| 1 | //===--- TargetInfo.cpp - Information about Target machine ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the TargetInfo interface. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/Basic/TargetInfo.h" |
| 14 | #include "clang/Basic/AddressSpaces.h" |
| 15 | #include "clang/Basic/CharInfo.h" |
| 16 | #include "clang/Basic/Diagnostic.h" |
| 17 | #include "clang/Basic/DiagnosticFrontend.h" |
| 18 | #include "clang/Basic/LangOptions.h" |
| 19 | #include "llvm/ADT/APFloat.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/Support/ErrorHandling.h" |
| 22 | #include "llvm/TargetParser/TargetParser.h" |
| 23 | #include <cstdlib> |
| 24 | using namespace clang; |
| 25 | |
| 26 | static const LangASMap DefaultAddrSpaceMap = {0}; |
| 27 | // The fake address space map must have a distinct entry for each |
| 28 | // language-specific address space. |
| 29 | static const LangASMap FakeAddrSpaceMap = { |
| 30 | 0, // Default |
| 31 | 1, // opencl_global |
| 32 | 3, // opencl_local |
| 33 | 2, // opencl_constant |
| 34 | 0, // opencl_private |
| 35 | 4, // opencl_generic |
| 36 | 5, // opencl_global_device |
| 37 | 6, // opencl_global_host |
| 38 | 7, // cuda_device |
| 39 | 8, // cuda_constant |
| 40 | 9, // cuda_shared |
| 41 | 1, // sycl_global |
| 42 | 5, // sycl_global_device |
| 43 | 6, // sycl_global_host |
| 44 | 3, // sycl_local |
| 45 | 0, // sycl_private |
| 46 | 10, // ptr32_sptr |
| 47 | 11, // ptr32_uptr |
| 48 | 12, // ptr64 |
| 49 | 13, // hlsl_groupshared |
| 50 | 14, // hlsl_constant |
| 51 | 15, // hlsl_private |
| 52 | 16, // hlsl_device |
| 53 | 17, // hlsl_input |
| 54 | 20, // wasm_funcref |
| 55 | }; |
| 56 | |
| 57 | // TargetInfo Constructor. |
| 58 | TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) { |
| 59 | // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or |
| 60 | // SPARC. These should be overridden by concrete targets as needed. |
| 61 | BigEndian = !T.isLittleEndian(); |
| 62 | TLSSupported = true; |
| 63 | VLASupported = true; |
| 64 | NoAsmVariants = false; |
| 65 | HasLegalHalfType = false; |
| 66 | HalfArgsAndReturns = false; |
| 67 | HasFloat128 = false; |
| 68 | HasIbm128 = false; |
| 69 | HasFloat16 = false; |
| 70 | HasBFloat16 = false; |
| 71 | HasFullBFloat16 = false; |
| 72 | HasLongDouble = true; |
| 73 | HasFPReturn = true; |
| 74 | HasStrictFP = false; |
| 75 | PointerWidth = PointerAlign = 32; |
| 76 | BoolWidth = BoolAlign = 8; |
| 77 | ShortWidth = ShortAlign = 16; |
| 78 | IntWidth = IntAlign = 32; |
| 79 | LongWidth = LongAlign = 32; |
| 80 | LongLongWidth = LongLongAlign = 64; |
| 81 | Int128Align = 128; |
| 82 | |
| 83 | // Fixed point default bit widths |
| 84 | ShortAccumWidth = ShortAccumAlign = 16; |
| 85 | AccumWidth = AccumAlign = 32; |
| 86 | LongAccumWidth = LongAccumAlign = 64; |
| 87 | ShortFractWidth = ShortFractAlign = 8; |
| 88 | FractWidth = FractAlign = 16; |
| 89 | LongFractWidth = LongFractAlign = 32; |
| 90 | |
| 91 | // Fixed point default integral and fractional bit sizes |
| 92 | // We give the _Accum 1 fewer fractional bits than their corresponding _Fract |
| 93 | // types by default to have the same number of fractional bits between _Accum |
| 94 | // and _Fract types. |
| 95 | PaddingOnUnsignedFixedPoint = false; |
| 96 | ShortAccumScale = 7; |
| 97 | AccumScale = 15; |
| 98 | LongAccumScale = 31; |
| 99 | |
| 100 | SuitableAlign = 64; |
| 101 | DefaultAlignForAttributeAligned = 128; |
| 102 | MinGlobalAlign = 0; |
| 103 | // From the glibc documentation, on GNU systems, malloc guarantees 16-byte |
| 104 | // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See |
| 105 | // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. |
| 106 | // This alignment guarantee also applies to Windows and Android. On Darwin |
| 107 | // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems. |
| 108 | if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid() || |
| 109 | T.isOHOSFamily()) |
| 110 | NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; |
| 111 | else if (T.isOSDarwin() || T.isOSOpenBSD()) |
| 112 | NewAlign = 128; |
| 113 | else |
| 114 | NewAlign = 0; // Infer from basic type alignment. |
| 115 | HalfWidth = 16; |
| 116 | HalfAlign = 16; |
| 117 | FloatWidth = 32; |
| 118 | FloatAlign = 32; |
| 119 | DoubleWidth = 64; |
| 120 | DoubleAlign = 64; |
| 121 | LongDoubleWidth = 64; |
| 122 | LongDoubleAlign = 64; |
| 123 | Float128Align = 128; |
| 124 | Ibm128Align = 128; |
| 125 | LargeArrayMinWidth = 0; |
| 126 | LargeArrayAlign = 0; |
| 127 | MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; |
| 128 | MaxVectorAlign = 0; |
| 129 | MaxTLSAlign = 0; |
| 130 | SizeType = UnsignedLong; |
| 131 | PtrDiffType = SignedLong; |
| 132 | IntMaxType = SignedLongLong; |
| 133 | IntPtrType = SignedLong; |
| 134 | WCharType = SignedInt; |
| 135 | WIntType = SignedInt; |
| 136 | Char16Type = UnsignedShort; |
| 137 | Char32Type = UnsignedInt; |
| 138 | Int64Type = SignedLongLong; |
| 139 | Int16Type = SignedShort; |
| 140 | SigAtomicType = SignedInt; |
| 141 | ProcessIDType = SignedInt; |
| 142 | UseSignedCharForObjCBool = true; |
| 143 | UseBitFieldTypeAlignment = true; |
| 144 | UseZeroLengthBitfieldAlignment = false; |
| 145 | UseLeadingZeroLengthBitfield = true; |
| 146 | UseExplicitBitFieldAlignment = true; |
| 147 | ZeroLengthBitfieldBoundary = 0; |
| 148 | LargestOverSizedBitfieldContainer = 64; |
| 149 | MaxAlignedAttribute = 0; |
| 150 | HalfFormat = &llvm::APFloat::IEEEhalf(); |
| 151 | FloatFormat = &llvm::APFloat::IEEEsingle(); |
| 152 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
| 153 | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
| 154 | Float128Format = &llvm::APFloat::IEEEquad(); |
| 155 | Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); |
| 156 | MCountName = "mcount" ; |
| 157 | UserLabelPrefix = "_" ; |
| 158 | RegParmMax = 0; |
| 159 | SSERegParmMax = 0; |
| 160 | HasAlignMac68kSupport = false; |
| 161 | HasBuiltinMSVaList = false; |
| 162 | HasAArch64ACLETypes = false; |
| 163 | HasRISCVVTypes = false; |
| 164 | AllowAMDGPUUnsafeFPAtomics = false; |
| 165 | HasUnalignedAccess = false; |
| 166 | ARMCDECoprocMask = 0; |
| 167 | |
| 168 | // Default to no types using fpret. |
| 169 | RealTypeUsesObjCFPRetMask = 0; |
| 170 | |
| 171 | // Default to not using fp2ret for __Complex long double |
| 172 | ComplexLongDoubleUsesFP2Ret = false; |
| 173 | |
| 174 | // Set the C++ ABI based on the triple. |
| 175 | TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() |
| 176 | ? TargetCXXABI::Microsoft |
| 177 | : TargetCXXABI::GenericItanium); |
| 178 | |
| 179 | // Default to an empty address space map. |
| 180 | AddrSpaceMap = &DefaultAddrSpaceMap; |
| 181 | UseAddrSpaceMapMangling = false; |
| 182 | |
| 183 | // Default to an unknown platform name. |
| 184 | PlatformName = "unknown" ; |
| 185 | PlatformMinVersion = VersionTuple(); |
| 186 | |
| 187 | MaxOpenCLWorkGroupSize = 1024; |
| 188 | |
| 189 | MaxBitIntWidth.reset(); |
| 190 | } |
| 191 | |
| 192 | // Out of line virtual dtor for TargetInfo. |
| 193 | TargetInfo::~TargetInfo() {} |
| 194 | |
| 195 | void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { |
| 196 | DataLayoutString = DL.str(); |
| 197 | UserLabelPrefix = ULP; |
| 198 | } |
| 199 | |
| 200 | bool |
| 201 | TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { |
| 202 | Diags.Report(DiagID: diag::err_opt_not_valid_on_target) << "cf-protection=branch" ; |
| 203 | return false; |
| 204 | } |
| 205 | |
| 206 | CFBranchLabelSchemeKind TargetInfo::getDefaultCFBranchLabelScheme() const { |
| 207 | // if this hook is called, the target should override it to return a |
| 208 | // non-default scheme |
| 209 | llvm::report_fatal_error(reason: "not implemented" ); |
| 210 | } |
| 211 | |
| 212 | bool TargetInfo::checkCFBranchLabelSchemeSupported( |
| 213 | const CFBranchLabelSchemeKind Scheme, DiagnosticsEngine &Diags) const { |
| 214 | if (Scheme != CFBranchLabelSchemeKind::Default) |
| 215 | Diags.Report(DiagID: diag::err_opt_not_valid_on_target) |
| 216 | << (Twine("mcf-branch-label-scheme=" ) + |
| 217 | getCFBranchLabelSchemeFlagVal(Scheme)) |
| 218 | .str(); |
| 219 | return false; |
| 220 | } |
| 221 | |
| 222 | bool |
| 223 | TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { |
| 224 | Diags.Report(DiagID: diag::err_opt_not_valid_on_target) << "cf-protection=return" ; |
| 225 | return false; |
| 226 | } |
| 227 | |
| 228 | /// getTypeName - Return the user string for the specified integer type enum. |
| 229 | /// For example, SignedShort -> "short". |
| 230 | const char *TargetInfo::getTypeName(IntType T) { |
| 231 | switch (T) { |
| 232 | default: llvm_unreachable("not an integer!" ); |
| 233 | case SignedChar: return "signed char" ; |
| 234 | case UnsignedChar: return "unsigned char" ; |
| 235 | case SignedShort: return "short" ; |
| 236 | case UnsignedShort: return "unsigned short" ; |
| 237 | case SignedInt: return "int" ; |
| 238 | case UnsignedInt: return "unsigned int" ; |
| 239 | case SignedLong: return "long int" ; |
| 240 | case UnsignedLong: return "long unsigned int" ; |
| 241 | case SignedLongLong: return "long long int" ; |
| 242 | case UnsignedLongLong: return "long long unsigned int" ; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /// getTypeConstantSuffix - Return the constant suffix for the specified |
| 247 | /// integer type enum. For example, SignedLong -> "L". |
| 248 | const char *TargetInfo::getTypeConstantSuffix(IntType T) const { |
| 249 | switch (T) { |
| 250 | default: llvm_unreachable("not an integer!" ); |
| 251 | case SignedChar: |
| 252 | case SignedShort: |
| 253 | case SignedInt: return "" ; |
| 254 | case SignedLong: return "L" ; |
| 255 | case SignedLongLong: return "LL" ; |
| 256 | case UnsignedChar: |
| 257 | if (getCharWidth() < getIntWidth()) |
| 258 | return "" ; |
| 259 | [[fallthrough]]; |
| 260 | case UnsignedShort: |
| 261 | if (getShortWidth() < getIntWidth()) |
| 262 | return "" ; |
| 263 | [[fallthrough]]; |
| 264 | case UnsignedInt: return "U" ; |
| 265 | case UnsignedLong: return "UL" ; |
| 266 | case UnsignedLongLong: return "ULL" ; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /// getTypeFormatModifier - Return the printf format modifier for the |
| 271 | /// specified integer type enum. For example, SignedLong -> "l". |
| 272 | |
| 273 | const char *TargetInfo::getTypeFormatModifier(IntType T) { |
| 274 | switch (T) { |
| 275 | default: llvm_unreachable("not an integer!" ); |
| 276 | case SignedChar: |
| 277 | case UnsignedChar: return "hh" ; |
| 278 | case SignedShort: |
| 279 | case UnsignedShort: return "h" ; |
| 280 | case SignedInt: |
| 281 | case UnsignedInt: return "" ; |
| 282 | case SignedLong: |
| 283 | case UnsignedLong: return "l" ; |
| 284 | case SignedLongLong: |
| 285 | case UnsignedLongLong: return "ll" ; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /// getTypeWidth - Return the width (in bits) of the specified integer type |
| 290 | /// enum. For example, SignedInt -> getIntWidth(). |
| 291 | unsigned TargetInfo::getTypeWidth(IntType T) const { |
| 292 | switch (T) { |
| 293 | default: llvm_unreachable("not an integer!" ); |
| 294 | case SignedChar: |
| 295 | case UnsignedChar: return getCharWidth(); |
| 296 | case SignedShort: |
| 297 | case UnsignedShort: return getShortWidth(); |
| 298 | case SignedInt: |
| 299 | case UnsignedInt: return getIntWidth(); |
| 300 | case SignedLong: |
| 301 | case UnsignedLong: return getLongWidth(); |
| 302 | case SignedLongLong: |
| 303 | case UnsignedLongLong: return getLongLongWidth(); |
| 304 | }; |
| 305 | } |
| 306 | |
| 307 | TargetInfo::IntType TargetInfo::getIntTypeByWidth( |
| 308 | unsigned BitWidth, bool IsSigned) const { |
| 309 | if (getCharWidth() == BitWidth) |
| 310 | return IsSigned ? SignedChar : UnsignedChar; |
| 311 | if (getShortWidth() == BitWidth) |
| 312 | return IsSigned ? SignedShort : UnsignedShort; |
| 313 | if (getIntWidth() == BitWidth) |
| 314 | return IsSigned ? SignedInt : UnsignedInt; |
| 315 | if (getLongWidth() == BitWidth) |
| 316 | return IsSigned ? SignedLong : UnsignedLong; |
| 317 | if (getLongLongWidth() == BitWidth) |
| 318 | return IsSigned ? SignedLongLong : UnsignedLongLong; |
| 319 | return NoInt; |
| 320 | } |
| 321 | |
| 322 | TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, |
| 323 | bool IsSigned) const { |
| 324 | if (getCharWidth() >= BitWidth) |
| 325 | return IsSigned ? SignedChar : UnsignedChar; |
| 326 | if (getShortWidth() >= BitWidth) |
| 327 | return IsSigned ? SignedShort : UnsignedShort; |
| 328 | if (getIntWidth() >= BitWidth) |
| 329 | return IsSigned ? SignedInt : UnsignedInt; |
| 330 | if (getLongWidth() >= BitWidth) |
| 331 | return IsSigned ? SignedLong : UnsignedLong; |
| 332 | if (getLongLongWidth() >= BitWidth) |
| 333 | return IsSigned ? SignedLongLong : UnsignedLongLong; |
| 334 | return NoInt; |
| 335 | } |
| 336 | |
| 337 | FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, |
| 338 | FloatModeKind ExplicitType) const { |
| 339 | if (getHalfWidth() == BitWidth) |
| 340 | return FloatModeKind::Half; |
| 341 | if (getFloatWidth() == BitWidth) |
| 342 | return FloatModeKind::Float; |
| 343 | if (getDoubleWidth() == BitWidth) |
| 344 | return FloatModeKind::Double; |
| 345 | |
| 346 | switch (BitWidth) { |
| 347 | case 96: |
| 348 | if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) |
| 349 | return FloatModeKind::LongDouble; |
| 350 | break; |
| 351 | case 128: |
| 352 | // The caller explicitly asked for an IEEE compliant type but we still |
| 353 | // have to check if the target supports it. |
| 354 | if (ExplicitType == FloatModeKind::Float128) |
| 355 | return hasFloat128Type() ? FloatModeKind::Float128 |
| 356 | : FloatModeKind::NoFloat; |
| 357 | if (ExplicitType == FloatModeKind::Ibm128) |
| 358 | return hasIbm128Type() ? FloatModeKind::Ibm128 |
| 359 | : FloatModeKind::NoFloat; |
| 360 | if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || |
| 361 | &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
| 362 | return FloatModeKind::LongDouble; |
| 363 | if (hasFloat128Type()) |
| 364 | return FloatModeKind::Float128; |
| 365 | break; |
| 366 | } |
| 367 | |
| 368 | return FloatModeKind::NoFloat; |
| 369 | } |
| 370 | |
| 371 | /// getTypeAlign - Return the alignment (in bits) of the specified integer type |
| 372 | /// enum. For example, SignedInt -> getIntAlign(). |
| 373 | unsigned TargetInfo::getTypeAlign(IntType T) const { |
| 374 | switch (T) { |
| 375 | default: llvm_unreachable("not an integer!" ); |
| 376 | case SignedChar: |
| 377 | case UnsignedChar: return getCharAlign(); |
| 378 | case SignedShort: |
| 379 | case UnsignedShort: return getShortAlign(); |
| 380 | case SignedInt: |
| 381 | case UnsignedInt: return getIntAlign(); |
| 382 | case SignedLong: |
| 383 | case UnsignedLong: return getLongAlign(); |
| 384 | case SignedLongLong: |
| 385 | case UnsignedLongLong: return getLongLongAlign(); |
| 386 | }; |
| 387 | } |
| 388 | |
| 389 | /// isTypeSigned - Return whether an integer types is signed. Returns true if |
| 390 | /// the type is signed; false otherwise. |
| 391 | bool TargetInfo::isTypeSigned(IntType T) { |
| 392 | switch (T) { |
| 393 | default: llvm_unreachable("not an integer!" ); |
| 394 | case SignedChar: |
| 395 | case SignedShort: |
| 396 | case SignedInt: |
| 397 | case SignedLong: |
| 398 | case SignedLongLong: |
| 399 | return true; |
| 400 | case UnsignedChar: |
| 401 | case UnsignedShort: |
| 402 | case UnsignedInt: |
| 403 | case UnsignedLong: |
| 404 | case UnsignedLongLong: |
| 405 | return false; |
| 406 | }; |
| 407 | } |
| 408 | |
| 409 | /// adjust - Set forced language options. |
| 410 | /// Apply changes to the target information with respect to certain |
| 411 | /// language options which change the target configuration and adjust |
| 412 | /// the language based on the target options where applicable. |
| 413 | void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { |
| 414 | if (Opts.NoBitFieldTypeAlign) |
| 415 | UseBitFieldTypeAlignment = false; |
| 416 | |
| 417 | switch (Opts.WCharSize) { |
| 418 | default: llvm_unreachable("invalid wchar_t width" ); |
| 419 | case 0: break; |
| 420 | case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; |
| 421 | case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; |
| 422 | case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; |
| 423 | } |
| 424 | |
| 425 | if (Opts.AlignDouble) { |
| 426 | DoubleAlign = LongLongAlign = 64; |
| 427 | LongDoubleAlign = 64; |
| 428 | } |
| 429 | |
| 430 | // HLSL explicitly defines the sizes and formats of some data types, and we |
| 431 | // need to conform to those regardless of what architecture you are targeting. |
| 432 | if (Opts.HLSL) { |
| 433 | BoolWidth = BoolAlign = 32; |
| 434 | LongWidth = LongAlign = 64; |
| 435 | if (!Opts.NativeHalfType) { |
| 436 | HalfFormat = &llvm::APFloat::IEEEsingle(); |
| 437 | HalfWidth = HalfAlign = 32; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | if (Opts.OpenCL) { |
| 442 | // OpenCL C requires specific widths for types, irrespective of |
| 443 | // what these normally are for the target. |
| 444 | // We also define long long and long double here, although the |
| 445 | // OpenCL standard only mentions these as "reserved". |
| 446 | ShortWidth = ShortAlign = 16; |
| 447 | IntWidth = IntAlign = 32; |
| 448 | LongWidth = LongAlign = 64; |
| 449 | LongLongWidth = LongLongAlign = 128; |
| 450 | HalfWidth = HalfAlign = 16; |
| 451 | FloatWidth = FloatAlign = 32; |
| 452 | |
| 453 | // Embedded 32-bit targets (OpenCL EP) might have double C type |
| 454 | // defined as float. Let's not override this as it might lead |
| 455 | // to generating illegal code that uses 64bit doubles. |
| 456 | if (DoubleWidth != FloatWidth) { |
| 457 | DoubleWidth = DoubleAlign = 64; |
| 458 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
| 459 | } |
| 460 | LongDoubleWidth = LongDoubleAlign = 128; |
| 461 | |
| 462 | unsigned MaxPointerWidth = getMaxPointerWidth(); |
| 463 | assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); |
| 464 | bool Is32BitArch = MaxPointerWidth == 32; |
| 465 | SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; |
| 466 | PtrDiffType = Is32BitArch ? SignedInt : SignedLong; |
| 467 | IntPtrType = Is32BitArch ? SignedInt : SignedLong; |
| 468 | |
| 469 | IntMaxType = SignedLongLong; |
| 470 | Int64Type = SignedLong; |
| 471 | |
| 472 | HalfFormat = &llvm::APFloat::IEEEhalf(); |
| 473 | FloatFormat = &llvm::APFloat::IEEEsingle(); |
| 474 | LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
| 475 | |
| 476 | // OpenCL C v3.0 s6.7.5 - The generic address space requires support for |
| 477 | // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space |
| 478 | // feature |
| 479 | // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 |
| 480 | // or later and __opencl_c_pipes feature |
| 481 | // FIXME: These language options are also defined in setLangDefaults() |
| 482 | // for OpenCL C 2.0 but with no access to target capabilities. Target |
| 483 | // should be immutable once created and thus these language options need |
| 484 | // to be defined only once. |
| 485 | if (Opts.getOpenCLCompatibleVersion() == 300) { |
| 486 | const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); |
| 487 | Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( |
| 488 | Features: OpenCLFeaturesMap, Name: "__opencl_c_generic_address_space" ); |
| 489 | Opts.OpenCLPipes = |
| 490 | hasFeatureEnabled(Features: OpenCLFeaturesMap, Name: "__opencl_c_pipes" ); |
| 491 | Opts.Blocks = |
| 492 | hasFeatureEnabled(Features: OpenCLFeaturesMap, Name: "__opencl_c_device_enqueue" ); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | if (Opts.DoubleSize) { |
| 497 | if (Opts.DoubleSize == 32) { |
| 498 | DoubleWidth = 32; |
| 499 | LongDoubleWidth = 32; |
| 500 | DoubleFormat = &llvm::APFloat::IEEEsingle(); |
| 501 | LongDoubleFormat = &llvm::APFloat::IEEEsingle(); |
| 502 | } else if (Opts.DoubleSize == 64) { |
| 503 | DoubleWidth = 64; |
| 504 | LongDoubleWidth = 64; |
| 505 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
| 506 | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | if (Opts.LongDoubleSize) { |
| 511 | if (Opts.LongDoubleSize == DoubleWidth) { |
| 512 | LongDoubleWidth = DoubleWidth; |
| 513 | LongDoubleAlign = DoubleAlign; |
| 514 | LongDoubleFormat = DoubleFormat; |
| 515 | } else if (Opts.LongDoubleSize == 128) { |
| 516 | LongDoubleWidth = LongDoubleAlign = 128; |
| 517 | LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
| 518 | } else if (Opts.LongDoubleSize == 80) { |
| 519 | LongDoubleFormat = &llvm::APFloat::x87DoubleExtended(); |
| 520 | if (getTriple().isWindowsMSVCEnvironment()) { |
| 521 | LongDoubleWidth = 128; |
| 522 | LongDoubleAlign = 128; |
| 523 | } else { // Linux |
| 524 | if (getTriple().getArch() == llvm::Triple::x86) { |
| 525 | LongDoubleWidth = 96; |
| 526 | LongDoubleAlign = 32; |
| 527 | } else { |
| 528 | LongDoubleWidth = 128; |
| 529 | LongDoubleAlign = 128; |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | if (Opts.NewAlignOverride) |
| 536 | NewAlign = Opts.NewAlignOverride * getCharWidth(); |
| 537 | |
| 538 | // Each unsigned fixed point type has the same number of fractional bits as |
| 539 | // its corresponding signed type. |
| 540 | PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; |
| 541 | CheckFixedPointBits(); |
| 542 | |
| 543 | if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { |
| 544 | Diags.Report(DiagID: diag::err_opt_not_valid_on_target) << "-fprotect-parens" ; |
| 545 | Opts.ProtectParens = false; |
| 546 | } |
| 547 | |
| 548 | if (Opts.MaxBitIntWidth) |
| 549 | MaxBitIntWidth = static_cast<unsigned>(Opts.MaxBitIntWidth); |
| 550 | |
| 551 | if (Opts.FakeAddressSpaceMap) |
| 552 | AddrSpaceMap = &FakeAddrSpaceMap; |
| 553 | } |
| 554 | |
| 555 | bool TargetInfo::initFeatureMap( |
| 556 | llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, |
| 557 | const std::vector<std::string> &FeatureVec) const { |
| 558 | for (StringRef Name : FeatureVec) { |
| 559 | if (Name.empty()) |
| 560 | continue; |
| 561 | // Apply the feature via the target. |
| 562 | if (Name[0] != '+' && Name[0] != '-') |
| 563 | Diags.Report(DiagID: diag::warn_fe_backend_invalid_feature_flag) << Name; |
| 564 | else |
| 565 | setFeatureEnabled(Features, Name: Name.substr(Start: 1), Enabled: Name[0] == '+'); |
| 566 | } |
| 567 | return true; |
| 568 | } |
| 569 | |
| 570 | ParsedTargetAttr TargetInfo::parseTargetAttr(StringRef Features) const { |
| 571 | ParsedTargetAttr Ret; |
| 572 | if (Features == "default" ) |
| 573 | return Ret; |
| 574 | SmallVector<StringRef, 1> AttrFeatures; |
| 575 | Features.split(A&: AttrFeatures, Separator: "," ); |
| 576 | |
| 577 | // Grab the various features and prepend a "+" to turn on the feature to |
| 578 | // the backend and add them to our existing set of features. |
| 579 | for (auto &Feature : AttrFeatures) { |
| 580 | // Go ahead and trim whitespace rather than either erroring or |
| 581 | // accepting it weirdly. |
| 582 | Feature = Feature.trim(); |
| 583 | |
| 584 | // TODO: Support the fpmath option. It will require checking |
| 585 | // overall feature validity for the function with the rest of the |
| 586 | // attributes on the function. |
| 587 | if (Feature.starts_with(Prefix: "fpmath=" )) |
| 588 | continue; |
| 589 | |
| 590 | if (Feature.starts_with(Prefix: "branch-protection=" )) { |
| 591 | Ret.BranchProtection = Feature.split(Separator: '=').second.trim(); |
| 592 | continue; |
| 593 | } |
| 594 | |
| 595 | // While we're here iterating check for a different target cpu. |
| 596 | if (Feature.starts_with(Prefix: "arch=" )) { |
| 597 | if (!Ret.CPU.empty()) |
| 598 | Ret.Duplicate = "arch=" ; |
| 599 | else |
| 600 | Ret.CPU = Feature.split(Separator: "=" ).second.trim(); |
| 601 | } else if (Feature.starts_with(Prefix: "tune=" )) { |
| 602 | if (!Ret.Tune.empty()) |
| 603 | Ret.Duplicate = "tune=" ; |
| 604 | else |
| 605 | Ret.Tune = Feature.split(Separator: "=" ).second.trim(); |
| 606 | } else if (Feature.starts_with(Prefix: "no-" )) |
| 607 | Ret.Features.push_back(x: "-" + Feature.split(Separator: "-" ).second.str()); |
| 608 | else |
| 609 | Ret.Features.push_back(x: "+" + Feature.str()); |
| 610 | } |
| 611 | return Ret; |
| 612 | } |
| 613 | |
| 614 | TargetInfo::CallingConvKind |
| 615 | TargetInfo::getCallingConvKind(bool ClangABICompat4) const { |
| 616 | if (getCXXABI() != TargetCXXABI::Microsoft && |
| 617 | (ClangABICompat4 || getTriple().isPS4())) |
| 618 | return CCK_ClangABI4OrPS4; |
| 619 | return CCK_Default; |
| 620 | } |
| 621 | |
| 622 | bool TargetInfo::areDefaultedSMFStillPOD(const LangOptions &LangOpts) const { |
| 623 | return LangOpts.getClangABICompat() > LangOptions::ClangABI::Ver15; |
| 624 | } |
| 625 | |
| 626 | LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { |
| 627 | switch (TK) { |
| 628 | case OCLTK_Image: |
| 629 | case OCLTK_Pipe: |
| 630 | return LangAS::opencl_global; |
| 631 | |
| 632 | case OCLTK_Sampler: |
| 633 | return LangAS::opencl_constant; |
| 634 | |
| 635 | default: |
| 636 | return LangAS::Default; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | //===----------------------------------------------------------------------===// |
| 641 | |
| 642 | |
| 643 | static StringRef removeGCCRegisterPrefix(StringRef Name) { |
| 644 | if (Name[0] == '%' || Name[0] == '#') |
| 645 | Name = Name.substr(Start: 1); |
| 646 | |
| 647 | return Name; |
| 648 | } |
| 649 | |
| 650 | /// isValidClobber - Returns whether the passed in string is |
| 651 | /// a valid clobber in an inline asm statement. This is used by |
| 652 | /// Sema. |
| 653 | bool TargetInfo::isValidClobber(StringRef Name) const { |
| 654 | return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || |
| 655 | Name == "unwind" ); |
| 656 | } |
| 657 | |
| 658 | /// isValidGCCRegisterName - Returns whether the passed in string |
| 659 | /// is a valid register name according to GCC. This is used by Sema for |
| 660 | /// inline asm statements. |
| 661 | bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { |
| 662 | if (Name.empty()) |
| 663 | return false; |
| 664 | |
| 665 | // Get rid of any register prefix. |
| 666 | Name = removeGCCRegisterPrefix(Name); |
| 667 | if (Name.empty()) |
| 668 | return false; |
| 669 | |
| 670 | ArrayRef<const char *> Names = getGCCRegNames(); |
| 671 | |
| 672 | // If we have a number it maps to an entry in the register name array. |
| 673 | if (isDigit(c: Name[0])) { |
| 674 | unsigned n; |
| 675 | if (!Name.getAsInteger(Radix: 0, Result&: n)) |
| 676 | return n < Names.size(); |
| 677 | } |
| 678 | |
| 679 | // Check register names. |
| 680 | if (llvm::is_contained(Range&: Names, Element: Name)) |
| 681 | return true; |
| 682 | |
| 683 | // Check any additional names that we have. |
| 684 | for (const AddlRegName &ARN : getGCCAddlRegNames()) |
| 685 | for (const char *AN : ARN.Names) { |
| 686 | if (!AN) |
| 687 | break; |
| 688 | // Make sure the register that the additional name is for is within |
| 689 | // the bounds of the register names from above. |
| 690 | if (AN == Name && ARN.RegNum < Names.size()) |
| 691 | return true; |
| 692 | } |
| 693 | |
| 694 | // Now check aliases. |
| 695 | for (const GCCRegAlias &GRA : getGCCRegAliases()) |
| 696 | for (const char *A : GRA.Aliases) { |
| 697 | if (!A) |
| 698 | break; |
| 699 | if (A == Name) |
| 700 | return true; |
| 701 | } |
| 702 | |
| 703 | return false; |
| 704 | } |
| 705 | |
| 706 | StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, |
| 707 | bool ReturnCanonical) const { |
| 708 | assert(isValidGCCRegisterName(Name) && "Invalid register passed in" ); |
| 709 | |
| 710 | // Get rid of any register prefix. |
| 711 | Name = removeGCCRegisterPrefix(Name); |
| 712 | |
| 713 | ArrayRef<const char *> Names = getGCCRegNames(); |
| 714 | |
| 715 | // First, check if we have a number. |
| 716 | if (isDigit(c: Name[0])) { |
| 717 | unsigned n; |
| 718 | if (!Name.getAsInteger(Radix: 0, Result&: n)) { |
| 719 | assert(n < Names.size() && "Out of bounds register number!" ); |
| 720 | return Names[n]; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | // Check any additional names that we have. |
| 725 | for (const AddlRegName &ARN : getGCCAddlRegNames()) |
| 726 | for (const char *AN : ARN.Names) { |
| 727 | if (!AN) |
| 728 | break; |
| 729 | // Make sure the register that the additional name is for is within |
| 730 | // the bounds of the register names from above. |
| 731 | if (AN == Name && ARN.RegNum < Names.size()) |
| 732 | return ReturnCanonical ? Names[ARN.RegNum] : Name; |
| 733 | } |
| 734 | |
| 735 | // Now check aliases. |
| 736 | for (const GCCRegAlias &RA : getGCCRegAliases()) |
| 737 | for (const char *A : RA.Aliases) { |
| 738 | if (!A) |
| 739 | break; |
| 740 | if (A == Name) |
| 741 | return RA.Register; |
| 742 | } |
| 743 | |
| 744 | return Name; |
| 745 | } |
| 746 | |
| 747 | bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { |
| 748 | const char *Name = Info.getConstraintStr().c_str(); |
| 749 | // An output constraint must start with '=' or '+' |
| 750 | if (*Name != '=' && *Name != '+') |
| 751 | return false; |
| 752 | |
| 753 | if (*Name == '+') |
| 754 | Info.setIsReadWrite(); |
| 755 | |
| 756 | Name++; |
| 757 | while (*Name) { |
| 758 | switch (*Name) { |
| 759 | default: |
| 760 | if (!validateAsmConstraint(Name, info&: Info)) { |
| 761 | // FIXME: We temporarily return false |
| 762 | // so we can add more constraints as we hit it. |
| 763 | // Eventually, an unknown constraint should just be treated as 'g'. |
| 764 | return false; |
| 765 | } |
| 766 | break; |
| 767 | case '&': // early clobber. |
| 768 | Info.setEarlyClobber(); |
| 769 | break; |
| 770 | case '%': // commutative. |
| 771 | // FIXME: Check that there is a another register after this one. |
| 772 | break; |
| 773 | case 'r': // general register. |
| 774 | Info.setAllowsRegister(); |
| 775 | break; |
| 776 | case 'm': // memory operand. |
| 777 | case 'o': // offsetable memory operand. |
| 778 | case 'V': // non-offsetable memory operand. |
| 779 | case '<': // autodecrement memory operand. |
| 780 | case '>': // autoincrement memory operand. |
| 781 | Info.setAllowsMemory(); |
| 782 | break; |
| 783 | case 'g': // general register, memory operand or immediate integer. |
| 784 | case 'X': // any operand. |
| 785 | Info.setAllowsRegister(); |
| 786 | Info.setAllowsMemory(); |
| 787 | break; |
| 788 | case ',': // multiple alternative constraint. Pass it. |
| 789 | // Handle additional optional '=' or '+' modifiers. |
| 790 | if (Name[1] == '=' || Name[1] == '+') |
| 791 | Name++; |
| 792 | break; |
| 793 | case '#': // Ignore as constraint. |
| 794 | while (Name[1] && Name[1] != ',') |
| 795 | Name++; |
| 796 | break; |
| 797 | case '?': // Disparage slightly code. |
| 798 | case '!': // Disparage severely. |
| 799 | case '*': // Ignore for choosing register preferences. |
| 800 | case 'i': // Ignore i,n,E,F as output constraints (match from the other |
| 801 | // chars) |
| 802 | case 'n': |
| 803 | case 'E': |
| 804 | case 'F': |
| 805 | break; // Pass them. |
| 806 | } |
| 807 | |
| 808 | Name++; |
| 809 | } |
| 810 | |
| 811 | // Early clobber with a read-write constraint which doesn't permit registers |
| 812 | // is invalid. |
| 813 | if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) |
| 814 | return false; |
| 815 | |
| 816 | // If a constraint allows neither memory nor register operands it contains |
| 817 | // only modifiers. Reject it. |
| 818 | return Info.allowsMemory() || Info.allowsRegister(); |
| 819 | } |
| 820 | |
| 821 | bool TargetInfo::resolveSymbolicName(const char *&Name, |
| 822 | ArrayRef<ConstraintInfo> OutputConstraints, |
| 823 | unsigned &Index) const { |
| 824 | assert(*Name == '[' && "Symbolic name did not start with '['" ); |
| 825 | Name++; |
| 826 | const char *Start = Name; |
| 827 | while (*Name && *Name != ']') |
| 828 | Name++; |
| 829 | |
| 830 | if (!*Name) { |
| 831 | // Missing ']' |
| 832 | return false; |
| 833 | } |
| 834 | |
| 835 | std::string SymbolicName(Start, Name - Start); |
| 836 | |
| 837 | for (Index = 0; Index != OutputConstraints.size(); ++Index) |
| 838 | if (SymbolicName == OutputConstraints[Index].getName()) |
| 839 | return true; |
| 840 | |
| 841 | return false; |
| 842 | } |
| 843 | |
| 844 | bool TargetInfo::validateInputConstraint( |
| 845 | MutableArrayRef<ConstraintInfo> OutputConstraints, |
| 846 | ConstraintInfo &Info) const { |
| 847 | const char *Name = Info.ConstraintStr.c_str(); |
| 848 | |
| 849 | if (!*Name) |
| 850 | return false; |
| 851 | |
| 852 | while (*Name) { |
| 853 | switch (*Name) { |
| 854 | default: |
| 855 | // Check if we have a matching constraint |
| 856 | if (*Name >= '0' && *Name <= '9') { |
| 857 | const char *DigitStart = Name; |
| 858 | while (Name[1] >= '0' && Name[1] <= '9') |
| 859 | Name++; |
| 860 | const char *DigitEnd = Name; |
| 861 | unsigned i; |
| 862 | if (StringRef(DigitStart, DigitEnd - DigitStart + 1) |
| 863 | .getAsInteger(Radix: 10, Result&: i)) |
| 864 | return false; |
| 865 | |
| 866 | // Check if matching constraint is out of bounds. |
| 867 | if (i >= OutputConstraints.size()) return false; |
| 868 | |
| 869 | // A number must refer to an output only operand. |
| 870 | if (OutputConstraints[i].isReadWrite()) |
| 871 | return false; |
| 872 | |
| 873 | // If the constraint is already tied, it must be tied to the |
| 874 | // same operand referenced to by the number. |
| 875 | if (Info.hasTiedOperand() && Info.getTiedOperand() != i) |
| 876 | return false; |
| 877 | |
| 878 | // The constraint should have the same info as the respective |
| 879 | // output constraint. |
| 880 | Info.setTiedOperand(N: i, Output&: OutputConstraints[i]); |
| 881 | } else if (!validateAsmConstraint(Name, info&: Info)) { |
| 882 | // FIXME: This error return is in place temporarily so we can |
| 883 | // add more constraints as we hit it. Eventually, an unknown |
| 884 | // constraint should just be treated as 'g'. |
| 885 | return false; |
| 886 | } |
| 887 | break; |
| 888 | case '[': { |
| 889 | unsigned Index = 0; |
| 890 | if (!resolveSymbolicName(Name, OutputConstraints, Index)) |
| 891 | return false; |
| 892 | |
| 893 | // If the constraint is already tied, it must be tied to the |
| 894 | // same operand referenced to by the number. |
| 895 | if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) |
| 896 | return false; |
| 897 | |
| 898 | // A number must refer to an output only operand. |
| 899 | if (OutputConstraints[Index].isReadWrite()) |
| 900 | return false; |
| 901 | |
| 902 | Info.setTiedOperand(N: Index, Output&: OutputConstraints[Index]); |
| 903 | break; |
| 904 | } |
| 905 | case '%': // commutative |
| 906 | // FIXME: Fail if % is used with the last operand. |
| 907 | break; |
| 908 | case 'i': // immediate integer. |
| 909 | break; |
| 910 | case 'n': // immediate integer with a known value. |
| 911 | Info.setRequiresImmediate(); |
| 912 | break; |
| 913 | case 'I': // Various constant constraints with target-specific meanings. |
| 914 | case 'J': |
| 915 | case 'K': |
| 916 | case 'L': |
| 917 | case 'M': |
| 918 | case 'N': |
| 919 | case 'O': |
| 920 | case 'P': |
| 921 | if (!validateAsmConstraint(Name, info&: Info)) |
| 922 | return false; |
| 923 | break; |
| 924 | case 'r': // general register. |
| 925 | Info.setAllowsRegister(); |
| 926 | break; |
| 927 | case 'm': // memory operand. |
| 928 | case 'o': // offsettable memory operand. |
| 929 | case 'V': // non-offsettable memory operand. |
| 930 | case '<': // autodecrement memory operand. |
| 931 | case '>': // autoincrement memory operand. |
| 932 | Info.setAllowsMemory(); |
| 933 | break; |
| 934 | case 'g': // general register, memory operand or immediate integer. |
| 935 | case 'X': // any operand. |
| 936 | Info.setAllowsRegister(); |
| 937 | Info.setAllowsMemory(); |
| 938 | break; |
| 939 | case 'E': // immediate floating point. |
| 940 | case 'F': // immediate floating point. |
| 941 | case 'p': // address operand. |
| 942 | break; |
| 943 | case ',': // multiple alternative constraint. Ignore comma. |
| 944 | break; |
| 945 | case '#': // Ignore as constraint. |
| 946 | while (Name[1] && Name[1] != ',') |
| 947 | Name++; |
| 948 | break; |
| 949 | case '?': // Disparage slightly code. |
| 950 | case '!': // Disparage severely. |
| 951 | case '*': // Ignore for choosing register preferences. |
| 952 | break; // Pass them. |
| 953 | } |
| 954 | |
| 955 | Name++; |
| 956 | } |
| 957 | |
| 958 | return true; |
| 959 | } |
| 960 | |
| 961 | bool TargetInfo::validatePointerAuthKey(const llvm::APSInt &value) const { |
| 962 | return false; |
| 963 | } |
| 964 | |
| 965 | void TargetInfo::CheckFixedPointBits() const { |
| 966 | // Check that the number of fractional and integral bits (and maybe sign) can |
| 967 | // fit into the bits given for a fixed point type. |
| 968 | assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); |
| 969 | assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); |
| 970 | assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); |
| 971 | assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= |
| 972 | ShortAccumWidth); |
| 973 | assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); |
| 974 | assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= |
| 975 | LongAccumWidth); |
| 976 | |
| 977 | assert(getShortFractScale() + 1 <= ShortFractWidth); |
| 978 | assert(getFractScale() + 1 <= FractWidth); |
| 979 | assert(getLongFractScale() + 1 <= LongFractWidth); |
| 980 | assert(getUnsignedShortFractScale() <= ShortFractWidth); |
| 981 | assert(getUnsignedFractScale() <= FractWidth); |
| 982 | assert(getUnsignedLongFractScale() <= LongFractWidth); |
| 983 | |
| 984 | // Each unsigned fract type has either the same number of fractional bits |
| 985 | // as, or one more fractional bit than, its corresponding signed fract type. |
| 986 | assert(getShortFractScale() == getUnsignedShortFractScale() || |
| 987 | getShortFractScale() == getUnsignedShortFractScale() - 1); |
| 988 | assert(getFractScale() == getUnsignedFractScale() || |
| 989 | getFractScale() == getUnsignedFractScale() - 1); |
| 990 | assert(getLongFractScale() == getUnsignedLongFractScale() || |
| 991 | getLongFractScale() == getUnsignedLongFractScale() - 1); |
| 992 | |
| 993 | // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
| 994 | // fractional bits is nondecreasing for each of the following sets of |
| 995 | // fixed-point types: |
| 996 | // - signed fract types |
| 997 | // - unsigned fract types |
| 998 | // - signed accum types |
| 999 | // - unsigned accum types. |
| 1000 | assert(getLongFractScale() >= getFractScale() && |
| 1001 | getFractScale() >= getShortFractScale()); |
| 1002 | assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && |
| 1003 | getUnsignedFractScale() >= getUnsignedShortFractScale()); |
| 1004 | assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); |
| 1005 | assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && |
| 1006 | getUnsignedAccumScale() >= getUnsignedShortAccumScale()); |
| 1007 | |
| 1008 | // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
| 1009 | // integral bits is nondecreasing for each of the following sets of |
| 1010 | // fixed-point types: |
| 1011 | // - signed accum types |
| 1012 | // - unsigned accum types |
| 1013 | assert(getLongAccumIBits() >= getAccumIBits() && |
| 1014 | getAccumIBits() >= getShortAccumIBits()); |
| 1015 | assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && |
| 1016 | getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); |
| 1017 | |
| 1018 | // Each signed accum type has at least as many integral bits as its |
| 1019 | // corresponding unsigned accum type. |
| 1020 | assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); |
| 1021 | assert(getAccumIBits() >= getUnsignedAccumIBits()); |
| 1022 | assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); |
| 1023 | } |
| 1024 | |
| 1025 | void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { |
| 1026 | auto *Target = static_cast<TransferrableTargetInfo*>(this); |
| 1027 | auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); |
| 1028 | *Target = *Src; |
| 1029 | } |
| 1030 | |