| 1 | //===--- InterpStack.h - Stack implementation for the VM --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Defines the upwards-growing stack used by the interpreter. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CLANG_AST_INTERP_INTERPSTACK_H |
| 14 | #define LLVM_CLANG_AST_INTERP_INTERPSTACK_H |
| 15 | |
| 16 | #include "FixedPoint.h" |
| 17 | #include "FunctionPointer.h" |
| 18 | #include "IntegralAP.h" |
| 19 | #include "MemberPointer.h" |
| 20 | #include "PrimType.h" |
| 21 | #include <memory> |
| 22 | #include <vector> |
| 23 | |
| 24 | namespace clang { |
| 25 | namespace interp { |
| 26 | |
| 27 | /// Stack frame storing temporaries and parameters. |
| 28 | class InterpStack final { |
| 29 | public: |
| 30 | InterpStack() {} |
| 31 | |
| 32 | /// Destroys the stack, freeing up storage. |
| 33 | ~InterpStack(); |
| 34 | |
| 35 | /// Constructs a value in place on the top of the stack. |
| 36 | template <typename T, typename... Tys> void push(Tys &&...Args) { |
| 37 | new (grow(Size: aligned_size<T>())) T(std::forward<Tys>(Args)...); |
| 38 | #ifndef NDEBUG |
| 39 | ItemTypes.push_back(toPrimType<T>()); |
| 40 | #endif |
| 41 | } |
| 42 | |
| 43 | /// Returns the value from the top of the stack and removes it. |
| 44 | template <typename T> T pop() { |
| 45 | #ifndef NDEBUG |
| 46 | assert(!ItemTypes.empty()); |
| 47 | assert(ItemTypes.back() == toPrimType<T>()); |
| 48 | ItemTypes.pop_back(); |
| 49 | #endif |
| 50 | T *Ptr = &peekInternal<T>(); |
| 51 | T Value = std::move(*Ptr); |
| 52 | shrink(Size: aligned_size<T>()); |
| 53 | return Value; |
| 54 | } |
| 55 | |
| 56 | /// Discards the top value from the stack. |
| 57 | template <typename T> void discard() { |
| 58 | #ifndef NDEBUG |
| 59 | assert(!ItemTypes.empty()); |
| 60 | assert(ItemTypes.back() == toPrimType<T>()); |
| 61 | ItemTypes.pop_back(); |
| 62 | #endif |
| 63 | T *Ptr = &peekInternal<T>(); |
| 64 | Ptr->~T(); |
| 65 | shrink(Size: aligned_size<T>()); |
| 66 | } |
| 67 | |
| 68 | /// Returns a reference to the value on the top of the stack. |
| 69 | template <typename T> T &peek() const { |
| 70 | #ifndef NDEBUG |
| 71 | assert(!ItemTypes.empty()); |
| 72 | assert(ItemTypes.back() == toPrimType<T>()); |
| 73 | #endif |
| 74 | return peekInternal<T>(); |
| 75 | } |
| 76 | |
| 77 | template <typename T> T &peek(size_t Offset) const { |
| 78 | assert(aligned(Offset)); |
| 79 | return *reinterpret_cast<T *>(peekData(Size: Offset)); |
| 80 | } |
| 81 | |
| 82 | /// Returns a pointer to the top object. |
| 83 | void *top() const { return Chunk ? peekData(Size: 0) : nullptr; } |
| 84 | |
| 85 | /// Returns the size of the stack in bytes. |
| 86 | size_t size() const { return StackSize; } |
| 87 | |
| 88 | /// Clears the stack without calling any destructors. |
| 89 | void clear(); |
| 90 | void clearTo(size_t NewSize); |
| 91 | |
| 92 | /// Returns whether the stack is empty. |
| 93 | bool empty() const { return StackSize == 0; } |
| 94 | |
| 95 | /// dump the stack contents to stderr. |
| 96 | void dump() const; |
| 97 | |
| 98 | private: |
| 99 | /// All stack slots are aligned to the native pointer alignment for storage. |
| 100 | /// The size of an object is rounded up to a pointer alignment multiple. |
| 101 | template <typename T> constexpr size_t aligned_size() const { |
| 102 | constexpr size_t PtrAlign = alignof(void *); |
| 103 | return ((sizeof(T) + PtrAlign - 1) / PtrAlign) * PtrAlign; |
| 104 | } |
| 105 | |
| 106 | /// Like the public peek(), but without the debug type checks. |
| 107 | template <typename T> T &peekInternal() const { |
| 108 | return *reinterpret_cast<T *>(peekData(Size: aligned_size<T>())); |
| 109 | } |
| 110 | |
| 111 | /// Grows the stack to accommodate a value and returns a pointer to it. |
| 112 | void *grow(size_t Size); |
| 113 | /// Returns a pointer from the top of the stack. |
| 114 | void *peekData(size_t Size) const; |
| 115 | /// Shrinks the stack. |
| 116 | void shrink(size_t Size); |
| 117 | |
| 118 | /// Allocate stack space in 1Mb chunks. |
| 119 | static constexpr size_t ChunkSize = 1024 * 1024; |
| 120 | |
| 121 | /// Metadata for each stack chunk. |
| 122 | /// |
| 123 | /// The stack is composed of a linked list of chunks. Whenever an allocation |
| 124 | /// is out of bounds, a new chunk is linked. When a chunk becomes empty, |
| 125 | /// it is not immediately freed: a chunk is deallocated only when the |
| 126 | /// predecessor becomes empty. |
| 127 | struct StackChunk { |
| 128 | StackChunk *Next; |
| 129 | StackChunk *Prev; |
| 130 | char *End; |
| 131 | |
| 132 | StackChunk(StackChunk *Prev = nullptr) |
| 133 | : Next(nullptr), Prev(Prev), End(reinterpret_cast<char *>(this + 1)) {} |
| 134 | |
| 135 | /// Returns the size of the chunk, minus the header. |
| 136 | size_t size() const { return End - start(); } |
| 137 | |
| 138 | /// Returns a pointer to the start of the data region. |
| 139 | char *start() { return reinterpret_cast<char *>(this + 1); } |
| 140 | const char *start() const { |
| 141 | return reinterpret_cast<const char *>(this + 1); |
| 142 | } |
| 143 | }; |
| 144 | static_assert(sizeof(StackChunk) < ChunkSize, "Invalid chunk size" ); |
| 145 | |
| 146 | /// First chunk on the stack. |
| 147 | StackChunk *Chunk = nullptr; |
| 148 | /// Total size of the stack. |
| 149 | size_t StackSize = 0; |
| 150 | |
| 151 | #ifndef NDEBUG |
| 152 | /// vector recording the type of data we pushed into the stack. |
| 153 | std::vector<PrimType> ItemTypes; |
| 154 | |
| 155 | template <typename T> static constexpr PrimType toPrimType() { |
| 156 | if constexpr (std::is_same_v<T, Pointer>) |
| 157 | return PT_Ptr; |
| 158 | else if constexpr (std::is_same_v<T, bool> || std::is_same_v<T, Boolean>) |
| 159 | return PT_Bool; |
| 160 | else if constexpr (std::is_same_v<T, int8_t> || |
| 161 | std::is_same_v<T, Integral<8, true>>) |
| 162 | return PT_Sint8; |
| 163 | else if constexpr (std::is_same_v<T, uint8_t> || |
| 164 | std::is_same_v<T, Integral<8, false>>) |
| 165 | return PT_Uint8; |
| 166 | else if constexpr (std::is_same_v<T, int16_t> || |
| 167 | std::is_same_v<T, Integral<16, true>>) |
| 168 | return PT_Sint16; |
| 169 | else if constexpr (std::is_same_v<T, uint16_t> || |
| 170 | std::is_same_v<T, Integral<16, false>>) |
| 171 | return PT_Uint16; |
| 172 | else if constexpr (std::is_same_v<T, int32_t> || |
| 173 | std::is_same_v<T, Integral<32, true>>) |
| 174 | return PT_Sint32; |
| 175 | else if constexpr (std::is_same_v<T, uint32_t> || |
| 176 | std::is_same_v<T, Integral<32, false>>) |
| 177 | return PT_Uint32; |
| 178 | else if constexpr (std::is_same_v<T, int64_t> || |
| 179 | std::is_same_v<T, Integral<64, true>>) |
| 180 | return PT_Sint64; |
| 181 | else if constexpr (std::is_same_v<T, uint64_t> || |
| 182 | std::is_same_v<T, Integral<64, false>>) |
| 183 | return PT_Uint64; |
| 184 | else if constexpr (std::is_same_v<T, Floating>) |
| 185 | return PT_Float; |
| 186 | else if constexpr (std::is_same_v<T, IntegralAP<true>>) |
| 187 | return PT_IntAP; |
| 188 | else if constexpr (std::is_same_v<T, IntegralAP<false>>) |
| 189 | return PT_IntAP; |
| 190 | else if constexpr (std::is_same_v<T, MemberPointer>) |
| 191 | return PT_MemberPtr; |
| 192 | else if constexpr (std::is_same_v<T, FixedPoint>) |
| 193 | return PT_FixedPoint; |
| 194 | |
| 195 | llvm_unreachable("unknown type push()'ed into InterpStack" ); |
| 196 | } |
| 197 | #endif |
| 198 | }; |
| 199 | |
| 200 | } // namespace interp |
| 201 | } // namespace clang |
| 202 | |
| 203 | #endif |
| 204 | |