| 1 | //===- ABIInfoImpl.cpp ----------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIInfoImpl.h" |
| 10 | |
| 11 | using namespace clang; |
| 12 | using namespace clang::CodeGen; |
| 13 | |
| 14 | // Pin the vtable to this file. |
| 15 | DefaultABIInfo::~DefaultABIInfo() = default; |
| 16 | |
| 17 | ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { |
| 18 | Ty = useFirstFieldIfTransparentUnion(Ty); |
| 19 | |
| 20 | if (isAggregateTypeForABI(T: Ty)) { |
| 21 | // Records with non-trivial destructors/copy-constructors should not be |
| 22 | // passed by value. |
| 23 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) |
| 24 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 25 | ByVal: RAA == CGCXXABI::RAA_DirectInMemory); |
| 26 | |
| 27 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 28 | } |
| 29 | |
| 30 | // Treat an enum type as its underlying type. |
| 31 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| 32 | Ty = EnumTy->getDecl()->getIntegerType(); |
| 33 | |
| 34 | ASTContext &Context = getContext(); |
| 35 | if (const auto *EIT = Ty->getAs<BitIntType>()) |
| 36 | if (EIT->getNumBits() > |
| 37 | Context.getTypeSize(T: Context.getTargetInfo().hasInt128Type() |
| 38 | ? Context.Int128Ty |
| 39 | : Context.LongLongTy)) |
| 40 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 41 | |
| 42 | return (isPromotableIntegerTypeForABI(Ty) |
| 43 | ? ABIArgInfo::getExtend(Ty, T: CGT.ConvertType(T: Ty)) |
| 44 | : ABIArgInfo::getDirect()); |
| 45 | } |
| 46 | |
| 47 | ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { |
| 48 | if (RetTy->isVoidType()) |
| 49 | return ABIArgInfo::getIgnore(); |
| 50 | |
| 51 | if (isAggregateTypeForABI(T: RetTy)) |
| 52 | return getNaturalAlignIndirect(Ty: RetTy, AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 53 | |
| 54 | // Treat an enum type as its underlying type. |
| 55 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| 56 | RetTy = EnumTy->getDecl()->getIntegerType(); |
| 57 | |
| 58 | if (const auto *EIT = RetTy->getAs<BitIntType>()) |
| 59 | if (EIT->getNumBits() > |
| 60 | getContext().getTypeSize(T: getContext().getTargetInfo().hasInt128Type() |
| 61 | ? getContext().Int128Ty |
| 62 | : getContext().LongLongTy)) |
| 63 | return getNaturalAlignIndirect(Ty: RetTy, |
| 64 | AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 65 | |
| 66 | return (isPromotableIntegerTypeForABI(Ty: RetTy) ? ABIArgInfo::getExtend(Ty: RetTy) |
| 67 | : ABIArgInfo::getDirect()); |
| 68 | } |
| 69 | |
| 70 | void DefaultABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| 71 | if (!getCXXABI().classifyReturnType(FI)) |
| 72 | FI.getReturnInfo() = classifyReturnType(RetTy: FI.getReturnType()); |
| 73 | for (auto &I : FI.arguments()) |
| 74 | I.info = classifyArgumentType(Ty: I.type); |
| 75 | } |
| 76 | |
| 77 | RValue DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 78 | QualType Ty, AggValueSlot Slot) const { |
| 79 | return CGF.EmitLoadOfAnyValue( |
| 80 | V: CGF.MakeAddrLValue( |
| 81 | Addr: EmitVAArgInstr(CGF, VAListAddr, Ty, AI: classifyArgumentType(Ty)), T: Ty), |
| 82 | Slot); |
| 83 | } |
| 84 | |
| 85 | void CodeGen::AssignToArrayRange(CodeGen::CGBuilderTy &Builder, |
| 86 | llvm::Value *Array, llvm::Value *Value, |
| 87 | unsigned FirstIndex, unsigned LastIndex) { |
| 88 | // Alternatively, we could emit this as a loop in the source. |
| 89 | for (unsigned I = FirstIndex; I <= LastIndex; ++I) { |
| 90 | llvm::Value *Cell = |
| 91 | Builder.CreateConstInBoundsGEP1_32(Ty: Builder.getInt8Ty(), Ptr: Array, Idx0: I); |
| 92 | Builder.CreateAlignedStore(Val: Value, Addr: Cell, Align: CharUnits::One()); |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | bool CodeGen::isAggregateTypeForABI(QualType T) { |
| 97 | return !CodeGenFunction::hasScalarEvaluationKind(T) || |
| 98 | T->isMemberFunctionPointerType(); |
| 99 | } |
| 100 | |
| 101 | llvm::Type *CodeGen::getVAListElementType(CodeGenFunction &CGF) { |
| 102 | return CGF.ConvertTypeForMem( |
| 103 | T: CGF.getContext().getBuiltinVaListType()->getPointeeType()); |
| 104 | } |
| 105 | |
| 106 | CGCXXABI::RecordArgABI CodeGen::getRecordArgABI(const RecordType *RT, |
| 107 | CGCXXABI &CXXABI) { |
| 108 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 109 | if (!RD) { |
| 110 | if (!RT->getDecl()->canPassInRegisters()) |
| 111 | return CGCXXABI::RAA_Indirect; |
| 112 | return CGCXXABI::RAA_Default; |
| 113 | } |
| 114 | return CXXABI.getRecordArgABI(RD); |
| 115 | } |
| 116 | |
| 117 | CGCXXABI::RecordArgABI CodeGen::getRecordArgABI(QualType T, CGCXXABI &CXXABI) { |
| 118 | const RecordType *RT = T->getAs<RecordType>(); |
| 119 | if (!RT) |
| 120 | return CGCXXABI::RAA_Default; |
| 121 | return getRecordArgABI(RT, CXXABI); |
| 122 | } |
| 123 | |
| 124 | bool CodeGen::classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, |
| 125 | const ABIInfo &Info) { |
| 126 | QualType Ty = FI.getReturnType(); |
| 127 | |
| 128 | if (const auto *RT = Ty->getAs<RecordType>()) |
| 129 | if (!isa<CXXRecordDecl>(Val: RT->getDecl()) && |
| 130 | !RT->getDecl()->canPassInRegisters()) { |
| 131 | FI.getReturnInfo() = Info.getNaturalAlignIndirect( |
| 132 | Ty, AddrSpace: Info.getDataLayout().getAllocaAddrSpace()); |
| 133 | return true; |
| 134 | } |
| 135 | |
| 136 | return CXXABI.classifyReturnType(FI); |
| 137 | } |
| 138 | |
| 139 | QualType CodeGen::useFirstFieldIfTransparentUnion(QualType Ty) { |
| 140 | if (const RecordType *UT = Ty->getAsUnionType()) { |
| 141 | const RecordDecl *UD = UT->getDecl(); |
| 142 | if (UD->hasAttr<TransparentUnionAttr>()) { |
| 143 | assert(!UD->field_empty() && "sema created an empty transparent union" ); |
| 144 | return UD->field_begin()->getType(); |
| 145 | } |
| 146 | } |
| 147 | return Ty; |
| 148 | } |
| 149 | |
| 150 | llvm::Value *CodeGen::emitRoundPointerUpToAlignment(CodeGenFunction &CGF, |
| 151 | llvm::Value *Ptr, |
| 152 | CharUnits Align) { |
| 153 | // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; |
| 154 | llvm::Value *RoundUp = CGF.Builder.CreateConstInBoundsGEP1_32( |
| 155 | Ty: CGF.Builder.getInt8Ty(), Ptr, Idx0: Align.getQuantity() - 1); |
| 156 | return CGF.Builder.CreateIntrinsic( |
| 157 | ID: llvm::Intrinsic::ptrmask, Types: {Ptr->getType(), CGF.IntPtrTy}, |
| 158 | Args: {RoundUp, llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: -Align.getQuantity())}, |
| 159 | FMFSource: nullptr, Name: Ptr->getName() + ".aligned" ); |
| 160 | } |
| 161 | |
| 162 | Address |
| 163 | CodeGen::emitVoidPtrDirectVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 164 | llvm::Type *DirectTy, CharUnits DirectSize, |
| 165 | CharUnits DirectAlign, CharUnits SlotSize, |
| 166 | bool AllowHigherAlign, bool ForceRightAdjust) { |
| 167 | // Cast the element type to i8* if necessary. Some platforms define |
| 168 | // va_list as a struct containing an i8* instead of just an i8*. |
| 169 | if (VAListAddr.getElementType() != CGF.Int8PtrTy) |
| 170 | VAListAddr = VAListAddr.withElementType(ElemTy: CGF.Int8PtrTy); |
| 171 | |
| 172 | llvm::Value *Ptr = CGF.Builder.CreateLoad(Addr: VAListAddr, Name: "argp.cur" ); |
| 173 | |
| 174 | // If the CC aligns values higher than the slot size, do so if needed. |
| 175 | Address Addr = Address::invalid(); |
| 176 | if (AllowHigherAlign && DirectAlign > SlotSize) { |
| 177 | Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align: DirectAlign), |
| 178 | CGF.Int8Ty, DirectAlign); |
| 179 | } else { |
| 180 | Addr = Address(Ptr, CGF.Int8Ty, SlotSize); |
| 181 | } |
| 182 | |
| 183 | // Advance the pointer past the argument, then store that back. |
| 184 | CharUnits FullDirectSize = DirectSize.alignTo(Align: SlotSize); |
| 185 | Address NextPtr = |
| 186 | CGF.Builder.CreateConstInBoundsByteGEP(Addr, Offset: FullDirectSize, Name: "argp.next" ); |
| 187 | CGF.Builder.CreateStore(Val: NextPtr.emitRawPointer(CGF), Addr: VAListAddr); |
| 188 | |
| 189 | // If the argument is smaller than a slot, and this is a big-endian |
| 190 | // target, the argument will be right-adjusted in its slot. |
| 191 | if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && |
| 192 | (!DirectTy->isStructTy() || ForceRightAdjust)) { |
| 193 | Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, Offset: SlotSize - DirectSize); |
| 194 | } |
| 195 | |
| 196 | return Addr.withElementType(ElemTy: DirectTy); |
| 197 | } |
| 198 | |
| 199 | RValue CodeGen::emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 200 | QualType ValueTy, bool IsIndirect, |
| 201 | TypeInfoChars ValueInfo, |
| 202 | CharUnits SlotSizeAndAlign, |
| 203 | bool AllowHigherAlign, AggValueSlot Slot, |
| 204 | bool ForceRightAdjust) { |
| 205 | // The size and alignment of the value that was passed directly. |
| 206 | CharUnits DirectSize, DirectAlign; |
| 207 | if (IsIndirect) { |
| 208 | DirectSize = CGF.getPointerSize(); |
| 209 | DirectAlign = CGF.getPointerAlign(); |
| 210 | } else { |
| 211 | DirectSize = ValueInfo.Width; |
| 212 | DirectAlign = ValueInfo.Align; |
| 213 | } |
| 214 | |
| 215 | // Cast the address we've calculated to the right type. |
| 216 | llvm::Type *DirectTy = CGF.ConvertTypeForMem(T: ValueTy), *ElementTy = DirectTy; |
| 217 | if (IsIndirect) { |
| 218 | unsigned AllocaAS = CGF.CGM.getDataLayout().getAllocaAddrSpace(); |
| 219 | DirectTy = llvm::PointerType::get(C&: CGF.getLLVMContext(), AddressSpace: AllocaAS); |
| 220 | } |
| 221 | |
| 222 | Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, |
| 223 | DirectAlign, SlotSize: SlotSizeAndAlign, |
| 224 | AllowHigherAlign, ForceRightAdjust); |
| 225 | |
| 226 | if (IsIndirect) { |
| 227 | Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align); |
| 228 | } |
| 229 | |
| 230 | return CGF.EmitLoadOfAnyValue(V: CGF.MakeAddrLValue(Addr, T: ValueTy), Slot); |
| 231 | } |
| 232 | |
| 233 | Address CodeGen::emitMergePHI(CodeGenFunction &CGF, Address Addr1, |
| 234 | llvm::BasicBlock *Block1, Address Addr2, |
| 235 | llvm::BasicBlock *Block2, |
| 236 | const llvm::Twine &Name) { |
| 237 | assert(Addr1.getType() == Addr2.getType()); |
| 238 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: Addr1.getType(), NumReservedValues: 2, Name); |
| 239 | PHI->addIncoming(V: Addr1.emitRawPointer(CGF), BB: Block1); |
| 240 | PHI->addIncoming(V: Addr2.emitRawPointer(CGF), BB: Block2); |
| 241 | CharUnits Align = std::min(a: Addr1.getAlignment(), b: Addr2.getAlignment()); |
| 242 | return Address(PHI, Addr1.getElementType(), Align); |
| 243 | } |
| 244 | |
| 245 | bool CodeGen::isEmptyField(ASTContext &Context, const FieldDecl *FD, |
| 246 | bool AllowArrays, bool AsIfNoUniqueAddr) { |
| 247 | if (FD->isUnnamedBitField()) |
| 248 | return true; |
| 249 | |
| 250 | QualType FT = FD->getType(); |
| 251 | |
| 252 | // Constant arrays of empty records count as empty, strip them off. |
| 253 | // Constant arrays of zero length always count as empty. |
| 254 | bool WasArray = false; |
| 255 | if (AllowArrays) |
| 256 | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: FT)) { |
| 257 | if (AT->isZeroSize()) |
| 258 | return true; |
| 259 | FT = AT->getElementType(); |
| 260 | // The [[no_unique_address]] special case below does not apply to |
| 261 | // arrays of C++ empty records, so we need to remember this fact. |
| 262 | WasArray = true; |
| 263 | } |
| 264 | |
| 265 | const RecordType *RT = FT->getAs<RecordType>(); |
| 266 | if (!RT) |
| 267 | return false; |
| 268 | |
| 269 | // C++ record fields are never empty, at least in the Itanium ABI. |
| 270 | // |
| 271 | // FIXME: We should use a predicate for whether this behavior is true in the |
| 272 | // current ABI. |
| 273 | // |
| 274 | // The exception to the above rule are fields marked with the |
| 275 | // [[no_unique_address]] attribute (since C++20). Those do count as empty |
| 276 | // according to the Itanium ABI. The exception applies only to records, |
| 277 | // not arrays of records, so we must also check whether we stripped off an |
| 278 | // array type above. |
| 279 | if (isa<CXXRecordDecl>(Val: RT->getDecl()) && |
| 280 | (WasArray || (!AsIfNoUniqueAddr && !FD->hasAttr<NoUniqueAddressAttr>()))) |
| 281 | return false; |
| 282 | |
| 283 | return isEmptyRecord(Context, T: FT, AllowArrays, AsIfNoUniqueAddr); |
| 284 | } |
| 285 | |
| 286 | bool CodeGen::isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays, |
| 287 | bool AsIfNoUniqueAddr) { |
| 288 | const RecordType *RT = T->getAs<RecordType>(); |
| 289 | if (!RT) |
| 290 | return false; |
| 291 | const RecordDecl *RD = RT->getDecl(); |
| 292 | if (RD->hasFlexibleArrayMember()) |
| 293 | return false; |
| 294 | |
| 295 | // If this is a C++ record, check the bases first. |
| 296 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 297 | for (const auto &I : CXXRD->bases()) |
| 298 | if (!isEmptyRecord(Context, T: I.getType(), AllowArrays: true, AsIfNoUniqueAddr)) |
| 299 | return false; |
| 300 | |
| 301 | for (const auto *I : RD->fields()) |
| 302 | if (!isEmptyField(Context, FD: I, AllowArrays, AsIfNoUniqueAddr)) |
| 303 | return false; |
| 304 | return true; |
| 305 | } |
| 306 | |
| 307 | bool CodeGen::isEmptyFieldForLayout(const ASTContext &Context, |
| 308 | const FieldDecl *FD) { |
| 309 | if (FD->isZeroLengthBitField()) |
| 310 | return true; |
| 311 | |
| 312 | if (FD->isUnnamedBitField()) |
| 313 | return false; |
| 314 | |
| 315 | return isEmptyRecordForLayout(Context, T: FD->getType()); |
| 316 | } |
| 317 | |
| 318 | bool CodeGen::isEmptyRecordForLayout(const ASTContext &Context, QualType T) { |
| 319 | const RecordType *RT = T->getAs<RecordType>(); |
| 320 | if (!RT) |
| 321 | return false; |
| 322 | |
| 323 | const RecordDecl *RD = RT->getDecl(); |
| 324 | |
| 325 | // If this is a C++ record, check the bases first. |
| 326 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 327 | if (CXXRD->isDynamicClass()) |
| 328 | return false; |
| 329 | |
| 330 | for (const auto &I : CXXRD->bases()) |
| 331 | if (!isEmptyRecordForLayout(Context, T: I.getType())) |
| 332 | return false; |
| 333 | } |
| 334 | |
| 335 | for (const auto *I : RD->fields()) |
| 336 | if (!isEmptyFieldForLayout(Context, FD: I)) |
| 337 | return false; |
| 338 | |
| 339 | return true; |
| 340 | } |
| 341 | |
| 342 | const Type *CodeGen::isSingleElementStruct(QualType T, ASTContext &Context) { |
| 343 | const RecordType *RT = T->getAs<RecordType>(); |
| 344 | if (!RT) |
| 345 | return nullptr; |
| 346 | |
| 347 | const RecordDecl *RD = RT->getDecl(); |
| 348 | if (RD->hasFlexibleArrayMember()) |
| 349 | return nullptr; |
| 350 | |
| 351 | const Type *Found = nullptr; |
| 352 | |
| 353 | // If this is a C++ record, check the bases first. |
| 354 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 355 | for (const auto &I : CXXRD->bases()) { |
| 356 | // Ignore empty records. |
| 357 | if (isEmptyRecord(Context, T: I.getType(), AllowArrays: true)) |
| 358 | continue; |
| 359 | |
| 360 | // If we already found an element then this isn't a single-element struct. |
| 361 | if (Found) |
| 362 | return nullptr; |
| 363 | |
| 364 | // If this is non-empty and not a single element struct, the composite |
| 365 | // cannot be a single element struct. |
| 366 | Found = isSingleElementStruct(T: I.getType(), Context); |
| 367 | if (!Found) |
| 368 | return nullptr; |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | // Check for single element. |
| 373 | for (const auto *FD : RD->fields()) { |
| 374 | QualType FT = FD->getType(); |
| 375 | |
| 376 | // Ignore empty fields. |
| 377 | if (isEmptyField(Context, FD, AllowArrays: true)) |
| 378 | continue; |
| 379 | |
| 380 | // If we already found an element then this isn't a single-element |
| 381 | // struct. |
| 382 | if (Found) |
| 383 | return nullptr; |
| 384 | |
| 385 | // Treat single element arrays as the element. |
| 386 | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: FT)) { |
| 387 | if (AT->getZExtSize() != 1) |
| 388 | break; |
| 389 | FT = AT->getElementType(); |
| 390 | } |
| 391 | |
| 392 | if (!isAggregateTypeForABI(T: FT)) { |
| 393 | Found = FT.getTypePtr(); |
| 394 | } else { |
| 395 | Found = isSingleElementStruct(T: FT, Context); |
| 396 | if (!Found) |
| 397 | return nullptr; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | // We don't consider a struct a single-element struct if it has |
| 402 | // padding beyond the element type. |
| 403 | if (Found && Context.getTypeSize(T: Found) != Context.getTypeSize(T)) |
| 404 | return nullptr; |
| 405 | |
| 406 | return Found; |
| 407 | } |
| 408 | |
| 409 | Address CodeGen::EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, |
| 410 | QualType Ty, const ABIArgInfo &AI) { |
| 411 | // This default implementation defers to the llvm backend's va_arg |
| 412 | // instruction. It can handle only passing arguments directly |
| 413 | // (typically only handled in the backend for primitive types), or |
| 414 | // aggregates passed indirectly by pointer (NOTE: if the "byval" |
| 415 | // flag has ABI impact in the callee, this implementation cannot |
| 416 | // work.) |
| 417 | |
| 418 | // Only a few cases are covered here at the moment -- those needed |
| 419 | // by the default abi. |
| 420 | llvm::Value *Val; |
| 421 | |
| 422 | if (AI.isIndirect()) { |
| 423 | assert(!AI.getPaddingType() && |
| 424 | "Unexpected PaddingType seen in arginfo in generic VAArg emitter!" ); |
| 425 | assert( |
| 426 | !AI.getIndirectRealign() && |
| 427 | "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!" ); |
| 428 | |
| 429 | auto TyInfo = CGF.getContext().getTypeInfoInChars(T: Ty); |
| 430 | CharUnits TyAlignForABI = TyInfo.Align; |
| 431 | |
| 432 | llvm::Type *ElementTy = CGF.ConvertTypeForMem(T: Ty); |
| 433 | llvm::Type *BaseTy = llvm::PointerType::getUnqual(C&: CGF.getLLVMContext()); |
| 434 | llvm::Value *Addr = |
| 435 | CGF.Builder.CreateVAArg(List: VAListAddr.emitRawPointer(CGF), Ty: BaseTy); |
| 436 | return Address(Addr, ElementTy, TyAlignForABI); |
| 437 | } else { |
| 438 | assert((AI.isDirect() || AI.isExtend()) && |
| 439 | "Unexpected ArgInfo Kind in generic VAArg emitter!" ); |
| 440 | |
| 441 | assert(!AI.getInReg() && |
| 442 | "Unexpected InReg seen in arginfo in generic VAArg emitter!" ); |
| 443 | assert(!AI.getPaddingType() && |
| 444 | "Unexpected PaddingType seen in arginfo in generic VAArg emitter!" ); |
| 445 | assert(!AI.getDirectOffset() && |
| 446 | "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!" ); |
| 447 | assert(!AI.getCoerceToType() && |
| 448 | "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!" ); |
| 449 | |
| 450 | Address Temp = CGF.CreateMemTemp(T: Ty, Name: "varet" ); |
| 451 | Val = CGF.Builder.CreateVAArg(List: VAListAddr.emitRawPointer(CGF), |
| 452 | Ty: CGF.ConvertTypeForMem(T: Ty)); |
| 453 | CGF.Builder.CreateStore(Val, Addr: Temp); |
| 454 | return Temp; |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | bool CodeGen::isSIMDVectorType(ASTContext &Context, QualType Ty) { |
| 459 | return Ty->getAs<VectorType>() && Context.getTypeSize(T: Ty) == 128; |
| 460 | } |
| 461 | |
| 462 | bool CodeGen::isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { |
| 463 | const RecordType *RT = Ty->getAs<RecordType>(); |
| 464 | if (!RT) |
| 465 | return false; |
| 466 | const RecordDecl *RD = RT->getDecl(); |
| 467 | |
| 468 | // If this is a C++ record, check the bases first. |
| 469 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 470 | for (const auto &I : CXXRD->bases()) |
| 471 | if (!isRecordWithSIMDVectorType(Context, Ty: I.getType())) |
| 472 | return false; |
| 473 | |
| 474 | for (const auto *i : RD->fields()) { |
| 475 | QualType FT = i->getType(); |
| 476 | |
| 477 | if (isSIMDVectorType(Context, Ty: FT)) |
| 478 | return true; |
| 479 | |
| 480 | if (isRecordWithSIMDVectorType(Context, Ty: FT)) |
| 481 | return true; |
| 482 | } |
| 483 | |
| 484 | return false; |
| 485 | } |
| 486 | |