic T |
3062 | // Obj-C block pointers |
3063 | // Obj-C object pointers |
3064 | // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, |
3065 | // clk_event_t, queue_t, reserve_id_t) |
3066 | // There're also Obj-C class types and the Obj-C selector type, but I think it |
3067 | // makes sense for those to return false here. |
3068 | |
3069 | return false; |
3070 | } |
3071 | |
3072 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
3073 | unsigned count = 0; |
3074 | // Count ivars declared in class extension. |
3075 | for (const auto *Ext : OI->known_extensions()) |
3076 | count += Ext->ivar_size(); |
3077 | |
3078 | // Count ivar defined in this class's implementation. This |
3079 | // includes synthesized ivars. |
3080 | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
3081 | count += ImplDecl->ivar_size(); |
3082 | |
3083 | return count; |
3084 | } |
3085 | |
3086 | bool ASTContext::isSentinelNullExpr(const Expr *E) { |
3087 | if (!E) |
3088 | return false; |
3089 | |
3090 | // nullptr_t is always treated as null. |
3091 | if (E->getType()->isNullPtrType()) return true; |
3092 | |
3093 | if (E->getType()->isAnyPointerType() && |
3094 | E->IgnoreParenCasts()->isNullPointerConstant(Ctx&: *this, |
3095 | NPC: Expr::NPC_ValueDependentIsNull)) |
3096 | return true; |
3097 | |
3098 | // Unfortunately, __null has type 'int'. |
3099 | if (isa<GNUNullExpr>(Val: E)) return true; |
3100 | |
3101 | return false; |
3102 | } |
3103 | |
3104 | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none |
3105 | /// exists. |
3106 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
3107 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
3108 | I = ObjCImpls.find(Val: D); |
3109 | if (I != ObjCImpls.end()) |
3110 | return cast<ObjCImplementationDecl>(Val: I->second); |
3111 | return nullptr; |
3112 | } |
3113 | |
3114 | /// Get the implementation of ObjCCategoryDecl, or nullptr if none |
3115 | /// exists. |
3116 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
3117 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
3118 | I = ObjCImpls.find(Val: D); |
3119 | if (I != ObjCImpls.end()) |
3120 | return cast<ObjCCategoryImplDecl>(Val: I->second); |
3121 | return nullptr; |
3122 | } |
3123 | |
3124 | /// Set the implementation of ObjCInterfaceDecl. |
3125 | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
3126 | ObjCImplementationDecl *ImplD) { |
3127 | assert(IFaceD && ImplD && "Passed null params" ); |
3128 | ObjCImpls[IFaceD] = ImplD; |
3129 | } |
3130 | |
3131 | /// Set the implementation of ObjCCategoryDecl. |
3132 | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
3133 | ObjCCategoryImplDecl *ImplD) { |
3134 | assert(CatD && ImplD && "Passed null params" ); |
3135 | ObjCImpls[CatD] = ImplD; |
3136 | } |
3137 | |
3138 | const ObjCMethodDecl * |
3139 | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { |
3140 | return ObjCMethodRedecls.lookup(Val: MD); |
3141 | } |
3142 | |
3143 | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, |
3144 | const ObjCMethodDecl *Redecl) { |
3145 | assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration" ); |
3146 | ObjCMethodRedecls[MD] = Redecl; |
3147 | } |
3148 | |
3149 | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( |
3150 | const NamedDecl *ND) const { |
3151 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(Val: ND->getDeclContext())) |
3152 | return ID; |
3153 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND->getDeclContext())) |
3154 | return CD->getClassInterface(); |
3155 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(Val: ND->getDeclContext())) |
3156 | return IMD->getClassInterface(); |
3157 | |
3158 | return nullptr; |
3159 | } |
3160 | |
3161 | /// Get the copy initialization expression of VarDecl, or nullptr if |
3162 | /// none exists. |
3163 | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { |
3164 | assert(VD && "Passed null params" ); |
3165 | assert(VD->hasAttr<BlocksAttr>() && |
3166 | "getBlockVarCopyInits - not __block var" ); |
3167 | auto I = BlockVarCopyInits.find(Val: VD); |
3168 | if (I != BlockVarCopyInits.end()) |
3169 | return I->second; |
3170 | return {nullptr, false}; |
3171 | } |
3172 | |
3173 | /// Set the copy initialization expression of a block var decl. |
3174 | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, |
3175 | bool CanThrow) { |
3176 | assert(VD && CopyExpr && "Passed null params" ); |
3177 | assert(VD->hasAttr<BlocksAttr>() && |
3178 | "setBlockVarCopyInits - not __block var" ); |
3179 | BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); |
3180 | } |
3181 | |
3182 | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
3183 | unsigned DataSize) const { |
3184 | if (!DataSize) |
3185 | DataSize = TypeLoc::getFullDataSizeForType(Ty: T); |
3186 | else |
3187 | assert(DataSize == TypeLoc::getFullDataSizeForType(T) && |
3188 | "incorrect data size provided to CreateTypeSourceInfo!" ); |
3189 | |
3190 | auto *TInfo = |
3191 | (TypeSourceInfo*)BumpAlloc.Allocate(Size: sizeof(TypeSourceInfo) + DataSize, Alignment: 8); |
3192 | new (TInfo) TypeSourceInfo(T, DataSize); |
3193 | return TInfo; |
3194 | } |
3195 | |
3196 | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
3197 | SourceLocation L) const { |
3198 | TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
3199 | DI->getTypeLoc().initialize(Context&: const_cast<ASTContext &>(*this), Loc: L); |
3200 | return DI; |
3201 | } |
3202 | |
3203 | const ASTRecordLayout & |
3204 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
3205 | return getObjCLayout(D); |
3206 | } |
3207 | |
3208 | static auto getCanonicalTemplateArguments(const ASTContext &C, |
3209 | ArrayRef<TemplateArgument> Args, |
3210 | bool &AnyNonCanonArgs) { |
3211 | SmallVector<TemplateArgument, 16> CanonArgs(Args); |
3212 | AnyNonCanonArgs |= C.canonicalizeTemplateArguments(Args: CanonArgs); |
3213 | return CanonArgs; |
3214 | } |
3215 | |
3216 | bool ASTContext::canonicalizeTemplateArguments( |
3217 | MutableArrayRef<TemplateArgument> Args) const { |
3218 | bool AnyNonCanonArgs = false; |
3219 | for (auto &Arg : Args) { |
3220 | TemplateArgument OrigArg = Arg; |
3221 | Arg = getCanonicalTemplateArgument(Arg); |
3222 | AnyNonCanonArgs |= !Arg.structurallyEquals(Other: OrigArg); |
3223 | } |
3224 | return AnyNonCanonArgs; |
3225 | } |
3226 | |
3227 | //===----------------------------------------------------------------------===// |
3228 | // Type creation/memoization methods |
3229 | //===----------------------------------------------------------------------===// |
3230 | |
3231 | QualType |
3232 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
3233 | unsigned fastQuals = quals.getFastQualifiers(); |
3234 | quals.removeFastQualifiers(); |
3235 | |
3236 | // Check if we've already instantiated this type. |
3237 | llvm::FoldingSetNodeID ID; |
3238 | ExtQuals::Profile(ID, BaseType: baseType, Quals: quals); |
3239 | void *insertPos = nullptr; |
3240 | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos&: insertPos)) { |
3241 | assert(eq->getQualifiers() == quals); |
3242 | return QualType(eq, fastQuals); |
3243 | } |
3244 | |
3245 | // If the base type is not canonical, make the appropriate canonical type. |
3246 | QualType canon; |
3247 | if (!baseType->isCanonicalUnqualified()) { |
3248 | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
3249 | canonSplit.Quals.addConsistentQualifiers(qs: quals); |
3250 | canon = getExtQualType(baseType: canonSplit.Ty, quals: canonSplit.Quals); |
3251 | |
3252 | // Re-find the insert position. |
3253 | (void) ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
3254 | } |
3255 | |
3256 | auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals); |
3257 | ExtQualNodes.InsertNode(N: eq, InsertPos: insertPos); |
3258 | return QualType(eq, fastQuals); |
3259 | } |
3260 | |
3261 | QualType ASTContext::getAddrSpaceQualType(QualType T, |
3262 | LangAS AddressSpace) const { |
3263 | QualType CanT = getCanonicalType(T); |
3264 | if (CanT.getAddressSpace() == AddressSpace) |
3265 | return T; |
3266 | |
3267 | // If we are composing extended qualifiers together, merge together |
3268 | // into one ExtQuals node. |
3269 | QualifierCollector Quals; |
3270 | const Type *TypeNode = Quals.strip(type: T); |
3271 | |
3272 | // If this type already has an address space specified, it cannot get |
3273 | // another one. |
3274 | assert(!Quals.hasAddressSpace() && |
3275 | "Type cannot be in multiple addr spaces!" ); |
3276 | Quals.addAddressSpace(space: AddressSpace); |
3277 | |
3278 | return getExtQualType(baseType: TypeNode, quals: Quals); |
3279 | } |
3280 | |
3281 | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { |
3282 | // If the type is not qualified with an address space, just return it |
3283 | // immediately. |
3284 | if (!T.hasAddressSpace()) |
3285 | return T; |
3286 | |
3287 | QualifierCollector Quals; |
3288 | const Type *TypeNode; |
3289 | // For arrays, strip the qualifier off the element type, then reconstruct the |
3290 | // array type |
3291 | if (T.getTypePtr()->isArrayType()) { |
3292 | T = getUnqualifiedArrayType(T, Quals); |
3293 | TypeNode = T.getTypePtr(); |
3294 | } else { |
3295 | // If we are composing extended qualifiers together, merge together |
3296 | // into one ExtQuals node. |
3297 | while (T.hasAddressSpace()) { |
3298 | TypeNode = Quals.strip(type: T); |
3299 | |
3300 | // If the type no longer has an address space after stripping qualifiers, |
3301 | // jump out. |
3302 | if (!QualType(TypeNode, 0).hasAddressSpace()) |
3303 | break; |
3304 | |
3305 | // There might be sugar in the way. Strip it and try again. |
3306 | T = T.getSingleStepDesugaredType(Context: *this); |
3307 | } |
3308 | } |
3309 | |
3310 | Quals.removeAddressSpace(); |
3311 | |
3312 | // Removal of the address space can mean there are no longer any |
3313 | // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) |
3314 | // or required. |
3315 | if (Quals.hasNonFastQualifiers()) |
3316 | return getExtQualType(baseType: TypeNode, quals: Quals); |
3317 | else |
3318 | return QualType(TypeNode, Quals.getFastQualifiers()); |
3319 | } |
3320 | |
3321 | uint16_t |
3322 | ASTContext::getPointerAuthVTablePointerDiscriminator(const CXXRecordDecl *RD) { |
3323 | assert(RD->isPolymorphic() && |
3324 | "Attempted to get vtable pointer discriminator on a monomorphic type" ); |
3325 | std::unique_ptr<MangleContext> MC(createMangleContext()); |
3326 | SmallString<256> Str; |
3327 | llvm::raw_svector_ostream Out(Str); |
3328 | MC->mangleCXXVTable(RD, Out); |
3329 | return llvm::getPointerAuthStableSipHash(S: Str); |
3330 | } |
3331 | |
3332 | /// Encode a function type for use in the discriminator of a function pointer |
3333 | /// type. We can't use the itanium scheme for this since C has quite permissive |
3334 | /// rules for type compatibility that we need to be compatible with. |
3335 | /// |
3336 | /// Formally, this function associates every function pointer type T with an |
3337 | /// encoded string E(T). Let the equivalence relation T1 ~ T2 be defined as |
3338 | /// E(T1) == E(T2). E(T) is part of the ABI of values of type T. C type |
3339 | /// compatibility requires equivalent treatment under the ABI, so |
3340 | /// CCompatible(T1, T2) must imply E(T1) == E(T2), that is, CCompatible must be |
3341 | /// a subset of ~. Crucially, however, it must be a proper subset because |
3342 | /// CCompatible is not an equivalence relation: for example, int[] is compatible |
3343 | /// with both int[1] and int[2], but the latter are not compatible with each |
3344 | /// other. Therefore this encoding function must be careful to only distinguish |
3345 | /// types if there is no third type with which they are both required to be |
3346 | /// compatible. |
3347 | static void encodeTypeForFunctionPointerAuth(const ASTContext &Ctx, |
3348 | raw_ostream &OS, QualType QT) { |
3349 | // FIXME: Consider address space qualifiers. |
3350 | const Type *T = QT.getCanonicalType().getTypePtr(); |
3351 | |
3352 | // FIXME: Consider using the C++ type mangling when we encounter a construct |
3353 | // that is incompatible with C. |
3354 | |
3355 | switch (T->getTypeClass()) { |
3356 | case Type::Atomic: |
3357 | return encodeTypeForFunctionPointerAuth( |
3358 | Ctx, OS, QT: cast<AtomicType>(Val: T)->getValueType()); |
3359 | |
3360 | case Type::LValueReference: |
3361 | OS << "R" ; |
3362 | encodeTypeForFunctionPointerAuth(Ctx, OS, |
3363 | QT: cast<ReferenceType>(Val: T)->getPointeeType()); |
3364 | return; |
3365 | case Type::RValueReference: |
3366 | OS << "O" ; |
3367 | encodeTypeForFunctionPointerAuth(Ctx, OS, |
3368 | QT: cast<ReferenceType>(Val: T)->getPointeeType()); |
3369 | return; |
3370 | |
3371 | case Type::Pointer: |
3372 | // C11 6.7.6.1p2: |
3373 | // For two pointer types to be compatible, both shall be identically |
3374 | // qualified and both shall be pointers to compatible types. |
3375 | // FIXME: we should also consider pointee types. |
3376 | OS << "P" ; |
3377 | return; |
3378 | |
3379 | case Type::ObjCObjectPointer: |
3380 | case Type::BlockPointer: |
3381 | OS << "P" ; |
3382 | return; |
3383 | |
3384 | case Type::Complex: |
3385 | OS << "C" ; |
3386 | return encodeTypeForFunctionPointerAuth( |
3387 | Ctx, OS, QT: cast<ComplexType>(Val: T)->getElementType()); |
3388 | |
3389 | case Type::VariableArray: |
3390 | case Type::ConstantArray: |
3391 | case Type::IncompleteArray: |
3392 | case Type::ArrayParameter: |
3393 | // C11 6.7.6.2p6: |
3394 | // For two array types to be compatible, both shall have compatible |
3395 | // element types, and if both size specifiers are present, and are integer |
3396 | // constant expressions, then both size specifiers shall have the same |
3397 | // constant value [...] |
3398 | // |
3399 | // So since ElemType[N] has to be compatible ElemType[], we can't encode the |
3400 | // width of the array. |
3401 | OS << "A" ; |
3402 | return encodeTypeForFunctionPointerAuth( |
3403 | Ctx, OS, QT: cast<ArrayType>(Val: T)->getElementType()); |
3404 | |
3405 | case Type::ObjCInterface: |
3406 | case Type::ObjCObject: |
3407 | OS << "<objc_object>" ; |
3408 | return; |
3409 | |
3410 | case Type::Enum: { |
3411 | // C11 6.7.2.2p4: |
3412 | // Each enumerated type shall be compatible with char, a signed integer |
3413 | // type, or an unsigned integer type. |
3414 | // |
3415 | // So we have to treat enum types as integers. |
3416 | QualType UnderlyingType = cast<EnumType>(Val: T)->getDecl()->getIntegerType(); |
3417 | return encodeTypeForFunctionPointerAuth( |
3418 | Ctx, OS, QT: UnderlyingType.isNull() ? Ctx.IntTy : UnderlyingType); |
3419 | } |
3420 | |
3421 | case Type::FunctionNoProto: |
3422 | case Type::FunctionProto: { |
3423 | // C11 6.7.6.3p15: |
3424 | // For two function types to be compatible, both shall specify compatible |
3425 | // return types. Moreover, the parameter type lists, if both are present, |
3426 | // shall agree in the number of parameters and in the use of the ellipsis |
3427 | // terminator; corresponding parameters shall have compatible types. |
3428 | // |
3429 | // That paragraph goes on to describe how unprototyped functions are to be |
3430 | // handled, which we ignore here. Unprototyped function pointers are hashed |
3431 | // as though they were prototyped nullary functions since thats probably |
3432 | // what the user meant. This behavior is non-conforming. |
3433 | // FIXME: If we add a "custom discriminator" function type attribute we |
3434 | // should encode functions as their discriminators. |
3435 | OS << "F" ; |
3436 | const auto *FuncType = cast<FunctionType>(Val: T); |
3437 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: FuncType->getReturnType()); |
3438 | if (const auto *FPT = dyn_cast<FunctionProtoType>(Val: FuncType)) { |
3439 | for (QualType Param : FPT->param_types()) { |
3440 | Param = Ctx.getSignatureParameterType(T: Param); |
3441 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: Param); |
3442 | } |
3443 | if (FPT->isVariadic()) |
3444 | OS << "z" ; |
3445 | } |
3446 | OS << "E" ; |
3447 | return; |
3448 | } |
3449 | |
3450 | case Type::MemberPointer: { |
3451 | OS << "M" ; |
3452 | const auto *MPT = T->castAs<MemberPointerType>(); |
3453 | encodeTypeForFunctionPointerAuth( |
3454 | Ctx, OS, QT: QualType(MPT->getQualifier()->getAsType(), 0)); |
3455 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: MPT->getPointeeType()); |
3456 | return; |
3457 | } |
3458 | case Type::ExtVector: |
3459 | case Type::Vector: |
3460 | OS << "Dv" << Ctx.getTypeSizeInChars(T).getQuantity(); |
3461 | break; |
3462 | |
3463 | // Don't bother discriminating based on these types. |
3464 | case Type::Pipe: |
3465 | case Type::BitInt: |
3466 | case Type::ConstantMatrix: |
3467 | OS << "?" ; |
3468 | return; |
3469 | |
3470 | case Type::Builtin: { |
3471 | const auto *BTy = T->castAs<BuiltinType>(); |
3472 | switch (BTy->getKind()) { |
3473 | #define SIGNED_TYPE(Id, SingletonId) \ |
3474 | case BuiltinType::Id: \ |
3475 | OS << "i"; \ |
3476 | return; |
3477 | #define UNSIGNED_TYPE(Id, SingletonId) \ |
3478 | case BuiltinType::Id: \ |
3479 | OS << "i"; \ |
3480 | return; |
3481 | #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: |
3482 | #define BUILTIN_TYPE(Id, SingletonId) |
3483 | #include "clang/AST/BuiltinTypes.def" |
3484 | llvm_unreachable("placeholder types should not appear here." ); |
3485 | |
3486 | case BuiltinType::Half: |
3487 | OS << "Dh" ; |
3488 | return; |
3489 | case BuiltinType::Float: |
3490 | OS << "f" ; |
3491 | return; |
3492 | case BuiltinType::Double: |
3493 | OS << "d" ; |
3494 | return; |
3495 | case BuiltinType::LongDouble: |
3496 | OS << "e" ; |
3497 | return; |
3498 | case BuiltinType::Float16: |
3499 | OS << "DF16_" ; |
3500 | return; |
3501 | case BuiltinType::Float128: |
3502 | OS << "g" ; |
3503 | return; |
3504 | |
3505 | case BuiltinType::Void: |
3506 | OS << "v" ; |
3507 | return; |
3508 | |
3509 | case BuiltinType::ObjCId: |
3510 | case BuiltinType::ObjCClass: |
3511 | case BuiltinType::ObjCSel: |
3512 | case BuiltinType::NullPtr: |
3513 | OS << "P" ; |
3514 | return; |
3515 | |
3516 | // Don't bother discriminating based on OpenCL types. |
3517 | case BuiltinType::OCLSampler: |
3518 | case BuiltinType::OCLEvent: |
3519 | case BuiltinType::OCLClkEvent: |
3520 | case BuiltinType::OCLQueue: |
3521 | case BuiltinType::OCLReserveID: |
3522 | case BuiltinType::BFloat16: |
3523 | case BuiltinType::VectorQuad: |
3524 | case BuiltinType::VectorPair: |
3525 | case BuiltinType::DMR1024: |
3526 | OS << "?" ; |
3527 | return; |
3528 | |
3529 | // Don't bother discriminating based on these seldom-used types. |
3530 | case BuiltinType::Ibm128: |
3531 | return; |
3532 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3533 | case BuiltinType::Id: \ |
3534 | return; |
3535 | #include "clang/Basic/OpenCLImageTypes.def" |
3536 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3537 | case BuiltinType::Id: \ |
3538 | return; |
3539 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3540 | #define SVE_TYPE(Name, Id, SingletonId) \ |
3541 | case BuiltinType::Id: \ |
3542 | return; |
3543 | #include "clang/Basic/AArch64ACLETypes.def" |
3544 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
3545 | case BuiltinType::Id: \ |
3546 | return; |
3547 | #include "clang/Basic/HLSLIntangibleTypes.def" |
3548 | case BuiltinType::Dependent: |
3549 | llvm_unreachable("should never get here" ); |
3550 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
3551 | #include "clang/Basic/AMDGPUTypes.def" |
3552 | case BuiltinType::WasmExternRef: |
3553 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
3554 | #include "clang/Basic/RISCVVTypes.def" |
3555 | llvm_unreachable("not yet implemented" ); |
3556 | } |
3557 | llvm_unreachable("should never get here" ); |
3558 | } |
3559 | case Type::Record: { |
3560 | const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); |
3561 | const IdentifierInfo *II = RD->getIdentifier(); |
3562 | |
3563 | // In C++, an immediate typedef of an anonymous struct or union |
3564 | // is considered to name it for ODR purposes, but C's specification |
3565 | // of type compatibility does not have a similar rule. Using the typedef |
3566 | // name in function type discriminators anyway, as we do here, |
3567 | // therefore technically violates the C standard: two function pointer |
3568 | // types defined in terms of two typedef'd anonymous structs with |
3569 | // different names are formally still compatible, but we are assigning |
3570 | // them different discriminators and therefore incompatible ABIs. |
3571 | // |
3572 | // This is a relatively minor violation that significantly improves |
3573 | // discrimination in some cases and has not caused problems in |
3574 | // practice. Regardless, it is now part of the ABI in places where |
3575 | // function type discrimination is used, and it can no longer be |
3576 | // changed except on new platforms. |
3577 | |
3578 | if (!II) |
3579 | if (const TypedefNameDecl *Typedef = RD->getTypedefNameForAnonDecl()) |
3580 | II = Typedef->getDeclName().getAsIdentifierInfo(); |
3581 | |
3582 | if (!II) { |
3583 | OS << "<anonymous_record>" ; |
3584 | return; |
3585 | } |
3586 | OS << II->getLength() << II->getName(); |
3587 | return; |
3588 | } |
3589 | case Type::HLSLAttributedResource: |
3590 | case Type::HLSLInlineSpirv: |
3591 | llvm_unreachable("should never get here" ); |
3592 | break; |
3593 | case Type::DeducedTemplateSpecialization: |
3594 | case Type::Auto: |
3595 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3596 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
3597 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
3598 | #define ABSTRACT_TYPE(Class, Base) |
3599 | #define TYPE(Class, Base) |
3600 | #include "clang/AST/TypeNodes.inc" |
3601 | llvm_unreachable("unexpected non-canonical or dependent type!" ); |
3602 | return; |
3603 | } |
3604 | } |
3605 | |
3606 | uint16_t ASTContext::getPointerAuthTypeDiscriminator(QualType T) { |
3607 | assert(!T->isDependentType() && |
3608 | "cannot compute type discriminator of a dependent type" ); |
3609 | |
3610 | SmallString<256> Str; |
3611 | llvm::raw_svector_ostream Out(Str); |
3612 | |
3613 | if (T->isFunctionPointerType() || T->isFunctionReferenceType()) |
3614 | T = T->getPointeeType(); |
3615 | |
3616 | if (T->isFunctionType()) { |
3617 | encodeTypeForFunctionPointerAuth(Ctx: *this, OS&: Out, QT: T); |
3618 | } else { |
3619 | T = T.getUnqualifiedType(); |
3620 | // Calls to member function pointers don't need to worry about |
3621 | // language interop or the laxness of the C type compatibility rules. |
3622 | // We just mangle the member pointer type directly, which is |
3623 | // implicitly much stricter about type matching. However, we do |
3624 | // strip any top-level exception specification before this mangling. |
3625 | // C++23 requires calls to work when the function type is convertible |
3626 | // to the pointer type by a function pointer conversion, which can |
3627 | // change the exception specification. This does not technically |
3628 | // require the exception specification to not affect representation, |
3629 | // because the function pointer conversion is still always a direct |
3630 | // value conversion and therefore an opportunity to resign the |
3631 | // pointer. (This is in contrast to e.g. qualification conversions, |
3632 | // which can be applied in nested pointer positions, effectively |
3633 | // requiring qualified and unqualified representations to match.) |
3634 | // However, it is pragmatic to ignore exception specifications |
3635 | // because it allows a certain amount of `noexcept` mismatching |
3636 | // to not become a visible ODR problem. This also leaves some |
3637 | // room for the committee to add laxness to function pointer |
3638 | // conversions in future standards. |
3639 | if (auto *MPT = T->getAs<MemberPointerType>()) |
3640 | if (MPT->isMemberFunctionPointer()) { |
3641 | QualType PointeeType = MPT->getPointeeType(); |
3642 | if (PointeeType->castAs<FunctionProtoType>()->getExceptionSpecType() != |
3643 | EST_None) { |
3644 | QualType FT = getFunctionTypeWithExceptionSpec(Orig: PointeeType, ESI: EST_None); |
3645 | T = getMemberPointerType(T: FT, Qualifier: MPT->getQualifier(), |
3646 | Cls: MPT->getMostRecentCXXRecordDecl()); |
3647 | } |
3648 | } |
3649 | std::unique_ptr<MangleContext> MC(createMangleContext()); |
3650 | MC->mangleCanonicalTypeName(T, Out); |
3651 | } |
3652 | |
3653 | return llvm::getPointerAuthStableSipHash(S: Str); |
3654 | } |
3655 | |
3656 | QualType ASTContext::getObjCGCQualType(QualType T, |
3657 | Qualifiers::GC GCAttr) const { |
3658 | QualType CanT = getCanonicalType(T); |
3659 | if (CanT.getObjCGCAttr() == GCAttr) |
3660 | return T; |
3661 | |
3662 | if (const auto *ptr = T->getAs<PointerType>()) { |
3663 | QualType Pointee = ptr->getPointeeType(); |
3664 | if (Pointee->isAnyPointerType()) { |
3665 | QualType ResultType = getObjCGCQualType(T: Pointee, GCAttr); |
3666 | return getPointerType(T: ResultType); |
3667 | } |
3668 | } |
3669 | |
3670 | // If we are composing extended qualifiers together, merge together |
3671 | // into one ExtQuals node. |
3672 | QualifierCollector Quals; |
3673 | const Type *TypeNode = Quals.strip(type: T); |
3674 | |
3675 | // If this type already has an ObjCGC specified, it cannot get |
3676 | // another one. |
3677 | assert(!Quals.hasObjCGCAttr() && |
3678 | "Type cannot have multiple ObjCGCs!" ); |
3679 | Quals.addObjCGCAttr(type: GCAttr); |
3680 | |
3681 | return getExtQualType(baseType: TypeNode, quals: Quals); |
3682 | } |
3683 | |
3684 | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { |
3685 | if (const PointerType *Ptr = T->getAs<PointerType>()) { |
3686 | QualType Pointee = Ptr->getPointeeType(); |
3687 | if (isPtrSizeAddressSpace(AS: Pointee.getAddressSpace())) { |
3688 | return getPointerType(T: removeAddrSpaceQualType(T: Pointee)); |
3689 | } |
3690 | } |
3691 | return T; |
3692 | } |
3693 | |
3694 | QualType ASTContext::getCountAttributedType( |
3695 | QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull, |
3696 | ArrayRef<TypeCoupledDeclRefInfo> DependentDecls) const { |
3697 | assert(WrappedTy->isPointerType() || WrappedTy->isArrayType()); |
3698 | |
3699 | llvm::FoldingSetNodeID ID; |
3700 | CountAttributedType::Profile(ID, WrappedTy, CountExpr, CountInBytes, Nullable: OrNull); |
3701 | |
3702 | void *InsertPos = nullptr; |
3703 | CountAttributedType *CATy = |
3704 | CountAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3705 | if (CATy) |
3706 | return QualType(CATy, 0); |
3707 | |
3708 | QualType CanonTy = getCanonicalType(T: WrappedTy); |
3709 | size_t Size = CountAttributedType::totalSizeToAlloc<TypeCoupledDeclRefInfo>( |
3710 | Counts: DependentDecls.size()); |
3711 | CATy = (CountAttributedType *)Allocate(Size, Align: TypeAlignment); |
3712 | new (CATy) CountAttributedType(WrappedTy, CanonTy, CountExpr, CountInBytes, |
3713 | OrNull, DependentDecls); |
3714 | Types.push_back(Elt: CATy); |
3715 | CountAttributedTypes.InsertNode(N: CATy, InsertPos); |
3716 | |
3717 | return QualType(CATy, 0); |
3718 | } |
3719 | |
3720 | QualType |
3721 | ASTContext::adjustType(QualType Orig, |
3722 | llvm::function_ref<QualType(QualType)> Adjust) const { |
3723 | switch (Orig->getTypeClass()) { |
3724 | case Type::Attributed: { |
3725 | const auto *AT = cast<AttributedType>(Val&: Orig); |
3726 | return getAttributedType(attrKind: AT->getAttrKind(), |
3727 | modifiedType: adjustType(Orig: AT->getModifiedType(), Adjust), |
3728 | equivalentType: adjustType(Orig: AT->getEquivalentType(), Adjust), |
3729 | attr: AT->getAttr()); |
3730 | } |
3731 | |
3732 | case Type::BTFTagAttributed: { |
3733 | const auto *BTFT = dyn_cast<BTFTagAttributedType>(Val&: Orig); |
3734 | return getBTFTagAttributedType(BTFAttr: BTFT->getAttr(), |
3735 | Wrapped: adjustType(Orig: BTFT->getWrappedType(), Adjust)); |
3736 | } |
3737 | |
3738 | case Type::Elaborated: { |
3739 | const auto *ET = cast<ElaboratedType>(Val&: Orig); |
3740 | return getElaboratedType(Keyword: ET->getKeyword(), NNS: ET->getQualifier(), |
3741 | NamedType: adjustType(Orig: ET->getNamedType(), Adjust)); |
3742 | } |
3743 | |
3744 | case Type::Paren: |
3745 | return getParenType( |
3746 | NamedType: adjustType(Orig: cast<ParenType>(Val&: Orig)->getInnerType(), Adjust)); |
3747 | |
3748 | case Type::Adjusted: { |
3749 | const auto *AT = cast<AdjustedType>(Val&: Orig); |
3750 | return getAdjustedType(Orig: AT->getOriginalType(), |
3751 | New: adjustType(Orig: AT->getAdjustedType(), Adjust)); |
3752 | } |
3753 | |
3754 | case Type::MacroQualified: { |
3755 | const auto *MQT = cast<MacroQualifiedType>(Val&: Orig); |
3756 | return getMacroQualifiedType(UnderlyingTy: adjustType(Orig: MQT->getUnderlyingType(), Adjust), |
3757 | MacroII: MQT->getMacroIdentifier()); |
3758 | } |
3759 | |
3760 | default: |
3761 | return Adjust(Orig); |
3762 | } |
3763 | } |
3764 | |
3765 | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
3766 | FunctionType::ExtInfo Info) { |
3767 | if (T->getExtInfo() == Info) |
3768 | return T; |
3769 | |
3770 | QualType Result; |
3771 | if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(Val: T)) { |
3772 | Result = getFunctionNoProtoType(ResultTy: FNPT->getReturnType(), Info); |
3773 | } else { |
3774 | const auto *FPT = cast<FunctionProtoType>(Val: T); |
3775 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
3776 | EPI.ExtInfo = Info; |
3777 | Result = getFunctionType(ResultTy: FPT->getReturnType(), Args: FPT->getParamTypes(), EPI); |
3778 | } |
3779 | |
3780 | return cast<FunctionType>(Val: Result.getTypePtr()); |
3781 | } |
3782 | |
3783 | QualType ASTContext::adjustFunctionResultType(QualType FunctionType, |
3784 | QualType ResultType) { |
3785 | return adjustType(Orig: FunctionType, Adjust: [&](QualType Orig) { |
3786 | if (const auto *FNPT = Orig->getAs<FunctionNoProtoType>()) |
3787 | return getFunctionNoProtoType(ResultTy: ResultType, Info: FNPT->getExtInfo()); |
3788 | |
3789 | const auto *FPT = Orig->castAs<FunctionProtoType>(); |
3790 | return getFunctionType(ResultTy: ResultType, Args: FPT->getParamTypes(), |
3791 | EPI: FPT->getExtProtoInfo()); |
3792 | }); |
3793 | } |
3794 | |
3795 | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, |
3796 | QualType ResultType) { |
3797 | FD = FD->getMostRecentDecl(); |
3798 | while (true) { |
3799 | FD->setType(adjustFunctionResultType(FunctionType: FD->getType(), ResultType)); |
3800 | if (FunctionDecl *Next = FD->getPreviousDecl()) |
3801 | FD = Next; |
3802 | else |
3803 | break; |
3804 | } |
3805 | if (ASTMutationListener *L = getASTMutationListener()) |
3806 | L->DeducedReturnType(FD, ReturnType: ResultType); |
3807 | } |
3808 | |
3809 | /// Get a function type and produce the equivalent function type with the |
3810 | /// specified exception specification. Type sugar that can be present on a |
3811 | /// declaration of a function with an exception specification is permitted |
3812 | /// and preserved. Other type sugar (for instance, typedefs) is not. |
3813 | QualType ASTContext::getFunctionTypeWithExceptionSpec( |
3814 | QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const { |
3815 | return adjustType(Orig, Adjust: [&](QualType Ty) { |
3816 | const auto *Proto = Ty->castAs<FunctionProtoType>(); |
3817 | return getFunctionType(ResultTy: Proto->getReturnType(), Args: Proto->getParamTypes(), |
3818 | EPI: Proto->getExtProtoInfo().withExceptionSpec(ESI)); |
3819 | }); |
3820 | } |
3821 | |
3822 | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, |
3823 | QualType U) const { |
3824 | return hasSameType(T1: T, T2: U) || |
3825 | (getLangOpts().CPlusPlus17 && |
3826 | hasSameType(T1: getFunctionTypeWithExceptionSpec(Orig: T, ESI: EST_None), |
3827 | T2: getFunctionTypeWithExceptionSpec(Orig: U, ESI: EST_None))); |
3828 | } |
3829 | |
3830 | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { |
3831 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
3832 | QualType RetTy = removePtrSizeAddrSpace(T: Proto->getReturnType()); |
3833 | SmallVector<QualType, 16> Args(Proto->param_types().size()); |
3834 | for (unsigned i = 0, n = Args.size(); i != n; ++i) |
3835 | Args[i] = removePtrSizeAddrSpace(T: Proto->param_types()[i]); |
3836 | return getFunctionType(ResultTy: RetTy, Args, EPI: Proto->getExtProtoInfo()); |
3837 | } |
3838 | |
3839 | if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { |
3840 | QualType RetTy = removePtrSizeAddrSpace(T: Proto->getReturnType()); |
3841 | return getFunctionNoProtoType(ResultTy: RetTy, Info: Proto->getExtInfo()); |
3842 | } |
3843 | |
3844 | return T; |
3845 | } |
3846 | |
3847 | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { |
3848 | return hasSameType(T1: T, T2: U) || |
3849 | hasSameType(T1: getFunctionTypeWithoutPtrSizes(T), |
3850 | T2: getFunctionTypeWithoutPtrSizes(T: U)); |
3851 | } |
3852 | |
3853 | QualType ASTContext::getFunctionTypeWithoutParamABIs(QualType T) const { |
3854 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
3855 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
3856 | EPI.ExtParameterInfos = nullptr; |
3857 | return getFunctionType(ResultTy: Proto->getReturnType(), Args: Proto->param_types(), EPI); |
3858 | } |
3859 | return T; |
3860 | } |
3861 | |
3862 | bool ASTContext::hasSameFunctionTypeIgnoringParamABI(QualType T, |
3863 | QualType U) const { |
3864 | return hasSameType(T1: T, T2: U) || hasSameType(T1: getFunctionTypeWithoutParamABIs(T), |
3865 | T2: getFunctionTypeWithoutParamABIs(T: U)); |
3866 | } |
3867 | |
3868 | void ASTContext::adjustExceptionSpec( |
3869 | FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, |
3870 | bool AsWritten) { |
3871 | // Update the type. |
3872 | QualType Updated = |
3873 | getFunctionTypeWithExceptionSpec(Orig: FD->getType(), ESI); |
3874 | FD->setType(Updated); |
3875 | |
3876 | if (!AsWritten) |
3877 | return; |
3878 | |
3879 | // Update the type in the type source information too. |
3880 | if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { |
3881 | // If the type and the type-as-written differ, we may need to update |
3882 | // the type-as-written too. |
3883 | if (TSInfo->getType() != FD->getType()) |
3884 | Updated = getFunctionTypeWithExceptionSpec(Orig: TSInfo->getType(), ESI); |
3885 | |
3886 | // FIXME: When we get proper type location information for exceptions, |
3887 | // we'll also have to rebuild the TypeSourceInfo. For now, we just patch |
3888 | // up the TypeSourceInfo; |
3889 | assert(TypeLoc::getFullDataSizeForType(Updated) == |
3890 | TypeLoc::getFullDataSizeForType(TSInfo->getType()) && |
3891 | "TypeLoc size mismatch from updating exception specification" ); |
3892 | TSInfo->overrideType(T: Updated); |
3893 | } |
3894 | } |
3895 | |
3896 | /// getComplexType - Return the uniqued reference to the type for a complex |
3897 | /// number with the specified element type. |
3898 | QualType ASTContext::getComplexType(QualType T) const { |
3899 | // Unique pointers, to guarantee there is only one pointer of a particular |
3900 | // structure. |
3901 | llvm::FoldingSetNodeID ID; |
3902 | ComplexType::Profile(ID, Element: T); |
3903 | |
3904 | void *InsertPos = nullptr; |
3905 | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3906 | return QualType(CT, 0); |
3907 | |
3908 | // If the pointee type isn't canonical, this won't be a canonical type either, |
3909 | // so fill in the canonical type field. |
3910 | QualType Canonical; |
3911 | if (!T.isCanonical()) { |
3912 | Canonical = getComplexType(T: getCanonicalType(T)); |
3913 | |
3914 | // Get the new insert position for the node we care about. |
3915 | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
3916 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3917 | } |
3918 | auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical); |
3919 | Types.push_back(Elt: New); |
3920 | ComplexTypes.InsertNode(N: New, InsertPos); |
3921 | return QualType(New, 0); |
3922 | } |
3923 | |
3924 | /// getPointerType - Return the uniqued reference to the type for a pointer to |
3925 | /// the specified type. |
3926 | QualType ASTContext::getPointerType(QualType T) const { |
3927 | // Unique pointers, to guarantee there is only one pointer of a particular |
3928 | // structure. |
3929 | llvm::FoldingSetNodeID ID; |
3930 | PointerType::Profile(ID, Pointee: T); |
3931 | |
3932 | void *InsertPos = nullptr; |
3933 | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3934 | return QualType(PT, 0); |
3935 | |
3936 | // If the pointee type isn't canonical, this won't be a canonical type either, |
3937 | // so fill in the canonical type field. |
3938 | QualType Canonical; |
3939 | if (!T.isCanonical()) { |
3940 | Canonical = getPointerType(T: getCanonicalType(T)); |
3941 | |
3942 | // Get the new insert position for the node we care about. |
3943 | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3944 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
3945 | } |
3946 | auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical); |
3947 | Types.push_back(Elt: New); |
3948 | PointerTypes.InsertNode(N: New, InsertPos); |
3949 | return QualType(New, 0); |
3950 | } |
3951 | |
3952 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { |
3953 | llvm::FoldingSetNodeID ID; |
3954 | AdjustedType::Profile(ID, Orig, New); |
3955 | void *InsertPos = nullptr; |
3956 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3957 | if (AT) |
3958 | return QualType(AT, 0); |
3959 | |
3960 | QualType Canonical = getCanonicalType(T: New); |
3961 | |
3962 | // Get the new insert position for the node we care about. |
3963 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3964 | assert(!AT && "Shouldn't be in the map!" ); |
3965 | |
3966 | AT = new (*this, alignof(AdjustedType)) |
3967 | AdjustedType(Type::Adjusted, Orig, New, Canonical); |
3968 | Types.push_back(Elt: AT); |
3969 | AdjustedTypes.InsertNode(N: AT, InsertPos); |
3970 | return QualType(AT, 0); |
3971 | } |
3972 | |
3973 | QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const { |
3974 | llvm::FoldingSetNodeID ID; |
3975 | AdjustedType::Profile(ID, Orig, New: Decayed); |
3976 | void *InsertPos = nullptr; |
3977 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3978 | if (AT) |
3979 | return QualType(AT, 0); |
3980 | |
3981 | QualType Canonical = getCanonicalType(T: Decayed); |
3982 | |
3983 | // Get the new insert position for the node we care about. |
3984 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3985 | assert(!AT && "Shouldn't be in the map!" ); |
3986 | |
3987 | AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical); |
3988 | Types.push_back(Elt: AT); |
3989 | AdjustedTypes.InsertNode(N: AT, InsertPos); |
3990 | return QualType(AT, 0); |
3991 | } |
3992 | |
3993 | QualType ASTContext::getDecayedType(QualType T) const { |
3994 | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay" ); |
3995 | |
3996 | QualType Decayed; |
3997 | |
3998 | // C99 6.7.5.3p7: |
3999 | // A declaration of a parameter as "array of type" shall be |
4000 | // adjusted to "qualified pointer to type", where the type |
4001 | // qualifiers (if any) are those specified within the [ and ] of |
4002 | // the array type derivation. |
4003 | if (T->isArrayType()) |
4004 | Decayed = getArrayDecayedType(T); |
4005 | |
4006 | // C99 6.7.5.3p8: |
4007 | // A declaration of a parameter as "function returning type" |
4008 | // shall be adjusted to "pointer to function returning type", as |
4009 | // in 6.3.2.1. |
4010 | if (T->isFunctionType()) |
4011 | Decayed = getPointerType(T); |
4012 | |
4013 | return getDecayedType(Orig: T, Decayed); |
4014 | } |
4015 | |
4016 | QualType ASTContext::getArrayParameterType(QualType Ty) const { |
4017 | if (Ty->isArrayParameterType()) |
4018 | return Ty; |
4019 | assert(Ty->isConstantArrayType() && "Ty must be an array type." ); |
4020 | QualType DTy = Ty.getDesugaredType(Context: *this); |
4021 | const auto *ATy = cast<ConstantArrayType>(Val&: DTy); |
4022 | llvm::FoldingSetNodeID ID; |
4023 | ATy->Profile(ID, Ctx: *this, ET: ATy->getElementType(), ArraySize: ATy->getZExtSize(), |
4024 | SizeExpr: ATy->getSizeExpr(), SizeMod: ATy->getSizeModifier(), |
4025 | TypeQuals: ATy->getIndexTypeQualifiers().getAsOpaqueValue()); |
4026 | void *InsertPos = nullptr; |
4027 | ArrayParameterType *AT = |
4028 | ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); |
4029 | if (AT) |
4030 | return QualType(AT, 0); |
4031 | |
4032 | QualType Canonical; |
4033 | if (!DTy.isCanonical()) { |
4034 | Canonical = getArrayParameterType(Ty: getCanonicalType(T: Ty)); |
4035 | |
4036 | // Get the new insert position for the node we care about. |
4037 | AT = ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); |
4038 | assert(!AT && "Shouldn't be in the map!" ); |
4039 | } |
4040 | |
4041 | AT = new (*this, alignof(ArrayParameterType)) |
4042 | ArrayParameterType(ATy, Canonical); |
4043 | Types.push_back(Elt: AT); |
4044 | ArrayParameterTypes.InsertNode(N: AT, InsertPos); |
4045 | return QualType(AT, 0); |
4046 | } |
4047 | |
4048 | /// getBlockPointerType - Return the uniqued reference to the type for |
4049 | /// a pointer to the specified block. |
4050 | QualType ASTContext::getBlockPointerType(QualType T) const { |
4051 | assert(T->isFunctionType() && "block of function types only" ); |
4052 | // Unique pointers, to guarantee there is only one block of a particular |
4053 | // structure. |
4054 | llvm::FoldingSetNodeID ID; |
4055 | BlockPointerType::Profile(ID, Pointee: T); |
4056 | |
4057 | void *InsertPos = nullptr; |
4058 | if (BlockPointerType *PT = |
4059 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4060 | return QualType(PT, 0); |
4061 | |
4062 | // If the block pointee type isn't canonical, this won't be a canonical |
4063 | // type either so fill in the canonical type field. |
4064 | QualType Canonical; |
4065 | if (!T.isCanonical()) { |
4066 | Canonical = getBlockPointerType(T: getCanonicalType(T)); |
4067 | |
4068 | // Get the new insert position for the node we care about. |
4069 | BlockPointerType *NewIP = |
4070 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
4071 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4072 | } |
4073 | auto *New = |
4074 | new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical); |
4075 | Types.push_back(Elt: New); |
4076 | BlockPointerTypes.InsertNode(N: New, InsertPos); |
4077 | return QualType(New, 0); |
4078 | } |
4079 | |
4080 | /// getLValueReferenceType - Return the uniqued reference to the type for an |
4081 | /// lvalue reference to the specified type. |
4082 | QualType |
4083 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
4084 | assert((!T->isPlaceholderType() || |
4085 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
4086 | "Unresolved placeholder type" ); |
4087 | |
4088 | // Unique pointers, to guarantee there is only one pointer of a particular |
4089 | // structure. |
4090 | llvm::FoldingSetNodeID ID; |
4091 | ReferenceType::Profile(ID, Referencee: T, SpelledAsLValue); |
4092 | |
4093 | void *InsertPos = nullptr; |
4094 | if (LValueReferenceType *RT = |
4095 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4096 | return QualType(RT, 0); |
4097 | |
4098 | const auto *InnerRef = T->getAs<ReferenceType>(); |
4099 | |
4100 | // If the referencee type isn't canonical, this won't be a canonical type |
4101 | // either, so fill in the canonical type field. |
4102 | QualType Canonical; |
4103 | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
4104 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
4105 | Canonical = getLValueReferenceType(T: getCanonicalType(T: PointeeType)); |
4106 | |
4107 | // Get the new insert position for the node we care about. |
4108 | LValueReferenceType *NewIP = |
4109 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
4110 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4111 | } |
4112 | |
4113 | auto *New = new (*this, alignof(LValueReferenceType)) |
4114 | LValueReferenceType(T, Canonical, SpelledAsLValue); |
4115 | Types.push_back(Elt: New); |
4116 | LValueReferenceTypes.InsertNode(N: New, InsertPos); |
4117 | |
4118 | return QualType(New, 0); |
4119 | } |
4120 | |
4121 | /// getRValueReferenceType - Return the uniqued reference to the type for an |
4122 | /// rvalue reference to the specified type. |
4123 | QualType ASTContext::getRValueReferenceType(QualType T) const { |
4124 | assert((!T->isPlaceholderType() || |
4125 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
4126 | "Unresolved placeholder type" ); |
4127 | |
4128 | // Unique pointers, to guarantee there is only one pointer of a particular |
4129 | // structure. |
4130 | llvm::FoldingSetNodeID ID; |
4131 | ReferenceType::Profile(ID, Referencee: T, SpelledAsLValue: false); |
4132 | |
4133 | void *InsertPos = nullptr; |
4134 | if (RValueReferenceType *RT = |
4135 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4136 | return QualType(RT, 0); |
4137 | |
4138 | const auto *InnerRef = T->getAs<ReferenceType>(); |
4139 | |
4140 | // If the referencee type isn't canonical, this won't be a canonical type |
4141 | // either, so fill in the canonical type field. |
4142 | QualType Canonical; |
4143 | if (InnerRef || !T.isCanonical()) { |
4144 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
4145 | Canonical = getRValueReferenceType(T: getCanonicalType(T: PointeeType)); |
4146 | |
4147 | // Get the new insert position for the node we care about. |
4148 | RValueReferenceType *NewIP = |
4149 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
4150 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4151 | } |
4152 | |
4153 | auto *New = new (*this, alignof(RValueReferenceType)) |
4154 | RValueReferenceType(T, Canonical); |
4155 | Types.push_back(Elt: New); |
4156 | RValueReferenceTypes.InsertNode(N: New, InsertPos); |
4157 | return QualType(New, 0); |
4158 | } |
4159 | |
4160 | QualType ASTContext::getMemberPointerType(QualType T, |
4161 | NestedNameSpecifier *Qualifier, |
4162 | const CXXRecordDecl *Cls) const { |
4163 | if (!Qualifier) { |
4164 | assert(Cls && "At least one of Qualifier or Cls must be provided" ); |
4165 | Qualifier = NestedNameSpecifier::Create(Context: *this, /*Prefix=*/nullptr, |
4166 | T: getTypeDeclType(Decl: Cls).getTypePtr()); |
4167 | } else if (!Cls) { |
4168 | Cls = Qualifier->getAsRecordDecl(); |
4169 | } |
4170 | // Unique pointers, to guarantee there is only one pointer of a particular |
4171 | // structure. |
4172 | llvm::FoldingSetNodeID ID; |
4173 | MemberPointerType::Profile(ID, Pointee: T, Qualifier, Cls); |
4174 | |
4175 | void *InsertPos = nullptr; |
4176 | if (MemberPointerType *PT = |
4177 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4178 | return QualType(PT, 0); |
4179 | |
4180 | NestedNameSpecifier *CanonicalQualifier = [&] { |
4181 | if (!Cls) |
4182 | return getCanonicalNestedNameSpecifier(NNS: Qualifier); |
4183 | NestedNameSpecifier *R = NestedNameSpecifier::Create( |
4184 | Context: *this, /*Prefix=*/nullptr, T: Cls->getCanonicalDecl()->getTypeForDecl()); |
4185 | assert(R == getCanonicalNestedNameSpecifier(R)); |
4186 | return R; |
4187 | }(); |
4188 | // If the pointee or class type isn't canonical, this won't be a canonical |
4189 | // type either, so fill in the canonical type field. |
4190 | QualType Canonical; |
4191 | if (!T.isCanonical() || Qualifier != CanonicalQualifier) { |
4192 | Canonical = |
4193 | getMemberPointerType(T: getCanonicalType(T), Qualifier: CanonicalQualifier, Cls); |
4194 | assert(!cast<MemberPointerType>(Canonical)->isSugared()); |
4195 | // Get the new insert position for the node we care about. |
4196 | [[maybe_unused]] MemberPointerType *NewIP = |
4197 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
4198 | assert(!NewIP && "Shouldn't be in the map!" ); |
4199 | } |
4200 | auto *New = new (*this, alignof(MemberPointerType)) |
4201 | MemberPointerType(T, Qualifier, Canonical); |
4202 | Types.push_back(Elt: New); |
4203 | MemberPointerTypes.InsertNode(N: New, InsertPos); |
4204 | return QualType(New, 0); |
4205 | } |
4206 | |
4207 | /// getConstantArrayType - Return the unique reference to the type for an |
4208 | /// array of the specified element type. |
4209 | QualType ASTContext::getConstantArrayType(QualType EltTy, |
4210 | const llvm::APInt &ArySizeIn, |
4211 | const Expr *SizeExpr, |
4212 | ArraySizeModifier ASM, |
4213 | unsigned IndexTypeQuals) const { |
4214 | assert((EltTy->isDependentType() || |
4215 | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && |
4216 | "Constant array of VLAs is illegal!" ); |
4217 | |
4218 | // We only need the size as part of the type if it's instantiation-dependent. |
4219 | if (SizeExpr && !SizeExpr->isInstantiationDependent()) |
4220 | SizeExpr = nullptr; |
4221 | |
4222 | // Convert the array size into a canonical width matching the pointer size for |
4223 | // the target. |
4224 | llvm::APInt ArySize(ArySizeIn); |
4225 | ArySize = ArySize.zextOrTrunc(width: Target->getMaxPointerWidth()); |
4226 | |
4227 | llvm::FoldingSetNodeID ID; |
4228 | ConstantArrayType::Profile(ID, Ctx: *this, ET: EltTy, ArraySize: ArySize.getZExtValue(), SizeExpr, |
4229 | SizeMod: ASM, TypeQuals: IndexTypeQuals); |
4230 | |
4231 | void *InsertPos = nullptr; |
4232 | if (ConstantArrayType *ATP = |
4233 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4234 | return QualType(ATP, 0); |
4235 | |
4236 | // If the element type isn't canonical or has qualifiers, or the array bound |
4237 | // is instantiation-dependent, this won't be a canonical type either, so fill |
4238 | // in the canonical type field. |
4239 | QualType Canon; |
4240 | // FIXME: Check below should look for qualifiers behind sugar. |
4241 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { |
4242 | SplitQualType canonSplit = getCanonicalType(T: EltTy).split(); |
4243 | Canon = getConstantArrayType(EltTy: QualType(canonSplit.Ty, 0), ArySizeIn: ArySize, SizeExpr: nullptr, |
4244 | ASM, IndexTypeQuals); |
4245 | Canon = getQualifiedType(T: Canon, Qs: canonSplit.Quals); |
4246 | |
4247 | // Get the new insert position for the node we care about. |
4248 | ConstantArrayType *NewIP = |
4249 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
4250 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4251 | } |
4252 | |
4253 | auto *New = ConstantArrayType::Create(Ctx: *this, ET: EltTy, Can: Canon, Sz: ArySize, SzExpr: SizeExpr, |
4254 | SzMod: ASM, Qual: IndexTypeQuals); |
4255 | ConstantArrayTypes.InsertNode(N: New, InsertPos); |
4256 | Types.push_back(Elt: New); |
4257 | return QualType(New, 0); |
4258 | } |
4259 | |
4260 | /// getVariableArrayDecayedType - Turns the given type, which may be |
4261 | /// variably-modified, into the corresponding type with all the known |
4262 | /// sizes replaced with [*]. |
4263 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
4264 | // Vastly most common case. |
4265 | if (!type->isVariablyModifiedType()) return type; |
4266 | |
4267 | QualType result; |
4268 | |
4269 | SplitQualType split = type.getSplitDesugaredType(); |
4270 | const Type *ty = split.Ty; |
4271 | switch (ty->getTypeClass()) { |
4272 | #define TYPE(Class, Base) |
4273 | #define ABSTRACT_TYPE(Class, Base) |
4274 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
4275 | #include "clang/AST/TypeNodes.inc" |
4276 | llvm_unreachable("didn't desugar past all non-canonical types?" ); |
4277 | |
4278 | // These types should never be variably-modified. |
4279 | case Type::Builtin: |
4280 | case Type::Complex: |
4281 | case Type::Vector: |
4282 | case Type::DependentVector: |
4283 | case Type::ExtVector: |
4284 | case Type::DependentSizedExtVector: |
4285 | case Type::ConstantMatrix: |
4286 | case Type::DependentSizedMatrix: |
4287 | case Type::DependentAddressSpace: |
4288 | case Type::ObjCObject: |
4289 | case Type::ObjCInterface: |
4290 | case Type::ObjCObjectPointer: |
4291 | case Type::Record: |
4292 | case Type::Enum: |
4293 | case Type::UnresolvedUsing: |
4294 | case Type::TypeOfExpr: |
4295 | case Type::TypeOf: |
4296 | case Type::Decltype: |
4297 | case Type::UnaryTransform: |
4298 | case Type::DependentName: |
4299 | case Type::InjectedClassName: |
4300 | case Type::TemplateSpecialization: |
4301 | case Type::DependentTemplateSpecialization: |
4302 | case Type::TemplateTypeParm: |
4303 | case Type::SubstTemplateTypeParmPack: |
4304 | case Type::Auto: |
4305 | case Type::DeducedTemplateSpecialization: |
4306 | case Type::PackExpansion: |
4307 | case Type::PackIndexing: |
4308 | case Type::BitInt: |
4309 | case Type::DependentBitInt: |
4310 | case Type::ArrayParameter: |
4311 | case Type::HLSLAttributedResource: |
4312 | case Type::HLSLInlineSpirv: |
4313 | llvm_unreachable("type should never be variably-modified" ); |
4314 | |
4315 | // These types can be variably-modified but should never need to |
4316 | // further decay. |
4317 | case Type::FunctionNoProto: |
4318 | case Type::FunctionProto: |
4319 | case Type::BlockPointer: |
4320 | case Type::MemberPointer: |
4321 | case Type::Pipe: |
4322 | return type; |
4323 | |
4324 | // These types can be variably-modified. All these modifications |
4325 | // preserve structure except as noted by comments. |
4326 | // TODO: if we ever care about optimizing VLAs, there are no-op |
4327 | // optimizations available here. |
4328 | case Type::Pointer: |
4329 | result = getPointerType(T: getVariableArrayDecayedType( |
4330 | type: cast<PointerType>(Val: ty)->getPointeeType())); |
4331 | break; |
4332 | |
4333 | case Type::LValueReference: { |
4334 | const auto *lv = cast<LValueReferenceType>(Val: ty); |
4335 | result = getLValueReferenceType( |
4336 | T: getVariableArrayDecayedType(type: lv->getPointeeType()), |
4337 | SpelledAsLValue: lv->isSpelledAsLValue()); |
4338 | break; |
4339 | } |
4340 | |
4341 | case Type::RValueReference: { |
4342 | const auto *lv = cast<RValueReferenceType>(Val: ty); |
4343 | result = getRValueReferenceType( |
4344 | T: getVariableArrayDecayedType(type: lv->getPointeeType())); |
4345 | break; |
4346 | } |
4347 | |
4348 | case Type::Atomic: { |
4349 | const auto *at = cast<AtomicType>(Val: ty); |
4350 | result = getAtomicType(T: getVariableArrayDecayedType(type: at->getValueType())); |
4351 | break; |
4352 | } |
4353 | |
4354 | case Type::ConstantArray: { |
4355 | const auto *cat = cast<ConstantArrayType>(Val: ty); |
4356 | result = getConstantArrayType( |
4357 | EltTy: getVariableArrayDecayedType(type: cat->getElementType()), |
4358 | ArySizeIn: cat->getSize(), |
4359 | SizeExpr: cat->getSizeExpr(), |
4360 | ASM: cat->getSizeModifier(), |
4361 | IndexTypeQuals: cat->getIndexTypeCVRQualifiers()); |
4362 | break; |
4363 | } |
4364 | |
4365 | case Type::DependentSizedArray: { |
4366 | const auto *dat = cast<DependentSizedArrayType>(Val: ty); |
4367 | result = getDependentSizedArrayType( |
4368 | EltTy: getVariableArrayDecayedType(type: dat->getElementType()), NumElts: dat->getSizeExpr(), |
4369 | ASM: dat->getSizeModifier(), IndexTypeQuals: dat->getIndexTypeCVRQualifiers()); |
4370 | break; |
4371 | } |
4372 | |
4373 | // Turn incomplete types into [*] types. |
4374 | case Type::IncompleteArray: { |
4375 | const auto *iat = cast<IncompleteArrayType>(Val: ty); |
4376 | result = |
4377 | getVariableArrayType(EltTy: getVariableArrayDecayedType(type: iat->getElementType()), |
4378 | /*size*/ NumElts: nullptr, ASM: ArraySizeModifier::Normal, |
4379 | IndexTypeQuals: iat->getIndexTypeCVRQualifiers()); |
4380 | break; |
4381 | } |
4382 | |
4383 | // Turn VLA types into [*] types. |
4384 | case Type::VariableArray: { |
4385 | const auto *vat = cast<VariableArrayType>(Val: ty); |
4386 | result = |
4387 | getVariableArrayType(EltTy: getVariableArrayDecayedType(type: vat->getElementType()), |
4388 | /*size*/ NumElts: nullptr, ASM: ArraySizeModifier::Star, |
4389 | IndexTypeQuals: vat->getIndexTypeCVRQualifiers()); |
4390 | break; |
4391 | } |
4392 | } |
4393 | |
4394 | // Apply the top-level qualifiers from the original. |
4395 | return getQualifiedType(T: result, Qs: split.Quals); |
4396 | } |
4397 | |
4398 | /// getVariableArrayType - Returns a non-unique reference to the type for a |
4399 | /// variable array of the specified element type. |
4400 | QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
4401 | ArraySizeModifier ASM, |
4402 | unsigned IndexTypeQuals) const { |
4403 | // Since we don't unique expressions, it isn't possible to unique VLA's |
4404 | // that have an expression provided for their size. |
4405 | QualType Canon; |
4406 | |
4407 | // Be sure to pull qualifiers off the element type. |
4408 | // FIXME: Check below should look for qualifiers behind sugar. |
4409 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
4410 | SplitQualType canonSplit = getCanonicalType(T: EltTy).split(); |
4411 | Canon = getVariableArrayType(EltTy: QualType(canonSplit.Ty, 0), NumElts, ASM, |
4412 | IndexTypeQuals); |
4413 | Canon = getQualifiedType(T: Canon, Qs: canonSplit.Quals); |
4414 | } |
4415 | |
4416 | auto *New = new (*this, alignof(VariableArrayType)) |
4417 | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals); |
4418 | |
4419 | VariableArrayTypes.push_back(x: New); |
4420 | Types.push_back(Elt: New); |
4421 | return QualType(New, 0); |
4422 | } |
4423 | |
4424 | /// getDependentSizedArrayType - Returns a non-unique reference to |
4425 | /// the type for a dependently-sized array of the specified element |
4426 | /// type. |
4427 | QualType |
4428 | ASTContext::getDependentSizedArrayType(QualType elementType, Expr *numElements, |
4429 | ArraySizeModifier ASM, |
4430 | unsigned elementTypeQuals) const { |
4431 | assert((!numElements || numElements->isTypeDependent() || |
4432 | numElements->isValueDependent()) && |
4433 | "Size must be type- or value-dependent!" ); |
4434 | |
4435 | SplitQualType canonElementType = getCanonicalType(T: elementType).split(); |
4436 | |
4437 | void *insertPos = nullptr; |
4438 | llvm::FoldingSetNodeID ID; |
4439 | DependentSizedArrayType::Profile( |
4440 | ID, Context: *this, ET: numElements ? QualType(canonElementType.Ty, 0) : elementType, |
4441 | SizeMod: ASM, TypeQuals: elementTypeQuals, E: numElements); |
4442 | |
4443 | // Look for an existing type with these properties. |
4444 | DependentSizedArrayType *canonTy = |
4445 | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
4446 | |
4447 | // Dependently-sized array types that do not have a specified number |
4448 | // of elements will have their sizes deduced from a dependent |
4449 | // initializer. |
4450 | if (!numElements) { |
4451 | if (canonTy) |
4452 | return QualType(canonTy, 0); |
4453 | |
4454 | auto *newType = new (*this, alignof(DependentSizedArrayType)) |
4455 | DependentSizedArrayType(elementType, QualType(), numElements, ASM, |
4456 | elementTypeQuals); |
4457 | DependentSizedArrayTypes.InsertNode(N: newType, InsertPos: insertPos); |
4458 | Types.push_back(Elt: newType); |
4459 | return QualType(newType, 0); |
4460 | } |
4461 | |
4462 | // If we don't have one, build one. |
4463 | if (!canonTy) { |
4464 | canonTy = new (*this, alignof(DependentSizedArrayType)) |
4465 | DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(), |
4466 | numElements, ASM, elementTypeQuals); |
4467 | DependentSizedArrayTypes.InsertNode(N: canonTy, InsertPos: insertPos); |
4468 | Types.push_back(Elt: canonTy); |
4469 | } |
4470 | |
4471 | // Apply qualifiers from the element type to the array. |
4472 | QualType canon = getQualifiedType(T: QualType(canonTy,0), |
4473 | Qs: canonElementType.Quals); |
4474 | |
4475 | // If we didn't need extra canonicalization for the element type or the size |
4476 | // expression, then just use that as our result. |
4477 | if (QualType(canonElementType.Ty, 0) == elementType && |
4478 | canonTy->getSizeExpr() == numElements) |
4479 | return canon; |
4480 | |
4481 | // Otherwise, we need to build a type which follows the spelling |
4482 | // of the element type. |
4483 | auto *sugaredType = new (*this, alignof(DependentSizedArrayType)) |
4484 | DependentSizedArrayType(elementType, canon, numElements, ASM, |
4485 | elementTypeQuals); |
4486 | Types.push_back(Elt: sugaredType); |
4487 | return QualType(sugaredType, 0); |
4488 | } |
4489 | |
4490 | QualType ASTContext::getIncompleteArrayType(QualType elementType, |
4491 | ArraySizeModifier ASM, |
4492 | unsigned elementTypeQuals) const { |
4493 | llvm::FoldingSetNodeID ID; |
4494 | IncompleteArrayType::Profile(ID, ET: elementType, SizeMod: ASM, TypeQuals: elementTypeQuals); |
4495 | |
4496 | void *insertPos = nullptr; |
4497 | if (IncompleteArrayType *iat = |
4498 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos)) |
4499 | return QualType(iat, 0); |
4500 | |
4501 | // If the element type isn't canonical, this won't be a canonical type |
4502 | // either, so fill in the canonical type field. We also have to pull |
4503 | // qualifiers off the element type. |
4504 | QualType canon; |
4505 | |
4506 | // FIXME: Check below should look for qualifiers behind sugar. |
4507 | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
4508 | SplitQualType canonSplit = getCanonicalType(T: elementType).split(); |
4509 | canon = getIncompleteArrayType(elementType: QualType(canonSplit.Ty, 0), |
4510 | ASM, elementTypeQuals); |
4511 | canon = getQualifiedType(T: canon, Qs: canonSplit.Quals); |
4512 | |
4513 | // Get the new insert position for the node we care about. |
4514 | IncompleteArrayType *existing = |
4515 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
4516 | assert(!existing && "Shouldn't be in the map!" ); (void) existing; |
4517 | } |
4518 | |
4519 | auto *newType = new (*this, alignof(IncompleteArrayType)) |
4520 | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
4521 | |
4522 | IncompleteArrayTypes.InsertNode(N: newType, InsertPos: insertPos); |
4523 | Types.push_back(Elt: newType); |
4524 | return QualType(newType, 0); |
4525 | } |
4526 | |
4527 | ASTContext::BuiltinVectorTypeInfo |
4528 | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { |
4529 | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \ |
4530 | {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ |
4531 | NUMVECTORS}; |
4532 | |
4533 | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \ |
4534 | {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; |
4535 | |
4536 | switch (Ty->getKind()) { |
4537 | default: |
4538 | llvm_unreachable("Unsupported builtin vector type" ); |
4539 | |
4540 | #define SVE_VECTOR_TYPE_INT(Name, MangledName, Id, SingletonId, NumEls, \ |
4541 | ElBits, NF, IsSigned) \ |
4542 | case BuiltinType::Id: \ |
4543 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
4544 | llvm::ElementCount::getScalable(NumEls), NF}; |
4545 | #define SVE_VECTOR_TYPE_FLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
4546 | ElBits, NF) \ |
4547 | case BuiltinType::Id: \ |
4548 | return {ElBits == 16 ? HalfTy : (ElBits == 32 ? FloatTy : DoubleTy), \ |
4549 | llvm::ElementCount::getScalable(NumEls), NF}; |
4550 | #define SVE_VECTOR_TYPE_BFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
4551 | ElBits, NF) \ |
4552 | case BuiltinType::Id: \ |
4553 | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
4554 | #define SVE_VECTOR_TYPE_MFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
4555 | ElBits, NF) \ |
4556 | case BuiltinType::Id: \ |
4557 | return {MFloat8Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
4558 | #define SVE_PREDICATE_TYPE_ALL(Name, MangledName, Id, SingletonId, NumEls, NF) \ |
4559 | case BuiltinType::Id: \ |
4560 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), NF}; |
4561 | #include "clang/Basic/AArch64ACLETypes.def" |
4562 | |
4563 | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \ |
4564 | IsSigned) \ |
4565 | case BuiltinType::Id: \ |
4566 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
4567 | llvm::ElementCount::getScalable(NumEls), NF}; |
4568 | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
4569 | case BuiltinType::Id: \ |
4570 | return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy), \ |
4571 | llvm::ElementCount::getScalable(NumEls), NF}; |
4572 | #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
4573 | case BuiltinType::Id: \ |
4574 | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
4575 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
4576 | case BuiltinType::Id: \ |
4577 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; |
4578 | #include "clang/Basic/RISCVVTypes.def" |
4579 | } |
4580 | } |
4581 | |
4582 | /// getExternrefType - Return a WebAssembly externref type, which represents an |
4583 | /// opaque reference to a host value. |
4584 | QualType ASTContext::getWebAssemblyExternrefType() const { |
4585 | if (Target->getTriple().isWasm() && Target->hasFeature(Feature: "reference-types" )) { |
4586 | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ |
4587 | if (BuiltinType::Id == BuiltinType::WasmExternRef) \ |
4588 | return SingletonId; |
4589 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
4590 | } |
4591 | llvm_unreachable( |
4592 | "shouldn't try to generate type externref outside WebAssembly target" ); |
4593 | } |
4594 | |
4595 | /// getScalableVectorType - Return the unique reference to a scalable vector |
4596 | /// type of the specified element type and size. VectorType must be a built-in |
4597 | /// type. |
4598 | QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts, |
4599 | unsigned NumFields) const { |
4600 | if (Target->hasAArch64ACLETypes()) { |
4601 | uint64_t EltTySize = getTypeSize(T: EltTy); |
4602 | |
4603 | #define SVE_VECTOR_TYPE_INT(Name, MangledName, Id, SingletonId, NumEls, \ |
4604 | ElBits, NF, IsSigned) \ |
4605 | if (EltTy->hasIntegerRepresentation() && !EltTy->isBooleanType() && \ |
4606 | EltTy->hasSignedIntegerRepresentation() == IsSigned && \ |
4607 | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) { \ |
4608 | return SingletonId; \ |
4609 | } |
4610 | #define SVE_VECTOR_TYPE_FLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
4611 | ElBits, NF) \ |
4612 | if (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
4613 | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) { \ |
4614 | return SingletonId; \ |
4615 | } |
4616 | #define SVE_VECTOR_TYPE_BFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
4617 | ElBits, NF) \ |
4618 | if (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
4619 | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) { \ |
4620 | return SingletonId; \ |
4621 | } |
4622 | #define SVE_VECTOR_TYPE_MFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
4623 | ElBits, NF) \ |
4624 | if (EltTy->isMFloat8Type() && EltTySize == ElBits && \ |
4625 | NumElts == (NumEls * NF) && NumFields == 1) { \ |
4626 | return SingletonId; \ |
4627 | } |
4628 | #define SVE_PREDICATE_TYPE_ALL(Name, MangledName, Id, SingletonId, NumEls, NF) \ |
4629 | if (EltTy->isBooleanType() && NumElts == (NumEls * NF) && NumFields == 1) \ |
4630 | return SingletonId; |
4631 | #include "clang/Basic/AArch64ACLETypes.def" |
4632 | } else if (Target->hasRISCVVTypes()) { |
4633 | uint64_t EltTySize = getTypeSize(T: EltTy); |
4634 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
4635 | IsFP, IsBF) \ |
4636 | if (!EltTy->isBooleanType() && \ |
4637 | ((EltTy->hasIntegerRepresentation() && \ |
4638 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
4639 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
4640 | IsFP && !IsBF) || \ |
4641 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
4642 | IsBF && !IsFP)) && \ |
4643 | EltTySize == ElBits && NumElts == NumEls && NumFields == NF) \ |
4644 | return SingletonId; |
4645 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
4646 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
4647 | return SingletonId; |
4648 | #include "clang/Basic/RISCVVTypes.def" |
4649 | } |
4650 | return QualType(); |
4651 | } |
4652 | |
4653 | /// getVectorType - Return the unique reference to a vector type of |
4654 | /// the specified element type and size. VectorType must be a built-in type. |
4655 | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
4656 | VectorKind VecKind) const { |
4657 | assert(vecType->isBuiltinType() || |
4658 | (vecType->isBitIntType() && |
4659 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
4660 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()))); |
4661 | |
4662 | // Check if we've already instantiated a vector of this type. |
4663 | llvm::FoldingSetNodeID ID; |
4664 | VectorType::Profile(ID, ElementType: vecType, NumElements: NumElts, TypeClass: Type::Vector, VecKind); |
4665 | |
4666 | void *InsertPos = nullptr; |
4667 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4668 | return QualType(VTP, 0); |
4669 | |
4670 | // If the element type isn't canonical, this won't be a canonical type either, |
4671 | // so fill in the canonical type field. |
4672 | QualType Canonical; |
4673 | if (!vecType.isCanonical()) { |
4674 | Canonical = getVectorType(vecType: getCanonicalType(T: vecType), NumElts, VecKind); |
4675 | |
4676 | // Get the new insert position for the node we care about. |
4677 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4678 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4679 | } |
4680 | auto *New = new (*this, alignof(VectorType)) |
4681 | VectorType(vecType, NumElts, Canonical, VecKind); |
4682 | VectorTypes.InsertNode(N: New, InsertPos); |
4683 | Types.push_back(Elt: New); |
4684 | return QualType(New, 0); |
4685 | } |
4686 | |
4687 | QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, |
4688 | SourceLocation AttrLoc, |
4689 | VectorKind VecKind) const { |
4690 | llvm::FoldingSetNodeID ID; |
4691 | DependentVectorType::Profile(ID, Context: *this, ElementType: getCanonicalType(T: VecType), SizeExpr, |
4692 | VecKind); |
4693 | void *InsertPos = nullptr; |
4694 | DependentVectorType *Canon = |
4695 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4696 | DependentVectorType *New; |
4697 | |
4698 | if (Canon) { |
4699 | New = new (*this, alignof(DependentVectorType)) DependentVectorType( |
4700 | VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); |
4701 | } else { |
4702 | QualType CanonVecTy = getCanonicalType(T: VecType); |
4703 | if (CanonVecTy == VecType) { |
4704 | New = new (*this, alignof(DependentVectorType)) |
4705 | DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind); |
4706 | |
4707 | DependentVectorType *CanonCheck = |
4708 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4709 | assert(!CanonCheck && |
4710 | "Dependent-sized vector_size canonical type broken" ); |
4711 | (void)CanonCheck; |
4712 | DependentVectorTypes.InsertNode(N: New, InsertPos); |
4713 | } else { |
4714 | QualType CanonTy = getDependentVectorType(VecType: CanonVecTy, SizeExpr, |
4715 | AttrLoc: SourceLocation(), VecKind); |
4716 | New = new (*this, alignof(DependentVectorType)) |
4717 | DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind); |
4718 | } |
4719 | } |
4720 | |
4721 | Types.push_back(Elt: New); |
4722 | return QualType(New, 0); |
4723 | } |
4724 | |
4725 | /// getExtVectorType - Return the unique reference to an extended vector type of |
4726 | /// the specified element type and size. VectorType must be a built-in type. |
4727 | QualType ASTContext::getExtVectorType(QualType vecType, |
4728 | unsigned NumElts) const { |
4729 | assert(vecType->isBuiltinType() || vecType->isDependentType() || |
4730 | (vecType->isBitIntType() && |
4731 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
4732 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()))); |
4733 | |
4734 | // Check if we've already instantiated a vector of this type. |
4735 | llvm::FoldingSetNodeID ID; |
4736 | VectorType::Profile(ID, ElementType: vecType, NumElements: NumElts, TypeClass: Type::ExtVector, |
4737 | VecKind: VectorKind::Generic); |
4738 | void *InsertPos = nullptr; |
4739 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4740 | return QualType(VTP, 0); |
4741 | |
4742 | // If the element type isn't canonical, this won't be a canonical type either, |
4743 | // so fill in the canonical type field. |
4744 | QualType Canonical; |
4745 | if (!vecType.isCanonical()) { |
4746 | Canonical = getExtVectorType(vecType: getCanonicalType(T: vecType), NumElts); |
4747 | |
4748 | // Get the new insert position for the node we care about. |
4749 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4750 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4751 | } |
4752 | auto *New = new (*this, alignof(ExtVectorType)) |
4753 | ExtVectorType(vecType, NumElts, Canonical); |
4754 | VectorTypes.InsertNode(N: New, InsertPos); |
4755 | Types.push_back(Elt: New); |
4756 | return QualType(New, 0); |
4757 | } |
4758 | |
4759 | QualType |
4760 | ASTContext::getDependentSizedExtVectorType(QualType vecType, |
4761 | Expr *SizeExpr, |
4762 | SourceLocation AttrLoc) const { |
4763 | llvm::FoldingSetNodeID ID; |
4764 | DependentSizedExtVectorType::Profile(ID, Context: *this, ElementType: getCanonicalType(T: vecType), |
4765 | SizeExpr); |
4766 | |
4767 | void *InsertPos = nullptr; |
4768 | DependentSizedExtVectorType *Canon |
4769 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4770 | DependentSizedExtVectorType *New; |
4771 | if (Canon) { |
4772 | // We already have a canonical version of this array type; use it as |
4773 | // the canonical type for a newly-built type. |
4774 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4775 | DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr, |
4776 | AttrLoc); |
4777 | } else { |
4778 | QualType CanonVecTy = getCanonicalType(T: vecType); |
4779 | if (CanonVecTy == vecType) { |
4780 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4781 | DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc); |
4782 | |
4783 | DependentSizedExtVectorType *CanonCheck |
4784 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4785 | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken" ); |
4786 | (void)CanonCheck; |
4787 | DependentSizedExtVectorTypes.InsertNode(N: New, InsertPos); |
4788 | } else { |
4789 | QualType CanonExtTy = getDependentSizedExtVectorType(vecType: CanonVecTy, SizeExpr, |
4790 | AttrLoc: SourceLocation()); |
4791 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4792 | DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc); |
4793 | } |
4794 | } |
4795 | |
4796 | Types.push_back(Elt: New); |
4797 | return QualType(New, 0); |
4798 | } |
4799 | |
4800 | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, |
4801 | unsigned NumColumns) const { |
4802 | llvm::FoldingSetNodeID ID; |
4803 | ConstantMatrixType::Profile(ID, ElementType: ElementTy, NumRows, NumColumns, |
4804 | TypeClass: Type::ConstantMatrix); |
4805 | |
4806 | assert(MatrixType::isValidElementType(ElementTy) && |
4807 | "need a valid element type" ); |
4808 | assert(ConstantMatrixType::isDimensionValid(NumRows) && |
4809 | ConstantMatrixType::isDimensionValid(NumColumns) && |
4810 | "need valid matrix dimensions" ); |
4811 | void *InsertPos = nullptr; |
4812 | if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4813 | return QualType(MTP, 0); |
4814 | |
4815 | QualType Canonical; |
4816 | if (!ElementTy.isCanonical()) { |
4817 | Canonical = |
4818 | getConstantMatrixType(ElementTy: getCanonicalType(T: ElementTy), NumRows, NumColumns); |
4819 | |
4820 | ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4821 | assert(!NewIP && "Matrix type shouldn't already exist in the map" ); |
4822 | (void)NewIP; |
4823 | } |
4824 | |
4825 | auto *New = new (*this, alignof(ConstantMatrixType)) |
4826 | ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); |
4827 | MatrixTypes.InsertNode(N: New, InsertPos); |
4828 | Types.push_back(Elt: New); |
4829 | return QualType(New, 0); |
4830 | } |
4831 | |
4832 | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, |
4833 | Expr *RowExpr, |
4834 | Expr *ColumnExpr, |
4835 | SourceLocation AttrLoc) const { |
4836 | QualType CanonElementTy = getCanonicalType(T: ElementTy); |
4837 | llvm::FoldingSetNodeID ID; |
4838 | DependentSizedMatrixType::Profile(ID, Context: *this, ElementType: CanonElementTy, RowExpr, |
4839 | ColumnExpr); |
4840 | |
4841 | void *InsertPos = nullptr; |
4842 | DependentSizedMatrixType *Canon = |
4843 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4844 | |
4845 | if (!Canon) { |
4846 | Canon = new (*this, alignof(DependentSizedMatrixType)) |
4847 | DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr, |
4848 | ColumnExpr, AttrLoc); |
4849 | #ifndef NDEBUG |
4850 | DependentSizedMatrixType *CanonCheck = |
4851 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4852 | assert(!CanonCheck && "Dependent-sized matrix canonical type broken" ); |
4853 | #endif |
4854 | DependentSizedMatrixTypes.InsertNode(N: Canon, InsertPos); |
4855 | Types.push_back(Elt: Canon); |
4856 | } |
4857 | |
4858 | // Already have a canonical version of the matrix type |
4859 | // |
4860 | // If it exactly matches the requested type, use it directly. |
4861 | if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && |
4862 | Canon->getRowExpr() == ColumnExpr) |
4863 | return QualType(Canon, 0); |
4864 | |
4865 | // Use Canon as the canonical type for newly-built type. |
4866 | DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType)) |
4867 | DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr, |
4868 | ColumnExpr, AttrLoc); |
4869 | Types.push_back(Elt: New); |
4870 | return QualType(New, 0); |
4871 | } |
4872 | |
4873 | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, |
4874 | Expr *AddrSpaceExpr, |
4875 | SourceLocation AttrLoc) const { |
4876 | assert(AddrSpaceExpr->isInstantiationDependent()); |
4877 | |
4878 | QualType canonPointeeType = getCanonicalType(T: PointeeType); |
4879 | |
4880 | void *insertPos = nullptr; |
4881 | llvm::FoldingSetNodeID ID; |
4882 | DependentAddressSpaceType::Profile(ID, Context: *this, PointeeType: canonPointeeType, |
4883 | AddrSpaceExpr); |
4884 | |
4885 | DependentAddressSpaceType *canonTy = |
4886 | DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
4887 | |
4888 | if (!canonTy) { |
4889 | canonTy = new (*this, alignof(DependentAddressSpaceType)) |
4890 | DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr, |
4891 | AttrLoc); |
4892 | DependentAddressSpaceTypes.InsertNode(N: canonTy, InsertPos: insertPos); |
4893 | Types.push_back(Elt: canonTy); |
4894 | } |
4895 | |
4896 | if (canonPointeeType == PointeeType && |
4897 | canonTy->getAddrSpaceExpr() == AddrSpaceExpr) |
4898 | return QualType(canonTy, 0); |
4899 | |
4900 | auto *sugaredType = new (*this, alignof(DependentAddressSpaceType)) |
4901 | DependentAddressSpaceType(PointeeType, QualType(canonTy, 0), |
4902 | AddrSpaceExpr, AttrLoc); |
4903 | Types.push_back(Elt: sugaredType); |
4904 | return QualType(sugaredType, 0); |
4905 | } |
4906 | |
4907 | /// Determine whether \p T is canonical as the result type of a function. |
4908 | static bool isCanonicalResultType(QualType T) { |
4909 | return T.isCanonical() && |
4910 | (T.getObjCLifetime() == Qualifiers::OCL_None || |
4911 | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); |
4912 | } |
4913 | |
4914 | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
4915 | QualType |
4916 | ASTContext::getFunctionNoProtoType(QualType ResultTy, |
4917 | const FunctionType::ExtInfo &Info) const { |
4918 | // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter |
4919 | // functionality creates a function without a prototype regardless of |
4920 | // language mode (so it makes them even in C++). Once the rewriter has been |
4921 | // fixed, this assertion can be enabled again. |
4922 | //assert(!LangOpts.requiresStrictPrototypes() && |
4923 | // "strict prototypes are disabled"); |
4924 | |
4925 | // Unique functions, to guarantee there is only one function of a particular |
4926 | // structure. |
4927 | llvm::FoldingSetNodeID ID; |
4928 | FunctionNoProtoType::Profile(ID, ResultType: ResultTy, Info); |
4929 | |
4930 | void *InsertPos = nullptr; |
4931 | if (FunctionNoProtoType *FT = |
4932 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4933 | return QualType(FT, 0); |
4934 | |
4935 | QualType Canonical; |
4936 | if (!isCanonicalResultType(T: ResultTy)) { |
4937 | Canonical = |
4938 | getFunctionNoProtoType(ResultTy: getCanonicalFunctionResultType(ResultType: ResultTy), Info); |
4939 | |
4940 | // Get the new insert position for the node we care about. |
4941 | FunctionNoProtoType *NewIP = |
4942 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
4943 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
4944 | } |
4945 | |
4946 | auto *New = new (*this, alignof(FunctionNoProtoType)) |
4947 | FunctionNoProtoType(ResultTy, Canonical, Info); |
4948 | Types.push_back(Elt: New); |
4949 | FunctionNoProtoTypes.InsertNode(N: New, InsertPos); |
4950 | return QualType(New, 0); |
4951 | } |
4952 | |
4953 | CanQualType |
4954 | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { |
4955 | CanQualType CanResultType = getCanonicalType(T: ResultType); |
4956 | |
4957 | // Canonical result types do not have ARC lifetime qualifiers. |
4958 | if (CanResultType.getQualifiers().hasObjCLifetime()) { |
4959 | Qualifiers Qs = CanResultType.getQualifiers(); |
4960 | Qs.removeObjCLifetime(); |
4961 | return CanQualType::CreateUnsafe( |
4962 | Other: getQualifiedType(T: CanResultType.getUnqualifiedType(), Qs)); |
4963 | } |
4964 | |
4965 | return CanResultType; |
4966 | } |
4967 | |
4968 | static bool isCanonicalExceptionSpecification( |
4969 | const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { |
4970 | if (ESI.Type == EST_None) |
4971 | return true; |
4972 | if (!NoexceptInType) |
4973 | return false; |
4974 | |
4975 | // C++17 onwards: exception specification is part of the type, as a simple |
4976 | // boolean "can this function type throw". |
4977 | if (ESI.Type == EST_BasicNoexcept) |
4978 | return true; |
4979 | |
4980 | // A noexcept(expr) specification is (possibly) canonical if expr is |
4981 | // value-dependent. |
4982 | if (ESI.Type == EST_DependentNoexcept) |
4983 | return true; |
4984 | |
4985 | // A dynamic exception specification is canonical if it only contains pack |
4986 | // expansions (so we can't tell whether it's non-throwing) and all its |
4987 | // contained types are canonical. |
4988 | if (ESI.Type == EST_Dynamic) { |
4989 | bool AnyPackExpansions = false; |
4990 | for (QualType ET : ESI.Exceptions) { |
4991 | if (!ET.isCanonical()) |
4992 | return false; |
4993 | if (ET->getAs<PackExpansionType>()) |
4994 | AnyPackExpansions = true; |
4995 | } |
4996 | return AnyPackExpansions; |
4997 | } |
4998 | |
4999 | return false; |
5000 | } |
5001 | |
5002 | QualType ASTContext::getFunctionTypeInternal( |
5003 | QualType ResultTy, ArrayRef<QualType> ArgArray, |
5004 | const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { |
5005 | size_t NumArgs = ArgArray.size(); |
5006 | |
5007 | // Unique functions, to guarantee there is only one function of a particular |
5008 | // structure. |
5009 | llvm::FoldingSetNodeID ID; |
5010 | FunctionProtoType::Profile(ID, Result: ResultTy, ArgTys: ArgArray.begin(), NumArgs, EPI, |
5011 | Context: *this, Canonical: true); |
5012 | |
5013 | QualType Canonical; |
5014 | bool Unique = false; |
5015 | |
5016 | void *InsertPos = nullptr; |
5017 | if (FunctionProtoType *FPT = |
5018 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
5019 | QualType Existing = QualType(FPT, 0); |
5020 | |
5021 | // If we find a pre-existing equivalent FunctionProtoType, we can just reuse |
5022 | // it so long as our exception specification doesn't contain a dependent |
5023 | // noexcept expression, or we're just looking for a canonical type. |
5024 | // Otherwise, we're going to need to create a type |
5025 | // sugar node to hold the concrete expression. |
5026 | if (OnlyWantCanonical || !isComputedNoexcept(ESpecType: EPI.ExceptionSpec.Type) || |
5027 | EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) |
5028 | return Existing; |
5029 | |
5030 | // We need a new type sugar node for this one, to hold the new noexcept |
5031 | // expression. We do no canonicalization here, but that's OK since we don't |
5032 | // expect to see the same noexcept expression much more than once. |
5033 | Canonical = getCanonicalType(T: Existing); |
5034 | Unique = true; |
5035 | } |
5036 | |
5037 | bool NoexceptInType = getLangOpts().CPlusPlus17; |
5038 | bool IsCanonicalExceptionSpec = |
5039 | isCanonicalExceptionSpecification(ESI: EPI.ExceptionSpec, NoexceptInType); |
5040 | |
5041 | // Determine whether the type being created is already canonical or not. |
5042 | bool isCanonical = !Unique && IsCanonicalExceptionSpec && |
5043 | isCanonicalResultType(T: ResultTy) && !EPI.HasTrailingReturn; |
5044 | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
5045 | if (!ArgArray[i].isCanonicalAsParam()) |
5046 | isCanonical = false; |
5047 | |
5048 | if (OnlyWantCanonical) |
5049 | assert(isCanonical && |
5050 | "given non-canonical parameters constructing canonical type" ); |
5051 | |
5052 | // If this type isn't canonical, get the canonical version of it if we don't |
5053 | // already have it. The exception spec is only partially part of the |
5054 | // canonical type, and only in C++17 onwards. |
5055 | if (!isCanonical && Canonical.isNull()) { |
5056 | SmallVector<QualType, 16> CanonicalArgs; |
5057 | CanonicalArgs.reserve(N: NumArgs); |
5058 | for (unsigned i = 0; i != NumArgs; ++i) |
5059 | CanonicalArgs.push_back(Elt: getCanonicalParamType(T: ArgArray[i])); |
5060 | |
5061 | llvm::SmallVector<QualType, 8> ExceptionTypeStorage; |
5062 | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
5063 | CanonicalEPI.HasTrailingReturn = false; |
5064 | |
5065 | if (IsCanonicalExceptionSpec) { |
5066 | // Exception spec is already OK. |
5067 | } else if (NoexceptInType) { |
5068 | switch (EPI.ExceptionSpec.Type) { |
5069 | case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: |
5070 | // We don't know yet. It shouldn't matter what we pick here; no-one |
5071 | // should ever look at this. |
5072 | [[fallthrough]]; |
5073 | case EST_None: case EST_MSAny: case EST_NoexceptFalse: |
5074 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
5075 | break; |
5076 | |
5077 | // A dynamic exception specification is almost always "not noexcept", |
5078 | // with the exception that a pack expansion might expand to no types. |
5079 | case EST_Dynamic: { |
5080 | bool AnyPacks = false; |
5081 | for (QualType ET : EPI.ExceptionSpec.Exceptions) { |
5082 | if (ET->getAs<PackExpansionType>()) |
5083 | AnyPacks = true; |
5084 | ExceptionTypeStorage.push_back(Elt: getCanonicalType(T: ET)); |
5085 | } |
5086 | if (!AnyPacks) |
5087 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
5088 | else { |
5089 | CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; |
5090 | CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; |
5091 | } |
5092 | break; |
5093 | } |
5094 | |
5095 | case EST_DynamicNone: |
5096 | case EST_BasicNoexcept: |
5097 | case EST_NoexceptTrue: |
5098 | case EST_NoThrow: |
5099 | CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; |
5100 | break; |
5101 | |
5102 | case EST_DependentNoexcept: |
5103 | llvm_unreachable("dependent noexcept is already canonical" ); |
5104 | } |
5105 | } else { |
5106 | CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); |
5107 | } |
5108 | |
5109 | // Adjust the canonical function result type. |
5110 | CanQualType CanResultTy = getCanonicalFunctionResultType(ResultType: ResultTy); |
5111 | Canonical = |
5112 | getFunctionTypeInternal(ResultTy: CanResultTy, ArgArray: CanonicalArgs, EPI: CanonicalEPI, OnlyWantCanonical: true); |
5113 | |
5114 | // Get the new insert position for the node we care about. |
5115 | FunctionProtoType *NewIP = |
5116 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
5117 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
5118 | } |
5119 | |
5120 | // Compute the needed size to hold this FunctionProtoType and the |
5121 | // various trailing objects. |
5122 | auto ESH = FunctionProtoType::getExceptionSpecSize( |
5123 | EST: EPI.ExceptionSpec.Type, NumExceptions: EPI.ExceptionSpec.Exceptions.size()); |
5124 | size_t Size = FunctionProtoType::totalSizeToAlloc< |
5125 | QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, |
5126 | FunctionType::FunctionTypeArmAttributes, FunctionType::ExceptionType, |
5127 | Expr *, FunctionDecl *, FunctionProtoType::ExtParameterInfo, Qualifiers, |
5128 | FunctionEffect, EffectConditionExpr>( |
5129 | Counts: NumArgs, Counts: EPI.Variadic, Counts: EPI.requiresFunctionProtoTypeExtraBitfields(), |
5130 | Counts: EPI.requiresFunctionProtoTypeArmAttributes(), Counts: ESH.NumExceptionType, |
5131 | Counts: ESH.NumExprPtr, Counts: ESH.NumFunctionDeclPtr, |
5132 | Counts: EPI.ExtParameterInfos ? NumArgs : 0, |
5133 | Counts: EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0, Counts: EPI.FunctionEffects.size(), |
5134 | Counts: EPI.FunctionEffects.conditions().size()); |
5135 | |
5136 | auto *FTP = (FunctionProtoType *)Allocate(Size, Align: alignof(FunctionProtoType)); |
5137 | FunctionProtoType::ExtProtoInfo newEPI = EPI; |
5138 | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); |
5139 | Types.push_back(Elt: FTP); |
5140 | if (!Unique) |
5141 | FunctionProtoTypes.InsertNode(N: FTP, InsertPos); |
5142 | if (!EPI.FunctionEffects.empty()) |
5143 | AnyFunctionEffects = true; |
5144 | return QualType(FTP, 0); |
5145 | } |
5146 | |
5147 | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { |
5148 | llvm::FoldingSetNodeID ID; |
5149 | PipeType::Profile(ID, T, isRead: ReadOnly); |
5150 | |
5151 | void *InsertPos = nullptr; |
5152 | if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5153 | return QualType(PT, 0); |
5154 | |
5155 | // If the pipe element type isn't canonical, this won't be a canonical type |
5156 | // either, so fill in the canonical type field. |
5157 | QualType Canonical; |
5158 | if (!T.isCanonical()) { |
5159 | Canonical = getPipeType(T: getCanonicalType(T), ReadOnly); |
5160 | |
5161 | // Get the new insert position for the node we care about. |
5162 | PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); |
5163 | assert(!NewIP && "Shouldn't be in the map!" ); |
5164 | (void)NewIP; |
5165 | } |
5166 | auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly); |
5167 | Types.push_back(Elt: New); |
5168 | PipeTypes.InsertNode(N: New, InsertPos); |
5169 | return QualType(New, 0); |
5170 | } |
5171 | |
5172 | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { |
5173 | // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. |
5174 | return LangOpts.OpenCL ? getAddrSpaceQualType(T: Ty, AddressSpace: LangAS::opencl_constant) |
5175 | : Ty; |
5176 | } |
5177 | |
5178 | QualType ASTContext::getReadPipeType(QualType T) const { |
5179 | return getPipeType(T, ReadOnly: true); |
5180 | } |
5181 | |
5182 | QualType ASTContext::getWritePipeType(QualType T) const { |
5183 | return getPipeType(T, ReadOnly: false); |
5184 | } |
5185 | |
5186 | QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const { |
5187 | llvm::FoldingSetNodeID ID; |
5188 | BitIntType::Profile(ID, IsUnsigned, NumBits); |
5189 | |
5190 | void *InsertPos = nullptr; |
5191 | if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5192 | return QualType(EIT, 0); |
5193 | |
5194 | auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits); |
5195 | BitIntTypes.InsertNode(N: New, InsertPos); |
5196 | Types.push_back(Elt: New); |
5197 | return QualType(New, 0); |
5198 | } |
5199 | |
5200 | QualType ASTContext::getDependentBitIntType(bool IsUnsigned, |
5201 | Expr *NumBitsExpr) const { |
5202 | assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent" ); |
5203 | llvm::FoldingSetNodeID ID; |
5204 | DependentBitIntType::Profile(ID, Context: *this, IsUnsigned, NumBitsExpr); |
5205 | |
5206 | void *InsertPos = nullptr; |
5207 | if (DependentBitIntType *Existing = |
5208 | DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5209 | return QualType(Existing, 0); |
5210 | |
5211 | auto *New = new (*this, alignof(DependentBitIntType)) |
5212 | DependentBitIntType(IsUnsigned, NumBitsExpr); |
5213 | DependentBitIntTypes.InsertNode(N: New, InsertPos); |
5214 | |
5215 | Types.push_back(Elt: New); |
5216 | return QualType(New, 0); |
5217 | } |
5218 | |
5219 | #ifndef NDEBUG |
5220 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
5221 | if (!isa<CXXRecordDecl>(D)) return false; |
5222 | const auto *RD = cast<CXXRecordDecl>(D); |
5223 | if (isa<ClassTemplatePartialSpecializationDecl>(RD)) |
5224 | return true; |
5225 | if (RD->getDescribedClassTemplate() && |
5226 | !isa<ClassTemplateSpecializationDecl>(RD)) |
5227 | return true; |
5228 | return false; |
5229 | } |
5230 | #endif |
5231 | |
5232 | /// getInjectedClassNameType - Return the unique reference to the |
5233 | /// injected class name type for the specified templated declaration. |
5234 | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
5235 | QualType TST) const { |
5236 | assert(NeedsInjectedClassNameType(Decl)); |
5237 | if (Decl->TypeForDecl) { |
5238 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
5239 | } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
5240 | assert(PrevDecl->TypeForDecl && "previous declaration has no type" ); |
5241 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
5242 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
5243 | } else { |
5244 | Type *newType = new (*this, alignof(InjectedClassNameType)) |
5245 | InjectedClassNameType(Decl, TST); |
5246 | Decl->TypeForDecl = newType; |
5247 | Types.push_back(Elt: newType); |
5248 | } |
5249 | return QualType(Decl->TypeForDecl, 0); |
5250 | } |
5251 | |
5252 | /// getTypeDeclType - Return the unique reference to the type for the |
5253 | /// specified type declaration. |
5254 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
5255 | assert(Decl && "Passed null for Decl param" ); |
5256 | assert(!Decl->TypeForDecl && "TypeForDecl present in slow case" ); |
5257 | |
5258 | if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Val: Decl)) |
5259 | return getTypedefType(Decl: Typedef); |
5260 | |
5261 | assert(!isa<TemplateTypeParmDecl>(Decl) && |
5262 | "Template type parameter types are always available." ); |
5263 | |
5264 | if (const auto *Record = dyn_cast<RecordDecl>(Val: Decl)) { |
5265 | assert(Record->isFirstDecl() && "struct/union has previous declaration" ); |
5266 | assert(!NeedsInjectedClassNameType(Record)); |
5267 | return getRecordType(Decl: Record); |
5268 | } else if (const auto *Enum = dyn_cast<EnumDecl>(Val: Decl)) { |
5269 | assert(Enum->isFirstDecl() && "enum has previous declaration" ); |
5270 | return getEnumType(Decl: Enum); |
5271 | } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Val: Decl)) { |
5272 | return getUnresolvedUsingType(Decl: Using); |
5273 | } else |
5274 | llvm_unreachable("TypeDecl without a type?" ); |
5275 | |
5276 | return QualType(Decl->TypeForDecl, 0); |
5277 | } |
5278 | |
5279 | /// getTypedefType - Return the unique reference to the type for the |
5280 | /// specified typedef name decl. |
5281 | QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
5282 | QualType Underlying) const { |
5283 | if (!Decl->TypeForDecl) { |
5284 | if (Underlying.isNull()) |
5285 | Underlying = Decl->getUnderlyingType(); |
5286 | auto *NewType = new (*this, alignof(TypedefType)) TypedefType( |
5287 | Type::Typedef, Decl, Underlying, /*HasTypeDifferentFromDecl=*/false); |
5288 | Decl->TypeForDecl = NewType; |
5289 | Types.push_back(Elt: NewType); |
5290 | return QualType(NewType, 0); |
5291 | } |
5292 | if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying) |
5293 | return QualType(Decl->TypeForDecl, 0); |
5294 | assert(hasSameType(Decl->getUnderlyingType(), Underlying)); |
5295 | |
5296 | llvm::FoldingSetNodeID ID; |
5297 | TypedefType::Profile(ID, Decl, Underlying); |
5298 | |
5299 | void *InsertPos = nullptr; |
5300 | if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
5301 | assert(!T->typeMatchesDecl() && |
5302 | "non-divergent case should be handled with TypeDecl" ); |
5303 | return QualType(T, 0); |
5304 | } |
5305 | |
5306 | void *Mem = Allocate(Size: TypedefType::totalSizeToAlloc<QualType>(Counts: true), |
5307 | Align: alignof(TypedefType)); |
5308 | auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying, |
5309 | /*HasTypeDifferentFromDecl=*/true); |
5310 | TypedefTypes.InsertNode(N: NewType, InsertPos); |
5311 | Types.push_back(Elt: NewType); |
5312 | return QualType(NewType, 0); |
5313 | } |
5314 | |
5315 | QualType ASTContext::getUsingType(const UsingShadowDecl *Found, |
5316 | QualType Underlying) const { |
5317 | llvm::FoldingSetNodeID ID; |
5318 | UsingType::Profile(ID, Found, Underlying); |
5319 | |
5320 | void *InsertPos = nullptr; |
5321 | if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5322 | return QualType(T, 0); |
5323 | |
5324 | const Type *TypeForDecl = |
5325 | cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(); |
5326 | |
5327 | assert(!Underlying.hasLocalQualifiers()); |
5328 | QualType Canon = Underlying->getCanonicalTypeInternal(); |
5329 | assert(TypeForDecl->getCanonicalTypeInternal() == Canon); |
5330 | |
5331 | if (Underlying.getTypePtr() == TypeForDecl) |
5332 | Underlying = QualType(); |
5333 | void *Mem = |
5334 | Allocate(Size: UsingType::totalSizeToAlloc<QualType>(Counts: !Underlying.isNull()), |
5335 | Align: alignof(UsingType)); |
5336 | UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon); |
5337 | Types.push_back(Elt: NewType); |
5338 | UsingTypes.InsertNode(N: NewType, InsertPos); |
5339 | return QualType(NewType, 0); |
5340 | } |
5341 | |
5342 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
5343 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
5344 | |
5345 | if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
5346 | if (PrevDecl->TypeForDecl) |
5347 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
5348 | |
5349 | auto *newType = new (*this, alignof(RecordType)) RecordType(Decl); |
5350 | Decl->TypeForDecl = newType; |
5351 | Types.push_back(Elt: newType); |
5352 | return QualType(newType, 0); |
5353 | } |
5354 | |
5355 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
5356 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
5357 | |
5358 | if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
5359 | if (PrevDecl->TypeForDecl) |
5360 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
5361 | |
5362 | auto *newType = new (*this, alignof(EnumType)) EnumType(Decl); |
5363 | Decl->TypeForDecl = newType; |
5364 | Types.push_back(Elt: newType); |
5365 | return QualType(newType, 0); |
5366 | } |
5367 | |
5368 | bool ASTContext::computeBestEnumTypes(bool IsPacked, unsigned NumNegativeBits, |
5369 | unsigned NumPositiveBits, |
5370 | QualType &BestType, |
5371 | QualType &BestPromotionType) { |
5372 | unsigned IntWidth = Target->getIntWidth(); |
5373 | unsigned CharWidth = Target->getCharWidth(); |
5374 | unsigned ShortWidth = Target->getShortWidth(); |
5375 | bool EnumTooLarge = false; |
5376 | unsigned BestWidth; |
5377 | if (NumNegativeBits) { |
5378 | // If there is a negative value, figure out the smallest integer type (of |
5379 | // int/long/longlong) that fits. |
5380 | // If it's packed, check also if it fits a char or a short. |
5381 | if (IsPacked && NumNegativeBits <= CharWidth && |
5382 | NumPositiveBits < CharWidth) { |
5383 | BestType = SignedCharTy; |
5384 | BestWidth = CharWidth; |
5385 | } else if (IsPacked && NumNegativeBits <= ShortWidth && |
5386 | NumPositiveBits < ShortWidth) { |
5387 | BestType = ShortTy; |
5388 | BestWidth = ShortWidth; |
5389 | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
5390 | BestType = IntTy; |
5391 | BestWidth = IntWidth; |
5392 | } else { |
5393 | BestWidth = Target->getLongWidth(); |
5394 | |
5395 | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { |
5396 | BestType = LongTy; |
5397 | } else { |
5398 | BestWidth = Target->getLongLongWidth(); |
5399 | |
5400 | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
5401 | EnumTooLarge = true; |
5402 | BestType = LongLongTy; |
5403 | } |
5404 | } |
5405 | BestPromotionType = (BestWidth <= IntWidth ? IntTy : BestType); |
5406 | } else { |
5407 | // If there is no negative value, figure out the smallest type that fits |
5408 | // all of the enumerator values. |
5409 | // If it's packed, check also if it fits a char or a short. |
5410 | if (IsPacked && NumPositiveBits <= CharWidth) { |
5411 | BestType = UnsignedCharTy; |
5412 | BestPromotionType = IntTy; |
5413 | BestWidth = CharWidth; |
5414 | } else if (IsPacked && NumPositiveBits <= ShortWidth) { |
5415 | BestType = UnsignedShortTy; |
5416 | BestPromotionType = IntTy; |
5417 | BestWidth = ShortWidth; |
5418 | } else if (NumPositiveBits <= IntWidth) { |
5419 | BestType = UnsignedIntTy; |
5420 | BestWidth = IntWidth; |
5421 | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) |
5422 | ? UnsignedIntTy |
5423 | : IntTy; |
5424 | } else if (NumPositiveBits <= (BestWidth = Target->getLongWidth())) { |
5425 | BestType = UnsignedLongTy; |
5426 | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) |
5427 | ? UnsignedLongTy |
5428 | : LongTy; |
5429 | } else { |
5430 | BestWidth = Target->getLongLongWidth(); |
5431 | if (NumPositiveBits > BestWidth) { |
5432 | // This can happen with bit-precise integer types, but those are not |
5433 | // allowed as the type for an enumerator per C23 6.7.2.2p4 and p12. |
5434 | // FIXME: GCC uses __int128_t and __uint128_t for cases that fit within |
5435 | // a 128-bit integer, we should consider doing the same. |
5436 | EnumTooLarge = true; |
5437 | } |
5438 | BestType = UnsignedLongLongTy; |
5439 | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) |
5440 | ? UnsignedLongLongTy |
5441 | : LongLongTy; |
5442 | } |
5443 | } |
5444 | return EnumTooLarge; |
5445 | } |
5446 | |
5447 | bool ASTContext::isRepresentableIntegerValue(llvm::APSInt &Value, QualType T) { |
5448 | assert((T->isIntegralType(*this) || T->isEnumeralType()) && |
5449 | "Integral type required!" ); |
5450 | unsigned BitWidth = getIntWidth(T); |
5451 | |
5452 | if (Value.isUnsigned() || Value.isNonNegative()) { |
5453 | if (T->isSignedIntegerOrEnumerationType()) |
5454 | --BitWidth; |
5455 | return Value.getActiveBits() <= BitWidth; |
5456 | } |
5457 | return Value.getSignificantBits() <= BitWidth; |
5458 | } |
5459 | |
5460 | QualType ASTContext::getUnresolvedUsingType( |
5461 | const UnresolvedUsingTypenameDecl *Decl) const { |
5462 | if (Decl->TypeForDecl) |
5463 | return QualType(Decl->TypeForDecl, 0); |
5464 | |
5465 | if (const UnresolvedUsingTypenameDecl *CanonicalDecl = |
5466 | Decl->getCanonicalDecl()) |
5467 | if (CanonicalDecl->TypeForDecl) |
5468 | return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0); |
5469 | |
5470 | Type *newType = |
5471 | new (*this, alignof(UnresolvedUsingType)) UnresolvedUsingType(Decl); |
5472 | Decl->TypeForDecl = newType; |
5473 | Types.push_back(Elt: newType); |
5474 | return QualType(newType, 0); |
5475 | } |
5476 | |
5477 | QualType ASTContext::getAttributedType(attr::Kind attrKind, |
5478 | QualType modifiedType, |
5479 | QualType equivalentType, |
5480 | const Attr *attr) const { |
5481 | llvm::FoldingSetNodeID id; |
5482 | AttributedType::Profile(ID&: id, attrKind, modified: modifiedType, equivalent: equivalentType, attr); |
5483 | |
5484 | void *insertPos = nullptr; |
5485 | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(ID: id, InsertPos&: insertPos); |
5486 | if (type) return QualType(type, 0); |
5487 | |
5488 | assert(!attr || attr->getKind() == attrKind); |
5489 | |
5490 | QualType canon = getCanonicalType(T: equivalentType); |
5491 | type = new (*this, alignof(AttributedType)) |
5492 | AttributedType(canon, attrKind, attr, modifiedType, equivalentType); |
5493 | |
5494 | Types.push_back(Elt: type); |
5495 | AttributedTypes.InsertNode(N: type, InsertPos: insertPos); |
5496 | |
5497 | return QualType(type, 0); |
5498 | } |
5499 | |
5500 | QualType ASTContext::getAttributedType(const Attr *attr, QualType modifiedType, |
5501 | QualType equivalentType) const { |
5502 | return getAttributedType(attrKind: attr->getKind(), modifiedType, equivalentType, attr); |
5503 | } |
5504 | |
5505 | QualType ASTContext::getAttributedType(NullabilityKind nullability, |
5506 | QualType modifiedType, |
5507 | QualType equivalentType) { |
5508 | switch (nullability) { |
5509 | case NullabilityKind::NonNull: |
5510 | return getAttributedType(attrKind: attr::TypeNonNull, modifiedType, equivalentType); |
5511 | |
5512 | case NullabilityKind::Nullable: |
5513 | return getAttributedType(attrKind: attr::TypeNullable, modifiedType, equivalentType); |
5514 | |
5515 | case NullabilityKind::NullableResult: |
5516 | return getAttributedType(attrKind: attr::TypeNullableResult, modifiedType, |
5517 | equivalentType); |
5518 | |
5519 | case NullabilityKind::Unspecified: |
5520 | return getAttributedType(attrKind: attr::TypeNullUnspecified, modifiedType, |
5521 | equivalentType); |
5522 | } |
5523 | |
5524 | llvm_unreachable("Unknown nullability kind" ); |
5525 | } |
5526 | |
5527 | QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, |
5528 | QualType Wrapped) const { |
5529 | llvm::FoldingSetNodeID ID; |
5530 | BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr); |
5531 | |
5532 | void *InsertPos = nullptr; |
5533 | BTFTagAttributedType *Ty = |
5534 | BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5535 | if (Ty) |
5536 | return QualType(Ty, 0); |
5537 | |
5538 | QualType Canon = getCanonicalType(T: Wrapped); |
5539 | Ty = new (*this, alignof(BTFTagAttributedType)) |
5540 | BTFTagAttributedType(Canon, Wrapped, BTFAttr); |
5541 | |
5542 | Types.push_back(Elt: Ty); |
5543 | BTFTagAttributedTypes.InsertNode(N: Ty, InsertPos); |
5544 | |
5545 | return QualType(Ty, 0); |
5546 | } |
5547 | |
5548 | QualType ASTContext::getHLSLAttributedResourceType( |
5549 | QualType Wrapped, QualType Contained, |
5550 | const HLSLAttributedResourceType::Attributes &Attrs) { |
5551 | |
5552 | llvm::FoldingSetNodeID ID; |
5553 | HLSLAttributedResourceType::Profile(ID, Wrapped, Contained, Attrs); |
5554 | |
5555 | void *InsertPos = nullptr; |
5556 | HLSLAttributedResourceType *Ty = |
5557 | HLSLAttributedResourceTypes.FindNodeOrInsertPos(ID, InsertPos); |
5558 | if (Ty) |
5559 | return QualType(Ty, 0); |
5560 | |
5561 | Ty = new (*this, alignof(HLSLAttributedResourceType)) |
5562 | HLSLAttributedResourceType(Wrapped, Contained, Attrs); |
5563 | |
5564 | Types.push_back(Elt: Ty); |
5565 | HLSLAttributedResourceTypes.InsertNode(N: Ty, InsertPos); |
5566 | |
5567 | return QualType(Ty, 0); |
5568 | } |
5569 | |
5570 | QualType ASTContext::getHLSLInlineSpirvType(uint32_t Opcode, uint32_t Size, |
5571 | uint32_t Alignment, |
5572 | ArrayRef<SpirvOperand> Operands) { |
5573 | llvm::FoldingSetNodeID ID; |
5574 | HLSLInlineSpirvType::Profile(ID, Opcode, Size, Alignment, Operands); |
5575 | |
5576 | void *InsertPos = nullptr; |
5577 | HLSLInlineSpirvType *Ty = |
5578 | HLSLInlineSpirvTypes.FindNodeOrInsertPos(ID, InsertPos); |
5579 | if (Ty) |
5580 | return QualType(Ty, 0); |
5581 | |
5582 | void *Mem = Allocate( |
5583 | Size: HLSLInlineSpirvType::totalSizeToAlloc<SpirvOperand>(Counts: Operands.size()), |
5584 | Align: alignof(HLSLInlineSpirvType)); |
5585 | |
5586 | Ty = new (Mem) HLSLInlineSpirvType(Opcode, Size, Alignment, Operands); |
5587 | |
5588 | Types.push_back(Elt: Ty); |
5589 | HLSLInlineSpirvTypes.InsertNode(N: Ty, InsertPos); |
5590 | |
5591 | return QualType(Ty, 0); |
5592 | } |
5593 | |
5594 | /// Retrieve a substitution-result type. |
5595 | QualType ASTContext::getSubstTemplateTypeParmType(QualType Replacement, |
5596 | Decl *AssociatedDecl, |
5597 | unsigned Index, |
5598 | UnsignedOrNone PackIndex, |
5599 | bool Final) const { |
5600 | llvm::FoldingSetNodeID ID; |
5601 | SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index, |
5602 | PackIndex, Final); |
5603 | void *InsertPos = nullptr; |
5604 | SubstTemplateTypeParmType *SubstParm = |
5605 | SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
5606 | |
5607 | if (!SubstParm) { |
5608 | void *Mem = Allocate(Size: SubstTemplateTypeParmType::totalSizeToAlloc<QualType>( |
5609 | Counts: !Replacement.isCanonical()), |
5610 | Align: alignof(SubstTemplateTypeParmType)); |
5611 | SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl, |
5612 | Index, PackIndex, Final); |
5613 | Types.push_back(Elt: SubstParm); |
5614 | SubstTemplateTypeParmTypes.InsertNode(N: SubstParm, InsertPos); |
5615 | } |
5616 | |
5617 | return QualType(SubstParm, 0); |
5618 | } |
5619 | |
5620 | /// Retrieve a |
5621 | QualType |
5622 | ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl, |
5623 | unsigned Index, bool Final, |
5624 | const TemplateArgument &ArgPack) { |
5625 | #ifndef NDEBUG |
5626 | for (const auto &P : ArgPack.pack_elements()) |
5627 | assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type" ); |
5628 | #endif |
5629 | |
5630 | llvm::FoldingSetNodeID ID; |
5631 | SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final, |
5632 | ArgPack); |
5633 | void *InsertPos = nullptr; |
5634 | if (SubstTemplateTypeParmPackType *SubstParm = |
5635 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5636 | return QualType(SubstParm, 0); |
5637 | |
5638 | QualType Canon; |
5639 | { |
5640 | TemplateArgument CanonArgPack = getCanonicalTemplateArgument(Arg: ArgPack); |
5641 | if (!AssociatedDecl->isCanonicalDecl() || |
5642 | !CanonArgPack.structurallyEquals(Other: ArgPack)) { |
5643 | Canon = getSubstTemplateTypeParmPackType( |
5644 | AssociatedDecl: AssociatedDecl->getCanonicalDecl(), Index, Final, ArgPack: CanonArgPack); |
5645 | [[maybe_unused]] const auto *Nothing = |
5646 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
5647 | assert(!Nothing); |
5648 | } |
5649 | } |
5650 | |
5651 | auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType)) |
5652 | SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final, |
5653 | ArgPack); |
5654 | Types.push_back(Elt: SubstParm); |
5655 | SubstTemplateTypeParmPackTypes.InsertNode(N: SubstParm, InsertPos); |
5656 | return QualType(SubstParm, 0); |
5657 | } |
5658 | |
5659 | /// Retrieve the template type parameter type for a template |
5660 | /// parameter or parameter pack with the given depth, index, and (optionally) |
5661 | /// name. |
5662 | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
5663 | bool ParameterPack, |
5664 | TemplateTypeParmDecl *TTPDecl) const { |
5665 | llvm::FoldingSetNodeID ID; |
5666 | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
5667 | void *InsertPos = nullptr; |
5668 | TemplateTypeParmType *TypeParm |
5669 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
5670 | |
5671 | if (TypeParm) |
5672 | return QualType(TypeParm, 0); |
5673 | |
5674 | if (TTPDecl) { |
5675 | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
5676 | TypeParm = new (*this, alignof(TemplateTypeParmType)) |
5677 | TemplateTypeParmType(Depth, Index, ParameterPack, TTPDecl, Canon); |
5678 | |
5679 | TemplateTypeParmType *TypeCheck |
5680 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
5681 | assert(!TypeCheck && "Template type parameter canonical type broken" ); |
5682 | (void)TypeCheck; |
5683 | } else |
5684 | TypeParm = new (*this, alignof(TemplateTypeParmType)) TemplateTypeParmType( |
5685 | Depth, Index, ParameterPack, /*TTPDecl=*/nullptr, /*Canon=*/QualType()); |
5686 | |
5687 | Types.push_back(Elt: TypeParm); |
5688 | TemplateTypeParmTypes.InsertNode(N: TypeParm, InsertPos); |
5689 | |
5690 | return QualType(TypeParm, 0); |
5691 | } |
5692 | |
5693 | TypeSourceInfo *ASTContext::getTemplateSpecializationTypeInfo( |
5694 | TemplateName Name, SourceLocation NameLoc, |
5695 | const TemplateArgumentListInfo &SpecifiedArgs, |
5696 | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { |
5697 | QualType TST = getTemplateSpecializationType(T: Name, SpecifiedArgs: SpecifiedArgs.arguments(), |
5698 | CanonicalArgs, Canon: Underlying); |
5699 | |
5700 | TypeSourceInfo *DI = CreateTypeSourceInfo(T: TST); |
5701 | TemplateSpecializationTypeLoc TL = |
5702 | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); |
5703 | TL.setTemplateKeywordLoc(SourceLocation()); |
5704 | TL.setTemplateNameLoc(NameLoc); |
5705 | TL.setLAngleLoc(SpecifiedArgs.getLAngleLoc()); |
5706 | TL.setRAngleLoc(SpecifiedArgs.getRAngleLoc()); |
5707 | for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
5708 | TL.setArgLocInfo(i, AI: SpecifiedArgs[i].getLocInfo()); |
5709 | return DI; |
5710 | } |
5711 | |
5712 | QualType ASTContext::getTemplateSpecializationType( |
5713 | TemplateName Template, ArrayRef<TemplateArgumentLoc> SpecifiedArgs, |
5714 | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { |
5715 | SmallVector<TemplateArgument, 4> SpecifiedArgVec; |
5716 | SpecifiedArgVec.reserve(N: SpecifiedArgs.size()); |
5717 | for (const TemplateArgumentLoc &Arg : SpecifiedArgs) |
5718 | SpecifiedArgVec.push_back(Elt: Arg.getArgument()); |
5719 | |
5720 | return getTemplateSpecializationType(T: Template, SpecifiedArgs: SpecifiedArgVec, CanonicalArgs, |
5721 | Underlying); |
5722 | } |
5723 | |
5724 | [[maybe_unused]] static bool |
5725 | hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { |
5726 | for (const TemplateArgument &Arg : Args) |
5727 | if (Arg.isPackExpansion()) |
5728 | return true; |
5729 | return false; |
5730 | } |
5731 | |
5732 | QualType ASTContext::getCanonicalTemplateSpecializationType( |
5733 | TemplateName Template, ArrayRef<TemplateArgument> Args) const { |
5734 | assert(Template == |
5735 | getCanonicalTemplateName(Template, /*IgnoreDeduced=*/true)); |
5736 | assert(!Args.empty()); |
5737 | #ifndef NDEBUG |
5738 | for (const auto &Arg : Args) |
5739 | assert(Arg.structurallyEquals(getCanonicalTemplateArgument(Arg))); |
5740 | #endif |
5741 | |
5742 | llvm::FoldingSetNodeID ID; |
5743 | TemplateSpecializationType::Profile(ID, T: Template, Args, Underlying: QualType(), Context: *this); |
5744 | void *InsertPos = nullptr; |
5745 | if (auto *T = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5746 | return QualType(T, 0); |
5747 | |
5748 | void *Mem = Allocate(Size: sizeof(TemplateSpecializationType) + |
5749 | sizeof(TemplateArgument) * Args.size(), |
5750 | Align: alignof(TemplateSpecializationType)); |
5751 | auto *Spec = new (Mem) |
5752 | TemplateSpecializationType(Template, /*IsAlias=*/false, Args, QualType()); |
5753 | assert(Spec->isDependentType() && |
5754 | "canonical template specialization must be dependent" ); |
5755 | Types.push_back(Elt: Spec); |
5756 | TemplateSpecializationTypes.InsertNode(N: Spec, InsertPos); |
5757 | return QualType(Spec, 0); |
5758 | } |
5759 | |
5760 | QualType ASTContext::getTemplateSpecializationType( |
5761 | TemplateName Template, ArrayRef<TemplateArgument> SpecifiedArgs, |
5762 | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { |
5763 | assert(!Template.getUnderlying().getAsDependentTemplateName() && |
5764 | "No dependent template names here!" ); |
5765 | |
5766 | const auto *TD = Template.getAsTemplateDecl(/*IgnoreDeduced=*/true); |
5767 | bool IsTypeAlias = TD && TD->isTypeAlias(); |
5768 | if (Underlying.isNull()) { |
5769 | TemplateName CanonTemplate = |
5770 | getCanonicalTemplateName(Name: Template, /*IgnoreDeduced=*/true); |
5771 | bool NonCanonical = Template != CanonTemplate; |
5772 | SmallVector<TemplateArgument, 4> CanonArgsVec; |
5773 | if (CanonicalArgs.empty()) { |
5774 | CanonArgsVec = SmallVector<TemplateArgument, 4>(SpecifiedArgs); |
5775 | NonCanonical |= canonicalizeTemplateArguments(Args: CanonArgsVec); |
5776 | CanonicalArgs = CanonArgsVec; |
5777 | } else { |
5778 | NonCanonical |= !llvm::equal( |
5779 | LRange&: SpecifiedArgs, RRange&: CanonicalArgs, |
5780 | P: [](const TemplateArgument &A, const TemplateArgument &B) { |
5781 | return A.structurallyEquals(Other: B); |
5782 | }); |
5783 | } |
5784 | |
5785 | // We can get here with an alias template when the specialization |
5786 | // contains a pack expansion that does not match up with a parameter |
5787 | // pack, or a builtin template which cannot be resolved due to dependency. |
5788 | assert((!isa_and_nonnull<TypeAliasTemplateDecl>(TD) || |
5789 | hasAnyPackExpansions(CanonicalArgs)) && |
5790 | "Caller must compute aliased type" ); |
5791 | IsTypeAlias = false; |
5792 | |
5793 | Underlying = |
5794 | getCanonicalTemplateSpecializationType(Template: CanonTemplate, Args: CanonicalArgs); |
5795 | if (!NonCanonical) |
5796 | return Underlying; |
5797 | } |
5798 | void *Mem = Allocate(Size: sizeof(TemplateSpecializationType) + |
5799 | sizeof(TemplateArgument) * SpecifiedArgs.size() + |
5800 | (IsTypeAlias ? sizeof(QualType) : 0), |
5801 | Align: alignof(TemplateSpecializationType)); |
5802 | auto *Spec = new (Mem) TemplateSpecializationType(Template, IsTypeAlias, |
5803 | SpecifiedArgs, Underlying); |
5804 | Types.push_back(Elt: Spec); |
5805 | return QualType(Spec, 0); |
5806 | } |
5807 | |
5808 | QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
5809 | NestedNameSpecifier *NNS, |
5810 | QualType NamedType, |
5811 | TagDecl *OwnedTagDecl) const { |
5812 | llvm::FoldingSetNodeID ID; |
5813 | ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); |
5814 | |
5815 | void *InsertPos = nullptr; |
5816 | ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5817 | if (T) |
5818 | return QualType(T, 0); |
5819 | |
5820 | QualType Canon = NamedType; |
5821 | if (!Canon.isCanonical()) { |
5822 | Canon = getCanonicalType(T: NamedType); |
5823 | ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5824 | assert(!CheckT && "Elaborated canonical type broken" ); |
5825 | (void)CheckT; |
5826 | } |
5827 | |
5828 | void *Mem = |
5829 | Allocate(Size: ElaboratedType::totalSizeToAlloc<TagDecl *>(Counts: !!OwnedTagDecl), |
5830 | Align: alignof(ElaboratedType)); |
5831 | T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); |
5832 | |
5833 | Types.push_back(Elt: T); |
5834 | ElaboratedTypes.InsertNode(N: T, InsertPos); |
5835 | return QualType(T, 0); |
5836 | } |
5837 | |
5838 | QualType |
5839 | ASTContext::getParenType(QualType InnerType) const { |
5840 | llvm::FoldingSetNodeID ID; |
5841 | ParenType::Profile(ID, Inner: InnerType); |
5842 | |
5843 | void *InsertPos = nullptr; |
5844 | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
5845 | if (T) |
5846 | return QualType(T, 0); |
5847 | |
5848 | QualType Canon = InnerType; |
5849 | if (!Canon.isCanonical()) { |
5850 | Canon = getCanonicalType(T: InnerType); |
5851 | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
5852 | assert(!CheckT && "Paren canonical type broken" ); |
5853 | (void)CheckT; |
5854 | } |
5855 | |
5856 | T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon); |
5857 | Types.push_back(Elt: T); |
5858 | ParenTypes.InsertNode(N: T, InsertPos); |
5859 | return QualType(T, 0); |
5860 | } |
5861 | |
5862 | QualType |
5863 | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, |
5864 | const IdentifierInfo *MacroII) const { |
5865 | QualType Canon = UnderlyingTy; |
5866 | if (!Canon.isCanonical()) |
5867 | Canon = getCanonicalType(T: UnderlyingTy); |
5868 | |
5869 | auto *newType = new (*this, alignof(MacroQualifiedType)) |
5870 | MacroQualifiedType(UnderlyingTy, Canon, MacroII); |
5871 | Types.push_back(Elt: newType); |
5872 | return QualType(newType, 0); |
5873 | } |
5874 | |
5875 | static ElaboratedTypeKeyword |
5876 | getCanonicalElaboratedTypeKeyword(ElaboratedTypeKeyword Keyword) { |
5877 | switch (Keyword) { |
5878 | // These are just themselves. |
5879 | case ElaboratedTypeKeyword::None: |
5880 | case ElaboratedTypeKeyword::Struct: |
5881 | case ElaboratedTypeKeyword::Union: |
5882 | case ElaboratedTypeKeyword::Enum: |
5883 | case ElaboratedTypeKeyword::Interface: |
5884 | return Keyword; |
5885 | |
5886 | // These are equivalent. |
5887 | case ElaboratedTypeKeyword::Typename: |
5888 | return ElaboratedTypeKeyword::None; |
5889 | |
5890 | // These are functionally equivalent, so relying on their equivalence is |
5891 | // IFNDR. By making them equivalent, we disallow overloading, which at least |
5892 | // can produce a diagnostic. |
5893 | case ElaboratedTypeKeyword::Class: |
5894 | return ElaboratedTypeKeyword::Struct; |
5895 | } |
5896 | llvm_unreachable("unexpected keyword kind" ); |
5897 | } |
5898 | |
5899 | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
5900 | NestedNameSpecifier *NNS, |
5901 | const IdentifierInfo *Name) const { |
5902 | llvm::FoldingSetNodeID ID; |
5903 | DependentNameType::Profile(ID, Keyword, NNS, Name); |
5904 | |
5905 | void *InsertPos = nullptr; |
5906 | if (DependentNameType *T = |
5907 | DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5908 | return QualType(T, 0); |
5909 | |
5910 | ElaboratedTypeKeyword CanonKeyword = |
5911 | getCanonicalElaboratedTypeKeyword(Keyword); |
5912 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
5913 | |
5914 | QualType Canon; |
5915 | if (CanonKeyword != Keyword || CanonNNS != NNS) { |
5916 | Canon = getDependentNameType(Keyword: CanonKeyword, NNS: CanonNNS, Name); |
5917 | [[maybe_unused]] DependentNameType *T = |
5918 | DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
5919 | assert(!T && "broken canonicalization" ); |
5920 | assert(Canon.isCanonical()); |
5921 | } |
5922 | |
5923 | DependentNameType *T = new (*this, alignof(DependentNameType)) |
5924 | DependentNameType(Keyword, NNS, Name, Canon); |
5925 | Types.push_back(Elt: T); |
5926 | DependentNameTypes.InsertNode(N: T, InsertPos); |
5927 | return QualType(T, 0); |
5928 | } |
5929 | |
5930 | QualType ASTContext::getDependentTemplateSpecializationType( |
5931 | ElaboratedTypeKeyword Keyword, const DependentTemplateStorage &Name, |
5932 | ArrayRef<TemplateArgumentLoc> Args) const { |
5933 | // TODO: avoid this copy |
5934 | SmallVector<TemplateArgument, 16> ArgCopy; |
5935 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
5936 | ArgCopy.push_back(Elt: Args[I].getArgument()); |
5937 | return getDependentTemplateSpecializationType(Keyword, Name, Args: ArgCopy); |
5938 | } |
5939 | |
5940 | QualType ASTContext::getDependentTemplateSpecializationType( |
5941 | ElaboratedTypeKeyword Keyword, const DependentTemplateStorage &Name, |
5942 | ArrayRef<TemplateArgument> Args, bool IsCanonical) const { |
5943 | llvm::FoldingSetNodeID ID; |
5944 | DependentTemplateSpecializationType::Profile(ID, Context: *this, Keyword, Name, Args); |
5945 | |
5946 | void *InsertPos = nullptr; |
5947 | if (auto *T = DependentTemplateSpecializationTypes.FindNodeOrInsertPos( |
5948 | ID, InsertPos)) |
5949 | return QualType(T, 0); |
5950 | |
5951 | NestedNameSpecifier *NNS = Name.getQualifier(); |
5952 | |
5953 | QualType Canon; |
5954 | if (!IsCanonical) { |
5955 | ElaboratedTypeKeyword CanonKeyword = |
5956 | getCanonicalElaboratedTypeKeyword(Keyword); |
5957 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
5958 | bool AnyNonCanonArgs = false; |
5959 | auto CanonArgs = |
5960 | ::getCanonicalTemplateArguments(C: *this, Args, AnyNonCanonArgs); |
5961 | |
5962 | if (CanonKeyword != Keyword || AnyNonCanonArgs || CanonNNS != NNS || |
5963 | !Name.hasTemplateKeyword()) { |
5964 | Canon = getDependentTemplateSpecializationType( |
5965 | Keyword: CanonKeyword, Name: {CanonNNS, Name.getName(), /*HasTemplateKeyword=*/true}, |
5966 | Args: CanonArgs, |
5967 | /*IsCanonical=*/true); |
5968 | // Find the insert position again. |
5969 | [[maybe_unused]] auto *Nothing = |
5970 | DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, |
5971 | InsertPos); |
5972 | assert(!Nothing && "canonical type broken" ); |
5973 | } |
5974 | } else { |
5975 | assert(Keyword == getCanonicalElaboratedTypeKeyword(Keyword)); |
5976 | assert(Name.hasTemplateKeyword()); |
5977 | assert(NNS == getCanonicalNestedNameSpecifier(NNS)); |
5978 | #ifndef NDEBUG |
5979 | for (const auto &Arg : Args) |
5980 | assert(Arg.structurallyEquals(getCanonicalTemplateArgument(Arg))); |
5981 | #endif |
5982 | } |
5983 | void *Mem = Allocate(Size: (sizeof(DependentTemplateSpecializationType) + |
5984 | sizeof(TemplateArgument) * Args.size()), |
5985 | Align: alignof(DependentTemplateSpecializationType)); |
5986 | auto *T = |
5987 | new (Mem) DependentTemplateSpecializationType(Keyword, Name, Args, Canon); |
5988 | Types.push_back(Elt: T); |
5989 | DependentTemplateSpecializationTypes.InsertNode(N: T, InsertPos); |
5990 | return QualType(T, 0); |
5991 | } |
5992 | |
5993 | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) const { |
5994 | TemplateArgument Arg; |
5995 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
5996 | QualType ArgType = getTypeDeclType(Decl: TTP); |
5997 | if (TTP->isParameterPack()) |
5998 | ArgType = getPackExpansionType(Pattern: ArgType, NumExpansions: std::nullopt); |
5999 | |
6000 | Arg = TemplateArgument(ArgType); |
6001 | } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
6002 | QualType T = |
6003 | NTTP->getType().getNonPackExpansionType().getNonLValueExprType(Context: *this); |
6004 | // For class NTTPs, ensure we include the 'const' so the type matches that |
6005 | // of a real template argument. |
6006 | // FIXME: It would be more faithful to model this as something like an |
6007 | // lvalue-to-rvalue conversion applied to a const-qualified lvalue. |
6008 | ExprValueKind VK; |
6009 | if (T->isRecordType()) { |
6010 | // C++ [temp.param]p8: An id-expression naming a non-type |
6011 | // template-parameter of class type T denotes a static storage duration |
6012 | // object of type const T. |
6013 | T.addConst(); |
6014 | VK = VK_LValue; |
6015 | } else { |
6016 | VK = Expr::getValueKindForType(T: NTTP->getType()); |
6017 | } |
6018 | Expr *E = new (*this) |
6019 | DeclRefExpr(*this, NTTP, /*RefersToEnclosingVariableOrCapture=*/false, |
6020 | T, VK, NTTP->getLocation()); |
6021 | |
6022 | if (NTTP->isParameterPack()) |
6023 | E = new (*this) PackExpansionExpr(E, NTTP->getLocation(), std::nullopt); |
6024 | Arg = TemplateArgument(E, /*IsCanonical=*/false); |
6025 | } else { |
6026 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
6027 | TemplateName Name = getQualifiedTemplateName( |
6028 | NNS: nullptr, /*TemplateKeyword=*/false, Template: TemplateName(TTP)); |
6029 | if (TTP->isParameterPack()) |
6030 | Arg = TemplateArgument(Name, /*NumExpansions=*/std::nullopt); |
6031 | else |
6032 | Arg = TemplateArgument(Name); |
6033 | } |
6034 | |
6035 | if (Param->isTemplateParameterPack()) |
6036 | Arg = |
6037 | TemplateArgument::CreatePackCopy(Context&: const_cast<ASTContext &>(*this), Args: Arg); |
6038 | |
6039 | return Arg; |
6040 | } |
6041 | |
6042 | QualType ASTContext::getPackExpansionType(QualType Pattern, |
6043 | UnsignedOrNone NumExpansions, |
6044 | bool ExpectPackInType) const { |
6045 | assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && |
6046 | "Pack expansions must expand one or more parameter packs" ); |
6047 | |
6048 | llvm::FoldingSetNodeID ID; |
6049 | PackExpansionType::Profile(ID, Pattern, NumExpansions); |
6050 | |
6051 | void *InsertPos = nullptr; |
6052 | PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
6053 | if (T) |
6054 | return QualType(T, 0); |
6055 | |
6056 | QualType Canon; |
6057 | if (!Pattern.isCanonical()) { |
6058 | Canon = getPackExpansionType(Pattern: getCanonicalType(T: Pattern), NumExpansions, |
6059 | /*ExpectPackInType=*/false); |
6060 | |
6061 | // Find the insert position again, in case we inserted an element into |
6062 | // PackExpansionTypes and invalidated our insert position. |
6063 | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
6064 | } |
6065 | |
6066 | T = new (*this, alignof(PackExpansionType)) |
6067 | PackExpansionType(Pattern, Canon, NumExpansions); |
6068 | Types.push_back(Elt: T); |
6069 | PackExpansionTypes.InsertNode(N: T, InsertPos); |
6070 | return QualType(T, 0); |
6071 | } |
6072 | |
6073 | /// CmpProtocolNames - Comparison predicate for sorting protocols |
6074 | /// alphabetically. |
6075 | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, |
6076 | ObjCProtocolDecl *const *RHS) { |
6077 | return DeclarationName::compare(LHS: (*LHS)->getDeclName(), RHS: (*RHS)->getDeclName()); |
6078 | } |
6079 | |
6080 | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { |
6081 | if (Protocols.empty()) return true; |
6082 | |
6083 | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
6084 | return false; |
6085 | |
6086 | for (unsigned i = 1; i != Protocols.size(); ++i) |
6087 | if (CmpProtocolNames(LHS: &Protocols[i - 1], RHS: &Protocols[i]) >= 0 || |
6088 | Protocols[i]->getCanonicalDecl() != Protocols[i]) |
6089 | return false; |
6090 | return true; |
6091 | } |
6092 | |
6093 | static void |
6094 | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { |
6095 | // Sort protocols, keyed by name. |
6096 | llvm::array_pod_sort(Start: Protocols.begin(), End: Protocols.end(), Compare: CmpProtocolNames); |
6097 | |
6098 | // Canonicalize. |
6099 | for (ObjCProtocolDecl *&P : Protocols) |
6100 | P = P->getCanonicalDecl(); |
6101 | |
6102 | // Remove duplicates. |
6103 | auto ProtocolsEnd = llvm::unique(R&: Protocols); |
6104 | Protocols.erase(CS: ProtocolsEnd, CE: Protocols.end()); |
6105 | } |
6106 | |
6107 | QualType ASTContext::getObjCObjectType(QualType BaseType, |
6108 | ObjCProtocolDecl * const *Protocols, |
6109 | unsigned NumProtocols) const { |
6110 | return getObjCObjectType(Base: BaseType, typeArgs: {}, protocols: ArrayRef(Protocols, NumProtocols), |
6111 | /*isKindOf=*/false); |
6112 | } |
6113 | |
6114 | QualType ASTContext::getObjCObjectType( |
6115 | QualType baseType, |
6116 | ArrayRef<QualType> typeArgs, |
6117 | ArrayRef<ObjCProtocolDecl *> protocols, |
6118 | bool isKindOf) const { |
6119 | // If the base type is an interface and there aren't any protocols or |
6120 | // type arguments to add, then the interface type will do just fine. |
6121 | if (typeArgs.empty() && protocols.empty() && !isKindOf && |
6122 | isa<ObjCInterfaceType>(Val: baseType)) |
6123 | return baseType; |
6124 | |
6125 | // Look in the folding set for an existing type. |
6126 | llvm::FoldingSetNodeID ID; |
6127 | ObjCObjectTypeImpl::Profile(ID, Base: baseType, typeArgs, protocols, isKindOf); |
6128 | void *InsertPos = nullptr; |
6129 | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6130 | return QualType(QT, 0); |
6131 | |
6132 | // Determine the type arguments to be used for canonicalization, |
6133 | // which may be explicitly specified here or written on the base |
6134 | // type. |
6135 | ArrayRef<QualType> effectiveTypeArgs = typeArgs; |
6136 | if (effectiveTypeArgs.empty()) { |
6137 | if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) |
6138 | effectiveTypeArgs = baseObject->getTypeArgs(); |
6139 | } |
6140 | |
6141 | // Build the canonical type, which has the canonical base type and a |
6142 | // sorted-and-uniqued list of protocols and the type arguments |
6143 | // canonicalized. |
6144 | QualType canonical; |
6145 | bool typeArgsAreCanonical = llvm::all_of( |
6146 | Range&: effectiveTypeArgs, P: [&](QualType type) { return type.isCanonical(); }); |
6147 | bool protocolsSorted = areSortedAndUniqued(Protocols: protocols); |
6148 | if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { |
6149 | // Determine the canonical type arguments. |
6150 | ArrayRef<QualType> canonTypeArgs; |
6151 | SmallVector<QualType, 4> canonTypeArgsVec; |
6152 | if (!typeArgsAreCanonical) { |
6153 | canonTypeArgsVec.reserve(N: effectiveTypeArgs.size()); |
6154 | for (auto typeArg : effectiveTypeArgs) |
6155 | canonTypeArgsVec.push_back(Elt: getCanonicalType(T: typeArg)); |
6156 | canonTypeArgs = canonTypeArgsVec; |
6157 | } else { |
6158 | canonTypeArgs = effectiveTypeArgs; |
6159 | } |
6160 | |
6161 | ArrayRef<ObjCProtocolDecl *> canonProtocols; |
6162 | SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; |
6163 | if (!protocolsSorted) { |
6164 | canonProtocolsVec.append(in_start: protocols.begin(), in_end: protocols.end()); |
6165 | SortAndUniqueProtocols(Protocols&: canonProtocolsVec); |
6166 | canonProtocols = canonProtocolsVec; |
6167 | } else { |
6168 | canonProtocols = protocols; |
6169 | } |
6170 | |
6171 | canonical = getObjCObjectType(baseType: getCanonicalType(T: baseType), typeArgs: canonTypeArgs, |
6172 | protocols: canonProtocols, isKindOf); |
6173 | |
6174 | // Regenerate InsertPos. |
6175 | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
6176 | } |
6177 | |
6178 | unsigned size = sizeof(ObjCObjectTypeImpl); |
6179 | size += typeArgs.size() * sizeof(QualType); |
6180 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
6181 | void *mem = Allocate(Size: size, Align: alignof(ObjCObjectTypeImpl)); |
6182 | auto *T = |
6183 | new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, |
6184 | isKindOf); |
6185 | |
6186 | Types.push_back(Elt: T); |
6187 | ObjCObjectTypes.InsertNode(N: T, InsertPos); |
6188 | return QualType(T, 0); |
6189 | } |
6190 | |
6191 | /// Apply Objective-C protocol qualifiers to the given type. |
6192 | /// If this is for the canonical type of a type parameter, we can apply |
6193 | /// protocol qualifiers on the ObjCObjectPointerType. |
6194 | QualType |
6195 | ASTContext::applyObjCProtocolQualifiers(QualType type, |
6196 | ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, |
6197 | bool allowOnPointerType) const { |
6198 | hasError = false; |
6199 | |
6200 | if (const auto *objT = dyn_cast<ObjCTypeParamType>(Val: type.getTypePtr())) { |
6201 | return getObjCTypeParamType(Decl: objT->getDecl(), protocols); |
6202 | } |
6203 | |
6204 | // Apply protocol qualifiers to ObjCObjectPointerType. |
6205 | if (allowOnPointerType) { |
6206 | if (const auto *objPtr = |
6207 | dyn_cast<ObjCObjectPointerType>(Val: type.getTypePtr())) { |
6208 | const ObjCObjectType *objT = objPtr->getObjectType(); |
6209 | // Merge protocol lists and construct ObjCObjectType. |
6210 | SmallVector<ObjCProtocolDecl*, 8> protocolsVec; |
6211 | protocolsVec.append(in_start: objT->qual_begin(), |
6212 | in_end: objT->qual_end()); |
6213 | protocolsVec.append(in_start: protocols.begin(), in_end: protocols.end()); |
6214 | ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; |
6215 | type = getObjCObjectType( |
6216 | baseType: objT->getBaseType(), |
6217 | typeArgs: objT->getTypeArgsAsWritten(), |
6218 | protocols, |
6219 | isKindOf: objT->isKindOfTypeAsWritten()); |
6220 | return getObjCObjectPointerType(OIT: type); |
6221 | } |
6222 | } |
6223 | |
6224 | // Apply protocol qualifiers to ObjCObjectType. |
6225 | if (const auto *objT = dyn_cast<ObjCObjectType>(Val: type.getTypePtr())){ |
6226 | // FIXME: Check for protocols to which the class type is already |
6227 | // known to conform. |
6228 | |
6229 | return getObjCObjectType(baseType: objT->getBaseType(), |
6230 | typeArgs: objT->getTypeArgsAsWritten(), |
6231 | protocols, |
6232 | isKindOf: objT->isKindOfTypeAsWritten()); |
6233 | } |
6234 | |
6235 | // If the canonical type is ObjCObjectType, ... |
6236 | if (type->isObjCObjectType()) { |
6237 | // Silently overwrite any existing protocol qualifiers. |
6238 | // TODO: determine whether that's the right thing to do. |
6239 | |
6240 | // FIXME: Check for protocols to which the class type is already |
6241 | // known to conform. |
6242 | return getObjCObjectType(baseType: type, typeArgs: {}, protocols, isKindOf: false); |
6243 | } |
6244 | |
6245 | // id<protocol-list> |
6246 | if (type->isObjCIdType()) { |
6247 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
6248 | type = getObjCObjectType(baseType: ObjCBuiltinIdTy, typeArgs: {}, protocols, |
6249 | isKindOf: objPtr->isKindOfType()); |
6250 | return getObjCObjectPointerType(OIT: type); |
6251 | } |
6252 | |
6253 | // Class<protocol-list> |
6254 | if (type->isObjCClassType()) { |
6255 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
6256 | type = getObjCObjectType(baseType: ObjCBuiltinClassTy, typeArgs: {}, protocols, |
6257 | isKindOf: objPtr->isKindOfType()); |
6258 | return getObjCObjectPointerType(OIT: type); |
6259 | } |
6260 | |
6261 | hasError = true; |
6262 | return type; |
6263 | } |
6264 | |
6265 | QualType |
6266 | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
6267 | ArrayRef<ObjCProtocolDecl *> protocols) const { |
6268 | // Look in the folding set for an existing type. |
6269 | llvm::FoldingSetNodeID ID; |
6270 | ObjCTypeParamType::Profile(ID, OTPDecl: Decl, CanonicalType: Decl->getUnderlyingType(), protocols); |
6271 | void *InsertPos = nullptr; |
6272 | if (ObjCTypeParamType *TypeParam = |
6273 | ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6274 | return QualType(TypeParam, 0); |
6275 | |
6276 | // We canonicalize to the underlying type. |
6277 | QualType Canonical = getCanonicalType(T: Decl->getUnderlyingType()); |
6278 | if (!protocols.empty()) { |
6279 | // Apply the protocol qualifers. |
6280 | bool hasError; |
6281 | Canonical = getCanonicalType(T: applyObjCProtocolQualifiers( |
6282 | type: Canonical, protocols, hasError, allowOnPointerType: true /*allowOnPointerType*/)); |
6283 | assert(!hasError && "Error when apply protocol qualifier to bound type" ); |
6284 | } |
6285 | |
6286 | unsigned size = sizeof(ObjCTypeParamType); |
6287 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
6288 | void *mem = Allocate(Size: size, Align: alignof(ObjCTypeParamType)); |
6289 | auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); |
6290 | |
6291 | Types.push_back(Elt: newType); |
6292 | ObjCTypeParamTypes.InsertNode(N: newType, InsertPos); |
6293 | return QualType(newType, 0); |
6294 | } |
6295 | |
6296 | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, |
6297 | ObjCTypeParamDecl *New) const { |
6298 | New->setTypeSourceInfo(getTrivialTypeSourceInfo(T: Orig->getUnderlyingType())); |
6299 | // Update TypeForDecl after updating TypeSourceInfo. |
6300 | auto NewTypeParamTy = cast<ObjCTypeParamType>(Val: New->getTypeForDecl()); |
6301 | SmallVector<ObjCProtocolDecl *, 8> protocols; |
6302 | protocols.append(in_start: NewTypeParamTy->qual_begin(), in_end: NewTypeParamTy->qual_end()); |
6303 | QualType UpdatedTy = getObjCTypeParamType(Decl: New, protocols); |
6304 | New->setTypeForDecl(UpdatedTy.getTypePtr()); |
6305 | } |
6306 | |
6307 | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's |
6308 | /// protocol list adopt all protocols in QT's qualified-id protocol |
6309 | /// list. |
6310 | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, |
6311 | ObjCInterfaceDecl *IC) { |
6312 | if (!QT->isObjCQualifiedIdType()) |
6313 | return false; |
6314 | |
6315 | if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { |
6316 | // If both the right and left sides have qualifiers. |
6317 | for (auto *Proto : OPT->quals()) { |
6318 | if (!IC->ClassImplementsProtocol(lProto: Proto, lookupCategory: false)) |
6319 | return false; |
6320 | } |
6321 | return true; |
6322 | } |
6323 | return false; |
6324 | } |
6325 | |
6326 | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in |
6327 | /// QT's qualified-id protocol list adopt all protocols in IDecl's list |
6328 | /// of protocols. |
6329 | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, |
6330 | ObjCInterfaceDecl *IDecl) { |
6331 | if (!QT->isObjCQualifiedIdType()) |
6332 | return false; |
6333 | const auto *OPT = QT->getAs<ObjCObjectPointerType>(); |
6334 | if (!OPT) |
6335 | return false; |
6336 | if (!IDecl->hasDefinition()) |
6337 | return false; |
6338 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; |
6339 | CollectInheritedProtocols(CDecl: IDecl, Protocols&: InheritedProtocols); |
6340 | if (InheritedProtocols.empty()) |
6341 | return false; |
6342 | // Check that if every protocol in list of id<plist> conforms to a protocol |
6343 | // of IDecl's, then bridge casting is ok. |
6344 | bool Conforms = false; |
6345 | for (auto *Proto : OPT->quals()) { |
6346 | Conforms = false; |
6347 | for (auto *PI : InheritedProtocols) { |
6348 | if (ProtocolCompatibleWithProtocol(lProto: Proto, rProto: PI)) { |
6349 | Conforms = true; |
6350 | break; |
6351 | } |
6352 | } |
6353 | if (!Conforms) |
6354 | break; |
6355 | } |
6356 | if (Conforms) |
6357 | return true; |
6358 | |
6359 | for (auto *PI : InheritedProtocols) { |
6360 | // If both the right and left sides have qualifiers. |
6361 | bool Adopts = false; |
6362 | for (auto *Proto : OPT->quals()) { |
6363 | // return 'true' if 'PI' is in the inheritance hierarchy of Proto |
6364 | if ((Adopts = ProtocolCompatibleWithProtocol(lProto: PI, rProto: Proto))) |
6365 | break; |
6366 | } |
6367 | if (!Adopts) |
6368 | return false; |
6369 | } |
6370 | return true; |
6371 | } |
6372 | |
6373 | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
6374 | /// the given object type. |
6375 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
6376 | llvm::FoldingSetNodeID ID; |
6377 | ObjCObjectPointerType::Profile(ID, T: ObjectT); |
6378 | |
6379 | void *InsertPos = nullptr; |
6380 | if (ObjCObjectPointerType *QT = |
6381 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6382 | return QualType(QT, 0); |
6383 | |
6384 | // Find the canonical object type. |
6385 | QualType Canonical; |
6386 | if (!ObjectT.isCanonical()) { |
6387 | Canonical = getObjCObjectPointerType(ObjectT: getCanonicalType(T: ObjectT)); |
6388 | |
6389 | // Regenerate InsertPos. |
6390 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
6391 | } |
6392 | |
6393 | // No match. |
6394 | void *Mem = |
6395 | Allocate(Size: sizeof(ObjCObjectPointerType), Align: alignof(ObjCObjectPointerType)); |
6396 | auto *QType = |
6397 | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
6398 | |
6399 | Types.push_back(Elt: QType); |
6400 | ObjCObjectPointerTypes.InsertNode(N: QType, InsertPos); |
6401 | return QualType(QType, 0); |
6402 | } |
6403 | |
6404 | /// getObjCInterfaceType - Return the unique reference to the type for the |
6405 | /// specified ObjC interface decl. The list of protocols is optional. |
6406 | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
6407 | ObjCInterfaceDecl *PrevDecl) const { |
6408 | if (Decl->TypeForDecl) |
6409 | return QualType(Decl->TypeForDecl, 0); |
6410 | |
6411 | if (PrevDecl) { |
6412 | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl" ); |
6413 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
6414 | return QualType(PrevDecl->TypeForDecl, 0); |
6415 | } |
6416 | |
6417 | // Prefer the definition, if there is one. |
6418 | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
6419 | Decl = Def; |
6420 | |
6421 | void *Mem = Allocate(Size: sizeof(ObjCInterfaceType), Align: alignof(ObjCInterfaceType)); |
6422 | auto *T = new (Mem) ObjCInterfaceType(Decl); |
6423 | Decl->TypeForDecl = T; |
6424 | Types.push_back(Elt: T); |
6425 | return QualType(T, 0); |
6426 | } |
6427 | |
6428 | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
6429 | /// TypeOfExprType AST's (since expression's are never shared). For example, |
6430 | /// multiple declarations that refer to "typeof(x)" all contain different |
6431 | /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
6432 | /// on canonical type's (which are always unique). |
6433 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const { |
6434 | TypeOfExprType *toe; |
6435 | if (tofExpr->isTypeDependent()) { |
6436 | llvm::FoldingSetNodeID ID; |
6437 | DependentTypeOfExprType::Profile(ID, Context: *this, E: tofExpr, |
6438 | IsUnqual: Kind == TypeOfKind::Unqualified); |
6439 | |
6440 | void *InsertPos = nullptr; |
6441 | DependentTypeOfExprType *Canon = |
6442 | DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
6443 | if (Canon) { |
6444 | // We already have a "canonical" version of an identical, dependent |
6445 | // typeof(expr) type. Use that as our canonical type. |
6446 | toe = new (*this, alignof(TypeOfExprType)) TypeOfExprType( |
6447 | *this, tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0)); |
6448 | } else { |
6449 | // Build a new, canonical typeof(expr) type. |
6450 | Canon = new (*this, alignof(DependentTypeOfExprType)) |
6451 | DependentTypeOfExprType(*this, tofExpr, Kind); |
6452 | DependentTypeOfExprTypes.InsertNode(N: Canon, InsertPos); |
6453 | toe = Canon; |
6454 | } |
6455 | } else { |
6456 | QualType Canonical = getCanonicalType(T: tofExpr->getType()); |
6457 | toe = new (*this, alignof(TypeOfExprType)) |
6458 | TypeOfExprType(*this, tofExpr, Kind, Canonical); |
6459 | } |
6460 | Types.push_back(Elt: toe); |
6461 | return QualType(toe, 0); |
6462 | } |
6463 | |
6464 | /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
6465 | /// TypeOfType nodes. The only motivation to unique these nodes would be |
6466 | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
6467 | /// an issue. This doesn't affect the type checker, since it operates |
6468 | /// on canonical types (which are always unique). |
6469 | QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const { |
6470 | QualType Canonical = getCanonicalType(T: tofType); |
6471 | auto *tot = new (*this, alignof(TypeOfType)) |
6472 | TypeOfType(*this, tofType, Canonical, Kind); |
6473 | Types.push_back(Elt: tot); |
6474 | return QualType(tot, 0); |
6475 | } |
6476 | |
6477 | /// getReferenceQualifiedType - Given an expr, will return the type for |
6478 | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions |
6479 | /// and class member access into account. |
6480 | QualType ASTContext::getReferenceQualifiedType(const Expr *E) const { |
6481 | // C++11 [dcl.type.simple]p4: |
6482 | // [...] |
6483 | QualType T = E->getType(); |
6484 | switch (E->getValueKind()) { |
6485 | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the |
6486 | // type of e; |
6487 | case VK_XValue: |
6488 | return getRValueReferenceType(T); |
6489 | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the |
6490 | // type of e; |
6491 | case VK_LValue: |
6492 | return getLValueReferenceType(T); |
6493 | // - otherwise, decltype(e) is the type of e. |
6494 | case VK_PRValue: |
6495 | return T; |
6496 | } |
6497 | llvm_unreachable("Unknown value kind" ); |
6498 | } |
6499 | |
6500 | /// Unlike many "get<Type>" functions, we don't unique DecltypeType |
6501 | /// nodes. This would never be helpful, since each such type has its own |
6502 | /// expression, and would not give a significant memory saving, since there |
6503 | /// is an Expr tree under each such type. |
6504 | QualType ASTContext::getDecltypeType(Expr *E, QualType UnderlyingType) const { |
6505 | // C++11 [temp.type]p2: |
6506 | // If an expression e involves a template parameter, decltype(e) denotes a |
6507 | // unique dependent type. Two such decltype-specifiers refer to the same |
6508 | // type only if their expressions are equivalent (14.5.6.1). |
6509 | QualType CanonType; |
6510 | if (!E->isInstantiationDependent()) { |
6511 | CanonType = getCanonicalType(T: UnderlyingType); |
6512 | } else if (!UnderlyingType.isNull()) { |
6513 | CanonType = getDecltypeType(E, UnderlyingType: QualType()); |
6514 | } else { |
6515 | llvm::FoldingSetNodeID ID; |
6516 | DependentDecltypeType::Profile(ID, Context: *this, E); |
6517 | |
6518 | void *InsertPos = nullptr; |
6519 | if (DependentDecltypeType *Canon = |
6520 | DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6521 | return QualType(Canon, 0); |
6522 | |
6523 | // Build a new, canonical decltype(expr) type. |
6524 | auto *DT = |
6525 | new (*this, alignof(DependentDecltypeType)) DependentDecltypeType(E); |
6526 | DependentDecltypeTypes.InsertNode(N: DT, InsertPos); |
6527 | Types.push_back(Elt: DT); |
6528 | return QualType(DT, 0); |
6529 | } |
6530 | auto *DT = new (*this, alignof(DecltypeType)) |
6531 | DecltypeType(E, UnderlyingType, CanonType); |
6532 | Types.push_back(Elt: DT); |
6533 | return QualType(DT, 0); |
6534 | } |
6535 | |
6536 | QualType ASTContext::getPackIndexingType(QualType Pattern, Expr *IndexExpr, |
6537 | bool FullySubstituted, |
6538 | ArrayRef<QualType> Expansions, |
6539 | UnsignedOrNone Index) const { |
6540 | QualType Canonical; |
6541 | if (FullySubstituted && Index) { |
6542 | Canonical = getCanonicalType(T: Expansions[*Index]); |
6543 | } else { |
6544 | llvm::FoldingSetNodeID ID; |
6545 | PackIndexingType::Profile(ID, Context: *this, Pattern: Pattern.getCanonicalType(), E: IndexExpr, |
6546 | FullySubstituted, Expansions); |
6547 | void *InsertPos = nullptr; |
6548 | PackIndexingType *Canon = |
6549 | DependentPackIndexingTypes.FindNodeOrInsertPos(ID, InsertPos); |
6550 | if (!Canon) { |
6551 | void *Mem = Allocate( |
6552 | Size: PackIndexingType::totalSizeToAlloc<QualType>(Counts: Expansions.size()), |
6553 | Align: TypeAlignment); |
6554 | Canon = |
6555 | new (Mem) PackIndexingType(QualType(), Pattern.getCanonicalType(), |
6556 | IndexExpr, FullySubstituted, Expansions); |
6557 | DependentPackIndexingTypes.InsertNode(N: Canon, InsertPos); |
6558 | } |
6559 | Canonical = QualType(Canon, 0); |
6560 | } |
6561 | |
6562 | void *Mem = |
6563 | Allocate(Size: PackIndexingType::totalSizeToAlloc<QualType>(Counts: Expansions.size()), |
6564 | Align: TypeAlignment); |
6565 | auto *T = new (Mem) PackIndexingType(Canonical, Pattern, IndexExpr, |
6566 | FullySubstituted, Expansions); |
6567 | Types.push_back(Elt: T); |
6568 | return QualType(T, 0); |
6569 | } |
6570 | |
6571 | /// getUnaryTransformationType - We don't unique these, since the memory |
6572 | /// savings are minimal and these are rare. |
6573 | QualType |
6574 | ASTContext::getUnaryTransformType(QualType BaseType, QualType UnderlyingType, |
6575 | UnaryTransformType::UTTKind Kind) const { |
6576 | |
6577 | llvm::FoldingSetNodeID ID; |
6578 | UnaryTransformType::Profile(ID, BaseType, UnderlyingType, UKind: Kind); |
6579 | |
6580 | void *InsertPos = nullptr; |
6581 | if (UnaryTransformType *UT = |
6582 | UnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6583 | return QualType(UT, 0); |
6584 | |
6585 | QualType CanonType; |
6586 | if (!BaseType->isDependentType()) { |
6587 | CanonType = UnderlyingType.getCanonicalType(); |
6588 | } else { |
6589 | assert(UnderlyingType.isNull() || BaseType == UnderlyingType); |
6590 | UnderlyingType = QualType(); |
6591 | if (QualType CanonBase = BaseType.getCanonicalType(); |
6592 | BaseType != CanonBase) { |
6593 | CanonType = getUnaryTransformType(BaseType: CanonBase, UnderlyingType: QualType(), Kind); |
6594 | assert(CanonType.isCanonical()); |
6595 | |
6596 | // Find the insertion position again. |
6597 | [[maybe_unused]] UnaryTransformType *UT = |
6598 | UnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); |
6599 | assert(!UT && "broken canonicalization" ); |
6600 | } |
6601 | } |
6602 | |
6603 | auto *UT = new (*this, alignof(UnaryTransformType)) |
6604 | UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType); |
6605 | UnaryTransformTypes.InsertNode(N: UT, InsertPos); |
6606 | Types.push_back(Elt: UT); |
6607 | return QualType(UT, 0); |
6608 | } |
6609 | |
6610 | QualType ASTContext::getAutoTypeInternal( |
6611 | QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, |
6612 | bool IsPack, ConceptDecl *TypeConstraintConcept, |
6613 | ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const { |
6614 | if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && |
6615 | !TypeConstraintConcept && !IsDependent) |
6616 | return getAutoDeductType(); |
6617 | |
6618 | // Look in the folding set for an existing type. |
6619 | llvm::FoldingSetNodeID ID; |
6620 | bool IsDeducedDependent = |
6621 | !DeducedType.isNull() && DeducedType->isDependentType(); |
6622 | AutoType::Profile(ID, Context: *this, Deduced: DeducedType, Keyword, |
6623 | IsDependent: IsDependent || IsDeducedDependent, CD: TypeConstraintConcept, |
6624 | Arguments: TypeConstraintArgs); |
6625 | if (auto const AT_iter = AutoTypes.find(Val: ID); AT_iter != AutoTypes.end()) |
6626 | return QualType(AT_iter->getSecond(), 0); |
6627 | |
6628 | QualType Canon; |
6629 | if (!IsCanon) { |
6630 | if (!DeducedType.isNull()) { |
6631 | Canon = DeducedType.getCanonicalType(); |
6632 | } else if (TypeConstraintConcept) { |
6633 | bool AnyNonCanonArgs = false; |
6634 | ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl(); |
6635 | auto CanonicalConceptArgs = ::getCanonicalTemplateArguments( |
6636 | C: *this, Args: TypeConstraintArgs, AnyNonCanonArgs); |
6637 | if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) { |
6638 | Canon = getAutoTypeInternal(DeducedType: QualType(), Keyword, IsDependent, IsPack, |
6639 | TypeConstraintConcept: CanonicalConcept, TypeConstraintArgs: CanonicalConceptArgs, |
6640 | /*IsCanon=*/true); |
6641 | } |
6642 | } |
6643 | } |
6644 | |
6645 | void *Mem = Allocate(Size: sizeof(AutoType) + |
6646 | sizeof(TemplateArgument) * TypeConstraintArgs.size(), |
6647 | Align: alignof(AutoType)); |
6648 | auto *AT = new (Mem) AutoType( |
6649 | DeducedType, Keyword, |
6650 | (IsDependent ? TypeDependence::DependentInstantiation |
6651 | : TypeDependence::None) | |
6652 | (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), |
6653 | Canon, TypeConstraintConcept, TypeConstraintArgs); |
6654 | #ifndef NDEBUG |
6655 | llvm::FoldingSetNodeID InsertedID; |
6656 | AT->Profile(InsertedID, *this); |
6657 | assert(InsertedID == ID && "ID does not match" ); |
6658 | #endif |
6659 | Types.push_back(Elt: AT); |
6660 | AutoTypes.try_emplace(Key: ID, Args&: AT); |
6661 | return QualType(AT, 0); |
6662 | } |
6663 | |
6664 | /// getAutoType - Return the uniqued reference to the 'auto' type which has been |
6665 | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the |
6666 | /// canonical deduced-but-dependent 'auto' type. |
6667 | QualType |
6668 | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, |
6669 | bool IsDependent, bool IsPack, |
6670 | ConceptDecl *TypeConstraintConcept, |
6671 | ArrayRef<TemplateArgument> TypeConstraintArgs) const { |
6672 | assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack" ); |
6673 | assert((!IsDependent || DeducedType.isNull()) && |
6674 | "A dependent auto should be undeduced" ); |
6675 | return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack, |
6676 | TypeConstraintConcept, TypeConstraintArgs); |
6677 | } |
6678 | |
6679 | QualType ASTContext::getUnconstrainedType(QualType T) const { |
6680 | QualType CanonT = T.getNonPackExpansionType().getCanonicalType(); |
6681 | |
6682 | // Remove a type-constraint from a top-level auto or decltype(auto). |
6683 | if (auto *AT = CanonT->getAs<AutoType>()) { |
6684 | if (!AT->isConstrained()) |
6685 | return T; |
6686 | return getQualifiedType(T: getAutoType(DeducedType: QualType(), Keyword: AT->getKeyword(), |
6687 | IsDependent: AT->isDependentType(), |
6688 | IsPack: AT->containsUnexpandedParameterPack()), |
6689 | Qs: T.getQualifiers()); |
6690 | } |
6691 | |
6692 | // FIXME: We only support constrained auto at the top level in the type of a |
6693 | // non-type template parameter at the moment. Once we lift that restriction, |
6694 | // we'll need to recursively build types containing auto here. |
6695 | assert(!CanonT->getContainedAutoType() || |
6696 | !CanonT->getContainedAutoType()->isConstrained()); |
6697 | return T; |
6698 | } |
6699 | |
6700 | QualType ASTContext::getDeducedTemplateSpecializationTypeInternal( |
6701 | TemplateName Template, QualType DeducedType, bool IsDependent, |
6702 | QualType Canon) const { |
6703 | // Look in the folding set for an existing type. |
6704 | void *InsertPos = nullptr; |
6705 | llvm::FoldingSetNodeID ID; |
6706 | DeducedTemplateSpecializationType::Profile(ID, Template, Deduced: DeducedType, |
6707 | IsDependent); |
6708 | if (DeducedTemplateSpecializationType *DTST = |
6709 | DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6710 | return QualType(DTST, 0); |
6711 | |
6712 | auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType)) |
6713 | DeducedTemplateSpecializationType(Template, DeducedType, IsDependent, |
6714 | Canon); |
6715 | |
6716 | #ifndef NDEBUG |
6717 | llvm::FoldingSetNodeID TempID; |
6718 | DTST->Profile(TempID); |
6719 | assert(ID == TempID && "ID does not match" ); |
6720 | #endif |
6721 | Types.push_back(Elt: DTST); |
6722 | DeducedTemplateSpecializationTypes.InsertNode(N: DTST, InsertPos); |
6723 | return QualType(DTST, 0); |
6724 | } |
6725 | |
6726 | /// Return the uniqued reference to the deduced template specialization type |
6727 | /// which has been deduced to the given type, or to the canonical undeduced |
6728 | /// such type, or the canonical deduced-but-dependent such type. |
6729 | QualType ASTContext::getDeducedTemplateSpecializationType( |
6730 | TemplateName Template, QualType DeducedType, bool IsDependent) const { |
6731 | QualType Canon = DeducedType.isNull() |
6732 | ? getDeducedTemplateSpecializationTypeInternal( |
6733 | Template: getCanonicalTemplateName(Name: Template), DeducedType: QualType(), |
6734 | IsDependent, Canon: QualType()) |
6735 | : DeducedType.getCanonicalType(); |
6736 | return getDeducedTemplateSpecializationTypeInternal(Template, DeducedType, |
6737 | IsDependent, Canon); |
6738 | } |
6739 | |
6740 | /// getAtomicType - Return the uniqued reference to the atomic type for |
6741 | /// the given value type. |
6742 | QualType ASTContext::getAtomicType(QualType T) const { |
6743 | // Unique pointers, to guarantee there is only one pointer of a particular |
6744 | // structure. |
6745 | llvm::FoldingSetNodeID ID; |
6746 | AtomicType::Profile(ID, T); |
6747 | |
6748 | void *InsertPos = nullptr; |
6749 | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
6750 | return QualType(AT, 0); |
6751 | |
6752 | // If the atomic value type isn't canonical, this won't be a canonical type |
6753 | // either, so fill in the canonical type field. |
6754 | QualType Canonical; |
6755 | if (!T.isCanonical()) { |
6756 | Canonical = getAtomicType(T: getCanonicalType(T)); |
6757 | |
6758 | // Get the new insert position for the node we care about. |
6759 | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
6760 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
6761 | } |
6762 | auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical); |
6763 | Types.push_back(Elt: New); |
6764 | AtomicTypes.InsertNode(N: New, InsertPos); |
6765 | return QualType(New, 0); |
6766 | } |
6767 | |
6768 | /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
6769 | QualType ASTContext::getAutoDeductType() const { |
6770 | if (AutoDeductTy.isNull()) |
6771 | AutoDeductTy = QualType(new (*this, alignof(AutoType)) |
6772 | AutoType(QualType(), AutoTypeKeyword::Auto, |
6773 | TypeDependence::None, QualType(), |
6774 | /*concept*/ nullptr, /*args*/ {}), |
6775 | 0); |
6776 | return AutoDeductTy; |
6777 | } |
6778 | |
6779 | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
6780 | QualType ASTContext::getAutoRRefDeductType() const { |
6781 | if (AutoRRefDeductTy.isNull()) |
6782 | AutoRRefDeductTy = getRValueReferenceType(T: getAutoDeductType()); |
6783 | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern" ); |
6784 | return AutoRRefDeductTy; |
6785 | } |
6786 | |
6787 | /// getTagDeclType - Return the unique reference to the type for the |
6788 | /// specified TagDecl (struct/union/class/enum) decl. |
6789 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
6790 | assert(Decl); |
6791 | // FIXME: What is the design on getTagDeclType when it requires casting |
6792 | // away const? mutable? |
6793 | return getTypeDeclType(Decl: const_cast<TagDecl*>(Decl)); |
6794 | } |
6795 | |
6796 | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
6797 | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
6798 | /// needs to agree with the definition in <stddef.h>. |
6799 | CanQualType ASTContext::getSizeType() const { |
6800 | return getFromTargetType(Type: Target->getSizeType()); |
6801 | } |
6802 | |
6803 | /// Return the unique signed counterpart of the integer type |
6804 | /// corresponding to size_t. |
6805 | CanQualType ASTContext::getSignedSizeType() const { |
6806 | return getFromTargetType(Type: Target->getSignedSizeType()); |
6807 | } |
6808 | |
6809 | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
6810 | CanQualType ASTContext::getIntMaxType() const { |
6811 | return getFromTargetType(Type: Target->getIntMaxType()); |
6812 | } |
6813 | |
6814 | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
6815 | CanQualType ASTContext::getUIntMaxType() const { |
6816 | return getFromTargetType(Type: Target->getUIntMaxType()); |
6817 | } |
6818 | |
6819 | /// getSignedWCharType - Return the type of "signed wchar_t". |
6820 | /// Used when in C++, as a GCC extension. |
6821 | QualType ASTContext::getSignedWCharType() const { |
6822 | // FIXME: derive from "Target" ? |
6823 | return WCharTy; |
6824 | } |
6825 | |
6826 | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
6827 | /// Used when in C++, as a GCC extension. |
6828 | QualType ASTContext::getUnsignedWCharType() const { |
6829 | // FIXME: derive from "Target" ? |
6830 | return UnsignedIntTy; |
6831 | } |
6832 | |
6833 | QualType ASTContext::getIntPtrType() const { |
6834 | return getFromTargetType(Type: Target->getIntPtrType()); |
6835 | } |
6836 | |
6837 | QualType ASTContext::getUIntPtrType() const { |
6838 | return getCorrespondingUnsignedType(T: getIntPtrType()); |
6839 | } |
6840 | |
6841 | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
6842 | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
6843 | QualType ASTContext::getPointerDiffType() const { |
6844 | return getFromTargetType(Type: Target->getPtrDiffType(AddrSpace: LangAS::Default)); |
6845 | } |
6846 | |
6847 | /// Return the unique unsigned counterpart of "ptrdiff_t" |
6848 | /// integer type. The standard (C11 7.21.6.1p7) refers to this type |
6849 | /// in the definition of %tu format specifier. |
6850 | QualType ASTContext::getUnsignedPointerDiffType() const { |
6851 | return getFromTargetType(Type: Target->getUnsignedPtrDiffType(AddrSpace: LangAS::Default)); |
6852 | } |
6853 | |
6854 | /// Return the unique type for "pid_t" defined in |
6855 | /// <sys/types.h>. We need this to compute the correct type for vfork(). |
6856 | QualType ASTContext::getProcessIDType() const { |
6857 | return getFromTargetType(Type: Target->getProcessIDType()); |
6858 | } |
6859 | |
6860 | //===----------------------------------------------------------------------===// |
6861 | // Type Operators |
6862 | //===----------------------------------------------------------------------===// |
6863 | |
6864 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
6865 | // Push qualifiers into arrays, and then discard any remaining |
6866 | // qualifiers. |
6867 | T = getCanonicalType(T); |
6868 | T = getVariableArrayDecayedType(type: T); |
6869 | const Type *Ty = T.getTypePtr(); |
6870 | QualType Result; |
6871 | if (getLangOpts().HLSL && isa<ConstantArrayType>(Val: Ty)) { |
6872 | Result = getArrayParameterType(Ty: QualType(Ty, 0)); |
6873 | } else if (isa<ArrayType>(Val: Ty)) { |
6874 | Result = getArrayDecayedType(T: QualType(Ty,0)); |
6875 | } else if (isa<FunctionType>(Val: Ty)) { |
6876 | Result = getPointerType(T: QualType(Ty, 0)); |
6877 | } else { |
6878 | Result = QualType(Ty, 0); |
6879 | } |
6880 | |
6881 | return CanQualType::CreateUnsafe(Other: Result); |
6882 | } |
6883 | |
6884 | QualType ASTContext::getUnqualifiedArrayType(QualType type, |
6885 | Qualifiers &quals) const { |
6886 | SplitQualType splitType = type.getSplitUnqualifiedType(); |
6887 | |
6888 | // FIXME: getSplitUnqualifiedType() actually walks all the way to |
6889 | // the unqualified desugared type and then drops it on the floor. |
6890 | // We then have to strip that sugar back off with |
6891 | // getUnqualifiedDesugaredType(), which is silly. |
6892 | const auto *AT = |
6893 | dyn_cast<ArrayType>(Val: splitType.Ty->getUnqualifiedDesugaredType()); |
6894 | |
6895 | // If we don't have an array, just use the results in splitType. |
6896 | if (!AT) { |
6897 | quals = splitType.Quals; |
6898 | return QualType(splitType.Ty, 0); |
6899 | } |
6900 | |
6901 | // Otherwise, recurse on the array's element type. |
6902 | QualType elementType = AT->getElementType(); |
6903 | QualType unqualElementType = getUnqualifiedArrayType(type: elementType, quals); |
6904 | |
6905 | // If that didn't change the element type, AT has no qualifiers, so we |
6906 | // can just use the results in splitType. |
6907 | if (elementType == unqualElementType) { |
6908 | assert(quals.empty()); // from the recursive call |
6909 | quals = splitType.Quals; |
6910 | return QualType(splitType.Ty, 0); |
6911 | } |
6912 | |
6913 | // Otherwise, add in the qualifiers from the outermost type, then |
6914 | // build the type back up. |
6915 | quals.addConsistentQualifiers(qs: splitType.Quals); |
6916 | |
6917 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) { |
6918 | return getConstantArrayType(EltTy: unqualElementType, ArySizeIn: CAT->getSize(), |
6919 | SizeExpr: CAT->getSizeExpr(), ASM: CAT->getSizeModifier(), IndexTypeQuals: 0); |
6920 | } |
6921 | |
6922 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) { |
6923 | return getIncompleteArrayType(elementType: unqualElementType, ASM: IAT->getSizeModifier(), elementTypeQuals: 0); |
6924 | } |
6925 | |
6926 | if (const auto *VAT = dyn_cast<VariableArrayType>(Val: AT)) { |
6927 | return getVariableArrayType(EltTy: unqualElementType, NumElts: VAT->getSizeExpr(), |
6928 | ASM: VAT->getSizeModifier(), |
6929 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers()); |
6930 | } |
6931 | |
6932 | const auto *DSAT = cast<DependentSizedArrayType>(Val: AT); |
6933 | return getDependentSizedArrayType(elementType: unqualElementType, numElements: DSAT->getSizeExpr(), |
6934 | ASM: DSAT->getSizeModifier(), elementTypeQuals: 0); |
6935 | } |
6936 | |
6937 | /// Attempt to unwrap two types that may both be array types with the same bound |
6938 | /// (or both be array types of unknown bound) for the purpose of comparing the |
6939 | /// cv-decomposition of two types per C++ [conv.qual]. |
6940 | /// |
6941 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
6942 | /// C++20 [conv.qual], if permitted by the current language mode. |
6943 | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2, |
6944 | bool AllowPiMismatch) const { |
6945 | while (true) { |
6946 | auto *AT1 = getAsArrayType(T: T1); |
6947 | if (!AT1) |
6948 | return; |
6949 | |
6950 | auto *AT2 = getAsArrayType(T: T2); |
6951 | if (!AT2) |
6952 | return; |
6953 | |
6954 | // If we don't have two array types with the same constant bound nor two |
6955 | // incomplete array types, we've unwrapped everything we can. |
6956 | // C++20 also permits one type to be a constant array type and the other |
6957 | // to be an incomplete array type. |
6958 | // FIXME: Consider also unwrapping array of unknown bound and VLA. |
6959 | if (auto *CAT1 = dyn_cast<ConstantArrayType>(Val: AT1)) { |
6960 | auto *CAT2 = dyn_cast<ConstantArrayType>(Val: AT2); |
6961 | if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) || |
6962 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
6963 | isa<IncompleteArrayType>(Val: AT2)))) |
6964 | return; |
6965 | } else if (isa<IncompleteArrayType>(Val: AT1)) { |
6966 | if (!(isa<IncompleteArrayType>(Val: AT2) || |
6967 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
6968 | isa<ConstantArrayType>(Val: AT2)))) |
6969 | return; |
6970 | } else { |
6971 | return; |
6972 | } |
6973 | |
6974 | T1 = AT1->getElementType(); |
6975 | T2 = AT2->getElementType(); |
6976 | } |
6977 | } |
6978 | |
6979 | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). |
6980 | /// |
6981 | /// If T1 and T2 are both pointer types of the same kind, or both array types |
6982 | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is |
6983 | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. |
6984 | /// |
6985 | /// This function will typically be called in a loop that successively |
6986 | /// "unwraps" pointer and pointer-to-member types to compare them at each |
6987 | /// level. |
6988 | /// |
6989 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
6990 | /// C++20 [conv.qual], if permitted by the current language mode. |
6991 | /// |
6992 | /// \return \c true if a pointer type was unwrapped, \c false if we reached a |
6993 | /// pair of types that can't be unwrapped further. |
6994 | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2, |
6995 | bool AllowPiMismatch) const { |
6996 | UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch); |
6997 | |
6998 | const auto *T1PtrType = T1->getAs<PointerType>(); |
6999 | const auto *T2PtrType = T2->getAs<PointerType>(); |
7000 | if (T1PtrType && T2PtrType) { |
7001 | T1 = T1PtrType->getPointeeType(); |
7002 | T2 = T2PtrType->getPointeeType(); |
7003 | return true; |
7004 | } |
7005 | |
7006 | if (const auto *T1MPType = T1->getAs<MemberPointerType>(), |
7007 | *T2MPType = T2->getAs<MemberPointerType>(); |
7008 | T1MPType && T2MPType) { |
7009 | if (auto *RD1 = T1MPType->getMostRecentCXXRecordDecl(), |
7010 | *RD2 = T2MPType->getMostRecentCXXRecordDecl(); |
7011 | RD1 != RD2 && RD1->getCanonicalDecl() != RD2->getCanonicalDecl()) |
7012 | return false; |
7013 | if (getCanonicalNestedNameSpecifier(NNS: T1MPType->getQualifier()) != |
7014 | getCanonicalNestedNameSpecifier(NNS: T2MPType->getQualifier())) |
7015 | return false; |
7016 | T1 = T1MPType->getPointeeType(); |
7017 | T2 = T2MPType->getPointeeType(); |
7018 | return true; |
7019 | } |
7020 | |
7021 | if (getLangOpts().ObjC) { |
7022 | const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); |
7023 | const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
7024 | if (T1OPType && T2OPType) { |
7025 | T1 = T1OPType->getPointeeType(); |
7026 | T2 = T2OPType->getPointeeType(); |
7027 | return true; |
7028 | } |
7029 | } |
7030 | |
7031 | // FIXME: Block pointers, too? |
7032 | |
7033 | return false; |
7034 | } |
7035 | |
7036 | bool ASTContext::hasSimilarType(QualType T1, QualType T2) const { |
7037 | while (true) { |
7038 | Qualifiers Quals; |
7039 | T1 = getUnqualifiedArrayType(type: T1, quals&: Quals); |
7040 | T2 = getUnqualifiedArrayType(type: T2, quals&: Quals); |
7041 | if (hasSameType(T1, T2)) |
7042 | return true; |
7043 | if (!UnwrapSimilarTypes(T1, T2)) |
7044 | return false; |
7045 | } |
7046 | } |
7047 | |
7048 | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { |
7049 | while (true) { |
7050 | Qualifiers Quals1, Quals2; |
7051 | T1 = getUnqualifiedArrayType(type: T1, quals&: Quals1); |
7052 | T2 = getUnqualifiedArrayType(type: T2, quals&: Quals2); |
7053 | |
7054 | Quals1.removeCVRQualifiers(); |
7055 | Quals2.removeCVRQualifiers(); |
7056 | if (Quals1 != Quals2) |
7057 | return false; |
7058 | |
7059 | if (hasSameType(T1, T2)) |
7060 | return true; |
7061 | |
7062 | if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false)) |
7063 | return false; |
7064 | } |
7065 | } |
7066 | |
7067 | DeclarationNameInfo |
7068 | ASTContext::getNameForTemplate(TemplateName Name, |
7069 | SourceLocation NameLoc) const { |
7070 | switch (Name.getKind()) { |
7071 | case TemplateName::QualifiedTemplate: |
7072 | case TemplateName::Template: |
7073 | // DNInfo work in progress: CHECKME: what about DNLoc? |
7074 | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
7075 | NameLoc); |
7076 | |
7077 | case TemplateName::OverloadedTemplate: { |
7078 | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
7079 | // DNInfo work in progress: CHECKME: what about DNLoc? |
7080 | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
7081 | } |
7082 | |
7083 | case TemplateName::AssumedTemplate: { |
7084 | AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); |
7085 | return DeclarationNameInfo(Storage->getDeclName(), NameLoc); |
7086 | } |
7087 | |
7088 | case TemplateName::DependentTemplate: { |
7089 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
7090 | IdentifierOrOverloadedOperator TN = DTN->getName(); |
7091 | DeclarationName DName; |
7092 | if (const IdentifierInfo *II = TN.getIdentifier()) { |
7093 | DName = DeclarationNames.getIdentifier(ID: II); |
7094 | return DeclarationNameInfo(DName, NameLoc); |
7095 | } else { |
7096 | DName = DeclarationNames.getCXXOperatorName(Op: TN.getOperator()); |
7097 | // DNInfo work in progress: FIXME: source locations? |
7098 | DeclarationNameLoc DNLoc = |
7099 | DeclarationNameLoc::makeCXXOperatorNameLoc(Range: SourceRange()); |
7100 | return DeclarationNameInfo(DName, NameLoc, DNLoc); |
7101 | } |
7102 | } |
7103 | |
7104 | case TemplateName::SubstTemplateTemplateParm: { |
7105 | SubstTemplateTemplateParmStorage *subst |
7106 | = Name.getAsSubstTemplateTemplateParm(); |
7107 | return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
7108 | NameLoc); |
7109 | } |
7110 | |
7111 | case TemplateName::SubstTemplateTemplateParmPack: { |
7112 | SubstTemplateTemplateParmPackStorage *subst |
7113 | = Name.getAsSubstTemplateTemplateParmPack(); |
7114 | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
7115 | NameLoc); |
7116 | } |
7117 | case TemplateName::UsingTemplate: |
7118 | return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(), |
7119 | NameLoc); |
7120 | case TemplateName::DeducedTemplate: { |
7121 | DeducedTemplateStorage *DTS = Name.getAsDeducedTemplateName(); |
7122 | return getNameForTemplate(Name: DTS->getUnderlying(), NameLoc); |
7123 | } |
7124 | } |
7125 | |
7126 | llvm_unreachable("bad template name kind!" ); |
7127 | } |
7128 | |
7129 | static const TemplateArgument * |
7130 | getDefaultTemplateArgumentOrNone(const NamedDecl *P) { |
7131 | auto handleParam = [](auto *TP) -> const TemplateArgument * { |
7132 | if (!TP->hasDefaultArgument()) |
7133 | return nullptr; |
7134 | return &TP->getDefaultArgument().getArgument(); |
7135 | }; |
7136 | switch (P->getKind()) { |
7137 | case NamedDecl::TemplateTypeParm: |
7138 | return handleParam(cast<TemplateTypeParmDecl>(Val: P)); |
7139 | case NamedDecl::NonTypeTemplateParm: |
7140 | return handleParam(cast<NonTypeTemplateParmDecl>(Val: P)); |
7141 | case NamedDecl::TemplateTemplateParm: |
7142 | return handleParam(cast<TemplateTemplateParmDecl>(Val: P)); |
7143 | default: |
7144 | llvm_unreachable("Unexpected template parameter kind" ); |
7145 | } |
7146 | } |
7147 | |
7148 | TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name, |
7149 | bool IgnoreDeduced) const { |
7150 | while (std::optional<TemplateName> UnderlyingOrNone = |
7151 | Name.desugar(IgnoreDeduced)) |
7152 | Name = *UnderlyingOrNone; |
7153 | |
7154 | switch (Name.getKind()) { |
7155 | case TemplateName::Template: { |
7156 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
7157 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: Template)) |
7158 | Template = getCanonicalTemplateTemplateParmDecl(TTP); |
7159 | |
7160 | // The canonical template name is the canonical template declaration. |
7161 | return TemplateName(cast<TemplateDecl>(Val: Template->getCanonicalDecl())); |
7162 | } |
7163 | |
7164 | case TemplateName::OverloadedTemplate: |
7165 | case TemplateName::AssumedTemplate: |
7166 | llvm_unreachable("cannot canonicalize unresolved template" ); |
7167 | |
7168 | case TemplateName::DependentTemplate: { |
7169 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
7170 | assert(DTN && "Non-dependent template names must refer to template decls." ); |
7171 | NestedNameSpecifier *Qualifier = DTN->getQualifier(); |
7172 | NestedNameSpecifier *CanonQualifier = |
7173 | getCanonicalNestedNameSpecifier(NNS: Qualifier); |
7174 | if (Qualifier != CanonQualifier || !DTN->hasTemplateKeyword()) |
7175 | return getDependentTemplateName(Name: {CanonQualifier, DTN->getName(), |
7176 | /*HasTemplateKeyword=*/true}); |
7177 | return Name; |
7178 | } |
7179 | |
7180 | case TemplateName::SubstTemplateTemplateParmPack: { |
7181 | SubstTemplateTemplateParmPackStorage *subst = |
7182 | Name.getAsSubstTemplateTemplateParmPack(); |
7183 | TemplateArgument canonArgPack = |
7184 | getCanonicalTemplateArgument(Arg: subst->getArgumentPack()); |
7185 | return getSubstTemplateTemplateParmPack( |
7186 | ArgPack: canonArgPack, AssociatedDecl: subst->getAssociatedDecl()->getCanonicalDecl(), |
7187 | Index: subst->getIndex(), Final: subst->getFinal()); |
7188 | } |
7189 | case TemplateName::DeducedTemplate: { |
7190 | assert(IgnoreDeduced == false); |
7191 | DeducedTemplateStorage *DTS = Name.getAsDeducedTemplateName(); |
7192 | DefaultArguments DefArgs = DTS->getDefaultArguments(); |
7193 | TemplateName Underlying = DTS->getUnderlying(); |
7194 | |
7195 | TemplateName CanonUnderlying = |
7196 | getCanonicalTemplateName(Name: Underlying, /*IgnoreDeduced=*/true); |
7197 | bool NonCanonical = CanonUnderlying != Underlying; |
7198 | auto CanonArgs = |
7199 | getCanonicalTemplateArguments(C: *this, Args: DefArgs.Args, AnyNonCanonArgs&: NonCanonical); |
7200 | |
7201 | ArrayRef<NamedDecl *> Params = |
7202 | CanonUnderlying.getAsTemplateDecl()->getTemplateParameters()->asArray(); |
7203 | assert(CanonArgs.size() <= Params.size()); |
7204 | // A deduced template name which deduces the same default arguments already |
7205 | // declared in the underlying template is the same template as the |
7206 | // underlying template. We need need to note any arguments which differ from |
7207 | // the corresponding declaration. If any argument differs, we must build a |
7208 | // deduced template name. |
7209 | for (int I = CanonArgs.size() - 1; I >= 0; --I) { |
7210 | const TemplateArgument *A = getDefaultTemplateArgumentOrNone(P: Params[I]); |
7211 | if (!A) |
7212 | break; |
7213 | auto CanonParamDefArg = getCanonicalTemplateArgument(Arg: *A); |
7214 | TemplateArgument &CanonDefArg = CanonArgs[I]; |
7215 | if (CanonDefArg.structurallyEquals(Other: CanonParamDefArg)) |
7216 | continue; |
7217 | // Keep popping from the back any deault arguments which are the same. |
7218 | if (I == int(CanonArgs.size() - 1)) |
7219 | CanonArgs.pop_back(); |
7220 | NonCanonical = true; |
7221 | } |
7222 | return NonCanonical ? getDeducedTemplateName( |
7223 | Underlying: CanonUnderlying, |
7224 | /*DefaultArgs=*/{.StartPos: DefArgs.StartPos, .Args: CanonArgs}) |
7225 | : Name; |
7226 | } |
7227 | case TemplateName::UsingTemplate: |
7228 | case TemplateName::QualifiedTemplate: |
7229 | case TemplateName::SubstTemplateTemplateParm: |
7230 | llvm_unreachable("always sugar node" ); |
7231 | } |
7232 | |
7233 | llvm_unreachable("bad template name!" ); |
7234 | } |
7235 | |
7236 | bool ASTContext::hasSameTemplateName(const TemplateName &X, |
7237 | const TemplateName &Y, |
7238 | bool IgnoreDeduced) const { |
7239 | return getCanonicalTemplateName(Name: X, IgnoreDeduced) == |
7240 | getCanonicalTemplateName(Name: Y, IgnoreDeduced); |
7241 | } |
7242 | |
7243 | bool ASTContext::isSameAssociatedConstraint( |
7244 | const AssociatedConstraint &ACX, const AssociatedConstraint &ACY) const { |
7245 | if (ACX.ArgPackSubstIndex != ACY.ArgPackSubstIndex) |
7246 | return false; |
7247 | if (!isSameConstraintExpr(XCE: ACX.ConstraintExpr, YCE: ACY.ConstraintExpr)) |
7248 | return false; |
7249 | return true; |
7250 | } |
7251 | |
7252 | bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const { |
7253 | if (!XCE != !YCE) |
7254 | return false; |
7255 | |
7256 | if (!XCE) |
7257 | return true; |
7258 | |
7259 | llvm::FoldingSetNodeID XCEID, YCEID; |
7260 | XCE->Profile(ID&: XCEID, Context: *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
7261 | YCE->Profile(ID&: YCEID, Context: *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
7262 | return XCEID == YCEID; |
7263 | } |
7264 | |
7265 | bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC, |
7266 | const TypeConstraint *YTC) const { |
7267 | if (!XTC != !YTC) |
7268 | return false; |
7269 | |
7270 | if (!XTC) |
7271 | return true; |
7272 | |
7273 | auto *NCX = XTC->getNamedConcept(); |
7274 | auto *NCY = YTC->getNamedConcept(); |
7275 | if (!NCX || !NCY || !isSameEntity(X: NCX, Y: NCY)) |
7276 | return false; |
7277 | if (XTC->getConceptReference()->hasExplicitTemplateArgs() != |
7278 | YTC->getConceptReference()->hasExplicitTemplateArgs()) |
7279 | return false; |
7280 | if (XTC->getConceptReference()->hasExplicitTemplateArgs()) |
7281 | if (XTC->getConceptReference() |
7282 | ->getTemplateArgsAsWritten() |
7283 | ->NumTemplateArgs != |
7284 | YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs) |
7285 | return false; |
7286 | |
7287 | // Compare slowly by profiling. |
7288 | // |
7289 | // We couldn't compare the profiling result for the template |
7290 | // args here. Consider the following example in different modules: |
7291 | // |
7292 | // template <__integer_like _Tp, C<_Tp> Sentinel> |
7293 | // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const { |
7294 | // return __t; |
7295 | // } |
7296 | // |
7297 | // When we compare the profiling result for `C<_Tp>` in different |
7298 | // modules, it will compare the type of `_Tp` in different modules. |
7299 | // However, the type of `_Tp` in different modules refer to different |
7300 | // types here naturally. So we couldn't compare the profiling result |
7301 | // for the template args directly. |
7302 | return isSameConstraintExpr(XCE: XTC->getImmediatelyDeclaredConstraint(), |
7303 | YCE: YTC->getImmediatelyDeclaredConstraint()); |
7304 | } |
7305 | |
7306 | bool ASTContext::isSameTemplateParameter(const NamedDecl *X, |
7307 | const NamedDecl *Y) const { |
7308 | if (X->getKind() != Y->getKind()) |
7309 | return false; |
7310 | |
7311 | if (auto *TX = dyn_cast<TemplateTypeParmDecl>(Val: X)) { |
7312 | auto *TY = cast<TemplateTypeParmDecl>(Val: Y); |
7313 | if (TX->isParameterPack() != TY->isParameterPack()) |
7314 | return false; |
7315 | if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) |
7316 | return false; |
7317 | return isSameTypeConstraint(XTC: TX->getTypeConstraint(), |
7318 | YTC: TY->getTypeConstraint()); |
7319 | } |
7320 | |
7321 | if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(Val: X)) { |
7322 | auto *TY = cast<NonTypeTemplateParmDecl>(Val: Y); |
7323 | return TX->isParameterPack() == TY->isParameterPack() && |
7324 | TX->getASTContext().hasSameType(T1: TX->getType(), T2: TY->getType()) && |
7325 | isSameConstraintExpr(XCE: TX->getPlaceholderTypeConstraint(), |
7326 | YCE: TY->getPlaceholderTypeConstraint()); |
7327 | } |
7328 | |
7329 | auto *TX = cast<TemplateTemplateParmDecl>(Val: X); |
7330 | auto *TY = cast<TemplateTemplateParmDecl>(Val: Y); |
7331 | return TX->isParameterPack() == TY->isParameterPack() && |
7332 | isSameTemplateParameterList(X: TX->getTemplateParameters(), |
7333 | Y: TY->getTemplateParameters()); |
7334 | } |
7335 | |
7336 | bool ASTContext::isSameTemplateParameterList( |
7337 | const TemplateParameterList *X, const TemplateParameterList *Y) const { |
7338 | if (X->size() != Y->size()) |
7339 | return false; |
7340 | |
7341 | for (unsigned I = 0, N = X->size(); I != N; ++I) |
7342 | if (!isSameTemplateParameter(X: X->getParam(Idx: I), Y: Y->getParam(Idx: I))) |
7343 | return false; |
7344 | |
7345 | return isSameConstraintExpr(XCE: X->getRequiresClause(), YCE: Y->getRequiresClause()); |
7346 | } |
7347 | |
7348 | bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X, |
7349 | const NamedDecl *Y) const { |
7350 | // If the type parameter isn't the same already, we don't need to check the |
7351 | // default argument further. |
7352 | if (!isSameTemplateParameter(X, Y)) |
7353 | return false; |
7354 | |
7355 | if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(Val: X)) { |
7356 | auto *TTPY = cast<TemplateTypeParmDecl>(Val: Y); |
7357 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
7358 | return false; |
7359 | |
7360 | return hasSameType(T1: TTPX->getDefaultArgument().getArgument().getAsType(), |
7361 | T2: TTPY->getDefaultArgument().getArgument().getAsType()); |
7362 | } |
7363 | |
7364 | if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(Val: X)) { |
7365 | auto *NTTPY = cast<NonTypeTemplateParmDecl>(Val: Y); |
7366 | if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument()) |
7367 | return false; |
7368 | |
7369 | Expr *DefaultArgumentX = |
7370 | NTTPX->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); |
7371 | Expr *DefaultArgumentY = |
7372 | NTTPY->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); |
7373 | llvm::FoldingSetNodeID XID, YID; |
7374 | DefaultArgumentX->Profile(ID&: XID, Context: *this, /*Canonical=*/true); |
7375 | DefaultArgumentY->Profile(ID&: YID, Context: *this, /*Canonical=*/true); |
7376 | return XID == YID; |
7377 | } |
7378 | |
7379 | auto *TTPX = cast<TemplateTemplateParmDecl>(Val: X); |
7380 | auto *TTPY = cast<TemplateTemplateParmDecl>(Val: Y); |
7381 | |
7382 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
7383 | return false; |
7384 | |
7385 | const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument(); |
7386 | const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument(); |
7387 | return hasSameTemplateName(X: TAX.getAsTemplate(), Y: TAY.getAsTemplate()); |
7388 | } |
7389 | |
7390 | static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) { |
7391 | if (auto *NS = X->getAsNamespace()) |
7392 | return NS; |
7393 | if (auto *NAS = X->getAsNamespaceAlias()) |
7394 | return NAS->getNamespace(); |
7395 | return nullptr; |
7396 | } |
7397 | |
7398 | static bool isSameQualifier(const NestedNameSpecifier *X, |
7399 | const NestedNameSpecifier *Y) { |
7400 | if (auto *NSX = getNamespace(X)) { |
7401 | auto *NSY = getNamespace(X: Y); |
7402 | if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl()) |
7403 | return false; |
7404 | } else if (X->getKind() != Y->getKind()) |
7405 | return false; |
7406 | |
7407 | // FIXME: For namespaces and types, we're permitted to check that the entity |
7408 | // is named via the same tokens. We should probably do so. |
7409 | switch (X->getKind()) { |
7410 | case NestedNameSpecifier::Identifier: |
7411 | if (X->getAsIdentifier() != Y->getAsIdentifier()) |
7412 | return false; |
7413 | break; |
7414 | case NestedNameSpecifier::Namespace: |
7415 | case NestedNameSpecifier::NamespaceAlias: |
7416 | // We've already checked that we named the same namespace. |
7417 | break; |
7418 | case NestedNameSpecifier::TypeSpec: |
7419 | if (X->getAsType()->getCanonicalTypeInternal() != |
7420 | Y->getAsType()->getCanonicalTypeInternal()) |
7421 | return false; |
7422 | break; |
7423 | case NestedNameSpecifier::Global: |
7424 | case NestedNameSpecifier::Super: |
7425 | return true; |
7426 | } |
7427 | |
7428 | // Recurse into earlier portion of NNS, if any. |
7429 | auto *PX = X->getPrefix(); |
7430 | auto *PY = Y->getPrefix(); |
7431 | if (PX && PY) |
7432 | return isSameQualifier(X: PX, Y: PY); |
7433 | return !PX && !PY; |
7434 | } |
7435 | |
7436 | static bool hasSameCudaAttrs(const FunctionDecl *A, const FunctionDecl *B) { |
7437 | if (!A->getASTContext().getLangOpts().CUDA) |
7438 | return true; // Target attributes are overloadable in CUDA compilation only. |
7439 | if (A->hasAttr<CUDADeviceAttr>() != B->hasAttr<CUDADeviceAttr>()) |
7440 | return false; |
7441 | if (A->hasAttr<CUDADeviceAttr>() && B->hasAttr<CUDADeviceAttr>()) |
7442 | return A->hasAttr<CUDAHostAttr>() == B->hasAttr<CUDAHostAttr>(); |
7443 | return true; // unattributed and __host__ functions are the same. |
7444 | } |
7445 | |
7446 | /// Determine whether the attributes we can overload on are identical for A and |
7447 | /// B. Will ignore any overloadable attrs represented in the type of A and B. |
7448 | static bool hasSameOverloadableAttrs(const FunctionDecl *A, |
7449 | const FunctionDecl *B) { |
7450 | // Note that pass_object_size attributes are represented in the function's |
7451 | // ExtParameterInfo, so we don't need to check them here. |
7452 | |
7453 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; |
7454 | auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>(); |
7455 | auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>(); |
7456 | |
7457 | for (auto Pair : zip_longest(t&: AEnableIfAttrs, u&: BEnableIfAttrs)) { |
7458 | std::optional<EnableIfAttr *> Cand1A = std::get<0>(t&: Pair); |
7459 | std::optional<EnableIfAttr *> Cand2A = std::get<1>(t&: Pair); |
7460 | |
7461 | // Return false if the number of enable_if attributes is different. |
7462 | if (!Cand1A || !Cand2A) |
7463 | return false; |
7464 | |
7465 | Cand1ID.clear(); |
7466 | Cand2ID.clear(); |
7467 | |
7468 | (*Cand1A)->getCond()->Profile(ID&: Cand1ID, Context: A->getASTContext(), Canonical: true); |
7469 | (*Cand2A)->getCond()->Profile(ID&: Cand2ID, Context: B->getASTContext(), Canonical: true); |
7470 | |
7471 | // Return false if any of the enable_if expressions of A and B are |
7472 | // different. |
7473 | if (Cand1ID != Cand2ID) |
7474 | return false; |
7475 | } |
7476 | return hasSameCudaAttrs(A, B); |
7477 | } |
7478 | |
7479 | bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const { |
7480 | // Caution: this function is called by the AST reader during deserialization, |
7481 | // so it cannot rely on AST invariants being met. Non-trivial accessors |
7482 | // should be avoided, along with any traversal of redeclaration chains. |
7483 | |
7484 | if (X == Y) |
7485 | return true; |
7486 | |
7487 | if (X->getDeclName() != Y->getDeclName()) |
7488 | return false; |
7489 | |
7490 | // Must be in the same context. |
7491 | // |
7492 | // Note that we can't use DeclContext::Equals here, because the DeclContexts |
7493 | // could be two different declarations of the same function. (We will fix the |
7494 | // semantic DC to refer to the primary definition after merging.) |
7495 | if (!declaresSameEntity(D1: cast<Decl>(Val: X->getDeclContext()->getRedeclContext()), |
7496 | D2: cast<Decl>(Val: Y->getDeclContext()->getRedeclContext()))) |
7497 | return false; |
7498 | |
7499 | // If either X or Y are local to the owning module, they are only possible to |
7500 | // be the same entity if they are in the same module. |
7501 | if (X->isModuleLocal() || Y->isModuleLocal()) |
7502 | if (!isInSameModule(M1: X->getOwningModule(), M2: Y->getOwningModule())) |
7503 | return false; |
7504 | |
7505 | // Two typedefs refer to the same entity if they have the same underlying |
7506 | // type. |
7507 | if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(Val: X)) |
7508 | if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Val: Y)) |
7509 | return hasSameType(T1: TypedefX->getUnderlyingType(), |
7510 | T2: TypedefY->getUnderlyingType()); |
7511 | |
7512 | // Must have the same kind. |
7513 | if (X->getKind() != Y->getKind()) |
7514 | return false; |
7515 | |
7516 | // Objective-C classes and protocols with the same name always match. |
7517 | if (isa<ObjCInterfaceDecl>(Val: X) || isa<ObjCProtocolDecl>(Val: X)) |
7518 | return true; |
7519 | |
7520 | if (isa<ClassTemplateSpecializationDecl>(Val: X)) { |
7521 | // No need to handle these here: we merge them when adding them to the |
7522 | // template. |
7523 | return false; |
7524 | } |
7525 | |
7526 | // Compatible tags match. |
7527 | if (const auto *TagX = dyn_cast<TagDecl>(Val: X)) { |
7528 | const auto *TagY = cast<TagDecl>(Val: Y); |
7529 | return (TagX->getTagKind() == TagY->getTagKind()) || |
7530 | ((TagX->getTagKind() == TagTypeKind::Struct || |
7531 | TagX->getTagKind() == TagTypeKind::Class || |
7532 | TagX->getTagKind() == TagTypeKind::Interface) && |
7533 | (TagY->getTagKind() == TagTypeKind::Struct || |
7534 | TagY->getTagKind() == TagTypeKind::Class || |
7535 | TagY->getTagKind() == TagTypeKind::Interface)); |
7536 | } |
7537 | |
7538 | // Functions with the same type and linkage match. |
7539 | // FIXME: This needs to cope with merging of prototyped/non-prototyped |
7540 | // functions, etc. |
7541 | if (const auto *FuncX = dyn_cast<FunctionDecl>(Val: X)) { |
7542 | const auto *FuncY = cast<FunctionDecl>(Val: Y); |
7543 | if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(Val: X)) { |
7544 | const auto *CtorY = cast<CXXConstructorDecl>(Val: Y); |
7545 | if (CtorX->getInheritedConstructor() && |
7546 | !isSameEntity(X: CtorX->getInheritedConstructor().getConstructor(), |
7547 | Y: CtorY->getInheritedConstructor().getConstructor())) |
7548 | return false; |
7549 | } |
7550 | |
7551 | if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) |
7552 | return false; |
7553 | |
7554 | // Multiversioned functions with different feature strings are represented |
7555 | // as separate declarations. |
7556 | if (FuncX->isMultiVersion()) { |
7557 | const auto *TAX = FuncX->getAttr<TargetAttr>(); |
7558 | const auto *TAY = FuncY->getAttr<TargetAttr>(); |
7559 | assert(TAX && TAY && "Multiversion Function without target attribute" ); |
7560 | |
7561 | if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) |
7562 | return false; |
7563 | } |
7564 | |
7565 | // Per C++20 [temp.over.link]/4, friends in different classes are sometimes |
7566 | // not the same entity if they are constrained. |
7567 | if ((FuncX->isMemberLikeConstrainedFriend() || |
7568 | FuncY->isMemberLikeConstrainedFriend()) && |
7569 | !FuncX->getLexicalDeclContext()->Equals( |
7570 | DC: FuncY->getLexicalDeclContext())) { |
7571 | return false; |
7572 | } |
7573 | |
7574 | if (!isSameAssociatedConstraint(ACX: FuncX->getTrailingRequiresClause(), |
7575 | ACY: FuncY->getTrailingRequiresClause())) |
7576 | return false; |
7577 | |
7578 | auto GetTypeAsWritten = [](const FunctionDecl *FD) { |
7579 | // Map to the first declaration that we've already merged into this one. |
7580 | // The TSI of redeclarations might not match (due to calling conventions |
7581 | // being inherited onto the type but not the TSI), but the TSI type of |
7582 | // the first declaration of the function should match across modules. |
7583 | FD = FD->getCanonicalDecl(); |
7584 | return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() |
7585 | : FD->getType(); |
7586 | }; |
7587 | QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); |
7588 | if (!hasSameType(T1: XT, T2: YT)) { |
7589 | // We can get functions with different types on the redecl chain in C++17 |
7590 | // if they have differing exception specifications and at least one of |
7591 | // the excpetion specs is unresolved. |
7592 | auto *XFPT = XT->getAs<FunctionProtoType>(); |
7593 | auto *YFPT = YT->getAs<FunctionProtoType>(); |
7594 | if (getLangOpts().CPlusPlus17 && XFPT && YFPT && |
7595 | (isUnresolvedExceptionSpec(ESpecType: XFPT->getExceptionSpecType()) || |
7596 | isUnresolvedExceptionSpec(ESpecType: YFPT->getExceptionSpecType())) && |
7597 | hasSameFunctionTypeIgnoringExceptionSpec(T: XT, U: YT)) |
7598 | return true; |
7599 | return false; |
7600 | } |
7601 | |
7602 | return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && |
7603 | hasSameOverloadableAttrs(A: FuncX, B: FuncY); |
7604 | } |
7605 | |
7606 | // Variables with the same type and linkage match. |
7607 | if (const auto *VarX = dyn_cast<VarDecl>(Val: X)) { |
7608 | const auto *VarY = cast<VarDecl>(Val: Y); |
7609 | if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { |
7610 | // During deserialization, we might compare variables before we load |
7611 | // their types. Assume the types will end up being the same. |
7612 | if (VarX->getType().isNull() || VarY->getType().isNull()) |
7613 | return true; |
7614 | |
7615 | if (hasSameType(T1: VarX->getType(), T2: VarY->getType())) |
7616 | return true; |
7617 | |
7618 | // We can get decls with different types on the redecl chain. Eg. |
7619 | // template <typename T> struct S { static T Var[]; }; // #1 |
7620 | // template <typename T> T S<T>::Var[sizeof(T)]; // #2 |
7621 | // Only? happens when completing an incomplete array type. In this case |
7622 | // when comparing #1 and #2 we should go through their element type. |
7623 | const ArrayType *VarXTy = getAsArrayType(T: VarX->getType()); |
7624 | const ArrayType *VarYTy = getAsArrayType(T: VarY->getType()); |
7625 | if (!VarXTy || !VarYTy) |
7626 | return false; |
7627 | if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) |
7628 | return hasSameType(T1: VarXTy->getElementType(), T2: VarYTy->getElementType()); |
7629 | } |
7630 | return false; |
7631 | } |
7632 | |
7633 | // Namespaces with the same name and inlinedness match. |
7634 | if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(Val: X)) { |
7635 | const auto *NamespaceY = cast<NamespaceDecl>(Val: Y); |
7636 | return NamespaceX->isInline() == NamespaceY->isInline(); |
7637 | } |
7638 | |
7639 | // Identical template names and kinds match if their template parameter lists |
7640 | // and patterns match. |
7641 | if (const auto *TemplateX = dyn_cast<TemplateDecl>(Val: X)) { |
7642 | const auto *TemplateY = cast<TemplateDecl>(Val: Y); |
7643 | |
7644 | // ConceptDecl wouldn't be the same if their constraint expression differs. |
7645 | if (const auto *ConceptX = dyn_cast<ConceptDecl>(Val: X)) { |
7646 | const auto *ConceptY = cast<ConceptDecl>(Val: Y); |
7647 | if (!isSameConstraintExpr(XCE: ConceptX->getConstraintExpr(), |
7648 | YCE: ConceptY->getConstraintExpr())) |
7649 | return false; |
7650 | } |
7651 | |
7652 | return isSameEntity(X: TemplateX->getTemplatedDecl(), |
7653 | Y: TemplateY->getTemplatedDecl()) && |
7654 | isSameTemplateParameterList(X: TemplateX->getTemplateParameters(), |
7655 | Y: TemplateY->getTemplateParameters()); |
7656 | } |
7657 | |
7658 | // Fields with the same name and the same type match. |
7659 | if (const auto *FDX = dyn_cast<FieldDecl>(Val: X)) { |
7660 | const auto *FDY = cast<FieldDecl>(Val: Y); |
7661 | // FIXME: Also check the bitwidth is odr-equivalent, if any. |
7662 | return hasSameType(T1: FDX->getType(), T2: FDY->getType()); |
7663 | } |
7664 | |
7665 | // Indirect fields with the same target field match. |
7666 | if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(Val: X)) { |
7667 | const auto *IFDY = cast<IndirectFieldDecl>(Val: Y); |
7668 | return IFDX->getAnonField()->getCanonicalDecl() == |
7669 | IFDY->getAnonField()->getCanonicalDecl(); |
7670 | } |
7671 | |
7672 | // Enumerators with the same name match. |
7673 | if (isa<EnumConstantDecl>(Val: X)) |
7674 | // FIXME: Also check the value is odr-equivalent. |
7675 | return true; |
7676 | |
7677 | // Using shadow declarations with the same target match. |
7678 | if (const auto *USX = dyn_cast<UsingShadowDecl>(Val: X)) { |
7679 | const auto *USY = cast<UsingShadowDecl>(Val: Y); |
7680 | return declaresSameEntity(D1: USX->getTargetDecl(), D2: USY->getTargetDecl()); |
7681 | } |
7682 | |
7683 | // Using declarations with the same qualifier match. (We already know that |
7684 | // the name matches.) |
7685 | if (const auto *UX = dyn_cast<UsingDecl>(Val: X)) { |
7686 | const auto *UY = cast<UsingDecl>(Val: Y); |
7687 | return isSameQualifier(X: UX->getQualifier(), Y: UY->getQualifier()) && |
7688 | UX->hasTypename() == UY->hasTypename() && |
7689 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
7690 | } |
7691 | if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(Val: X)) { |
7692 | const auto *UY = cast<UnresolvedUsingValueDecl>(Val: Y); |
7693 | return isSameQualifier(X: UX->getQualifier(), Y: UY->getQualifier()) && |
7694 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
7695 | } |
7696 | if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(Val: X)) { |
7697 | return isSameQualifier( |
7698 | X: UX->getQualifier(), |
7699 | Y: cast<UnresolvedUsingTypenameDecl>(Val: Y)->getQualifier()); |
7700 | } |
7701 | |
7702 | // Using-pack declarations are only created by instantiation, and match if |
7703 | // they're instantiated from matching UnresolvedUsing...Decls. |
7704 | if (const auto *UX = dyn_cast<UsingPackDecl>(Val: X)) { |
7705 | return declaresSameEntity( |
7706 | D1: UX->getInstantiatedFromUsingDecl(), |
7707 | D2: cast<UsingPackDecl>(Val: Y)->getInstantiatedFromUsingDecl()); |
7708 | } |
7709 | |
7710 | // Namespace alias definitions with the same target match. |
7711 | if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(Val: X)) { |
7712 | const auto *NAY = cast<NamespaceAliasDecl>(Val: Y); |
7713 | return NAX->getNamespace()->Equals(DC: NAY->getNamespace()); |
7714 | } |
7715 | |
7716 | return false; |
7717 | } |
7718 | |
7719 | TemplateArgument |
7720 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
7721 | switch (Arg.getKind()) { |
7722 | case TemplateArgument::Null: |
7723 | return Arg; |
7724 | |
7725 | case TemplateArgument::Expression: |
7726 | return TemplateArgument(Arg.getAsExpr(), /*IsCanonical=*/true, |
7727 | Arg.getIsDefaulted()); |
7728 | |
7729 | case TemplateArgument::Declaration: { |
7730 | auto *D = cast<ValueDecl>(Val: Arg.getAsDecl()->getCanonicalDecl()); |
7731 | return TemplateArgument(D, getCanonicalType(T: Arg.getParamTypeForDecl()), |
7732 | Arg.getIsDefaulted()); |
7733 | } |
7734 | |
7735 | case TemplateArgument::NullPtr: |
7736 | return TemplateArgument(getCanonicalType(T: Arg.getNullPtrType()), |
7737 | /*isNullPtr*/ true, Arg.getIsDefaulted()); |
7738 | |
7739 | case TemplateArgument::Template: |
7740 | return TemplateArgument(getCanonicalTemplateName(Name: Arg.getAsTemplate()), |
7741 | Arg.getIsDefaulted()); |
7742 | |
7743 | case TemplateArgument::TemplateExpansion: |
7744 | return TemplateArgument( |
7745 | getCanonicalTemplateName(Name: Arg.getAsTemplateOrTemplatePattern()), |
7746 | Arg.getNumTemplateExpansions(), Arg.getIsDefaulted()); |
7747 | |
7748 | case TemplateArgument::Integral: |
7749 | return TemplateArgument(Arg, getCanonicalType(T: Arg.getIntegralType())); |
7750 | |
7751 | case TemplateArgument::StructuralValue: |
7752 | return TemplateArgument(*this, |
7753 | getCanonicalType(T: Arg.getStructuralValueType()), |
7754 | Arg.getAsStructuralValue(), Arg.getIsDefaulted()); |
7755 | |
7756 | case TemplateArgument::Type: |
7757 | return TemplateArgument(getCanonicalType(T: Arg.getAsType()), |
7758 | /*isNullPtr*/ false, Arg.getIsDefaulted()); |
7759 | |
7760 | case TemplateArgument::Pack: { |
7761 | bool AnyNonCanonArgs = false; |
7762 | auto CanonArgs = ::getCanonicalTemplateArguments( |
7763 | C: *this, Args: Arg.pack_elements(), AnyNonCanonArgs); |
7764 | if (!AnyNonCanonArgs) |
7765 | return Arg; |
7766 | auto NewArg = TemplateArgument::CreatePackCopy( |
7767 | Context&: const_cast<ASTContext &>(*this), Args: CanonArgs); |
7768 | NewArg.setIsDefaulted(Arg.getIsDefaulted()); |
7769 | return NewArg; |
7770 | } |
7771 | } |
7772 | |
7773 | // Silence GCC warning |
7774 | llvm_unreachable("Unhandled template argument kind" ); |
7775 | } |
7776 | |
7777 | bool ASTContext::isSameTemplateArgument(const TemplateArgument &Arg1, |
7778 | const TemplateArgument &Arg2) const { |
7779 | if (Arg1.getKind() != Arg2.getKind()) |
7780 | return false; |
7781 | |
7782 | switch (Arg1.getKind()) { |
7783 | case TemplateArgument::Null: |
7784 | llvm_unreachable("Comparing NULL template argument" ); |
7785 | |
7786 | case TemplateArgument::Type: |
7787 | return hasSameType(T1: Arg1.getAsType(), T2: Arg2.getAsType()); |
7788 | |
7789 | case TemplateArgument::Declaration: |
7790 | return Arg1.getAsDecl()->getUnderlyingDecl()->getCanonicalDecl() == |
7791 | Arg2.getAsDecl()->getUnderlyingDecl()->getCanonicalDecl(); |
7792 | |
7793 | case TemplateArgument::NullPtr: |
7794 | return hasSameType(T1: Arg1.getNullPtrType(), T2: Arg2.getNullPtrType()); |
7795 | |
7796 | case TemplateArgument::Template: |
7797 | case TemplateArgument::TemplateExpansion: |
7798 | return getCanonicalTemplateName(Name: Arg1.getAsTemplateOrTemplatePattern()) == |
7799 | getCanonicalTemplateName(Name: Arg2.getAsTemplateOrTemplatePattern()); |
7800 | |
7801 | case TemplateArgument::Integral: |
7802 | return llvm::APSInt::isSameValue(I1: Arg1.getAsIntegral(), |
7803 | I2: Arg2.getAsIntegral()); |
7804 | |
7805 | case TemplateArgument::StructuralValue: |
7806 | return Arg1.structurallyEquals(Other: Arg2); |
7807 | |
7808 | case TemplateArgument::Expression: { |
7809 | llvm::FoldingSetNodeID ID1, ID2; |
7810 | Arg1.getAsExpr()->Profile(ID&: ID1, Context: *this, /*Canonical=*/true); |
7811 | Arg2.getAsExpr()->Profile(ID&: ID2, Context: *this, /*Canonical=*/true); |
7812 | return ID1 == ID2; |
7813 | } |
7814 | |
7815 | case TemplateArgument::Pack: |
7816 | return llvm::equal( |
7817 | LRange: Arg1.getPackAsArray(), RRange: Arg2.getPackAsArray(), |
7818 | P: [&](const TemplateArgument &Arg1, const TemplateArgument &Arg2) { |
7819 | return isSameTemplateArgument(Arg1, Arg2); |
7820 | }); |
7821 | } |
7822 | |
7823 | llvm_unreachable("Unhandled template argument kind" ); |
7824 | } |
7825 | |
7826 | NestedNameSpecifier * |
7827 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
7828 | if (!NNS) |
7829 | return nullptr; |
7830 | |
7831 | switch (NNS->getKind()) { |
7832 | case NestedNameSpecifier::Identifier: |
7833 | // Canonicalize the prefix but keep the identifier the same. |
7834 | return NestedNameSpecifier::Create(Context: *this, |
7835 | Prefix: getCanonicalNestedNameSpecifier(NNS: NNS->getPrefix()), |
7836 | II: NNS->getAsIdentifier()); |
7837 | |
7838 | case NestedNameSpecifier::Namespace: |
7839 | // A namespace is canonical; build a nested-name-specifier with |
7840 | // this namespace and no prefix. |
7841 | return NestedNameSpecifier::Create(Context: *this, Prefix: nullptr, |
7842 | NS: NNS->getAsNamespace()->getFirstDecl()); |
7843 | |
7844 | case NestedNameSpecifier::NamespaceAlias: |
7845 | // A namespace is canonical; build a nested-name-specifier with |
7846 | // this namespace and no prefix. |
7847 | return NestedNameSpecifier::Create( |
7848 | Context: *this, Prefix: nullptr, |
7849 | NS: NNS->getAsNamespaceAlias()->getNamespace()->getFirstDecl()); |
7850 | |
7851 | // The difference between TypeSpec and TypeSpecWithTemplate is that the |
7852 | // latter will have the 'template' keyword when printed. |
7853 | case NestedNameSpecifier::TypeSpec: { |
7854 | const Type *T = getCanonicalType(T: NNS->getAsType()); |
7855 | |
7856 | // If we have some kind of dependent-named type (e.g., "typename T::type"), |
7857 | // break it apart into its prefix and identifier, then reconsititute those |
7858 | // as the canonical nested-name-specifier. This is required to canonicalize |
7859 | // a dependent nested-name-specifier involving typedefs of dependent-name |
7860 | // types, e.g., |
7861 | // typedef typename T::type T1; |
7862 | // typedef typename T1::type T2; |
7863 | if (const auto *DNT = T->getAs<DependentNameType>()) |
7864 | return NestedNameSpecifier::Create(Context: *this, Prefix: DNT->getQualifier(), |
7865 | II: DNT->getIdentifier()); |
7866 | if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>()) { |
7867 | const DependentTemplateStorage &DTN = DTST->getDependentTemplateName(); |
7868 | QualType NewT = getDependentTemplateSpecializationType( |
7869 | Keyword: ElaboratedTypeKeyword::None, |
7870 | Name: {/*NNS=*/nullptr, DTN.getName(), /*HasTemplateKeyword=*/true}, |
7871 | Args: DTST->template_arguments(), /*IsCanonical=*/true); |
7872 | assert(NewT.isCanonical()); |
7873 | NestedNameSpecifier *Prefix = DTN.getQualifier(); |
7874 | if (!Prefix) |
7875 | Prefix = getCanonicalNestedNameSpecifier(NNS: NNS->getPrefix()); |
7876 | return NestedNameSpecifier::Create(Context: *this, Prefix, T: NewT.getTypePtr()); |
7877 | } |
7878 | return NestedNameSpecifier::Create(Context: *this, Prefix: nullptr, T); |
7879 | } |
7880 | |
7881 | case NestedNameSpecifier::Global: |
7882 | case NestedNameSpecifier::Super: |
7883 | // The global specifier and __super specifer are canonical and unique. |
7884 | return NNS; |
7885 | } |
7886 | |
7887 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!" ); |
7888 | } |
7889 | |
7890 | const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
7891 | // Handle the non-qualified case efficiently. |
7892 | if (!T.hasLocalQualifiers()) { |
7893 | // Handle the common positive case fast. |
7894 | if (const auto *AT = dyn_cast<ArrayType>(Val&: T)) |
7895 | return AT; |
7896 | } |
7897 | |
7898 | // Handle the common negative case fast. |
7899 | if (!isa<ArrayType>(Val: T.getCanonicalType())) |
7900 | return nullptr; |
7901 | |
7902 | // Apply any qualifiers from the array type to the element type. This |
7903 | // implements C99 6.7.3p8: "If the specification of an array type includes |
7904 | // any type qualifiers, the element type is so qualified, not the array type." |
7905 | |
7906 | // If we get here, we either have type qualifiers on the type, or we have |
7907 | // sugar such as a typedef in the way. If we have type qualifiers on the type |
7908 | // we must propagate them down into the element type. |
7909 | |
7910 | SplitQualType split = T.getSplitDesugaredType(); |
7911 | Qualifiers qs = split.Quals; |
7912 | |
7913 | // If we have a simple case, just return now. |
7914 | const auto *ATy = dyn_cast<ArrayType>(Val: split.Ty); |
7915 | if (!ATy || qs.empty()) |
7916 | return ATy; |
7917 | |
7918 | // Otherwise, we have an array and we have qualifiers on it. Push the |
7919 | // qualifiers into the array element type and return a new array type. |
7920 | QualType NewEltTy = getQualifiedType(T: ATy->getElementType(), Qs: qs); |
7921 | |
7922 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: ATy)) |
7923 | return cast<ArrayType>(Val: getConstantArrayType(EltTy: NewEltTy, ArySizeIn: CAT->getSize(), |
7924 | SizeExpr: CAT->getSizeExpr(), |
7925 | ASM: CAT->getSizeModifier(), |
7926 | IndexTypeQuals: CAT->getIndexTypeCVRQualifiers())); |
7927 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: ATy)) |
7928 | return cast<ArrayType>(Val: getIncompleteArrayType(elementType: NewEltTy, |
7929 | ASM: IAT->getSizeModifier(), |
7930 | elementTypeQuals: IAT->getIndexTypeCVRQualifiers())); |
7931 | |
7932 | if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(Val: ATy)) |
7933 | return cast<ArrayType>(Val: getDependentSizedArrayType( |
7934 | elementType: NewEltTy, numElements: DSAT->getSizeExpr(), ASM: DSAT->getSizeModifier(), |
7935 | elementTypeQuals: DSAT->getIndexTypeCVRQualifiers())); |
7936 | |
7937 | const auto *VAT = cast<VariableArrayType>(Val: ATy); |
7938 | return cast<ArrayType>( |
7939 | Val: getVariableArrayType(EltTy: NewEltTy, NumElts: VAT->getSizeExpr(), ASM: VAT->getSizeModifier(), |
7940 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers())); |
7941 | } |
7942 | |
7943 | QualType ASTContext::getAdjustedParameterType(QualType T) const { |
7944 | if (getLangOpts().HLSL && T->isConstantArrayType()) |
7945 | return getArrayParameterType(Ty: T); |
7946 | if (T->isArrayType() || T->isFunctionType()) |
7947 | return getDecayedType(T); |
7948 | return T; |
7949 | } |
7950 | |
7951 | QualType ASTContext::getSignatureParameterType(QualType T) const { |
7952 | T = getVariableArrayDecayedType(type: T); |
7953 | T = getAdjustedParameterType(T); |
7954 | return T.getUnqualifiedType(); |
7955 | } |
7956 | |
7957 | QualType ASTContext::getExceptionObjectType(QualType T) const { |
7958 | // C++ [except.throw]p3: |
7959 | // A throw-expression initializes a temporary object, called the exception |
7960 | // object, the type of which is determined by removing any top-level |
7961 | // cv-qualifiers from the static type of the operand of throw and adjusting |
7962 | // the type from "array of T" or "function returning T" to "pointer to T" |
7963 | // or "pointer to function returning T", [...] |
7964 | T = getVariableArrayDecayedType(type: T); |
7965 | if (T->isArrayType() || T->isFunctionType()) |
7966 | T = getDecayedType(T); |
7967 | return T.getUnqualifiedType(); |
7968 | } |
7969 | |
7970 | /// getArrayDecayedType - Return the properly qualified result of decaying the |
7971 | /// specified array type to a pointer. This operation is non-trivial when |
7972 | /// handling typedefs etc. The canonical type of "T" must be an array type, |
7973 | /// this returns a pointer to a properly qualified element of the array. |
7974 | /// |
7975 | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
7976 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
7977 | // Get the element type with 'getAsArrayType' so that we don't lose any |
7978 | // typedefs in the element type of the array. This also handles propagation |
7979 | // of type qualifiers from the array type into the element type if present |
7980 | // (C99 6.7.3p8). |
7981 | const ArrayType *PrettyArrayType = getAsArrayType(T: Ty); |
7982 | assert(PrettyArrayType && "Not an array type!" ); |
7983 | |
7984 | QualType PtrTy = getPointerType(T: PrettyArrayType->getElementType()); |
7985 | |
7986 | // int x[restrict 4] -> int *restrict |
7987 | QualType Result = getQualifiedType(T: PtrTy, |
7988 | Qs: PrettyArrayType->getIndexTypeQualifiers()); |
7989 | |
7990 | // int x[_Nullable] -> int * _Nullable |
7991 | if (auto Nullability = Ty->getNullability()) { |
7992 | Result = const_cast<ASTContext *>(this)->getAttributedType(nullability: *Nullability, |
7993 | modifiedType: Result, equivalentType: Result); |
7994 | } |
7995 | return Result; |
7996 | } |
7997 | |
7998 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
7999 | return getBaseElementType(QT: array->getElementType()); |
8000 | } |
8001 | |
8002 | QualType ASTContext::getBaseElementType(QualType type) const { |
8003 | Qualifiers qs; |
8004 | while (true) { |
8005 | SplitQualType split = type.getSplitDesugaredType(); |
8006 | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
8007 | if (!array) break; |
8008 | |
8009 | type = array->getElementType(); |
8010 | qs.addConsistentQualifiers(qs: split.Quals); |
8011 | } |
8012 | |
8013 | return getQualifiedType(T: type, Qs: qs); |
8014 | } |
8015 | |
8016 | /// getConstantArrayElementCount - Returns number of constant array elements. |
8017 | uint64_t |
8018 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
8019 | uint64_t ElementCount = 1; |
8020 | do { |
8021 | ElementCount *= CA->getZExtSize(); |
8022 | CA = dyn_cast_or_null<ConstantArrayType>( |
8023 | Val: CA->getElementType()->getAsArrayTypeUnsafe()); |
8024 | } while (CA); |
8025 | return ElementCount; |
8026 | } |
8027 | |
8028 | uint64_t ASTContext::getArrayInitLoopExprElementCount( |
8029 | const ArrayInitLoopExpr *AILE) const { |
8030 | if (!AILE) |
8031 | return 0; |
8032 | |
8033 | uint64_t ElementCount = 1; |
8034 | |
8035 | do { |
8036 | ElementCount *= AILE->getArraySize().getZExtValue(); |
8037 | AILE = dyn_cast<ArrayInitLoopExpr>(Val: AILE->getSubExpr()); |
8038 | } while (AILE); |
8039 | |
8040 | return ElementCount; |
8041 | } |
8042 | |
8043 | /// getFloatingRank - Return a relative rank for floating point types. |
8044 | /// This routine will assert if passed a built-in type that isn't a float. |
8045 | static FloatingRank getFloatingRank(QualType T) { |
8046 | if (const auto *CT = T->getAs<ComplexType>()) |
8047 | return getFloatingRank(T: CT->getElementType()); |
8048 | |
8049 | switch (T->castAs<BuiltinType>()->getKind()) { |
8050 | default: llvm_unreachable("getFloatingRank(): not a floating type" ); |
8051 | case BuiltinType::Float16: return Float16Rank; |
8052 | case BuiltinType::Half: return HalfRank; |
8053 | case BuiltinType::Float: return FloatRank; |
8054 | case BuiltinType::Double: return DoubleRank; |
8055 | case BuiltinType::LongDouble: return LongDoubleRank; |
8056 | case BuiltinType::Float128: return Float128Rank; |
8057 | case BuiltinType::BFloat16: return BFloat16Rank; |
8058 | case BuiltinType::Ibm128: return Ibm128Rank; |
8059 | } |
8060 | } |
8061 | |
8062 | /// getFloatingTypeOrder - Compare the rank of the two specified floating |
8063 | /// point types, ignoring the domain of the type (i.e. 'double' == |
8064 | /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
8065 | /// LHS < RHS, return -1. |
8066 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
8067 | FloatingRank LHSR = getFloatingRank(T: LHS); |
8068 | FloatingRank RHSR = getFloatingRank(T: RHS); |
8069 | |
8070 | if (LHSR == RHSR) |
8071 | return 0; |
8072 | if (LHSR > RHSR) |
8073 | return 1; |
8074 | return -1; |
8075 | } |
8076 | |
8077 | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { |
8078 | if (&getFloatTypeSemantics(T: LHS) == &getFloatTypeSemantics(T: RHS)) |
8079 | return 0; |
8080 | return getFloatingTypeOrder(LHS, RHS); |
8081 | } |
8082 | |
8083 | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
8084 | /// routine will assert if passed a built-in type that isn't an integer or enum, |
8085 | /// or if it is not canonicalized. |
8086 | unsigned ASTContext::getIntegerRank(const Type *T) const { |
8087 | assert(T->isCanonicalUnqualified() && "T should be canonicalized" ); |
8088 | |
8089 | // Results in this 'losing' to any type of the same size, but winning if |
8090 | // larger. |
8091 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
8092 | return 0 + (EIT->getNumBits() << 3); |
8093 | |
8094 | switch (cast<BuiltinType>(Val: T)->getKind()) { |
8095 | default: llvm_unreachable("getIntegerRank(): not a built-in integer" ); |
8096 | case BuiltinType::Bool: |
8097 | return 1 + (getIntWidth(T: BoolTy) << 3); |
8098 | case BuiltinType::Char_S: |
8099 | case BuiltinType::Char_U: |
8100 | case BuiltinType::SChar: |
8101 | case BuiltinType::UChar: |
8102 | return 2 + (getIntWidth(T: CharTy) << 3); |
8103 | case BuiltinType::Short: |
8104 | case BuiltinType::UShort: |
8105 | return 3 + (getIntWidth(T: ShortTy) << 3); |
8106 | case BuiltinType::Int: |
8107 | case BuiltinType::UInt: |
8108 | return 4 + (getIntWidth(T: IntTy) << 3); |
8109 | case BuiltinType::Long: |
8110 | case BuiltinType::ULong: |
8111 | return 5 + (getIntWidth(T: LongTy) << 3); |
8112 | case BuiltinType::LongLong: |
8113 | case BuiltinType::ULongLong: |
8114 | return 6 + (getIntWidth(T: LongLongTy) << 3); |
8115 | case BuiltinType::Int128: |
8116 | case BuiltinType::UInt128: |
8117 | return 7 + (getIntWidth(T: Int128Ty) << 3); |
8118 | |
8119 | // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of |
8120 | // their underlying types" [c++20 conv.rank] |
8121 | case BuiltinType::Char8: |
8122 | return getIntegerRank(T: UnsignedCharTy.getTypePtr()); |
8123 | case BuiltinType::Char16: |
8124 | return getIntegerRank( |
8125 | T: getFromTargetType(Type: Target->getChar16Type()).getTypePtr()); |
8126 | case BuiltinType::Char32: |
8127 | return getIntegerRank( |
8128 | T: getFromTargetType(Type: Target->getChar32Type()).getTypePtr()); |
8129 | case BuiltinType::WChar_S: |
8130 | case BuiltinType::WChar_U: |
8131 | return getIntegerRank( |
8132 | T: getFromTargetType(Type: Target->getWCharType()).getTypePtr()); |
8133 | } |
8134 | } |
8135 | |
8136 | /// Whether this is a promotable bitfield reference according |
8137 | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
8138 | /// |
8139 | /// \returns the type this bit-field will promote to, or NULL if no |
8140 | /// promotion occurs. |
8141 | QualType ASTContext::isPromotableBitField(Expr *E) const { |
8142 | if (E->isTypeDependent() || E->isValueDependent()) |
8143 | return {}; |
8144 | |
8145 | // C++ [conv.prom]p5: |
8146 | // If the bit-field has an enumerated type, it is treated as any other |
8147 | // value of that type for promotion purposes. |
8148 | if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) |
8149 | return {}; |
8150 | |
8151 | // FIXME: We should not do this unless E->refersToBitField() is true. This |
8152 | // matters in C where getSourceBitField() will find bit-fields for various |
8153 | // cases where the source expression is not a bit-field designator. |
8154 | |
8155 | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? |
8156 | if (!Field) |
8157 | return {}; |
8158 | |
8159 | QualType FT = Field->getType(); |
8160 | |
8161 | uint64_t BitWidth = Field->getBitWidthValue(); |
8162 | uint64_t IntSize = getTypeSize(T: IntTy); |
8163 | // C++ [conv.prom]p5: |
8164 | // A prvalue for an integral bit-field can be converted to a prvalue of type |
8165 | // int if int can represent all the values of the bit-field; otherwise, it |
8166 | // can be converted to unsigned int if unsigned int can represent all the |
8167 | // values of the bit-field. If the bit-field is larger yet, no integral |
8168 | // promotion applies to it. |
8169 | // C11 6.3.1.1/2: |
8170 | // [For a bit-field of type _Bool, int, signed int, or unsigned int:] |
8171 | // If an int can represent all values of the original type (as restricted by |
8172 | // the width, for a bit-field), the value is converted to an int; otherwise, |
8173 | // it is converted to an unsigned int. |
8174 | // |
8175 | // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. |
8176 | // We perform that promotion here to match GCC and C++. |
8177 | // FIXME: C does not permit promotion of an enum bit-field whose rank is |
8178 | // greater than that of 'int'. We perform that promotion to match GCC. |
8179 | // |
8180 | // C23 6.3.1.1p2: |
8181 | // The value from a bit-field of a bit-precise integer type is converted to |
8182 | // the corresponding bit-precise integer type. (The rest is the same as in |
8183 | // C11.) |
8184 | if (QualType QT = Field->getType(); QT->isBitIntType()) |
8185 | return QT; |
8186 | |
8187 | if (BitWidth < IntSize) |
8188 | return IntTy; |
8189 | |
8190 | if (BitWidth == IntSize) |
8191 | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
8192 | |
8193 | // Bit-fields wider than int are not subject to promotions, and therefore act |
8194 | // like the base type. GCC has some weird bugs in this area that we |
8195 | // deliberately do not follow (GCC follows a pre-standard resolution to |
8196 | // C's DR315 which treats bit-width as being part of the type, and this leaks |
8197 | // into their semantics in some cases). |
8198 | return {}; |
8199 | } |
8200 | |
8201 | /// getPromotedIntegerType - Returns the type that Promotable will |
8202 | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
8203 | /// integer type. |
8204 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
8205 | assert(!Promotable.isNull()); |
8206 | assert(isPromotableIntegerType(Promotable)); |
8207 | if (const auto *ET = Promotable->getAs<EnumType>()) |
8208 | return ET->getDecl()->getPromotionType(); |
8209 | |
8210 | if (const auto *BT = Promotable->getAs<BuiltinType>()) { |
8211 | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
8212 | // (3.9.1) can be converted to a prvalue of the first of the following |
8213 | // types that can represent all the values of its underlying type: |
8214 | // int, unsigned int, long int, unsigned long int, long long int, or |
8215 | // unsigned long long int [...] |
8216 | // FIXME: Is there some better way to compute this? |
8217 | if (BT->getKind() == BuiltinType::WChar_S || |
8218 | BT->getKind() == BuiltinType::WChar_U || |
8219 | BT->getKind() == BuiltinType::Char8 || |
8220 | BT->getKind() == BuiltinType::Char16 || |
8221 | BT->getKind() == BuiltinType::Char32) { |
8222 | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
8223 | uint64_t FromSize = getTypeSize(T: BT); |
8224 | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
8225 | LongLongTy, UnsignedLongLongTy }; |
8226 | for (const auto &PT : PromoteTypes) { |
8227 | uint64_t ToSize = getTypeSize(T: PT); |
8228 | if (FromSize < ToSize || |
8229 | (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType())) |
8230 | return PT; |
8231 | } |
8232 | llvm_unreachable("char type should fit into long long" ); |
8233 | } |
8234 | } |
8235 | |
8236 | // At this point, we should have a signed or unsigned integer type. |
8237 | if (Promotable->isSignedIntegerType()) |
8238 | return IntTy; |
8239 | uint64_t PromotableSize = getIntWidth(T: Promotable); |
8240 | uint64_t IntSize = getIntWidth(T: IntTy); |
8241 | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); |
8242 | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
8243 | } |
8244 | |
8245 | /// Recurses in pointer/array types until it finds an objc retainable |
8246 | /// type and returns its ownership. |
8247 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
8248 | while (!T.isNull()) { |
8249 | if (T.getObjCLifetime() != Qualifiers::OCL_None) |
8250 | return T.getObjCLifetime(); |
8251 | if (T->isArrayType()) |
8252 | T = getBaseElementType(type: T); |
8253 | else if (const auto *PT = T->getAs<PointerType>()) |
8254 | T = PT->getPointeeType(); |
8255 | else if (const auto *RT = T->getAs<ReferenceType>()) |
8256 | T = RT->getPointeeType(); |
8257 | else |
8258 | break; |
8259 | } |
8260 | |
8261 | return Qualifiers::OCL_None; |
8262 | } |
8263 | |
8264 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { |
8265 | // Incomplete enum types are not treated as integer types. |
8266 | // FIXME: In C++, enum types are never integer types. |
8267 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
8268 | return ET->getDecl()->getIntegerType().getTypePtr(); |
8269 | return nullptr; |
8270 | } |
8271 | |
8272 | /// getIntegerTypeOrder - Returns the highest ranked integer type: |
8273 | /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
8274 | /// LHS < RHS, return -1. |
8275 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
8276 | const Type *LHSC = getCanonicalType(T: LHS).getTypePtr(); |
8277 | const Type *RHSC = getCanonicalType(T: RHS).getTypePtr(); |
8278 | |
8279 | // Unwrap enums to their underlying type. |
8280 | if (const auto *ET = dyn_cast<EnumType>(Val: LHSC)) |
8281 | LHSC = getIntegerTypeForEnum(ET); |
8282 | if (const auto *ET = dyn_cast<EnumType>(Val: RHSC)) |
8283 | RHSC = getIntegerTypeForEnum(ET); |
8284 | |
8285 | if (LHSC == RHSC) return 0; |
8286 | |
8287 | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
8288 | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
8289 | |
8290 | unsigned LHSRank = getIntegerRank(T: LHSC); |
8291 | unsigned RHSRank = getIntegerRank(T: RHSC); |
8292 | |
8293 | if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
8294 | if (LHSRank == RHSRank) return 0; |
8295 | return LHSRank > RHSRank ? 1 : -1; |
8296 | } |
8297 | |
8298 | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
8299 | if (LHSUnsigned) { |
8300 | // If the unsigned [LHS] type is larger, return it. |
8301 | if (LHSRank >= RHSRank) |
8302 | return 1; |
8303 | |
8304 | // If the signed type can represent all values of the unsigned type, it |
8305 | // wins. Because we are dealing with 2's complement and types that are |
8306 | // powers of two larger than each other, this is always safe. |
8307 | return -1; |
8308 | } |
8309 | |
8310 | // If the unsigned [RHS] type is larger, return it. |
8311 | if (RHSRank >= LHSRank) |
8312 | return -1; |
8313 | |
8314 | // If the signed type can represent all values of the unsigned type, it |
8315 | // wins. Because we are dealing with 2's complement and types that are |
8316 | // powers of two larger than each other, this is always safe. |
8317 | return 1; |
8318 | } |
8319 | |
8320 | TypedefDecl *ASTContext::getCFConstantStringDecl() const { |
8321 | if (CFConstantStringTypeDecl) |
8322 | return CFConstantStringTypeDecl; |
8323 | |
8324 | assert(!CFConstantStringTagDecl && |
8325 | "tag and typedef should be initialized together" ); |
8326 | CFConstantStringTagDecl = buildImplicitRecord(Name: "__NSConstantString_tag" ); |
8327 | CFConstantStringTagDecl->startDefinition(); |
8328 | |
8329 | struct { |
8330 | QualType Type; |
8331 | const char *Name; |
8332 | } Fields[5]; |
8333 | unsigned Count = 0; |
8334 | |
8335 | /// Objective-C ABI |
8336 | /// |
8337 | /// typedef struct __NSConstantString_tag { |
8338 | /// const int *isa; |
8339 | /// int flags; |
8340 | /// const char *str; |
8341 | /// long length; |
8342 | /// } __NSConstantString; |
8343 | /// |
8344 | /// Swift ABI (4.1, 4.2) |
8345 | /// |
8346 | /// typedef struct __NSConstantString_tag { |
8347 | /// uintptr_t _cfisa; |
8348 | /// uintptr_t _swift_rc; |
8349 | /// _Atomic(uint64_t) _cfinfoa; |
8350 | /// const char *_ptr; |
8351 | /// uint32_t _length; |
8352 | /// } __NSConstantString; |
8353 | /// |
8354 | /// Swift ABI (5.0) |
8355 | /// |
8356 | /// typedef struct __NSConstantString_tag { |
8357 | /// uintptr_t _cfisa; |
8358 | /// uintptr_t _swift_rc; |
8359 | /// _Atomic(uint64_t) _cfinfoa; |
8360 | /// const char *_ptr; |
8361 | /// uintptr_t _length; |
8362 | /// } __NSConstantString; |
8363 | |
8364 | const auto CFRuntime = getLangOpts().CFRuntime; |
8365 | if (static_cast<unsigned>(CFRuntime) < |
8366 | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { |
8367 | Fields[Count++] = { .Type: getPointerType(T: IntTy.withConst()), .Name: "isa" }; |
8368 | Fields[Count++] = { .Type: IntTy, .Name: "flags" }; |
8369 | Fields[Count++] = { .Type: getPointerType(T: CharTy.withConst()), .Name: "str" }; |
8370 | Fields[Count++] = { .Type: LongTy, .Name: "length" }; |
8371 | } else { |
8372 | Fields[Count++] = { .Type: getUIntPtrType(), .Name: "_cfisa" }; |
8373 | Fields[Count++] = { .Type: getUIntPtrType(), .Name: "_swift_rc" }; |
8374 | Fields[Count++] = { .Type: getFromTargetType(Type: Target->getUInt64Type()), .Name: "_swift_rc" }; |
8375 | Fields[Count++] = { .Type: getPointerType(T: CharTy.withConst()), .Name: "_ptr" }; |
8376 | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || |
8377 | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) |
8378 | Fields[Count++] = { .Type: IntTy, .Name: "_ptr" }; |
8379 | else |
8380 | Fields[Count++] = { .Type: getUIntPtrType(), .Name: "_ptr" }; |
8381 | } |
8382 | |
8383 | // Create fields |
8384 | for (unsigned i = 0; i < Count; ++i) { |
8385 | FieldDecl *Field = |
8386 | FieldDecl::Create(C: *this, DC: CFConstantStringTagDecl, StartLoc: SourceLocation(), |
8387 | IdLoc: SourceLocation(), Id: &Idents.get(Name: Fields[i].Name), |
8388 | T: Fields[i].Type, /*TInfo=*/nullptr, |
8389 | /*BitWidth=*/BW: nullptr, /*Mutable=*/false, InitStyle: ICIS_NoInit); |
8390 | Field->setAccess(AS_public); |
8391 | CFConstantStringTagDecl->addDecl(D: Field); |
8392 | } |
8393 | |
8394 | CFConstantStringTagDecl->completeDefinition(); |
8395 | // This type is designed to be compatible with NSConstantString, but cannot |
8396 | // use the same name, since NSConstantString is an interface. |
8397 | auto tagType = getTagDeclType(Decl: CFConstantStringTagDecl); |
8398 | CFConstantStringTypeDecl = |
8399 | buildImplicitTypedef(T: tagType, Name: "__NSConstantString" ); |
8400 | |
8401 | return CFConstantStringTypeDecl; |
8402 | } |
8403 | |
8404 | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { |
8405 | if (!CFConstantStringTagDecl) |
8406 | getCFConstantStringDecl(); // Build the tag and the typedef. |
8407 | return CFConstantStringTagDecl; |
8408 | } |
8409 | |
8410 | // getCFConstantStringType - Return the type used for constant CFStrings. |
8411 | QualType ASTContext::getCFConstantStringType() const { |
8412 | return getTypedefType(Decl: getCFConstantStringDecl()); |
8413 | } |
8414 | |
8415 | QualType ASTContext::getObjCSuperType() const { |
8416 | if (ObjCSuperType.isNull()) { |
8417 | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord(Name: "objc_super" ); |
8418 | getTranslationUnitDecl()->addDecl(D: ObjCSuperTypeDecl); |
8419 | ObjCSuperType = getTagDeclType(Decl: ObjCSuperTypeDecl); |
8420 | } |
8421 | return ObjCSuperType; |
8422 | } |
8423 | |
8424 | void ASTContext::setCFConstantStringType(QualType T) { |
8425 | const auto *TD = T->castAs<TypedefType>(); |
8426 | CFConstantStringTypeDecl = cast<TypedefDecl>(Val: TD->getDecl()); |
8427 | const auto *TagType = TD->castAs<RecordType>(); |
8428 | CFConstantStringTagDecl = TagType->getDecl(); |
8429 | } |
8430 | |
8431 | QualType ASTContext::getBlockDescriptorType() const { |
8432 | if (BlockDescriptorType) |
8433 | return getTagDeclType(Decl: BlockDescriptorType); |
8434 | |
8435 | RecordDecl *RD; |
8436 | // FIXME: Needs the FlagAppleBlock bit. |
8437 | RD = buildImplicitRecord(Name: "__block_descriptor" ); |
8438 | RD->startDefinition(); |
8439 | |
8440 | QualType FieldTypes[] = { |
8441 | UnsignedLongTy, |
8442 | UnsignedLongTy, |
8443 | }; |
8444 | |
8445 | static const char *const FieldNames[] = { |
8446 | "reserved" , |
8447 | "Size" |
8448 | }; |
8449 | |
8450 | for (size_t i = 0; i < 2; ++i) { |
8451 | FieldDecl *Field = FieldDecl::Create( |
8452 | C: *this, DC: RD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
8453 | Id: &Idents.get(Name: FieldNames[i]), T: FieldTypes[i], /*TInfo=*/nullptr, |
8454 | /*BitWidth=*/BW: nullptr, /*Mutable=*/false, InitStyle: ICIS_NoInit); |
8455 | Field->setAccess(AS_public); |
8456 | RD->addDecl(D: Field); |
8457 | } |
8458 | |
8459 | RD->completeDefinition(); |
8460 | |
8461 | BlockDescriptorType = RD; |
8462 | |
8463 | return getTagDeclType(Decl: BlockDescriptorType); |
8464 | } |
8465 | |
8466 | QualType ASTContext::getBlockDescriptorExtendedType() const { |
8467 | if (BlockDescriptorExtendedType) |
8468 | return getTagDeclType(Decl: BlockDescriptorExtendedType); |
8469 | |
8470 | RecordDecl *RD; |
8471 | // FIXME: Needs the FlagAppleBlock bit. |
8472 | RD = buildImplicitRecord(Name: "__block_descriptor_withcopydispose" ); |
8473 | RD->startDefinition(); |
8474 | |
8475 | QualType FieldTypes[] = { |
8476 | UnsignedLongTy, |
8477 | UnsignedLongTy, |
8478 | getPointerType(T: VoidPtrTy), |
8479 | getPointerType(T: VoidPtrTy) |
8480 | }; |
8481 | |
8482 | static const char *const FieldNames[] = { |
8483 | "reserved" , |
8484 | "Size" , |
8485 | "CopyFuncPtr" , |
8486 | "DestroyFuncPtr" |
8487 | }; |
8488 | |
8489 | for (size_t i = 0; i < 4; ++i) { |
8490 | FieldDecl *Field = FieldDecl::Create( |
8491 | C: *this, DC: RD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
8492 | Id: &Idents.get(Name: FieldNames[i]), T: FieldTypes[i], /*TInfo=*/nullptr, |
8493 | /*BitWidth=*/BW: nullptr, |
8494 | /*Mutable=*/false, InitStyle: ICIS_NoInit); |
8495 | Field->setAccess(AS_public); |
8496 | RD->addDecl(D: Field); |
8497 | } |
8498 | |
8499 | RD->completeDefinition(); |
8500 | |
8501 | BlockDescriptorExtendedType = RD; |
8502 | return getTagDeclType(Decl: BlockDescriptorExtendedType); |
8503 | } |
8504 | |
8505 | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { |
8506 | const auto *BT = dyn_cast<BuiltinType>(Val: T); |
8507 | |
8508 | if (!BT) { |
8509 | if (isa<PipeType>(Val: T)) |
8510 | return OCLTK_Pipe; |
8511 | |
8512 | return OCLTK_Default; |
8513 | } |
8514 | |
8515 | switch (BT->getKind()) { |
8516 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
8517 | case BuiltinType::Id: \ |
8518 | return OCLTK_Image; |
8519 | #include "clang/Basic/OpenCLImageTypes.def" |
8520 | |
8521 | case BuiltinType::OCLClkEvent: |
8522 | return OCLTK_ClkEvent; |
8523 | |
8524 | case BuiltinType::OCLEvent: |
8525 | return OCLTK_Event; |
8526 | |
8527 | case BuiltinType::OCLQueue: |
8528 | return OCLTK_Queue; |
8529 | |
8530 | case BuiltinType::OCLReserveID: |
8531 | return OCLTK_ReserveID; |
8532 | |
8533 | case BuiltinType::OCLSampler: |
8534 | return OCLTK_Sampler; |
8535 | |
8536 | default: |
8537 | return OCLTK_Default; |
8538 | } |
8539 | } |
8540 | |
8541 | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { |
8542 | return Target->getOpenCLTypeAddrSpace(TK: getOpenCLTypeKind(T)); |
8543 | } |
8544 | |
8545 | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" |
8546 | /// requires copy/dispose. Note that this must match the logic |
8547 | /// in buildByrefHelpers. |
8548 | bool ASTContext::BlockRequiresCopying(QualType Ty, |
8549 | const VarDecl *D) { |
8550 | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { |
8551 | const Expr *copyExpr = getBlockVarCopyInit(VD: D).getCopyExpr(); |
8552 | if (!copyExpr && record->hasTrivialDestructor()) return false; |
8553 | |
8554 | return true; |
8555 | } |
8556 | |
8557 | if (Ty.hasAddressDiscriminatedPointerAuth()) |
8558 | return true; |
8559 | |
8560 | // The block needs copy/destroy helpers if Ty is non-trivial to destructively |
8561 | // move or destroy. |
8562 | if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) |
8563 | return true; |
8564 | |
8565 | if (!Ty->isObjCRetainableType()) return false; |
8566 | |
8567 | Qualifiers qs = Ty.getQualifiers(); |
8568 | |
8569 | // If we have lifetime, that dominates. |
8570 | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { |
8571 | switch (lifetime) { |
8572 | case Qualifiers::OCL_None: llvm_unreachable("impossible" ); |
8573 | |
8574 | // These are just bits as far as the runtime is concerned. |
8575 | case Qualifiers::OCL_ExplicitNone: |
8576 | case Qualifiers::OCL_Autoreleasing: |
8577 | return false; |
8578 | |
8579 | // These cases should have been taken care of when checking the type's |
8580 | // non-triviality. |
8581 | case Qualifiers::OCL_Weak: |
8582 | case Qualifiers::OCL_Strong: |
8583 | llvm_unreachable("impossible" ); |
8584 | } |
8585 | llvm_unreachable("fell out of lifetime switch!" ); |
8586 | } |
8587 | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || |
8588 | Ty->isObjCObjectPointerType()); |
8589 | } |
8590 | |
8591 | bool ASTContext::getByrefLifetime(QualType Ty, |
8592 | Qualifiers::ObjCLifetime &LifeTime, |
8593 | bool &HasByrefExtendedLayout) const { |
8594 | if (!getLangOpts().ObjC || |
8595 | getLangOpts().getGC() != LangOptions::NonGC) |
8596 | return false; |
8597 | |
8598 | HasByrefExtendedLayout = false; |
8599 | if (Ty->isRecordType()) { |
8600 | HasByrefExtendedLayout = true; |
8601 | LifeTime = Qualifiers::OCL_None; |
8602 | } else if ((LifeTime = Ty.getObjCLifetime())) { |
8603 | // Honor the ARC qualifiers. |
8604 | } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { |
8605 | // The MRR rule. |
8606 | LifeTime = Qualifiers::OCL_ExplicitNone; |
8607 | } else { |
8608 | LifeTime = Qualifiers::OCL_None; |
8609 | } |
8610 | return true; |
8611 | } |
8612 | |
8613 | CanQualType ASTContext::getNSUIntegerType() const { |
8614 | assert(Target && "Expected target to be initialized" ); |
8615 | const llvm::Triple &T = Target->getTriple(); |
8616 | // Windows is LLP64 rather than LP64 |
8617 | if (T.isOSWindows() && T.isArch64Bit()) |
8618 | return UnsignedLongLongTy; |
8619 | return UnsignedLongTy; |
8620 | } |
8621 | |
8622 | CanQualType ASTContext::getNSIntegerType() const { |
8623 | assert(Target && "Expected target to be initialized" ); |
8624 | const llvm::Triple &T = Target->getTriple(); |
8625 | // Windows is LLP64 rather than LP64 |
8626 | if (T.isOSWindows() && T.isArch64Bit()) |
8627 | return LongLongTy; |
8628 | return LongTy; |
8629 | } |
8630 | |
8631 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
8632 | if (!ObjCInstanceTypeDecl) |
8633 | ObjCInstanceTypeDecl = |
8634 | buildImplicitTypedef(T: getObjCIdType(), Name: "instancetype" ); |
8635 | return ObjCInstanceTypeDecl; |
8636 | } |
8637 | |
8638 | // This returns true if a type has been typedefed to BOOL: |
8639 | // typedef <type> BOOL; |
8640 | static bool isTypeTypedefedAsBOOL(QualType T) { |
8641 | if (const auto *TT = dyn_cast<TypedefType>(Val&: T)) |
8642 | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
8643 | return II->isStr(Str: "BOOL" ); |
8644 | |
8645 | return false; |
8646 | } |
8647 | |
8648 | /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
8649 | /// purpose. |
8650 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
8651 | if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
8652 | return CharUnits::Zero(); |
8653 | |
8654 | CharUnits sz = getTypeSizeInChars(T: type); |
8655 | |
8656 | // Make all integer and enum types at least as large as an int |
8657 | if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
8658 | sz = std::max(a: sz, b: getTypeSizeInChars(T: IntTy)); |
8659 | // Treat arrays as pointers, since that's how they're passed in. |
8660 | else if (type->isArrayType()) |
8661 | sz = getTypeSizeInChars(T: VoidPtrTy); |
8662 | return sz; |
8663 | } |
8664 | |
8665 | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { |
8666 | return getTargetInfo().getCXXABI().isMicrosoft() && |
8667 | VD->isStaticDataMember() && |
8668 | VD->getType()->isIntegralOrEnumerationType() && |
8669 | !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); |
8670 | } |
8671 | |
8672 | ASTContext::InlineVariableDefinitionKind |
8673 | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { |
8674 | if (!VD->isInline()) |
8675 | return InlineVariableDefinitionKind::None; |
8676 | |
8677 | // In almost all cases, it's a weak definition. |
8678 | auto *First = VD->getFirstDecl(); |
8679 | if (First->isInlineSpecified() || !First->isStaticDataMember()) |
8680 | return InlineVariableDefinitionKind::Weak; |
8681 | |
8682 | // If there's a file-context declaration in this translation unit, it's a |
8683 | // non-discardable definition. |
8684 | for (auto *D : VD->redecls()) |
8685 | if (D->getLexicalDeclContext()->isFileContext() && |
8686 | !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) |
8687 | return InlineVariableDefinitionKind::Strong; |
8688 | |
8689 | // If we've not seen one yet, we don't know. |
8690 | return InlineVariableDefinitionKind::WeakUnknown; |
8691 | } |
8692 | |
8693 | static std::string charUnitsToString(const CharUnits &CU) { |
8694 | return llvm::itostr(X: CU.getQuantity()); |
8695 | } |
8696 | |
8697 | /// getObjCEncodingForBlock - Return the encoded type for this block |
8698 | /// declaration. |
8699 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
8700 | std::string S; |
8701 | |
8702 | const BlockDecl *Decl = Expr->getBlockDecl(); |
8703 | QualType BlockTy = |
8704 | Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); |
8705 | QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); |
8706 | // Encode result type. |
8707 | if (getLangOpts().EncodeExtendedBlockSig) |
8708 | getObjCEncodingForMethodParameter(QT: Decl::OBJC_TQ_None, T: BlockReturnTy, S, |
8709 | Extended: true /*Extended*/); |
8710 | else |
8711 | getObjCEncodingForType(T: BlockReturnTy, S); |
8712 | // Compute size of all parameters. |
8713 | // Start with computing size of a pointer in number of bytes. |
8714 | // FIXME: There might(should) be a better way of doing this computation! |
8715 | CharUnits PtrSize = getTypeSizeInChars(T: VoidPtrTy); |
8716 | CharUnits ParmOffset = PtrSize; |
8717 | for (auto *PI : Decl->parameters()) { |
8718 | QualType PType = PI->getType(); |
8719 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
8720 | if (sz.isZero()) |
8721 | continue; |
8722 | assert(sz.isPositive() && "BlockExpr - Incomplete param type" ); |
8723 | ParmOffset += sz; |
8724 | } |
8725 | // Size of the argument frame |
8726 | S += charUnitsToString(CU: ParmOffset); |
8727 | // Block pointer and offset. |
8728 | S += "@?0" ; |
8729 | |
8730 | // Argument types. |
8731 | ParmOffset = PtrSize; |
8732 | for (auto *PVDecl : Decl->parameters()) { |
8733 | QualType PType = PVDecl->getOriginalType(); |
8734 | if (const auto *AT = |
8735 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
8736 | // Use array's original type only if it has known number of |
8737 | // elements. |
8738 | if (!isa<ConstantArrayType>(Val: AT)) |
8739 | PType = PVDecl->getType(); |
8740 | } else if (PType->isFunctionType()) |
8741 | PType = PVDecl->getType(); |
8742 | if (getLangOpts().EncodeExtendedBlockSig) |
8743 | getObjCEncodingForMethodParameter(QT: Decl::OBJC_TQ_None, T: PType, |
8744 | S, Extended: true /*Extended*/); |
8745 | else |
8746 | getObjCEncodingForType(T: PType, S); |
8747 | S += charUnitsToString(CU: ParmOffset); |
8748 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
8749 | } |
8750 | |
8751 | return S; |
8752 | } |
8753 | |
8754 | std::string |
8755 | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { |
8756 | std::string S; |
8757 | // Encode result type. |
8758 | getObjCEncodingForType(T: Decl->getReturnType(), S); |
8759 | CharUnits ParmOffset; |
8760 | // Compute size of all parameters. |
8761 | for (auto *PI : Decl->parameters()) { |
8762 | QualType PType = PI->getType(); |
8763 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
8764 | if (sz.isZero()) |
8765 | continue; |
8766 | |
8767 | assert(sz.isPositive() && |
8768 | "getObjCEncodingForFunctionDecl - Incomplete param type" ); |
8769 | ParmOffset += sz; |
8770 | } |
8771 | S += charUnitsToString(CU: ParmOffset); |
8772 | ParmOffset = CharUnits::Zero(); |
8773 | |
8774 | // Argument types. |
8775 | for (auto *PVDecl : Decl->parameters()) { |
8776 | QualType PType = PVDecl->getOriginalType(); |
8777 | if (const auto *AT = |
8778 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
8779 | // Use array's original type only if it has known number of |
8780 | // elements. |
8781 | if (!isa<ConstantArrayType>(Val: AT)) |
8782 | PType = PVDecl->getType(); |
8783 | } else if (PType->isFunctionType()) |
8784 | PType = PVDecl->getType(); |
8785 | getObjCEncodingForType(T: PType, S); |
8786 | S += charUnitsToString(CU: ParmOffset); |
8787 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
8788 | } |
8789 | |
8790 | return S; |
8791 | } |
8792 | |
8793 | /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
8794 | /// method parameter or return type. If Extended, include class names and |
8795 | /// block object types. |
8796 | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
8797 | QualType T, std::string& S, |
8798 | bool Extended) const { |
8799 | // Encode type qualifier, 'in', 'inout', etc. for the parameter. |
8800 | getObjCEncodingForTypeQualifier(QT, S); |
8801 | // Encode parameter type. |
8802 | ObjCEncOptions Options = ObjCEncOptions() |
8803 | .setExpandPointedToStructures() |
8804 | .setExpandStructures() |
8805 | .setIsOutermostType(); |
8806 | if (Extended) |
8807 | Options.setEncodeBlockParameters().setEncodeClassNames(); |
8808 | getObjCEncodingForTypeImpl(t: T, S, Options, /*Field=*/nullptr); |
8809 | } |
8810 | |
8811 | /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
8812 | /// declaration. |
8813 | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
8814 | bool Extended) const { |
8815 | // FIXME: This is not very efficient. |
8816 | // Encode return type. |
8817 | std::string S; |
8818 | getObjCEncodingForMethodParameter(QT: Decl->getObjCDeclQualifier(), |
8819 | T: Decl->getReturnType(), S, Extended); |
8820 | // Compute size of all parameters. |
8821 | // Start with computing size of a pointer in number of bytes. |
8822 | // FIXME: There might(should) be a better way of doing this computation! |
8823 | CharUnits PtrSize = getTypeSizeInChars(T: VoidPtrTy); |
8824 | // The first two arguments (self and _cmd) are pointers; account for |
8825 | // their size. |
8826 | CharUnits ParmOffset = 2 * PtrSize; |
8827 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
8828 | E = Decl->sel_param_end(); PI != E; ++PI) { |
8829 | QualType PType = (*PI)->getType(); |
8830 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
8831 | if (sz.isZero()) |
8832 | continue; |
8833 | |
8834 | assert(sz.isPositive() && |
8835 | "getObjCEncodingForMethodDecl - Incomplete param type" ); |
8836 | ParmOffset += sz; |
8837 | } |
8838 | S += charUnitsToString(CU: ParmOffset); |
8839 | S += "@0:" ; |
8840 | S += charUnitsToString(CU: PtrSize); |
8841 | |
8842 | // Argument types. |
8843 | ParmOffset = 2 * PtrSize; |
8844 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
8845 | E = Decl->sel_param_end(); PI != E; ++PI) { |
8846 | const ParmVarDecl *PVDecl = *PI; |
8847 | QualType PType = PVDecl->getOriginalType(); |
8848 | if (const auto *AT = |
8849 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
8850 | // Use array's original type only if it has known number of |
8851 | // elements. |
8852 | if (!isa<ConstantArrayType>(Val: AT)) |
8853 | PType = PVDecl->getType(); |
8854 | } else if (PType->isFunctionType()) |
8855 | PType = PVDecl->getType(); |
8856 | getObjCEncodingForMethodParameter(QT: PVDecl->getObjCDeclQualifier(), |
8857 | T: PType, S, Extended); |
8858 | S += charUnitsToString(CU: ParmOffset); |
8859 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
8860 | } |
8861 | |
8862 | return S; |
8863 | } |
8864 | |
8865 | ObjCPropertyImplDecl * |
8866 | ASTContext::getObjCPropertyImplDeclForPropertyDecl( |
8867 | const ObjCPropertyDecl *PD, |
8868 | const Decl *Container) const { |
8869 | if (!Container) |
8870 | return nullptr; |
8871 | if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Val: Container)) { |
8872 | for (auto *PID : CID->property_impls()) |
8873 | if (PID->getPropertyDecl() == PD) |
8874 | return PID; |
8875 | } else { |
8876 | const auto *OID = cast<ObjCImplementationDecl>(Val: Container); |
8877 | for (auto *PID : OID->property_impls()) |
8878 | if (PID->getPropertyDecl() == PD) |
8879 | return PID; |
8880 | } |
8881 | return nullptr; |
8882 | } |
8883 | |
8884 | /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
8885 | /// property declaration. If non-NULL, Container must be either an |
8886 | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
8887 | /// NULL when getting encodings for protocol properties. |
8888 | /// Property attributes are stored as a comma-delimited C string. The simple |
8889 | /// attributes readonly and bycopy are encoded as single characters. The |
8890 | /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
8891 | /// encoded as single characters, followed by an identifier. Property types |
8892 | /// are also encoded as a parametrized attribute. The characters used to encode |
8893 | /// these attributes are defined by the following enumeration: |
8894 | /// @code |
8895 | /// enum PropertyAttributes { |
8896 | /// kPropertyReadOnly = 'R', // property is read-only. |
8897 | /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
8898 | /// kPropertyByref = '&', // property is a reference to the value last assigned |
8899 | /// kPropertyDynamic = 'D', // property is dynamic |
8900 | /// kPropertyGetter = 'G', // followed by getter selector name |
8901 | /// kPropertySetter = 'S', // followed by setter selector name |
8902 | /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
8903 | /// kPropertyType = 'T' // followed by old-style type encoding. |
8904 | /// kPropertyWeak = 'W' // 'weak' property |
8905 | /// kPropertyStrong = 'P' // property GC'able |
8906 | /// kPropertyNonAtomic = 'N' // property non-atomic |
8907 | /// kPropertyOptional = '?' // property optional |
8908 | /// }; |
8909 | /// @endcode |
8910 | std::string |
8911 | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
8912 | const Decl *Container) const { |
8913 | // Collect information from the property implementation decl(s). |
8914 | bool Dynamic = false; |
8915 | ObjCPropertyImplDecl *SynthesizePID = nullptr; |
8916 | |
8917 | if (ObjCPropertyImplDecl *PropertyImpDecl = |
8918 | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { |
8919 | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) |
8920 | Dynamic = true; |
8921 | else |
8922 | SynthesizePID = PropertyImpDecl; |
8923 | } |
8924 | |
8925 | // FIXME: This is not very efficient. |
8926 | std::string S = "T" ; |
8927 | |
8928 | // Encode result type. |
8929 | // GCC has some special rules regarding encoding of properties which |
8930 | // closely resembles encoding of ivars. |
8931 | getObjCEncodingForPropertyType(T: PD->getType(), S); |
8932 | |
8933 | if (PD->isOptional()) |
8934 | S += ",?" ; |
8935 | |
8936 | if (PD->isReadOnly()) { |
8937 | S += ",R" ; |
8938 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) |
8939 | S += ",C" ; |
8940 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) |
8941 | S += ",&" ; |
8942 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) |
8943 | S += ",W" ; |
8944 | } else { |
8945 | switch (PD->getSetterKind()) { |
8946 | case ObjCPropertyDecl::Assign: break; |
8947 | case ObjCPropertyDecl::Copy: S += ",C" ; break; |
8948 | case ObjCPropertyDecl::Retain: S += ",&" ; break; |
8949 | case ObjCPropertyDecl::Weak: S += ",W" ; break; |
8950 | } |
8951 | } |
8952 | |
8953 | // It really isn't clear at all what this means, since properties |
8954 | // are "dynamic by default". |
8955 | if (Dynamic) |
8956 | S += ",D" ; |
8957 | |
8958 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) |
8959 | S += ",N" ; |
8960 | |
8961 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { |
8962 | S += ",G" ; |
8963 | S += PD->getGetterName().getAsString(); |
8964 | } |
8965 | |
8966 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { |
8967 | S += ",S" ; |
8968 | S += PD->getSetterName().getAsString(); |
8969 | } |
8970 | |
8971 | if (SynthesizePID) { |
8972 | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
8973 | S += ",V" ; |
8974 | S += OID->getNameAsString(); |
8975 | } |
8976 | |
8977 | // FIXME: OBJCGC: weak & strong |
8978 | return S; |
8979 | } |
8980 | |
8981 | /// getLegacyIntegralTypeEncoding - |
8982 | /// Another legacy compatibility encoding: 32-bit longs are encoded as |
8983 | /// 'l' or 'L' , but not always. For typedefs, we need to use |
8984 | /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
8985 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
8986 | if (PointeeTy->getAs<TypedefType>()) { |
8987 | if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { |
8988 | if (BT->getKind() == BuiltinType::ULong && getIntWidth(T: PointeeTy) == 32) |
8989 | PointeeTy = UnsignedIntTy; |
8990 | else |
8991 | if (BT->getKind() == BuiltinType::Long && getIntWidth(T: PointeeTy) == 32) |
8992 | PointeeTy = IntTy; |
8993 | } |
8994 | } |
8995 | } |
8996 | |
8997 | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
8998 | const FieldDecl *Field, |
8999 | QualType *NotEncodedT) const { |
9000 | // We follow the behavior of gcc, expanding structures which are |
9001 | // directly pointed to, and expanding embedded structures. Note that |
9002 | // these rules are sufficient to prevent recursive encoding of the |
9003 | // same type. |
9004 | getObjCEncodingForTypeImpl(t: T, S, |
9005 | Options: ObjCEncOptions() |
9006 | .setExpandPointedToStructures() |
9007 | .setExpandStructures() |
9008 | .setIsOutermostType(), |
9009 | Field, NotEncodedT); |
9010 | } |
9011 | |
9012 | void ASTContext::getObjCEncodingForPropertyType(QualType T, |
9013 | std::string& S) const { |
9014 | // Encode result type. |
9015 | // GCC has some special rules regarding encoding of properties which |
9016 | // closely resembles encoding of ivars. |
9017 | getObjCEncodingForTypeImpl(t: T, S, |
9018 | Options: ObjCEncOptions() |
9019 | .setExpandPointedToStructures() |
9020 | .setExpandStructures() |
9021 | .setIsOutermostType() |
9022 | .setEncodingProperty(), |
9023 | /*Field=*/nullptr); |
9024 | } |
9025 | |
9026 | static char getObjCEncodingForPrimitiveType(const ASTContext *C, |
9027 | const BuiltinType *BT) { |
9028 | BuiltinType::Kind kind = BT->getKind(); |
9029 | switch (kind) { |
9030 | case BuiltinType::Void: return 'v'; |
9031 | case BuiltinType::Bool: return 'B'; |
9032 | case BuiltinType::Char8: |
9033 | case BuiltinType::Char_U: |
9034 | case BuiltinType::UChar: return 'C'; |
9035 | case BuiltinType::Char16: |
9036 | case BuiltinType::UShort: return 'S'; |
9037 | case BuiltinType::Char32: |
9038 | case BuiltinType::UInt: return 'I'; |
9039 | case BuiltinType::ULong: |
9040 | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; |
9041 | case BuiltinType::UInt128: return 'T'; |
9042 | case BuiltinType::ULongLong: return 'Q'; |
9043 | case BuiltinType::Char_S: |
9044 | case BuiltinType::SChar: return 'c'; |
9045 | case BuiltinType::Short: return 's'; |
9046 | case BuiltinType::WChar_S: |
9047 | case BuiltinType::WChar_U: |
9048 | case BuiltinType::Int: return 'i'; |
9049 | case BuiltinType::Long: |
9050 | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; |
9051 | case BuiltinType::LongLong: return 'q'; |
9052 | case BuiltinType::Int128: return 't'; |
9053 | case BuiltinType::Float: return 'f'; |
9054 | case BuiltinType::Double: return 'd'; |
9055 | case BuiltinType::LongDouble: return 'D'; |
9056 | case BuiltinType::NullPtr: return '*'; // like char* |
9057 | |
9058 | case BuiltinType::BFloat16: |
9059 | case BuiltinType::Float16: |
9060 | case BuiltinType::Float128: |
9061 | case BuiltinType::Ibm128: |
9062 | case BuiltinType::Half: |
9063 | case BuiltinType::ShortAccum: |
9064 | case BuiltinType::Accum: |
9065 | case BuiltinType::LongAccum: |
9066 | case BuiltinType::UShortAccum: |
9067 | case BuiltinType::UAccum: |
9068 | case BuiltinType::ULongAccum: |
9069 | case BuiltinType::ShortFract: |
9070 | case BuiltinType::Fract: |
9071 | case BuiltinType::LongFract: |
9072 | case BuiltinType::UShortFract: |
9073 | case BuiltinType::UFract: |
9074 | case BuiltinType::ULongFract: |
9075 | case BuiltinType::SatShortAccum: |
9076 | case BuiltinType::SatAccum: |
9077 | case BuiltinType::SatLongAccum: |
9078 | case BuiltinType::SatUShortAccum: |
9079 | case BuiltinType::SatUAccum: |
9080 | case BuiltinType::SatULongAccum: |
9081 | case BuiltinType::SatShortFract: |
9082 | case BuiltinType::SatFract: |
9083 | case BuiltinType::SatLongFract: |
9084 | case BuiltinType::SatUShortFract: |
9085 | case BuiltinType::SatUFract: |
9086 | case BuiltinType::SatULongFract: |
9087 | // FIXME: potentially need @encodes for these! |
9088 | return ' '; |
9089 | |
9090 | #define SVE_TYPE(Name, Id, SingletonId) \ |
9091 | case BuiltinType::Id: |
9092 | #include "clang/Basic/AArch64ACLETypes.def" |
9093 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
9094 | #include "clang/Basic/RISCVVTypes.def" |
9095 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
9096 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
9097 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
9098 | #include "clang/Basic/AMDGPUTypes.def" |
9099 | { |
9100 | DiagnosticsEngine &Diags = C->getDiagnostics(); |
9101 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
9102 | FormatString: "cannot yet @encode type %0" ); |
9103 | Diags.Report(DiagID) << BT->getName(Policy: C->getPrintingPolicy()); |
9104 | return ' '; |
9105 | } |
9106 | |
9107 | case BuiltinType::ObjCId: |
9108 | case BuiltinType::ObjCClass: |
9109 | case BuiltinType::ObjCSel: |
9110 | llvm_unreachable("@encoding ObjC primitive type" ); |
9111 | |
9112 | // OpenCL and placeholder types don't need @encodings. |
9113 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
9114 | case BuiltinType::Id: |
9115 | #include "clang/Basic/OpenCLImageTypes.def" |
9116 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
9117 | case BuiltinType::Id: |
9118 | #include "clang/Basic/OpenCLExtensionTypes.def" |
9119 | case BuiltinType::OCLEvent: |
9120 | case BuiltinType::OCLClkEvent: |
9121 | case BuiltinType::OCLQueue: |
9122 | case BuiltinType::OCLReserveID: |
9123 | case BuiltinType::OCLSampler: |
9124 | case BuiltinType::Dependent: |
9125 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
9126 | case BuiltinType::Id: |
9127 | #include "clang/Basic/PPCTypes.def" |
9128 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
9129 | #include "clang/Basic/HLSLIntangibleTypes.def" |
9130 | #define BUILTIN_TYPE(KIND, ID) |
9131 | #define PLACEHOLDER_TYPE(KIND, ID) \ |
9132 | case BuiltinType::KIND: |
9133 | #include "clang/AST/BuiltinTypes.def" |
9134 | llvm_unreachable("invalid builtin type for @encode" ); |
9135 | } |
9136 | llvm_unreachable("invalid BuiltinType::Kind value" ); |
9137 | } |
9138 | |
9139 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
9140 | EnumDecl *Enum = ET->getDecl(); |
9141 | |
9142 | // The encoding of an non-fixed enum type is always 'i', regardless of size. |
9143 | if (!Enum->isFixed()) |
9144 | return 'i'; |
9145 | |
9146 | // The encoding of a fixed enum type matches its fixed underlying type. |
9147 | const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); |
9148 | return getObjCEncodingForPrimitiveType(C, BT); |
9149 | } |
9150 | |
9151 | static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
9152 | QualType T, const FieldDecl *FD) { |
9153 | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl" ); |
9154 | S += 'b'; |
9155 | // The NeXT runtime encodes bit fields as b followed by the number of bits. |
9156 | // The GNU runtime requires more information; bitfields are encoded as b, |
9157 | // then the offset (in bits) of the first element, then the type of the |
9158 | // bitfield, then the size in bits. For example, in this structure: |
9159 | // |
9160 | // struct |
9161 | // { |
9162 | // int integer; |
9163 | // int flags:2; |
9164 | // }; |
9165 | // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
9166 | // runtime, but b32i2 for the GNU runtime. The reason for this extra |
9167 | // information is not especially sensible, but we're stuck with it for |
9168 | // compatibility with GCC, although providing it breaks anything that |
9169 | // actually uses runtime introspection and wants to work on both runtimes... |
9170 | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { |
9171 | uint64_t Offset; |
9172 | |
9173 | if (const auto *IVD = dyn_cast<ObjCIvarDecl>(Val: FD)) { |
9174 | Offset = Ctx->lookupFieldBitOffset(OID: IVD->getContainingInterface(), Ivar: IVD); |
9175 | } else { |
9176 | const RecordDecl *RD = FD->getParent(); |
9177 | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(D: RD); |
9178 | Offset = RL.getFieldOffset(FieldNo: FD->getFieldIndex()); |
9179 | } |
9180 | |
9181 | S += llvm::utostr(X: Offset); |
9182 | |
9183 | if (const auto *ET = T->getAs<EnumType>()) |
9184 | S += ObjCEncodingForEnumType(C: Ctx, ET); |
9185 | else { |
9186 | const auto *BT = T->castAs<BuiltinType>(); |
9187 | S += getObjCEncodingForPrimitiveType(C: Ctx, BT); |
9188 | } |
9189 | } |
9190 | S += llvm::utostr(X: FD->getBitWidthValue()); |
9191 | } |
9192 | |
9193 | // Helper function for determining whether the encoded type string would include |
9194 | // a template specialization type. |
9195 | static bool hasTemplateSpecializationInEncodedString(const Type *T, |
9196 | bool VisitBasesAndFields) { |
9197 | T = T->getBaseElementTypeUnsafe(); |
9198 | |
9199 | if (auto *PT = T->getAs<PointerType>()) |
9200 | return hasTemplateSpecializationInEncodedString( |
9201 | T: PT->getPointeeType().getTypePtr(), VisitBasesAndFields: false); |
9202 | |
9203 | auto *CXXRD = T->getAsCXXRecordDecl(); |
9204 | |
9205 | if (!CXXRD) |
9206 | return false; |
9207 | |
9208 | if (isa<ClassTemplateSpecializationDecl>(Val: CXXRD)) |
9209 | return true; |
9210 | |
9211 | if (!CXXRD->hasDefinition() || !VisitBasesAndFields) |
9212 | return false; |
9213 | |
9214 | for (const auto &B : CXXRD->bases()) |
9215 | if (hasTemplateSpecializationInEncodedString(T: B.getType().getTypePtr(), |
9216 | VisitBasesAndFields: true)) |
9217 | return true; |
9218 | |
9219 | for (auto *FD : CXXRD->fields()) |
9220 | if (hasTemplateSpecializationInEncodedString(T: FD->getType().getTypePtr(), |
9221 | VisitBasesAndFields: true)) |
9222 | return true; |
9223 | |
9224 | return false; |
9225 | } |
9226 | |
9227 | // FIXME: Use SmallString for accumulating string. |
9228 | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, |
9229 | const ObjCEncOptions Options, |
9230 | const FieldDecl *FD, |
9231 | QualType *NotEncodedT) const { |
9232 | CanQualType CT = getCanonicalType(T); |
9233 | switch (CT->getTypeClass()) { |
9234 | case Type::Builtin: |
9235 | case Type::Enum: |
9236 | if (FD && FD->isBitField()) |
9237 | return EncodeBitField(Ctx: this, S, T, FD); |
9238 | if (const auto *BT = dyn_cast<BuiltinType>(Val&: CT)) |
9239 | S += getObjCEncodingForPrimitiveType(C: this, BT); |
9240 | else |
9241 | S += ObjCEncodingForEnumType(C: this, ET: cast<EnumType>(Val&: CT)); |
9242 | return; |
9243 | |
9244 | case Type::Complex: |
9245 | S += 'j'; |
9246 | getObjCEncodingForTypeImpl(T: T->castAs<ComplexType>()->getElementType(), S, |
9247 | Options: ObjCEncOptions(), |
9248 | /*Field=*/FD: nullptr); |
9249 | return; |
9250 | |
9251 | case Type::Atomic: |
9252 | S += 'A'; |
9253 | getObjCEncodingForTypeImpl(T: T->castAs<AtomicType>()->getValueType(), S, |
9254 | Options: ObjCEncOptions(), |
9255 | /*Field=*/FD: nullptr); |
9256 | return; |
9257 | |
9258 | // encoding for pointer or reference types. |
9259 | case Type::Pointer: |
9260 | case Type::LValueReference: |
9261 | case Type::RValueReference: { |
9262 | QualType PointeeTy; |
9263 | if (isa<PointerType>(Val: CT)) { |
9264 | const auto *PT = T->castAs<PointerType>(); |
9265 | if (PT->isObjCSelType()) { |
9266 | S += ':'; |
9267 | return; |
9268 | } |
9269 | PointeeTy = PT->getPointeeType(); |
9270 | } else { |
9271 | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); |
9272 | } |
9273 | |
9274 | bool isReadOnly = false; |
9275 | // For historical/compatibility reasons, the read-only qualifier of the |
9276 | // pointee gets emitted _before_ the '^'. The read-only qualifier of |
9277 | // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
9278 | // Also, do not emit the 'r' for anything but the outermost type! |
9279 | if (T->getAs<TypedefType>()) { |
9280 | if (Options.IsOutermostType() && T.isConstQualified()) { |
9281 | isReadOnly = true; |
9282 | S += 'r'; |
9283 | } |
9284 | } else if (Options.IsOutermostType()) { |
9285 | QualType P = PointeeTy; |
9286 | while (auto PT = P->getAs<PointerType>()) |
9287 | P = PT->getPointeeType(); |
9288 | if (P.isConstQualified()) { |
9289 | isReadOnly = true; |
9290 | S += 'r'; |
9291 | } |
9292 | } |
9293 | if (isReadOnly) { |
9294 | // Another legacy compatibility encoding. Some ObjC qualifier and type |
9295 | // combinations need to be rearranged. |
9296 | // Rewrite "in const" from "nr" to "rn" |
9297 | if (StringRef(S).ends_with(Suffix: "nr" )) |
9298 | S.replace(i1: S.end()-2, i2: S.end(), s: "rn" ); |
9299 | } |
9300 | |
9301 | if (PointeeTy->isCharType()) { |
9302 | // char pointer types should be encoded as '*' unless it is a |
9303 | // type that has been typedef'd to 'BOOL'. |
9304 | if (!isTypeTypedefedAsBOOL(T: PointeeTy)) { |
9305 | S += '*'; |
9306 | return; |
9307 | } |
9308 | } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { |
9309 | // GCC binary compat: Need to convert "struct objc_class *" to "#". |
9310 | if (RTy->getDecl()->getIdentifier() == &Idents.get(Name: "objc_class" )) { |
9311 | S += '#'; |
9312 | return; |
9313 | } |
9314 | // GCC binary compat: Need to convert "struct objc_object *" to "@". |
9315 | if (RTy->getDecl()->getIdentifier() == &Idents.get(Name: "objc_object" )) { |
9316 | S += '@'; |
9317 | return; |
9318 | } |
9319 | // If the encoded string for the class includes template names, just emit |
9320 | // "^v" for pointers to the class. |
9321 | if (getLangOpts().CPlusPlus && |
9322 | (!getLangOpts().EncodeCXXClassTemplateSpec && |
9323 | hasTemplateSpecializationInEncodedString( |
9324 | T: RTy, VisitBasesAndFields: Options.ExpandPointedToStructures()))) { |
9325 | S += "^v" ; |
9326 | return; |
9327 | } |
9328 | // fall through... |
9329 | } |
9330 | S += '^'; |
9331 | getLegacyIntegralTypeEncoding(PointeeTy); |
9332 | |
9333 | ObjCEncOptions NewOptions; |
9334 | if (Options.ExpandPointedToStructures()) |
9335 | NewOptions.setExpandStructures(); |
9336 | getObjCEncodingForTypeImpl(T: PointeeTy, S, Options: NewOptions, |
9337 | /*Field=*/FD: nullptr, NotEncodedT); |
9338 | return; |
9339 | } |
9340 | |
9341 | case Type::ConstantArray: |
9342 | case Type::IncompleteArray: |
9343 | case Type::VariableArray: { |
9344 | const auto *AT = cast<ArrayType>(Val&: CT); |
9345 | |
9346 | if (isa<IncompleteArrayType>(Val: AT) && !Options.IsStructField()) { |
9347 | // Incomplete arrays are encoded as a pointer to the array element. |
9348 | S += '^'; |
9349 | |
9350 | getObjCEncodingForTypeImpl( |
9351 | T: AT->getElementType(), S, |
9352 | Options: Options.keepingOnly(Mask: ObjCEncOptions().setExpandStructures()), FD); |
9353 | } else { |
9354 | S += '['; |
9355 | |
9356 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
9357 | S += llvm::utostr(X: CAT->getZExtSize()); |
9358 | else { |
9359 | //Variable length arrays are encoded as a regular array with 0 elements. |
9360 | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && |
9361 | "Unknown array type!" ); |
9362 | S += '0'; |
9363 | } |
9364 | |
9365 | getObjCEncodingForTypeImpl( |
9366 | T: AT->getElementType(), S, |
9367 | Options: Options.keepingOnly(Mask: ObjCEncOptions().setExpandStructures()), FD, |
9368 | NotEncodedT); |
9369 | S += ']'; |
9370 | } |
9371 | return; |
9372 | } |
9373 | |
9374 | case Type::FunctionNoProto: |
9375 | case Type::FunctionProto: |
9376 | S += '?'; |
9377 | return; |
9378 | |
9379 | case Type::Record: { |
9380 | RecordDecl *RDecl = cast<RecordType>(Val&: CT)->getDecl(); |
9381 | S += RDecl->isUnion() ? '(' : '{'; |
9382 | // Anonymous structures print as '?' |
9383 | if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
9384 | S += II->getName(); |
9385 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: RDecl)) { |
9386 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
9387 | llvm::raw_string_ostream OS(S); |
9388 | printTemplateArgumentList(OS, Args: TemplateArgs.asArray(), |
9389 | Policy: getPrintingPolicy()); |
9390 | } |
9391 | } else { |
9392 | S += '?'; |
9393 | } |
9394 | if (Options.ExpandStructures()) { |
9395 | S += '='; |
9396 | if (!RDecl->isUnion()) { |
9397 | getObjCEncodingForStructureImpl(RD: RDecl, S, Field: FD, includeVBases: true, NotEncodedT); |
9398 | } else { |
9399 | for (const auto *Field : RDecl->fields()) { |
9400 | if (FD) { |
9401 | S += '"'; |
9402 | S += Field->getNameAsString(); |
9403 | S += '"'; |
9404 | } |
9405 | |
9406 | // Special case bit-fields. |
9407 | if (Field->isBitField()) { |
9408 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
9409 | Options: ObjCEncOptions().setExpandStructures(), |
9410 | FD: Field); |
9411 | } else { |
9412 | QualType qt = Field->getType(); |
9413 | getLegacyIntegralTypeEncoding(PointeeTy&: qt); |
9414 | getObjCEncodingForTypeImpl( |
9415 | T: qt, S, |
9416 | Options: ObjCEncOptions().setExpandStructures().setIsStructField(), FD, |
9417 | NotEncodedT); |
9418 | } |
9419 | } |
9420 | } |
9421 | } |
9422 | S += RDecl->isUnion() ? ')' : '}'; |
9423 | return; |
9424 | } |
9425 | |
9426 | case Type::BlockPointer: { |
9427 | const auto *BT = T->castAs<BlockPointerType>(); |
9428 | S += "@?" ; // Unlike a pointer-to-function, which is "^?". |
9429 | if (Options.EncodeBlockParameters()) { |
9430 | const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); |
9431 | |
9432 | S += '<'; |
9433 | // Block return type |
9434 | getObjCEncodingForTypeImpl(T: FT->getReturnType(), S, |
9435 | Options: Options.forComponentType(), FD, NotEncodedT); |
9436 | // Block self |
9437 | S += "@?" ; |
9438 | // Block parameters |
9439 | if (const auto *FPT = dyn_cast<FunctionProtoType>(Val: FT)) { |
9440 | for (const auto &I : FPT->param_types()) |
9441 | getObjCEncodingForTypeImpl(T: I, S, Options: Options.forComponentType(), FD, |
9442 | NotEncodedT); |
9443 | } |
9444 | S += '>'; |
9445 | } |
9446 | return; |
9447 | } |
9448 | |
9449 | case Type::ObjCObject: { |
9450 | // hack to match legacy encoding of *id and *Class |
9451 | QualType Ty = getObjCObjectPointerType(ObjectT: CT); |
9452 | if (Ty->isObjCIdType()) { |
9453 | S += "{objc_object=}" ; |
9454 | return; |
9455 | } |
9456 | else if (Ty->isObjCClassType()) { |
9457 | S += "{objc_class=}" ; |
9458 | return; |
9459 | } |
9460 | // TODO: Double check to make sure this intentionally falls through. |
9461 | [[fallthrough]]; |
9462 | } |
9463 | |
9464 | case Type::ObjCInterface: { |
9465 | // Ignore protocol qualifiers when mangling at this level. |
9466 | // @encode(class_name) |
9467 | ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); |
9468 | S += '{'; |
9469 | S += OI->getObjCRuntimeNameAsString(); |
9470 | if (Options.ExpandStructures()) { |
9471 | S += '='; |
9472 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
9473 | DeepCollectObjCIvars(OI, leafClass: true, Ivars); |
9474 | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
9475 | const FieldDecl *Field = Ivars[i]; |
9476 | if (Field->isBitField()) |
9477 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
9478 | Options: ObjCEncOptions().setExpandStructures(), |
9479 | FD: Field); |
9480 | else |
9481 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
9482 | Options: ObjCEncOptions().setExpandStructures(), FD, |
9483 | NotEncodedT); |
9484 | } |
9485 | } |
9486 | S += '}'; |
9487 | return; |
9488 | } |
9489 | |
9490 | case Type::ObjCObjectPointer: { |
9491 | const auto *OPT = T->castAs<ObjCObjectPointerType>(); |
9492 | if (OPT->isObjCIdType()) { |
9493 | S += '@'; |
9494 | return; |
9495 | } |
9496 | |
9497 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
9498 | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
9499 | // Since this is a binary compatibility issue, need to consult with |
9500 | // runtime folks. Fortunately, this is a *very* obscure construct. |
9501 | S += '#'; |
9502 | return; |
9503 | } |
9504 | |
9505 | if (OPT->isObjCQualifiedIdType()) { |
9506 | getObjCEncodingForTypeImpl( |
9507 | T: getObjCIdType(), S, |
9508 | Options: Options.keepingOnly(Mask: ObjCEncOptions() |
9509 | .setExpandPointedToStructures() |
9510 | .setExpandStructures()), |
9511 | FD); |
9512 | if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { |
9513 | // Note that we do extended encoding of protocol qualifier list |
9514 | // Only when doing ivar or property encoding. |
9515 | S += '"'; |
9516 | for (const auto *I : OPT->quals()) { |
9517 | S += '<'; |
9518 | S += I->getObjCRuntimeNameAsString(); |
9519 | S += '>'; |
9520 | } |
9521 | S += '"'; |
9522 | } |
9523 | return; |
9524 | } |
9525 | |
9526 | S += '@'; |
9527 | if (OPT->getInterfaceDecl() && |
9528 | (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { |
9529 | S += '"'; |
9530 | S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); |
9531 | for (const auto *I : OPT->quals()) { |
9532 | S += '<'; |
9533 | S += I->getObjCRuntimeNameAsString(); |
9534 | S += '>'; |
9535 | } |
9536 | S += '"'; |
9537 | } |
9538 | return; |
9539 | } |
9540 | |
9541 | // gcc just blithely ignores member pointers. |
9542 | // FIXME: we should do better than that. 'M' is available. |
9543 | case Type::MemberPointer: |
9544 | // This matches gcc's encoding, even though technically it is insufficient. |
9545 | //FIXME. We should do a better job than gcc. |
9546 | case Type::Vector: |
9547 | case Type::ExtVector: |
9548 | // Until we have a coherent encoding of these three types, issue warning. |
9549 | if (NotEncodedT) |
9550 | *NotEncodedT = T; |
9551 | return; |
9552 | |
9553 | case Type::ConstantMatrix: |
9554 | if (NotEncodedT) |
9555 | *NotEncodedT = T; |
9556 | return; |
9557 | |
9558 | case Type::BitInt: |
9559 | if (NotEncodedT) |
9560 | *NotEncodedT = T; |
9561 | return; |
9562 | |
9563 | // We could see an undeduced auto type here during error recovery. |
9564 | // Just ignore it. |
9565 | case Type::Auto: |
9566 | case Type::DeducedTemplateSpecialization: |
9567 | return; |
9568 | |
9569 | case Type::HLSLAttributedResource: |
9570 | case Type::HLSLInlineSpirv: |
9571 | llvm_unreachable("unexpected type" ); |
9572 | |
9573 | case Type::ArrayParameter: |
9574 | case Type::Pipe: |
9575 | #define ABSTRACT_TYPE(KIND, BASE) |
9576 | #define TYPE(KIND, BASE) |
9577 | #define DEPENDENT_TYPE(KIND, BASE) \ |
9578 | case Type::KIND: |
9579 | #define NON_CANONICAL_TYPE(KIND, BASE) \ |
9580 | case Type::KIND: |
9581 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ |
9582 | case Type::KIND: |
9583 | #include "clang/AST/TypeNodes.inc" |
9584 | llvm_unreachable("@encode for dependent type!" ); |
9585 | } |
9586 | llvm_unreachable("bad type kind!" ); |
9587 | } |
9588 | |
9589 | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
9590 | std::string &S, |
9591 | const FieldDecl *FD, |
9592 | bool includeVBases, |
9593 | QualType *NotEncodedT) const { |
9594 | assert(RDecl && "Expected non-null RecordDecl" ); |
9595 | assert(!RDecl->isUnion() && "Should not be called for unions" ); |
9596 | if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) |
9597 | return; |
9598 | |
9599 | const auto *CXXRec = dyn_cast<CXXRecordDecl>(Val: RDecl); |
9600 | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
9601 | const ASTRecordLayout &layout = getASTRecordLayout(D: RDecl); |
9602 | |
9603 | if (CXXRec) { |
9604 | for (const auto &BI : CXXRec->bases()) { |
9605 | if (!BI.isVirtual()) { |
9606 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
9607 | if (base->isEmpty()) |
9608 | continue; |
9609 | uint64_t offs = toBits(CharSize: layout.getBaseClassOffset(Base: base)); |
9610 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
9611 | x: std::make_pair(x&: offs, y&: base)); |
9612 | } |
9613 | } |
9614 | } |
9615 | |
9616 | for (FieldDecl *Field : RDecl->fields()) { |
9617 | if (!Field->isZeroLengthBitField() && Field->isZeroSize(Ctx: *this)) |
9618 | continue; |
9619 | uint64_t offs = layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
9620 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
9621 | x: std::make_pair(x&: offs, y&: Field)); |
9622 | } |
9623 | |
9624 | if (CXXRec && includeVBases) { |
9625 | for (const auto &BI : CXXRec->vbases()) { |
9626 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
9627 | if (base->isEmpty()) |
9628 | continue; |
9629 | uint64_t offs = toBits(CharSize: layout.getVBaseClassOffset(VBase: base)); |
9630 | if (offs >= uint64_t(toBits(CharSize: layout.getNonVirtualSize())) && |
9631 | FieldOrBaseOffsets.find(x: offs) == FieldOrBaseOffsets.end()) |
9632 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.end(), |
9633 | x: std::make_pair(x&: offs, y&: base)); |
9634 | } |
9635 | } |
9636 | |
9637 | CharUnits size; |
9638 | if (CXXRec) { |
9639 | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
9640 | } else { |
9641 | size = layout.getSize(); |
9642 | } |
9643 | |
9644 | #ifndef NDEBUG |
9645 | uint64_t CurOffs = 0; |
9646 | #endif |
9647 | std::multimap<uint64_t, NamedDecl *>::iterator |
9648 | CurLayObj = FieldOrBaseOffsets.begin(); |
9649 | |
9650 | if (CXXRec && CXXRec->isDynamicClass() && |
9651 | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
9652 | if (FD) { |
9653 | S += "\"_vptr$" ; |
9654 | std::string recname = CXXRec->getNameAsString(); |
9655 | if (recname.empty()) recname = "?" ; |
9656 | S += recname; |
9657 | S += '"'; |
9658 | } |
9659 | S += "^^?" ; |
9660 | #ifndef NDEBUG |
9661 | CurOffs += getTypeSize(VoidPtrTy); |
9662 | #endif |
9663 | } |
9664 | |
9665 | if (!RDecl->hasFlexibleArrayMember()) { |
9666 | // Mark the end of the structure. |
9667 | uint64_t offs = toBits(CharSize: size); |
9668 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
9669 | x: std::make_pair(x&: offs, y: nullptr)); |
9670 | } |
9671 | |
9672 | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
9673 | #ifndef NDEBUG |
9674 | assert(CurOffs <= CurLayObj->first); |
9675 | if (CurOffs < CurLayObj->first) { |
9676 | uint64_t padding = CurLayObj->first - CurOffs; |
9677 | // FIXME: There doesn't seem to be a way to indicate in the encoding that |
9678 | // packing/alignment of members is different that normal, in which case |
9679 | // the encoding will be out-of-sync with the real layout. |
9680 | // If the runtime switches to just consider the size of types without |
9681 | // taking into account alignment, we could make padding explicit in the |
9682 | // encoding (e.g. using arrays of chars). The encoding strings would be |
9683 | // longer then though. |
9684 | CurOffs += padding; |
9685 | } |
9686 | #endif |
9687 | |
9688 | NamedDecl *dcl = CurLayObj->second; |
9689 | if (!dcl) |
9690 | break; // reached end of structure. |
9691 | |
9692 | if (auto *base = dyn_cast<CXXRecordDecl>(Val: dcl)) { |
9693 | // We expand the bases without their virtual bases since those are going |
9694 | // in the initial structure. Note that this differs from gcc which |
9695 | // expands virtual bases each time one is encountered in the hierarchy, |
9696 | // making the encoding type bigger than it really is. |
9697 | getObjCEncodingForStructureImpl(RDecl: base, S, FD, /*includeVBases*/false, |
9698 | NotEncodedT); |
9699 | assert(!base->isEmpty()); |
9700 | #ifndef NDEBUG |
9701 | CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); |
9702 | #endif |
9703 | } else { |
9704 | const auto *field = cast<FieldDecl>(Val: dcl); |
9705 | if (FD) { |
9706 | S += '"'; |
9707 | S += field->getNameAsString(); |
9708 | S += '"'; |
9709 | } |
9710 | |
9711 | if (field->isBitField()) { |
9712 | EncodeBitField(Ctx: this, S, T: field->getType(), FD: field); |
9713 | #ifndef NDEBUG |
9714 | CurOffs += field->getBitWidthValue(); |
9715 | #endif |
9716 | } else { |
9717 | QualType qt = field->getType(); |
9718 | getLegacyIntegralTypeEncoding(PointeeTy&: qt); |
9719 | getObjCEncodingForTypeImpl( |
9720 | T: qt, S, Options: ObjCEncOptions().setExpandStructures().setIsStructField(), |
9721 | FD, NotEncodedT); |
9722 | #ifndef NDEBUG |
9723 | CurOffs += getTypeSize(field->getType()); |
9724 | #endif |
9725 | } |
9726 | } |
9727 | } |
9728 | } |
9729 | |
9730 | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
9731 | std::string& S) const { |
9732 | if (QT & Decl::OBJC_TQ_In) |
9733 | S += 'n'; |
9734 | if (QT & Decl::OBJC_TQ_Inout) |
9735 | S += 'N'; |
9736 | if (QT & Decl::OBJC_TQ_Out) |
9737 | S += 'o'; |
9738 | if (QT & Decl::OBJC_TQ_Bycopy) |
9739 | S += 'O'; |
9740 | if (QT & Decl::OBJC_TQ_Byref) |
9741 | S += 'R'; |
9742 | if (QT & Decl::OBJC_TQ_Oneway) |
9743 | S += 'V'; |
9744 | } |
9745 | |
9746 | TypedefDecl *ASTContext::getObjCIdDecl() const { |
9747 | if (!ObjCIdDecl) { |
9748 | QualType T = getObjCObjectType(BaseType: ObjCBuiltinIdTy, Protocols: {}, NumProtocols: {}); |
9749 | T = getObjCObjectPointerType(ObjectT: T); |
9750 | ObjCIdDecl = buildImplicitTypedef(T, Name: "id" ); |
9751 | } |
9752 | return ObjCIdDecl; |
9753 | } |
9754 | |
9755 | TypedefDecl *ASTContext::getObjCSelDecl() const { |
9756 | if (!ObjCSelDecl) { |
9757 | QualType T = getPointerType(T: ObjCBuiltinSelTy); |
9758 | ObjCSelDecl = buildImplicitTypedef(T, Name: "SEL" ); |
9759 | } |
9760 | return ObjCSelDecl; |
9761 | } |
9762 | |
9763 | TypedefDecl *ASTContext::getObjCClassDecl() const { |
9764 | if (!ObjCClassDecl) { |
9765 | QualType T = getObjCObjectType(BaseType: ObjCBuiltinClassTy, Protocols: {}, NumProtocols: {}); |
9766 | T = getObjCObjectPointerType(ObjectT: T); |
9767 | ObjCClassDecl = buildImplicitTypedef(T, Name: "Class" ); |
9768 | } |
9769 | return ObjCClassDecl; |
9770 | } |
9771 | |
9772 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
9773 | if (!ObjCProtocolClassDecl) { |
9774 | ObjCProtocolClassDecl |
9775 | = ObjCInterfaceDecl::Create(C: *this, DC: getTranslationUnitDecl(), |
9776 | atLoc: SourceLocation(), |
9777 | Id: &Idents.get(Name: "Protocol" ), |
9778 | /*typeParamList=*/nullptr, |
9779 | /*PrevDecl=*/nullptr, |
9780 | ClassLoc: SourceLocation(), isInternal: true); |
9781 | } |
9782 | |
9783 | return ObjCProtocolClassDecl; |
9784 | } |
9785 | |
9786 | //===----------------------------------------------------------------------===// |
9787 | // __builtin_va_list Construction Functions |
9788 | //===----------------------------------------------------------------------===// |
9789 | |
9790 | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, |
9791 | StringRef Name) { |
9792 | // typedef char* __builtin[_ms]_va_list; |
9793 | QualType T = Context->getPointerType(T: Context->CharTy); |
9794 | return Context->buildImplicitTypedef(T, Name); |
9795 | } |
9796 | |
9797 | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { |
9798 | return CreateCharPtrNamedVaListDecl(Context, Name: "__builtin_ms_va_list" ); |
9799 | } |
9800 | |
9801 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { |
9802 | return CreateCharPtrNamedVaListDecl(Context, Name: "__builtin_va_list" ); |
9803 | } |
9804 | |
9805 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { |
9806 | // typedef void* __builtin_va_list; |
9807 | QualType T = Context->getPointerType(T: Context->VoidTy); |
9808 | return Context->buildImplicitTypedef(T, Name: "__builtin_va_list" ); |
9809 | } |
9810 | |
9811 | static TypedefDecl * |
9812 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { |
9813 | // struct __va_list |
9814 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list" ); |
9815 | if (Context->getLangOpts().CPlusPlus) { |
9816 | // namespace std { struct __va_list { |
9817 | auto *NS = NamespaceDecl::Create( |
9818 | C&: const_cast<ASTContext &>(*Context), DC: Context->getTranslationUnitDecl(), |
9819 | /*Inline=*/false, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
9820 | Id: &Context->Idents.get(Name: "std" ), |
9821 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
9822 | NS->setImplicit(); |
9823 | VaListTagDecl->setDeclContext(NS); |
9824 | } |
9825 | |
9826 | VaListTagDecl->startDefinition(); |
9827 | |
9828 | const size_t NumFields = 5; |
9829 | QualType FieldTypes[NumFields]; |
9830 | const char *FieldNames[NumFields]; |
9831 | |
9832 | // void *__stack; |
9833 | FieldTypes[0] = Context->getPointerType(T: Context->VoidTy); |
9834 | FieldNames[0] = "__stack" ; |
9835 | |
9836 | // void *__gr_top; |
9837 | FieldTypes[1] = Context->getPointerType(T: Context->VoidTy); |
9838 | FieldNames[1] = "__gr_top" ; |
9839 | |
9840 | // void *__vr_top; |
9841 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
9842 | FieldNames[2] = "__vr_top" ; |
9843 | |
9844 | // int __gr_offs; |
9845 | FieldTypes[3] = Context->IntTy; |
9846 | FieldNames[3] = "__gr_offs" ; |
9847 | |
9848 | // int __vr_offs; |
9849 | FieldTypes[4] = Context->IntTy; |
9850 | FieldNames[4] = "__vr_offs" ; |
9851 | |
9852 | // Create fields |
9853 | for (unsigned i = 0; i < NumFields; ++i) { |
9854 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
9855 | DC: VaListTagDecl, |
9856 | StartLoc: SourceLocation(), |
9857 | IdLoc: SourceLocation(), |
9858 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9859 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9860 | /*BitWidth=*/BW: nullptr, |
9861 | /*Mutable=*/false, |
9862 | InitStyle: ICIS_NoInit); |
9863 | Field->setAccess(AS_public); |
9864 | VaListTagDecl->addDecl(D: Field); |
9865 | } |
9866 | VaListTagDecl->completeDefinition(); |
9867 | Context->VaListTagDecl = VaListTagDecl; |
9868 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9869 | |
9870 | // } __builtin_va_list; |
9871 | return Context->buildImplicitTypedef(T: VaListTagType, Name: "__builtin_va_list" ); |
9872 | } |
9873 | |
9874 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { |
9875 | // typedef struct __va_list_tag { |
9876 | RecordDecl *VaListTagDecl; |
9877 | |
9878 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
9879 | VaListTagDecl->startDefinition(); |
9880 | |
9881 | const size_t NumFields = 5; |
9882 | QualType FieldTypes[NumFields]; |
9883 | const char *FieldNames[NumFields]; |
9884 | |
9885 | // unsigned char gpr; |
9886 | FieldTypes[0] = Context->UnsignedCharTy; |
9887 | FieldNames[0] = "gpr" ; |
9888 | |
9889 | // unsigned char fpr; |
9890 | FieldTypes[1] = Context->UnsignedCharTy; |
9891 | FieldNames[1] = "fpr" ; |
9892 | |
9893 | // unsigned short reserved; |
9894 | FieldTypes[2] = Context->UnsignedShortTy; |
9895 | FieldNames[2] = "reserved" ; |
9896 | |
9897 | // void* overflow_arg_area; |
9898 | FieldTypes[3] = Context->getPointerType(T: Context->VoidTy); |
9899 | FieldNames[3] = "overflow_arg_area" ; |
9900 | |
9901 | // void* reg_save_area; |
9902 | FieldTypes[4] = Context->getPointerType(T: Context->VoidTy); |
9903 | FieldNames[4] = "reg_save_area" ; |
9904 | |
9905 | // Create fields |
9906 | for (unsigned i = 0; i < NumFields; ++i) { |
9907 | FieldDecl *Field = FieldDecl::Create(C: *Context, DC: VaListTagDecl, |
9908 | StartLoc: SourceLocation(), |
9909 | IdLoc: SourceLocation(), |
9910 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9911 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9912 | /*BitWidth=*/BW: nullptr, |
9913 | /*Mutable=*/false, |
9914 | InitStyle: ICIS_NoInit); |
9915 | Field->setAccess(AS_public); |
9916 | VaListTagDecl->addDecl(D: Field); |
9917 | } |
9918 | VaListTagDecl->completeDefinition(); |
9919 | Context->VaListTagDecl = VaListTagDecl; |
9920 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9921 | |
9922 | // } __va_list_tag; |
9923 | TypedefDecl *VaListTagTypedefDecl = |
9924 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__va_list_tag" ); |
9925 | |
9926 | QualType VaListTagTypedefType = |
9927 | Context->getTypedefType(Decl: VaListTagTypedefDecl); |
9928 | |
9929 | // typedef __va_list_tag __builtin_va_list[1]; |
9930 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
9931 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9932 | EltTy: VaListTagTypedefType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9933 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
9934 | } |
9935 | |
9936 | static TypedefDecl * |
9937 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { |
9938 | // struct __va_list_tag { |
9939 | RecordDecl *VaListTagDecl; |
9940 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
9941 | VaListTagDecl->startDefinition(); |
9942 | |
9943 | const size_t NumFields = 4; |
9944 | QualType FieldTypes[NumFields]; |
9945 | const char *FieldNames[NumFields]; |
9946 | |
9947 | // unsigned gp_offset; |
9948 | FieldTypes[0] = Context->UnsignedIntTy; |
9949 | FieldNames[0] = "gp_offset" ; |
9950 | |
9951 | // unsigned fp_offset; |
9952 | FieldTypes[1] = Context->UnsignedIntTy; |
9953 | FieldNames[1] = "fp_offset" ; |
9954 | |
9955 | // void* overflow_arg_area; |
9956 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
9957 | FieldNames[2] = "overflow_arg_area" ; |
9958 | |
9959 | // void* reg_save_area; |
9960 | FieldTypes[3] = Context->getPointerType(T: Context->VoidTy); |
9961 | FieldNames[3] = "reg_save_area" ; |
9962 | |
9963 | // Create fields |
9964 | for (unsigned i = 0; i < NumFields; ++i) { |
9965 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
9966 | DC: VaListTagDecl, |
9967 | StartLoc: SourceLocation(), |
9968 | IdLoc: SourceLocation(), |
9969 | Id: &Context->Idents.get(Name: FieldNames[i]), |
9970 | T: FieldTypes[i], /*TInfo=*/nullptr, |
9971 | /*BitWidth=*/BW: nullptr, |
9972 | /*Mutable=*/false, |
9973 | InitStyle: ICIS_NoInit); |
9974 | Field->setAccess(AS_public); |
9975 | VaListTagDecl->addDecl(D: Field); |
9976 | } |
9977 | VaListTagDecl->completeDefinition(); |
9978 | Context->VaListTagDecl = VaListTagDecl; |
9979 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
9980 | |
9981 | // }; |
9982 | |
9983 | // typedef struct __va_list_tag __builtin_va_list[1]; |
9984 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
9985 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9986 | EltTy: VaListTagType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9987 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
9988 | } |
9989 | |
9990 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { |
9991 | // typedef int __builtin_va_list[4]; |
9992 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 4); |
9993 | QualType IntArrayType = Context->getConstantArrayType( |
9994 | EltTy: Context->IntTy, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
9995 | return Context->buildImplicitTypedef(T: IntArrayType, Name: "__builtin_va_list" ); |
9996 | } |
9997 | |
9998 | static TypedefDecl * |
9999 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { |
10000 | // struct __va_list |
10001 | RecordDecl *VaListDecl = Context->buildImplicitRecord(Name: "__va_list" ); |
10002 | if (Context->getLangOpts().CPlusPlus) { |
10003 | // namespace std { struct __va_list { |
10004 | NamespaceDecl *NS; |
10005 | NS = NamespaceDecl::Create(C&: const_cast<ASTContext &>(*Context), |
10006 | DC: Context->getTranslationUnitDecl(), |
10007 | /*Inline=*/false, StartLoc: SourceLocation(), |
10008 | IdLoc: SourceLocation(), Id: &Context->Idents.get(Name: "std" ), |
10009 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
10010 | NS->setImplicit(); |
10011 | VaListDecl->setDeclContext(NS); |
10012 | } |
10013 | |
10014 | VaListDecl->startDefinition(); |
10015 | |
10016 | // void * __ap; |
10017 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
10018 | DC: VaListDecl, |
10019 | StartLoc: SourceLocation(), |
10020 | IdLoc: SourceLocation(), |
10021 | Id: &Context->Idents.get(Name: "__ap" ), |
10022 | T: Context->getPointerType(T: Context->VoidTy), |
10023 | /*TInfo=*/nullptr, |
10024 | /*BitWidth=*/BW: nullptr, |
10025 | /*Mutable=*/false, |
10026 | InitStyle: ICIS_NoInit); |
10027 | Field->setAccess(AS_public); |
10028 | VaListDecl->addDecl(D: Field); |
10029 | |
10030 | // }; |
10031 | VaListDecl->completeDefinition(); |
10032 | Context->VaListTagDecl = VaListDecl; |
10033 | |
10034 | // typedef struct __va_list __builtin_va_list; |
10035 | QualType T = Context->getRecordType(Decl: VaListDecl); |
10036 | return Context->buildImplicitTypedef(T, Name: "__builtin_va_list" ); |
10037 | } |
10038 | |
10039 | static TypedefDecl * |
10040 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { |
10041 | // struct __va_list_tag { |
10042 | RecordDecl *VaListTagDecl; |
10043 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
10044 | VaListTagDecl->startDefinition(); |
10045 | |
10046 | const size_t NumFields = 4; |
10047 | QualType FieldTypes[NumFields]; |
10048 | const char *FieldNames[NumFields]; |
10049 | |
10050 | // long __gpr; |
10051 | FieldTypes[0] = Context->LongTy; |
10052 | FieldNames[0] = "__gpr" ; |
10053 | |
10054 | // long __fpr; |
10055 | FieldTypes[1] = Context->LongTy; |
10056 | FieldNames[1] = "__fpr" ; |
10057 | |
10058 | // void *__overflow_arg_area; |
10059 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
10060 | FieldNames[2] = "__overflow_arg_area" ; |
10061 | |
10062 | // void *__reg_save_area; |
10063 | FieldTypes[3] = Context->getPointerType(T: Context->VoidTy); |
10064 | FieldNames[3] = "__reg_save_area" ; |
10065 | |
10066 | // Create fields |
10067 | for (unsigned i = 0; i < NumFields; ++i) { |
10068 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
10069 | DC: VaListTagDecl, |
10070 | StartLoc: SourceLocation(), |
10071 | IdLoc: SourceLocation(), |
10072 | Id: &Context->Idents.get(Name: FieldNames[i]), |
10073 | T: FieldTypes[i], /*TInfo=*/nullptr, |
10074 | /*BitWidth=*/BW: nullptr, |
10075 | /*Mutable=*/false, |
10076 | InitStyle: ICIS_NoInit); |
10077 | Field->setAccess(AS_public); |
10078 | VaListTagDecl->addDecl(D: Field); |
10079 | } |
10080 | VaListTagDecl->completeDefinition(); |
10081 | Context->VaListTagDecl = VaListTagDecl; |
10082 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
10083 | |
10084 | // }; |
10085 | |
10086 | // typedef __va_list_tag __builtin_va_list[1]; |
10087 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
10088 | QualType VaListTagArrayType = Context->getConstantArrayType( |
10089 | EltTy: VaListTagType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
10090 | |
10091 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
10092 | } |
10093 | |
10094 | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { |
10095 | // typedef struct __va_list_tag { |
10096 | RecordDecl *VaListTagDecl; |
10097 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
10098 | VaListTagDecl->startDefinition(); |
10099 | |
10100 | const size_t NumFields = 3; |
10101 | QualType FieldTypes[NumFields]; |
10102 | const char *FieldNames[NumFields]; |
10103 | |
10104 | // void *CurrentSavedRegisterArea; |
10105 | FieldTypes[0] = Context->getPointerType(T: Context->VoidTy); |
10106 | FieldNames[0] = "__current_saved_reg_area_pointer" ; |
10107 | |
10108 | // void *SavedRegAreaEnd; |
10109 | FieldTypes[1] = Context->getPointerType(T: Context->VoidTy); |
10110 | FieldNames[1] = "__saved_reg_area_end_pointer" ; |
10111 | |
10112 | // void *OverflowArea; |
10113 | FieldTypes[2] = Context->getPointerType(T: Context->VoidTy); |
10114 | FieldNames[2] = "__overflow_area_pointer" ; |
10115 | |
10116 | // Create fields |
10117 | for (unsigned i = 0; i < NumFields; ++i) { |
10118 | FieldDecl *Field = FieldDecl::Create( |
10119 | C: const_cast<ASTContext &>(*Context), DC: VaListTagDecl, StartLoc: SourceLocation(), |
10120 | IdLoc: SourceLocation(), Id: &Context->Idents.get(Name: FieldNames[i]), T: FieldTypes[i], |
10121 | /*TInfo=*/nullptr, |
10122 | /*BitWidth=*/BW: nullptr, |
10123 | /*Mutable=*/false, InitStyle: ICIS_NoInit); |
10124 | Field->setAccess(AS_public); |
10125 | VaListTagDecl->addDecl(D: Field); |
10126 | } |
10127 | VaListTagDecl->completeDefinition(); |
10128 | Context->VaListTagDecl = VaListTagDecl; |
10129 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
10130 | |
10131 | // } __va_list_tag; |
10132 | TypedefDecl *VaListTagTypedefDecl = |
10133 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__va_list_tag" ); |
10134 | |
10135 | QualType VaListTagTypedefType = Context->getTypedefType(Decl: VaListTagTypedefDecl); |
10136 | |
10137 | // typedef __va_list_tag __builtin_va_list[1]; |
10138 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
10139 | QualType VaListTagArrayType = Context->getConstantArrayType( |
10140 | EltTy: VaListTagTypedefType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
10141 | |
10142 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
10143 | } |
10144 | |
10145 | static TypedefDecl * |
10146 | CreateXtensaABIBuiltinVaListDecl(const ASTContext *Context) { |
10147 | // typedef struct __va_list_tag { |
10148 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
10149 | |
10150 | VaListTagDecl->startDefinition(); |
10151 | |
10152 | // int* __va_stk; |
10153 | // int* __va_reg; |
10154 | // int __va_ndx; |
10155 | constexpr size_t NumFields = 3; |
10156 | QualType FieldTypes[NumFields] = {Context->getPointerType(T: Context->IntTy), |
10157 | Context->getPointerType(T: Context->IntTy), |
10158 | Context->IntTy}; |
10159 | const char *FieldNames[NumFields] = {"__va_stk" , "__va_reg" , "__va_ndx" }; |
10160 | |
10161 | // Create fields |
10162 | for (unsigned i = 0; i < NumFields; ++i) { |
10163 | FieldDecl *Field = FieldDecl::Create( |
10164 | C: *Context, DC: VaListTagDecl, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
10165 | Id: &Context->Idents.get(Name: FieldNames[i]), T: FieldTypes[i], /*TInfo=*/nullptr, |
10166 | /*BitWidth=*/BW: nullptr, |
10167 | /*Mutable=*/false, InitStyle: ICIS_NoInit); |
10168 | Field->setAccess(AS_public); |
10169 | VaListTagDecl->addDecl(D: Field); |
10170 | } |
10171 | VaListTagDecl->completeDefinition(); |
10172 | Context->VaListTagDecl = VaListTagDecl; |
10173 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
10174 | |
10175 | // } __va_list_tag; |
10176 | TypedefDecl *VaListTagTypedefDecl = |
10177 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__builtin_va_list" ); |
10178 | |
10179 | return VaListTagTypedefDecl; |
10180 | } |
10181 | |
10182 | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, |
10183 | TargetInfo::BuiltinVaListKind Kind) { |
10184 | switch (Kind) { |
10185 | case TargetInfo::CharPtrBuiltinVaList: |
10186 | return CreateCharPtrBuiltinVaListDecl(Context); |
10187 | case TargetInfo::VoidPtrBuiltinVaList: |
10188 | return CreateVoidPtrBuiltinVaListDecl(Context); |
10189 | case TargetInfo::AArch64ABIBuiltinVaList: |
10190 | return CreateAArch64ABIBuiltinVaListDecl(Context); |
10191 | case TargetInfo::PowerABIBuiltinVaList: |
10192 | return CreatePowerABIBuiltinVaListDecl(Context); |
10193 | case TargetInfo::X86_64ABIBuiltinVaList: |
10194 | return CreateX86_64ABIBuiltinVaListDecl(Context); |
10195 | case TargetInfo::PNaClABIBuiltinVaList: |
10196 | return CreatePNaClABIBuiltinVaListDecl(Context); |
10197 | case TargetInfo::AAPCSABIBuiltinVaList: |
10198 | return CreateAAPCSABIBuiltinVaListDecl(Context); |
10199 | case TargetInfo::SystemZBuiltinVaList: |
10200 | return CreateSystemZBuiltinVaListDecl(Context); |
10201 | case TargetInfo::HexagonBuiltinVaList: |
10202 | return CreateHexagonBuiltinVaListDecl(Context); |
10203 | case TargetInfo::XtensaABIBuiltinVaList: |
10204 | return CreateXtensaABIBuiltinVaListDecl(Context); |
10205 | } |
10206 | |
10207 | llvm_unreachable("Unhandled __builtin_va_list type kind" ); |
10208 | } |
10209 | |
10210 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { |
10211 | if (!BuiltinVaListDecl) { |
10212 | BuiltinVaListDecl = CreateVaListDecl(Context: this, Kind: Target->getBuiltinVaListKind()); |
10213 | assert(BuiltinVaListDecl->isImplicit()); |
10214 | } |
10215 | |
10216 | return BuiltinVaListDecl; |
10217 | } |
10218 | |
10219 | Decl *ASTContext::getVaListTagDecl() const { |
10220 | // Force the creation of VaListTagDecl by building the __builtin_va_list |
10221 | // declaration. |
10222 | if (!VaListTagDecl) |
10223 | (void)getBuiltinVaListDecl(); |
10224 | |
10225 | return VaListTagDecl; |
10226 | } |
10227 | |
10228 | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { |
10229 | if (!BuiltinMSVaListDecl) |
10230 | BuiltinMSVaListDecl = CreateMSVaListDecl(Context: this); |
10231 | |
10232 | return BuiltinMSVaListDecl; |
10233 | } |
10234 | |
10235 | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { |
10236 | // Allow redecl custom type checking builtin for HLSL. |
10237 | if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin && |
10238 | BuiltinInfo.hasCustomTypechecking(ID: FD->getBuiltinID())) |
10239 | return true; |
10240 | // Allow redecl custom type checking builtin for SPIR-V. |
10241 | if (getTargetInfo().getTriple().isSPIROrSPIRV() && |
10242 | BuiltinInfo.isTSBuiltin(ID: FD->getBuiltinID()) && |
10243 | BuiltinInfo.hasCustomTypechecking(ID: FD->getBuiltinID())) |
10244 | return true; |
10245 | return BuiltinInfo.canBeRedeclared(ID: FD->getBuiltinID()); |
10246 | } |
10247 | |
10248 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
10249 | assert(ObjCConstantStringType.isNull() && |
10250 | "'NSConstantString' type already set!" ); |
10251 | |
10252 | ObjCConstantStringType = getObjCInterfaceType(Decl); |
10253 | } |
10254 | |
10255 | /// Retrieve the template name that corresponds to a non-empty |
10256 | /// lookup. |
10257 | TemplateName |
10258 | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
10259 | UnresolvedSetIterator End) const { |
10260 | unsigned size = End - Begin; |
10261 | assert(size > 1 && "set is not overloaded!" ); |
10262 | |
10263 | void *memory = Allocate(Size: sizeof(OverloadedTemplateStorage) + |
10264 | size * sizeof(FunctionTemplateDecl*)); |
10265 | auto *OT = new (memory) OverloadedTemplateStorage(size); |
10266 | |
10267 | NamedDecl **Storage = OT->getStorage(); |
10268 | for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
10269 | NamedDecl *D = *I; |
10270 | assert(isa<FunctionTemplateDecl>(D) || |
10271 | isa<UnresolvedUsingValueDecl>(D) || |
10272 | (isa<UsingShadowDecl>(D) && |
10273 | isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); |
10274 | *Storage++ = D; |
10275 | } |
10276 | |
10277 | return TemplateName(OT); |
10278 | } |
10279 | |
10280 | /// Retrieve a template name representing an unqualified-id that has been |
10281 | /// assumed to name a template for ADL purposes. |
10282 | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { |
10283 | auto *OT = new (*this) AssumedTemplateStorage(Name); |
10284 | return TemplateName(OT); |
10285 | } |
10286 | |
10287 | /// Retrieve the template name that represents a qualified |
10288 | /// template name such as \c std::vector. |
10289 | TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
10290 | bool TemplateKeyword, |
10291 | TemplateName Template) const { |
10292 | assert(Template.getKind() == TemplateName::Template || |
10293 | Template.getKind() == TemplateName::UsingTemplate); |
10294 | |
10295 | // FIXME: Canonicalization? |
10296 | llvm::FoldingSetNodeID ID; |
10297 | QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, TN: Template); |
10298 | |
10299 | void *InsertPos = nullptr; |
10300 | QualifiedTemplateName *QTN = |
10301 | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
10302 | if (!QTN) { |
10303 | QTN = new (*this, alignof(QualifiedTemplateName)) |
10304 | QualifiedTemplateName(NNS, TemplateKeyword, Template); |
10305 | QualifiedTemplateNames.InsertNode(N: QTN, InsertPos); |
10306 | } |
10307 | |
10308 | return TemplateName(QTN); |
10309 | } |
10310 | |
10311 | /// Retrieve the template name that represents a dependent |
10312 | /// template name such as \c MetaFun::template operator+. |
10313 | TemplateName |
10314 | ASTContext::getDependentTemplateName(const DependentTemplateStorage &S) const { |
10315 | llvm::FoldingSetNodeID ID; |
10316 | S.Profile(ID); |
10317 | |
10318 | void *InsertPos = nullptr; |
10319 | if (DependentTemplateName *QTN = |
10320 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos)) |
10321 | return TemplateName(QTN); |
10322 | |
10323 | DependentTemplateName *QTN = |
10324 | new (*this, alignof(DependentTemplateName)) DependentTemplateName(S); |
10325 | DependentTemplateNames.InsertNode(N: QTN, InsertPos); |
10326 | return TemplateName(QTN); |
10327 | } |
10328 | |
10329 | TemplateName ASTContext::getSubstTemplateTemplateParm(TemplateName Replacement, |
10330 | Decl *AssociatedDecl, |
10331 | unsigned Index, |
10332 | UnsignedOrNone PackIndex, |
10333 | bool Final) const { |
10334 | llvm::FoldingSetNodeID ID; |
10335 | SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl, |
10336 | Index, PackIndex, Final); |
10337 | |
10338 | void *insertPos = nullptr; |
10339 | SubstTemplateTemplateParmStorage *subst |
10340 | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
10341 | |
10342 | if (!subst) { |
10343 | subst = new (*this) SubstTemplateTemplateParmStorage( |
10344 | Replacement, AssociatedDecl, Index, PackIndex, Final); |
10345 | SubstTemplateTemplateParms.InsertNode(N: subst, InsertPos: insertPos); |
10346 | } |
10347 | |
10348 | return TemplateName(subst); |
10349 | } |
10350 | |
10351 | TemplateName |
10352 | ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack, |
10353 | Decl *AssociatedDecl, |
10354 | unsigned Index, bool Final) const { |
10355 | auto &Self = const_cast<ASTContext &>(*this); |
10356 | llvm::FoldingSetNodeID ID; |
10357 | SubstTemplateTemplateParmPackStorage::Profile(ID, Context&: Self, ArgPack, |
10358 | AssociatedDecl, Index, Final); |
10359 | |
10360 | void *InsertPos = nullptr; |
10361 | SubstTemplateTemplateParmPackStorage *Subst |
10362 | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
10363 | |
10364 | if (!Subst) { |
10365 | Subst = new (*this) SubstTemplateTemplateParmPackStorage( |
10366 | ArgPack.pack_elements(), AssociatedDecl, Index, Final); |
10367 | SubstTemplateTemplateParmPacks.InsertNode(N: Subst, InsertPos); |
10368 | } |
10369 | |
10370 | return TemplateName(Subst); |
10371 | } |
10372 | |
10373 | /// Retrieve the template name that represents a template name |
10374 | /// deduced from a specialization. |
10375 | TemplateName |
10376 | ASTContext::getDeducedTemplateName(TemplateName Underlying, |
10377 | DefaultArguments DefaultArgs) const { |
10378 | if (!DefaultArgs) |
10379 | return Underlying; |
10380 | |
10381 | llvm::FoldingSetNodeID ID; |
10382 | DeducedTemplateStorage::Profile(ID, Context: *this, Underlying, DefArgs: DefaultArgs); |
10383 | |
10384 | void *InsertPos = nullptr; |
10385 | DeducedTemplateStorage *DTS = |
10386 | DeducedTemplates.FindNodeOrInsertPos(ID, InsertPos); |
10387 | if (!DTS) { |
10388 | void *Mem = Allocate(Size: sizeof(DeducedTemplateStorage) + |
10389 | sizeof(TemplateArgument) * DefaultArgs.Args.size(), |
10390 | Align: alignof(DeducedTemplateStorage)); |
10391 | DTS = new (Mem) DeducedTemplateStorage(Underlying, DefaultArgs); |
10392 | DeducedTemplates.InsertNode(N: DTS, InsertPos); |
10393 | } |
10394 | return TemplateName(DTS); |
10395 | } |
10396 | |
10397 | /// getFromTargetType - Given one of the integer types provided by |
10398 | /// TargetInfo, produce the corresponding type. The unsigned @p Type |
10399 | /// is actually a value of type @c TargetInfo::IntType. |
10400 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
10401 | switch (Type) { |
10402 | case TargetInfo::NoInt: return {}; |
10403 | case TargetInfo::SignedChar: return SignedCharTy; |
10404 | case TargetInfo::UnsignedChar: return UnsignedCharTy; |
10405 | case TargetInfo::SignedShort: return ShortTy; |
10406 | case TargetInfo::UnsignedShort: return UnsignedShortTy; |
10407 | case TargetInfo::SignedInt: return IntTy; |
10408 | case TargetInfo::UnsignedInt: return UnsignedIntTy; |
10409 | case TargetInfo::SignedLong: return LongTy; |
10410 | case TargetInfo::UnsignedLong: return UnsignedLongTy; |
10411 | case TargetInfo::SignedLongLong: return LongLongTy; |
10412 | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
10413 | } |
10414 | |
10415 | llvm_unreachable("Unhandled TargetInfo::IntType value" ); |
10416 | } |
10417 | |
10418 | //===----------------------------------------------------------------------===// |
10419 | // Type Predicates. |
10420 | //===----------------------------------------------------------------------===// |
10421 | |
10422 | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
10423 | /// garbage collection attribute. |
10424 | /// |
10425 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
10426 | if (getLangOpts().getGC() == LangOptions::NonGC) |
10427 | return Qualifiers::GCNone; |
10428 | |
10429 | assert(getLangOpts().ObjC); |
10430 | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
10431 | |
10432 | // Default behaviour under objective-C's gc is for ObjC pointers |
10433 | // (or pointers to them) be treated as though they were declared |
10434 | // as __strong. |
10435 | if (GCAttrs == Qualifiers::GCNone) { |
10436 | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
10437 | return Qualifiers::Strong; |
10438 | else if (Ty->isPointerType()) |
10439 | return getObjCGCAttrKind(Ty: Ty->castAs<PointerType>()->getPointeeType()); |
10440 | } else { |
10441 | // It's not valid to set GC attributes on anything that isn't a |
10442 | // pointer. |
10443 | #ifndef NDEBUG |
10444 | QualType CT = Ty->getCanonicalTypeInternal(); |
10445 | while (const auto *AT = dyn_cast<ArrayType>(CT)) |
10446 | CT = AT->getElementType(); |
10447 | assert(CT->isAnyPointerType() || CT->isBlockPointerType()); |
10448 | #endif |
10449 | } |
10450 | return GCAttrs; |
10451 | } |
10452 | |
10453 | //===----------------------------------------------------------------------===// |
10454 | // Type Compatibility Testing |
10455 | //===----------------------------------------------------------------------===// |
10456 | |
10457 | /// areCompatVectorTypes - Return true if the two specified vector types are |
10458 | /// compatible. |
10459 | static bool areCompatVectorTypes(const VectorType *LHS, |
10460 | const VectorType *RHS) { |
10461 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
10462 | return LHS->getElementType() == RHS->getElementType() && |
10463 | LHS->getNumElements() == RHS->getNumElements(); |
10464 | } |
10465 | |
10466 | /// areCompatMatrixTypes - Return true if the two specified matrix types are |
10467 | /// compatible. |
10468 | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, |
10469 | const ConstantMatrixType *RHS) { |
10470 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
10471 | return LHS->getElementType() == RHS->getElementType() && |
10472 | LHS->getNumRows() == RHS->getNumRows() && |
10473 | LHS->getNumColumns() == RHS->getNumColumns(); |
10474 | } |
10475 | |
10476 | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
10477 | QualType SecondVec) { |
10478 | assert(FirstVec->isVectorType() && "FirstVec should be a vector type" ); |
10479 | assert(SecondVec->isVectorType() && "SecondVec should be a vector type" ); |
10480 | |
10481 | if (hasSameUnqualifiedType(T1: FirstVec, T2: SecondVec)) |
10482 | return true; |
10483 | |
10484 | // Treat Neon vector types and most AltiVec vector types as if they are the |
10485 | // equivalent GCC vector types. |
10486 | const auto *First = FirstVec->castAs<VectorType>(); |
10487 | const auto *Second = SecondVec->castAs<VectorType>(); |
10488 | if (First->getNumElements() == Second->getNumElements() && |
10489 | hasSameType(T1: First->getElementType(), T2: Second->getElementType()) && |
10490 | First->getVectorKind() != VectorKind::AltiVecPixel && |
10491 | First->getVectorKind() != VectorKind::AltiVecBool && |
10492 | Second->getVectorKind() != VectorKind::AltiVecPixel && |
10493 | Second->getVectorKind() != VectorKind::AltiVecBool && |
10494 | First->getVectorKind() != VectorKind::SveFixedLengthData && |
10495 | First->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
10496 | Second->getVectorKind() != VectorKind::SveFixedLengthData && |
10497 | Second->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
10498 | First->getVectorKind() != VectorKind::RVVFixedLengthData && |
10499 | Second->getVectorKind() != VectorKind::RVVFixedLengthData && |
10500 | First->getVectorKind() != VectorKind::RVVFixedLengthMask && |
10501 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask && |
10502 | First->getVectorKind() != VectorKind::RVVFixedLengthMask_1 && |
10503 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_1 && |
10504 | First->getVectorKind() != VectorKind::RVVFixedLengthMask_2 && |
10505 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_2 && |
10506 | First->getVectorKind() != VectorKind::RVVFixedLengthMask_4 && |
10507 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_4) |
10508 | return true; |
10509 | |
10510 | return false; |
10511 | } |
10512 | |
10513 | /// getRVVTypeSize - Return RVV vector register size. |
10514 | static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) { |
10515 | assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type" ); |
10516 | auto VScale = Context.getTargetInfo().getVScaleRange( |
10517 | LangOpts: Context.getLangOpts(), Mode: TargetInfo::ArmStreamingKind::NotStreaming); |
10518 | if (!VScale) |
10519 | return 0; |
10520 | |
10521 | ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty); |
10522 | |
10523 | uint64_t EltSize = Context.getTypeSize(T: Info.ElementType); |
10524 | if (Info.ElementType == Context.BoolTy) |
10525 | EltSize = 1; |
10526 | |
10527 | uint64_t MinElts = Info.EC.getKnownMinValue(); |
10528 | return VScale->first * MinElts * EltSize; |
10529 | } |
10530 | |
10531 | bool ASTContext::areCompatibleRVVTypes(QualType FirstType, |
10532 | QualType SecondType) { |
10533 | assert( |
10534 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
10535 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
10536 | "Expected RVV builtin type and vector type!" ); |
10537 | |
10538 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
10539 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
10540 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
10541 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask) { |
10542 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
10543 | return FirstType->isRVVVLSBuiltinType() && |
10544 | Info.ElementType == BoolTy && |
10545 | getTypeSize(T: SecondType) == ((getRVVTypeSize(Context&: *this, Ty: BT))); |
10546 | } |
10547 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_1) { |
10548 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
10549 | return FirstType->isRVVVLSBuiltinType() && |
10550 | Info.ElementType == BoolTy && |
10551 | getTypeSize(T: SecondType) == ((getRVVTypeSize(Context&: *this, Ty: BT) * 8)); |
10552 | } |
10553 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_2) { |
10554 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
10555 | return FirstType->isRVVVLSBuiltinType() && |
10556 | Info.ElementType == BoolTy && |
10557 | getTypeSize(T: SecondType) == ((getRVVTypeSize(Context&: *this, Ty: BT)) * 4); |
10558 | } |
10559 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_4) { |
10560 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
10561 | return FirstType->isRVVVLSBuiltinType() && |
10562 | Info.ElementType == BoolTy && |
10563 | getTypeSize(T: SecondType) == ((getRVVTypeSize(Context&: *this, Ty: BT)) * 2); |
10564 | } |
10565 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
10566 | VT->getVectorKind() == VectorKind::Generic) |
10567 | return FirstType->isRVVVLSBuiltinType() && |
10568 | getTypeSize(T: SecondType) == getRVVTypeSize(Context&: *this, Ty: BT) && |
10569 | hasSameType(T1: VT->getElementType(), |
10570 | T2: getBuiltinVectorTypeInfo(Ty: BT).ElementType); |
10571 | } |
10572 | } |
10573 | return false; |
10574 | }; |
10575 | |
10576 | return IsValidCast(FirstType, SecondType) || |
10577 | IsValidCast(SecondType, FirstType); |
10578 | } |
10579 | |
10580 | bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType, |
10581 | QualType SecondType) { |
10582 | assert( |
10583 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
10584 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
10585 | "Expected RVV builtin type and vector type!" ); |
10586 | |
10587 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
10588 | const auto *BT = FirstType->getAs<BuiltinType>(); |
10589 | if (!BT) |
10590 | return false; |
10591 | |
10592 | if (!BT->isRVVVLSBuiltinType()) |
10593 | return false; |
10594 | |
10595 | const auto *VecTy = SecondType->getAs<VectorType>(); |
10596 | if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) { |
10597 | const LangOptions::LaxVectorConversionKind LVCKind = |
10598 | getLangOpts().getLaxVectorConversions(); |
10599 | |
10600 | // If __riscv_v_fixed_vlen != N do not allow vector lax conversion. |
10601 | if (getTypeSize(T: SecondType) != getRVVTypeSize(Context&: *this, Ty: BT)) |
10602 | return false; |
10603 | |
10604 | // If -flax-vector-conversions=all is specified, the types are |
10605 | // certainly compatible. |
10606 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
10607 | return true; |
10608 | |
10609 | // If -flax-vector-conversions=integer is specified, the types are |
10610 | // compatible if the elements are integer types. |
10611 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
10612 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
10613 | FirstType->getRVVEltType(Ctx: *this)->isIntegerType(); |
10614 | } |
10615 | |
10616 | return false; |
10617 | }; |
10618 | |
10619 | return IsLaxCompatible(FirstType, SecondType) || |
10620 | IsLaxCompatible(SecondType, FirstType); |
10621 | } |
10622 | |
10623 | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { |
10624 | while (true) { |
10625 | // __strong id |
10626 | if (const AttributedType *Attr = dyn_cast<AttributedType>(Val&: Ty)) { |
10627 | if (Attr->getAttrKind() == attr::ObjCOwnership) |
10628 | return true; |
10629 | |
10630 | Ty = Attr->getModifiedType(); |
10631 | |
10632 | // X *__strong (...) |
10633 | } else if (const ParenType *Paren = dyn_cast<ParenType>(Val&: Ty)) { |
10634 | Ty = Paren->getInnerType(); |
10635 | |
10636 | // We do not want to look through typedefs, typeof(expr), |
10637 | // typeof(type), or any other way that the type is somehow |
10638 | // abstracted. |
10639 | } else { |
10640 | return false; |
10641 | } |
10642 | } |
10643 | } |
10644 | |
10645 | //===----------------------------------------------------------------------===// |
10646 | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
10647 | //===----------------------------------------------------------------------===// |
10648 | |
10649 | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
10650 | /// inheritance hierarchy of 'rProto'. |
10651 | bool |
10652 | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
10653 | ObjCProtocolDecl *rProto) const { |
10654 | if (declaresSameEntity(D1: lProto, D2: rProto)) |
10655 | return true; |
10656 | for (auto *PI : rProto->protocols()) |
10657 | if (ProtocolCompatibleWithProtocol(lProto, rProto: PI)) |
10658 | return true; |
10659 | return false; |
10660 | } |
10661 | |
10662 | /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and |
10663 | /// Class<pr1, ...>. |
10664 | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( |
10665 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { |
10666 | for (auto *lhsProto : lhs->quals()) { |
10667 | bool match = false; |
10668 | for (auto *rhsProto : rhs->quals()) { |
10669 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto)) { |
10670 | match = true; |
10671 | break; |
10672 | } |
10673 | } |
10674 | if (!match) |
10675 | return false; |
10676 | } |
10677 | return true; |
10678 | } |
10679 | |
10680 | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
10681 | /// ObjCQualifiedIDType. |
10682 | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( |
10683 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, |
10684 | bool compare) { |
10685 | // Allow id<P..> and an 'id' in all cases. |
10686 | if (lhs->isObjCIdType() || rhs->isObjCIdType()) |
10687 | return true; |
10688 | |
10689 | // Don't allow id<P..> to convert to Class or Class<P..> in either direction. |
10690 | if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || |
10691 | rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) |
10692 | return false; |
10693 | |
10694 | if (lhs->isObjCQualifiedIdType()) { |
10695 | if (rhs->qual_empty()) { |
10696 | // If the RHS is a unqualified interface pointer "NSString*", |
10697 | // make sure we check the class hierarchy. |
10698 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
10699 | for (auto *I : lhs->quals()) { |
10700 | // when comparing an id<P> on lhs with a static type on rhs, |
10701 | // see if static class implements all of id's protocols, directly or |
10702 | // through its super class and categories. |
10703 | if (!rhsID->ClassImplementsProtocol(lProto: I, lookupCategory: true)) |
10704 | return false; |
10705 | } |
10706 | } |
10707 | // If there are no qualifiers and no interface, we have an 'id'. |
10708 | return true; |
10709 | } |
10710 | // Both the right and left sides have qualifiers. |
10711 | for (auto *lhsProto : lhs->quals()) { |
10712 | bool match = false; |
10713 | |
10714 | // when comparing an id<P> on lhs with a static type on rhs, |
10715 | // see if static class implements all of id's protocols, directly or |
10716 | // through its super class and categories. |
10717 | for (auto *rhsProto : rhs->quals()) { |
10718 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto) || |
10719 | (compare && ProtocolCompatibleWithProtocol(lProto: rhsProto, rProto: lhsProto))) { |
10720 | match = true; |
10721 | break; |
10722 | } |
10723 | } |
10724 | // If the RHS is a qualified interface pointer "NSString<P>*", |
10725 | // make sure we check the class hierarchy. |
10726 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
10727 | for (auto *I : lhs->quals()) { |
10728 | // when comparing an id<P> on lhs with a static type on rhs, |
10729 | // see if static class implements all of id's protocols, directly or |
10730 | // through its super class and categories. |
10731 | if (rhsID->ClassImplementsProtocol(lProto: I, lookupCategory: true)) { |
10732 | match = true; |
10733 | break; |
10734 | } |
10735 | } |
10736 | } |
10737 | if (!match) |
10738 | return false; |
10739 | } |
10740 | |
10741 | return true; |
10742 | } |
10743 | |
10744 | assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>" ); |
10745 | |
10746 | if (lhs->getInterfaceType()) { |
10747 | // If both the right and left sides have qualifiers. |
10748 | for (auto *lhsProto : lhs->quals()) { |
10749 | bool match = false; |
10750 | |
10751 | // when comparing an id<P> on rhs with a static type on lhs, |
10752 | // see if static class implements all of id's protocols, directly or |
10753 | // through its super class and categories. |
10754 | // First, lhs protocols in the qualifier list must be found, direct |
10755 | // or indirect in rhs's qualifier list or it is a mismatch. |
10756 | for (auto *rhsProto : rhs->quals()) { |
10757 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto) || |
10758 | (compare && ProtocolCompatibleWithProtocol(lProto: rhsProto, rProto: lhsProto))) { |
10759 | match = true; |
10760 | break; |
10761 | } |
10762 | } |
10763 | if (!match) |
10764 | return false; |
10765 | } |
10766 | |
10767 | // Static class's protocols, or its super class or category protocols |
10768 | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
10769 | if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { |
10770 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
10771 | CollectInheritedProtocols(CDecl: lhsID, Protocols&: LHSInheritedProtocols); |
10772 | // This is rather dubious but matches gcc's behavior. If lhs has |
10773 | // no type qualifier and its class has no static protocol(s) |
10774 | // assume that it is mismatch. |
10775 | if (LHSInheritedProtocols.empty() && lhs->qual_empty()) |
10776 | return false; |
10777 | for (auto *lhsProto : LHSInheritedProtocols) { |
10778 | bool match = false; |
10779 | for (auto *rhsProto : rhs->quals()) { |
10780 | if (ProtocolCompatibleWithProtocol(lProto: lhsProto, rProto: rhsProto) || |
10781 | (compare && ProtocolCompatibleWithProtocol(lProto: rhsProto, rProto: lhsProto))) { |
10782 | match = true; |
10783 | break; |
10784 | } |
10785 | } |
10786 | if (!match) |
10787 | return false; |
10788 | } |
10789 | } |
10790 | return true; |
10791 | } |
10792 | return false; |
10793 | } |
10794 | |
10795 | /// canAssignObjCInterfaces - Return true if the two interface types are |
10796 | /// compatible for assignment from RHS to LHS. This handles validation of any |
10797 | /// protocol qualifiers on the LHS or RHS. |
10798 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
10799 | const ObjCObjectPointerType *RHSOPT) { |
10800 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
10801 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
10802 | |
10803 | // If either type represents the built-in 'id' type, return true. |
10804 | if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) |
10805 | return true; |
10806 | |
10807 | // Function object that propagates a successful result or handles |
10808 | // __kindof types. |
10809 | auto finish = [&](bool succeeded) -> bool { |
10810 | if (succeeded) |
10811 | return true; |
10812 | |
10813 | if (!RHS->isKindOfType()) |
10814 | return false; |
10815 | |
10816 | // Strip off __kindof and protocol qualifiers, then check whether |
10817 | // we can assign the other way. |
10818 | return canAssignObjCInterfaces(LHSOPT: RHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
10819 | RHSOPT: LHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this)); |
10820 | }; |
10821 | |
10822 | // Casts from or to id<P> are allowed when the other side has compatible |
10823 | // protocols. |
10824 | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { |
10825 | return finish(ObjCQualifiedIdTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT, compare: false)); |
10826 | } |
10827 | |
10828 | // Verify protocol compatibility for casts from Class<P1> to Class<P2>. |
10829 | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { |
10830 | return finish(ObjCQualifiedClassTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT)); |
10831 | } |
10832 | |
10833 | // Casts from Class to Class<Foo>, or vice-versa, are allowed. |
10834 | if (LHS->isObjCClass() && RHS->isObjCClass()) { |
10835 | return true; |
10836 | } |
10837 | |
10838 | // If we have 2 user-defined types, fall into that path. |
10839 | if (LHS->getInterface() && RHS->getInterface()) { |
10840 | return finish(canAssignObjCInterfaces(LHS, RHS)); |
10841 | } |
10842 | |
10843 | return false; |
10844 | } |
10845 | |
10846 | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
10847 | /// for providing type-safety for objective-c pointers used to pass/return |
10848 | /// arguments in block literals. When passed as arguments, passing 'A*' where |
10849 | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
10850 | /// not OK. For the return type, the opposite is not OK. |
10851 | bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
10852 | const ObjCObjectPointerType *LHSOPT, |
10853 | const ObjCObjectPointerType *RHSOPT, |
10854 | bool BlockReturnType) { |
10855 | |
10856 | // Function object that propagates a successful result or handles |
10857 | // __kindof types. |
10858 | auto finish = [&](bool succeeded) -> bool { |
10859 | if (succeeded) |
10860 | return true; |
10861 | |
10862 | const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; |
10863 | if (!Expected->isKindOfType()) |
10864 | return false; |
10865 | |
10866 | // Strip off __kindof and protocol qualifiers, then check whether |
10867 | // we can assign the other way. |
10868 | return canAssignObjCInterfacesInBlockPointer( |
10869 | LHSOPT: RHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
10870 | RHSOPT: LHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
10871 | BlockReturnType); |
10872 | }; |
10873 | |
10874 | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
10875 | return true; |
10876 | |
10877 | if (LHSOPT->isObjCBuiltinType()) { |
10878 | return finish(RHSOPT->isObjCBuiltinType() || |
10879 | RHSOPT->isObjCQualifiedIdType()); |
10880 | } |
10881 | |
10882 | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { |
10883 | if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) |
10884 | // Use for block parameters previous type checking for compatibility. |
10885 | return finish(ObjCQualifiedIdTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT, compare: false) || |
10886 | // Or corrected type checking as in non-compat mode. |
10887 | (!BlockReturnType && |
10888 | ObjCQualifiedIdTypesAreCompatible(lhs: RHSOPT, rhs: LHSOPT, compare: false))); |
10889 | else |
10890 | return finish(ObjCQualifiedIdTypesAreCompatible( |
10891 | lhs: (BlockReturnType ? LHSOPT : RHSOPT), |
10892 | rhs: (BlockReturnType ? RHSOPT : LHSOPT), compare: false)); |
10893 | } |
10894 | |
10895 | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
10896 | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
10897 | if (LHS && RHS) { // We have 2 user-defined types. |
10898 | if (LHS != RHS) { |
10899 | if (LHS->getDecl()->isSuperClassOf(I: RHS->getDecl())) |
10900 | return finish(BlockReturnType); |
10901 | if (RHS->getDecl()->isSuperClassOf(I: LHS->getDecl())) |
10902 | return finish(!BlockReturnType); |
10903 | } |
10904 | else |
10905 | return true; |
10906 | } |
10907 | return false; |
10908 | } |
10909 | |
10910 | /// Comparison routine for Objective-C protocols to be used with |
10911 | /// llvm::array_pod_sort. |
10912 | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, |
10913 | ObjCProtocolDecl * const *rhs) { |
10914 | return (*lhs)->getName().compare(RHS: (*rhs)->getName()); |
10915 | } |
10916 | |
10917 | /// getIntersectionOfProtocols - This routine finds the intersection of set |
10918 | /// of protocols inherited from two distinct objective-c pointer objects with |
10919 | /// the given common base. |
10920 | /// It is used to build composite qualifier list of the composite type of |
10921 | /// the conditional expression involving two objective-c pointer objects. |
10922 | static |
10923 | void getIntersectionOfProtocols(ASTContext &Context, |
10924 | const ObjCInterfaceDecl *CommonBase, |
10925 | const ObjCObjectPointerType *LHSOPT, |
10926 | const ObjCObjectPointerType *RHSOPT, |
10927 | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { |
10928 | |
10929 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
10930 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
10931 | assert(LHS->getInterface() && "LHS must have an interface base" ); |
10932 | assert(RHS->getInterface() && "RHS must have an interface base" ); |
10933 | |
10934 | // Add all of the protocols for the LHS. |
10935 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; |
10936 | |
10937 | // Start with the protocol qualifiers. |
10938 | for (auto *proto : LHS->quals()) { |
10939 | Context.CollectInheritedProtocols(CDecl: proto, Protocols&: LHSProtocolSet); |
10940 | } |
10941 | |
10942 | // Also add the protocols associated with the LHS interface. |
10943 | Context.CollectInheritedProtocols(CDecl: LHS->getInterface(), Protocols&: LHSProtocolSet); |
10944 | |
10945 | // Add all of the protocols for the RHS. |
10946 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; |
10947 | |
10948 | // Start with the protocol qualifiers. |
10949 | for (auto *proto : RHS->quals()) { |
10950 | Context.CollectInheritedProtocols(CDecl: proto, Protocols&: RHSProtocolSet); |
10951 | } |
10952 | |
10953 | // Also add the protocols associated with the RHS interface. |
10954 | Context.CollectInheritedProtocols(CDecl: RHS->getInterface(), Protocols&: RHSProtocolSet); |
10955 | |
10956 | // Compute the intersection of the collected protocol sets. |
10957 | for (auto *proto : LHSProtocolSet) { |
10958 | if (RHSProtocolSet.count(Ptr: proto)) |
10959 | IntersectionSet.push_back(Elt: proto); |
10960 | } |
10961 | |
10962 | // Compute the set of protocols that is implied by either the common type or |
10963 | // the protocols within the intersection. |
10964 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; |
10965 | Context.CollectInheritedProtocols(CDecl: CommonBase, Protocols&: ImpliedProtocols); |
10966 | |
10967 | // Remove any implied protocols from the list of inherited protocols. |
10968 | if (!ImpliedProtocols.empty()) { |
10969 | llvm::erase_if(C&: IntersectionSet, P: [&](ObjCProtocolDecl *proto) -> bool { |
10970 | return ImpliedProtocols.contains(Ptr: proto); |
10971 | }); |
10972 | } |
10973 | |
10974 | // Sort the remaining protocols by name. |
10975 | llvm::array_pod_sort(Start: IntersectionSet.begin(), End: IntersectionSet.end(), |
10976 | Compare: compareObjCProtocolsByName); |
10977 | } |
10978 | |
10979 | /// Determine whether the first type is a subtype of the second. |
10980 | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, |
10981 | QualType rhs) { |
10982 | // Common case: two object pointers. |
10983 | const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); |
10984 | const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
10985 | if (lhsOPT && rhsOPT) |
10986 | return ctx.canAssignObjCInterfaces(LHSOPT: lhsOPT, RHSOPT: rhsOPT); |
10987 | |
10988 | // Two block pointers. |
10989 | const auto *lhsBlock = lhs->getAs<BlockPointerType>(); |
10990 | const auto *rhsBlock = rhs->getAs<BlockPointerType>(); |
10991 | if (lhsBlock && rhsBlock) |
10992 | return ctx.typesAreBlockPointerCompatible(lhs, rhs); |
10993 | |
10994 | // If either is an unqualified 'id' and the other is a block, it's |
10995 | // acceptable. |
10996 | if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || |
10997 | (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) |
10998 | return true; |
10999 | |
11000 | return false; |
11001 | } |
11002 | |
11003 | // Check that the given Objective-C type argument lists are equivalent. |
11004 | static bool sameObjCTypeArgs(ASTContext &ctx, |
11005 | const ObjCInterfaceDecl *iface, |
11006 | ArrayRef<QualType> lhsArgs, |
11007 | ArrayRef<QualType> rhsArgs, |
11008 | bool stripKindOf) { |
11009 | if (lhsArgs.size() != rhsArgs.size()) |
11010 | return false; |
11011 | |
11012 | ObjCTypeParamList *typeParams = iface->getTypeParamList(); |
11013 | if (!typeParams) |
11014 | return false; |
11015 | |
11016 | for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { |
11017 | if (ctx.hasSameType(T1: lhsArgs[i], T2: rhsArgs[i])) |
11018 | continue; |
11019 | |
11020 | switch (typeParams->begin()[i]->getVariance()) { |
11021 | case ObjCTypeParamVariance::Invariant: |
11022 | if (!stripKindOf || |
11023 | !ctx.hasSameType(T1: lhsArgs[i].stripObjCKindOfType(ctx), |
11024 | T2: rhsArgs[i].stripObjCKindOfType(ctx))) { |
11025 | return false; |
11026 | } |
11027 | break; |
11028 | |
11029 | case ObjCTypeParamVariance::Covariant: |
11030 | if (!canAssignObjCObjectTypes(ctx, lhs: lhsArgs[i], rhs: rhsArgs[i])) |
11031 | return false; |
11032 | break; |
11033 | |
11034 | case ObjCTypeParamVariance::Contravariant: |
11035 | if (!canAssignObjCObjectTypes(ctx, lhs: rhsArgs[i], rhs: lhsArgs[i])) |
11036 | return false; |
11037 | break; |
11038 | } |
11039 | } |
11040 | |
11041 | return true; |
11042 | } |
11043 | |
11044 | QualType ASTContext::areCommonBaseCompatible( |
11045 | const ObjCObjectPointerType *Lptr, |
11046 | const ObjCObjectPointerType *Rptr) { |
11047 | const ObjCObjectType *LHS = Lptr->getObjectType(); |
11048 | const ObjCObjectType *RHS = Rptr->getObjectType(); |
11049 | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
11050 | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
11051 | |
11052 | if (!LDecl || !RDecl) |
11053 | return {}; |
11054 | |
11055 | // When either LHS or RHS is a kindof type, we should return a kindof type. |
11056 | // For example, for common base of kindof(ASub1) and kindof(ASub2), we return |
11057 | // kindof(A). |
11058 | bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); |
11059 | |
11060 | // Follow the left-hand side up the class hierarchy until we either hit a |
11061 | // root or find the RHS. Record the ancestors in case we don't find it. |
11062 | llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> |
11063 | LHSAncestors; |
11064 | while (true) { |
11065 | // Record this ancestor. We'll need this if the common type isn't in the |
11066 | // path from the LHS to the root. |
11067 | LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; |
11068 | |
11069 | if (declaresSameEntity(D1: LHS->getInterface(), D2: RDecl)) { |
11070 | // Get the type arguments. |
11071 | ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); |
11072 | bool anyChanges = false; |
11073 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
11074 | // Both have type arguments, compare them. |
11075 | if (!sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
11076 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHS->getTypeArgs(), |
11077 | /*stripKindOf=*/true)) |
11078 | return {}; |
11079 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
11080 | // If only one has type arguments, the result will not have type |
11081 | // arguments. |
11082 | LHSTypeArgs = {}; |
11083 | anyChanges = true; |
11084 | } |
11085 | |
11086 | // Compute the intersection of protocols. |
11087 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
11088 | getIntersectionOfProtocols(Context&: *this, CommonBase: LHS->getInterface(), LHSOPT: Lptr, RHSOPT: Rptr, |
11089 | IntersectionSet&: Protocols); |
11090 | if (!Protocols.empty()) |
11091 | anyChanges = true; |
11092 | |
11093 | // If anything in the LHS will have changed, build a new result type. |
11094 | // If we need to return a kindof type but LHS is not a kindof type, we |
11095 | // build a new result type. |
11096 | if (anyChanges || LHS->isKindOfType() != anyKindOf) { |
11097 | QualType Result = getObjCInterfaceType(Decl: LHS->getInterface()); |
11098 | Result = getObjCObjectType(baseType: Result, typeArgs: LHSTypeArgs, protocols: Protocols, |
11099 | isKindOf: anyKindOf || LHS->isKindOfType()); |
11100 | return getObjCObjectPointerType(ObjectT: Result); |
11101 | } |
11102 | |
11103 | return getObjCObjectPointerType(ObjectT: QualType(LHS, 0)); |
11104 | } |
11105 | |
11106 | // Find the superclass. |
11107 | QualType LHSSuperType = LHS->getSuperClassType(); |
11108 | if (LHSSuperType.isNull()) |
11109 | break; |
11110 | |
11111 | LHS = LHSSuperType->castAs<ObjCObjectType>(); |
11112 | } |
11113 | |
11114 | // We didn't find anything by following the LHS to its root; now check |
11115 | // the RHS against the cached set of ancestors. |
11116 | while (true) { |
11117 | auto KnownLHS = LHSAncestors.find(Val: RHS->getInterface()->getCanonicalDecl()); |
11118 | if (KnownLHS != LHSAncestors.end()) { |
11119 | LHS = KnownLHS->second; |
11120 | |
11121 | // Get the type arguments. |
11122 | ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); |
11123 | bool anyChanges = false; |
11124 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
11125 | // Both have type arguments, compare them. |
11126 | if (!sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
11127 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHS->getTypeArgs(), |
11128 | /*stripKindOf=*/true)) |
11129 | return {}; |
11130 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
11131 | // If only one has type arguments, the result will not have type |
11132 | // arguments. |
11133 | RHSTypeArgs = {}; |
11134 | anyChanges = true; |
11135 | } |
11136 | |
11137 | // Compute the intersection of protocols. |
11138 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
11139 | getIntersectionOfProtocols(Context&: *this, CommonBase: RHS->getInterface(), LHSOPT: Lptr, RHSOPT: Rptr, |
11140 | IntersectionSet&: Protocols); |
11141 | if (!Protocols.empty()) |
11142 | anyChanges = true; |
11143 | |
11144 | // If we need to return a kindof type but RHS is not a kindof type, we |
11145 | // build a new result type. |
11146 | if (anyChanges || RHS->isKindOfType() != anyKindOf) { |
11147 | QualType Result = getObjCInterfaceType(Decl: RHS->getInterface()); |
11148 | Result = getObjCObjectType(baseType: Result, typeArgs: RHSTypeArgs, protocols: Protocols, |
11149 | isKindOf: anyKindOf || RHS->isKindOfType()); |
11150 | return getObjCObjectPointerType(ObjectT: Result); |
11151 | } |
11152 | |
11153 | return getObjCObjectPointerType(ObjectT: QualType(RHS, 0)); |
11154 | } |
11155 | |
11156 | // Find the superclass of the RHS. |
11157 | QualType RHSSuperType = RHS->getSuperClassType(); |
11158 | if (RHSSuperType.isNull()) |
11159 | break; |
11160 | |
11161 | RHS = RHSSuperType->castAs<ObjCObjectType>(); |
11162 | } |
11163 | |
11164 | return {}; |
11165 | } |
11166 | |
11167 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
11168 | const ObjCObjectType *RHS) { |
11169 | assert(LHS->getInterface() && "LHS is not an interface type" ); |
11170 | assert(RHS->getInterface() && "RHS is not an interface type" ); |
11171 | |
11172 | // Verify that the base decls are compatible: the RHS must be a subclass of |
11173 | // the LHS. |
11174 | ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); |
11175 | bool IsSuperClass = LHSInterface->isSuperClassOf(I: RHS->getInterface()); |
11176 | if (!IsSuperClass) |
11177 | return false; |
11178 | |
11179 | // If the LHS has protocol qualifiers, determine whether all of them are |
11180 | // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the |
11181 | // LHS). |
11182 | if (LHS->getNumProtocols() > 0) { |
11183 | // OK if conversion of LHS to SuperClass results in narrowing of types |
11184 | // ; i.e., SuperClass may implement at least one of the protocols |
11185 | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
11186 | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
11187 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
11188 | CollectInheritedProtocols(CDecl: RHS->getInterface(), Protocols&: SuperClassInheritedProtocols); |
11189 | // Also, if RHS has explicit quelifiers, include them for comparing with LHS's |
11190 | // qualifiers. |
11191 | for (auto *RHSPI : RHS->quals()) |
11192 | CollectInheritedProtocols(CDecl: RHSPI, Protocols&: SuperClassInheritedProtocols); |
11193 | // If there is no protocols associated with RHS, it is not a match. |
11194 | if (SuperClassInheritedProtocols.empty()) |
11195 | return false; |
11196 | |
11197 | for (const auto *LHSProto : LHS->quals()) { |
11198 | bool SuperImplementsProtocol = false; |
11199 | for (auto *SuperClassProto : SuperClassInheritedProtocols) |
11200 | if (SuperClassProto->lookupProtocolNamed(PName: LHSProto->getIdentifier())) { |
11201 | SuperImplementsProtocol = true; |
11202 | break; |
11203 | } |
11204 | if (!SuperImplementsProtocol) |
11205 | return false; |
11206 | } |
11207 | } |
11208 | |
11209 | // If the LHS is specialized, we may need to check type arguments. |
11210 | if (LHS->isSpecialized()) { |
11211 | // Follow the superclass chain until we've matched the LHS class in the |
11212 | // hierarchy. This substitutes type arguments through. |
11213 | const ObjCObjectType *RHSSuper = RHS; |
11214 | while (!declaresSameEntity(D1: RHSSuper->getInterface(), D2: LHSInterface)) |
11215 | RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); |
11216 | |
11217 | // If the RHS is specializd, compare type arguments. |
11218 | if (RHSSuper->isSpecialized() && |
11219 | !sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
11220 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHSSuper->getTypeArgs(), |
11221 | /*stripKindOf=*/true)) { |
11222 | return false; |
11223 | } |
11224 | } |
11225 | |
11226 | return true; |
11227 | } |
11228 | |
11229 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
11230 | // get the "pointed to" types |
11231 | const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
11232 | const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
11233 | |
11234 | if (!LHSOPT || !RHSOPT) |
11235 | return false; |
11236 | |
11237 | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
11238 | canAssignObjCInterfaces(LHSOPT: RHSOPT, RHSOPT: LHSOPT); |
11239 | } |
11240 | |
11241 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
11242 | return canAssignObjCInterfaces( |
11243 | LHSOPT: getObjCObjectPointerType(ObjectT: To)->castAs<ObjCObjectPointerType>(), |
11244 | RHSOPT: getObjCObjectPointerType(ObjectT: From)->castAs<ObjCObjectPointerType>()); |
11245 | } |
11246 | |
11247 | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
11248 | /// both shall have the identically qualified version of a compatible type. |
11249 | /// C99 6.2.7p1: Two types have compatible types if their types are the |
11250 | /// same. See 6.7.[2,3,5] for additional rules. |
11251 | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
11252 | bool CompareUnqualified) { |
11253 | if (getLangOpts().CPlusPlus) |
11254 | return hasSameType(T1: LHS, T2: RHS); |
11255 | |
11256 | return !mergeTypes(LHS, RHS, OfBlockPointer: false, Unqualified: CompareUnqualified).isNull(); |
11257 | } |
11258 | |
11259 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
11260 | return typesAreCompatible(LHS, RHS); |
11261 | } |
11262 | |
11263 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
11264 | return !mergeTypes(LHS, RHS, OfBlockPointer: true).isNull(); |
11265 | } |
11266 | |
11267 | /// mergeTransparentUnionType - if T is a transparent union type and a member |
11268 | /// of T is compatible with SubType, return the merged type, else return |
11269 | /// QualType() |
11270 | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
11271 | bool OfBlockPointer, |
11272 | bool Unqualified) { |
11273 | if (const RecordType *UT = T->getAsUnionType()) { |
11274 | RecordDecl *UD = UT->getDecl(); |
11275 | if (UD->hasAttr<TransparentUnionAttr>()) { |
11276 | for (const auto *I : UD->fields()) { |
11277 | QualType ET = I->getType().getUnqualifiedType(); |
11278 | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
11279 | if (!MT.isNull()) |
11280 | return MT; |
11281 | } |
11282 | } |
11283 | } |
11284 | |
11285 | return {}; |
11286 | } |
11287 | |
11288 | /// mergeFunctionParameterTypes - merge two types which appear as function |
11289 | /// parameter types |
11290 | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, |
11291 | bool OfBlockPointer, |
11292 | bool Unqualified) { |
11293 | // GNU extension: two types are compatible if they appear as a function |
11294 | // argument, one of the types is a transparent union type and the other |
11295 | // type is compatible with a union member |
11296 | QualType lmerge = mergeTransparentUnionType(T: lhs, SubType: rhs, OfBlockPointer, |
11297 | Unqualified); |
11298 | if (!lmerge.isNull()) |
11299 | return lmerge; |
11300 | |
11301 | QualType rmerge = mergeTransparentUnionType(T: rhs, SubType: lhs, OfBlockPointer, |
11302 | Unqualified); |
11303 | if (!rmerge.isNull()) |
11304 | return rmerge; |
11305 | |
11306 | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
11307 | } |
11308 | |
11309 | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
11310 | bool OfBlockPointer, bool Unqualified, |
11311 | bool AllowCXX, |
11312 | bool IsConditionalOperator) { |
11313 | const auto *lbase = lhs->castAs<FunctionType>(); |
11314 | const auto *rbase = rhs->castAs<FunctionType>(); |
11315 | const auto *lproto = dyn_cast<FunctionProtoType>(Val: lbase); |
11316 | const auto *rproto = dyn_cast<FunctionProtoType>(Val: rbase); |
11317 | bool allLTypes = true; |
11318 | bool allRTypes = true; |
11319 | |
11320 | // Check return type |
11321 | QualType retType; |
11322 | if (OfBlockPointer) { |
11323 | QualType RHS = rbase->getReturnType(); |
11324 | QualType LHS = lbase->getReturnType(); |
11325 | bool UnqualifiedResult = Unqualified; |
11326 | if (!UnqualifiedResult) |
11327 | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
11328 | retType = mergeTypes(LHS, RHS, OfBlockPointer: true, Unqualified: UnqualifiedResult, BlockReturnType: true); |
11329 | } |
11330 | else |
11331 | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), OfBlockPointer: false, |
11332 | Unqualified); |
11333 | if (retType.isNull()) |
11334 | return {}; |
11335 | |
11336 | if (Unqualified) |
11337 | retType = retType.getUnqualifiedType(); |
11338 | |
11339 | CanQualType LRetType = getCanonicalType(T: lbase->getReturnType()); |
11340 | CanQualType RRetType = getCanonicalType(T: rbase->getReturnType()); |
11341 | if (Unqualified) { |
11342 | LRetType = LRetType.getUnqualifiedType(); |
11343 | RRetType = RRetType.getUnqualifiedType(); |
11344 | } |
11345 | |
11346 | if (getCanonicalType(T: retType) != LRetType) |
11347 | allLTypes = false; |
11348 | if (getCanonicalType(T: retType) != RRetType) |
11349 | allRTypes = false; |
11350 | |
11351 | // FIXME: double check this |
11352 | // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
11353 | // rbase->getRegParmAttr() != 0 && |
11354 | // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
11355 | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
11356 | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
11357 | |
11358 | // Compatible functions must have compatible calling conventions |
11359 | if (lbaseInfo.getCC() != rbaseInfo.getCC()) |
11360 | return {}; |
11361 | |
11362 | // Regparm is part of the calling convention. |
11363 | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
11364 | return {}; |
11365 | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
11366 | return {}; |
11367 | |
11368 | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
11369 | return {}; |
11370 | if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) |
11371 | return {}; |
11372 | if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) |
11373 | return {}; |
11374 | |
11375 | // When merging declarations, it's common for supplemental information like |
11376 | // attributes to only be present in one of the declarations, and we generally |
11377 | // want type merging to preserve the union of information. So a merged |
11378 | // function type should be noreturn if it was noreturn in *either* operand |
11379 | // type. |
11380 | // |
11381 | // But for the conditional operator, this is backwards. The result of the |
11382 | // operator could be either operand, and its type should conservatively |
11383 | // reflect that. So a function type in a composite type is noreturn only |
11384 | // if it's noreturn in *both* operand types. |
11385 | // |
11386 | // Arguably, noreturn is a kind of subtype, and the conditional operator |
11387 | // ought to produce the most specific common supertype of its operand types. |
11388 | // That would differ from this rule in contravariant positions. However, |
11389 | // neither C nor C++ generally uses this kind of subtype reasoning. Also, |
11390 | // as a practical matter, it would only affect C code that does abstraction of |
11391 | // higher-order functions (taking noreturn callbacks!), which is uncommon to |
11392 | // say the least. So we use the simpler rule. |
11393 | bool NoReturn = IsConditionalOperator |
11394 | ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn() |
11395 | : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
11396 | if (lbaseInfo.getNoReturn() != NoReturn) |
11397 | allLTypes = false; |
11398 | if (rbaseInfo.getNoReturn() != NoReturn) |
11399 | allRTypes = false; |
11400 | |
11401 | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(noReturn: NoReturn); |
11402 | |
11403 | std::optional<FunctionEffectSet> MergedFX; |
11404 | |
11405 | if (lproto && rproto) { // two C99 style function prototypes |
11406 | assert((AllowCXX || |
11407 | (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && |
11408 | "C++ shouldn't be here" ); |
11409 | // Compatible functions must have the same number of parameters |
11410 | if (lproto->getNumParams() != rproto->getNumParams()) |
11411 | return {}; |
11412 | |
11413 | // Variadic and non-variadic functions aren't compatible |
11414 | if (lproto->isVariadic() != rproto->isVariadic()) |
11415 | return {}; |
11416 | |
11417 | if (lproto->getMethodQuals() != rproto->getMethodQuals()) |
11418 | return {}; |
11419 | |
11420 | // Function effects are handled similarly to noreturn, see above. |
11421 | FunctionEffectsRef LHSFX = lproto->getFunctionEffects(); |
11422 | FunctionEffectsRef RHSFX = rproto->getFunctionEffects(); |
11423 | if (LHSFX != RHSFX) { |
11424 | if (IsConditionalOperator) |
11425 | MergedFX = FunctionEffectSet::getIntersection(LHS: LHSFX, RHS: RHSFX); |
11426 | else { |
11427 | FunctionEffectSet::Conflicts Errs; |
11428 | MergedFX = FunctionEffectSet::getUnion(LHS: LHSFX, RHS: RHSFX, Errs); |
11429 | // Here we're discarding a possible error due to conflicts in the effect |
11430 | // sets. But we're not in a context where we can report it. The |
11431 | // operation does however guarantee maintenance of invariants. |
11432 | } |
11433 | if (*MergedFX != LHSFX) |
11434 | allLTypes = false; |
11435 | if (*MergedFX != RHSFX) |
11436 | allRTypes = false; |
11437 | } |
11438 | |
11439 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; |
11440 | bool canUseLeft, canUseRight; |
11441 | if (!mergeExtParameterInfo(FirstFnType: lproto, SecondFnType: rproto, CanUseFirst&: canUseLeft, CanUseSecond&: canUseRight, |
11442 | NewParamInfos&: newParamInfos)) |
11443 | return {}; |
11444 | |
11445 | if (!canUseLeft) |
11446 | allLTypes = false; |
11447 | if (!canUseRight) |
11448 | allRTypes = false; |
11449 | |
11450 | // Check parameter type compatibility |
11451 | SmallVector<QualType, 10> types; |
11452 | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { |
11453 | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); |
11454 | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); |
11455 | QualType paramType = mergeFunctionParameterTypes( |
11456 | lhs: lParamType, rhs: rParamType, OfBlockPointer, Unqualified); |
11457 | if (paramType.isNull()) |
11458 | return {}; |
11459 | |
11460 | if (Unqualified) |
11461 | paramType = paramType.getUnqualifiedType(); |
11462 | |
11463 | types.push_back(Elt: paramType); |
11464 | if (Unqualified) { |
11465 | lParamType = lParamType.getUnqualifiedType(); |
11466 | rParamType = rParamType.getUnqualifiedType(); |
11467 | } |
11468 | |
11469 | if (getCanonicalType(T: paramType) != getCanonicalType(T: lParamType)) |
11470 | allLTypes = false; |
11471 | if (getCanonicalType(T: paramType) != getCanonicalType(T: rParamType)) |
11472 | allRTypes = false; |
11473 | } |
11474 | |
11475 | if (allLTypes) return lhs; |
11476 | if (allRTypes) return rhs; |
11477 | |
11478 | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
11479 | EPI.ExtInfo = einfo; |
11480 | EPI.ExtParameterInfos = |
11481 | newParamInfos.empty() ? nullptr : newParamInfos.data(); |
11482 | if (MergedFX) |
11483 | EPI.FunctionEffects = *MergedFX; |
11484 | return getFunctionType(ResultTy: retType, Args: types, EPI); |
11485 | } |
11486 | |
11487 | if (lproto) allRTypes = false; |
11488 | if (rproto) allLTypes = false; |
11489 | |
11490 | const FunctionProtoType *proto = lproto ? lproto : rproto; |
11491 | if (proto) { |
11492 | assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here" ); |
11493 | if (proto->isVariadic()) |
11494 | return {}; |
11495 | // Check that the types are compatible with the types that |
11496 | // would result from default argument promotions (C99 6.7.5.3p15). |
11497 | // The only types actually affected are promotable integer |
11498 | // types and floats, which would be passed as a different |
11499 | // type depending on whether the prototype is visible. |
11500 | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { |
11501 | QualType paramTy = proto->getParamType(i); |
11502 | |
11503 | // Look at the converted type of enum types, since that is the type used |
11504 | // to pass enum values. |
11505 | if (const auto *Enum = paramTy->getAs<EnumType>()) { |
11506 | paramTy = Enum->getDecl()->getIntegerType(); |
11507 | if (paramTy.isNull()) |
11508 | return {}; |
11509 | } |
11510 | |
11511 | if (isPromotableIntegerType(T: paramTy) || |
11512 | getCanonicalType(T: paramTy).getUnqualifiedType() == FloatTy) |
11513 | return {}; |
11514 | } |
11515 | |
11516 | if (allLTypes) return lhs; |
11517 | if (allRTypes) return rhs; |
11518 | |
11519 | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
11520 | EPI.ExtInfo = einfo; |
11521 | if (MergedFX) |
11522 | EPI.FunctionEffects = *MergedFX; |
11523 | return getFunctionType(ResultTy: retType, Args: proto->getParamTypes(), EPI); |
11524 | } |
11525 | |
11526 | if (allLTypes) return lhs; |
11527 | if (allRTypes) return rhs; |
11528 | return getFunctionNoProtoType(ResultTy: retType, Info: einfo); |
11529 | } |
11530 | |
11531 | /// Given that we have an enum type and a non-enum type, try to merge them. |
11532 | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, |
11533 | QualType other, bool isBlockReturnType) { |
11534 | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
11535 | // a signed integer type, or an unsigned integer type. |
11536 | // Compatibility is based on the underlying type, not the promotion |
11537 | // type. |
11538 | QualType underlyingType = ET->getDecl()->getIntegerType(); |
11539 | if (underlyingType.isNull()) |
11540 | return {}; |
11541 | if (Context.hasSameType(T1: underlyingType, T2: other)) |
11542 | return other; |
11543 | |
11544 | // In block return types, we're more permissive and accept any |
11545 | // integral type of the same size. |
11546 | if (isBlockReturnType && other->isIntegerType() && |
11547 | Context.getTypeSize(T: underlyingType) == Context.getTypeSize(T: other)) |
11548 | return other; |
11549 | |
11550 | return {}; |
11551 | } |
11552 | |
11553 | QualType ASTContext::mergeTagDefinitions(QualType LHS, QualType RHS) { |
11554 | // C17 and earlier and C++ disallow two tag definitions within the same TU |
11555 | // from being compatible. |
11556 | if (LangOpts.CPlusPlus || !LangOpts.C23) |
11557 | return {}; |
11558 | |
11559 | // C23, on the other hand, requires the members to be "the same enough", so |
11560 | // we use a structural equivalence check. |
11561 | StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls; |
11562 | StructuralEquivalenceContext Ctx( |
11563 | getLangOpts(), *this, *this, NonEquivalentDecls, |
11564 | StructuralEquivalenceKind::Default, /*StrictTypeSpelling=*/false, |
11565 | /*Complain=*/false, /*ErrorOnTagTypeMismatch=*/true); |
11566 | return Ctx.IsEquivalent(T1: LHS, T2: RHS) ? LHS : QualType{}; |
11567 | } |
11568 | |
11569 | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer, |
11570 | bool Unqualified, bool BlockReturnType, |
11571 | bool IsConditionalOperator) { |
11572 | // For C++ we will not reach this code with reference types (see below), |
11573 | // for OpenMP variant call overloading we might. |
11574 | // |
11575 | // C++ [expr]: If an expression initially has the type "reference to T", the |
11576 | // type is adjusted to "T" prior to any further analysis, the expression |
11577 | // designates the object or function denoted by the reference, and the |
11578 | // expression is an lvalue unless the reference is an rvalue reference and |
11579 | // the expression is a function call (possibly inside parentheses). |
11580 | auto *LHSRefTy = LHS->getAs<ReferenceType>(); |
11581 | auto *RHSRefTy = RHS->getAs<ReferenceType>(); |
11582 | if (LangOpts.OpenMP && LHSRefTy && RHSRefTy && |
11583 | LHS->getTypeClass() == RHS->getTypeClass()) |
11584 | return mergeTypes(LHS: LHSRefTy->getPointeeType(), RHS: RHSRefTy->getPointeeType(), |
11585 | OfBlockPointer, Unqualified, BlockReturnType); |
11586 | if (LHSRefTy || RHSRefTy) |
11587 | return {}; |
11588 | |
11589 | if (Unqualified) { |
11590 | LHS = LHS.getUnqualifiedType(); |
11591 | RHS = RHS.getUnqualifiedType(); |
11592 | } |
11593 | |
11594 | QualType LHSCan = getCanonicalType(T: LHS), |
11595 | RHSCan = getCanonicalType(T: RHS); |
11596 | |
11597 | // If two types are identical, they are compatible. |
11598 | if (LHSCan == RHSCan) |
11599 | return LHS; |
11600 | |
11601 | // If the qualifiers are different, the types aren't compatible... mostly. |
11602 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
11603 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
11604 | if (LQuals != RQuals) { |
11605 | // If any of these qualifiers are different, we have a type |
11606 | // mismatch. |
11607 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
11608 | LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
11609 | LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || |
11610 | !LQuals.getPointerAuth().isEquivalent(Other: RQuals.getPointerAuth()) || |
11611 | LQuals.hasUnaligned() != RQuals.hasUnaligned()) |
11612 | return {}; |
11613 | |
11614 | // Exactly one GC qualifier difference is allowed: __strong is |
11615 | // okay if the other type has no GC qualifier but is an Objective |
11616 | // C object pointer (i.e. implicitly strong by default). We fix |
11617 | // this by pretending that the unqualified type was actually |
11618 | // qualified __strong. |
11619 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
11620 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
11621 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements" ); |
11622 | |
11623 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
11624 | return {}; |
11625 | |
11626 | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
11627 | return mergeTypes(LHS, RHS: getObjCGCQualType(T: RHS, GCAttr: Qualifiers::Strong)); |
11628 | } |
11629 | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
11630 | return mergeTypes(LHS: getObjCGCQualType(T: LHS, GCAttr: Qualifiers::Strong), RHS); |
11631 | } |
11632 | return {}; |
11633 | } |
11634 | |
11635 | // Okay, qualifiers are equal. |
11636 | |
11637 | Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
11638 | Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
11639 | |
11640 | // We want to consider the two function types to be the same for these |
11641 | // comparisons, just force one to the other. |
11642 | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
11643 | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
11644 | |
11645 | // Same as above for arrays |
11646 | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
11647 | LHSClass = Type::ConstantArray; |
11648 | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
11649 | RHSClass = Type::ConstantArray; |
11650 | |
11651 | // ObjCInterfaces are just specialized ObjCObjects. |
11652 | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
11653 | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
11654 | |
11655 | // Canonicalize ExtVector -> Vector. |
11656 | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
11657 | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
11658 | |
11659 | // If the canonical type classes don't match. |
11660 | if (LHSClass != RHSClass) { |
11661 | // Note that we only have special rules for turning block enum |
11662 | // returns into block int returns, not vice-versa. |
11663 | if (const auto *ETy = LHS->getAs<EnumType>()) { |
11664 | return mergeEnumWithInteger(Context&: *this, ET: ETy, other: RHS, isBlockReturnType: false); |
11665 | } |
11666 | if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
11667 | return mergeEnumWithInteger(Context&: *this, ET: ETy, other: LHS, isBlockReturnType: BlockReturnType); |
11668 | } |
11669 | // allow block pointer type to match an 'id' type. |
11670 | if (OfBlockPointer && !BlockReturnType) { |
11671 | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
11672 | return LHS; |
11673 | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
11674 | return RHS; |
11675 | } |
11676 | // Allow __auto_type to match anything; it merges to the type with more |
11677 | // information. |
11678 | if (const auto *AT = LHS->getAs<AutoType>()) { |
11679 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
11680 | return RHS; |
11681 | } |
11682 | if (const auto *AT = RHS->getAs<AutoType>()) { |
11683 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
11684 | return LHS; |
11685 | } |
11686 | return {}; |
11687 | } |
11688 | |
11689 | // The canonical type classes match. |
11690 | switch (LHSClass) { |
11691 | #define TYPE(Class, Base) |
11692 | #define ABSTRACT_TYPE(Class, Base) |
11693 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
11694 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
11695 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
11696 | #include "clang/AST/TypeNodes.inc" |
11697 | llvm_unreachable("Non-canonical and dependent types shouldn't get here" ); |
11698 | |
11699 | case Type::Auto: |
11700 | case Type::DeducedTemplateSpecialization: |
11701 | case Type::LValueReference: |
11702 | case Type::RValueReference: |
11703 | case Type::MemberPointer: |
11704 | llvm_unreachable("C++ should never be in mergeTypes" ); |
11705 | |
11706 | case Type::ObjCInterface: |
11707 | case Type::IncompleteArray: |
11708 | case Type::VariableArray: |
11709 | case Type::FunctionProto: |
11710 | case Type::ExtVector: |
11711 | llvm_unreachable("Types are eliminated above" ); |
11712 | |
11713 | case Type::Pointer: |
11714 | { |
11715 | // Merge two pointer types, while trying to preserve typedef info |
11716 | QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); |
11717 | QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); |
11718 | if (Unqualified) { |
11719 | LHSPointee = LHSPointee.getUnqualifiedType(); |
11720 | RHSPointee = RHSPointee.getUnqualifiedType(); |
11721 | } |
11722 | QualType ResultType = mergeTypes(LHS: LHSPointee, RHS: RHSPointee, OfBlockPointer: false, |
11723 | Unqualified); |
11724 | if (ResultType.isNull()) |
11725 | return {}; |
11726 | if (getCanonicalType(T: LHSPointee) == getCanonicalType(T: ResultType)) |
11727 | return LHS; |
11728 | if (getCanonicalType(T: RHSPointee) == getCanonicalType(T: ResultType)) |
11729 | return RHS; |
11730 | return getPointerType(T: ResultType); |
11731 | } |
11732 | case Type::BlockPointer: |
11733 | { |
11734 | // Merge two block pointer types, while trying to preserve typedef info |
11735 | QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); |
11736 | QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); |
11737 | if (Unqualified) { |
11738 | LHSPointee = LHSPointee.getUnqualifiedType(); |
11739 | RHSPointee = RHSPointee.getUnqualifiedType(); |
11740 | } |
11741 | if (getLangOpts().OpenCL) { |
11742 | Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); |
11743 | Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); |
11744 | // Blocks can't be an expression in a ternary operator (OpenCL v2.0 |
11745 | // 6.12.5) thus the following check is asymmetric. |
11746 | if (!LHSPteeQual.isAddressSpaceSupersetOf(other: RHSPteeQual, Ctx: *this)) |
11747 | return {}; |
11748 | LHSPteeQual.removeAddressSpace(); |
11749 | RHSPteeQual.removeAddressSpace(); |
11750 | LHSPointee = |
11751 | QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); |
11752 | RHSPointee = |
11753 | QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); |
11754 | } |
11755 | QualType ResultType = mergeTypes(LHS: LHSPointee, RHS: RHSPointee, OfBlockPointer, |
11756 | Unqualified); |
11757 | if (ResultType.isNull()) |
11758 | return {}; |
11759 | if (getCanonicalType(T: LHSPointee) == getCanonicalType(T: ResultType)) |
11760 | return LHS; |
11761 | if (getCanonicalType(T: RHSPointee) == getCanonicalType(T: ResultType)) |
11762 | return RHS; |
11763 | return getBlockPointerType(T: ResultType); |
11764 | } |
11765 | case Type::Atomic: |
11766 | { |
11767 | // Merge two pointer types, while trying to preserve typedef info |
11768 | QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); |
11769 | QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); |
11770 | if (Unqualified) { |
11771 | LHSValue = LHSValue.getUnqualifiedType(); |
11772 | RHSValue = RHSValue.getUnqualifiedType(); |
11773 | } |
11774 | QualType ResultType = mergeTypes(LHS: LHSValue, RHS: RHSValue, OfBlockPointer: false, |
11775 | Unqualified); |
11776 | if (ResultType.isNull()) |
11777 | return {}; |
11778 | if (getCanonicalType(T: LHSValue) == getCanonicalType(T: ResultType)) |
11779 | return LHS; |
11780 | if (getCanonicalType(T: RHSValue) == getCanonicalType(T: ResultType)) |
11781 | return RHS; |
11782 | return getAtomicType(T: ResultType); |
11783 | } |
11784 | case Type::ConstantArray: |
11785 | { |
11786 | const ConstantArrayType* LCAT = getAsConstantArrayType(T: LHS); |
11787 | const ConstantArrayType* RCAT = getAsConstantArrayType(T: RHS); |
11788 | if (LCAT && RCAT && RCAT->getZExtSize() != LCAT->getZExtSize()) |
11789 | return {}; |
11790 | |
11791 | QualType LHSElem = getAsArrayType(T: LHS)->getElementType(); |
11792 | QualType RHSElem = getAsArrayType(T: RHS)->getElementType(); |
11793 | if (Unqualified) { |
11794 | LHSElem = LHSElem.getUnqualifiedType(); |
11795 | RHSElem = RHSElem.getUnqualifiedType(); |
11796 | } |
11797 | |
11798 | QualType ResultType = mergeTypes(LHS: LHSElem, RHS: RHSElem, OfBlockPointer: false, Unqualified); |
11799 | if (ResultType.isNull()) |
11800 | return {}; |
11801 | |
11802 | const VariableArrayType* LVAT = getAsVariableArrayType(T: LHS); |
11803 | const VariableArrayType* RVAT = getAsVariableArrayType(T: RHS); |
11804 | |
11805 | // If either side is a variable array, and both are complete, check whether |
11806 | // the current dimension is definite. |
11807 | if (LVAT || RVAT) { |
11808 | auto SizeFetch = [this](const VariableArrayType* VAT, |
11809 | const ConstantArrayType* CAT) |
11810 | -> std::pair<bool,llvm::APInt> { |
11811 | if (VAT) { |
11812 | std::optional<llvm::APSInt> TheInt; |
11813 | Expr *E = VAT->getSizeExpr(); |
11814 | if (E && (TheInt = E->getIntegerConstantExpr(Ctx: *this))) |
11815 | return std::make_pair(x: true, y&: *TheInt); |
11816 | return std::make_pair(x: false, y: llvm::APSInt()); |
11817 | } |
11818 | if (CAT) |
11819 | return std::make_pair(x: true, y: CAT->getSize()); |
11820 | return std::make_pair(x: false, y: llvm::APInt()); |
11821 | }; |
11822 | |
11823 | bool HaveLSize, HaveRSize; |
11824 | llvm::APInt LSize, RSize; |
11825 | std::tie(args&: HaveLSize, args&: LSize) = SizeFetch(LVAT, LCAT); |
11826 | std::tie(args&: HaveRSize, args&: RSize) = SizeFetch(RVAT, RCAT); |
11827 | if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(I1: LSize, I2: RSize)) |
11828 | return {}; // Definite, but unequal, array dimension |
11829 | } |
11830 | |
11831 | if (LCAT && getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) |
11832 | return LHS; |
11833 | if (RCAT && getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) |
11834 | return RHS; |
11835 | if (LCAT) |
11836 | return getConstantArrayType(EltTy: ResultType, ArySizeIn: LCAT->getSize(), |
11837 | SizeExpr: LCAT->getSizeExpr(), ASM: ArraySizeModifier(), IndexTypeQuals: 0); |
11838 | if (RCAT) |
11839 | return getConstantArrayType(EltTy: ResultType, ArySizeIn: RCAT->getSize(), |
11840 | SizeExpr: RCAT->getSizeExpr(), ASM: ArraySizeModifier(), IndexTypeQuals: 0); |
11841 | if (LVAT && getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) |
11842 | return LHS; |
11843 | if (RVAT && getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) |
11844 | return RHS; |
11845 | if (LVAT) { |
11846 | // FIXME: This isn't correct! But tricky to implement because |
11847 | // the array's size has to be the size of LHS, but the type |
11848 | // has to be different. |
11849 | return LHS; |
11850 | } |
11851 | if (RVAT) { |
11852 | // FIXME: This isn't correct! But tricky to implement because |
11853 | // the array's size has to be the size of RHS, but the type |
11854 | // has to be different. |
11855 | return RHS; |
11856 | } |
11857 | if (getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) return LHS; |
11858 | if (getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) return RHS; |
11859 | return getIncompleteArrayType(elementType: ResultType, ASM: ArraySizeModifier(), elementTypeQuals: 0); |
11860 | } |
11861 | case Type::FunctionNoProto: |
11862 | return mergeFunctionTypes(lhs: LHS, rhs: RHS, OfBlockPointer, Unqualified, |
11863 | /*AllowCXX=*/false, IsConditionalOperator); |
11864 | case Type::Record: |
11865 | case Type::Enum: |
11866 | return mergeTagDefinitions(LHS, RHS); |
11867 | case Type::Builtin: |
11868 | // Only exactly equal builtin types are compatible, which is tested above. |
11869 | return {}; |
11870 | case Type::Complex: |
11871 | // Distinct complex types are incompatible. |
11872 | return {}; |
11873 | case Type::Vector: |
11874 | // FIXME: The merged type should be an ExtVector! |
11875 | if (areCompatVectorTypes(LHS: LHSCan->castAs<VectorType>(), |
11876 | RHS: RHSCan->castAs<VectorType>())) |
11877 | return LHS; |
11878 | return {}; |
11879 | case Type::ConstantMatrix: |
11880 | if (areCompatMatrixTypes(LHS: LHSCan->castAs<ConstantMatrixType>(), |
11881 | RHS: RHSCan->castAs<ConstantMatrixType>())) |
11882 | return LHS; |
11883 | return {}; |
11884 | case Type::ObjCObject: { |
11885 | // Check if the types are assignment compatible. |
11886 | // FIXME: This should be type compatibility, e.g. whether |
11887 | // "LHS x; RHS x;" at global scope is legal. |
11888 | if (canAssignObjCInterfaces(LHS: LHS->castAs<ObjCObjectType>(), |
11889 | RHS: RHS->castAs<ObjCObjectType>())) |
11890 | return LHS; |
11891 | return {}; |
11892 | } |
11893 | case Type::ObjCObjectPointer: |
11894 | if (OfBlockPointer) { |
11895 | if (canAssignObjCInterfacesInBlockPointer( |
11896 | LHSOPT: LHS->castAs<ObjCObjectPointerType>(), |
11897 | RHSOPT: RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) |
11898 | return LHS; |
11899 | return {}; |
11900 | } |
11901 | if (canAssignObjCInterfaces(LHSOPT: LHS->castAs<ObjCObjectPointerType>(), |
11902 | RHSOPT: RHS->castAs<ObjCObjectPointerType>())) |
11903 | return LHS; |
11904 | return {}; |
11905 | case Type::Pipe: |
11906 | assert(LHS != RHS && |
11907 | "Equivalent pipe types should have already been handled!" ); |
11908 | return {}; |
11909 | case Type::ArrayParameter: |
11910 | assert(LHS != RHS && |
11911 | "Equivalent ArrayParameter types should have already been handled!" ); |
11912 | return {}; |
11913 | case Type::BitInt: { |
11914 | // Merge two bit-precise int types, while trying to preserve typedef info. |
11915 | bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned(); |
11916 | bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned(); |
11917 | unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits(); |
11918 | unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits(); |
11919 | |
11920 | // Like unsigned/int, shouldn't have a type if they don't match. |
11921 | if (LHSUnsigned != RHSUnsigned) |
11922 | return {}; |
11923 | |
11924 | if (LHSBits != RHSBits) |
11925 | return {}; |
11926 | return LHS; |
11927 | } |
11928 | case Type::HLSLAttributedResource: { |
11929 | const HLSLAttributedResourceType *LHSTy = |
11930 | LHS->castAs<HLSLAttributedResourceType>(); |
11931 | const HLSLAttributedResourceType *RHSTy = |
11932 | RHS->castAs<HLSLAttributedResourceType>(); |
11933 | assert(LHSTy->getWrappedType() == RHSTy->getWrappedType() && |
11934 | LHSTy->getWrappedType()->isHLSLResourceType() && |
11935 | "HLSLAttributedResourceType should always wrap __hlsl_resource_t" ); |
11936 | |
11937 | if (LHSTy->getAttrs() == RHSTy->getAttrs() && |
11938 | LHSTy->getContainedType() == RHSTy->getContainedType()) |
11939 | return LHS; |
11940 | return {}; |
11941 | } |
11942 | case Type::HLSLInlineSpirv: |
11943 | const HLSLInlineSpirvType *LHSTy = LHS->castAs<HLSLInlineSpirvType>(); |
11944 | const HLSLInlineSpirvType *RHSTy = RHS->castAs<HLSLInlineSpirvType>(); |
11945 | |
11946 | if (LHSTy->getOpcode() == RHSTy->getOpcode() && |
11947 | LHSTy->getSize() == RHSTy->getSize() && |
11948 | LHSTy->getAlignment() == RHSTy->getAlignment()) { |
11949 | for (size_t I = 0; I < LHSTy->getOperands().size(); I++) |
11950 | if (LHSTy->getOperands()[I] != RHSTy->getOperands()[I]) |
11951 | return {}; |
11952 | |
11953 | return LHS; |
11954 | } |
11955 | return {}; |
11956 | } |
11957 | |
11958 | llvm_unreachable("Invalid Type::Class!" ); |
11959 | } |
11960 | |
11961 | bool ASTContext::mergeExtParameterInfo( |
11962 | const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, |
11963 | bool &CanUseFirst, bool &CanUseSecond, |
11964 | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { |
11965 | assert(NewParamInfos.empty() && "param info list not empty" ); |
11966 | CanUseFirst = CanUseSecond = true; |
11967 | bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); |
11968 | bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); |
11969 | |
11970 | // Fast path: if the first type doesn't have ext parameter infos, |
11971 | // we match if and only if the second type also doesn't have them. |
11972 | if (!FirstHasInfo && !SecondHasInfo) |
11973 | return true; |
11974 | |
11975 | bool NeedParamInfo = false; |
11976 | size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() |
11977 | : SecondFnType->getExtParameterInfos().size(); |
11978 | |
11979 | for (size_t I = 0; I < E; ++I) { |
11980 | FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; |
11981 | if (FirstHasInfo) |
11982 | FirstParam = FirstFnType->getExtParameterInfo(I); |
11983 | if (SecondHasInfo) |
11984 | SecondParam = SecondFnType->getExtParameterInfo(I); |
11985 | |
11986 | // Cannot merge unless everything except the noescape flag matches. |
11987 | if (FirstParam.withIsNoEscape(NoEscape: false) != SecondParam.withIsNoEscape(NoEscape: false)) |
11988 | return false; |
11989 | |
11990 | bool FirstNoEscape = FirstParam.isNoEscape(); |
11991 | bool SecondNoEscape = SecondParam.isNoEscape(); |
11992 | bool IsNoEscape = FirstNoEscape && SecondNoEscape; |
11993 | NewParamInfos.push_back(Elt: FirstParam.withIsNoEscape(NoEscape: IsNoEscape)); |
11994 | if (NewParamInfos.back().getOpaqueValue()) |
11995 | NeedParamInfo = true; |
11996 | if (FirstNoEscape != IsNoEscape) |
11997 | CanUseFirst = false; |
11998 | if (SecondNoEscape != IsNoEscape) |
11999 | CanUseSecond = false; |
12000 | } |
12001 | |
12002 | if (!NeedParamInfo) |
12003 | NewParamInfos.clear(); |
12004 | |
12005 | return true; |
12006 | } |
12007 | |
12008 | void ASTContext::ResetObjCLayout(const ObjCInterfaceDecl *D) { |
12009 | if (auto It = ObjCLayouts.find(Val: D); It != ObjCLayouts.end()) { |
12010 | It->second = nullptr; |
12011 | for (auto *SubClass : ObjCSubClasses[D]) |
12012 | ResetObjCLayout(D: SubClass); |
12013 | } |
12014 | } |
12015 | |
12016 | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
12017 | /// 'RHS' attributes and returns the merged version; including for function |
12018 | /// return types. |
12019 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
12020 | QualType LHSCan = getCanonicalType(T: LHS), |
12021 | RHSCan = getCanonicalType(T: RHS); |
12022 | // If two types are identical, they are compatible. |
12023 | if (LHSCan == RHSCan) |
12024 | return LHS; |
12025 | if (RHSCan->isFunctionType()) { |
12026 | if (!LHSCan->isFunctionType()) |
12027 | return {}; |
12028 | QualType OldReturnType = |
12029 | cast<FunctionType>(Val: RHSCan.getTypePtr())->getReturnType(); |
12030 | QualType NewReturnType = |
12031 | cast<FunctionType>(Val: LHSCan.getTypePtr())->getReturnType(); |
12032 | QualType ResReturnType = |
12033 | mergeObjCGCQualifiers(LHS: NewReturnType, RHS: OldReturnType); |
12034 | if (ResReturnType.isNull()) |
12035 | return {}; |
12036 | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
12037 | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
12038 | // In either case, use OldReturnType to build the new function type. |
12039 | const auto *F = LHS->castAs<FunctionType>(); |
12040 | if (const auto *FPT = cast<FunctionProtoType>(Val: F)) { |
12041 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
12042 | EPI.ExtInfo = getFunctionExtInfo(t: LHS); |
12043 | QualType ResultType = |
12044 | getFunctionType(ResultTy: OldReturnType, Args: FPT->getParamTypes(), EPI); |
12045 | return ResultType; |
12046 | } |
12047 | } |
12048 | return {}; |
12049 | } |
12050 | |
12051 | // If the qualifiers are different, the types can still be merged. |
12052 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
12053 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
12054 | if (LQuals != RQuals) { |
12055 | // If any of these qualifiers are different, we have a type mismatch. |
12056 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
12057 | LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
12058 | return {}; |
12059 | |
12060 | // Exactly one GC qualifier difference is allowed: __strong is |
12061 | // okay if the other type has no GC qualifier but is an Objective |
12062 | // C object pointer (i.e. implicitly strong by default). We fix |
12063 | // this by pretending that the unqualified type was actually |
12064 | // qualified __strong. |
12065 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
12066 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
12067 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements" ); |
12068 | |
12069 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
12070 | return {}; |
12071 | |
12072 | if (GC_L == Qualifiers::Strong) |
12073 | return LHS; |
12074 | if (GC_R == Qualifiers::Strong) |
12075 | return RHS; |
12076 | return {}; |
12077 | } |
12078 | |
12079 | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
12080 | QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
12081 | QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
12082 | QualType ResQT = mergeObjCGCQualifiers(LHS: LHSBaseQT, RHS: RHSBaseQT); |
12083 | if (ResQT == LHSBaseQT) |
12084 | return LHS; |
12085 | if (ResQT == RHSBaseQT) |
12086 | return RHS; |
12087 | } |
12088 | return {}; |
12089 | } |
12090 | |
12091 | //===----------------------------------------------------------------------===// |
12092 | // Integer Predicates |
12093 | //===----------------------------------------------------------------------===// |
12094 | |
12095 | unsigned ASTContext::getIntWidth(QualType T) const { |
12096 | if (const auto *ET = T->getAs<EnumType>()) |
12097 | T = ET->getDecl()->getIntegerType(); |
12098 | if (T->isBooleanType()) |
12099 | return 1; |
12100 | if (const auto *EIT = T->getAs<BitIntType>()) |
12101 | return EIT->getNumBits(); |
12102 | // For builtin types, just use the standard type sizing method |
12103 | return (unsigned)getTypeSize(T); |
12104 | } |
12105 | |
12106 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { |
12107 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
12108 | T->isFixedPointType()) && |
12109 | "Unexpected type" ); |
12110 | |
12111 | // Turn <4 x signed int> -> <4 x unsigned int> |
12112 | if (const auto *VTy = T->getAs<VectorType>()) |
12113 | return getVectorType(vecType: getCorrespondingUnsignedType(T: VTy->getElementType()), |
12114 | NumElts: VTy->getNumElements(), VecKind: VTy->getVectorKind()); |
12115 | |
12116 | // For _BitInt, return an unsigned _BitInt with same width. |
12117 | if (const auto *EITy = T->getAs<BitIntType>()) |
12118 | return getBitIntType(/*Unsigned=*/IsUnsigned: true, NumBits: EITy->getNumBits()); |
12119 | |
12120 | // For enums, get the underlying integer type of the enum, and let the general |
12121 | // integer type signchanging code handle it. |
12122 | if (const auto *ETy = T->getAs<EnumType>()) |
12123 | T = ETy->getDecl()->getIntegerType(); |
12124 | |
12125 | switch (T->castAs<BuiltinType>()->getKind()) { |
12126 | case BuiltinType::Char_U: |
12127 | // Plain `char` is mapped to `unsigned char` even if it's already unsigned |
12128 | case BuiltinType::Char_S: |
12129 | case BuiltinType::SChar: |
12130 | case BuiltinType::Char8: |
12131 | return UnsignedCharTy; |
12132 | case BuiltinType::Short: |
12133 | return UnsignedShortTy; |
12134 | case BuiltinType::Int: |
12135 | return UnsignedIntTy; |
12136 | case BuiltinType::Long: |
12137 | return UnsignedLongTy; |
12138 | case BuiltinType::LongLong: |
12139 | return UnsignedLongLongTy; |
12140 | case BuiltinType::Int128: |
12141 | return UnsignedInt128Ty; |
12142 | // wchar_t is special. It is either signed or not, but when it's signed, |
12143 | // there's no matching "unsigned wchar_t". Therefore we return the unsigned |
12144 | // version of its underlying type instead. |
12145 | case BuiltinType::WChar_S: |
12146 | return getUnsignedWCharType(); |
12147 | |
12148 | case BuiltinType::ShortAccum: |
12149 | return UnsignedShortAccumTy; |
12150 | case BuiltinType::Accum: |
12151 | return UnsignedAccumTy; |
12152 | case BuiltinType::LongAccum: |
12153 | return UnsignedLongAccumTy; |
12154 | case BuiltinType::SatShortAccum: |
12155 | return SatUnsignedShortAccumTy; |
12156 | case BuiltinType::SatAccum: |
12157 | return SatUnsignedAccumTy; |
12158 | case BuiltinType::SatLongAccum: |
12159 | return SatUnsignedLongAccumTy; |
12160 | case BuiltinType::ShortFract: |
12161 | return UnsignedShortFractTy; |
12162 | case BuiltinType::Fract: |
12163 | return UnsignedFractTy; |
12164 | case BuiltinType::LongFract: |
12165 | return UnsignedLongFractTy; |
12166 | case BuiltinType::SatShortFract: |
12167 | return SatUnsignedShortFractTy; |
12168 | case BuiltinType::SatFract: |
12169 | return SatUnsignedFractTy; |
12170 | case BuiltinType::SatLongFract: |
12171 | return SatUnsignedLongFractTy; |
12172 | default: |
12173 | assert((T->hasUnsignedIntegerRepresentation() || |
12174 | T->isUnsignedFixedPointType()) && |
12175 | "Unexpected signed integer or fixed point type" ); |
12176 | return T; |
12177 | } |
12178 | } |
12179 | |
12180 | QualType ASTContext::getCorrespondingSignedType(QualType T) const { |
12181 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
12182 | T->isFixedPointType()) && |
12183 | "Unexpected type" ); |
12184 | |
12185 | // Turn <4 x unsigned int> -> <4 x signed int> |
12186 | if (const auto *VTy = T->getAs<VectorType>()) |
12187 | return getVectorType(vecType: getCorrespondingSignedType(T: VTy->getElementType()), |
12188 | NumElts: VTy->getNumElements(), VecKind: VTy->getVectorKind()); |
12189 | |
12190 | // For _BitInt, return a signed _BitInt with same width. |
12191 | if (const auto *EITy = T->getAs<BitIntType>()) |
12192 | return getBitIntType(/*Unsigned=*/IsUnsigned: false, NumBits: EITy->getNumBits()); |
12193 | |
12194 | // For enums, get the underlying integer type of the enum, and let the general |
12195 | // integer type signchanging code handle it. |
12196 | if (const auto *ETy = T->getAs<EnumType>()) |
12197 | T = ETy->getDecl()->getIntegerType(); |
12198 | |
12199 | switch (T->castAs<BuiltinType>()->getKind()) { |
12200 | case BuiltinType::Char_S: |
12201 | // Plain `char` is mapped to `signed char` even if it's already signed |
12202 | case BuiltinType::Char_U: |
12203 | case BuiltinType::UChar: |
12204 | case BuiltinType::Char8: |
12205 | return SignedCharTy; |
12206 | case BuiltinType::UShort: |
12207 | return ShortTy; |
12208 | case BuiltinType::UInt: |
12209 | return IntTy; |
12210 | case BuiltinType::ULong: |
12211 | return LongTy; |
12212 | case BuiltinType::ULongLong: |
12213 | return LongLongTy; |
12214 | case BuiltinType::UInt128: |
12215 | return Int128Ty; |
12216 | // wchar_t is special. It is either unsigned or not, but when it's unsigned, |
12217 | // there's no matching "signed wchar_t". Therefore we return the signed |
12218 | // version of its underlying type instead. |
12219 | case BuiltinType::WChar_U: |
12220 | return getSignedWCharType(); |
12221 | |
12222 | case BuiltinType::UShortAccum: |
12223 | return ShortAccumTy; |
12224 | case BuiltinType::UAccum: |
12225 | return AccumTy; |
12226 | case BuiltinType::ULongAccum: |
12227 | return LongAccumTy; |
12228 | case BuiltinType::SatUShortAccum: |
12229 | return SatShortAccumTy; |
12230 | case BuiltinType::SatUAccum: |
12231 | return SatAccumTy; |
12232 | case BuiltinType::SatULongAccum: |
12233 | return SatLongAccumTy; |
12234 | case BuiltinType::UShortFract: |
12235 | return ShortFractTy; |
12236 | case BuiltinType::UFract: |
12237 | return FractTy; |
12238 | case BuiltinType::ULongFract: |
12239 | return LongFractTy; |
12240 | case BuiltinType::SatUShortFract: |
12241 | return SatShortFractTy; |
12242 | case BuiltinType::SatUFract: |
12243 | return SatFractTy; |
12244 | case BuiltinType::SatULongFract: |
12245 | return SatLongFractTy; |
12246 | default: |
12247 | assert( |
12248 | (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && |
12249 | "Unexpected signed integer or fixed point type" ); |
12250 | return T; |
12251 | } |
12252 | } |
12253 | |
12254 | ASTMutationListener::~ASTMutationListener() = default; |
12255 | |
12256 | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, |
12257 | QualType ReturnType) {} |
12258 | |
12259 | //===----------------------------------------------------------------------===// |
12260 | // Builtin Type Computation |
12261 | //===----------------------------------------------------------------------===// |
12262 | |
12263 | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
12264 | /// pointer over the consumed characters. This returns the resultant type. If |
12265 | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
12266 | /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
12267 | /// a vector of "i*". |
12268 | /// |
12269 | /// RequiresICE is filled in on return to indicate whether the value is required |
12270 | /// to be an Integer Constant Expression. |
12271 | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
12272 | ASTContext::GetBuiltinTypeError &Error, |
12273 | bool &RequiresICE, |
12274 | bool AllowTypeModifiers) { |
12275 | // Modifiers. |
12276 | int HowLong = 0; |
12277 | bool Signed = false, Unsigned = false; |
12278 | RequiresICE = false; |
12279 | |
12280 | // Read the prefixed modifiers first. |
12281 | bool Done = false; |
12282 | #ifndef NDEBUG |
12283 | bool IsSpecial = false; |
12284 | #endif |
12285 | while (!Done) { |
12286 | switch (*Str++) { |
12287 | default: Done = true; --Str; break; |
12288 | case 'I': |
12289 | RequiresICE = true; |
12290 | break; |
12291 | case 'S': |
12292 | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!" ); |
12293 | assert(!Signed && "Can't use 'S' modifier multiple times!" ); |
12294 | Signed = true; |
12295 | break; |
12296 | case 'U': |
12297 | assert(!Signed && "Can't use both 'S' and 'U' modifiers!" ); |
12298 | assert(!Unsigned && "Can't use 'U' modifier multiple times!" ); |
12299 | Unsigned = true; |
12300 | break; |
12301 | case 'L': |
12302 | assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers" ); |
12303 | assert(HowLong <= 2 && "Can't have LLLL modifier" ); |
12304 | ++HowLong; |
12305 | break; |
12306 | case 'N': |
12307 | // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. |
12308 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
12309 | assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!" ); |
12310 | #ifndef NDEBUG |
12311 | IsSpecial = true; |
12312 | #endif |
12313 | if (Context.getTargetInfo().getLongWidth() == 32) |
12314 | ++HowLong; |
12315 | break; |
12316 | case 'W': |
12317 | // This modifier represents int64 type. |
12318 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
12319 | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!" ); |
12320 | #ifndef NDEBUG |
12321 | IsSpecial = true; |
12322 | #endif |
12323 | switch (Context.getTargetInfo().getInt64Type()) { |
12324 | default: |
12325 | llvm_unreachable("Unexpected integer type" ); |
12326 | case TargetInfo::SignedLong: |
12327 | HowLong = 1; |
12328 | break; |
12329 | case TargetInfo::SignedLongLong: |
12330 | HowLong = 2; |
12331 | break; |
12332 | } |
12333 | break; |
12334 | case 'Z': |
12335 | // This modifier represents int32 type. |
12336 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
12337 | assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!" ); |
12338 | #ifndef NDEBUG |
12339 | IsSpecial = true; |
12340 | #endif |
12341 | switch (Context.getTargetInfo().getIntTypeByWidth(BitWidth: 32, IsSigned: true)) { |
12342 | default: |
12343 | llvm_unreachable("Unexpected integer type" ); |
12344 | case TargetInfo::SignedInt: |
12345 | HowLong = 0; |
12346 | break; |
12347 | case TargetInfo::SignedLong: |
12348 | HowLong = 1; |
12349 | break; |
12350 | case TargetInfo::SignedLongLong: |
12351 | HowLong = 2; |
12352 | break; |
12353 | } |
12354 | break; |
12355 | case 'O': |
12356 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
12357 | assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!" ); |
12358 | #ifndef NDEBUG |
12359 | IsSpecial = true; |
12360 | #endif |
12361 | if (Context.getLangOpts().OpenCL) |
12362 | HowLong = 1; |
12363 | else |
12364 | HowLong = 2; |
12365 | break; |
12366 | } |
12367 | } |
12368 | |
12369 | QualType Type; |
12370 | |
12371 | // Read the base type. |
12372 | switch (*Str++) { |
12373 | default: llvm_unreachable("Unknown builtin type letter!" ); |
12374 | case 'x': |
12375 | assert(HowLong == 0 && !Signed && !Unsigned && |
12376 | "Bad modifiers used with 'x'!" ); |
12377 | Type = Context.Float16Ty; |
12378 | break; |
12379 | case 'y': |
12380 | assert(HowLong == 0 && !Signed && !Unsigned && |
12381 | "Bad modifiers used with 'y'!" ); |
12382 | Type = Context.BFloat16Ty; |
12383 | break; |
12384 | case 'v': |
12385 | assert(HowLong == 0 && !Signed && !Unsigned && |
12386 | "Bad modifiers used with 'v'!" ); |
12387 | Type = Context.VoidTy; |
12388 | break; |
12389 | case 'h': |
12390 | assert(HowLong == 0 && !Signed && !Unsigned && |
12391 | "Bad modifiers used with 'h'!" ); |
12392 | Type = Context.HalfTy; |
12393 | break; |
12394 | case 'f': |
12395 | assert(HowLong == 0 && !Signed && !Unsigned && |
12396 | "Bad modifiers used with 'f'!" ); |
12397 | Type = Context.FloatTy; |
12398 | break; |
12399 | case 'd': |
12400 | assert(HowLong < 3 && !Signed && !Unsigned && |
12401 | "Bad modifiers used with 'd'!" ); |
12402 | if (HowLong == 1) |
12403 | Type = Context.LongDoubleTy; |
12404 | else if (HowLong == 2) |
12405 | Type = Context.Float128Ty; |
12406 | else |
12407 | Type = Context.DoubleTy; |
12408 | break; |
12409 | case 's': |
12410 | assert(HowLong == 0 && "Bad modifiers used with 's'!" ); |
12411 | if (Unsigned) |
12412 | Type = Context.UnsignedShortTy; |
12413 | else |
12414 | Type = Context.ShortTy; |
12415 | break; |
12416 | case 'i': |
12417 | if (HowLong == 3) |
12418 | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
12419 | else if (HowLong == 2) |
12420 | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
12421 | else if (HowLong == 1) |
12422 | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
12423 | else |
12424 | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
12425 | break; |
12426 | case 'c': |
12427 | assert(HowLong == 0 && "Bad modifiers used with 'c'!" ); |
12428 | if (Signed) |
12429 | Type = Context.SignedCharTy; |
12430 | else if (Unsigned) |
12431 | Type = Context.UnsignedCharTy; |
12432 | else |
12433 | Type = Context.CharTy; |
12434 | break; |
12435 | case 'b': // boolean |
12436 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!" ); |
12437 | Type = Context.BoolTy; |
12438 | break; |
12439 | case 'z': // size_t. |
12440 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!" ); |
12441 | Type = Context.getSizeType(); |
12442 | break; |
12443 | case 'w': // wchar_t. |
12444 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!" ); |
12445 | Type = Context.getWideCharType(); |
12446 | break; |
12447 | case 'F': |
12448 | Type = Context.getCFConstantStringType(); |
12449 | break; |
12450 | case 'G': |
12451 | Type = Context.getObjCIdType(); |
12452 | break; |
12453 | case 'H': |
12454 | Type = Context.getObjCSelType(); |
12455 | break; |
12456 | case 'M': |
12457 | Type = Context.getObjCSuperType(); |
12458 | break; |
12459 | case 'a': |
12460 | Type = Context.getBuiltinVaListType(); |
12461 | assert(!Type.isNull() && "builtin va list type not initialized!" ); |
12462 | break; |
12463 | case 'A': |
12464 | // This is a "reference" to a va_list; however, what exactly |
12465 | // this means depends on how va_list is defined. There are two |
12466 | // different kinds of va_list: ones passed by value, and ones |
12467 | // passed by reference. An example of a by-value va_list is |
12468 | // x86, where va_list is a char*. An example of by-ref va_list |
12469 | // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
12470 | // we want this argument to be a char*&; for x86-64, we want |
12471 | // it to be a __va_list_tag*. |
12472 | Type = Context.getBuiltinVaListType(); |
12473 | assert(!Type.isNull() && "builtin va list type not initialized!" ); |
12474 | if (Type->isArrayType()) |
12475 | Type = Context.getArrayDecayedType(Ty: Type); |
12476 | else |
12477 | Type = Context.getLValueReferenceType(T: Type); |
12478 | break; |
12479 | case 'q': { |
12480 | char *End; |
12481 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
12482 | assert(End != Str && "Missing vector size" ); |
12483 | Str = End; |
12484 | |
12485 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
12486 | RequiresICE, AllowTypeModifiers: false); |
12487 | assert(!RequiresICE && "Can't require vector ICE" ); |
12488 | |
12489 | Type = Context.getScalableVectorType(EltTy: ElementType, NumElts: NumElements); |
12490 | break; |
12491 | } |
12492 | case 'Q': { |
12493 | switch (*Str++) { |
12494 | case 'a': { |
12495 | Type = Context.SveCountTy; |
12496 | break; |
12497 | } |
12498 | case 'b': { |
12499 | Type = Context.AMDGPUBufferRsrcTy; |
12500 | break; |
12501 | } |
12502 | default: |
12503 | llvm_unreachable("Unexpected target builtin type" ); |
12504 | } |
12505 | break; |
12506 | } |
12507 | case 'V': { |
12508 | char *End; |
12509 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
12510 | assert(End != Str && "Missing vector size" ); |
12511 | Str = End; |
12512 | |
12513 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
12514 | RequiresICE, AllowTypeModifiers: false); |
12515 | assert(!RequiresICE && "Can't require vector ICE" ); |
12516 | |
12517 | // TODO: No way to make AltiVec vectors in builtins yet. |
12518 | Type = Context.getVectorType(vecType: ElementType, NumElts: NumElements, VecKind: VectorKind::Generic); |
12519 | break; |
12520 | } |
12521 | case 'E': { |
12522 | char *End; |
12523 | |
12524 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
12525 | assert(End != Str && "Missing vector size" ); |
12526 | |
12527 | Str = End; |
12528 | |
12529 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
12530 | AllowTypeModifiers: false); |
12531 | Type = Context.getExtVectorType(vecType: ElementType, NumElts: NumElements); |
12532 | break; |
12533 | } |
12534 | case 'X': { |
12535 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
12536 | AllowTypeModifiers: false); |
12537 | assert(!RequiresICE && "Can't require complex ICE" ); |
12538 | Type = Context.getComplexType(T: ElementType); |
12539 | break; |
12540 | } |
12541 | case 'Y': |
12542 | Type = Context.getPointerDiffType(); |
12543 | break; |
12544 | case 'P': |
12545 | Type = Context.getFILEType(); |
12546 | if (Type.isNull()) { |
12547 | Error = ASTContext::GE_Missing_stdio; |
12548 | return {}; |
12549 | } |
12550 | break; |
12551 | case 'J': |
12552 | if (Signed) |
12553 | Type = Context.getsigjmp_bufType(); |
12554 | else |
12555 | Type = Context.getjmp_bufType(); |
12556 | |
12557 | if (Type.isNull()) { |
12558 | Error = ASTContext::GE_Missing_setjmp; |
12559 | return {}; |
12560 | } |
12561 | break; |
12562 | case 'K': |
12563 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!" ); |
12564 | Type = Context.getucontext_tType(); |
12565 | |
12566 | if (Type.isNull()) { |
12567 | Error = ASTContext::GE_Missing_ucontext; |
12568 | return {}; |
12569 | } |
12570 | break; |
12571 | case 'p': |
12572 | Type = Context.getProcessIDType(); |
12573 | break; |
12574 | case 'm': |
12575 | Type = Context.MFloat8Ty; |
12576 | break; |
12577 | } |
12578 | |
12579 | // If there are modifiers and if we're allowed to parse them, go for it. |
12580 | Done = !AllowTypeModifiers; |
12581 | while (!Done) { |
12582 | switch (char c = *Str++) { |
12583 | default: Done = true; --Str; break; |
12584 | case '*': |
12585 | case '&': { |
12586 | // Both pointers and references can have their pointee types |
12587 | // qualified with an address space. |
12588 | char *End; |
12589 | unsigned AddrSpace = strtoul(nptr: Str, endptr: &End, base: 10); |
12590 | if (End != Str) { |
12591 | // Note AddrSpace == 0 is not the same as an unspecified address space. |
12592 | Type = Context.getAddrSpaceQualType( |
12593 | T: Type, |
12594 | AddressSpace: Context.getLangASForBuiltinAddressSpace(AS: AddrSpace)); |
12595 | Str = End; |
12596 | } |
12597 | if (c == '*') |
12598 | Type = Context.getPointerType(T: Type); |
12599 | else |
12600 | Type = Context.getLValueReferenceType(T: Type); |
12601 | break; |
12602 | } |
12603 | // FIXME: There's no way to have a built-in with an rvalue ref arg. |
12604 | case 'C': |
12605 | Type = Type.withConst(); |
12606 | break; |
12607 | case 'D': |
12608 | Type = Context.getVolatileType(T: Type); |
12609 | break; |
12610 | case 'R': |
12611 | Type = Type.withRestrict(); |
12612 | break; |
12613 | } |
12614 | } |
12615 | |
12616 | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && |
12617 | "Integer constant 'I' type must be an integer" ); |
12618 | |
12619 | return Type; |
12620 | } |
12621 | |
12622 | // On some targets such as PowerPC, some of the builtins are defined with custom |
12623 | // type descriptors for target-dependent types. These descriptors are decoded in |
12624 | // other functions, but it may be useful to be able to fall back to default |
12625 | // descriptor decoding to define builtins mixing target-dependent and target- |
12626 | // independent types. This function allows decoding one type descriptor with |
12627 | // default decoding. |
12628 | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, |
12629 | GetBuiltinTypeError &Error, bool &RequireICE, |
12630 | bool AllowTypeModifiers) const { |
12631 | return DecodeTypeFromStr(Str, Context, Error, RequiresICE&: RequireICE, AllowTypeModifiers); |
12632 | } |
12633 | |
12634 | /// GetBuiltinType - Return the type for the specified builtin. |
12635 | QualType ASTContext::GetBuiltinType(unsigned Id, |
12636 | GetBuiltinTypeError &Error, |
12637 | unsigned *IntegerConstantArgs) const { |
12638 | const char *TypeStr = BuiltinInfo.getTypeString(ID: Id); |
12639 | if (TypeStr[0] == '\0') { |
12640 | Error = GE_Missing_type; |
12641 | return {}; |
12642 | } |
12643 | |
12644 | SmallVector<QualType, 8> ArgTypes; |
12645 | |
12646 | bool RequiresICE = false; |
12647 | Error = GE_None; |
12648 | QualType ResType = DecodeTypeFromStr(Str&: TypeStr, Context: *this, Error, |
12649 | RequiresICE, AllowTypeModifiers: true); |
12650 | if (Error != GE_None) |
12651 | return {}; |
12652 | |
12653 | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE" ); |
12654 | |
12655 | while (TypeStr[0] && TypeStr[0] != '.') { |
12656 | QualType Ty = DecodeTypeFromStr(Str&: TypeStr, Context: *this, Error, RequiresICE, AllowTypeModifiers: true); |
12657 | if (Error != GE_None) |
12658 | return {}; |
12659 | |
12660 | // If this argument is required to be an IntegerConstantExpression and the |
12661 | // caller cares, fill in the bitmask we return. |
12662 | if (RequiresICE && IntegerConstantArgs) |
12663 | *IntegerConstantArgs |= 1 << ArgTypes.size(); |
12664 | |
12665 | // Do array -> pointer decay. The builtin should use the decayed type. |
12666 | if (Ty->isArrayType()) |
12667 | Ty = getArrayDecayedType(Ty); |
12668 | |
12669 | ArgTypes.push_back(Elt: Ty); |
12670 | } |
12671 | |
12672 | if (Id == Builtin::BI__GetExceptionInfo) |
12673 | return {}; |
12674 | |
12675 | assert((TypeStr[0] != '.' || TypeStr[1] == 0) && |
12676 | "'.' should only occur at end of builtin type list!" ); |
12677 | |
12678 | bool Variadic = (TypeStr[0] == '.'); |
12679 | |
12680 | FunctionType::ExtInfo EI(getDefaultCallingConvention( |
12681 | IsVariadic: Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
12682 | if (BuiltinInfo.isNoReturn(ID: Id)) EI = EI.withNoReturn(noReturn: true); |
12683 | |
12684 | |
12685 | // We really shouldn't be making a no-proto type here. |
12686 | if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes()) |
12687 | return getFunctionNoProtoType(ResultTy: ResType, Info: EI); |
12688 | |
12689 | FunctionProtoType::ExtProtoInfo EPI; |
12690 | EPI.ExtInfo = EI; |
12691 | EPI.Variadic = Variadic; |
12692 | if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(ID: Id)) |
12693 | EPI.ExceptionSpec.Type = |
12694 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
12695 | |
12696 | return getFunctionType(ResultTy: ResType, Args: ArgTypes, EPI); |
12697 | } |
12698 | |
12699 | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, |
12700 | const FunctionDecl *FD) { |
12701 | if (!FD->isExternallyVisible()) |
12702 | return GVA_Internal; |
12703 | |
12704 | // Non-user-provided functions get emitted as weak definitions with every |
12705 | // use, no matter whether they've been explicitly instantiated etc. |
12706 | if (!FD->isUserProvided()) |
12707 | return GVA_DiscardableODR; |
12708 | |
12709 | GVALinkage External; |
12710 | switch (FD->getTemplateSpecializationKind()) { |
12711 | case TSK_Undeclared: |
12712 | case TSK_ExplicitSpecialization: |
12713 | External = GVA_StrongExternal; |
12714 | break; |
12715 | |
12716 | case TSK_ExplicitInstantiationDefinition: |
12717 | return GVA_StrongODR; |
12718 | |
12719 | // C++11 [temp.explicit]p10: |
12720 | // [ Note: The intent is that an inline function that is the subject of |
12721 | // an explicit instantiation declaration will still be implicitly |
12722 | // instantiated when used so that the body can be considered for |
12723 | // inlining, but that no out-of-line copy of the inline function would be |
12724 | // generated in the translation unit. -- end note ] |
12725 | case TSK_ExplicitInstantiationDeclaration: |
12726 | return GVA_AvailableExternally; |
12727 | |
12728 | case TSK_ImplicitInstantiation: |
12729 | External = GVA_DiscardableODR; |
12730 | break; |
12731 | } |
12732 | |
12733 | if (!FD->isInlined()) |
12734 | return External; |
12735 | |
12736 | if ((!Context.getLangOpts().CPlusPlus && |
12737 | !Context.getTargetInfo().getCXXABI().isMicrosoft() && |
12738 | !FD->hasAttr<DLLExportAttr>()) || |
12739 | FD->hasAttr<GNUInlineAttr>()) { |
12740 | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. |
12741 | |
12742 | // GNU or C99 inline semantics. Determine whether this symbol should be |
12743 | // externally visible. |
12744 | if (FD->isInlineDefinitionExternallyVisible()) |
12745 | return External; |
12746 | |
12747 | // C99 inline semantics, where the symbol is not externally visible. |
12748 | return GVA_AvailableExternally; |
12749 | } |
12750 | |
12751 | // Functions specified with extern and inline in -fms-compatibility mode |
12752 | // forcibly get emitted. While the body of the function cannot be later |
12753 | // replaced, the function definition cannot be discarded. |
12754 | if (FD->isMSExternInline()) |
12755 | return GVA_StrongODR; |
12756 | |
12757 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
12758 | isa<CXXConstructorDecl>(Val: FD) && |
12759 | cast<CXXConstructorDecl>(Val: FD)->isInheritingConstructor()) |
12760 | // Our approach to inheriting constructors is fundamentally different from |
12761 | // that used by the MS ABI, so keep our inheriting constructor thunks |
12762 | // internal rather than trying to pick an unambiguous mangling for them. |
12763 | return GVA_Internal; |
12764 | |
12765 | return GVA_DiscardableODR; |
12766 | } |
12767 | |
12768 | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, |
12769 | const Decl *D, GVALinkage L) { |
12770 | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx |
12771 | // dllexport/dllimport on inline functions. |
12772 | if (D->hasAttr<DLLImportAttr>()) { |
12773 | if (L == GVA_DiscardableODR || L == GVA_StrongODR) |
12774 | return GVA_AvailableExternally; |
12775 | } else if (D->hasAttr<DLLExportAttr>()) { |
12776 | if (L == GVA_DiscardableODR) |
12777 | return GVA_StrongODR; |
12778 | } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { |
12779 | // Device-side functions with __global__ attribute must always be |
12780 | // visible externally so they can be launched from host. |
12781 | if (D->hasAttr<CUDAGlobalAttr>() && |
12782 | (L == GVA_DiscardableODR || L == GVA_Internal)) |
12783 | return GVA_StrongODR; |
12784 | // Single source offloading languages like CUDA/HIP need to be able to |
12785 | // access static device variables from host code of the same compilation |
12786 | // unit. This is done by externalizing the static variable with a shared |
12787 | // name between the host and device compilation which is the same for the |
12788 | // same compilation unit whereas different among different compilation |
12789 | // units. |
12790 | if (Context.shouldExternalize(D)) |
12791 | return GVA_StrongExternal; |
12792 | } |
12793 | return L; |
12794 | } |
12795 | |
12796 | /// Adjust the GVALinkage for a declaration based on what an external AST source |
12797 | /// knows about whether there can be other definitions of this declaration. |
12798 | static GVALinkage |
12799 | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, |
12800 | GVALinkage L) { |
12801 | ExternalASTSource *Source = Ctx.getExternalSource(); |
12802 | if (!Source) |
12803 | return L; |
12804 | |
12805 | switch (Source->hasExternalDefinitions(D)) { |
12806 | case ExternalASTSource::EK_Never: |
12807 | // Other translation units rely on us to provide the definition. |
12808 | if (L == GVA_DiscardableODR) |
12809 | return GVA_StrongODR; |
12810 | break; |
12811 | |
12812 | case ExternalASTSource::EK_Always: |
12813 | return GVA_AvailableExternally; |
12814 | |
12815 | case ExternalASTSource::EK_ReplyHazy: |
12816 | break; |
12817 | } |
12818 | return L; |
12819 | } |
12820 | |
12821 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { |
12822 | return adjustGVALinkageForExternalDefinitionKind(Ctx: *this, D: FD, |
12823 | L: adjustGVALinkageForAttributes(Context: *this, D: FD, |
12824 | L: basicGVALinkageForFunction(Context: *this, FD))); |
12825 | } |
12826 | |
12827 | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, |
12828 | const VarDecl *VD) { |
12829 | // As an extension for interactive REPLs, make sure constant variables are |
12830 | // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl |
12831 | // marking them as internal. |
12832 | if (Context.getLangOpts().CPlusPlus && |
12833 | Context.getLangOpts().IncrementalExtensions && |
12834 | VD->getType().isConstQualified() && |
12835 | !VD->getType().isVolatileQualified() && !VD->isInline() && |
12836 | !isa<VarTemplateSpecializationDecl>(Val: VD) && !VD->getDescribedVarTemplate()) |
12837 | return GVA_DiscardableODR; |
12838 | |
12839 | if (!VD->isExternallyVisible()) |
12840 | return GVA_Internal; |
12841 | |
12842 | if (VD->isStaticLocal()) { |
12843 | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); |
12844 | while (LexicalContext && !isa<FunctionDecl>(Val: LexicalContext)) |
12845 | LexicalContext = LexicalContext->getLexicalParent(); |
12846 | |
12847 | // ObjC Blocks can create local variables that don't have a FunctionDecl |
12848 | // LexicalContext. |
12849 | if (!LexicalContext) |
12850 | return GVA_DiscardableODR; |
12851 | |
12852 | // Otherwise, let the static local variable inherit its linkage from the |
12853 | // nearest enclosing function. |
12854 | auto StaticLocalLinkage = |
12855 | Context.GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: LexicalContext)); |
12856 | |
12857 | // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must |
12858 | // be emitted in any object with references to the symbol for the object it |
12859 | // contains, whether inline or out-of-line." |
12860 | // Similar behavior is observed with MSVC. An alternative ABI could use |
12861 | // StrongODR/AvailableExternally to match the function, but none are |
12862 | // known/supported currently. |
12863 | if (StaticLocalLinkage == GVA_StrongODR || |
12864 | StaticLocalLinkage == GVA_AvailableExternally) |
12865 | return GVA_DiscardableODR; |
12866 | return StaticLocalLinkage; |
12867 | } |
12868 | |
12869 | // MSVC treats in-class initialized static data members as definitions. |
12870 | // By giving them non-strong linkage, out-of-line definitions won't |
12871 | // cause link errors. |
12872 | if (Context.isMSStaticDataMemberInlineDefinition(VD)) |
12873 | return GVA_DiscardableODR; |
12874 | |
12875 | // Most non-template variables have strong linkage; inline variables are |
12876 | // linkonce_odr or (occasionally, for compatibility) weak_odr. |
12877 | GVALinkage StrongLinkage; |
12878 | switch (Context.getInlineVariableDefinitionKind(VD)) { |
12879 | case ASTContext::InlineVariableDefinitionKind::None: |
12880 | StrongLinkage = GVA_StrongExternal; |
12881 | break; |
12882 | case ASTContext::InlineVariableDefinitionKind::Weak: |
12883 | case ASTContext::InlineVariableDefinitionKind::WeakUnknown: |
12884 | StrongLinkage = GVA_DiscardableODR; |
12885 | break; |
12886 | case ASTContext::InlineVariableDefinitionKind::Strong: |
12887 | StrongLinkage = GVA_StrongODR; |
12888 | break; |
12889 | } |
12890 | |
12891 | switch (VD->getTemplateSpecializationKind()) { |
12892 | case TSK_Undeclared: |
12893 | return StrongLinkage; |
12894 | |
12895 | case TSK_ExplicitSpecialization: |
12896 | return Context.getTargetInfo().getCXXABI().isMicrosoft() && |
12897 | VD->isStaticDataMember() |
12898 | ? GVA_StrongODR |
12899 | : StrongLinkage; |
12900 | |
12901 | case TSK_ExplicitInstantiationDefinition: |
12902 | return GVA_StrongODR; |
12903 | |
12904 | case TSK_ExplicitInstantiationDeclaration: |
12905 | return GVA_AvailableExternally; |
12906 | |
12907 | case TSK_ImplicitInstantiation: |
12908 | return GVA_DiscardableODR; |
12909 | } |
12910 | |
12911 | llvm_unreachable("Invalid Linkage!" ); |
12912 | } |
12913 | |
12914 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const { |
12915 | return adjustGVALinkageForExternalDefinitionKind(Ctx: *this, D: VD, |
12916 | L: adjustGVALinkageForAttributes(Context: *this, D: VD, |
12917 | L: basicGVALinkageForVariable(Context: *this, VD))); |
12918 | } |
12919 | |
12920 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
12921 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
12922 | if (!VD->isFileVarDecl()) |
12923 | return false; |
12924 | // Global named register variables (GNU extension) are never emitted. |
12925 | if (VD->getStorageClass() == SC_Register) |
12926 | return false; |
12927 | if (VD->getDescribedVarTemplate() || |
12928 | isa<VarTemplatePartialSpecializationDecl>(Val: VD)) |
12929 | return false; |
12930 | } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
12931 | // We never need to emit an uninstantiated function template. |
12932 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
12933 | return false; |
12934 | } else if (isa<PragmaCommentDecl>(Val: D)) |
12935 | return true; |
12936 | else if (isa<PragmaDetectMismatchDecl>(Val: D)) |
12937 | return true; |
12938 | else if (isa<OMPRequiresDecl>(Val: D)) |
12939 | return true; |
12940 | else if (isa<OMPThreadPrivateDecl>(Val: D)) |
12941 | return !D->getDeclContext()->isDependentContext(); |
12942 | else if (isa<OMPAllocateDecl>(Val: D)) |
12943 | return !D->getDeclContext()->isDependentContext(); |
12944 | else if (isa<OMPDeclareReductionDecl>(Val: D) || isa<OMPDeclareMapperDecl>(Val: D)) |
12945 | return !D->getDeclContext()->isDependentContext(); |
12946 | else if (isa<ImportDecl>(Val: D)) |
12947 | return true; |
12948 | else |
12949 | return false; |
12950 | |
12951 | // If this is a member of a class template, we do not need to emit it. |
12952 | if (D->getDeclContext()->isDependentContext()) |
12953 | return false; |
12954 | |
12955 | // Weak references don't produce any output by themselves. |
12956 | if (D->hasAttr<WeakRefAttr>()) |
12957 | return false; |
12958 | |
12959 | // Aliases and used decls are required. |
12960 | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
12961 | return true; |
12962 | |
12963 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
12964 | // Forward declarations aren't required. |
12965 | if (!FD->doesThisDeclarationHaveABody()) |
12966 | return FD->doesDeclarationForceExternallyVisibleDefinition(); |
12967 | |
12968 | // Function definitions with the sycl_kernel_entry_point attribute are |
12969 | // required during device compilation so that SYCL kernel caller offload |
12970 | // entry points are emitted. |
12971 | if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelEntryPointAttr>()) |
12972 | return true; |
12973 | |
12974 | // FIXME: Functions declared with SYCL_EXTERNAL are required during |
12975 | // device compilation. |
12976 | |
12977 | // Constructors and destructors are required. |
12978 | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
12979 | return true; |
12980 | |
12981 | // The key function for a class is required. This rule only comes |
12982 | // into play when inline functions can be key functions, though. |
12983 | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
12984 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
12985 | const CXXRecordDecl *RD = MD->getParent(); |
12986 | if (MD->isOutOfLine() && RD->isDynamicClass()) { |
12987 | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); |
12988 | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
12989 | return true; |
12990 | } |
12991 | } |
12992 | } |
12993 | |
12994 | GVALinkage Linkage = GetGVALinkageForFunction(FD); |
12995 | |
12996 | // static, static inline, always_inline, and extern inline functions can |
12997 | // always be deferred. Normal inline functions can be deferred in C99/C++. |
12998 | // Implicit template instantiations can also be deferred in C++. |
12999 | return !isDiscardableGVALinkage(L: Linkage); |
13000 | } |
13001 | |
13002 | const auto *VD = cast<VarDecl>(Val: D); |
13003 | assert(VD->isFileVarDecl() && "Expected file scoped var" ); |
13004 | |
13005 | // If the decl is marked as `declare target to`, it should be emitted for the |
13006 | // host and for the device. |
13007 | if (LangOpts.OpenMP && |
13008 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
13009 | return true; |
13010 | |
13011 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && |
13012 | !isMSStaticDataMemberInlineDefinition(VD)) |
13013 | return false; |
13014 | |
13015 | if (VD->shouldEmitInExternalSource()) |
13016 | return false; |
13017 | |
13018 | // Variables that can be needed in other TUs are required. |
13019 | auto Linkage = GetGVALinkageForVariable(VD); |
13020 | if (!isDiscardableGVALinkage(L: Linkage)) |
13021 | return true; |
13022 | |
13023 | // We never need to emit a variable that is available in another TU. |
13024 | if (Linkage == GVA_AvailableExternally) |
13025 | return false; |
13026 | |
13027 | // Variables that have destruction with side-effects are required. |
13028 | if (VD->needsDestruction(Ctx: *this)) |
13029 | return true; |
13030 | |
13031 | // Variables that have initialization with side-effects are required. |
13032 | if (VD->hasInitWithSideEffects()) |
13033 | return true; |
13034 | |
13035 | // Likewise, variables with tuple-like bindings are required if their |
13036 | // bindings have side-effects. |
13037 | if (const auto *DD = dyn_cast<DecompositionDecl>(Val: VD)) { |
13038 | for (const auto *BD : DD->flat_bindings()) |
13039 | if (const auto *BindingVD = BD->getHoldingVar()) |
13040 | if (DeclMustBeEmitted(D: BindingVD)) |
13041 | return true; |
13042 | } |
13043 | |
13044 | return false; |
13045 | } |
13046 | |
13047 | void ASTContext::forEachMultiversionedFunctionVersion( |
13048 | const FunctionDecl *FD, |
13049 | llvm::function_ref<void(FunctionDecl *)> Pred) const { |
13050 | assert(FD->isMultiVersion() && "Only valid for multiversioned functions" ); |
13051 | llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; |
13052 | FD = FD->getMostRecentDecl(); |
13053 | // FIXME: The order of traversal here matters and depends on the order of |
13054 | // lookup results, which happens to be (mostly) oldest-to-newest, but we |
13055 | // shouldn't rely on that. |
13056 | for (auto *CurDecl : |
13057 | FD->getDeclContext()->getRedeclContext()->lookup(Name: FD->getDeclName())) { |
13058 | FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); |
13059 | if (CurFD && hasSameType(T1: CurFD->getType(), T2: FD->getType()) && |
13060 | SeenDecls.insert(V: CurFD).second) { |
13061 | Pred(CurFD); |
13062 | } |
13063 | } |
13064 | } |
13065 | |
13066 | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, |
13067 | bool IsCXXMethod, |
13068 | bool IsBuiltin) const { |
13069 | // Pass through to the C++ ABI object |
13070 | if (IsCXXMethod) |
13071 | return ABI->getDefaultMethodCallConv(isVariadic: IsVariadic); |
13072 | |
13073 | // Builtins ignore user-specified default calling convention and remain the |
13074 | // Target's default calling convention. |
13075 | if (!IsBuiltin) { |
13076 | switch (LangOpts.getDefaultCallingConv()) { |
13077 | case LangOptions::DCC_None: |
13078 | break; |
13079 | case LangOptions::DCC_CDecl: |
13080 | return CC_C; |
13081 | case LangOptions::DCC_FastCall: |
13082 | if (getTargetInfo().hasFeature(Feature: "sse2" ) && !IsVariadic) |
13083 | return CC_X86FastCall; |
13084 | break; |
13085 | case LangOptions::DCC_StdCall: |
13086 | if (!IsVariadic) |
13087 | return CC_X86StdCall; |
13088 | break; |
13089 | case LangOptions::DCC_VectorCall: |
13090 | // __vectorcall cannot be applied to variadic functions. |
13091 | if (!IsVariadic) |
13092 | return CC_X86VectorCall; |
13093 | break; |
13094 | case LangOptions::DCC_RegCall: |
13095 | // __regcall cannot be applied to variadic functions. |
13096 | if (!IsVariadic) |
13097 | return CC_X86RegCall; |
13098 | break; |
13099 | case LangOptions::DCC_RtdCall: |
13100 | if (!IsVariadic) |
13101 | return CC_M68kRTD; |
13102 | break; |
13103 | } |
13104 | } |
13105 | return Target->getDefaultCallingConv(); |
13106 | } |
13107 | |
13108 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
13109 | // Pass through to the C++ ABI object |
13110 | return ABI->isNearlyEmpty(RD); |
13111 | } |
13112 | |
13113 | VTableContextBase *ASTContext::getVTableContext() { |
13114 | if (!VTContext) { |
13115 | auto ABI = Target->getCXXABI(); |
13116 | if (ABI.isMicrosoft()) |
13117 | VTContext.reset(p: new MicrosoftVTableContext(*this)); |
13118 | else { |
13119 | auto ComponentLayout = getLangOpts().RelativeCXXABIVTables |
13120 | ? ItaniumVTableContext::Relative |
13121 | : ItaniumVTableContext::Pointer; |
13122 | VTContext.reset(p: new ItaniumVTableContext(*this, ComponentLayout)); |
13123 | } |
13124 | } |
13125 | return VTContext.get(); |
13126 | } |
13127 | |
13128 | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { |
13129 | if (!T) |
13130 | T = Target; |
13131 | switch (T->getCXXABI().getKind()) { |
13132 | case TargetCXXABI::AppleARM64: |
13133 | case TargetCXXABI::Fuchsia: |
13134 | case TargetCXXABI::GenericAArch64: |
13135 | case TargetCXXABI::GenericItanium: |
13136 | case TargetCXXABI::GenericARM: |
13137 | case TargetCXXABI::GenericMIPS: |
13138 | case TargetCXXABI::iOS: |
13139 | case TargetCXXABI::WebAssembly: |
13140 | case TargetCXXABI::WatchOS: |
13141 | case TargetCXXABI::XL: |
13142 | return ItaniumMangleContext::create(Context&: *this, Diags&: getDiagnostics()); |
13143 | case TargetCXXABI::Microsoft: |
13144 | return MicrosoftMangleContext::create(Context&: *this, Diags&: getDiagnostics()); |
13145 | } |
13146 | llvm_unreachable("Unsupported ABI" ); |
13147 | } |
13148 | |
13149 | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { |
13150 | assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft && |
13151 | "Device mangle context does not support Microsoft mangling." ); |
13152 | switch (T.getCXXABI().getKind()) { |
13153 | case TargetCXXABI::AppleARM64: |
13154 | case TargetCXXABI::Fuchsia: |
13155 | case TargetCXXABI::GenericAArch64: |
13156 | case TargetCXXABI::GenericItanium: |
13157 | case TargetCXXABI::GenericARM: |
13158 | case TargetCXXABI::GenericMIPS: |
13159 | case TargetCXXABI::iOS: |
13160 | case TargetCXXABI::WebAssembly: |
13161 | case TargetCXXABI::WatchOS: |
13162 | case TargetCXXABI::XL: |
13163 | return ItaniumMangleContext::create( |
13164 | Context&: *this, Diags&: getDiagnostics(), |
13165 | Discriminator: [](ASTContext &, const NamedDecl *ND) -> UnsignedOrNone { |
13166 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
13167 | return RD->getDeviceLambdaManglingNumber(); |
13168 | return std::nullopt; |
13169 | }, |
13170 | /*IsAux=*/true); |
13171 | case TargetCXXABI::Microsoft: |
13172 | return MicrosoftMangleContext::create(Context&: *this, Diags&: getDiagnostics(), |
13173 | /*IsAux=*/true); |
13174 | } |
13175 | llvm_unreachable("Unsupported ABI" ); |
13176 | } |
13177 | |
13178 | CXXABI::~CXXABI() = default; |
13179 | |
13180 | size_t ASTContext::getSideTableAllocatedMemory() const { |
13181 | return ASTRecordLayouts.getMemorySize() + |
13182 | llvm::capacity_in_bytes(X: ObjCLayouts) + |
13183 | llvm::capacity_in_bytes(X: KeyFunctions) + |
13184 | llvm::capacity_in_bytes(X: ObjCImpls) + |
13185 | llvm::capacity_in_bytes(X: BlockVarCopyInits) + |
13186 | llvm::capacity_in_bytes(X: DeclAttrs) + |
13187 | llvm::capacity_in_bytes(X: TemplateOrInstantiation) + |
13188 | llvm::capacity_in_bytes(X: InstantiatedFromUsingDecl) + |
13189 | llvm::capacity_in_bytes(X: InstantiatedFromUsingShadowDecl) + |
13190 | llvm::capacity_in_bytes(X: InstantiatedFromUnnamedFieldDecl) + |
13191 | llvm::capacity_in_bytes(X: OverriddenMethods) + |
13192 | llvm::capacity_in_bytes(X: Types) + |
13193 | llvm::capacity_in_bytes(x: VariableArrayTypes); |
13194 | } |
13195 | |
13196 | /// getIntTypeForBitwidth - |
13197 | /// sets integer QualTy according to specified details: |
13198 | /// bitwidth, signed/unsigned. |
13199 | /// Returns empty type if there is no appropriate target types. |
13200 | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, |
13201 | unsigned Signed) const { |
13202 | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(BitWidth: DestWidth, IsSigned: Signed); |
13203 | CanQualType QualTy = getFromTargetType(Type: Ty); |
13204 | if (!QualTy && DestWidth == 128) |
13205 | return Signed ? Int128Ty : UnsignedInt128Ty; |
13206 | return QualTy; |
13207 | } |
13208 | |
13209 | /// getRealTypeForBitwidth - |
13210 | /// sets floating point QualTy according to specified bitwidth. |
13211 | /// Returns empty type if there is no appropriate target types. |
13212 | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, |
13213 | FloatModeKind ExplicitType) const { |
13214 | FloatModeKind Ty = |
13215 | getTargetInfo().getRealTypeByWidth(BitWidth: DestWidth, ExplicitType); |
13216 | switch (Ty) { |
13217 | case FloatModeKind::Half: |
13218 | return HalfTy; |
13219 | case FloatModeKind::Float: |
13220 | return FloatTy; |
13221 | case FloatModeKind::Double: |
13222 | return DoubleTy; |
13223 | case FloatModeKind::LongDouble: |
13224 | return LongDoubleTy; |
13225 | case FloatModeKind::Float128: |
13226 | return Float128Ty; |
13227 | case FloatModeKind::Ibm128: |
13228 | return Ibm128Ty; |
13229 | case FloatModeKind::NoFloat: |
13230 | return {}; |
13231 | } |
13232 | |
13233 | llvm_unreachable("Unhandled TargetInfo::RealType value" ); |
13234 | } |
13235 | |
13236 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { |
13237 | if (Number <= 1) |
13238 | return; |
13239 | |
13240 | MangleNumbers[ND] = Number; |
13241 | |
13242 | if (Listener) |
13243 | Listener->AddedManglingNumber(D: ND, Number); |
13244 | } |
13245 | |
13246 | unsigned ASTContext::getManglingNumber(const NamedDecl *ND, |
13247 | bool ForAuxTarget) const { |
13248 | auto I = MangleNumbers.find(Key: ND); |
13249 | unsigned Res = I != MangleNumbers.end() ? I->second : 1; |
13250 | // CUDA/HIP host compilation encodes host and device mangling numbers |
13251 | // as lower and upper half of 32 bit integer. |
13252 | if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) { |
13253 | Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF; |
13254 | } else { |
13255 | assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling " |
13256 | "number for aux target" ); |
13257 | } |
13258 | return Res > 1 ? Res : 1; |
13259 | } |
13260 | |
13261 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { |
13262 | if (Number <= 1) |
13263 | return; |
13264 | |
13265 | StaticLocalNumbers[VD] = Number; |
13266 | |
13267 | if (Listener) |
13268 | Listener->AddedStaticLocalNumbers(D: VD, Number); |
13269 | } |
13270 | |
13271 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { |
13272 | auto I = StaticLocalNumbers.find(Key: VD); |
13273 | return I != StaticLocalNumbers.end() ? I->second : 1; |
13274 | } |
13275 | |
13276 | void ASTContext::setIsDestroyingOperatorDelete(const FunctionDecl *FD, |
13277 | bool IsDestroying) { |
13278 | if (!IsDestroying) { |
13279 | assert(!DestroyingOperatorDeletes.contains(FD->getCanonicalDecl())); |
13280 | return; |
13281 | } |
13282 | DestroyingOperatorDeletes.insert(V: FD->getCanonicalDecl()); |
13283 | } |
13284 | |
13285 | bool ASTContext::isDestroyingOperatorDelete(const FunctionDecl *FD) const { |
13286 | return DestroyingOperatorDeletes.contains(V: FD->getCanonicalDecl()); |
13287 | } |
13288 | |
13289 | void ASTContext::setIsTypeAwareOperatorNewOrDelete(const FunctionDecl *FD, |
13290 | bool IsTypeAware) { |
13291 | if (!IsTypeAware) { |
13292 | assert(!TypeAwareOperatorNewAndDeletes.contains(FD->getCanonicalDecl())); |
13293 | return; |
13294 | } |
13295 | TypeAwareOperatorNewAndDeletes.insert(V: FD->getCanonicalDecl()); |
13296 | } |
13297 | |
13298 | bool ASTContext::isTypeAwareOperatorNewOrDelete(const FunctionDecl *FD) const { |
13299 | return TypeAwareOperatorNewAndDeletes.contains(V: FD->getCanonicalDecl()); |
13300 | } |
13301 | |
13302 | MangleNumberingContext & |
13303 | ASTContext::getManglingNumberContext(const DeclContext *DC) { |
13304 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
13305 | std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; |
13306 | if (!MCtx) |
13307 | MCtx = createMangleNumberingContext(); |
13308 | return *MCtx; |
13309 | } |
13310 | |
13311 | MangleNumberingContext & |
13312 | ASTContext::(NeedExtraManglingDecl_t, const Decl *D) { |
13313 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
13314 | std::unique_ptr<MangleNumberingContext> &MCtx = |
13315 | ExtraMangleNumberingContexts[D]; |
13316 | if (!MCtx) |
13317 | MCtx = createMangleNumberingContext(); |
13318 | return *MCtx; |
13319 | } |
13320 | |
13321 | std::unique_ptr<MangleNumberingContext> |
13322 | ASTContext::createMangleNumberingContext() const { |
13323 | return ABI->createMangleNumberingContext(); |
13324 | } |
13325 | |
13326 | const CXXConstructorDecl * |
13327 | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { |
13328 | return ABI->getCopyConstructorForExceptionObject( |
13329 | cast<CXXRecordDecl>(Val: RD->getFirstDecl())); |
13330 | } |
13331 | |
13332 | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, |
13333 | CXXConstructorDecl *CD) { |
13334 | return ABI->addCopyConstructorForExceptionObject( |
13335 | cast<CXXRecordDecl>(Val: RD->getFirstDecl()), |
13336 | cast<CXXConstructorDecl>(Val: CD->getFirstDecl())); |
13337 | } |
13338 | |
13339 | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, |
13340 | TypedefNameDecl *DD) { |
13341 | return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); |
13342 | } |
13343 | |
13344 | TypedefNameDecl * |
13345 | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { |
13346 | return ABI->getTypedefNameForUnnamedTagDecl(TD); |
13347 | } |
13348 | |
13349 | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, |
13350 | DeclaratorDecl *DD) { |
13351 | return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); |
13352 | } |
13353 | |
13354 | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { |
13355 | return ABI->getDeclaratorForUnnamedTagDecl(TD); |
13356 | } |
13357 | |
13358 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
13359 | ParamIndices[D] = index; |
13360 | } |
13361 | |
13362 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
13363 | ParameterIndexTable::const_iterator I = ParamIndices.find(Val: D); |
13364 | assert(I != ParamIndices.end() && |
13365 | "ParmIndices lacks entry set by ParmVarDecl" ); |
13366 | return I->second; |
13367 | } |
13368 | |
13369 | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, |
13370 | unsigned Length) const { |
13371 | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
13372 | if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) |
13373 | EltTy = EltTy.withConst(); |
13374 | |
13375 | EltTy = adjustStringLiteralBaseType(Ty: EltTy); |
13376 | |
13377 | // Get an array type for the string, according to C99 6.4.5. This includes |
13378 | // the null terminator character. |
13379 | return getConstantArrayType(EltTy, ArySizeIn: llvm::APInt(32, Length + 1), SizeExpr: nullptr, |
13380 | ASM: ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0); |
13381 | } |
13382 | |
13383 | StringLiteral * |
13384 | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { |
13385 | StringLiteral *&Result = StringLiteralCache[Key]; |
13386 | if (!Result) |
13387 | Result = StringLiteral::Create( |
13388 | Ctx: *this, Str: Key, Kind: StringLiteralKind::Ordinary, |
13389 | /*Pascal*/ false, Ty: getStringLiteralArrayType(EltTy: CharTy, Length: Key.size()), |
13390 | Locs: SourceLocation()); |
13391 | return Result; |
13392 | } |
13393 | |
13394 | MSGuidDecl * |
13395 | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { |
13396 | assert(MSGuidTagDecl && "building MS GUID without MS extensions?" ); |
13397 | |
13398 | llvm::FoldingSetNodeID ID; |
13399 | MSGuidDecl::Profile(ID, P: Parts); |
13400 | |
13401 | void *InsertPos; |
13402 | if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) |
13403 | return Existing; |
13404 | |
13405 | QualType GUIDType = getMSGuidType().withConst(); |
13406 | MSGuidDecl *New = MSGuidDecl::Create(C: *this, T: GUIDType, P: Parts); |
13407 | MSGuidDecls.InsertNode(N: New, InsertPos); |
13408 | return New; |
13409 | } |
13410 | |
13411 | UnnamedGlobalConstantDecl * |
13412 | ASTContext::getUnnamedGlobalConstantDecl(QualType Ty, |
13413 | const APValue &APVal) const { |
13414 | llvm::FoldingSetNodeID ID; |
13415 | UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal); |
13416 | |
13417 | void *InsertPos; |
13418 | if (UnnamedGlobalConstantDecl *Existing = |
13419 | UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos)) |
13420 | return Existing; |
13421 | |
13422 | UnnamedGlobalConstantDecl *New = |
13423 | UnnamedGlobalConstantDecl::Create(C: *this, T: Ty, APVal); |
13424 | UnnamedGlobalConstantDecls.InsertNode(N: New, InsertPos); |
13425 | return New; |
13426 | } |
13427 | |
13428 | TemplateParamObjectDecl * |
13429 | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { |
13430 | assert(T->isRecordType() && "template param object of unexpected type" ); |
13431 | |
13432 | // C++ [temp.param]p8: |
13433 | // [...] a static storage duration object of type 'const T' [...] |
13434 | T.addConst(); |
13435 | |
13436 | llvm::FoldingSetNodeID ID; |
13437 | TemplateParamObjectDecl::Profile(ID, T, V); |
13438 | |
13439 | void *InsertPos; |
13440 | if (TemplateParamObjectDecl *Existing = |
13441 | TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) |
13442 | return Existing; |
13443 | |
13444 | TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(C: *this, T, V); |
13445 | TemplateParamObjectDecls.InsertNode(N: New, InsertPos); |
13446 | return New; |
13447 | } |
13448 | |
13449 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { |
13450 | const llvm::Triple &T = getTargetInfo().getTriple(); |
13451 | if (!T.isOSDarwin()) |
13452 | return false; |
13453 | |
13454 | if (!(T.isiOS() && T.isOSVersionLT(Major: 7)) && |
13455 | !(T.isMacOSX() && T.isOSVersionLT(Major: 10, Minor: 9))) |
13456 | return false; |
13457 | |
13458 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
13459 | CharUnits sizeChars = getTypeSizeInChars(T: AtomicTy); |
13460 | uint64_t Size = sizeChars.getQuantity(); |
13461 | CharUnits alignChars = getTypeAlignInChars(T: AtomicTy); |
13462 | unsigned Align = alignChars.getQuantity(); |
13463 | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); |
13464 | return (Size != Align || toBits(CharSize: sizeChars) > MaxInlineWidthInBits); |
13465 | } |
13466 | |
13467 | bool |
13468 | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, |
13469 | const ObjCMethodDecl *MethodImpl) { |
13470 | // No point trying to match an unavailable/deprecated mothod. |
13471 | if (MethodDecl->hasAttr<UnavailableAttr>() |
13472 | || MethodDecl->hasAttr<DeprecatedAttr>()) |
13473 | return false; |
13474 | if (MethodDecl->getObjCDeclQualifier() != |
13475 | MethodImpl->getObjCDeclQualifier()) |
13476 | return false; |
13477 | if (!hasSameType(T1: MethodDecl->getReturnType(), T2: MethodImpl->getReturnType())) |
13478 | return false; |
13479 | |
13480 | if (MethodDecl->param_size() != MethodImpl->param_size()) |
13481 | return false; |
13482 | |
13483 | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), |
13484 | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), |
13485 | EF = MethodDecl->param_end(); |
13486 | IM != EM && IF != EF; ++IM, ++IF) { |
13487 | const ParmVarDecl *DeclVar = (*IF); |
13488 | const ParmVarDecl *ImplVar = (*IM); |
13489 | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) |
13490 | return false; |
13491 | if (!hasSameType(T1: DeclVar->getType(), T2: ImplVar->getType())) |
13492 | return false; |
13493 | } |
13494 | |
13495 | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); |
13496 | } |
13497 | |
13498 | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { |
13499 | LangAS AS; |
13500 | if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) |
13501 | AS = LangAS::Default; |
13502 | else |
13503 | AS = QT->getPointeeType().getAddressSpace(); |
13504 | |
13505 | return getTargetInfo().getNullPointerValue(AddrSpace: AS); |
13506 | } |
13507 | |
13508 | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { |
13509 | return getTargetInfo().getTargetAddressSpace(AS); |
13510 | } |
13511 | |
13512 | bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const { |
13513 | if (X == Y) |
13514 | return true; |
13515 | if (!X || !Y) |
13516 | return false; |
13517 | llvm::FoldingSetNodeID IDX, IDY; |
13518 | X->Profile(ID&: IDX, Context: *this, /*Canonical=*/true); |
13519 | Y->Profile(ID&: IDY, Context: *this, /*Canonical=*/true); |
13520 | return IDX == IDY; |
13521 | } |
13522 | |
13523 | // The getCommon* helpers return, for given 'same' X and Y entities given as |
13524 | // inputs, another entity which is also the 'same' as the inputs, but which |
13525 | // is closer to the canonical form of the inputs, each according to a given |
13526 | // criteria. |
13527 | // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of |
13528 | // the regular ones. |
13529 | |
13530 | static Decl *getCommonDecl(Decl *X, Decl *Y) { |
13531 | if (!declaresSameEntity(D1: X, D2: Y)) |
13532 | return nullptr; |
13533 | for (const Decl *DX : X->redecls()) { |
13534 | // If we reach Y before reaching the first decl, that means X is older. |
13535 | if (DX == Y) |
13536 | return X; |
13537 | // If we reach the first decl, then Y is older. |
13538 | if (DX->isFirstDecl()) |
13539 | return Y; |
13540 | } |
13541 | llvm_unreachable("Corrupt redecls chain" ); |
13542 | } |
13543 | |
13544 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
13545 | static T *getCommonDecl(T *X, T *Y) { |
13546 | return cast_or_null<T>( |
13547 | getCommonDecl(X: const_cast<Decl *>(cast_or_null<Decl>(X)), |
13548 | Y: const_cast<Decl *>(cast_or_null<Decl>(Y)))); |
13549 | } |
13550 | |
13551 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
13552 | static T *getCommonDeclChecked(T *X, T *Y) { |
13553 | return cast<T>(getCommonDecl(X: const_cast<Decl *>(cast<Decl>(X)), |
13554 | Y: const_cast<Decl *>(cast<Decl>(Y)))); |
13555 | } |
13556 | |
13557 | static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X, |
13558 | TemplateName Y, |
13559 | bool IgnoreDeduced = false) { |
13560 | if (X.getAsVoidPointer() == Y.getAsVoidPointer()) |
13561 | return X; |
13562 | // FIXME: There are cases here where we could find a common template name |
13563 | // with more sugar. For example one could be a SubstTemplateTemplate* |
13564 | // replacing the other. |
13565 | TemplateName CX = Ctx.getCanonicalTemplateName(Name: X, IgnoreDeduced); |
13566 | if (CX.getAsVoidPointer() != |
13567 | Ctx.getCanonicalTemplateName(Name: Y).getAsVoidPointer()) |
13568 | return TemplateName(); |
13569 | return CX; |
13570 | } |
13571 | |
13572 | static TemplateName getCommonTemplateNameChecked(ASTContext &Ctx, |
13573 | TemplateName X, TemplateName Y, |
13574 | bool IgnoreDeduced) { |
13575 | TemplateName R = getCommonTemplateName(Ctx, X, Y, IgnoreDeduced); |
13576 | assert(R.getAsVoidPointer() != nullptr); |
13577 | return R; |
13578 | } |
13579 | |
13580 | static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs, |
13581 | ArrayRef<QualType> Ys, bool Unqualified = false) { |
13582 | assert(Xs.size() == Ys.size()); |
13583 | SmallVector<QualType, 8> Rs(Xs.size()); |
13584 | for (size_t I = 0; I < Rs.size(); ++I) |
13585 | Rs[I] = Ctx.getCommonSugaredType(X: Xs[I], Y: Ys[I], Unqualified); |
13586 | return Rs; |
13587 | } |
13588 | |
13589 | template <class T> |
13590 | static SourceLocation getCommonAttrLoc(const T *X, const T *Y) { |
13591 | return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc() |
13592 | : SourceLocation(); |
13593 | } |
13594 | |
13595 | static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx, |
13596 | const TemplateArgument &X, |
13597 | const TemplateArgument &Y) { |
13598 | if (X.getKind() != Y.getKind()) |
13599 | return TemplateArgument(); |
13600 | |
13601 | switch (X.getKind()) { |
13602 | case TemplateArgument::ArgKind::Type: |
13603 | if (!Ctx.hasSameType(T1: X.getAsType(), T2: Y.getAsType())) |
13604 | return TemplateArgument(); |
13605 | return TemplateArgument( |
13606 | Ctx.getCommonSugaredType(X: X.getAsType(), Y: Y.getAsType())); |
13607 | case TemplateArgument::ArgKind::NullPtr: |
13608 | if (!Ctx.hasSameType(T1: X.getNullPtrType(), T2: Y.getNullPtrType())) |
13609 | return TemplateArgument(); |
13610 | return TemplateArgument( |
13611 | Ctx.getCommonSugaredType(X: X.getNullPtrType(), Y: Y.getNullPtrType()), |
13612 | /*Unqualified=*/true); |
13613 | case TemplateArgument::ArgKind::Expression: |
13614 | if (!Ctx.hasSameType(T1: X.getAsExpr()->getType(), T2: Y.getAsExpr()->getType())) |
13615 | return TemplateArgument(); |
13616 | // FIXME: Try to keep the common sugar. |
13617 | return X; |
13618 | case TemplateArgument::ArgKind::Template: { |
13619 | TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate(); |
13620 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX, Y: TY); |
13621 | if (!CTN.getAsVoidPointer()) |
13622 | return TemplateArgument(); |
13623 | return TemplateArgument(CTN); |
13624 | } |
13625 | case TemplateArgument::ArgKind::TemplateExpansion: { |
13626 | TemplateName TX = X.getAsTemplateOrTemplatePattern(), |
13627 | TY = Y.getAsTemplateOrTemplatePattern(); |
13628 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX, Y: TY); |
13629 | if (!CTN.getAsVoidPointer()) |
13630 | return TemplateName(); |
13631 | auto NExpX = X.getNumTemplateExpansions(); |
13632 | assert(NExpX == Y.getNumTemplateExpansions()); |
13633 | return TemplateArgument(CTN, NExpX); |
13634 | } |
13635 | default: |
13636 | // FIXME: Handle the other argument kinds. |
13637 | return X; |
13638 | } |
13639 | } |
13640 | |
13641 | static bool getCommonTemplateArguments(ASTContext &Ctx, |
13642 | SmallVectorImpl<TemplateArgument> &R, |
13643 | ArrayRef<TemplateArgument> Xs, |
13644 | ArrayRef<TemplateArgument> Ys) { |
13645 | if (Xs.size() != Ys.size()) |
13646 | return true; |
13647 | R.resize(N: Xs.size()); |
13648 | for (size_t I = 0; I < R.size(); ++I) { |
13649 | R[I] = getCommonTemplateArgument(Ctx, X: Xs[I], Y: Ys[I]); |
13650 | if (R[I].isNull()) |
13651 | return true; |
13652 | } |
13653 | return false; |
13654 | } |
13655 | |
13656 | static auto getCommonTemplateArguments(ASTContext &Ctx, |
13657 | ArrayRef<TemplateArgument> Xs, |
13658 | ArrayRef<TemplateArgument> Ys) { |
13659 | SmallVector<TemplateArgument, 8> R; |
13660 | bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys); |
13661 | assert(!Different); |
13662 | (void)Different; |
13663 | return R; |
13664 | } |
13665 | |
13666 | template <class T> |
13667 | static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) { |
13668 | return X->getKeyword() == Y->getKeyword() ? X->getKeyword() |
13669 | : ElaboratedTypeKeyword::None; |
13670 | } |
13671 | |
13672 | /// Returns a NestedNameSpecifier which has only the common sugar |
13673 | /// present in both NNS1 and NNS2. |
13674 | static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, |
13675 | NestedNameSpecifier *NNS1, |
13676 | NestedNameSpecifier *NNS2, |
13677 | bool IsSame) { |
13678 | // If they are identical, all sugar is common. |
13679 | if (NNS1 == NNS2) |
13680 | return NNS1; |
13681 | |
13682 | // IsSame implies both NNSes are equivalent. |
13683 | NestedNameSpecifier *Canon = Ctx.getCanonicalNestedNameSpecifier(NNS: NNS1); |
13684 | if (Canon != Ctx.getCanonicalNestedNameSpecifier(NNS: NNS2)) { |
13685 | assert(!IsSame && "Should be the same NestedNameSpecifier" ); |
13686 | // If they are not the same, there is nothing to unify. |
13687 | // FIXME: It would be useful here if we could represent a canonically |
13688 | // empty NNS, which is not identical to an empty-as-written NNS. |
13689 | return nullptr; |
13690 | } |
13691 | |
13692 | NestedNameSpecifier *R = nullptr; |
13693 | NestedNameSpecifier::SpecifierKind K1 = NNS1->getKind(), K2 = NNS2->getKind(); |
13694 | switch (K1) { |
13695 | case NestedNameSpecifier::SpecifierKind::Identifier: { |
13696 | assert(K2 == NestedNameSpecifier::SpecifierKind::Identifier); |
13697 | IdentifierInfo *II = NNS1->getAsIdentifier(); |
13698 | assert(II == NNS2->getAsIdentifier()); |
13699 | // For an identifier, the prefixes are significant, so they must be the |
13700 | // same. |
13701 | NestedNameSpecifier *P = ::getCommonNNS(Ctx, NNS1: NNS1->getPrefix(), |
13702 | NNS2: NNS2->getPrefix(), /*IsSame=*/true); |
13703 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, II); |
13704 | break; |
13705 | } |
13706 | case NestedNameSpecifier::SpecifierKind::Namespace: |
13707 | case NestedNameSpecifier::SpecifierKind::NamespaceAlias: { |
13708 | assert(K2 == NestedNameSpecifier::SpecifierKind::Namespace || |
13709 | K2 == NestedNameSpecifier::SpecifierKind::NamespaceAlias); |
13710 | // The prefixes for namespaces are not significant, its declaration |
13711 | // identifies it uniquely. |
13712 | NestedNameSpecifier *P = |
13713 | ::getCommonNNS(Ctx, NNS1: NNS1->getPrefix(), NNS2: NNS2->getPrefix(), |
13714 | /*IsSame=*/false); |
13715 | NamespaceAliasDecl *A1 = NNS1->getAsNamespaceAlias(), |
13716 | *A2 = NNS2->getAsNamespaceAlias(); |
13717 | // Are they the same namespace alias? |
13718 | if (declaresSameEntity(D1: A1, D2: A2)) { |
13719 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, Alias: ::getCommonDeclChecked(X: A1, Y: A2)); |
13720 | break; |
13721 | } |
13722 | // Otherwise, look at the namespaces only. |
13723 | NamespaceDecl *N1 = A1 ? A1->getNamespace() : NNS1->getAsNamespace(), |
13724 | *N2 = A2 ? A2->getNamespace() : NNS2->getAsNamespace(); |
13725 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, NS: ::getCommonDeclChecked(X: N1, Y: N2)); |
13726 | break; |
13727 | } |
13728 | case NestedNameSpecifier::SpecifierKind::TypeSpec: { |
13729 | // FIXME: See comment below, on Super case. |
13730 | if (K2 == NestedNameSpecifier::SpecifierKind::Super) |
13731 | return Ctx.getCanonicalNestedNameSpecifier(NNS: NNS1); |
13732 | |
13733 | assert(K2 == NestedNameSpecifier::SpecifierKind::TypeSpec); |
13734 | |
13735 | const Type *T1 = NNS1->getAsType(), *T2 = NNS2->getAsType(); |
13736 | if (T1 == T2) { |
13737 | // If the types are indentical, then only the prefixes differ. |
13738 | // A well-formed NNS never has these types, as they have |
13739 | // special normalized forms. |
13740 | assert((!isa<DependentNameType, ElaboratedType>(T1))); |
13741 | // Only for a DependentTemplateSpecializationType the prefix |
13742 | // is actually significant. A DependentName, which would be another |
13743 | // plausible case, cannot occur here, as explained above. |
13744 | bool IsSame = isa<DependentTemplateSpecializationType>(Val: T1); |
13745 | NestedNameSpecifier *P = |
13746 | ::getCommonNNS(Ctx, NNS1: NNS1->getPrefix(), NNS2: NNS2->getPrefix(), IsSame); |
13747 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, T: T1); |
13748 | break; |
13749 | } |
13750 | // TODO: Try to salvage the original prefix. |
13751 | // If getCommonSugaredType removed any top level sugar, the original prefix |
13752 | // is not applicable anymore. |
13753 | const Type *T = Ctx.getCommonSugaredType(X: QualType(T1, 0), Y: QualType(T2, 0), |
13754 | /*Unqualified=*/true) |
13755 | .getTypePtr(); |
13756 | |
13757 | // A NestedNameSpecifier has special normalization rules for certain types. |
13758 | switch (T->getTypeClass()) { |
13759 | case Type::Elaborated: { |
13760 | // An ElaboratedType is stripped off, it's Qualifier becomes the prefix. |
13761 | auto *ET = cast<ElaboratedType>(Val: T); |
13762 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: ET->getQualifier(), |
13763 | T: ET->getNamedType().getTypePtr()); |
13764 | break; |
13765 | } |
13766 | case Type::DependentName: { |
13767 | // A DependentName is turned into an Identifier NNS. |
13768 | auto *DN = cast<DependentNameType>(Val: T); |
13769 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: DN->getQualifier(), |
13770 | II: DN->getIdentifier()); |
13771 | break; |
13772 | } |
13773 | case Type::DependentTemplateSpecialization: { |
13774 | // A DependentTemplateSpecializationType loses it's Qualifier, which |
13775 | // is turned into the prefix. |
13776 | auto *DTST = cast<DependentTemplateSpecializationType>(Val: T); |
13777 | const DependentTemplateStorage &DTN = DTST->getDependentTemplateName(); |
13778 | DependentTemplateStorage NewDTN(/*Qualifier=*/nullptr, DTN.getName(), |
13779 | DTN.hasTemplateKeyword()); |
13780 | T = Ctx.getDependentTemplateSpecializationType(Keyword: DTST->getKeyword(), Name: NewDTN, |
13781 | Args: DTST->template_arguments()) |
13782 | .getTypePtr(); |
13783 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: DTN.getQualifier(), T); |
13784 | break; |
13785 | } |
13786 | default: |
13787 | R = NestedNameSpecifier::Create(Context: Ctx, /*Prefix=*/nullptr, T); |
13788 | break; |
13789 | } |
13790 | break; |
13791 | } |
13792 | case NestedNameSpecifier::SpecifierKind::Super: |
13793 | // FIXME: Can __super even be used with data members? |
13794 | // If it's only usable in functions, we will never see it here, |
13795 | // unless we save the qualifiers used in function types. |
13796 | // In that case, it might be possible NNS2 is a type, |
13797 | // in which case we should degrade the result to |
13798 | // a CXXRecordType. |
13799 | return Ctx.getCanonicalNestedNameSpecifier(NNS: NNS1); |
13800 | case NestedNameSpecifier::SpecifierKind::Global: |
13801 | // The global NNS is a singleton. |
13802 | assert(K2 == NestedNameSpecifier::SpecifierKind::Global && |
13803 | "Global NNS cannot be equivalent to any other kind" ); |
13804 | llvm_unreachable("Global NestedNameSpecifiers did not compare equal" ); |
13805 | } |
13806 | assert(Ctx.getCanonicalNestedNameSpecifier(R) == Canon); |
13807 | return R; |
13808 | } |
13809 | |
13810 | template <class T> |
13811 | static NestedNameSpecifier *getCommonQualifier(ASTContext &Ctx, const T *X, |
13812 | const T *Y, bool IsSame) { |
13813 | return ::getCommonNNS(Ctx, NNS1: X->getQualifier(), NNS2: Y->getQualifier(), IsSame); |
13814 | } |
13815 | |
13816 | template <class T> |
13817 | static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) { |
13818 | return Ctx.getCommonSugaredType(X: X->getElementType(), Y: Y->getElementType()); |
13819 | } |
13820 | |
13821 | template <class T> |
13822 | static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X, |
13823 | Qualifiers &QX, const T *Y, |
13824 | Qualifiers &QY) { |
13825 | QualType EX = X->getElementType(), EY = Y->getElementType(); |
13826 | QualType R = Ctx.getCommonSugaredType(X: EX, Y: EY, |
13827 | /*Unqualified=*/true); |
13828 | // Qualifiers common to both element types. |
13829 | Qualifiers RQ = R.getQualifiers(); |
13830 | // For each side, move to the top level any qualifiers which are not common to |
13831 | // both element types. The caller must assume top level qualifiers might |
13832 | // be different, even if they are the same type, and can be treated as sugar. |
13833 | QX += EX.getQualifiers() - RQ; |
13834 | QY += EY.getQualifiers() - RQ; |
13835 | return R; |
13836 | } |
13837 | |
13838 | template <class T> |
13839 | static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) { |
13840 | return Ctx.getCommonSugaredType(X: X->getPointeeType(), Y: Y->getPointeeType()); |
13841 | } |
13842 | |
13843 | template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) { |
13844 | assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())); |
13845 | return X->getSizeExpr(); |
13846 | } |
13847 | |
13848 | static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) { |
13849 | assert(X->getSizeModifier() == Y->getSizeModifier()); |
13850 | return X->getSizeModifier(); |
13851 | } |
13852 | |
13853 | static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X, |
13854 | const ArrayType *Y) { |
13855 | assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()); |
13856 | return X->getIndexTypeCVRQualifiers(); |
13857 | } |
13858 | |
13859 | // Merges two type lists such that the resulting vector will contain |
13860 | // each type (in a canonical sense) only once, in the order they appear |
13861 | // from X to Y. If they occur in both X and Y, the result will contain |
13862 | // the common sugared type between them. |
13863 | static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out, |
13864 | ArrayRef<QualType> X, ArrayRef<QualType> Y) { |
13865 | llvm::DenseMap<QualType, unsigned> Found; |
13866 | for (auto Ts : {X, Y}) { |
13867 | for (QualType T : Ts) { |
13868 | auto Res = Found.try_emplace(Key: Ctx.getCanonicalType(T), Args: Out.size()); |
13869 | if (!Res.second) { |
13870 | QualType &U = Out[Res.first->second]; |
13871 | U = Ctx.getCommonSugaredType(X: U, Y: T); |
13872 | } else { |
13873 | Out.emplace_back(Args&: T); |
13874 | } |
13875 | } |
13876 | } |
13877 | } |
13878 | |
13879 | FunctionProtoType::ExceptionSpecInfo |
13880 | ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1, |
13881 | FunctionProtoType::ExceptionSpecInfo ESI2, |
13882 | SmallVectorImpl<QualType> &ExceptionTypeStorage, |
13883 | bool AcceptDependent) { |
13884 | ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type; |
13885 | |
13886 | // If either of them can throw anything, that is the result. |
13887 | for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) { |
13888 | if (EST1 == I) |
13889 | return ESI1; |
13890 | if (EST2 == I) |
13891 | return ESI2; |
13892 | } |
13893 | |
13894 | // If either of them is non-throwing, the result is the other. |
13895 | for (auto I : |
13896 | {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) { |
13897 | if (EST1 == I) |
13898 | return ESI2; |
13899 | if (EST2 == I) |
13900 | return ESI1; |
13901 | } |
13902 | |
13903 | // If we're left with value-dependent computed noexcept expressions, we're |
13904 | // stuck. Before C++17, we can just drop the exception specification entirely, |
13905 | // since it's not actually part of the canonical type. And this should never |
13906 | // happen in C++17, because it would mean we were computing the composite |
13907 | // pointer type of dependent types, which should never happen. |
13908 | if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { |
13909 | assert(AcceptDependent && |
13910 | "computing composite pointer type of dependent types" ); |
13911 | return FunctionProtoType::ExceptionSpecInfo(); |
13912 | } |
13913 | |
13914 | // Switch over the possibilities so that people adding new values know to |
13915 | // update this function. |
13916 | switch (EST1) { |
13917 | case EST_None: |
13918 | case EST_DynamicNone: |
13919 | case EST_MSAny: |
13920 | case EST_BasicNoexcept: |
13921 | case EST_DependentNoexcept: |
13922 | case EST_NoexceptFalse: |
13923 | case EST_NoexceptTrue: |
13924 | case EST_NoThrow: |
13925 | llvm_unreachable("These ESTs should be handled above" ); |
13926 | |
13927 | case EST_Dynamic: { |
13928 | // This is the fun case: both exception specifications are dynamic. Form |
13929 | // the union of the two lists. |
13930 | assert(EST2 == EST_Dynamic && "other cases should already be handled" ); |
13931 | mergeTypeLists(Ctx&: *this, Out&: ExceptionTypeStorage, X: ESI1.Exceptions, |
13932 | Y: ESI2.Exceptions); |
13933 | FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); |
13934 | Result.Exceptions = ExceptionTypeStorage; |
13935 | return Result; |
13936 | } |
13937 | |
13938 | case EST_Unevaluated: |
13939 | case EST_Uninstantiated: |
13940 | case EST_Unparsed: |
13941 | llvm_unreachable("shouldn't see unresolved exception specifications here" ); |
13942 | } |
13943 | |
13944 | llvm_unreachable("invalid ExceptionSpecificationType" ); |
13945 | } |
13946 | |
13947 | static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X, |
13948 | Qualifiers &QX, const Type *Y, |
13949 | Qualifiers &QY) { |
13950 | Type::TypeClass TC = X->getTypeClass(); |
13951 | assert(TC == Y->getTypeClass()); |
13952 | switch (TC) { |
13953 | #define UNEXPECTED_TYPE(Class, Kind) \ |
13954 | case Type::Class: \ |
13955 | llvm_unreachable("Unexpected " Kind ": " #Class); |
13956 | |
13957 | #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical") |
13958 | #define TYPE(Class, Base) |
13959 | #include "clang/AST/TypeNodes.inc" |
13960 | |
13961 | #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free") |
13962 | SUGAR_FREE_TYPE(Builtin) |
13963 | SUGAR_FREE_TYPE(DeducedTemplateSpecialization) |
13964 | SUGAR_FREE_TYPE(DependentBitInt) |
13965 | SUGAR_FREE_TYPE(Enum) |
13966 | SUGAR_FREE_TYPE(BitInt) |
13967 | SUGAR_FREE_TYPE(ObjCInterface) |
13968 | SUGAR_FREE_TYPE(Record) |
13969 | SUGAR_FREE_TYPE(SubstTemplateTypeParmPack) |
13970 | SUGAR_FREE_TYPE(UnresolvedUsing) |
13971 | SUGAR_FREE_TYPE(HLSLAttributedResource) |
13972 | SUGAR_FREE_TYPE(HLSLInlineSpirv) |
13973 | #undef SUGAR_FREE_TYPE |
13974 | #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique") |
13975 | NON_UNIQUE_TYPE(TypeOfExpr) |
13976 | NON_UNIQUE_TYPE(VariableArray) |
13977 | #undef NON_UNIQUE_TYPE |
13978 | |
13979 | UNEXPECTED_TYPE(TypeOf, "sugar" ) |
13980 | |
13981 | #undef UNEXPECTED_TYPE |
13982 | |
13983 | case Type::Auto: { |
13984 | const auto *AX = cast<AutoType>(Val: X), *AY = cast<AutoType>(Val: Y); |
13985 | assert(AX->getDeducedType().isNull()); |
13986 | assert(AY->getDeducedType().isNull()); |
13987 | assert(AX->getKeyword() == AY->getKeyword()); |
13988 | assert(AX->isInstantiationDependentType() == |
13989 | AY->isInstantiationDependentType()); |
13990 | auto As = getCommonTemplateArguments(Ctx, Xs: AX->getTypeConstraintArguments(), |
13991 | Ys: AY->getTypeConstraintArguments()); |
13992 | return Ctx.getAutoType(DeducedType: QualType(), Keyword: AX->getKeyword(), |
13993 | IsDependent: AX->isInstantiationDependentType(), |
13994 | IsPack: AX->containsUnexpandedParameterPack(), |
13995 | TypeConstraintConcept: getCommonDeclChecked(X: AX->getTypeConstraintConcept(), |
13996 | Y: AY->getTypeConstraintConcept()), |
13997 | TypeConstraintArgs: As); |
13998 | } |
13999 | case Type::IncompleteArray: { |
14000 | const auto *AX = cast<IncompleteArrayType>(Val: X), |
14001 | *AY = cast<IncompleteArrayType>(Val: Y); |
14002 | return Ctx.getIncompleteArrayType( |
14003 | elementType: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), |
14004 | ASM: getCommonSizeModifier(X: AX, Y: AY), elementTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
14005 | } |
14006 | case Type::DependentSizedArray: { |
14007 | const auto *AX = cast<DependentSizedArrayType>(Val: X), |
14008 | *AY = cast<DependentSizedArrayType>(Val: Y); |
14009 | return Ctx.getDependentSizedArrayType( |
14010 | elementType: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), |
14011 | numElements: getCommonSizeExpr(Ctx, X: AX, Y: AY), ASM: getCommonSizeModifier(X: AX, Y: AY), |
14012 | elementTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
14013 | } |
14014 | case Type::ConstantArray: { |
14015 | const auto *AX = cast<ConstantArrayType>(Val: X), |
14016 | *AY = cast<ConstantArrayType>(Val: Y); |
14017 | assert(AX->getSize() == AY->getSize()); |
14018 | const Expr *SizeExpr = Ctx.hasSameExpr(X: AX->getSizeExpr(), Y: AY->getSizeExpr()) |
14019 | ? AX->getSizeExpr() |
14020 | : nullptr; |
14021 | return Ctx.getConstantArrayType( |
14022 | EltTy: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), ArySizeIn: AX->getSize(), SizeExpr, |
14023 | ASM: getCommonSizeModifier(X: AX, Y: AY), IndexTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
14024 | } |
14025 | case Type::ArrayParameter: { |
14026 | const auto *AX = cast<ArrayParameterType>(Val: X), |
14027 | *AY = cast<ArrayParameterType>(Val: Y); |
14028 | assert(AX->getSize() == AY->getSize()); |
14029 | const Expr *SizeExpr = Ctx.hasSameExpr(X: AX->getSizeExpr(), Y: AY->getSizeExpr()) |
14030 | ? AX->getSizeExpr() |
14031 | : nullptr; |
14032 | auto ArrayTy = Ctx.getConstantArrayType( |
14033 | EltTy: getCommonArrayElementType(Ctx, X: AX, QX, Y: AY, QY), ArySizeIn: AX->getSize(), SizeExpr, |
14034 | ASM: getCommonSizeModifier(X: AX, Y: AY), IndexTypeQuals: getCommonIndexTypeCVRQualifiers(X: AX, Y: AY)); |
14035 | return Ctx.getArrayParameterType(Ty: ArrayTy); |
14036 | } |
14037 | case Type::Atomic: { |
14038 | const auto *AX = cast<AtomicType>(Val: X), *AY = cast<AtomicType>(Val: Y); |
14039 | return Ctx.getAtomicType( |
14040 | T: Ctx.getCommonSugaredType(X: AX->getValueType(), Y: AY->getValueType())); |
14041 | } |
14042 | case Type::Complex: { |
14043 | const auto *CX = cast<ComplexType>(Val: X), *CY = cast<ComplexType>(Val: Y); |
14044 | return Ctx.getComplexType(T: getCommonArrayElementType(Ctx, X: CX, QX, Y: CY, QY)); |
14045 | } |
14046 | case Type::Pointer: { |
14047 | const auto *PX = cast<PointerType>(Val: X), *PY = cast<PointerType>(Val: Y); |
14048 | return Ctx.getPointerType(T: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
14049 | } |
14050 | case Type::BlockPointer: { |
14051 | const auto *PX = cast<BlockPointerType>(Val: X), *PY = cast<BlockPointerType>(Val: Y); |
14052 | return Ctx.getBlockPointerType(T: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
14053 | } |
14054 | case Type::ObjCObjectPointer: { |
14055 | const auto *PX = cast<ObjCObjectPointerType>(Val: X), |
14056 | *PY = cast<ObjCObjectPointerType>(Val: Y); |
14057 | return Ctx.getObjCObjectPointerType(ObjectT: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
14058 | } |
14059 | case Type::MemberPointer: { |
14060 | const auto *PX = cast<MemberPointerType>(Val: X), |
14061 | *PY = cast<MemberPointerType>(Val: Y); |
14062 | assert(declaresSameEntity(PX->getMostRecentCXXRecordDecl(), |
14063 | PY->getMostRecentCXXRecordDecl())); |
14064 | return Ctx.getMemberPointerType( |
14065 | T: getCommonPointeeType(Ctx, X: PX, Y: PY), |
14066 | Qualifier: getCommonQualifier(Ctx, X: PX, Y: PY, /*IsSame=*/true), |
14067 | Cls: PX->getMostRecentCXXRecordDecl()); |
14068 | } |
14069 | case Type::LValueReference: { |
14070 | const auto *PX = cast<LValueReferenceType>(Val: X), |
14071 | *PY = cast<LValueReferenceType>(Val: Y); |
14072 | // FIXME: Preserve PointeeTypeAsWritten. |
14073 | return Ctx.getLValueReferenceType(T: getCommonPointeeType(Ctx, X: PX, Y: PY), |
14074 | SpelledAsLValue: PX->isSpelledAsLValue() || |
14075 | PY->isSpelledAsLValue()); |
14076 | } |
14077 | case Type::RValueReference: { |
14078 | const auto *PX = cast<RValueReferenceType>(Val: X), |
14079 | *PY = cast<RValueReferenceType>(Val: Y); |
14080 | // FIXME: Preserve PointeeTypeAsWritten. |
14081 | return Ctx.getRValueReferenceType(T: getCommonPointeeType(Ctx, X: PX, Y: PY)); |
14082 | } |
14083 | case Type::DependentAddressSpace: { |
14084 | const auto *PX = cast<DependentAddressSpaceType>(Val: X), |
14085 | *PY = cast<DependentAddressSpaceType>(Val: Y); |
14086 | assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())); |
14087 | return Ctx.getDependentAddressSpaceType(PointeeType: getCommonPointeeType(Ctx, X: PX, Y: PY), |
14088 | AddrSpaceExpr: PX->getAddrSpaceExpr(), |
14089 | AttrLoc: getCommonAttrLoc(X: PX, Y: PY)); |
14090 | } |
14091 | case Type::FunctionNoProto: { |
14092 | const auto *FX = cast<FunctionNoProtoType>(Val: X), |
14093 | *FY = cast<FunctionNoProtoType>(Val: Y); |
14094 | assert(FX->getExtInfo() == FY->getExtInfo()); |
14095 | return Ctx.getFunctionNoProtoType( |
14096 | ResultTy: Ctx.getCommonSugaredType(X: FX->getReturnType(), Y: FY->getReturnType()), |
14097 | Info: FX->getExtInfo()); |
14098 | } |
14099 | case Type::FunctionProto: { |
14100 | const auto *FX = cast<FunctionProtoType>(Val: X), |
14101 | *FY = cast<FunctionProtoType>(Val: Y); |
14102 | FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(), |
14103 | EPIY = FY->getExtProtoInfo(); |
14104 | assert(EPIX.ExtInfo == EPIY.ExtInfo); |
14105 | assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos); |
14106 | assert(EPIX.RefQualifier == EPIY.RefQualifier); |
14107 | assert(EPIX.TypeQuals == EPIY.TypeQuals); |
14108 | assert(EPIX.Variadic == EPIY.Variadic); |
14109 | |
14110 | // FIXME: Can we handle an empty EllipsisLoc? |
14111 | // Use emtpy EllipsisLoc if X and Y differ. |
14112 | |
14113 | EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn; |
14114 | |
14115 | QualType R = |
14116 | Ctx.getCommonSugaredType(X: FX->getReturnType(), Y: FY->getReturnType()); |
14117 | auto P = getCommonTypes(Ctx, Xs: FX->param_types(), Ys: FY->param_types(), |
14118 | /*Unqualified=*/true); |
14119 | |
14120 | SmallVector<QualType, 8> Exceptions; |
14121 | EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs( |
14122 | ESI1: EPIX.ExceptionSpec, ESI2: EPIY.ExceptionSpec, ExceptionTypeStorage&: Exceptions, AcceptDependent: true); |
14123 | return Ctx.getFunctionType(ResultTy: R, Args: P, EPI: EPIX); |
14124 | } |
14125 | case Type::ObjCObject: { |
14126 | const auto *OX = cast<ObjCObjectType>(Val: X), *OY = cast<ObjCObjectType>(Val: Y); |
14127 | assert( |
14128 | std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), |
14129 | OY->getProtocols().begin(), OY->getProtocols().end(), |
14130 | [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { |
14131 | return P0->getCanonicalDecl() == P1->getCanonicalDecl(); |
14132 | }) && |
14133 | "protocol lists must be the same" ); |
14134 | auto TAs = getCommonTypes(Ctx, Xs: OX->getTypeArgsAsWritten(), |
14135 | Ys: OY->getTypeArgsAsWritten()); |
14136 | return Ctx.getObjCObjectType( |
14137 | baseType: Ctx.getCommonSugaredType(X: OX->getBaseType(), Y: OY->getBaseType()), typeArgs: TAs, |
14138 | protocols: OX->getProtocols(), |
14139 | isKindOf: OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten()); |
14140 | } |
14141 | case Type::ConstantMatrix: { |
14142 | const auto *MX = cast<ConstantMatrixType>(Val: X), |
14143 | *MY = cast<ConstantMatrixType>(Val: Y); |
14144 | assert(MX->getNumRows() == MY->getNumRows()); |
14145 | assert(MX->getNumColumns() == MY->getNumColumns()); |
14146 | return Ctx.getConstantMatrixType(ElementTy: getCommonElementType(Ctx, X: MX, Y: MY), |
14147 | NumRows: MX->getNumRows(), NumColumns: MX->getNumColumns()); |
14148 | } |
14149 | case Type::DependentSizedMatrix: { |
14150 | const auto *MX = cast<DependentSizedMatrixType>(Val: X), |
14151 | *MY = cast<DependentSizedMatrixType>(Val: Y); |
14152 | assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())); |
14153 | assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())); |
14154 | return Ctx.getDependentSizedMatrixType( |
14155 | ElementTy: getCommonElementType(Ctx, X: MX, Y: MY), RowExpr: MX->getRowExpr(), |
14156 | ColumnExpr: MX->getColumnExpr(), AttrLoc: getCommonAttrLoc(X: MX, Y: MY)); |
14157 | } |
14158 | case Type::Vector: { |
14159 | const auto *VX = cast<VectorType>(Val: X), *VY = cast<VectorType>(Val: Y); |
14160 | assert(VX->getNumElements() == VY->getNumElements()); |
14161 | assert(VX->getVectorKind() == VY->getVectorKind()); |
14162 | return Ctx.getVectorType(vecType: getCommonElementType(Ctx, X: VX, Y: VY), |
14163 | NumElts: VX->getNumElements(), VecKind: VX->getVectorKind()); |
14164 | } |
14165 | case Type::ExtVector: { |
14166 | const auto *VX = cast<ExtVectorType>(Val: X), *VY = cast<ExtVectorType>(Val: Y); |
14167 | assert(VX->getNumElements() == VY->getNumElements()); |
14168 | return Ctx.getExtVectorType(vecType: getCommonElementType(Ctx, X: VX, Y: VY), |
14169 | NumElts: VX->getNumElements()); |
14170 | } |
14171 | case Type::DependentSizedExtVector: { |
14172 | const auto *VX = cast<DependentSizedExtVectorType>(Val: X), |
14173 | *VY = cast<DependentSizedExtVectorType>(Val: Y); |
14174 | return Ctx.getDependentSizedExtVectorType(vecType: getCommonElementType(Ctx, X: VX, Y: VY), |
14175 | SizeExpr: getCommonSizeExpr(Ctx, X: VX, Y: VY), |
14176 | AttrLoc: getCommonAttrLoc(X: VX, Y: VY)); |
14177 | } |
14178 | case Type::DependentVector: { |
14179 | const auto *VX = cast<DependentVectorType>(Val: X), |
14180 | *VY = cast<DependentVectorType>(Val: Y); |
14181 | assert(VX->getVectorKind() == VY->getVectorKind()); |
14182 | return Ctx.getDependentVectorType( |
14183 | VecType: getCommonElementType(Ctx, X: VX, Y: VY), SizeExpr: getCommonSizeExpr(Ctx, X: VX, Y: VY), |
14184 | AttrLoc: getCommonAttrLoc(X: VX, Y: VY), VecKind: VX->getVectorKind()); |
14185 | } |
14186 | case Type::InjectedClassName: { |
14187 | const auto *IX = cast<InjectedClassNameType>(Val: X), |
14188 | *IY = cast<InjectedClassNameType>(Val: Y); |
14189 | return Ctx.getInjectedClassNameType( |
14190 | Decl: getCommonDeclChecked(X: IX->getDecl(), Y: IY->getDecl()), |
14191 | TST: Ctx.getCommonSugaredType(X: IX->getInjectedSpecializationType(), |
14192 | Y: IY->getInjectedSpecializationType())); |
14193 | } |
14194 | case Type::TemplateSpecialization: { |
14195 | const auto *TX = cast<TemplateSpecializationType>(Val: X), |
14196 | *TY = cast<TemplateSpecializationType>(Val: Y); |
14197 | auto As = getCommonTemplateArguments(Ctx, Xs: TX->template_arguments(), |
14198 | Ys: TY->template_arguments()); |
14199 | return Ctx.getTemplateSpecializationType( |
14200 | Template: ::getCommonTemplateNameChecked(Ctx, X: TX->getTemplateName(), |
14201 | Y: TY->getTemplateName(), |
14202 | /*IgnoreDeduced=*/true), |
14203 | SpecifiedArgs: As, /*CanonicalArgs=*/{}, Underlying: X->getCanonicalTypeInternal()); |
14204 | } |
14205 | case Type::Decltype: { |
14206 | const auto *DX = cast<DecltypeType>(Val: X); |
14207 | [[maybe_unused]] const auto *DY = cast<DecltypeType>(Val: Y); |
14208 | assert(DX->isDependentType()); |
14209 | assert(DY->isDependentType()); |
14210 | assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr())); |
14211 | // As Decltype is not uniqued, building a common type would be wasteful. |
14212 | return QualType(DX, 0); |
14213 | } |
14214 | case Type::PackIndexing: { |
14215 | const auto *DX = cast<PackIndexingType>(Val: X); |
14216 | [[maybe_unused]] const auto *DY = cast<PackIndexingType>(Val: Y); |
14217 | assert(DX->isDependentType()); |
14218 | assert(DY->isDependentType()); |
14219 | assert(Ctx.hasSameExpr(DX->getIndexExpr(), DY->getIndexExpr())); |
14220 | return QualType(DX, 0); |
14221 | } |
14222 | case Type::DependentName: { |
14223 | const auto *NX = cast<DependentNameType>(Val: X), |
14224 | *NY = cast<DependentNameType>(Val: Y); |
14225 | assert(NX->getIdentifier() == NY->getIdentifier()); |
14226 | return Ctx.getDependentNameType( |
14227 | Keyword: getCommonTypeKeyword(X: NX, Y: NY), |
14228 | NNS: getCommonQualifier(Ctx, X: NX, Y: NY, /*IsSame=*/true), Name: NX->getIdentifier()); |
14229 | } |
14230 | case Type::DependentTemplateSpecialization: { |
14231 | const auto *TX = cast<DependentTemplateSpecializationType>(Val: X), |
14232 | *TY = cast<DependentTemplateSpecializationType>(Val: Y); |
14233 | auto As = getCommonTemplateArguments(Ctx, Xs: TX->template_arguments(), |
14234 | Ys: TY->template_arguments()); |
14235 | const DependentTemplateStorage &SX = TX->getDependentTemplateName(), |
14236 | &SY = TY->getDependentTemplateName(); |
14237 | assert(SX.getName() == SY.getName()); |
14238 | DependentTemplateStorage Name( |
14239 | getCommonNNS(Ctx, NNS1: SX.getQualifier(), NNS2: SY.getQualifier(), |
14240 | /*IsSame=*/true), |
14241 | SX.getName(), SX.hasTemplateKeyword() || SY.hasTemplateKeyword()); |
14242 | return Ctx.getDependentTemplateSpecializationType( |
14243 | Keyword: getCommonTypeKeyword(X: TX, Y: TY), Name, Args: As); |
14244 | } |
14245 | case Type::UnaryTransform: { |
14246 | const auto *TX = cast<UnaryTransformType>(Val: X), |
14247 | *TY = cast<UnaryTransformType>(Val: Y); |
14248 | assert(TX->getUTTKind() == TY->getUTTKind()); |
14249 | return Ctx.getUnaryTransformType( |
14250 | BaseType: Ctx.getCommonSugaredType(X: TX->getBaseType(), Y: TY->getBaseType()), |
14251 | UnderlyingType: Ctx.getCommonSugaredType(X: TX->getUnderlyingType(), |
14252 | Y: TY->getUnderlyingType()), |
14253 | Kind: TX->getUTTKind()); |
14254 | } |
14255 | case Type::PackExpansion: { |
14256 | const auto *PX = cast<PackExpansionType>(Val: X), |
14257 | *PY = cast<PackExpansionType>(Val: Y); |
14258 | assert(PX->getNumExpansions() == PY->getNumExpansions()); |
14259 | return Ctx.getPackExpansionType( |
14260 | Pattern: Ctx.getCommonSugaredType(X: PX->getPattern(), Y: PY->getPattern()), |
14261 | NumExpansions: PX->getNumExpansions(), ExpectPackInType: false); |
14262 | } |
14263 | case Type::Pipe: { |
14264 | const auto *PX = cast<PipeType>(Val: X), *PY = cast<PipeType>(Val: Y); |
14265 | assert(PX->isReadOnly() == PY->isReadOnly()); |
14266 | auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType |
14267 | : &ASTContext::getWritePipeType; |
14268 | return (Ctx.*MP)(getCommonElementType(Ctx, X: PX, Y: PY)); |
14269 | } |
14270 | case Type::TemplateTypeParm: { |
14271 | const auto *TX = cast<TemplateTypeParmType>(Val: X), |
14272 | *TY = cast<TemplateTypeParmType>(Val: Y); |
14273 | assert(TX->getDepth() == TY->getDepth()); |
14274 | assert(TX->getIndex() == TY->getIndex()); |
14275 | assert(TX->isParameterPack() == TY->isParameterPack()); |
14276 | return Ctx.getTemplateTypeParmType( |
14277 | Depth: TX->getDepth(), Index: TX->getIndex(), ParameterPack: TX->isParameterPack(), |
14278 | TTPDecl: getCommonDecl(X: TX->getDecl(), Y: TY->getDecl())); |
14279 | } |
14280 | } |
14281 | llvm_unreachable("Unknown Type Class" ); |
14282 | } |
14283 | |
14284 | static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X, |
14285 | const Type *Y, |
14286 | SplitQualType Underlying) { |
14287 | Type::TypeClass TC = X->getTypeClass(); |
14288 | if (TC != Y->getTypeClass()) |
14289 | return QualType(); |
14290 | switch (TC) { |
14291 | #define UNEXPECTED_TYPE(Class, Kind) \ |
14292 | case Type::Class: \ |
14293 | llvm_unreachable("Unexpected " Kind ": " #Class); |
14294 | #define TYPE(Class, Base) |
14295 | #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent") |
14296 | #include "clang/AST/TypeNodes.inc" |
14297 | |
14298 | #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical") |
14299 | CANONICAL_TYPE(Atomic) |
14300 | CANONICAL_TYPE(BitInt) |
14301 | CANONICAL_TYPE(BlockPointer) |
14302 | CANONICAL_TYPE(Builtin) |
14303 | CANONICAL_TYPE(Complex) |
14304 | CANONICAL_TYPE(ConstantArray) |
14305 | CANONICAL_TYPE(ArrayParameter) |
14306 | CANONICAL_TYPE(ConstantMatrix) |
14307 | CANONICAL_TYPE(Enum) |
14308 | CANONICAL_TYPE(ExtVector) |
14309 | CANONICAL_TYPE(FunctionNoProto) |
14310 | CANONICAL_TYPE(FunctionProto) |
14311 | CANONICAL_TYPE(IncompleteArray) |
14312 | CANONICAL_TYPE(HLSLAttributedResource) |
14313 | CANONICAL_TYPE(HLSLInlineSpirv) |
14314 | CANONICAL_TYPE(LValueReference) |
14315 | CANONICAL_TYPE(ObjCInterface) |
14316 | CANONICAL_TYPE(ObjCObject) |
14317 | CANONICAL_TYPE(ObjCObjectPointer) |
14318 | CANONICAL_TYPE(Pipe) |
14319 | CANONICAL_TYPE(Pointer) |
14320 | CANONICAL_TYPE(Record) |
14321 | CANONICAL_TYPE(RValueReference) |
14322 | CANONICAL_TYPE(VariableArray) |
14323 | CANONICAL_TYPE(Vector) |
14324 | #undef CANONICAL_TYPE |
14325 | |
14326 | #undef UNEXPECTED_TYPE |
14327 | |
14328 | case Type::Adjusted: { |
14329 | const auto *AX = cast<AdjustedType>(Val: X), *AY = cast<AdjustedType>(Val: Y); |
14330 | QualType OX = AX->getOriginalType(), OY = AY->getOriginalType(); |
14331 | if (!Ctx.hasSameType(T1: OX, T2: OY)) |
14332 | return QualType(); |
14333 | // FIXME: It's inefficient to have to unify the original types. |
14334 | return Ctx.getAdjustedType(Orig: Ctx.getCommonSugaredType(X: OX, Y: OY), |
14335 | New: Ctx.getQualifiedType(split: Underlying)); |
14336 | } |
14337 | case Type::Decayed: { |
14338 | const auto *DX = cast<DecayedType>(Val: X), *DY = cast<DecayedType>(Val: Y); |
14339 | QualType OX = DX->getOriginalType(), OY = DY->getOriginalType(); |
14340 | if (!Ctx.hasSameType(T1: OX, T2: OY)) |
14341 | return QualType(); |
14342 | // FIXME: It's inefficient to have to unify the original types. |
14343 | return Ctx.getDecayedType(Orig: Ctx.getCommonSugaredType(X: OX, Y: OY), |
14344 | Decayed: Ctx.getQualifiedType(split: Underlying)); |
14345 | } |
14346 | case Type::Attributed: { |
14347 | const auto *AX = cast<AttributedType>(Val: X), *AY = cast<AttributedType>(Val: Y); |
14348 | AttributedType::Kind Kind = AX->getAttrKind(); |
14349 | if (Kind != AY->getAttrKind()) |
14350 | return QualType(); |
14351 | QualType MX = AX->getModifiedType(), MY = AY->getModifiedType(); |
14352 | if (!Ctx.hasSameType(T1: MX, T2: MY)) |
14353 | return QualType(); |
14354 | // FIXME: It's inefficient to have to unify the modified types. |
14355 | return Ctx.getAttributedType(attrKind: Kind, modifiedType: Ctx.getCommonSugaredType(X: MX, Y: MY), |
14356 | equivalentType: Ctx.getQualifiedType(split: Underlying), |
14357 | attr: AX->getAttr()); |
14358 | } |
14359 | case Type::BTFTagAttributed: { |
14360 | const auto *BX = cast<BTFTagAttributedType>(Val: X); |
14361 | const BTFTypeTagAttr *AX = BX->getAttr(); |
14362 | // The attribute is not uniqued, so just compare the tag. |
14363 | if (AX->getBTFTypeTag() != |
14364 | cast<BTFTagAttributedType>(Val: Y)->getAttr()->getBTFTypeTag()) |
14365 | return QualType(); |
14366 | return Ctx.getBTFTagAttributedType(BTFAttr: AX, Wrapped: Ctx.getQualifiedType(split: Underlying)); |
14367 | } |
14368 | case Type::Auto: { |
14369 | const auto *AX = cast<AutoType>(Val: X), *AY = cast<AutoType>(Val: Y); |
14370 | |
14371 | AutoTypeKeyword KW = AX->getKeyword(); |
14372 | if (KW != AY->getKeyword()) |
14373 | return QualType(); |
14374 | |
14375 | ConceptDecl *CD = ::getCommonDecl(X: AX->getTypeConstraintConcept(), |
14376 | Y: AY->getTypeConstraintConcept()); |
14377 | SmallVector<TemplateArgument, 8> As; |
14378 | if (CD && |
14379 | getCommonTemplateArguments(Ctx, R&: As, Xs: AX->getTypeConstraintArguments(), |
14380 | Ys: AY->getTypeConstraintArguments())) { |
14381 | CD = nullptr; // The arguments differ, so make it unconstrained. |
14382 | As.clear(); |
14383 | } |
14384 | |
14385 | // Both auto types can't be dependent, otherwise they wouldn't have been |
14386 | // sugar. This implies they can't contain unexpanded packs either. |
14387 | return Ctx.getAutoType(DeducedType: Ctx.getQualifiedType(split: Underlying), Keyword: AX->getKeyword(), |
14388 | /*IsDependent=*/false, /*IsPack=*/false, TypeConstraintConcept: CD, TypeConstraintArgs: As); |
14389 | } |
14390 | case Type::PackIndexing: |
14391 | case Type::Decltype: |
14392 | return QualType(); |
14393 | case Type::DeducedTemplateSpecialization: |
14394 | // FIXME: Try to merge these. |
14395 | return QualType(); |
14396 | |
14397 | case Type::Elaborated: { |
14398 | const auto *EX = cast<ElaboratedType>(Val: X), *EY = cast<ElaboratedType>(Val: Y); |
14399 | return Ctx.getElaboratedType( |
14400 | Keyword: ::getCommonTypeKeyword(X: EX, Y: EY), |
14401 | NNS: ::getCommonQualifier(Ctx, X: EX, Y: EY, /*IsSame=*/false), |
14402 | NamedType: Ctx.getQualifiedType(split: Underlying), |
14403 | OwnedTagDecl: ::getCommonDecl(X: EX->getOwnedTagDecl(), Y: EY->getOwnedTagDecl())); |
14404 | } |
14405 | case Type::MacroQualified: { |
14406 | const auto *MX = cast<MacroQualifiedType>(Val: X), |
14407 | *MY = cast<MacroQualifiedType>(Val: Y); |
14408 | const IdentifierInfo *IX = MX->getMacroIdentifier(); |
14409 | if (IX != MY->getMacroIdentifier()) |
14410 | return QualType(); |
14411 | return Ctx.getMacroQualifiedType(UnderlyingTy: Ctx.getQualifiedType(split: Underlying), MacroII: IX); |
14412 | } |
14413 | case Type::SubstTemplateTypeParm: { |
14414 | const auto *SX = cast<SubstTemplateTypeParmType>(Val: X), |
14415 | *SY = cast<SubstTemplateTypeParmType>(Val: Y); |
14416 | Decl *CD = |
14417 | ::getCommonDecl(X: SX->getAssociatedDecl(), Y: SY->getAssociatedDecl()); |
14418 | if (!CD) |
14419 | return QualType(); |
14420 | unsigned Index = SX->getIndex(); |
14421 | if (Index != SY->getIndex()) |
14422 | return QualType(); |
14423 | auto PackIndex = SX->getPackIndex(); |
14424 | if (PackIndex != SY->getPackIndex()) |
14425 | return QualType(); |
14426 | return Ctx.getSubstTemplateTypeParmType(Replacement: Ctx.getQualifiedType(split: Underlying), |
14427 | AssociatedDecl: CD, Index, PackIndex, |
14428 | Final: SX->getFinal() && SY->getFinal()); |
14429 | } |
14430 | case Type::ObjCTypeParam: |
14431 | // FIXME: Try to merge these. |
14432 | return QualType(); |
14433 | case Type::Paren: |
14434 | return Ctx.getParenType(InnerType: Ctx.getQualifiedType(split: Underlying)); |
14435 | |
14436 | case Type::TemplateSpecialization: { |
14437 | const auto *TX = cast<TemplateSpecializationType>(Val: X), |
14438 | *TY = cast<TemplateSpecializationType>(Val: Y); |
14439 | TemplateName CTN = |
14440 | ::getCommonTemplateName(Ctx, X: TX->getTemplateName(), |
14441 | Y: TY->getTemplateName(), /*IgnoreDeduced=*/true); |
14442 | if (!CTN.getAsVoidPointer()) |
14443 | return QualType(); |
14444 | SmallVector<TemplateArgument, 8> As; |
14445 | if (getCommonTemplateArguments(Ctx, R&: As, Xs: TX->template_arguments(), |
14446 | Ys: TY->template_arguments())) |
14447 | return QualType(); |
14448 | return Ctx.getTemplateSpecializationType(Template: CTN, SpecifiedArgs: As, |
14449 | /*CanonicalArgs=*/{}, |
14450 | Underlying: Ctx.getQualifiedType(split: Underlying)); |
14451 | } |
14452 | case Type::Typedef: { |
14453 | const auto *TX = cast<TypedefType>(Val: X), *TY = cast<TypedefType>(Val: Y); |
14454 | const TypedefNameDecl *CD = ::getCommonDecl(X: TX->getDecl(), Y: TY->getDecl()); |
14455 | if (!CD) |
14456 | return QualType(); |
14457 | return Ctx.getTypedefType(Decl: CD, Underlying: Ctx.getQualifiedType(split: Underlying)); |
14458 | } |
14459 | case Type::TypeOf: { |
14460 | // The common sugar between two typeof expressions, where one is |
14461 | // potentially a typeof_unqual and the other is not, we unify to the |
14462 | // qualified type as that retains the most information along with the type. |
14463 | // We only return a typeof_unqual type when both types are unqual types. |
14464 | TypeOfKind Kind = TypeOfKind::Qualified; |
14465 | if (cast<TypeOfType>(Val: X)->getKind() == cast<TypeOfType>(Val: Y)->getKind() && |
14466 | cast<TypeOfType>(Val: X)->getKind() == TypeOfKind::Unqualified) |
14467 | Kind = TypeOfKind::Unqualified; |
14468 | return Ctx.getTypeOfType(tofType: Ctx.getQualifiedType(split: Underlying), Kind); |
14469 | } |
14470 | case Type::TypeOfExpr: |
14471 | return QualType(); |
14472 | |
14473 | case Type::UnaryTransform: { |
14474 | const auto *UX = cast<UnaryTransformType>(Val: X), |
14475 | *UY = cast<UnaryTransformType>(Val: Y); |
14476 | UnaryTransformType::UTTKind KX = UX->getUTTKind(); |
14477 | if (KX != UY->getUTTKind()) |
14478 | return QualType(); |
14479 | QualType BX = UX->getBaseType(), BY = UY->getBaseType(); |
14480 | if (!Ctx.hasSameType(T1: BX, T2: BY)) |
14481 | return QualType(); |
14482 | // FIXME: It's inefficient to have to unify the base types. |
14483 | return Ctx.getUnaryTransformType(BaseType: Ctx.getCommonSugaredType(X: BX, Y: BY), |
14484 | UnderlyingType: Ctx.getQualifiedType(split: Underlying), Kind: KX); |
14485 | } |
14486 | case Type::Using: { |
14487 | const auto *UX = cast<UsingType>(Val: X), *UY = cast<UsingType>(Val: Y); |
14488 | const UsingShadowDecl *CD = |
14489 | ::getCommonDecl(X: UX->getFoundDecl(), Y: UY->getFoundDecl()); |
14490 | if (!CD) |
14491 | return QualType(); |
14492 | return Ctx.getUsingType(Found: CD, Underlying: Ctx.getQualifiedType(split: Underlying)); |
14493 | } |
14494 | case Type::MemberPointer: { |
14495 | const auto *PX = cast<MemberPointerType>(Val: X), |
14496 | *PY = cast<MemberPointerType>(Val: Y); |
14497 | CXXRecordDecl *Cls = PX->getMostRecentCXXRecordDecl(); |
14498 | assert(Cls == PY->getMostRecentCXXRecordDecl()); |
14499 | return Ctx.getMemberPointerType( |
14500 | T: ::getCommonPointeeType(Ctx, X: PX, Y: PY), |
14501 | Qualifier: ::getCommonQualifier(Ctx, X: PX, Y: PY, /*IsSame=*/false), Cls); |
14502 | } |
14503 | case Type::CountAttributed: { |
14504 | const auto *DX = cast<CountAttributedType>(Val: X), |
14505 | *DY = cast<CountAttributedType>(Val: Y); |
14506 | if (DX->isCountInBytes() != DY->isCountInBytes()) |
14507 | return QualType(); |
14508 | if (DX->isOrNull() != DY->isOrNull()) |
14509 | return QualType(); |
14510 | Expr *CEX = DX->getCountExpr(); |
14511 | Expr *CEY = DY->getCountExpr(); |
14512 | ArrayRef<clang::TypeCoupledDeclRefInfo> CDX = DX->getCoupledDecls(); |
14513 | if (Ctx.hasSameExpr(X: CEX, Y: CEY)) |
14514 | return Ctx.getCountAttributedType(WrappedTy: Ctx.getQualifiedType(split: Underlying), CountExpr: CEX, |
14515 | CountInBytes: DX->isCountInBytes(), OrNull: DX->isOrNull(), |
14516 | DependentDecls: CDX); |
14517 | if (!CEX->isIntegerConstantExpr(Ctx) || !CEY->isIntegerConstantExpr(Ctx)) |
14518 | return QualType(); |
14519 | // Two declarations with the same integer constant may still differ in their |
14520 | // expression pointers, so we need to evaluate them. |
14521 | llvm::APSInt VX = *CEX->getIntegerConstantExpr(Ctx); |
14522 | llvm::APSInt VY = *CEY->getIntegerConstantExpr(Ctx); |
14523 | if (VX != VY) |
14524 | return QualType(); |
14525 | return Ctx.getCountAttributedType(WrappedTy: Ctx.getQualifiedType(split: Underlying), CountExpr: CEX, |
14526 | CountInBytes: DX->isCountInBytes(), OrNull: DX->isOrNull(), |
14527 | DependentDecls: CDX); |
14528 | } |
14529 | } |
14530 | llvm_unreachable("Unhandled Type Class" ); |
14531 | } |
14532 | |
14533 | static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) { |
14534 | SmallVector<SplitQualType, 8> R; |
14535 | while (true) { |
14536 | QTotal.addConsistentQualifiers(qs: T.Quals); |
14537 | QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
14538 | if (NT == QualType(T.Ty, 0)) |
14539 | break; |
14540 | R.push_back(Elt: T); |
14541 | T = NT.split(); |
14542 | } |
14543 | return R; |
14544 | } |
14545 | |
14546 | QualType ASTContext::getCommonSugaredType(QualType X, QualType Y, |
14547 | bool Unqualified) { |
14548 | assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)); |
14549 | if (X == Y) |
14550 | return X; |
14551 | if (!Unqualified) { |
14552 | if (X.isCanonical()) |
14553 | return X; |
14554 | if (Y.isCanonical()) |
14555 | return Y; |
14556 | } |
14557 | |
14558 | SplitQualType SX = X.split(), SY = Y.split(); |
14559 | Qualifiers QX, QY; |
14560 | // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys, |
14561 | // until we reach their underlying "canonical nodes". Note these are not |
14562 | // necessarily canonical types, as they may still have sugared properties. |
14563 | // QX and QY will store the sum of all qualifiers in Xs and Ys respectively. |
14564 | auto Xs = ::unwrapSugar(T&: SX, QTotal&: QX), Ys = ::unwrapSugar(T&: SY, QTotal&: QY); |
14565 | |
14566 | // If this is an ArrayType, the element qualifiers are interchangeable with |
14567 | // the top level qualifiers. |
14568 | // * In case the canonical nodes are the same, the elements types are already |
14569 | // the same. |
14570 | // * Otherwise, the element types will be made the same, and any different |
14571 | // element qualifiers will be moved up to the top level qualifiers, per |
14572 | // 'getCommonArrayElementType'. |
14573 | // In both cases, this means there may be top level qualifiers which differ |
14574 | // between X and Y. If so, these differing qualifiers are redundant with the |
14575 | // element qualifiers, and can be removed without changing the canonical type. |
14576 | // The desired behaviour is the same as for the 'Unqualified' case here: |
14577 | // treat the redundant qualifiers as sugar, remove the ones which are not |
14578 | // common to both sides. |
14579 | bool KeepCommonQualifiers = Unqualified || isa<ArrayType>(Val: SX.Ty); |
14580 | |
14581 | if (SX.Ty != SY.Ty) { |
14582 | // The canonical nodes differ. Build a common canonical node out of the two, |
14583 | // unifying their sugar. This may recurse back here. |
14584 | SX.Ty = |
14585 | ::getCommonNonSugarTypeNode(Ctx&: *this, X: SX.Ty, QX, Y: SY.Ty, QY).getTypePtr(); |
14586 | } else { |
14587 | // The canonical nodes were identical: We may have desugared too much. |
14588 | // Add any common sugar back in. |
14589 | while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) { |
14590 | QX -= SX.Quals; |
14591 | QY -= SY.Quals; |
14592 | SX = Xs.pop_back_val(); |
14593 | SY = Ys.pop_back_val(); |
14594 | } |
14595 | } |
14596 | if (KeepCommonQualifiers) |
14597 | QX = Qualifiers::removeCommonQualifiers(L&: QX, R&: QY); |
14598 | else |
14599 | assert(QX == QY); |
14600 | |
14601 | // Even though the remaining sugar nodes in Xs and Ys differ, some may be |
14602 | // related. Walk up these nodes, unifying them and adding the result. |
14603 | while (!Xs.empty() && !Ys.empty()) { |
14604 | auto Underlying = SplitQualType( |
14605 | SX.Ty, Qualifiers::removeCommonQualifiers(L&: SX.Quals, R&: SY.Quals)); |
14606 | SX = Xs.pop_back_val(); |
14607 | SY = Ys.pop_back_val(); |
14608 | SX.Ty = ::getCommonSugarTypeNode(Ctx&: *this, X: SX.Ty, Y: SY.Ty, Underlying) |
14609 | .getTypePtrOrNull(); |
14610 | // Stop at the first pair which is unrelated. |
14611 | if (!SX.Ty) { |
14612 | SX.Ty = Underlying.Ty; |
14613 | break; |
14614 | } |
14615 | QX -= Underlying.Quals; |
14616 | }; |
14617 | |
14618 | // Add back the missing accumulated qualifiers, which were stripped off |
14619 | // with the sugar nodes we could not unify. |
14620 | QualType R = getQualifiedType(T: SX.Ty, Qs: QX); |
14621 | assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)); |
14622 | return R; |
14623 | } |
14624 | |
14625 | QualType ASTContext::getCorrespondingUnsaturatedType(QualType Ty) const { |
14626 | assert(Ty->isFixedPointType()); |
14627 | |
14628 | if (Ty->isUnsaturatedFixedPointType()) |
14629 | return Ty; |
14630 | |
14631 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
14632 | default: |
14633 | llvm_unreachable("Not a saturated fixed point type!" ); |
14634 | case BuiltinType::SatShortAccum: |
14635 | return ShortAccumTy; |
14636 | case BuiltinType::SatAccum: |
14637 | return AccumTy; |
14638 | case BuiltinType::SatLongAccum: |
14639 | return LongAccumTy; |
14640 | case BuiltinType::SatUShortAccum: |
14641 | return UnsignedShortAccumTy; |
14642 | case BuiltinType::SatUAccum: |
14643 | return UnsignedAccumTy; |
14644 | case BuiltinType::SatULongAccum: |
14645 | return UnsignedLongAccumTy; |
14646 | case BuiltinType::SatShortFract: |
14647 | return ShortFractTy; |
14648 | case BuiltinType::SatFract: |
14649 | return FractTy; |
14650 | case BuiltinType::SatLongFract: |
14651 | return LongFractTy; |
14652 | case BuiltinType::SatUShortFract: |
14653 | return UnsignedShortFractTy; |
14654 | case BuiltinType::SatUFract: |
14655 | return UnsignedFractTy; |
14656 | case BuiltinType::SatULongFract: |
14657 | return UnsignedLongFractTy; |
14658 | } |
14659 | } |
14660 | |
14661 | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { |
14662 | assert(Ty->isFixedPointType()); |
14663 | |
14664 | if (Ty->isSaturatedFixedPointType()) return Ty; |
14665 | |
14666 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
14667 | default: |
14668 | llvm_unreachable("Not a fixed point type!" ); |
14669 | case BuiltinType::ShortAccum: |
14670 | return SatShortAccumTy; |
14671 | case BuiltinType::Accum: |
14672 | return SatAccumTy; |
14673 | case BuiltinType::LongAccum: |
14674 | return SatLongAccumTy; |
14675 | case BuiltinType::UShortAccum: |
14676 | return SatUnsignedShortAccumTy; |
14677 | case BuiltinType::UAccum: |
14678 | return SatUnsignedAccumTy; |
14679 | case BuiltinType::ULongAccum: |
14680 | return SatUnsignedLongAccumTy; |
14681 | case BuiltinType::ShortFract: |
14682 | return SatShortFractTy; |
14683 | case BuiltinType::Fract: |
14684 | return SatFractTy; |
14685 | case BuiltinType::LongFract: |
14686 | return SatLongFractTy; |
14687 | case BuiltinType::UShortFract: |
14688 | return SatUnsignedShortFractTy; |
14689 | case BuiltinType::UFract: |
14690 | return SatUnsignedFractTy; |
14691 | case BuiltinType::ULongFract: |
14692 | return SatUnsignedLongFractTy; |
14693 | } |
14694 | } |
14695 | |
14696 | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { |
14697 | if (LangOpts.OpenCL) |
14698 | return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); |
14699 | |
14700 | if (LangOpts.CUDA) |
14701 | return getTargetInfo().getCUDABuiltinAddressSpace(AS); |
14702 | |
14703 | return getLangASFromTargetAS(TargetAS: AS); |
14704 | } |
14705 | |
14706 | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that |
14707 | // doesn't include ASTContext.h |
14708 | template |
14709 | clang::LazyGenerationalUpdatePtr< |
14710 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType |
14711 | clang::LazyGenerationalUpdatePtr< |
14712 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( |
14713 | const clang::ASTContext &Ctx, Decl *Value); |
14714 | |
14715 | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { |
14716 | assert(Ty->isFixedPointType()); |
14717 | |
14718 | const TargetInfo &Target = getTargetInfo(); |
14719 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
14720 | default: |
14721 | llvm_unreachable("Not a fixed point type!" ); |
14722 | case BuiltinType::ShortAccum: |
14723 | case BuiltinType::SatShortAccum: |
14724 | return Target.getShortAccumScale(); |
14725 | case BuiltinType::Accum: |
14726 | case BuiltinType::SatAccum: |
14727 | return Target.getAccumScale(); |
14728 | case BuiltinType::LongAccum: |
14729 | case BuiltinType::SatLongAccum: |
14730 | return Target.getLongAccumScale(); |
14731 | case BuiltinType::UShortAccum: |
14732 | case BuiltinType::SatUShortAccum: |
14733 | return Target.getUnsignedShortAccumScale(); |
14734 | case BuiltinType::UAccum: |
14735 | case BuiltinType::SatUAccum: |
14736 | return Target.getUnsignedAccumScale(); |
14737 | case BuiltinType::ULongAccum: |
14738 | case BuiltinType::SatULongAccum: |
14739 | return Target.getUnsignedLongAccumScale(); |
14740 | case BuiltinType::ShortFract: |
14741 | case BuiltinType::SatShortFract: |
14742 | return Target.getShortFractScale(); |
14743 | case BuiltinType::Fract: |
14744 | case BuiltinType::SatFract: |
14745 | return Target.getFractScale(); |
14746 | case BuiltinType::LongFract: |
14747 | case BuiltinType::SatLongFract: |
14748 | return Target.getLongFractScale(); |
14749 | case BuiltinType::UShortFract: |
14750 | case BuiltinType::SatUShortFract: |
14751 | return Target.getUnsignedShortFractScale(); |
14752 | case BuiltinType::UFract: |
14753 | case BuiltinType::SatUFract: |
14754 | return Target.getUnsignedFractScale(); |
14755 | case BuiltinType::ULongFract: |
14756 | case BuiltinType::SatULongFract: |
14757 | return Target.getUnsignedLongFractScale(); |
14758 | } |
14759 | } |
14760 | |
14761 | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { |
14762 | assert(Ty->isFixedPointType()); |
14763 | |
14764 | const TargetInfo &Target = getTargetInfo(); |
14765 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
14766 | default: |
14767 | llvm_unreachable("Not a fixed point type!" ); |
14768 | case BuiltinType::ShortAccum: |
14769 | case BuiltinType::SatShortAccum: |
14770 | return Target.getShortAccumIBits(); |
14771 | case BuiltinType::Accum: |
14772 | case BuiltinType::SatAccum: |
14773 | return Target.getAccumIBits(); |
14774 | case BuiltinType::LongAccum: |
14775 | case BuiltinType::SatLongAccum: |
14776 | return Target.getLongAccumIBits(); |
14777 | case BuiltinType::UShortAccum: |
14778 | case BuiltinType::SatUShortAccum: |
14779 | return Target.getUnsignedShortAccumIBits(); |
14780 | case BuiltinType::UAccum: |
14781 | case BuiltinType::SatUAccum: |
14782 | return Target.getUnsignedAccumIBits(); |
14783 | case BuiltinType::ULongAccum: |
14784 | case BuiltinType::SatULongAccum: |
14785 | return Target.getUnsignedLongAccumIBits(); |
14786 | case BuiltinType::ShortFract: |
14787 | case BuiltinType::SatShortFract: |
14788 | case BuiltinType::Fract: |
14789 | case BuiltinType::SatFract: |
14790 | case BuiltinType::LongFract: |
14791 | case BuiltinType::SatLongFract: |
14792 | case BuiltinType::UShortFract: |
14793 | case BuiltinType::SatUShortFract: |
14794 | case BuiltinType::UFract: |
14795 | case BuiltinType::SatUFract: |
14796 | case BuiltinType::ULongFract: |
14797 | case BuiltinType::SatULongFract: |
14798 | return 0; |
14799 | } |
14800 | } |
14801 | |
14802 | llvm::FixedPointSemantics |
14803 | ASTContext::getFixedPointSemantics(QualType Ty) const { |
14804 | assert((Ty->isFixedPointType() || Ty->isIntegerType()) && |
14805 | "Can only get the fixed point semantics for a " |
14806 | "fixed point or integer type." ); |
14807 | if (Ty->isIntegerType()) |
14808 | return llvm::FixedPointSemantics::GetIntegerSemantics( |
14809 | Width: getIntWidth(T: Ty), IsSigned: Ty->isSignedIntegerType()); |
14810 | |
14811 | bool isSigned = Ty->isSignedFixedPointType(); |
14812 | return llvm::FixedPointSemantics( |
14813 | static_cast<unsigned>(getTypeSize(T: Ty)), getFixedPointScale(Ty), isSigned, |
14814 | Ty->isSaturatedFixedPointType(), |
14815 | !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); |
14816 | } |
14817 | |
14818 | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { |
14819 | assert(Ty->isFixedPointType()); |
14820 | return llvm::APFixedPoint::getMax(Sema: getFixedPointSemantics(Ty)); |
14821 | } |
14822 | |
14823 | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { |
14824 | assert(Ty->isFixedPointType()); |
14825 | return llvm::APFixedPoint::getMin(Sema: getFixedPointSemantics(Ty)); |
14826 | } |
14827 | |
14828 | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { |
14829 | assert(Ty->isUnsignedFixedPointType() && |
14830 | "Expected unsigned fixed point type" ); |
14831 | |
14832 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
14833 | case BuiltinType::UShortAccum: |
14834 | return ShortAccumTy; |
14835 | case BuiltinType::UAccum: |
14836 | return AccumTy; |
14837 | case BuiltinType::ULongAccum: |
14838 | return LongAccumTy; |
14839 | case BuiltinType::SatUShortAccum: |
14840 | return SatShortAccumTy; |
14841 | case BuiltinType::SatUAccum: |
14842 | return SatAccumTy; |
14843 | case BuiltinType::SatULongAccum: |
14844 | return SatLongAccumTy; |
14845 | case BuiltinType::UShortFract: |
14846 | return ShortFractTy; |
14847 | case BuiltinType::UFract: |
14848 | return FractTy; |
14849 | case BuiltinType::ULongFract: |
14850 | return LongFractTy; |
14851 | case BuiltinType::SatUShortFract: |
14852 | return SatShortFractTy; |
14853 | case BuiltinType::SatUFract: |
14854 | return SatFractTy; |
14855 | case BuiltinType::SatULongFract: |
14856 | return SatLongFractTy; |
14857 | default: |
14858 | llvm_unreachable("Unexpected unsigned fixed point type" ); |
14859 | } |
14860 | } |
14861 | |
14862 | // Given a list of FMV features, return a concatenated list of the |
14863 | // corresponding backend features (which may contain duplicates). |
14864 | static std::vector<std::string> getFMVBackendFeaturesFor( |
14865 | const llvm::SmallVectorImpl<StringRef> &FMVFeatStrings) { |
14866 | std::vector<std::string> BackendFeats; |
14867 | llvm::AArch64::ExtensionSet FeatureBits; |
14868 | for (StringRef F : FMVFeatStrings) |
14869 | if (auto FMVExt = llvm::AArch64::parseFMVExtension(Extension: F)) |
14870 | if (FMVExt->ID) |
14871 | FeatureBits.enable(E: *FMVExt->ID); |
14872 | FeatureBits.toLLVMFeatureList(Features&: BackendFeats); |
14873 | return BackendFeats; |
14874 | } |
14875 | |
14876 | ParsedTargetAttr |
14877 | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { |
14878 | assert(TD != nullptr); |
14879 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: TD->getFeaturesStr()); |
14880 | |
14881 | llvm::erase_if(C&: ParsedAttr.Features, P: [&](const std::string &Feat) { |
14882 | return !Target->isValidFeatureName(Feature: StringRef{Feat}.substr(Start: 1)); |
14883 | }); |
14884 | return ParsedAttr; |
14885 | } |
14886 | |
14887 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
14888 | const FunctionDecl *FD) const { |
14889 | if (FD) |
14890 | getFunctionFeatureMap(FeatureMap, GD: GlobalDecl().getWithDecl(D: FD)); |
14891 | else |
14892 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), |
14893 | CPU: Target->getTargetOpts().CPU, |
14894 | FeatureVec: Target->getTargetOpts().Features); |
14895 | } |
14896 | |
14897 | // Fills in the supplied string map with the set of target features for the |
14898 | // passed in function. |
14899 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
14900 | GlobalDecl GD) const { |
14901 | StringRef TargetCPU = Target->getTargetOpts().CPU; |
14902 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
14903 | if (const auto *TD = FD->getAttr<TargetAttr>()) { |
14904 | ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); |
14905 | |
14906 | // Make a copy of the features as passed on the command line into the |
14907 | // beginning of the additional features from the function to override. |
14908 | // AArch64 handles command line option features in parseTargetAttr(). |
14909 | if (!Target->getTriple().isAArch64()) |
14910 | ParsedAttr.Features.insert( |
14911 | position: ParsedAttr.Features.begin(), |
14912 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14913 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14914 | |
14915 | if (ParsedAttr.CPU != "" && Target->isValidCPUName(Name: ParsedAttr.CPU)) |
14916 | TargetCPU = ParsedAttr.CPU; |
14917 | |
14918 | // Now populate the feature map, first with the TargetCPU which is either |
14919 | // the default or a new one from the target attribute string. Then we'll use |
14920 | // the passed in features (FeaturesAsWritten) along with the new ones from |
14921 | // the attribute. |
14922 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, |
14923 | FeatureVec: ParsedAttr.Features); |
14924 | } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { |
14925 | llvm::SmallVector<StringRef, 32> FeaturesTmp; |
14926 | Target->getCPUSpecificCPUDispatchFeatures( |
14927 | Name: SD->getCPUName(Index: GD.getMultiVersionIndex())->getName(), Features&: FeaturesTmp); |
14928 | std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); |
14929 | Features.insert(position: Features.begin(), |
14930 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14931 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14932 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14933 | } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) { |
14934 | if (Target->getTriple().isAArch64()) { |
14935 | llvm::SmallVector<StringRef, 8> Feats; |
14936 | TC->getFeatures(Out&: Feats, Index: GD.getMultiVersionIndex()); |
14937 | std::vector<std::string> Features = getFMVBackendFeaturesFor(FMVFeatStrings: Feats); |
14938 | Features.insert(position: Features.begin(), |
14939 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14940 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14941 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14942 | } else if (Target->getTriple().isRISCV()) { |
14943 | StringRef VersionStr = TC->getFeatureStr(Index: GD.getMultiVersionIndex()); |
14944 | std::vector<std::string> Features; |
14945 | if (VersionStr != "default" ) { |
14946 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: VersionStr); |
14947 | Features.insert(position: Features.begin(), first: ParsedAttr.Features.begin(), |
14948 | last: ParsedAttr.Features.end()); |
14949 | } |
14950 | Features.insert(position: Features.begin(), |
14951 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14952 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14953 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14954 | } else { |
14955 | std::vector<std::string> Features; |
14956 | StringRef VersionStr = TC->getFeatureStr(Index: GD.getMultiVersionIndex()); |
14957 | if (VersionStr.starts_with(Prefix: "arch=" )) |
14958 | TargetCPU = VersionStr.drop_front(N: sizeof("arch=" ) - 1); |
14959 | else if (VersionStr != "default" ) |
14960 | Features.push_back(x: (StringRef{"+" } + VersionStr).str()); |
14961 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14962 | } |
14963 | } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) { |
14964 | std::vector<std::string> Features; |
14965 | if (Target->getTriple().isRISCV()) { |
14966 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: TV->getName()); |
14967 | Features.insert(position: Features.begin(), first: ParsedAttr.Features.begin(), |
14968 | last: ParsedAttr.Features.end()); |
14969 | } else { |
14970 | assert(Target->getTriple().isAArch64()); |
14971 | llvm::SmallVector<StringRef, 8> Feats; |
14972 | TV->getFeatures(Out&: Feats); |
14973 | Features = getFMVBackendFeaturesFor(FMVFeatStrings: Feats); |
14974 | } |
14975 | Features.insert(position: Features.begin(), |
14976 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
14977 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
14978 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
14979 | } else { |
14980 | FeatureMap = Target->getTargetOpts().FeatureMap; |
14981 | } |
14982 | } |
14983 | |
14984 | static SYCLKernelInfo BuildSYCLKernelInfo(ASTContext &Context, |
14985 | CanQualType KernelNameType, |
14986 | const FunctionDecl *FD) { |
14987 | // Host and device compilation may use different ABIs and different ABIs |
14988 | // may allocate name mangling discriminators differently. A discriminator |
14989 | // override is used to ensure consistent discriminator allocation across |
14990 | // host and device compilation. |
14991 | auto DeviceDiscriminatorOverrider = |
14992 | [](ASTContext &Ctx, const NamedDecl *ND) -> UnsignedOrNone { |
14993 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
14994 | if (RD->isLambda()) |
14995 | return RD->getDeviceLambdaManglingNumber(); |
14996 | return std::nullopt; |
14997 | }; |
14998 | std::unique_ptr<MangleContext> MC{ItaniumMangleContext::create( |
14999 | Context, Diags&: Context.getDiagnostics(), Discriminator: DeviceDiscriminatorOverrider)}; |
15000 | |
15001 | // Construct a mangled name for the SYCL kernel caller offload entry point. |
15002 | // FIXME: The Itanium typeinfo mangling (_ZTS<type>) is currently used to |
15003 | // name the SYCL kernel caller offload entry point function. This mangling |
15004 | // does not suffice to clearly identify symbols that correspond to SYCL |
15005 | // kernel caller functions, nor is this mangling natural for targets that |
15006 | // use a non-Itanium ABI. |
15007 | std::string Buffer; |
15008 | Buffer.reserve(res_arg: 128); |
15009 | llvm::raw_string_ostream Out(Buffer); |
15010 | MC->mangleCanonicalTypeName(T: KernelNameType, Out); |
15011 | std::string KernelName = Out.str(); |
15012 | |
15013 | return {KernelNameType, FD, KernelName}; |
15014 | } |
15015 | |
15016 | void ASTContext::registerSYCLEntryPointFunction(FunctionDecl *FD) { |
15017 | // If the function declaration to register is invalid or dependent, the |
15018 | // registration attempt is ignored. |
15019 | if (FD->isInvalidDecl() || FD->isTemplated()) |
15020 | return; |
15021 | |
15022 | const auto *SKEPAttr = FD->getAttr<SYCLKernelEntryPointAttr>(); |
15023 | assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute" ); |
15024 | |
15025 | // Be tolerant of multiple registration attempts so long as each attempt |
15026 | // is for the same entity. Callers are obligated to detect and diagnose |
15027 | // conflicting kernel names prior to calling this function. |
15028 | CanQualType KernelNameType = getCanonicalType(T: SKEPAttr->getKernelName()); |
15029 | auto IT = SYCLKernels.find(Val: KernelNameType); |
15030 | assert((IT == SYCLKernels.end() || |
15031 | declaresSameEntity(FD, IT->second.getKernelEntryPointDecl())) && |
15032 | "SYCL kernel name conflict" ); |
15033 | (void)IT; |
15034 | SYCLKernels.insert(KV: std::make_pair( |
15035 | x&: KernelNameType, y: BuildSYCLKernelInfo(Context&: *this, KernelNameType, FD))); |
15036 | } |
15037 | |
15038 | const SYCLKernelInfo &ASTContext::getSYCLKernelInfo(QualType T) const { |
15039 | CanQualType KernelNameType = getCanonicalType(T); |
15040 | return SYCLKernels.at(Val: KernelNameType); |
15041 | } |
15042 | |
15043 | const SYCLKernelInfo *ASTContext::findSYCLKernelInfo(QualType T) const { |
15044 | CanQualType KernelNameType = getCanonicalType(T); |
15045 | auto IT = SYCLKernels.find(Val: KernelNameType); |
15046 | if (IT != SYCLKernels.end()) |
15047 | return &IT->second; |
15048 | return nullptr; |
15049 | } |
15050 | |
15051 | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { |
15052 | OMPTraitInfoVector.emplace_back(Args: new OMPTraitInfo()); |
15053 | return *OMPTraitInfoVector.back(); |
15054 | } |
15055 | |
15056 | const StreamingDiagnostic &clang:: |
15057 | operator<<(const StreamingDiagnostic &DB, |
15058 | const ASTContext::SectionInfo &Section) { |
15059 | if (Section.Decl) |
15060 | return DB << Section.Decl; |
15061 | return DB << "a prior #pragma section" ; |
15062 | } |
15063 | |
15064 | bool ASTContext::mayExternalize(const Decl *D) const { |
15065 | bool IsInternalVar = |
15066 | isa<VarDecl>(Val: D) && |
15067 | basicGVALinkageForVariable(Context: *this, VD: cast<VarDecl>(Val: D)) == GVA_Internal; |
15068 | bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && |
15069 | !D->getAttr<CUDADeviceAttr>()->isImplicit()) || |
15070 | (D->hasAttr<CUDAConstantAttr>() && |
15071 | !D->getAttr<CUDAConstantAttr>()->isImplicit()); |
15072 | // CUDA/HIP: managed variables need to be externalized since it is |
15073 | // a declaration in IR, therefore cannot have internal linkage. Kernels in |
15074 | // anonymous name space needs to be externalized to avoid duplicate symbols. |
15075 | return (IsInternalVar && |
15076 | (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) || |
15077 | (D->hasAttr<CUDAGlobalAttr>() && |
15078 | basicGVALinkageForFunction(Context: *this, FD: cast<FunctionDecl>(Val: D)) == |
15079 | GVA_Internal); |
15080 | } |
15081 | |
15082 | bool ASTContext::shouldExternalize(const Decl *D) const { |
15083 | return mayExternalize(D) && |
15084 | (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() || |
15085 | CUDADeviceVarODRUsedByHost.count(V: cast<VarDecl>(Val: D))); |
15086 | } |
15087 | |
15088 | StringRef ASTContext::getCUIDHash() const { |
15089 | if (!CUIDHash.empty()) |
15090 | return CUIDHash; |
15091 | if (LangOpts.CUID.empty()) |
15092 | return StringRef(); |
15093 | CUIDHash = llvm::utohexstr(X: llvm::MD5Hash(Str: LangOpts.CUID), /*LowerCase=*/true); |
15094 | return CUIDHash; |
15095 | } |
15096 | |
15097 | const CXXRecordDecl * |
15098 | ASTContext::baseForVTableAuthentication(const CXXRecordDecl *ThisClass) { |
15099 | assert(ThisClass); |
15100 | assert(ThisClass->isPolymorphic()); |
15101 | const CXXRecordDecl *PrimaryBase = ThisClass; |
15102 | while (1) { |
15103 | assert(PrimaryBase); |
15104 | assert(PrimaryBase->isPolymorphic()); |
15105 | auto &Layout = getASTRecordLayout(D: PrimaryBase); |
15106 | auto Base = Layout.getPrimaryBase(); |
15107 | if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) |
15108 | break; |
15109 | PrimaryBase = Base; |
15110 | } |
15111 | return PrimaryBase; |
15112 | } |
15113 | |
15114 | bool ASTContext::useAbbreviatedThunkName(GlobalDecl VirtualMethodDecl, |
15115 | StringRef MangledName) { |
15116 | auto *Method = cast<CXXMethodDecl>(Val: VirtualMethodDecl.getDecl()); |
15117 | assert(Method->isVirtual()); |
15118 | bool DefaultIncludesPointerAuth = |
15119 | LangOpts.PointerAuthCalls || LangOpts.PointerAuthIntrinsics; |
15120 | |
15121 | if (!DefaultIncludesPointerAuth) |
15122 | return true; |
15123 | |
15124 | auto Existing = ThunksToBeAbbreviated.find(Val: VirtualMethodDecl); |
15125 | if (Existing != ThunksToBeAbbreviated.end()) |
15126 | return Existing->second.contains(key: MangledName.str()); |
15127 | |
15128 | std::unique_ptr<MangleContext> Mangler(createMangleContext()); |
15129 | llvm::StringMap<llvm::SmallVector<std::string, 2>> Thunks; |
15130 | auto VtableContext = getVTableContext(); |
15131 | if (const auto *ThunkInfos = VtableContext->getThunkInfo(GD: VirtualMethodDecl)) { |
15132 | auto *Destructor = dyn_cast<CXXDestructorDecl>(Val: Method); |
15133 | for (const auto &Thunk : *ThunkInfos) { |
15134 | SmallString<256> ElidedName; |
15135 | llvm::raw_svector_ostream ElidedNameStream(ElidedName); |
15136 | if (Destructor) |
15137 | Mangler->mangleCXXDtorThunk(DD: Destructor, Type: VirtualMethodDecl.getDtorType(), |
15138 | Thunk, /* elideOverrideInfo */ ElideOverrideInfo: true, |
15139 | ElidedNameStream); |
15140 | else |
15141 | Mangler->mangleThunk(MD: Method, Thunk, /* elideOverrideInfo */ ElideOverrideInfo: true, |
15142 | ElidedNameStream); |
15143 | SmallString<256> MangledName; |
15144 | llvm::raw_svector_ostream mangledNameStream(MangledName); |
15145 | if (Destructor) |
15146 | Mangler->mangleCXXDtorThunk(DD: Destructor, Type: VirtualMethodDecl.getDtorType(), |
15147 | Thunk, /* elideOverrideInfo */ ElideOverrideInfo: false, |
15148 | mangledNameStream); |
15149 | else |
15150 | Mangler->mangleThunk(MD: Method, Thunk, /* elideOverrideInfo */ ElideOverrideInfo: false, |
15151 | mangledNameStream); |
15152 | |
15153 | Thunks[ElidedName].push_back(Elt: std::string(MangledName)); |
15154 | } |
15155 | } |
15156 | llvm::StringSet<> SimplifiedThunkNames; |
15157 | for (auto &ThunkList : Thunks) { |
15158 | llvm::sort(C&: ThunkList.second); |
15159 | SimplifiedThunkNames.insert(key: ThunkList.second[0]); |
15160 | } |
15161 | bool Result = SimplifiedThunkNames.contains(key: MangledName); |
15162 | ThunksToBeAbbreviated[VirtualMethodDecl] = std::move(SimplifiedThunkNames); |
15163 | return Result; |
15164 | } |
15165 | |