| 1 | //===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "clang/Analysis/Analyses/CalledOnceCheck.h" |
| 10 | #include "clang/AST/ASTContext.h" |
| 11 | #include "clang/AST/Attr.h" |
| 12 | #include "clang/AST/Decl.h" |
| 13 | #include "clang/AST/DeclBase.h" |
| 14 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 15 | #include "clang/AST/Expr.h" |
| 16 | #include "clang/AST/ExprObjC.h" |
| 17 | #include "clang/AST/OperationKinds.h" |
| 18 | #include "clang/AST/ParentMap.h" |
| 19 | #include "clang/AST/Stmt.h" |
| 20 | #include "clang/AST/StmtObjC.h" |
| 21 | #include "clang/AST/StmtVisitor.h" |
| 22 | #include "clang/AST/Type.h" |
| 23 | #include "clang/Analysis/AnalysisDeclContext.h" |
| 24 | #include "clang/Analysis/CFG.h" |
| 25 | #include "clang/Analysis/FlowSensitive/DataflowWorklist.h" |
| 26 | #include "clang/Basic/Builtins.h" |
| 27 | #include "clang/Basic/IdentifierTable.h" |
| 28 | #include "clang/Basic/LLVM.h" |
| 29 | #include "llvm/ADT/BitVector.h" |
| 30 | #include "llvm/ADT/BitmaskEnum.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/ADT/Sequence.h" |
| 33 | #include "llvm/ADT/SmallVector.h" |
| 34 | #include "llvm/ADT/StringRef.h" |
| 35 | #include "llvm/Support/Compiler.h" |
| 36 | #include "llvm/Support/ErrorHandling.h" |
| 37 | #include <memory> |
| 38 | #include <optional> |
| 39 | |
| 40 | using namespace clang; |
| 41 | |
| 42 | namespace { |
| 43 | static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2; |
| 44 | template <class T> |
| 45 | using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>; |
| 46 | static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8; |
| 47 | template <class T> |
| 48 | using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>; |
| 49 | constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = { |
| 50 | "completionHandler" , "completion" , "withCompletionHandler" , |
| 51 | "withCompletion" , "completionBlock" , "withCompletionBlock" , |
| 52 | "replyTo" , "reply" , "withReplyTo" }; |
| 53 | constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = { |
| 54 | "WithCompletionHandler" , "WithCompletion" , "WithCompletionBlock" , |
| 55 | "WithReplyTo" , "WithReply" }; |
| 56 | constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = { |
| 57 | "error" , "cancel" , "shouldCall" , "done" , "OK" , "success" }; |
| 58 | |
| 59 | struct KnownCalledOnceParameter { |
| 60 | llvm::StringLiteral FunctionName; |
| 61 | unsigned ParamIndex; |
| 62 | }; |
| 63 | constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = { |
| 64 | {.FunctionName: llvm::StringLiteral{"dispatch_async" }, .ParamIndex: 1}, |
| 65 | {.FunctionName: llvm::StringLiteral{"dispatch_async_and_wait" }, .ParamIndex: 1}, |
| 66 | {.FunctionName: llvm::StringLiteral{"dispatch_after" }, .ParamIndex: 2}, |
| 67 | {.FunctionName: llvm::StringLiteral{"dispatch_sync" }, .ParamIndex: 1}, |
| 68 | {.FunctionName: llvm::StringLiteral{"dispatch_once" }, .ParamIndex: 1}, |
| 69 | {.FunctionName: llvm::StringLiteral{"dispatch_barrier_async" }, .ParamIndex: 1}, |
| 70 | {.FunctionName: llvm::StringLiteral{"dispatch_barrier_async_and_wait" }, .ParamIndex: 1}, |
| 71 | {.FunctionName: llvm::StringLiteral{"dispatch_barrier_sync" }, .ParamIndex: 1}}; |
| 72 | |
| 73 | class ParameterStatus { |
| 74 | public: |
| 75 | // Status kind is basically the main part of parameter's status. |
| 76 | // The kind represents our knowledge (so far) about a tracked parameter |
| 77 | // in the context of this analysis. |
| 78 | // |
| 79 | // Since we want to report on missing and extraneous calls, we need to |
| 80 | // track the fact whether paramater was called or not. This automatically |
| 81 | // decides two kinds: `NotCalled` and `Called`. |
| 82 | // |
| 83 | // One of the erroneous situations is the case when parameter is called only |
| 84 | // on some of the paths. We could've considered it `NotCalled`, but we want |
| 85 | // to report double call warnings even if these two calls are not guaranteed |
| 86 | // to happen in every execution. We also don't want to have it as `Called` |
| 87 | // because not calling tracked parameter on all of the paths is an error |
| 88 | // on its own. For these reasons, we need to have a separate kind, |
| 89 | // `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid |
| 90 | // confusion. |
| 91 | // |
| 92 | // Two violations of calling parameter more than once and not calling it on |
| 93 | // every path are not, however, mutually exclusive. In situations where both |
| 94 | // violations take place, we prefer to report ONLY double call. It's always |
| 95 | // harder to pinpoint a bug that has arisen when a user neglects to take the |
| 96 | // right action (and therefore, no action is taken), than when a user takes |
| 97 | // the wrong action. And, in order to remember that we already reported |
| 98 | // a double call, we need another kind: `Reported`. |
| 99 | // |
| 100 | // Our analysis is intra-procedural and, while in the perfect world, |
| 101 | // developers only use tracked parameters to call them, in the real world, |
| 102 | // the picture might be different. Parameters can be stored in global |
| 103 | // variables or leaked into other functions that we know nothing about. |
| 104 | // We try to be lenient and trust users. Another kind `Escaped` reflects |
| 105 | // such situations. We don't know if it gets called there or not, but we |
| 106 | // should always think of `Escaped` as the best possible option. |
| 107 | // |
| 108 | // Some of the paths in the analyzed functions might end with a call |
| 109 | // to noreturn functions. Such paths are not required to have parameter |
| 110 | // calls and we want to track that. For the purposes of better diagnostics, |
| 111 | // we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`. |
| 112 | // |
| 113 | // Additionally, we have `NotVisited` kind that tells us nothing about |
| 114 | // a tracked parameter, but is used for tracking analyzed (aka visited) |
| 115 | // basic blocks. |
| 116 | // |
| 117 | // If we consider `|` to be a JOIN operation of two kinds coming from |
| 118 | // two different paths, the following properties must hold: |
| 119 | // |
| 120 | // 1. for any Kind K: K | K == K |
| 121 | // Joining two identical kinds should result in the same kind. |
| 122 | // |
| 123 | // 2. for any Kind K: Reported | K == Reported |
| 124 | // Doesn't matter on which path it was reported, it still is. |
| 125 | // |
| 126 | // 3. for any Kind K: NoReturn | K == K |
| 127 | // We can totally ignore noreturn paths during merges. |
| 128 | // |
| 129 | // 4. DefinitelyCalled | NotCalled == MaybeCalled |
| 130 | // Called on one path, not called on another - that's simply |
| 131 | // a definition for MaybeCalled. |
| 132 | // |
| 133 | // 5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]: |
| 134 | // Escaped | K == K |
| 135 | // Escaped mirrors other statuses after joins. |
| 136 | // Every situation, when we join any of the listed kinds K, |
| 137 | // is a violation. For this reason, in order to assume the |
| 138 | // best outcome for this escape, we consider it to be the |
| 139 | // same as the other path. |
| 140 | // |
| 141 | // 6. for any Kind K in [DefinitelyCalled, NotCalled]: |
| 142 | // MaybeCalled | K == MaybeCalled |
| 143 | // MaybeCalled should basically stay after almost every join. |
| 144 | enum Kind { |
| 145 | // No-return paths should be absolutely transparent for the analysis. |
| 146 | // 0x0 is the identity element for selected join operation (binary or). |
| 147 | NoReturn = 0x0, /* 0000 */ |
| 148 | // Escaped marks situations when marked parameter escaped into |
| 149 | // another function (so we can assume that it was possibly called there). |
| 150 | Escaped = 0x1, /* 0001 */ |
| 151 | // Parameter was definitely called once at this point. |
| 152 | DefinitelyCalled = 0x3, /* 0011 */ |
| 153 | // Kinds less or equal to NON_ERROR_STATUS are not considered errors. |
| 154 | NON_ERROR_STATUS = DefinitelyCalled, |
| 155 | // Parameter was not yet called. |
| 156 | NotCalled = 0x5, /* 0101 */ |
| 157 | // Parameter was not called at least on one path leading to this point, |
| 158 | // while there is also at least one path that it gets called. |
| 159 | MaybeCalled = 0x7, /* 0111 */ |
| 160 | // Parameter was not yet analyzed. |
| 161 | NotVisited = 0x8, /* 1000 */ |
| 162 | // We already reported a violation and stopped tracking calls for this |
| 163 | // parameter. |
| 164 | Reported = 0xF, /* 1111 */ |
| 165 | LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported) |
| 166 | }; |
| 167 | |
| 168 | constexpr ParameterStatus() = default; |
| 169 | /* implicit */ ParameterStatus(Kind K) : StatusKind(K) { |
| 170 | assert(!seenAnyCalls(K) && "Can't initialize status without a call" ); |
| 171 | } |
| 172 | ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) { |
| 173 | assert(seenAnyCalls(K) && "This kind is not supposed to have a call" ); |
| 174 | } |
| 175 | |
| 176 | const Expr &getCall() const { |
| 177 | assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call" ); |
| 178 | return *Call; |
| 179 | } |
| 180 | static bool seenAnyCalls(Kind K) { |
| 181 | return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported; |
| 182 | } |
| 183 | bool seenAnyCalls() const { return seenAnyCalls(K: getKind()); } |
| 184 | |
| 185 | static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; } |
| 186 | bool isErrorStatus() const { return isErrorStatus(K: getKind()); } |
| 187 | |
| 188 | Kind getKind() const { return StatusKind; } |
| 189 | |
| 190 | void join(const ParameterStatus &Other) { |
| 191 | // If we have a pointer already, let's keep it. |
| 192 | // For the purposes of the analysis, it doesn't really matter |
| 193 | // which call we report. |
| 194 | // |
| 195 | // If we don't have a pointer, let's take whatever gets joined. |
| 196 | if (!Call) { |
| 197 | Call = Other.Call; |
| 198 | } |
| 199 | // Join kinds. |
| 200 | StatusKind |= Other.getKind(); |
| 201 | } |
| 202 | |
| 203 | bool operator==(const ParameterStatus &Other) const { |
| 204 | // We compare only kinds, pointers on their own is only additional |
| 205 | // information. |
| 206 | return getKind() == Other.getKind(); |
| 207 | } |
| 208 | |
| 209 | private: |
| 210 | // It would've been a perfect place to use llvm::PointerIntPair, but |
| 211 | // unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2. |
| 212 | Kind StatusKind = NotVisited; |
| 213 | const Expr *Call = nullptr; |
| 214 | }; |
| 215 | |
| 216 | /// State aggregates statuses of all tracked parameters. |
| 217 | class State { |
| 218 | public: |
| 219 | State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited) |
| 220 | : ParamData(Size, K) {} |
| 221 | |
| 222 | /// Return status of a parameter with the given index. |
| 223 | /// \{ |
| 224 | ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; } |
| 225 | const ParameterStatus &getStatusFor(unsigned Index) const { |
| 226 | return ParamData[Index]; |
| 227 | } |
| 228 | /// \} |
| 229 | |
| 230 | /// Return true if parameter with the given index can be called. |
| 231 | bool seenAnyCalls(unsigned Index) const { |
| 232 | return getStatusFor(Index).seenAnyCalls(); |
| 233 | } |
| 234 | /// Return a reference that we consider a call. |
| 235 | /// |
| 236 | /// Should only be used for parameters that can be called. |
| 237 | const Expr &getCallFor(unsigned Index) const { |
| 238 | return getStatusFor(Index).getCall(); |
| 239 | } |
| 240 | /// Return status kind of parameter with the given index. |
| 241 | ParameterStatus::Kind getKindFor(unsigned Index) const { |
| 242 | return getStatusFor(Index).getKind(); |
| 243 | } |
| 244 | |
| 245 | bool isVisited() const { |
| 246 | return llvm::all_of(Range: ParamData, P: [](const ParameterStatus &S) { |
| 247 | return S.getKind() != ParameterStatus::NotVisited; |
| 248 | }); |
| 249 | } |
| 250 | |
| 251 | // Join other state into the current state. |
| 252 | void join(const State &Other) { |
| 253 | assert(ParamData.size() == Other.ParamData.size() && |
| 254 | "Couldn't join statuses with different sizes" ); |
| 255 | for (auto Pair : llvm::zip(t&: ParamData, u: Other.ParamData)) { |
| 256 | std::get<0>(t&: Pair).join(Other: std::get<1>(t&: Pair)); |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | using iterator = ParamSizedVector<ParameterStatus>::iterator; |
| 261 | using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator; |
| 262 | |
| 263 | iterator begin() { return ParamData.begin(); } |
| 264 | iterator end() { return ParamData.end(); } |
| 265 | |
| 266 | const_iterator begin() const { return ParamData.begin(); } |
| 267 | const_iterator end() const { return ParamData.end(); } |
| 268 | |
| 269 | bool operator==(const State &Other) const { |
| 270 | return ParamData == Other.ParamData; |
| 271 | } |
| 272 | |
| 273 | private: |
| 274 | ParamSizedVector<ParameterStatus> ParamData; |
| 275 | }; |
| 276 | |
| 277 | /// A simple class that finds DeclRefExpr in the given expression. |
| 278 | /// |
| 279 | /// However, we don't want to find ANY nested DeclRefExpr skipping whatever |
| 280 | /// expressions on our way. Only certain expressions considered "no-op" |
| 281 | /// for our task are indeed skipped. |
| 282 | class DeclRefFinder |
| 283 | : public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> { |
| 284 | public: |
| 285 | /// Find a DeclRefExpr in the given expression. |
| 286 | /// |
| 287 | /// In its most basic form (ShouldRetrieveFromComparisons == false), |
| 288 | /// this function can be simply reduced to the following question: |
| 289 | /// |
| 290 | /// - If expression E is used as a function argument, could we say |
| 291 | /// that DeclRefExpr nested in E is used as an argument? |
| 292 | /// |
| 293 | /// According to this rule, we can say that parens, casts and dereferencing |
| 294 | /// (dereferencing only applied to function pointers, but this is our case) |
| 295 | /// can be skipped. |
| 296 | /// |
| 297 | /// When we should look into comparisons the question changes to: |
| 298 | /// |
| 299 | /// - If expression E is used as a condition, could we say that |
| 300 | /// DeclRefExpr is being checked? |
| 301 | /// |
| 302 | /// And even though, these are two different questions, they have quite a lot |
| 303 | /// in common. Actually, we can say that whatever expression answers |
| 304 | /// positively the first question also fits the second question as well. |
| 305 | /// |
| 306 | /// In addition, we skip binary operators == and !=, and unary opeartor !. |
| 307 | static const DeclRefExpr *find(const Expr *E, |
| 308 | bool ShouldRetrieveFromComparisons = false) { |
| 309 | return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(S: E); |
| 310 | } |
| 311 | |
| 312 | const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; } |
| 313 | |
| 314 | const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) { |
| 315 | switch (UO->getOpcode()) { |
| 316 | case UO_LNot: |
| 317 | // We care about logical not only if we care about comparisons. |
| 318 | if (!ShouldRetrieveFromComparisons) |
| 319 | return nullptr; |
| 320 | [[fallthrough]]; |
| 321 | // Function pointer/references can be dereferenced before a call. |
| 322 | // That doesn't make it, however, any different from a regular call. |
| 323 | // For this reason, dereference operation is a "no-op". |
| 324 | case UO_Deref: |
| 325 | return Visit(S: UO->getSubExpr()); |
| 326 | default: |
| 327 | return nullptr; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) { |
| 332 | if (!ShouldRetrieveFromComparisons) |
| 333 | return nullptr; |
| 334 | |
| 335 | switch (BO->getOpcode()) { |
| 336 | case BO_EQ: |
| 337 | case BO_NE: { |
| 338 | const DeclRefExpr *LHS = Visit(S: BO->getLHS()); |
| 339 | return LHS ? LHS : Visit(S: BO->getRHS()); |
| 340 | } |
| 341 | default: |
| 342 | return nullptr; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) { |
| 347 | return Visit(S: OVE->getSourceExpr()); |
| 348 | } |
| 349 | |
| 350 | const DeclRefExpr *VisitCallExpr(const CallExpr *CE) { |
| 351 | if (!ShouldRetrieveFromComparisons) |
| 352 | return nullptr; |
| 353 | |
| 354 | // We want to see through some of the boolean builtin functions |
| 355 | // that we are likely to see in conditions. |
| 356 | switch (CE->getBuiltinCallee()) { |
| 357 | case Builtin::BI__builtin_expect: |
| 358 | case Builtin::BI__builtin_expect_with_probability: { |
| 359 | assert(CE->getNumArgs() >= 2); |
| 360 | |
| 361 | const DeclRefExpr *Candidate = Visit(S: CE->getArg(Arg: 0)); |
| 362 | return Candidate != nullptr ? Candidate : Visit(S: CE->getArg(Arg: 1)); |
| 363 | } |
| 364 | |
| 365 | case Builtin::BI__builtin_unpredictable: |
| 366 | return Visit(S: CE->getArg(Arg: 0)); |
| 367 | |
| 368 | default: |
| 369 | return nullptr; |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | const DeclRefExpr *VisitExpr(const Expr *E) { |
| 374 | // It is a fallback method that gets called whenever the actual type |
| 375 | // of the given expression is not covered. |
| 376 | // |
| 377 | // We first check if we have anything to skip. And then repeat the whole |
| 378 | // procedure for a nested expression instead. |
| 379 | const Expr *DeclutteredExpr = E->IgnoreParenCasts(); |
| 380 | return E != DeclutteredExpr ? Visit(S: DeclutteredExpr) : nullptr; |
| 381 | } |
| 382 | |
| 383 | private: |
| 384 | DeclRefFinder(bool ShouldRetrieveFromComparisons) |
| 385 | : ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {} |
| 386 | |
| 387 | bool ShouldRetrieveFromComparisons; |
| 388 | }; |
| 389 | |
| 390 | const DeclRefExpr *findDeclRefExpr(const Expr *In, |
| 391 | bool ShouldRetrieveFromComparisons = false) { |
| 392 | return DeclRefFinder::find(E: In, ShouldRetrieveFromComparisons); |
| 393 | } |
| 394 | |
| 395 | const ParmVarDecl * |
| 396 | findReferencedParmVarDecl(const Expr *In, |
| 397 | bool ShouldRetrieveFromComparisons = false) { |
| 398 | if (const DeclRefExpr *DR = |
| 399 | findDeclRefExpr(In, ShouldRetrieveFromComparisons)) { |
| 400 | return dyn_cast<ParmVarDecl>(Val: DR->getDecl()); |
| 401 | } |
| 402 | |
| 403 | return nullptr; |
| 404 | } |
| 405 | |
| 406 | /// Return conditions expression of a statement if it has one. |
| 407 | const Expr *getCondition(const Stmt *S) { |
| 408 | if (!S) { |
| 409 | return nullptr; |
| 410 | } |
| 411 | |
| 412 | if (const auto *If = dyn_cast<IfStmt>(Val: S)) { |
| 413 | return If->getCond(); |
| 414 | } |
| 415 | if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(Val: S)) { |
| 416 | return Ternary->getCond(); |
| 417 | } |
| 418 | |
| 419 | return nullptr; |
| 420 | } |
| 421 | |
| 422 | /// A small helper class that collects all named identifiers in the given |
| 423 | /// expression. It traverses it recursively, so names from deeper levels |
| 424 | /// of the AST will end up in the results. |
| 425 | /// Results might have duplicate names, if this is a problem, convert to |
| 426 | /// string sets afterwards. |
| 427 | class NamesCollector : public DynamicRecursiveASTVisitor { |
| 428 | public: |
| 429 | static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5; |
| 430 | using NameCollection = |
| 431 | llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>; |
| 432 | |
| 433 | static NameCollection collect(const Expr *From) { |
| 434 | NamesCollector Impl; |
| 435 | Impl.TraverseStmt(S: const_cast<Expr *>(From)); |
| 436 | return Impl.Result; |
| 437 | } |
| 438 | |
| 439 | bool VisitDeclRefExpr(DeclRefExpr *E) override { |
| 440 | Result.push_back(Elt: E->getDecl()->getName()); |
| 441 | return true; |
| 442 | } |
| 443 | |
| 444 | bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) override { |
| 445 | llvm::StringRef Name; |
| 446 | |
| 447 | if (E->isImplicitProperty()) { |
| 448 | ObjCMethodDecl *PropertyMethodDecl = nullptr; |
| 449 | if (E->isMessagingGetter()) { |
| 450 | PropertyMethodDecl = E->getImplicitPropertyGetter(); |
| 451 | } else { |
| 452 | PropertyMethodDecl = E->getImplicitPropertySetter(); |
| 453 | } |
| 454 | assert(PropertyMethodDecl && |
| 455 | "Implicit property must have associated declaration" ); |
| 456 | Name = PropertyMethodDecl->getSelector().getNameForSlot(argIndex: 0); |
| 457 | } else { |
| 458 | assert(E->isExplicitProperty()); |
| 459 | Name = E->getExplicitProperty()->getName(); |
| 460 | } |
| 461 | |
| 462 | Result.push_back(Elt: Name); |
| 463 | return true; |
| 464 | } |
| 465 | |
| 466 | private: |
| 467 | NamesCollector() = default; |
| 468 | NameCollection Result; |
| 469 | }; |
| 470 | |
| 471 | /// Check whether the given expression mentions any of conventional names. |
| 472 | bool mentionsAnyOfConventionalNames(const Expr *E) { |
| 473 | NamesCollector::NameCollection MentionedNames = NamesCollector::collect(From: E); |
| 474 | |
| 475 | return llvm::any_of(Range&: MentionedNames, P: [](llvm::StringRef ConditionName) { |
| 476 | return llvm::any_of( |
| 477 | Range: CONVENTIONAL_CONDITIONS, |
| 478 | P: [ConditionName](const llvm::StringLiteral &Conventional) { |
| 479 | return ConditionName.contains_insensitive(Other: Conventional); |
| 480 | }); |
| 481 | }); |
| 482 | } |
| 483 | |
| 484 | /// Clarification is a simple pair of a reason why parameter is not called |
| 485 | /// on every path and a statement to blame. |
| 486 | struct Clarification { |
| 487 | NeverCalledReason Reason; |
| 488 | const Stmt *Location; |
| 489 | }; |
| 490 | |
| 491 | /// A helper class that can produce a clarification based on the given pair |
| 492 | /// of basic blocks. |
| 493 | class NotCalledClarifier |
| 494 | : public ConstStmtVisitor<NotCalledClarifier, |
| 495 | std::optional<Clarification>> { |
| 496 | public: |
| 497 | /// The main entrypoint for the class, the function that tries to find the |
| 498 | /// clarification of how to explain which sub-path starts with a CFG edge |
| 499 | /// from Conditional to SuccWithoutCall. |
| 500 | /// |
| 501 | /// This means that this function has one precondition: |
| 502 | /// SuccWithoutCall should be a successor block for Conditional. |
| 503 | /// |
| 504 | /// Because clarification is not needed for non-trivial pairs of blocks |
| 505 | /// (i.e. SuccWithoutCall is not the only successor), it returns meaningful |
| 506 | /// results only for such cases. For this very reason, the parent basic |
| 507 | /// block, Conditional, is named that way, so it is clear what kind of |
| 508 | /// block is expected. |
| 509 | static std::optional<Clarification> clarify(const CFGBlock *Conditional, |
| 510 | const CFGBlock *SuccWithoutCall) { |
| 511 | if (const Stmt *Terminator = Conditional->getTerminatorStmt()) { |
| 512 | return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(S: Terminator); |
| 513 | } |
| 514 | return std::nullopt; |
| 515 | } |
| 516 | |
| 517 | std::optional<Clarification> VisitIfStmt(const IfStmt *If) { |
| 518 | return VisitBranchingBlock(Terminator: If, DefaultReason: NeverCalledReason::IfThen); |
| 519 | } |
| 520 | |
| 521 | std::optional<Clarification> |
| 522 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) { |
| 523 | return VisitBranchingBlock(Terminator: Ternary, DefaultReason: NeverCalledReason::IfThen); |
| 524 | } |
| 525 | |
| 526 | std::optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) { |
| 527 | const Stmt *CaseToBlame = SuccInQuestion->getLabel(); |
| 528 | if (!CaseToBlame) { |
| 529 | // If interesting basic block is not labeled, it means that this |
| 530 | // basic block does not represent any of the cases. |
| 531 | return Clarification{.Reason: NeverCalledReason::SwitchSkipped, .Location: Switch}; |
| 532 | } |
| 533 | |
| 534 | for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case; |
| 535 | Case = Case->getNextSwitchCase()) { |
| 536 | if (Case == CaseToBlame) { |
| 537 | return Clarification{.Reason: NeverCalledReason::Switch, .Location: Case}; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | llvm_unreachable("Found unexpected switch structure" ); |
| 542 | } |
| 543 | |
| 544 | std::optional<Clarification> VisitForStmt(const ForStmt *For) { |
| 545 | return VisitBranchingBlock(Terminator: For, DefaultReason: NeverCalledReason::LoopEntered); |
| 546 | } |
| 547 | |
| 548 | std::optional<Clarification> VisitWhileStmt(const WhileStmt *While) { |
| 549 | return VisitBranchingBlock(Terminator: While, DefaultReason: NeverCalledReason::LoopEntered); |
| 550 | } |
| 551 | |
| 552 | std::optional<Clarification> |
| 553 | VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) { |
| 554 | assert(Parent->succ_size() == 2 && |
| 555 | "Branching block should have exactly two successors" ); |
| 556 | unsigned SuccessorIndex = getSuccessorIndex(Parent, Child: SuccInQuestion); |
| 557 | NeverCalledReason ActualReason = |
| 558 | updateForSuccessor(ReasonForTrueBranch: DefaultReason, SuccessorIndex); |
| 559 | return Clarification{.Reason: ActualReason, .Location: Terminator}; |
| 560 | } |
| 561 | |
| 562 | std::optional<Clarification> VisitBinaryOperator(const BinaryOperator *) { |
| 563 | // We don't want to report on short-curcuit logical operations. |
| 564 | return std::nullopt; |
| 565 | } |
| 566 | |
| 567 | std::optional<Clarification> VisitStmt(const Stmt *Terminator) { |
| 568 | // If we got here, we didn't have a visit function for more derived |
| 569 | // classes of statement that this terminator actually belongs to. |
| 570 | // |
| 571 | // This is not a good scenario and should not happen in practice, but |
| 572 | // at least we'll warn the user. |
| 573 | return Clarification{.Reason: NeverCalledReason::FallbackReason, .Location: Terminator}; |
| 574 | } |
| 575 | |
| 576 | static unsigned getSuccessorIndex(const CFGBlock *Parent, |
| 577 | const CFGBlock *Child) { |
| 578 | CFGBlock::const_succ_iterator It = llvm::find(Range: Parent->succs(), Val: Child); |
| 579 | assert(It != Parent->succ_end() && |
| 580 | "Given blocks should be in parent-child relationship" ); |
| 581 | return It - Parent->succ_begin(); |
| 582 | } |
| 583 | |
| 584 | static NeverCalledReason |
| 585 | updateForSuccessor(NeverCalledReason ReasonForTrueBranch, |
| 586 | unsigned SuccessorIndex) { |
| 587 | assert(SuccessorIndex <= 1); |
| 588 | unsigned RawReason = |
| 589 | static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex; |
| 590 | assert(RawReason <= |
| 591 | static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE)); |
| 592 | return static_cast<NeverCalledReason>(RawReason); |
| 593 | } |
| 594 | |
| 595 | private: |
| 596 | NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion) |
| 597 | : Parent(Parent), SuccInQuestion(SuccInQuestion) {} |
| 598 | |
| 599 | const CFGBlock *Parent, *SuccInQuestion; |
| 600 | }; |
| 601 | |
| 602 | class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> { |
| 603 | public: |
| 604 | static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler, |
| 605 | bool CheckConventionalParameters) { |
| 606 | CalledOnceChecker(AC, Handler, CheckConventionalParameters).check(); |
| 607 | } |
| 608 | |
| 609 | private: |
| 610 | CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler, |
| 611 | bool CheckConventionalParameters) |
| 612 | : FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler), |
| 613 | CheckConventionalParameters(CheckConventionalParameters), |
| 614 | CurrentState(0) { |
| 615 | initDataStructures(); |
| 616 | assert((size() == 0 || !States.empty()) && |
| 617 | "Data structures are inconsistent" ); |
| 618 | } |
| 619 | |
| 620 | //===----------------------------------------------------------------------===// |
| 621 | // Initializing functions |
| 622 | //===----------------------------------------------------------------------===// |
| 623 | |
| 624 | void initDataStructures() { |
| 625 | const Decl *AnalyzedDecl = AC.getDecl(); |
| 626 | |
| 627 | if (const auto *Function = dyn_cast<FunctionDecl>(Val: AnalyzedDecl)) { |
| 628 | findParamsToTrack(Function); |
| 629 | } else if (const auto *Method = dyn_cast<ObjCMethodDecl>(Val: AnalyzedDecl)) { |
| 630 | findParamsToTrack(Function: Method); |
| 631 | } else if (const auto *Block = dyn_cast<BlockDecl>(Val: AnalyzedDecl)) { |
| 632 | findCapturesToTrack(Block); |
| 633 | findParamsToTrack(Function: Block); |
| 634 | } |
| 635 | |
| 636 | // Have something to track, let's init states for every block from the CFG. |
| 637 | if (size() != 0) { |
| 638 | States = |
| 639 | CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size())); |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | void findCapturesToTrack(const BlockDecl *Block) { |
| 644 | for (const auto &Capture : Block->captures()) { |
| 645 | if (const auto *P = dyn_cast<ParmVarDecl>(Val: Capture.getVariable())) { |
| 646 | // Parameter DeclContext is its owning function or method. |
| 647 | const DeclContext *ParamContext = P->getDeclContext(); |
| 648 | if (shouldBeCalledOnce(ParamContext, Param: P)) { |
| 649 | TrackedParams.push_back(Elt: P); |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | template <class FunctionLikeDecl> |
| 656 | void findParamsToTrack(const FunctionLikeDecl *Function) { |
| 657 | for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) { |
| 658 | if (shouldBeCalledOnce(Function, Index)) { |
| 659 | TrackedParams.push_back(Elt: Function->getParamDecl(Index)); |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | //===----------------------------------------------------------------------===// |
| 665 | // Main logic 'check' functions |
| 666 | //===----------------------------------------------------------------------===// |
| 667 | |
| 668 | void check() { |
| 669 | // Nothing to check here: we don't have marked parameters. |
| 670 | if (size() == 0 || isPossiblyEmptyImpl()) |
| 671 | return; |
| 672 | |
| 673 | assert( |
| 674 | llvm::none_of(States, [](const State &S) { return S.isVisited(); }) && |
| 675 | "None of the blocks should be 'visited' before the analysis" ); |
| 676 | |
| 677 | // For our task, both backward and forward approaches suite well. |
| 678 | // However, in order to report better diagnostics, we decided to go with |
| 679 | // backward analysis. |
| 680 | // |
| 681 | // Let's consider the following CFG and how forward and backward analyses |
| 682 | // will work for it. |
| 683 | // |
| 684 | // FORWARD: | BACKWARD: |
| 685 | // #1 | #1 |
| 686 | // +---------+ | +-----------+ |
| 687 | // | if | | |MaybeCalled| |
| 688 | // +---------+ | +-----------+ |
| 689 | // |NotCalled| | | if | |
| 690 | // +---------+ | +-----------+ |
| 691 | // / \ | / \ |
| 692 | // #2 / \ #3 | #2 / \ #3 |
| 693 | // +----------------+ +---------+ | +----------------+ +---------+ |
| 694 | // | foo() | | ... | | |DefinitelyCalled| |NotCalled| |
| 695 | // +----------------+ +---------+ | +----------------+ +---------+ |
| 696 | // |DefinitelyCalled| |NotCalled| | | foo() | | ... | |
| 697 | // +----------------+ +---------+ | +----------------+ +---------+ |
| 698 | // \ / | \ / |
| 699 | // \ #4 / | \ #4 / |
| 700 | // +-----------+ | +---------+ |
| 701 | // | ... | | |NotCalled| |
| 702 | // +-----------+ | +---------+ |
| 703 | // |MaybeCalled| | | ... | |
| 704 | // +-----------+ | +---------+ |
| 705 | // |
| 706 | // The most natural way to report lacking call in the block #3 would be to |
| 707 | // message that the false branch of the if statement in the block #1 doesn't |
| 708 | // have a call. And while with the forward approach we'll need to find a |
| 709 | // least common ancestor or something like that to find the 'if' to blame, |
| 710 | // backward analysis gives it to us out of the box. |
| 711 | BackwardDataflowWorklist Worklist(FunctionCFG, AC); |
| 712 | |
| 713 | // Let's visit EXIT. |
| 714 | const CFGBlock *Exit = &FunctionCFG.getExit(); |
| 715 | assignState(BB: Exit, ToAssign: State(size(), ParameterStatus::NotCalled)); |
| 716 | Worklist.enqueuePredecessors(Block: Exit); |
| 717 | |
| 718 | while (const CFGBlock *BB = Worklist.dequeue()) { |
| 719 | assert(BB && "Worklist should filter out null blocks" ); |
| 720 | check(BB); |
| 721 | assert(CurrentState.isVisited() && |
| 722 | "After the check, basic block should be visited" ); |
| 723 | |
| 724 | // Traverse successor basic blocks if the status of this block |
| 725 | // has changed. |
| 726 | if (assignState(BB, ToAssign: CurrentState)) { |
| 727 | Worklist.enqueuePredecessors(Block: BB); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | // Check that we have all tracked parameters at the last block. |
| 732 | // As we are performing a backward version of the analysis, |
| 733 | // it should be the ENTRY block. |
| 734 | checkEntry(Entry: &FunctionCFG.getEntry()); |
| 735 | } |
| 736 | |
| 737 | void check(const CFGBlock *BB) { |
| 738 | // We start with a state 'inherited' from all the successors. |
| 739 | CurrentState = joinSuccessors(BB); |
| 740 | assert(CurrentState.isVisited() && |
| 741 | "Shouldn't start with a 'not visited' state" ); |
| 742 | |
| 743 | // This is the 'exit' situation, broken promises are probably OK |
| 744 | // in such scenarios. |
| 745 | if (BB->hasNoReturnElement()) { |
| 746 | markNoReturn(); |
| 747 | // This block still can have calls (even multiple calls) and |
| 748 | // for this reason there is no early return here. |
| 749 | } |
| 750 | |
| 751 | // We use a backward dataflow propagation and for this reason we |
| 752 | // should traverse basic blocks bottom-up. |
| 753 | for (const CFGElement &Element : llvm::reverse(C: *BB)) { |
| 754 | if (std::optional<CFGStmt> S = Element.getAs<CFGStmt>()) { |
| 755 | check(S: S->getStmt()); |
| 756 | } |
| 757 | } |
| 758 | } |
| 759 | void check(const Stmt *S) { Visit(S); } |
| 760 | |
| 761 | void checkEntry(const CFGBlock *Entry) { |
| 762 | // We finalize this algorithm with the ENTRY block because |
| 763 | // we use a backward version of the analysis. This is where |
| 764 | // we can judge that some of the tracked parameters are not called on |
| 765 | // every path from ENTRY to EXIT. |
| 766 | |
| 767 | const State &EntryStatus = getState(BB: Entry); |
| 768 | llvm::BitVector NotCalledOnEveryPath(size(), false); |
| 769 | llvm::BitVector NotUsedOnEveryPath(size(), false); |
| 770 | |
| 771 | // Check if there are no calls of the marked parameter at all |
| 772 | for (const auto &IndexedStatus : llvm::enumerate(First: EntryStatus)) { |
| 773 | const ParmVarDecl *Parameter = getParameter(Index: IndexedStatus.index()); |
| 774 | |
| 775 | switch (IndexedStatus.value().getKind()) { |
| 776 | case ParameterStatus::NotCalled: |
| 777 | // If there were places where this parameter escapes (aka being used), |
| 778 | // we can provide a more useful diagnostic by pointing at the exact |
| 779 | // branches where it is not even mentioned. |
| 780 | if (!hasEverEscaped(Index: IndexedStatus.index())) { |
| 781 | // This parameter is was not used at all, so we should report the |
| 782 | // most generic version of the warning. |
| 783 | if (isCaptured(Parameter)) { |
| 784 | // We want to specify that it was captured by the block. |
| 785 | Handler.handleCapturedNeverCalled(Parameter, Where: AC.getDecl(), |
| 786 | IsCompletionHandler: !isExplicitlyMarked(Parameter)); |
| 787 | } else { |
| 788 | Handler.handleNeverCalled(Parameter, |
| 789 | IsCompletionHandler: !isExplicitlyMarked(Parameter)); |
| 790 | } |
| 791 | } else { |
| 792 | // Mark it as 'interesting' to figure out which paths don't even |
| 793 | // have escapes. |
| 794 | NotUsedOnEveryPath[IndexedStatus.index()] = true; |
| 795 | } |
| 796 | |
| 797 | break; |
| 798 | case ParameterStatus::MaybeCalled: |
| 799 | // If we have 'maybe called' at this point, we have an error |
| 800 | // that there is at least one path where this parameter |
| 801 | // is not called. |
| 802 | // |
| 803 | // However, reporting the warning with only that information can be |
| 804 | // too vague for the users. For this reason, we mark such parameters |
| 805 | // as "interesting" for further analysis. |
| 806 | NotCalledOnEveryPath[IndexedStatus.index()] = true; |
| 807 | break; |
| 808 | default: |
| 809 | break; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | // Early exit if we don't have parameters for extra analysis... |
| 814 | if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none() && |
| 815 | // ... or if we've seen variables with cleanup functions. |
| 816 | // We can't reason that we've seen every path in this case, |
| 817 | // and thus abandon reporting any warnings that imply that. |
| 818 | !FunctionHasCleanupVars) |
| 819 | return; |
| 820 | |
| 821 | // We are looking for a pair of blocks A, B so that the following is true: |
| 822 | // * A is a predecessor of B |
| 823 | // * B is marked as NotCalled |
| 824 | // * A has at least one successor marked as either |
| 825 | // Escaped or DefinitelyCalled |
| 826 | // |
| 827 | // In that situation, it is guaranteed that B is the first block of the path |
| 828 | // where the user doesn't call or use parameter in question. |
| 829 | // |
| 830 | // For this reason, branch A -> B can be used for reporting. |
| 831 | // |
| 832 | // This part of the algorithm is guarded by a condition that the function |
| 833 | // does indeed have a violation of contract. For this reason, we can |
| 834 | // spend more time to find a good spot to place the warning. |
| 835 | // |
| 836 | // The following algorithm has the worst case complexity of O(V + E), |
| 837 | // where V is the number of basic blocks in FunctionCFG, |
| 838 | // E is the number of edges between blocks in FunctionCFG. |
| 839 | for (const CFGBlock *BB : FunctionCFG) { |
| 840 | if (!BB) |
| 841 | continue; |
| 842 | |
| 843 | const State &BlockState = getState(BB); |
| 844 | |
| 845 | for (unsigned Index : llvm::seq(Begin: 0u, End: size())) { |
| 846 | // We don't want to use 'isLosingCall' here because we want to report |
| 847 | // the following situation as well: |
| 848 | // |
| 849 | // MaybeCalled |
| 850 | // | ... | |
| 851 | // MaybeCalled NotCalled |
| 852 | // |
| 853 | // Even though successor is not 'DefinitelyCalled', it is still useful |
| 854 | // to report it, it is still a path without a call. |
| 855 | if (NotCalledOnEveryPath[Index] && |
| 856 | BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) { |
| 857 | |
| 858 | findAndReportNotCalledBranches(Parent: BB, Index); |
| 859 | } else if (NotUsedOnEveryPath[Index] && |
| 860 | isLosingEscape(StateAfterJoin: BlockState, JoinBlock: BB, ParameterIndex: Index)) { |
| 861 | |
| 862 | findAndReportNotCalledBranches(Parent: BB, Index, /* IsEscape = */ true); |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | /// Check potential call of a tracked parameter. |
| 869 | void checkDirectCall(const CallExpr *Call) { |
| 870 | if (auto Index = getIndexOfCallee(Call)) { |
| 871 | processCallFor(Index: *Index, Call); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | /// Check the call expression for being an indirect call of one of the tracked |
| 876 | /// parameters. It is indirect in the sense that this particular call is not |
| 877 | /// calling the parameter itself, but rather uses it as the argument. |
| 878 | template <class CallLikeExpr> |
| 879 | void checkIndirectCall(const CallLikeExpr *CallOrMessage) { |
| 880 | // CallExpr::arguments does not interact nicely with llvm::enumerate. |
| 881 | llvm::ArrayRef<const Expr *> Arguments = |
| 882 | llvm::ArrayRef(CallOrMessage->getArgs(), CallOrMessage->getNumArgs()); |
| 883 | |
| 884 | // Let's check if any of the call arguments is a point of interest. |
| 885 | for (const auto &Argument : llvm::enumerate(First&: Arguments)) { |
| 886 | if (auto Index = getIndexOfExpression(E: Argument.value())) { |
| 887 | if (shouldBeCalledOnce(CallOrMessage, Argument.index())) { |
| 888 | // If the corresponding parameter is marked as 'called_once' we should |
| 889 | // consider it as a call. |
| 890 | processCallFor(Index: *Index, Call: CallOrMessage); |
| 891 | } else { |
| 892 | // Otherwise, we mark this parameter as escaped, which can be |
| 893 | // interpreted both as called or not called depending on the context. |
| 894 | processEscapeFor(Index: *Index); |
| 895 | } |
| 896 | // Otherwise, let's keep the state as it is. |
| 897 | } |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | /// Process call of the parameter with the given index |
| 902 | void processCallFor(unsigned Index, const Expr *Call) { |
| 903 | ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index); |
| 904 | |
| 905 | if (CurrentParamStatus.seenAnyCalls()) { |
| 906 | |
| 907 | // At this point, this parameter was called, so this is a second call. |
| 908 | const ParmVarDecl *Parameter = getParameter(Index); |
| 909 | Handler.handleDoubleCall( |
| 910 | Parameter, Call: &CurrentState.getCallFor(Index), PrevCall: Call, |
| 911 | IsCompletionHandler: !isExplicitlyMarked(Parameter), |
| 912 | // We are sure that the second call is definitely |
| 913 | // going to happen if the status is 'DefinitelyCalled'. |
| 914 | Poised: CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled); |
| 915 | |
| 916 | // Mark this parameter as already reported on, so we don't repeat |
| 917 | // warnings. |
| 918 | CurrentParamStatus = ParameterStatus::Reported; |
| 919 | |
| 920 | } else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) { |
| 921 | // If we didn't report anything yet, let's mark this parameter |
| 922 | // as called. |
| 923 | ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call); |
| 924 | CurrentParamStatus = Called; |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | /// Process escape of the parameter with the given index |
| 929 | void processEscapeFor(unsigned Index) { |
| 930 | ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index); |
| 931 | |
| 932 | // Escape overrides whatever error we think happened. |
| 933 | if (CurrentParamStatus.isErrorStatus() && |
| 934 | CurrentParamStatus.getKind() != ParameterStatus::Kind::Reported) { |
| 935 | CurrentParamStatus = ParameterStatus::Escaped; |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index, |
| 940 | bool IsEscape = false) { |
| 941 | for (const CFGBlock *Succ : Parent->succs()) { |
| 942 | if (!Succ) |
| 943 | continue; |
| 944 | |
| 945 | if (getState(BB: Succ).getKindFor(Index) == ParameterStatus::NotCalled) { |
| 946 | assert(Parent->succ_size() >= 2 && |
| 947 | "Block should have at least two successors at this point" ); |
| 948 | if (auto Clarification = NotCalledClarifier::clarify(Conditional: Parent, SuccWithoutCall: Succ)) { |
| 949 | const ParmVarDecl *Parameter = getParameter(Index); |
| 950 | Handler.handleNeverCalled( |
| 951 | Parameter, Function: AC.getDecl(), Where: Clarification->Location, |
| 952 | Reason: Clarification->Reason, IsCalledDirectly: !IsEscape, IsCompletionHandler: !isExplicitlyMarked(Parameter)); |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | //===----------------------------------------------------------------------===// |
| 959 | // Predicate functions to check parameters |
| 960 | //===----------------------------------------------------------------------===// |
| 961 | |
| 962 | /// Return true if parameter is explicitly marked as 'called_once'. |
| 963 | static bool isExplicitlyMarked(const ParmVarDecl *Parameter) { |
| 964 | return Parameter->hasAttr<CalledOnceAttr>(); |
| 965 | } |
| 966 | |
| 967 | /// Return true if the given name matches conventional pattens. |
| 968 | static bool isConventional(llvm::StringRef Name) { |
| 969 | return llvm::count(Range: CONVENTIONAL_NAMES, Element: Name) != 0; |
| 970 | } |
| 971 | |
| 972 | /// Return true if the given name has conventional suffixes. |
| 973 | static bool hasConventionalSuffix(llvm::StringRef Name) { |
| 974 | return llvm::any_of(Range: CONVENTIONAL_SUFFIXES, P: [Name](llvm::StringRef Suffix) { |
| 975 | return Name.ends_with(Suffix); |
| 976 | }); |
| 977 | } |
| 978 | |
| 979 | /// Return true if the given type can be used for conventional parameters. |
| 980 | static bool isConventional(QualType Ty) { |
| 981 | if (!Ty->isBlockPointerType()) { |
| 982 | return false; |
| 983 | } |
| 984 | |
| 985 | QualType BlockType = Ty->castAs<BlockPointerType>()->getPointeeType(); |
| 986 | // Completion handlers should have a block type with void return type. |
| 987 | return BlockType->castAs<FunctionType>()->getReturnType()->isVoidType(); |
| 988 | } |
| 989 | |
| 990 | /// Return true if the only parameter of the function is conventional. |
| 991 | static bool isOnlyParameterConventional(const FunctionDecl *Function) { |
| 992 | IdentifierInfo *II = Function->getIdentifier(); |
| 993 | return Function->getNumParams() == 1 && II && |
| 994 | hasConventionalSuffix(Name: II->getName()); |
| 995 | } |
| 996 | |
| 997 | /// Return true/false if 'swift_async' attribute states that the given |
| 998 | /// parameter is conventionally called once. |
| 999 | /// Return std::nullopt if the given declaration doesn't have 'swift_async' |
| 1000 | /// attribute. |
| 1001 | static std::optional<bool> isConventionalSwiftAsync(const Decl *D, |
| 1002 | unsigned ParamIndex) { |
| 1003 | if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) { |
| 1004 | if (A->getKind() == SwiftAsyncAttr::None) { |
| 1005 | return false; |
| 1006 | } |
| 1007 | |
| 1008 | return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex; |
| 1009 | } |
| 1010 | return std::nullopt; |
| 1011 | } |
| 1012 | |
| 1013 | /// Return true if the specified selector represents init method. |
| 1014 | static bool isInitMethod(Selector MethodSelector) { |
| 1015 | return MethodSelector.getMethodFamily() == OMF_init; |
| 1016 | } |
| 1017 | |
| 1018 | /// Return true if the specified selector piece matches conventions. |
| 1019 | static bool isConventionalSelectorPiece(Selector MethodSelector, |
| 1020 | unsigned PieceIndex, |
| 1021 | QualType PieceType) { |
| 1022 | if (!isConventional(Ty: PieceType) || isInitMethod(MethodSelector)) { |
| 1023 | return false; |
| 1024 | } |
| 1025 | |
| 1026 | if (MethodSelector.getNumArgs() == 1) { |
| 1027 | assert(PieceIndex == 0); |
| 1028 | return hasConventionalSuffix(Name: MethodSelector.getNameForSlot(argIndex: 0)); |
| 1029 | } |
| 1030 | |
| 1031 | llvm::StringRef PieceName = MethodSelector.getNameForSlot(argIndex: PieceIndex); |
| 1032 | return isConventional(Name: PieceName) || hasConventionalSuffix(Name: PieceName); |
| 1033 | } |
| 1034 | |
| 1035 | bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const { |
| 1036 | return isExplicitlyMarked(Parameter) || |
| 1037 | (CheckConventionalParameters && |
| 1038 | (isConventional(Name: Parameter->getName()) || |
| 1039 | hasConventionalSuffix(Name: Parameter->getName())) && |
| 1040 | isConventional(Ty: Parameter->getType())); |
| 1041 | } |
| 1042 | |
| 1043 | bool shouldBeCalledOnce(const DeclContext *ParamContext, |
| 1044 | const ParmVarDecl *Param) { |
| 1045 | unsigned ParamIndex = Param->getFunctionScopeIndex(); |
| 1046 | if (const auto *Function = dyn_cast<FunctionDecl>(Val: ParamContext)) { |
| 1047 | return shouldBeCalledOnce(Function, ParamIndex); |
| 1048 | } |
| 1049 | if (const auto *Method = dyn_cast<ObjCMethodDecl>(Val: ParamContext)) { |
| 1050 | return shouldBeCalledOnce(Method, ParamIndex); |
| 1051 | } |
| 1052 | return shouldBeCalledOnce(Parameter: Param); |
| 1053 | } |
| 1054 | |
| 1055 | bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const { |
| 1056 | return shouldBeCalledOnce(Parameter: Block->getParamDecl(i: ParamIndex)); |
| 1057 | } |
| 1058 | |
| 1059 | bool shouldBeCalledOnce(const FunctionDecl *Function, |
| 1060 | unsigned ParamIndex) const { |
| 1061 | if (ParamIndex >= Function->getNumParams()) { |
| 1062 | return false; |
| 1063 | } |
| 1064 | // 'swift_async' goes first and overrides anything else. |
| 1065 | if (auto ConventionalAsync = |
| 1066 | isConventionalSwiftAsync(D: Function, ParamIndex)) { |
| 1067 | return *ConventionalAsync; |
| 1068 | } |
| 1069 | |
| 1070 | return shouldBeCalledOnce(Parameter: Function->getParamDecl(i: ParamIndex)) || |
| 1071 | (CheckConventionalParameters && |
| 1072 | isOnlyParameterConventional(Function)); |
| 1073 | } |
| 1074 | |
| 1075 | bool shouldBeCalledOnce(const ObjCMethodDecl *Method, |
| 1076 | unsigned ParamIndex) const { |
| 1077 | Selector MethodSelector = Method->getSelector(); |
| 1078 | if (ParamIndex >= MethodSelector.getNumArgs()) { |
| 1079 | return false; |
| 1080 | } |
| 1081 | |
| 1082 | // 'swift_async' goes first and overrides anything else. |
| 1083 | if (auto ConventionalAsync = isConventionalSwiftAsync(D: Method, ParamIndex)) { |
| 1084 | return *ConventionalAsync; |
| 1085 | } |
| 1086 | |
| 1087 | const ParmVarDecl *Parameter = Method->getParamDecl(Idx: ParamIndex); |
| 1088 | return shouldBeCalledOnce(Parameter) || |
| 1089 | (CheckConventionalParameters && |
| 1090 | isConventionalSelectorPiece(MethodSelector, PieceIndex: ParamIndex, |
| 1091 | PieceType: Parameter->getType())); |
| 1092 | } |
| 1093 | |
| 1094 | bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const { |
| 1095 | const FunctionDecl *Function = Call->getDirectCallee(); |
| 1096 | return Function && shouldBeCalledOnce(Function, ParamIndex); |
| 1097 | } |
| 1098 | |
| 1099 | bool shouldBeCalledOnce(const ObjCMessageExpr *Message, |
| 1100 | unsigned ParamIndex) const { |
| 1101 | const ObjCMethodDecl *Method = Message->getMethodDecl(); |
| 1102 | return Method && ParamIndex < Method->param_size() && |
| 1103 | shouldBeCalledOnce(Method, ParamIndex); |
| 1104 | } |
| 1105 | |
| 1106 | //===----------------------------------------------------------------------===// |
| 1107 | // Utility methods |
| 1108 | //===----------------------------------------------------------------------===// |
| 1109 | |
| 1110 | bool isCaptured(const ParmVarDecl *Parameter) const { |
| 1111 | if (const BlockDecl *Block = dyn_cast<BlockDecl>(Val: AC.getDecl())) { |
| 1112 | return Block->capturesVariable(var: Parameter); |
| 1113 | } |
| 1114 | return false; |
| 1115 | } |
| 1116 | |
| 1117 | // Return a call site where the block is called exactly once or null otherwise |
| 1118 | const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const { |
| 1119 | ParentMap &PM = AC.getParentMap(); |
| 1120 | |
| 1121 | // We don't want to track the block through assignments and so on, instead |
| 1122 | // we simply see how the block used and if it's used directly in a call, |
| 1123 | // we decide based on call to what it is. |
| 1124 | // |
| 1125 | // In order to do this, we go up the parents of the block looking for |
| 1126 | // a call or a message expressions. These might not be immediate parents |
| 1127 | // of the actual block expression due to casts and parens, so we skip them. |
| 1128 | for (const Stmt *Prev = Block, *Current = PM.getParent(S: Block); |
| 1129 | Current != nullptr; Prev = Current, Current = PM.getParent(S: Current)) { |
| 1130 | // Skip no-op (for our case) operations. |
| 1131 | if (isa<CastExpr>(Val: Current) || isa<ParenExpr>(Val: Current)) |
| 1132 | continue; |
| 1133 | |
| 1134 | // At this point, Prev represents our block as an immediate child of the |
| 1135 | // call. |
| 1136 | if (const auto *Call = dyn_cast<CallExpr>(Val: Current)) { |
| 1137 | // It might be the call of the Block itself... |
| 1138 | if (Call->getCallee() == Prev) |
| 1139 | return Call; |
| 1140 | |
| 1141 | // ...or it can be an indirect call of the block. |
| 1142 | return shouldBlockArgumentBeCalledOnce(CallOrMessage: Call, BlockArgument: Prev) ? Call : nullptr; |
| 1143 | } |
| 1144 | if (const auto *Message = dyn_cast<ObjCMessageExpr>(Val: Current)) { |
| 1145 | return shouldBlockArgumentBeCalledOnce(CallOrMessage: Message, BlockArgument: Prev) ? Message |
| 1146 | : nullptr; |
| 1147 | } |
| 1148 | |
| 1149 | break; |
| 1150 | } |
| 1151 | |
| 1152 | return nullptr; |
| 1153 | } |
| 1154 | |
| 1155 | template <class CallLikeExpr> |
| 1156 | bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage, |
| 1157 | const Stmt *BlockArgument) const { |
| 1158 | // CallExpr::arguments does not interact nicely with llvm::enumerate. |
| 1159 | llvm::ArrayRef<const Expr *> Arguments = |
| 1160 | llvm::ArrayRef(CallOrMessage->getArgs(), CallOrMessage->getNumArgs()); |
| 1161 | |
| 1162 | for (const auto &Argument : llvm::enumerate(First&: Arguments)) { |
| 1163 | if (Argument.value() == BlockArgument) { |
| 1164 | return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index()); |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | return false; |
| 1169 | } |
| 1170 | |
| 1171 | bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call, |
| 1172 | unsigned ParamIndex) const { |
| 1173 | const FunctionDecl *Function = Call->getDirectCallee(); |
| 1174 | return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) || |
| 1175 | shouldBeCalledOnce(Call, ParamIndex); |
| 1176 | } |
| 1177 | |
| 1178 | bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message, |
| 1179 | unsigned ParamIndex) const { |
| 1180 | // At the moment, we don't have any Obj-C methods we want to specifically |
| 1181 | // check in here. |
| 1182 | return shouldBeCalledOnce(Message, ParamIndex); |
| 1183 | } |
| 1184 | |
| 1185 | static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function, |
| 1186 | unsigned ParamIndex) { |
| 1187 | // There is a list of important API functions that while not following |
| 1188 | // conventions nor being directly annotated, still guarantee that the |
| 1189 | // callback parameter will be called exactly once. |
| 1190 | // |
| 1191 | // Here we check if this is the case. |
| 1192 | return Function && |
| 1193 | llvm::any_of(Range: KNOWN_CALLED_ONCE_PARAMETERS, |
| 1194 | P: [Function, ParamIndex]( |
| 1195 | const KnownCalledOnceParameter &Reference) { |
| 1196 | return Reference.FunctionName == |
| 1197 | Function->getName() && |
| 1198 | Reference.ParamIndex == ParamIndex; |
| 1199 | }); |
| 1200 | } |
| 1201 | |
| 1202 | /// Return true if the analyzed function is actually a default implementation |
| 1203 | /// of the method that has to be overriden. |
| 1204 | /// |
| 1205 | /// These functions can have tracked parameters, but wouldn't call them |
| 1206 | /// because they are not designed to perform any meaningful actions. |
| 1207 | /// |
| 1208 | /// There are a couple of flavors of such default implementations: |
| 1209 | /// 1. Empty methods or methods with a single return statement |
| 1210 | /// 2. Methods that have one block with a call to no return function |
| 1211 | /// 3. Methods with only assertion-like operations |
| 1212 | bool isPossiblyEmptyImpl() const { |
| 1213 | if (!isa<ObjCMethodDecl>(Val: AC.getDecl())) { |
| 1214 | // We care only about functions that are not supposed to be called. |
| 1215 | // Only methods can be overriden. |
| 1216 | return false; |
| 1217 | } |
| 1218 | |
| 1219 | // Case #1 (without return statements) |
| 1220 | if (FunctionCFG.size() == 2) { |
| 1221 | // Method has only two blocks: ENTRY and EXIT. |
| 1222 | // This is equivalent to empty function. |
| 1223 | return true; |
| 1224 | } |
| 1225 | |
| 1226 | // Case #2 |
| 1227 | if (FunctionCFG.size() == 3) { |
| 1228 | const CFGBlock &Entry = FunctionCFG.getEntry(); |
| 1229 | if (Entry.succ_empty()) { |
| 1230 | return false; |
| 1231 | } |
| 1232 | |
| 1233 | const CFGBlock *OnlyBlock = *Entry.succ_begin(); |
| 1234 | // Method has only one block, let's see if it has a no-return |
| 1235 | // element. |
| 1236 | if (OnlyBlock && OnlyBlock->hasNoReturnElement()) { |
| 1237 | return true; |
| 1238 | } |
| 1239 | // Fallthrough, CFGs with only one block can fall into #1 and #3 as well. |
| 1240 | } |
| 1241 | |
| 1242 | // Cases #1 (return statements) and #3. |
| 1243 | // |
| 1244 | // It is hard to detect that something is an assertion or came |
| 1245 | // from assertion. Here we use a simple heuristic: |
| 1246 | // |
| 1247 | // - If it came from a macro, it can be an assertion. |
| 1248 | // |
| 1249 | // Additionally, we can't assume a number of basic blocks or the CFG's |
| 1250 | // structure because assertions might include loops and conditions. |
| 1251 | return llvm::all_of(Range: FunctionCFG, P: [](const CFGBlock *BB) { |
| 1252 | if (!BB) { |
| 1253 | // Unreachable blocks are totally fine. |
| 1254 | return true; |
| 1255 | } |
| 1256 | |
| 1257 | // Return statements can have sub-expressions that are represented as |
| 1258 | // separate statements of a basic block. We should allow this. |
| 1259 | // This parent map will be initialized with a parent tree for all |
| 1260 | // subexpressions of the block's return statement (if it has one). |
| 1261 | std::unique_ptr<ParentMap> ReturnChildren; |
| 1262 | |
| 1263 | return llvm::all_of( |
| 1264 | Range: llvm::reverse(C: *BB), // we should start with return statements, if we |
| 1265 | // have any, i.e. from the bottom of the block |
| 1266 | P: [&ReturnChildren](const CFGElement &Element) { |
| 1267 | if (std::optional<CFGStmt> S = Element.getAs<CFGStmt>()) { |
| 1268 | const Stmt *SuspiciousStmt = S->getStmt(); |
| 1269 | |
| 1270 | if (isa<ReturnStmt>(Val: SuspiciousStmt)) { |
| 1271 | // Let's initialize this structure to test whether |
| 1272 | // some further statement is a part of this return. |
| 1273 | ReturnChildren = std::make_unique<ParentMap>( |
| 1274 | args: const_cast<Stmt *>(SuspiciousStmt)); |
| 1275 | // Return statements are allowed as part of #1. |
| 1276 | return true; |
| 1277 | } |
| 1278 | |
| 1279 | return SuspiciousStmt->getBeginLoc().isMacroID() || |
| 1280 | (ReturnChildren && |
| 1281 | ReturnChildren->hasParent(S: SuspiciousStmt)); |
| 1282 | } |
| 1283 | return true; |
| 1284 | }); |
| 1285 | }); |
| 1286 | } |
| 1287 | |
| 1288 | /// Check if parameter with the given index has ever escaped. |
| 1289 | bool hasEverEscaped(unsigned Index) const { |
| 1290 | return llvm::any_of(Range: States, P: [Index](const State &StateForOneBB) { |
| 1291 | return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped; |
| 1292 | }); |
| 1293 | } |
| 1294 | |
| 1295 | /// Return status stored for the given basic block. |
| 1296 | /// \{ |
| 1297 | State &getState(const CFGBlock *BB) { |
| 1298 | assert(BB); |
| 1299 | return States[BB->getBlockID()]; |
| 1300 | } |
| 1301 | const State &getState(const CFGBlock *BB) const { |
| 1302 | assert(BB); |
| 1303 | return States[BB->getBlockID()]; |
| 1304 | } |
| 1305 | /// \} |
| 1306 | |
| 1307 | /// Assign status to the given basic block. |
| 1308 | /// |
| 1309 | /// Returns true when the stored status changed. |
| 1310 | bool assignState(const CFGBlock *BB, const State &ToAssign) { |
| 1311 | State &Current = getState(BB); |
| 1312 | if (Current == ToAssign) { |
| 1313 | return false; |
| 1314 | } |
| 1315 | |
| 1316 | Current = ToAssign; |
| 1317 | return true; |
| 1318 | } |
| 1319 | |
| 1320 | /// Join all incoming statuses for the given basic block. |
| 1321 | State joinSuccessors(const CFGBlock *BB) const { |
| 1322 | auto Succs = |
| 1323 | llvm::make_filter_range(Range: BB->succs(), Pred: [this](const CFGBlock *Succ) { |
| 1324 | return Succ && this->getState(BB: Succ).isVisited(); |
| 1325 | }); |
| 1326 | // We came to this block from somewhere after all. |
| 1327 | assert(!Succs.empty() && |
| 1328 | "Basic block should have at least one visited successor" ); |
| 1329 | |
| 1330 | State Result = getState(BB: *Succs.begin()); |
| 1331 | |
| 1332 | for (const CFGBlock *Succ : llvm::drop_begin(RangeOrContainer&: Succs, N: 1)) { |
| 1333 | Result.join(Other: getState(BB: Succ)); |
| 1334 | } |
| 1335 | |
| 1336 | if (const Expr *Condition = getCondition(S: BB->getTerminatorStmt())) { |
| 1337 | handleConditional(BB, Condition, ToAlter&: Result); |
| 1338 | } |
| 1339 | |
| 1340 | return Result; |
| 1341 | } |
| 1342 | |
| 1343 | void handleConditional(const CFGBlock *BB, const Expr *Condition, |
| 1344 | State &ToAlter) const { |
| 1345 | handleParameterCheck(BB, Condition, ToAlter); |
| 1346 | if (SuppressOnConventionalErrorPaths) { |
| 1347 | handleConventionalCheck(BB, Condition, ToAlter); |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | void handleParameterCheck(const CFGBlock *BB, const Expr *Condition, |
| 1352 | State &ToAlter) const { |
| 1353 | // In this function, we try to deal with the following pattern: |
| 1354 | // |
| 1355 | // if (parameter) |
| 1356 | // parameter(...); |
| 1357 | // |
| 1358 | // It's not good to show a warning here because clearly 'parameter' |
| 1359 | // couldn't and shouldn't be called on the 'else' path. |
| 1360 | // |
| 1361 | // Let's check if this if statement has a check involving one of |
| 1362 | // the tracked parameters. |
| 1363 | if (const ParmVarDecl *Parameter = findReferencedParmVarDecl( |
| 1364 | In: Condition, |
| 1365 | /* ShouldRetrieveFromComparisons = */ true)) { |
| 1366 | if (const auto Index = getIndex(Parameter: *Parameter)) { |
| 1367 | ParameterStatus &CurrentStatus = ToAlter.getStatusFor(Index: *Index); |
| 1368 | |
| 1369 | // We don't want to deep dive into semantics of the check and |
| 1370 | // figure out if that check was for null or something else. |
| 1371 | // We simply trust the user that they know what they are doing. |
| 1372 | // |
| 1373 | // For this reason, in the following loop we look for the |
| 1374 | // best-looking option. |
| 1375 | for (const CFGBlock *Succ : BB->succs()) { |
| 1376 | if (!Succ) |
| 1377 | continue; |
| 1378 | |
| 1379 | const ParameterStatus &StatusInSucc = |
| 1380 | getState(BB: Succ).getStatusFor(Index: *Index); |
| 1381 | |
| 1382 | if (StatusInSucc.isErrorStatus()) { |
| 1383 | continue; |
| 1384 | } |
| 1385 | |
| 1386 | // Let's use this status instead. |
| 1387 | CurrentStatus = StatusInSucc; |
| 1388 | |
| 1389 | if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) { |
| 1390 | // This is the best option to have and we already found it. |
| 1391 | break; |
| 1392 | } |
| 1393 | |
| 1394 | // If we found 'Escaped' first, we still might find 'DefinitelyCalled' |
| 1395 | // on the other branch. And we prefer the latter. |
| 1396 | } |
| 1397 | } |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition, |
| 1402 | State &ToAlter) const { |
| 1403 | // Even when the analysis is technically correct, it is a widespread pattern |
| 1404 | // not to call completion handlers in some scenarios. These usually have |
| 1405 | // typical conditional names, such as 'error' or 'cancel'. |
| 1406 | if (!mentionsAnyOfConventionalNames(E: Condition)) { |
| 1407 | return; |
| 1408 | } |
| 1409 | |
| 1410 | for (const auto &IndexedStatus : llvm::enumerate(First&: ToAlter)) { |
| 1411 | const ParmVarDecl *Parameter = getParameter(Index: IndexedStatus.index()); |
| 1412 | // Conventions do not apply to explicitly marked parameters. |
| 1413 | if (isExplicitlyMarked(Parameter)) { |
| 1414 | continue; |
| 1415 | } |
| 1416 | |
| 1417 | ParameterStatus &CurrentStatus = IndexedStatus.value(); |
| 1418 | // If we did find that on one of the branches the user uses the callback |
| 1419 | // and doesn't on the other path, we believe that they know what they are |
| 1420 | // doing and trust them. |
| 1421 | // |
| 1422 | // There are two possible scenarios for that: |
| 1423 | // 1. Current status is 'MaybeCalled' and one of the branches is |
| 1424 | // 'DefinitelyCalled' |
| 1425 | // 2. Current status is 'NotCalled' and one of the branches is 'Escaped' |
| 1426 | if (isLosingCall(StateAfterJoin: ToAlter, JoinBlock: BB, ParameterIndex: IndexedStatus.index()) || |
| 1427 | isLosingEscape(StateAfterJoin: ToAlter, JoinBlock: BB, ParameterIndex: IndexedStatus.index())) { |
| 1428 | CurrentStatus = ParameterStatus::Escaped; |
| 1429 | } |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock, |
| 1434 | unsigned ParameterIndex) const { |
| 1435 | // Let's check if the block represents DefinitelyCalled -> MaybeCalled |
| 1436 | // transition. |
| 1437 | return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex, |
| 1438 | AfterJoin: ParameterStatus::MaybeCalled, |
| 1439 | BeforeJoin: ParameterStatus::DefinitelyCalled); |
| 1440 | } |
| 1441 | |
| 1442 | bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock, |
| 1443 | unsigned ParameterIndex) const { |
| 1444 | // Let's check if the block represents Escaped -> NotCalled transition. |
| 1445 | return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex, |
| 1446 | AfterJoin: ParameterStatus::NotCalled, BeforeJoin: ParameterStatus::Escaped); |
| 1447 | } |
| 1448 | |
| 1449 | bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock, |
| 1450 | unsigned ParameterIndex, ParameterStatus::Kind AfterJoin, |
| 1451 | ParameterStatus::Kind BeforeJoin) const { |
| 1452 | assert(!ParameterStatus::isErrorStatus(BeforeJoin) && |
| 1453 | ParameterStatus::isErrorStatus(AfterJoin) && |
| 1454 | "It's not a losing join if statuses do not represent " |
| 1455 | "correct-to-error transition" ); |
| 1456 | |
| 1457 | const ParameterStatus &CurrentStatus = |
| 1458 | StateAfterJoin.getStatusFor(Index: ParameterIndex); |
| 1459 | |
| 1460 | return CurrentStatus.getKind() == AfterJoin && |
| 1461 | anySuccessorHasStatus(Parent: JoinBlock, ParameterIndex, ToFind: BeforeJoin); |
| 1462 | } |
| 1463 | |
| 1464 | /// Return true if any of the successors of the given basic block has |
| 1465 | /// a specified status for the given parameter. |
| 1466 | bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex, |
| 1467 | ParameterStatus::Kind ToFind) const { |
| 1468 | return llvm::any_of( |
| 1469 | Range: Parent->succs(), P: [this, ParameterIndex, ToFind](const CFGBlock *Succ) { |
| 1470 | return Succ && getState(BB: Succ).getKindFor(Index: ParameterIndex) == ToFind; |
| 1471 | }); |
| 1472 | } |
| 1473 | |
| 1474 | /// Check given expression that was discovered to escape. |
| 1475 | void checkEscapee(const Expr *E) { |
| 1476 | if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(In: E)) { |
| 1477 | checkEscapee(Parameter: *Parameter); |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | /// Check given parameter that was discovered to escape. |
| 1482 | void checkEscapee(const ParmVarDecl &Parameter) { |
| 1483 | if (auto Index = getIndex(Parameter)) { |
| 1484 | processEscapeFor(Index: *Index); |
| 1485 | } |
| 1486 | } |
| 1487 | |
| 1488 | /// Mark all parameters in the current state as 'no-return'. |
| 1489 | void markNoReturn() { |
| 1490 | for (ParameterStatus &PS : CurrentState) { |
| 1491 | PS = ParameterStatus::NoReturn; |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | /// Check if the given assignment represents suppression and act on it. |
| 1496 | void checkSuppression(const BinaryOperator *Assignment) { |
| 1497 | // Suppression has the following form: |
| 1498 | // parameter = 0; |
| 1499 | // 0 can be of any form (NULL, nil, etc.) |
| 1500 | if (auto Index = getIndexOfExpression(E: Assignment->getLHS())) { |
| 1501 | |
| 1502 | // We don't care what is written in the RHS, it could be whatever |
| 1503 | // we can interpret as 0. |
| 1504 | if (auto Constant = |
| 1505 | Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr( |
| 1506 | Ctx: AC.getASTContext())) { |
| 1507 | |
| 1508 | ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index: *Index); |
| 1509 | |
| 1510 | if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) { |
| 1511 | // Even though this suppression mechanism is introduced to tackle |
| 1512 | // false positives for multiple calls, the fact that the user has |
| 1513 | // to use suppression can also tell us that we couldn't figure out |
| 1514 | // how different paths cancel each other out. And if that is true, |
| 1515 | // we will most certainly have false positives about parameters not |
| 1516 | // being called on certain paths. |
| 1517 | // |
| 1518 | // For this reason, we abandon tracking this parameter altogether. |
| 1519 | CurrentParamStatus = ParameterStatus::Reported; |
| 1520 | } |
| 1521 | } |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | public: |
| 1526 | //===----------------------------------------------------------------------===// |
| 1527 | // Tree traversal methods |
| 1528 | //===----------------------------------------------------------------------===// |
| 1529 | |
| 1530 | void VisitCallExpr(const CallExpr *Call) { |
| 1531 | // This call might be a direct call, i.e. a parameter call... |
| 1532 | checkDirectCall(Call); |
| 1533 | // ... or an indirect call, i.e. when parameter is an argument. |
| 1534 | checkIndirectCall(CallOrMessage: Call); |
| 1535 | } |
| 1536 | |
| 1537 | void VisitObjCMessageExpr(const ObjCMessageExpr *Message) { |
| 1538 | // The most common situation that we are defending against here is |
| 1539 | // copying a tracked parameter. |
| 1540 | if (const Expr *Receiver = Message->getInstanceReceiver()) { |
| 1541 | checkEscapee(E: Receiver); |
| 1542 | } |
| 1543 | // Message expressions unlike calls, could not be direct. |
| 1544 | checkIndirectCall(CallOrMessage: Message); |
| 1545 | } |
| 1546 | |
| 1547 | void VisitBlockExpr(const BlockExpr *Block) { |
| 1548 | // Block expressions are tricky. It is a very common practice to capture |
| 1549 | // completion handlers by blocks and use them there. |
| 1550 | // For this reason, it is important to analyze blocks and report warnings |
| 1551 | // for completion handler misuse in blocks. |
| 1552 | // |
| 1553 | // However, it can be quite difficult to track how the block itself is being |
| 1554 | // used. The full precise anlysis of that will be similar to alias analysis |
| 1555 | // for completion handlers and can be too heavyweight for a compile-time |
| 1556 | // diagnostic. Instead, we judge about the immediate use of the block. |
| 1557 | // |
| 1558 | // Here, we try to find a call expression where we know due to conventions, |
| 1559 | // annotations, or other reasons that the block is called once and only |
| 1560 | // once. |
| 1561 | const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block); |
| 1562 | |
| 1563 | // We need to report this information to the handler because in the |
| 1564 | // situation when we know that the block is called exactly once, we can be |
| 1565 | // stricter in terms of reported diagnostics. |
| 1566 | if (CalledOnceCallSite) { |
| 1567 | Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block: Block->getBlockDecl()); |
| 1568 | } else { |
| 1569 | Handler.handleBlockWithNoGuarantees(Block: Block->getBlockDecl()); |
| 1570 | } |
| 1571 | |
| 1572 | for (const auto &Capture : Block->getBlockDecl()->captures()) { |
| 1573 | if (const auto *Param = dyn_cast<ParmVarDecl>(Val: Capture.getVariable())) { |
| 1574 | if (auto Index = getIndex(Parameter: *Param)) { |
| 1575 | if (CalledOnceCallSite) { |
| 1576 | // The call site of a block can be considered a call site of the |
| 1577 | // captured parameter we track. |
| 1578 | processCallFor(Index: *Index, Call: CalledOnceCallSite); |
| 1579 | } else { |
| 1580 | // We still should consider this block as an escape for parameter, |
| 1581 | // if we don't know about its call site or the number of time it |
| 1582 | // can be invoked. |
| 1583 | processEscapeFor(Index: *Index); |
| 1584 | } |
| 1585 | } |
| 1586 | } |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | void VisitBinaryOperator(const BinaryOperator *Op) { |
| 1591 | if (Op->getOpcode() == clang::BO_Assign) { |
| 1592 | // Let's check if one of the tracked parameters is assigned into |
| 1593 | // something, and if it is we don't want to track extra variables, so we |
| 1594 | // consider it as an escapee. |
| 1595 | checkEscapee(E: Op->getRHS()); |
| 1596 | |
| 1597 | // Let's check whether this assignment is a suppression. |
| 1598 | checkSuppression(Assignment: Op); |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | void VisitDeclStmt(const DeclStmt *DS) { |
| 1603 | // Variable initialization is not assignment and should be handled |
| 1604 | // separately. |
| 1605 | // |
| 1606 | // Multiple declarations can be a part of declaration statement. |
| 1607 | for (const auto *Declaration : DS->getDeclGroup()) { |
| 1608 | if (const auto *Var = dyn_cast<VarDecl>(Val: Declaration)) { |
| 1609 | if (Var->getInit()) { |
| 1610 | checkEscapee(E: Var->getInit()); |
| 1611 | } |
| 1612 | |
| 1613 | if (Var->hasAttr<CleanupAttr>()) { |
| 1614 | FunctionHasCleanupVars = true; |
| 1615 | } |
| 1616 | } |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | void VisitCStyleCastExpr(const CStyleCastExpr *Cast) { |
| 1621 | // We consider '(void)parameter' as a manual no-op escape. |
| 1622 | // It should be used to explicitly tell the analysis that this parameter |
| 1623 | // is intentionally not called on this path. |
| 1624 | if (Cast->getType().getCanonicalType()->isVoidType()) { |
| 1625 | checkEscapee(E: Cast->getSubExpr()); |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) { |
| 1630 | // It is OK not to call marked parameters on exceptional paths. |
| 1631 | markNoReturn(); |
| 1632 | } |
| 1633 | |
| 1634 | private: |
| 1635 | unsigned size() const { return TrackedParams.size(); } |
| 1636 | |
| 1637 | std::optional<unsigned> getIndexOfCallee(const CallExpr *Call) const { |
| 1638 | return getIndexOfExpression(E: Call->getCallee()); |
| 1639 | } |
| 1640 | |
| 1641 | std::optional<unsigned> getIndexOfExpression(const Expr *E) const { |
| 1642 | if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(In: E)) { |
| 1643 | return getIndex(Parameter: *Parameter); |
| 1644 | } |
| 1645 | |
| 1646 | return std::nullopt; |
| 1647 | } |
| 1648 | |
| 1649 | std::optional<unsigned> getIndex(const ParmVarDecl &Parameter) const { |
| 1650 | // Expected number of parameters that we actually track is 1. |
| 1651 | // |
| 1652 | // Also, the maximum number of declared parameters could not be on a scale |
| 1653 | // of hundreds of thousands. |
| 1654 | // |
| 1655 | // In this setting, linear search seems reasonable and even performs better |
| 1656 | // than bisection. |
| 1657 | ParamSizedVector<const ParmVarDecl *>::const_iterator It = |
| 1658 | llvm::find(Range: TrackedParams, Val: &Parameter); |
| 1659 | |
| 1660 | if (It != TrackedParams.end()) { |
| 1661 | return It - TrackedParams.begin(); |
| 1662 | } |
| 1663 | |
| 1664 | return std::nullopt; |
| 1665 | } |
| 1666 | |
| 1667 | const ParmVarDecl *getParameter(unsigned Index) const { |
| 1668 | assert(Index < TrackedParams.size()); |
| 1669 | return TrackedParams[Index]; |
| 1670 | } |
| 1671 | |
| 1672 | const CFG &FunctionCFG; |
| 1673 | AnalysisDeclContext &AC; |
| 1674 | CalledOnceCheckHandler &Handler; |
| 1675 | bool CheckConventionalParameters; |
| 1676 | // As of now, we turn this behavior off. So, we still are going to report |
| 1677 | // missing calls on paths that look like it was intentional. |
| 1678 | // Technically such reports are true positives, but they can make some users |
| 1679 | // grumpy because of the sheer number of warnings. |
| 1680 | // It can be turned back on if we decide that we want to have the other way |
| 1681 | // around. |
| 1682 | bool SuppressOnConventionalErrorPaths = false; |
| 1683 | |
| 1684 | // The user can annotate variable declarations with cleanup functions, which |
| 1685 | // essentially imposes a custom destructor logic on that variable. |
| 1686 | // It is possible to use it, however, to call tracked parameters on all exits |
| 1687 | // from the function. For this reason, we track the fact that the function |
| 1688 | // actually has these. |
| 1689 | bool FunctionHasCleanupVars = false; |
| 1690 | |
| 1691 | State CurrentState; |
| 1692 | ParamSizedVector<const ParmVarDecl *> TrackedParams; |
| 1693 | CFGSizedVector<State> States; |
| 1694 | }; |
| 1695 | |
| 1696 | } // end anonymous namespace |
| 1697 | |
| 1698 | namespace clang { |
| 1699 | void checkCalledOnceParameters(AnalysisDeclContext &AC, |
| 1700 | CalledOnceCheckHandler &Handler, |
| 1701 | bool CheckConventionalParameters) { |
| 1702 | CalledOnceChecker::check(AC, Handler, CheckConventionalParameters); |
| 1703 | } |
| 1704 | } // end namespace clang |
| 1705 | |