| 1 | //===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines a DataflowAnalysisContext class that owns objects that |
| 10 | // encompass the state of a program and stores context that is used during |
| 11 | // dataflow analysis. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" |
| 16 | #include "clang/Analysis/FlowSensitive/ASTOps.h" |
| 17 | #include "clang/Analysis/FlowSensitive/Formula.h" |
| 18 | #include "clang/Analysis/FlowSensitive/Logger.h" |
| 19 | #include "clang/Analysis/FlowSensitive/SimplifyConstraints.h" |
| 20 | #include "clang/Analysis/FlowSensitive/Value.h" |
| 21 | #include "llvm/ADT/SetOperations.h" |
| 22 | #include "llvm/ADT/SetVector.h" |
| 23 | #include "llvm/Support/CommandLine.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | #include "llvm/Support/FileSystem.h" |
| 26 | #include "llvm/Support/Path.h" |
| 27 | #include "llvm/Support/raw_ostream.h" |
| 28 | #include <cassert> |
| 29 | #include <memory> |
| 30 | #include <string> |
| 31 | #include <utility> |
| 32 | #include <vector> |
| 33 | |
| 34 | static llvm::cl::opt<std::string> DataflowLog( |
| 35 | "dataflow-log" , llvm::cl::Hidden, llvm::cl::ValueOptional, |
| 36 | llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual " |
| 37 | "log to stderr. With an arg, writes HTML logs under the " |
| 38 | "specified directory (one per analyzed function)." )); |
| 39 | |
| 40 | namespace clang { |
| 41 | namespace dataflow { |
| 42 | |
| 43 | FieldSet DataflowAnalysisContext::getModeledFields(QualType Type) { |
| 44 | // During context-sensitive analysis, a struct may be allocated in one |
| 45 | // function, but its field accessed in a function lower in the stack than |
| 46 | // the allocation. Since we only collect fields used in the function where |
| 47 | // the allocation occurs, we can't apply that filter when performing |
| 48 | // context-sensitive analysis. But, this only applies to storage locations, |
| 49 | // since field access it not allowed to fail. In contrast, field *values* |
| 50 | // don't need this allowance, since the API allows for uninitialized fields. |
| 51 | if (Opts.ContextSensitiveOpts) |
| 52 | return getObjectFields(Type); |
| 53 | |
| 54 | return llvm::set_intersection(S1: getObjectFields(Type), S2: ModeledFields); |
| 55 | } |
| 56 | |
| 57 | void DataflowAnalysisContext::addModeledFields(const FieldSet &Fields) { |
| 58 | ModeledFields.set_union(Fields); |
| 59 | } |
| 60 | |
| 61 | StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) { |
| 62 | if (!Type.isNull() && Type->isRecordType()) { |
| 63 | llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs; |
| 64 | for (const FieldDecl *Field : getModeledFields(Type)) |
| 65 | if (Field->getType()->isReferenceType()) |
| 66 | FieldLocs.insert(KV: {Field, nullptr}); |
| 67 | else |
| 68 | FieldLocs.insert(KV: {Field, &createStorageLocation( |
| 69 | Type: Field->getType().getNonReferenceType())}); |
| 70 | |
| 71 | RecordStorageLocation::SyntheticFieldMap SyntheticFields; |
| 72 | for (const auto &Entry : getSyntheticFields(Type)) |
| 73 | SyntheticFields.insert( |
| 74 | KV: {Entry.getKey(), |
| 75 | &createStorageLocation(Type: Entry.getValue().getNonReferenceType())}); |
| 76 | |
| 77 | return createRecordStorageLocation(Type, FieldLocs: std::move(FieldLocs), |
| 78 | SyntheticFields: std::move(SyntheticFields)); |
| 79 | } |
| 80 | return arena().create<ScalarStorageLocation>(args&: Type); |
| 81 | } |
| 82 | |
| 83 | // Returns the keys for a given `StringMap`. |
| 84 | // Can't use `StringSet` as the return type as it doesn't support `operator==`. |
| 85 | template <typename T> |
| 86 | static llvm::DenseSet<llvm::StringRef> getKeys(const llvm::StringMap<T> &Map) { |
| 87 | return llvm::DenseSet<llvm::StringRef>(llvm::from_range, Map.keys()); |
| 88 | } |
| 89 | |
| 90 | RecordStorageLocation &DataflowAnalysisContext::createRecordStorageLocation( |
| 91 | QualType Type, RecordStorageLocation::FieldToLoc FieldLocs, |
| 92 | RecordStorageLocation::SyntheticFieldMap SyntheticFields) { |
| 93 | assert(Type->isRecordType()); |
| 94 | assert(containsSameFields(getModeledFields(Type), FieldLocs)); |
| 95 | assert(getKeys(getSyntheticFields(Type)) == getKeys(SyntheticFields)); |
| 96 | |
| 97 | RecordStorageLocationCreated = true; |
| 98 | return arena().create<RecordStorageLocation>(args&: Type, args: std::move(FieldLocs), |
| 99 | args: std::move(SyntheticFields)); |
| 100 | } |
| 101 | |
| 102 | StorageLocation & |
| 103 | DataflowAnalysisContext::getStableStorageLocation(const ValueDecl &D) { |
| 104 | if (auto *Loc = DeclToLoc.lookup(Val: &D)) |
| 105 | return *Loc; |
| 106 | auto &Loc = createStorageLocation(Type: D.getType().getNonReferenceType()); |
| 107 | DeclToLoc[&D] = &Loc; |
| 108 | return Loc; |
| 109 | } |
| 110 | |
| 111 | StorageLocation & |
| 112 | DataflowAnalysisContext::getStableStorageLocation(const Expr &E) { |
| 113 | const Expr &CanonE = ignoreCFGOmittedNodes(E); |
| 114 | |
| 115 | if (auto *Loc = ExprToLoc.lookup(Val: &CanonE)) |
| 116 | return *Loc; |
| 117 | auto &Loc = createStorageLocation(Type: CanonE.getType()); |
| 118 | ExprToLoc[&CanonE] = &Loc; |
| 119 | return Loc; |
| 120 | } |
| 121 | |
| 122 | PointerValue & |
| 123 | DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) { |
| 124 | auto CanonicalPointeeType = |
| 125 | PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType(); |
| 126 | auto Res = NullPointerVals.try_emplace(Key: CanonicalPointeeType, Args: nullptr); |
| 127 | if (Res.second) { |
| 128 | auto &PointeeLoc = createStorageLocation(Type: CanonicalPointeeType); |
| 129 | Res.first->second = &arena().create<PointerValue>(args&: PointeeLoc); |
| 130 | } |
| 131 | return *Res.first->second; |
| 132 | } |
| 133 | |
| 134 | void DataflowAnalysisContext::addInvariant(const Formula &Constraint) { |
| 135 | if (Invariant == nullptr) |
| 136 | Invariant = &Constraint; |
| 137 | else |
| 138 | Invariant = &arena().makeAnd(LHS: *Invariant, RHS: Constraint); |
| 139 | } |
| 140 | |
| 141 | void DataflowAnalysisContext::addFlowConditionConstraint( |
| 142 | Atom Token, const Formula &Constraint) { |
| 143 | auto Res = FlowConditionConstraints.try_emplace(Key: Token, Args: &Constraint); |
| 144 | if (!Res.second) { |
| 145 | Res.first->second = |
| 146 | &arena().makeAnd(LHS: *Res.first->second, RHS: Constraint); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) { |
| 151 | Atom ForkToken = arena().makeFlowConditionToken(); |
| 152 | FlowConditionDeps[ForkToken].insert(V: Token); |
| 153 | addFlowConditionConstraint(Token: ForkToken, Constraint: arena().makeAtomRef(A: Token)); |
| 154 | return ForkToken; |
| 155 | } |
| 156 | |
| 157 | Atom |
| 158 | DataflowAnalysisContext::joinFlowConditions(Atom FirstToken, |
| 159 | Atom SecondToken) { |
| 160 | Atom Token = arena().makeFlowConditionToken(); |
| 161 | auto &TokenDeps = FlowConditionDeps[Token]; |
| 162 | TokenDeps.insert(V: FirstToken); |
| 163 | TokenDeps.insert(V: SecondToken); |
| 164 | addFlowConditionConstraint(Token, |
| 165 | Constraint: arena().makeOr(LHS: arena().makeAtomRef(A: FirstToken), |
| 166 | RHS: arena().makeAtomRef(A: SecondToken))); |
| 167 | return Token; |
| 168 | } |
| 169 | |
| 170 | Solver::Result DataflowAnalysisContext::querySolver( |
| 171 | llvm::SetVector<const Formula *> Constraints) { |
| 172 | return S.solve(Vals: Constraints.getArrayRef()); |
| 173 | } |
| 174 | |
| 175 | bool DataflowAnalysisContext::flowConditionImplies(Atom Token, |
| 176 | const Formula &F) { |
| 177 | if (F.isLiteral(b: true)) |
| 178 | return true; |
| 179 | |
| 180 | // Returns true if and only if truth assignment of the flow condition implies |
| 181 | // that `F` is also true. We prove whether or not this property holds by |
| 182 | // reducing the problem to satisfiability checking. In other words, we attempt |
| 183 | // to show that assuming `F` is false makes the constraints induced by the |
| 184 | // flow condition unsatisfiable. |
| 185 | llvm::SetVector<const Formula *> Constraints; |
| 186 | Constraints.insert(X: &arena().makeAtomRef(A: Token)); |
| 187 | Constraints.insert(X: &arena().makeNot(Val: F)); |
| 188 | addTransitiveFlowConditionConstraints(Token, Out&: Constraints); |
| 189 | return isUnsatisfiable(Constraints: std::move(Constraints)); |
| 190 | } |
| 191 | |
| 192 | bool DataflowAnalysisContext::flowConditionAllows(Atom Token, |
| 193 | const Formula &F) { |
| 194 | if (F.isLiteral(b: false)) |
| 195 | return false; |
| 196 | |
| 197 | llvm::SetVector<const Formula *> Constraints; |
| 198 | Constraints.insert(X: &arena().makeAtomRef(A: Token)); |
| 199 | Constraints.insert(X: &F); |
| 200 | addTransitiveFlowConditionConstraints(Token, Out&: Constraints); |
| 201 | return isSatisfiable(Constraints: std::move(Constraints)); |
| 202 | } |
| 203 | |
| 204 | bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1, |
| 205 | const Formula &Val2) { |
| 206 | llvm::SetVector<const Formula *> Constraints; |
| 207 | Constraints.insert(X: &arena().makeNot(Val: arena().makeEquals(LHS: Val1, RHS: Val2))); |
| 208 | return isUnsatisfiable(Constraints: std::move(Constraints)); |
| 209 | } |
| 210 | |
| 211 | void DataflowAnalysisContext::addTransitiveFlowConditionConstraints( |
| 212 | Atom Token, llvm::SetVector<const Formula *> &Constraints) { |
| 213 | llvm::DenseSet<Atom> AddedTokens; |
| 214 | std::vector<Atom> Remaining = {Token}; |
| 215 | |
| 216 | if (Invariant) |
| 217 | Constraints.insert(X: Invariant); |
| 218 | // Define all the flow conditions that might be referenced in constraints. |
| 219 | while (!Remaining.empty()) { |
| 220 | auto Token = Remaining.back(); |
| 221 | Remaining.pop_back(); |
| 222 | if (!AddedTokens.insert(V: Token).second) |
| 223 | continue; |
| 224 | |
| 225 | auto ConstraintsIt = FlowConditionConstraints.find(Val: Token); |
| 226 | if (ConstraintsIt == FlowConditionConstraints.end()) { |
| 227 | Constraints.insert(X: &arena().makeAtomRef(A: Token)); |
| 228 | } else { |
| 229 | // Bind flow condition token via `iff` to its set of constraints: |
| 230 | // FC <=> (C1 ^ C2 ^ ...), where Ci are constraints |
| 231 | Constraints.insert(X: &arena().makeEquals(LHS: arena().makeAtomRef(A: Token), |
| 232 | RHS: *ConstraintsIt->second)); |
| 233 | } |
| 234 | |
| 235 | if (auto DepsIt = FlowConditionDeps.find(Val: Token); |
| 236 | DepsIt != FlowConditionDeps.end()) |
| 237 | for (Atom A : DepsIt->second) |
| 238 | Remaining.push_back(x: A); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | static void printAtomList(const llvm::SmallVector<Atom> &Atoms, |
| 243 | llvm::raw_ostream &OS) { |
| 244 | OS << "(" ; |
| 245 | for (size_t i = 0; i < Atoms.size(); ++i) { |
| 246 | OS << Atoms[i]; |
| 247 | if (i + 1 < Atoms.size()) |
| 248 | OS << ", " ; |
| 249 | } |
| 250 | OS << ")\n" ; |
| 251 | } |
| 252 | |
| 253 | void DataflowAnalysisContext::dumpFlowCondition(Atom Token, |
| 254 | llvm::raw_ostream &OS) { |
| 255 | llvm::SetVector<const Formula *> Constraints; |
| 256 | Constraints.insert(X: &arena().makeAtomRef(A: Token)); |
| 257 | addTransitiveFlowConditionConstraints(Token, Constraints); |
| 258 | |
| 259 | OS << "Flow condition token: " << Token << "\n" ; |
| 260 | SimplifyConstraintsInfo Info; |
| 261 | llvm::SetVector<const Formula *> OriginalConstraints = Constraints; |
| 262 | simplifyConstraints(Constraints, arena&: arena(), Info: &Info); |
| 263 | if (!Constraints.empty()) { |
| 264 | OS << "Constraints:\n" ; |
| 265 | for (const auto *Constraint : Constraints) { |
| 266 | Constraint->print(OS); |
| 267 | OS << "\n" ; |
| 268 | } |
| 269 | } |
| 270 | if (!Info.TrueAtoms.empty()) { |
| 271 | OS << "True atoms: " ; |
| 272 | printAtomList(Atoms: Info.TrueAtoms, OS); |
| 273 | } |
| 274 | if (!Info.FalseAtoms.empty()) { |
| 275 | OS << "False atoms: " ; |
| 276 | printAtomList(Atoms: Info.FalseAtoms, OS); |
| 277 | } |
| 278 | if (!Info.EquivalentAtoms.empty()) { |
| 279 | OS << "Equivalent atoms:\n" ; |
| 280 | for (const llvm::SmallVector<Atom> &Class : Info.EquivalentAtoms) |
| 281 | printAtomList(Atoms: Class, OS); |
| 282 | } |
| 283 | |
| 284 | OS << "\nFlow condition constraints before simplification:\n" ; |
| 285 | for (const auto *Constraint : OriginalConstraints) { |
| 286 | Constraint->print(OS); |
| 287 | OS << "\n" ; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | const AdornedCFG * |
| 292 | DataflowAnalysisContext::getAdornedCFG(const FunctionDecl *F) { |
| 293 | // Canonicalize the key: |
| 294 | F = F->getDefinition(); |
| 295 | if (F == nullptr) |
| 296 | return nullptr; |
| 297 | auto It = FunctionContexts.find(Val: F); |
| 298 | if (It != FunctionContexts.end()) |
| 299 | return &It->second; |
| 300 | |
| 301 | if (F->doesThisDeclarationHaveABody()) { |
| 302 | auto ACFG = AdornedCFG::build(Func: *F); |
| 303 | // FIXME: Handle errors. |
| 304 | assert(ACFG); |
| 305 | auto Result = FunctionContexts.insert(KV: {F, std::move(*ACFG)}); |
| 306 | return &Result.first->second; |
| 307 | } |
| 308 | |
| 309 | return nullptr; |
| 310 | } |
| 311 | |
| 312 | static std::unique_ptr<Logger> makeLoggerFromCommandLine() { |
| 313 | if (DataflowLog.empty()) |
| 314 | return Logger::textual(llvm::errs()); |
| 315 | |
| 316 | llvm::StringRef Dir = DataflowLog; |
| 317 | if (auto EC = llvm::sys::fs::create_directories(path: Dir)) |
| 318 | llvm::errs() << "Failed to create log dir: " << EC.message() << "\n" ; |
| 319 | // All analysis runs within a process will log to the same directory. |
| 320 | // Share a counter so they don't all overwrite each other's 0.html. |
| 321 | // (Don't share a logger, it's not threadsafe). |
| 322 | static std::atomic<unsigned> Counter = {0}; |
| 323 | auto StreamFactory = |
| 324 | [Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> { |
| 325 | llvm::SmallString<256> File(Dir); |
| 326 | llvm::sys::path::append(path&: File, |
| 327 | a: std::to_string(val: Counter.fetch_add(i: 1)) + ".html" ); |
| 328 | std::error_code EC; |
| 329 | auto OS = std::make_unique<llvm::raw_fd_ostream>(args&: File, args&: EC); |
| 330 | if (EC) { |
| 331 | llvm::errs() << "Failed to create log " << File << ": " << EC.message() |
| 332 | << "\n" ; |
| 333 | return std::make_unique<llvm::raw_null_ostream>(); |
| 334 | } |
| 335 | return OS; |
| 336 | }; |
| 337 | return Logger::html(std::move(StreamFactory)); |
| 338 | } |
| 339 | |
| 340 | DataflowAnalysisContext::DataflowAnalysisContext( |
| 341 | Solver &S, std::unique_ptr<Solver> &&OwnedSolver, Options Opts) |
| 342 | : S(S), OwnedSolver(std::move(OwnedSolver)), A(std::make_unique<Arena>()), |
| 343 | Opts(Opts) { |
| 344 | // If the -dataflow-log command-line flag was set, synthesize a logger. |
| 345 | // This is ugly but provides a uniform method for ad-hoc debugging dataflow- |
| 346 | // based tools. |
| 347 | if (Opts.Log == nullptr) { |
| 348 | if (DataflowLog.getNumOccurrences() > 0) { |
| 349 | LogOwner = makeLoggerFromCommandLine(); |
| 350 | this->Opts.Log = LogOwner.get(); |
| 351 | // FIXME: if the flag is given a value, write an HTML log to a file. |
| 352 | } else { |
| 353 | this->Opts.Log = &Logger::null(); |
| 354 | } |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | DataflowAnalysisContext::~DataflowAnalysisContext() = default; |
| 359 | |
| 360 | } // namespace dataflow |
| 361 | } // namespace clang |
| 362 | |