| 1 | //===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Program.h" |
| 10 | #include "Context.h" |
| 11 | #include "Function.h" |
| 12 | #include "Integral.h" |
| 13 | #include "PrimType.h" |
| 14 | #include "clang/AST/Decl.h" |
| 15 | #include "clang/AST/DeclCXX.h" |
| 16 | |
| 17 | using namespace clang; |
| 18 | using namespace clang::interp; |
| 19 | |
| 20 | unsigned Program::getOrCreateNativePointer(const void *Ptr) { |
| 21 | auto [It, Inserted] = |
| 22 | NativePointerIndices.try_emplace(Key: Ptr, Args: NativePointers.size()); |
| 23 | if (Inserted) |
| 24 | NativePointers.push_back(x: Ptr); |
| 25 | |
| 26 | return It->second; |
| 27 | } |
| 28 | |
| 29 | const void *Program::getNativePointer(unsigned Idx) { |
| 30 | return NativePointers[Idx]; |
| 31 | } |
| 32 | |
| 33 | unsigned Program::createGlobalString(const StringLiteral *S, const Expr *Base) { |
| 34 | const size_t CharWidth = S->getCharByteWidth(); |
| 35 | const size_t BitWidth = CharWidth * Ctx.getCharBit(); |
| 36 | unsigned StringLength = S->getLength(); |
| 37 | |
| 38 | PrimType CharType; |
| 39 | switch (CharWidth) { |
| 40 | case 1: |
| 41 | CharType = PT_Sint8; |
| 42 | break; |
| 43 | case 2: |
| 44 | CharType = PT_Uint16; |
| 45 | break; |
| 46 | case 4: |
| 47 | CharType = PT_Uint32; |
| 48 | break; |
| 49 | default: |
| 50 | llvm_unreachable("unsupported character width" ); |
| 51 | } |
| 52 | |
| 53 | if (!Base) |
| 54 | Base = S; |
| 55 | |
| 56 | // Create a descriptor for the string. |
| 57 | Descriptor *Desc = |
| 58 | allocateDescriptor(Args&: Base, Args&: CharType, Args: Descriptor::GlobalMD, Args: StringLength + 1, |
| 59 | /*isConst=*/Args: true, |
| 60 | /*isTemporary=*/Args: false, |
| 61 | /*isMutable=*/Args: false); |
| 62 | |
| 63 | // Allocate storage for the string. |
| 64 | // The byte length does not include the null terminator. |
| 65 | unsigned GlobalIndex = Globals.size(); |
| 66 | unsigned Sz = Desc->getAllocSize(); |
| 67 | auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true, |
| 68 | /*isExtern=*/false); |
| 69 | G->block()->invokeCtor(); |
| 70 | |
| 71 | new (G->block()->rawData()) |
| 72 | GlobalInlineDescriptor{.InitState: GlobalInitState::Initialized}; |
| 73 | Globals.push_back(x: G); |
| 74 | |
| 75 | const Pointer Ptr(G->block()); |
| 76 | if (CharWidth == 1) { |
| 77 | std::memcpy(dest: &Ptr.atIndex(Idx: 0).deref<char>(), src: S->getString().data(), |
| 78 | n: StringLength); |
| 79 | } else { |
| 80 | // Construct the string in storage. |
| 81 | for (unsigned I = 0; I <= StringLength; ++I) { |
| 82 | Pointer Field = Ptr.atIndex(Idx: I); |
| 83 | const uint32_t CodePoint = I == StringLength ? 0 : S->getCodeUnit(i: I); |
| 84 | switch (CharType) { |
| 85 | case PT_Sint8: { |
| 86 | using T = PrimConv<PT_Sint8>::T; |
| 87 | Field.deref<T>() = T::from(Value: CodePoint, NumBits: BitWidth); |
| 88 | break; |
| 89 | } |
| 90 | case PT_Uint16: { |
| 91 | using T = PrimConv<PT_Uint16>::T; |
| 92 | Field.deref<T>() = T::from(Value: CodePoint, NumBits: BitWidth); |
| 93 | break; |
| 94 | } |
| 95 | case PT_Uint32: { |
| 96 | using T = PrimConv<PT_Uint32>::T; |
| 97 | Field.deref<T>() = T::from(Value: CodePoint, NumBits: BitWidth); |
| 98 | break; |
| 99 | } |
| 100 | default: |
| 101 | llvm_unreachable("unsupported character type" ); |
| 102 | } |
| 103 | } |
| 104 | } |
| 105 | Ptr.initialize(); |
| 106 | |
| 107 | return GlobalIndex; |
| 108 | } |
| 109 | |
| 110 | Pointer Program::getPtrGlobal(unsigned Idx) const { |
| 111 | assert(Idx < Globals.size()); |
| 112 | return Pointer(Globals[Idx]->block()); |
| 113 | } |
| 114 | |
| 115 | std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) { |
| 116 | if (auto It = GlobalIndices.find(Val: VD); It != GlobalIndices.end()) |
| 117 | return It->second; |
| 118 | |
| 119 | // Find any previous declarations which were already evaluated. |
| 120 | std::optional<unsigned> Index; |
| 121 | for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) { |
| 122 | if (auto It = GlobalIndices.find(Val: P); It != GlobalIndices.end()) { |
| 123 | Index = It->second; |
| 124 | break; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | // Map the decl to the existing index. |
| 129 | if (Index) |
| 130 | GlobalIndices[VD] = *Index; |
| 131 | |
| 132 | return std::nullopt; |
| 133 | } |
| 134 | |
| 135 | std::optional<unsigned> Program::getGlobal(const Expr *E) { |
| 136 | if (auto It = GlobalIndices.find(Val: E); It != GlobalIndices.end()) |
| 137 | return It->second; |
| 138 | return std::nullopt; |
| 139 | } |
| 140 | |
| 141 | std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD, |
| 142 | const Expr *Init) { |
| 143 | if (auto Idx = getGlobal(VD)) |
| 144 | return Idx; |
| 145 | |
| 146 | if (auto Idx = createGlobal(VD, Init)) { |
| 147 | GlobalIndices[VD] = *Idx; |
| 148 | return Idx; |
| 149 | } |
| 150 | return std::nullopt; |
| 151 | } |
| 152 | |
| 153 | unsigned Program::getOrCreateDummy(const DeclTy &D) { |
| 154 | assert(D); |
| 155 | // Dedup blocks since they are immutable and pointers cannot be compared. |
| 156 | if (auto It = DummyVariables.find(Val: D.getOpaqueValue()); |
| 157 | It != DummyVariables.end()) |
| 158 | return It->second; |
| 159 | |
| 160 | QualType QT; |
| 161 | bool IsWeak = false; |
| 162 | if (const auto *E = dyn_cast<const Expr *>(Val: D)) { |
| 163 | QT = E->getType(); |
| 164 | } else { |
| 165 | const auto *VD = cast<ValueDecl>(Val: cast<const Decl *>(Val: D)); |
| 166 | IsWeak = VD->isWeak(); |
| 167 | QT = VD->getType(); |
| 168 | if (const auto *RT = QT->getAs<ReferenceType>()) |
| 169 | QT = RT->getPointeeType(); |
| 170 | } |
| 171 | assert(!QT.isNull()); |
| 172 | |
| 173 | Descriptor *Desc; |
| 174 | if (std::optional<PrimType> T = Ctx.classify(T: QT)) |
| 175 | Desc = createDescriptor(D, T: *T, /*SourceTy=*/nullptr, MDSize: std::nullopt, |
| 176 | /*IsConst=*/QT.isConstQualified()); |
| 177 | else |
| 178 | Desc = createDescriptor(D, Ty: QT.getTypePtr(), MDSize: std::nullopt, |
| 179 | /*IsConst=*/QT.isConstQualified()); |
| 180 | if (!Desc) |
| 181 | Desc = allocateDescriptor(Args: D); |
| 182 | |
| 183 | assert(Desc); |
| 184 | Desc->makeDummy(); |
| 185 | |
| 186 | assert(Desc->isDummy()); |
| 187 | |
| 188 | // Allocate a block for storage. |
| 189 | unsigned I = Globals.size(); |
| 190 | |
| 191 | auto *G = new (Allocator, Desc->getAllocSize()) |
| 192 | Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true, |
| 193 | /*IsExtern=*/false, IsWeak); |
| 194 | G->block()->invokeCtor(); |
| 195 | |
| 196 | Globals.push_back(x: G); |
| 197 | DummyVariables[D.getOpaqueValue()] = I; |
| 198 | return I; |
| 199 | } |
| 200 | |
| 201 | std::optional<unsigned> Program::createGlobal(const ValueDecl *VD, |
| 202 | const Expr *Init) { |
| 203 | bool IsStatic, IsExtern; |
| 204 | bool IsWeak = VD->isWeak(); |
| 205 | if (const auto *Var = dyn_cast<VarDecl>(Val: VD)) { |
| 206 | IsStatic = Context::shouldBeGloballyIndexed(VD); |
| 207 | IsExtern = Var->hasExternalStorage(); |
| 208 | } else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl, |
| 209 | TemplateParamObjectDecl>(Val: VD)) { |
| 210 | IsStatic = true; |
| 211 | IsExtern = false; |
| 212 | } else { |
| 213 | IsStatic = false; |
| 214 | IsExtern = true; |
| 215 | } |
| 216 | |
| 217 | // Register all previous declarations as well. For extern blocks, just replace |
| 218 | // the index with the new variable. |
| 219 | if (auto Idx = |
| 220 | createGlobal(D: VD, Ty: VD->getType(), IsStatic, IsExtern, IsWeak, Init)) { |
| 221 | for (const Decl *P = VD; P; P = P->getPreviousDecl()) { |
| 222 | unsigned &PIdx = GlobalIndices[P]; |
| 223 | if (P != VD) { |
| 224 | if (Globals[PIdx]->block()->isExtern()) |
| 225 | Globals[PIdx] = Globals[*Idx]; |
| 226 | } |
| 227 | PIdx = *Idx; |
| 228 | } |
| 229 | return *Idx; |
| 230 | } |
| 231 | return std::nullopt; |
| 232 | } |
| 233 | |
| 234 | std::optional<unsigned> Program::createGlobal(const Expr *E) { |
| 235 | if (auto Idx = getGlobal(E)) |
| 236 | return Idx; |
| 237 | if (auto Idx = createGlobal(D: E, Ty: E->getType(), /*isStatic=*/IsStatic: true, |
| 238 | /*isExtern=*/IsExtern: false, /*IsWeak=*/false)) { |
| 239 | GlobalIndices[E] = *Idx; |
| 240 | return *Idx; |
| 241 | } |
| 242 | return std::nullopt; |
| 243 | } |
| 244 | |
| 245 | std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty, |
| 246 | bool IsStatic, bool IsExtern, |
| 247 | bool IsWeak, const Expr *Init) { |
| 248 | // Create a descriptor for the global. |
| 249 | Descriptor *Desc; |
| 250 | const bool IsConst = Ty.isConstQualified(); |
| 251 | const bool IsTemporary = D.dyn_cast<const Expr *>(); |
| 252 | const bool IsVolatile = Ty.isVolatileQualified(); |
| 253 | if (std::optional<PrimType> T = Ctx.classify(T: Ty)) |
| 254 | Desc = createDescriptor(D, T: *T, SourceTy: nullptr, MDSize: Descriptor::GlobalMD, IsConst, |
| 255 | IsTemporary, /*IsMutable=*/false, IsVolatile); |
| 256 | else |
| 257 | Desc = createDescriptor(D, Ty: Ty.getTypePtr(), MDSize: Descriptor::GlobalMD, IsConst, |
| 258 | IsTemporary, /*IsMutable=*/false, IsVolatile); |
| 259 | |
| 260 | if (!Desc) |
| 261 | return std::nullopt; |
| 262 | |
| 263 | // Allocate a block for storage. |
| 264 | unsigned I = Globals.size(); |
| 265 | |
| 266 | auto *G = new (Allocator, Desc->getAllocSize()) Global( |
| 267 | Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern, IsWeak); |
| 268 | G->block()->invokeCtor(); |
| 269 | |
| 270 | // Initialize InlineDescriptor fields. |
| 271 | auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor(); |
| 272 | if (!Init) |
| 273 | GD->InitState = GlobalInitState::NoInitializer; |
| 274 | Globals.push_back(x: G); |
| 275 | |
| 276 | return I; |
| 277 | } |
| 278 | |
| 279 | Function *Program::getFunction(const FunctionDecl *F) { |
| 280 | F = F->getCanonicalDecl(); |
| 281 | assert(F); |
| 282 | auto It = Funcs.find(Val: F); |
| 283 | return It == Funcs.end() ? nullptr : It->second.get(); |
| 284 | } |
| 285 | |
| 286 | Record *Program::getOrCreateRecord(const RecordDecl *RD) { |
| 287 | // Use the actual definition as a key. |
| 288 | RD = RD->getDefinition(); |
| 289 | if (!RD) |
| 290 | return nullptr; |
| 291 | |
| 292 | if (!RD->isCompleteDefinition()) |
| 293 | return nullptr; |
| 294 | |
| 295 | // Return an existing record if available. Otherwise, we insert nullptr now |
| 296 | // and replace that later, so recursive calls to this function with the same |
| 297 | // RecordDecl don't run into infinite recursion. |
| 298 | auto [It, Inserted] = Records.try_emplace(Key: RD); |
| 299 | if (!Inserted) |
| 300 | return It->second; |
| 301 | |
| 302 | // Number of bytes required by fields and base classes. |
| 303 | unsigned BaseSize = 0; |
| 304 | // Number of bytes required by virtual base. |
| 305 | unsigned VirtSize = 0; |
| 306 | |
| 307 | // Helper to get a base descriptor. |
| 308 | auto GetBaseDesc = [this](const RecordDecl *BD, |
| 309 | const Record *BR) -> const Descriptor * { |
| 310 | if (!BR) |
| 311 | return nullptr; |
| 312 | return allocateDescriptor(Args&: BD, Args&: BR, Args: std::nullopt, /*isConst=*/Args: false, |
| 313 | /*isTemporary=*/Args: false, |
| 314 | /*isMutable=*/Args: false, /*IsVolatile=*/Args: false); |
| 315 | }; |
| 316 | |
| 317 | // Reserve space for base classes. |
| 318 | Record::BaseList Bases; |
| 319 | Record::VirtualBaseList VirtBases; |
| 320 | if (const auto *CD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 321 | for (const CXXBaseSpecifier &Spec : CD->bases()) { |
| 322 | if (Spec.isVirtual()) |
| 323 | continue; |
| 324 | |
| 325 | // In error cases, the base might not be a RecordType. |
| 326 | const auto *RT = Spec.getType()->getAs<RecordType>(); |
| 327 | if (!RT) |
| 328 | return nullptr; |
| 329 | const RecordDecl *BD = RT->getDecl(); |
| 330 | const Record *BR = getOrCreateRecord(RD: BD); |
| 331 | |
| 332 | const Descriptor *Desc = GetBaseDesc(BD, BR); |
| 333 | if (!Desc) |
| 334 | return nullptr; |
| 335 | |
| 336 | BaseSize += align(Size: sizeof(InlineDescriptor)); |
| 337 | Bases.push_back(Elt: {.Decl: BD, .Offset: BaseSize, .Desc: Desc, .R: BR}); |
| 338 | BaseSize += align(Size: BR->getSize()); |
| 339 | } |
| 340 | |
| 341 | for (const CXXBaseSpecifier &Spec : CD->vbases()) { |
| 342 | const auto *RT = Spec.getType()->getAs<RecordType>(); |
| 343 | if (!RT) |
| 344 | return nullptr; |
| 345 | |
| 346 | const RecordDecl *BD = RT->getDecl(); |
| 347 | const Record *BR = getOrCreateRecord(RD: BD); |
| 348 | |
| 349 | const Descriptor *Desc = GetBaseDesc(BD, BR); |
| 350 | if (!Desc) |
| 351 | return nullptr; |
| 352 | |
| 353 | VirtSize += align(Size: sizeof(InlineDescriptor)); |
| 354 | VirtBases.push_back(Elt: {.Decl: BD, .Offset: VirtSize, .Desc: Desc, .R: BR}); |
| 355 | VirtSize += align(Size: BR->getSize()); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | // Reserve space for fields. |
| 360 | Record::FieldList Fields; |
| 361 | for (const FieldDecl *FD : RD->fields()) { |
| 362 | FD = FD->getFirstDecl(); |
| 363 | // Note that we DO create fields and descriptors |
| 364 | // for unnamed bitfields here, even though we later ignore |
| 365 | // them everywhere. That's so the FieldDecl's getFieldIndex() matches. |
| 366 | |
| 367 | // Reserve space for the field's descriptor and the offset. |
| 368 | BaseSize += align(Size: sizeof(InlineDescriptor)); |
| 369 | |
| 370 | // Classify the field and add its metadata. |
| 371 | QualType FT = FD->getType(); |
| 372 | const bool IsConst = FT.isConstQualified(); |
| 373 | const bool IsMutable = FD->isMutable(); |
| 374 | const bool IsVolatile = FT.isVolatileQualified(); |
| 375 | const Descriptor *Desc; |
| 376 | if (std::optional<PrimType> T = Ctx.classify(T: FT)) { |
| 377 | Desc = createDescriptor(D: FD, T: *T, SourceTy: nullptr, MDSize: std::nullopt, IsConst, |
| 378 | /*isTemporary=*/IsTemporary: false, IsMutable, IsVolatile); |
| 379 | } else { |
| 380 | Desc = createDescriptor(D: FD, Ty: FT.getTypePtr(), MDSize: std::nullopt, IsConst, |
| 381 | /*isTemporary=*/IsTemporary: false, IsMutable, IsVolatile); |
| 382 | } |
| 383 | if (!Desc) |
| 384 | return nullptr; |
| 385 | Fields.push_back(Elt: {.Decl: FD, .Offset: BaseSize, .Desc: Desc}); |
| 386 | BaseSize += align(Size: Desc->getAllocSize()); |
| 387 | } |
| 388 | |
| 389 | Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields), |
| 390 | std::move(VirtBases), VirtSize, BaseSize); |
| 391 | Records[RD] = R; |
| 392 | return R; |
| 393 | } |
| 394 | |
| 395 | Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty, |
| 396 | Descriptor::MetadataSize MDSize, |
| 397 | bool IsConst, bool IsTemporary, |
| 398 | bool IsMutable, bool IsVolatile, |
| 399 | const Expr *Init) { |
| 400 | |
| 401 | // Classes and structures. |
| 402 | if (const auto *RT = Ty->getAs<RecordType>()) { |
| 403 | if (const auto *Record = getOrCreateRecord(RD: RT->getDecl())) |
| 404 | return allocateDescriptor(Args: D, Args&: Record, Args&: MDSize, Args&: IsConst, Args&: IsTemporary, |
| 405 | Args&: IsMutable, Args&: IsVolatile); |
| 406 | return allocateDescriptor(Args: D, Args&: MDSize); |
| 407 | } |
| 408 | |
| 409 | // Arrays. |
| 410 | if (const auto *ArrayType = Ty->getAsArrayTypeUnsafe()) { |
| 411 | QualType ElemTy = ArrayType->getElementType(); |
| 412 | // Array of well-known bounds. |
| 413 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: ArrayType)) { |
| 414 | size_t NumElems = CAT->getZExtSize(); |
| 415 | if (std::optional<PrimType> T = Ctx.classify(T: ElemTy)) { |
| 416 | // Arrays of primitives. |
| 417 | unsigned ElemSize = primSize(Type: *T); |
| 418 | if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) { |
| 419 | return {}; |
| 420 | } |
| 421 | return allocateDescriptor(Args: D, Args&: *T, Args&: MDSize, Args&: NumElems, Args&: IsConst, Args&: IsTemporary, |
| 422 | Args&: IsMutable); |
| 423 | } else { |
| 424 | // Arrays of composites. In this case, the array is a list of pointers, |
| 425 | // followed by the actual elements. |
| 426 | const Descriptor *ElemDesc = createDescriptor( |
| 427 | D, Ty: ElemTy.getTypePtr(), MDSize: std::nullopt, IsConst, IsTemporary); |
| 428 | if (!ElemDesc) |
| 429 | return nullptr; |
| 430 | unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor); |
| 431 | if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) |
| 432 | return {}; |
| 433 | return allocateDescriptor(Args: D, Args&: Ty, Args&: ElemDesc, Args&: MDSize, Args&: NumElems, Args&: IsConst, |
| 434 | Args&: IsTemporary, Args&: IsMutable); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | // Array of unknown bounds - cannot be accessed and pointer arithmetic |
| 439 | // is forbidden on pointers to such objects. |
| 440 | if (isa<IncompleteArrayType>(Val: ArrayType) || |
| 441 | isa<VariableArrayType>(Val: ArrayType)) { |
| 442 | if (std::optional<PrimType> T = Ctx.classify(T: ElemTy)) { |
| 443 | return allocateDescriptor(Args: D, Args&: *T, Args&: MDSize, Args&: IsConst, Args&: IsTemporary, |
| 444 | Args: Descriptor::UnknownSize{}); |
| 445 | } else { |
| 446 | const Descriptor *Desc = createDescriptor( |
| 447 | D, Ty: ElemTy.getTypePtr(), MDSize: std::nullopt, IsConst, IsTemporary); |
| 448 | if (!Desc) |
| 449 | return nullptr; |
| 450 | return allocateDescriptor(Args: D, Args&: Desc, Args&: MDSize, Args&: IsTemporary, |
| 451 | Args: Descriptor::UnknownSize{}); |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // Atomic types. |
| 457 | if (const auto *AT = Ty->getAs<AtomicType>()) { |
| 458 | const Type *InnerTy = AT->getValueType().getTypePtr(); |
| 459 | return createDescriptor(D, Ty: InnerTy, MDSize, IsConst, IsTemporary, |
| 460 | IsMutable); |
| 461 | } |
| 462 | |
| 463 | // Complex types - represented as arrays of elements. |
| 464 | if (const auto *CT = Ty->getAs<ComplexType>()) { |
| 465 | std::optional<PrimType> ElemTy = Ctx.classify(T: CT->getElementType()); |
| 466 | if (!ElemTy) |
| 467 | return nullptr; |
| 468 | |
| 469 | return allocateDescriptor(Args: D, Args&: *ElemTy, Args&: MDSize, Args: 2, Args&: IsConst, Args&: IsTemporary, |
| 470 | Args&: IsMutable); |
| 471 | } |
| 472 | |
| 473 | // Same with vector types. |
| 474 | if (const auto *VT = Ty->getAs<VectorType>()) { |
| 475 | std::optional<PrimType> ElemTy = Ctx.classify(T: VT->getElementType()); |
| 476 | if (!ElemTy) |
| 477 | return nullptr; |
| 478 | |
| 479 | return allocateDescriptor(Args: D, Args&: *ElemTy, Args&: MDSize, Args: VT->getNumElements(), Args&: IsConst, |
| 480 | Args&: IsTemporary, Args&: IsMutable); |
| 481 | } |
| 482 | |
| 483 | return nullptr; |
| 484 | } |
| 485 | |