| 1 | //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This is the code that handles AST -> LLVM type lowering. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H |
| 14 | #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H |
| 15 | |
| 16 | #include "CGCall.h" |
| 17 | #include "clang/Basic/ABI.h" |
| 18 | #include "clang/CodeGen/CGFunctionInfo.h" |
| 19 | #include "llvm/ADT/DenseMap.h" |
| 20 | #include "llvm/IR/Module.h" |
| 21 | |
| 22 | namespace llvm { |
| 23 | class FunctionType; |
| 24 | class DataLayout; |
| 25 | class Type; |
| 26 | class LLVMContext; |
| 27 | class StructType; |
| 28 | } |
| 29 | |
| 30 | namespace clang { |
| 31 | class ASTContext; |
| 32 | template <typename> class CanQual; |
| 33 | class CXXConstructorDecl; |
| 34 | class CXXMethodDecl; |
| 35 | class CodeGenOptions; |
| 36 | class FunctionProtoType; |
| 37 | class QualType; |
| 38 | class RecordDecl; |
| 39 | class TagDecl; |
| 40 | class TargetInfo; |
| 41 | class Type; |
| 42 | typedef CanQual<Type> CanQualType; |
| 43 | class GlobalDecl; |
| 44 | |
| 45 | namespace CodeGen { |
| 46 | class ABIInfo; |
| 47 | class CGCXXABI; |
| 48 | class CGRecordLayout; |
| 49 | class CodeGenModule; |
| 50 | class RequiredArgs; |
| 51 | |
| 52 | /// This class organizes the cross-module state that is used while lowering |
| 53 | /// AST types to LLVM types. |
| 54 | class CodeGenTypes { |
| 55 | CodeGenModule &CGM; |
| 56 | // Some of this stuff should probably be left on the CGM. |
| 57 | ASTContext &Context; |
| 58 | llvm::Module &TheModule; |
| 59 | const TargetInfo &Target; |
| 60 | |
| 61 | /// The opaque type map for Objective-C interfaces. All direct |
| 62 | /// manipulation is done by the runtime interfaces, which are |
| 63 | /// responsible for coercing to the appropriate type; these opaque |
| 64 | /// types are never refined. |
| 65 | llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes; |
| 66 | |
| 67 | /// Maps clang struct type with corresponding record layout info. |
| 68 | llvm::DenseMap<const Type*, std::unique_ptr<CGRecordLayout>> CGRecordLayouts; |
| 69 | |
| 70 | /// Contains the LLVM IR type for any converted RecordDecl. |
| 71 | llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes; |
| 72 | |
| 73 | /// Hold memoized CGFunctionInfo results. |
| 74 | llvm::FoldingSet<CGFunctionInfo> FunctionInfos{FunctionInfosLog2InitSize}; |
| 75 | |
| 76 | llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed; |
| 77 | |
| 78 | /// True if we didn't layout a function due to a being inside |
| 79 | /// a recursive struct conversion, set this to true. |
| 80 | bool SkippedLayout; |
| 81 | |
| 82 | /// True if any instance of long double types are used. |
| 83 | bool LongDoubleReferenced; |
| 84 | |
| 85 | /// This map keeps cache of llvm::Types and maps clang::Type to |
| 86 | /// corresponding llvm::Type. |
| 87 | llvm::DenseMap<const Type *, llvm::Type *> TypeCache; |
| 88 | |
| 89 | llvm::DenseMap<const Type *, llvm::Type *> RecordsWithOpaqueMemberPointers; |
| 90 | |
| 91 | static constexpr unsigned FunctionInfosLog2InitSize = 9; |
| 92 | /// Helper for ConvertType. |
| 93 | llvm::Type *ConvertFunctionTypeInternal(QualType FT); |
| 94 | |
| 95 | public: |
| 96 | CodeGenTypes(CodeGenModule &cgm); |
| 97 | ~CodeGenTypes(); |
| 98 | |
| 99 | const llvm::DataLayout &getDataLayout() const { |
| 100 | return TheModule.getDataLayout(); |
| 101 | } |
| 102 | CodeGenModule &getCGM() const { return CGM; } |
| 103 | ASTContext &getContext() const { return Context; } |
| 104 | const TargetInfo &getTarget() const { return Target; } |
| 105 | CGCXXABI &getCXXABI() const; |
| 106 | llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); } |
| 107 | const CodeGenOptions &getCodeGenOpts() const; |
| 108 | |
| 109 | /// Convert clang calling convention to LLVM callilng convention. |
| 110 | unsigned ClangCallConvToLLVMCallConv(CallingConv CC); |
| 111 | |
| 112 | /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR |
| 113 | /// qualification. |
| 114 | CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD); |
| 115 | |
| 116 | /// ConvertType - Convert type T into a llvm::Type. |
| 117 | llvm::Type *ConvertType(QualType T); |
| 118 | |
| 119 | /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from |
| 120 | /// ConvertType in that it is used to convert to the memory representation for |
| 121 | /// a type. For example, the scalar representation for _Bool is i1, but the |
| 122 | /// memory representation is usually i8 or i32, depending on the target. |
| 123 | llvm::Type *ConvertTypeForMem(QualType T); |
| 124 | |
| 125 | /// Check whether the given type needs to be laid out in memory |
| 126 | /// using an opaque byte-array type because its load/store type |
| 127 | /// does not have the correct alloc size in the LLVM data layout. |
| 128 | /// If this is false, the load/store type (convertTypeForLoadStore) |
| 129 | /// and memory representation type (ConvertTypeForMem) will |
| 130 | /// be the same type. |
| 131 | bool typeRequiresSplitIntoByteArray(QualType ASTTy, |
| 132 | llvm::Type *LLVMTy = nullptr); |
| 133 | |
| 134 | /// Given that T is a scalar type, return the IR type that should |
| 135 | /// be used for load and store operations. For example, this might |
| 136 | /// be i8 for _Bool or i96 for _BitInt(65). The store size of the |
| 137 | /// load/store type (as reported by LLVM's data layout) is always |
| 138 | /// the same as the alloc size of the memory representation type |
| 139 | /// returned by ConvertTypeForMem. |
| 140 | /// |
| 141 | /// As an optimization, if you already know the scalar value type |
| 142 | /// for T (as would be returned by ConvertType), you can pass |
| 143 | /// it as the second argument so that it does not need to be |
| 144 | /// recomputed in common cases where the value type and |
| 145 | /// load/store type are the same. |
| 146 | llvm::Type *convertTypeForLoadStore(QualType T, llvm::Type *LLVMTy = nullptr); |
| 147 | |
| 148 | /// GetFunctionType - Get the LLVM function type for \arg Info. |
| 149 | llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info); |
| 150 | |
| 151 | llvm::FunctionType *GetFunctionType(GlobalDecl GD); |
| 152 | |
| 153 | /// isFuncTypeConvertible - Utility to check whether a function type can |
| 154 | /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag |
| 155 | /// type). |
| 156 | bool isFuncTypeConvertible(const FunctionType *FT); |
| 157 | bool isFuncParamTypeConvertible(QualType Ty); |
| 158 | |
| 159 | /// Determine if a C++ inheriting constructor should have parameters matching |
| 160 | /// those of its inherited constructor. |
| 161 | bool inheritingCtorHasParams(const InheritedConstructor &Inherited, |
| 162 | CXXCtorType Type); |
| 163 | |
| 164 | /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable, |
| 165 | /// given a CXXMethodDecl. If the method to has an incomplete return type, |
| 166 | /// and/or incomplete argument types, this will return the opaque type. |
| 167 | llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD); |
| 168 | |
| 169 | const CGRecordLayout &getCGRecordLayout(const RecordDecl*); |
| 170 | |
| 171 | /// UpdateCompletedType - When we find the full definition for a TagDecl, |
| 172 | /// replace the 'opaque' type we previously made for it if applicable. |
| 173 | void UpdateCompletedType(const TagDecl *TD); |
| 174 | |
| 175 | /// Remove stale types from the type cache when an inheritance model |
| 176 | /// gets assigned to a class. |
| 177 | void RefreshTypeCacheForClass(const CXXRecordDecl *RD); |
| 178 | |
| 179 | // The arrangement methods are split into three families: |
| 180 | // - those meant to drive the signature and prologue/epilogue |
| 181 | // of a function declaration or definition, |
| 182 | // - those meant for the computation of the LLVM type for an abstract |
| 183 | // appearance of a function, and |
| 184 | // - those meant for performing the IR-generation of a call. |
| 185 | // They differ mainly in how they deal with optional (i.e. variadic) |
| 186 | // arguments, as well as unprototyped functions. |
| 187 | // |
| 188 | // Key points: |
| 189 | // - The CGFunctionInfo for emitting a specific call site must include |
| 190 | // entries for the optional arguments. |
| 191 | // - The function type used at the call site must reflect the formal |
| 192 | // signature of the declaration being called, or else the call will |
| 193 | // go awry. |
| 194 | // - For the most part, unprototyped functions are called by casting to |
| 195 | // a formal signature inferred from the specific argument types used |
| 196 | // at the call-site. However, some targets (e.g. x86-64) screw with |
| 197 | // this for compatibility reasons. |
| 198 | |
| 199 | const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD); |
| 200 | |
| 201 | /// Given a function info for a declaration, return the function info |
| 202 | /// for a call with the given arguments. |
| 203 | /// |
| 204 | /// Often this will be able to simply return the declaration info. |
| 205 | const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI, |
| 206 | const CallArgList &args); |
| 207 | |
| 208 | /// Free functions are functions that are compatible with an ordinary |
| 209 | /// C function pointer type. |
| 210 | const CGFunctionInfo &arrangeFunctionDeclaration(const GlobalDecl GD); |
| 211 | const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args, |
| 212 | const FunctionType *Ty, |
| 213 | bool ChainCall); |
| 214 | const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty); |
| 215 | const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty); |
| 216 | |
| 217 | /// A nullary function is a freestanding function of type 'void ()'. |
| 218 | /// This method works for both calls and declarations. |
| 219 | const CGFunctionInfo &arrangeNullaryFunction(); |
| 220 | |
| 221 | /// A builtin function is a freestanding function using the default |
| 222 | /// C conventions. |
| 223 | const CGFunctionInfo & |
| 224 | arrangeBuiltinFunctionDeclaration(QualType resultType, |
| 225 | const FunctionArgList &args); |
| 226 | const CGFunctionInfo & |
| 227 | arrangeBuiltinFunctionDeclaration(CanQualType resultType, |
| 228 | ArrayRef<CanQualType> argTypes); |
| 229 | const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType, |
| 230 | const CallArgList &args); |
| 231 | |
| 232 | /// A SYCL kernel caller function is an offload device entry point function |
| 233 | /// with a target device dependent calling convention such as amdgpu_kernel, |
| 234 | /// ptx_kernel, or spir_kernel. |
| 235 | const CGFunctionInfo & |
| 236 | arrangeSYCLKernelCallerDeclaration(QualType resultType, |
| 237 | const FunctionArgList &args); |
| 238 | |
| 239 | /// Objective-C methods are C functions with some implicit parameters. |
| 240 | const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD); |
| 241 | const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, |
| 242 | QualType receiverType); |
| 243 | const CGFunctionInfo &arrangeUnprototypedObjCMessageSend( |
| 244 | QualType returnType, |
| 245 | const CallArgList &args); |
| 246 | |
| 247 | /// Block invocation functions are C functions with an implicit parameter. |
| 248 | const CGFunctionInfo &arrangeBlockFunctionDeclaration( |
| 249 | const FunctionProtoType *type, |
| 250 | const FunctionArgList &args); |
| 251 | const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args, |
| 252 | const FunctionType *type); |
| 253 | |
| 254 | /// C++ methods have some special rules and also have implicit parameters. |
| 255 | const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD); |
| 256 | const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD); |
| 257 | const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args, |
| 258 | const CXXConstructorDecl *D, |
| 259 | CXXCtorType CtorKind, |
| 260 | unsigned , |
| 261 | unsigned , |
| 262 | bool PassProtoArgs = true); |
| 263 | |
| 264 | const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args, |
| 265 | const FunctionProtoType *type, |
| 266 | RequiredArgs required, |
| 267 | unsigned numPrefixArgs); |
| 268 | const CGFunctionInfo & |
| 269 | arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD); |
| 270 | const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD, |
| 271 | CXXCtorType CT); |
| 272 | const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD, |
| 273 | const FunctionProtoType *FTP, |
| 274 | const CXXMethodDecl *MD); |
| 275 | |
| 276 | /// "Arrange" the LLVM information for a call or type with the given |
| 277 | /// signature. This is largely an internal method; other clients |
| 278 | /// should use one of the above routines, which ultimately defer to |
| 279 | /// this. |
| 280 | /// |
| 281 | /// \param argTypes - must all actually be canonical as params |
| 282 | const CGFunctionInfo &arrangeLLVMFunctionInfo( |
| 283 | CanQualType returnType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, |
| 284 | FunctionType::ExtInfo info, |
| 285 | ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, |
| 286 | RequiredArgs args); |
| 287 | |
| 288 | /// Compute a new LLVM record layout object for the given record. |
| 289 | std::unique_ptr<CGRecordLayout> ComputeRecordLayout(const RecordDecl *D, |
| 290 | llvm::StructType *Ty); |
| 291 | |
| 292 | /// addRecordTypeName - Compute a name from the given record decl with an |
| 293 | /// optional suffix and name the given LLVM type using it. |
| 294 | void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty, |
| 295 | StringRef suffix); |
| 296 | |
| 297 | |
| 298 | public: // These are internal details of CGT that shouldn't be used externally. |
| 299 | /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. |
| 300 | llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD); |
| 301 | |
| 302 | /// getExpandedTypes - Expand the type \arg Ty into the LLVM |
| 303 | /// argument types it would be passed as. See ABIArgInfo::Expand. |
| 304 | void getExpandedTypes(QualType Ty, |
| 305 | SmallVectorImpl<llvm::Type *>::iterator &TI); |
| 306 | |
| 307 | /// IsZeroInitializable - Return whether a type can be |
| 308 | /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. |
| 309 | bool isZeroInitializable(QualType T); |
| 310 | |
| 311 | /// Check if the pointer type can be zero-initialized (in the C++ sense) |
| 312 | /// with an LLVM zeroinitializer. |
| 313 | bool isPointerZeroInitializable(QualType T); |
| 314 | |
| 315 | /// IsZeroInitializable - Return whether a record type can be |
| 316 | /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. |
| 317 | bool isZeroInitializable(const RecordDecl *RD); |
| 318 | |
| 319 | bool isLongDoubleReferenced() const { return LongDoubleReferenced; } |
| 320 | bool isRecordLayoutComplete(const Type *Ty) const; |
| 321 | unsigned getTargetAddressSpace(QualType T) const; |
| 322 | }; |
| 323 | |
| 324 | } // end namespace CodeGen |
| 325 | } // end namespace clang |
| 326 | |
| 327 | #endif |
| 328 | |