1 | //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is the internal per-function state used for llvm translation. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
14 | #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
15 | |
16 | #include "CGBuilder.h" |
17 | #include "CGLoopInfo.h" |
18 | #include "CGValue.h" |
19 | #include "CodeGenModule.h" |
20 | #include "EHScopeStack.h" |
21 | #include "SanitizerHandler.h" |
22 | #include "VarBypassDetector.h" |
23 | #include "clang/AST/CharUnits.h" |
24 | #include "clang/AST/CurrentSourceLocExprScope.h" |
25 | #include "clang/AST/ExprCXX.h" |
26 | #include "clang/AST/ExprObjC.h" |
27 | #include "clang/AST/ExprOpenMP.h" |
28 | #include "clang/AST/StmtOpenACC.h" |
29 | #include "clang/AST/StmtOpenMP.h" |
30 | #include "clang/AST/StmtSYCL.h" |
31 | #include "clang/AST/Type.h" |
32 | #include "clang/Basic/ABI.h" |
33 | #include "clang/Basic/CapturedStmt.h" |
34 | #include "clang/Basic/CodeGenOptions.h" |
35 | #include "clang/Basic/OpenMPKinds.h" |
36 | #include "clang/Basic/TargetInfo.h" |
37 | #include "llvm/ADT/ArrayRef.h" |
38 | #include "llvm/ADT/DenseMap.h" |
39 | #include "llvm/ADT/MapVector.h" |
40 | #include "llvm/ADT/SmallVector.h" |
41 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
42 | #include "llvm/IR/Instructions.h" |
43 | #include "llvm/IR/ValueHandle.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Transforms/Utils/SanitizerStats.h" |
46 | #include <optional> |
47 | |
48 | namespace llvm { |
49 | class BasicBlock; |
50 | class ConvergenceControlInst; |
51 | class LLVMContext; |
52 | class MDNode; |
53 | class SwitchInst; |
54 | class Twine; |
55 | class Value; |
56 | class CanonicalLoopInfo; |
57 | } // namespace llvm |
58 | |
59 | namespace clang { |
60 | class ASTContext; |
61 | class CXXDestructorDecl; |
62 | class CXXForRangeStmt; |
63 | class CXXTryStmt; |
64 | class Decl; |
65 | class LabelDecl; |
66 | class FunctionDecl; |
67 | class FunctionProtoType; |
68 | class LabelStmt; |
69 | class ObjCContainerDecl; |
70 | class ObjCInterfaceDecl; |
71 | class ObjCIvarDecl; |
72 | class ObjCMethodDecl; |
73 | class ObjCImplementationDecl; |
74 | class ObjCPropertyImplDecl; |
75 | class TargetInfo; |
76 | class VarDecl; |
77 | class ObjCForCollectionStmt; |
78 | class ObjCAtTryStmt; |
79 | class ObjCAtThrowStmt; |
80 | class ObjCAtSynchronizedStmt; |
81 | class ObjCAutoreleasePoolStmt; |
82 | class OMPUseDevicePtrClause; |
83 | class OMPUseDeviceAddrClause; |
84 | class SVETypeFlags; |
85 | class OMPExecutableDirective; |
86 | |
87 | namespace analyze_os_log { |
88 | class OSLogBufferLayout; |
89 | } |
90 | |
91 | namespace CodeGen { |
92 | class CodeGenTypes; |
93 | class CodeGenPGO; |
94 | class CGCallee; |
95 | class CGFunctionInfo; |
96 | class CGBlockInfo; |
97 | class CGCXXABI; |
98 | class BlockByrefHelpers; |
99 | class BlockByrefInfo; |
100 | class BlockFieldFlags; |
101 | class RegionCodeGenTy; |
102 | class TargetCodeGenInfo; |
103 | struct OMPTaskDataTy; |
104 | struct CGCoroData; |
105 | |
106 | // clang-format off |
107 | /// The kind of evaluation to perform on values of a particular |
108 | /// type. Basically, is the code in CGExprScalar, CGExprComplex, or |
109 | /// CGExprAgg? |
110 | /// |
111 | /// TODO: should vectors maybe be split out into their own thing? |
112 | enum TypeEvaluationKind { |
113 | TEK_Scalar, |
114 | TEK_Complex, |
115 | TEK_Aggregate |
116 | }; |
117 | // clang-format on |
118 | |
119 | /// Helper class with most of the code for saving a value for a |
120 | /// conditional expression cleanup. |
121 | struct DominatingLLVMValue { |
122 | typedef llvm::PointerIntPair<llvm::Value *, 1, bool> saved_type; |
123 | |
124 | /// Answer whether the given value needs extra work to be saved. |
125 | static bool needsSaving(llvm::Value *value) { |
126 | if (!value) |
127 | return false; |
128 | |
129 | // If it's not an instruction, we don't need to save. |
130 | if (!isa<llvm::Instruction>(Val: value)) |
131 | return false; |
132 | |
133 | // If it's an instruction in the entry block, we don't need to save. |
134 | llvm::BasicBlock *block = cast<llvm::Instruction>(Val: value)->getParent(); |
135 | return (block != &block->getParent()->getEntryBlock()); |
136 | } |
137 | |
138 | static saved_type save(CodeGenFunction &CGF, llvm::Value *value); |
139 | static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); |
140 | }; |
141 | |
142 | /// A partial specialization of DominatingValue for llvm::Values that |
143 | /// might be llvm::Instructions. |
144 | template <class T> struct DominatingPointer<T, true> : DominatingLLVMValue { |
145 | typedef T *type; |
146 | static type restore(CodeGenFunction &CGF, saved_type value) { |
147 | return static_cast<T *>(DominatingLLVMValue::restore(CGF, value)); |
148 | } |
149 | }; |
150 | |
151 | /// A specialization of DominatingValue for Address. |
152 | template <> struct DominatingValue<Address> { |
153 | typedef Address type; |
154 | |
155 | struct saved_type { |
156 | DominatingLLVMValue::saved_type BasePtr; |
157 | llvm::Type *ElementType; |
158 | CharUnits Alignment; |
159 | DominatingLLVMValue::saved_type Offset; |
160 | llvm::PointerType *EffectiveType; |
161 | }; |
162 | |
163 | static bool needsSaving(type value) { |
164 | if (DominatingLLVMValue::needsSaving(value: value.getBasePointer()) || |
165 | DominatingLLVMValue::needsSaving(value: value.getOffset())) |
166 | return true; |
167 | return false; |
168 | } |
169 | static saved_type save(CodeGenFunction &CGF, type value) { |
170 | return {.BasePtr: DominatingLLVMValue::save(CGF, value: value.getBasePointer()), |
171 | .ElementType: value.getElementType(), .Alignment: value.getAlignment(), |
172 | .Offset: DominatingLLVMValue::save(CGF, value: value.getOffset()), .EffectiveType: value.getType()}; |
173 | } |
174 | static type restore(CodeGenFunction &CGF, saved_type value) { |
175 | return Address(DominatingLLVMValue::restore(CGF, value: value.BasePtr), |
176 | value.ElementType, value.Alignment, CGPointerAuthInfo(), |
177 | DominatingLLVMValue::restore(CGF, value: value.Offset)); |
178 | } |
179 | }; |
180 | |
181 | /// A specialization of DominatingValue for RValue. |
182 | template <> struct DominatingValue<RValue> { |
183 | typedef RValue type; |
184 | class saved_type { |
185 | enum Kind { |
186 | ScalarLiteral, |
187 | ScalarAddress, |
188 | AggregateLiteral, |
189 | AggregateAddress, |
190 | ComplexAddress |
191 | }; |
192 | union { |
193 | struct { |
194 | DominatingLLVMValue::saved_type first, second; |
195 | } Vals; |
196 | DominatingValue<Address>::saved_type AggregateAddr; |
197 | }; |
198 | LLVM_PREFERRED_TYPE(Kind) |
199 | unsigned K : 3; |
200 | |
201 | saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) |
202 | : Vals{.first: Val1, .second: DominatingLLVMValue::saved_type()}, K(K) {} |
203 | |
204 | saved_type(DominatingLLVMValue::saved_type Val1, |
205 | DominatingLLVMValue::saved_type Val2) |
206 | : Vals{.first: Val1, .second: Val2}, K(ComplexAddress) {} |
207 | |
208 | saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) |
209 | : AggregateAddr(AggregateAddr), K(K) {} |
210 | |
211 | public: |
212 | static bool needsSaving(RValue value); |
213 | static saved_type save(CodeGenFunction &CGF, RValue value); |
214 | RValue restore(CodeGenFunction &CGF); |
215 | |
216 | // implementations in CGCleanup.cpp |
217 | }; |
218 | |
219 | static bool needsSaving(type value) { return saved_type::needsSaving(value); } |
220 | static saved_type save(CodeGenFunction &CGF, type value) { |
221 | return saved_type::save(CGF, value); |
222 | } |
223 | static type restore(CodeGenFunction &CGF, saved_type value) { |
224 | return value.restore(CGF); |
225 | } |
226 | }; |
227 | |
228 | /// A scoped helper to set the current source atom group for |
229 | /// CGDebugInfo::addInstToCurrentSourceAtom. A source atom is a source construct |
230 | /// that is "interesting" for debug stepping purposes. We use an atom group |
231 | /// number to track the instruction(s) that implement the functionality for the |
232 | /// atom, plus backup instructions/source locations. |
233 | class ApplyAtomGroup { |
234 | uint64_t OriginalAtom = 0; |
235 | CGDebugInfo *DI = nullptr; |
236 | |
237 | ApplyAtomGroup(const ApplyAtomGroup &) = delete; |
238 | void operator=(const ApplyAtomGroup &) = delete; |
239 | |
240 | public: |
241 | ApplyAtomGroup(CGDebugInfo *DI); |
242 | ~ApplyAtomGroup(); |
243 | }; |
244 | |
245 | /// CodeGenFunction - This class organizes the per-function state that is used |
246 | /// while generating LLVM code. |
247 | class CodeGenFunction : public CodeGenTypeCache { |
248 | CodeGenFunction(const CodeGenFunction &) = delete; |
249 | void operator=(const CodeGenFunction &) = delete; |
250 | |
251 | friend class CGCXXABI; |
252 | |
253 | public: |
254 | /// A jump destination is an abstract label, branching to which may |
255 | /// require a jump out through normal cleanups. |
256 | struct JumpDest { |
257 | JumpDest() : Block(nullptr), Index(0) {} |
258 | JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, |
259 | unsigned Index) |
260 | : Block(Block), ScopeDepth(Depth), Index(Index) {} |
261 | |
262 | bool isValid() const { return Block != nullptr; } |
263 | llvm::BasicBlock *getBlock() const { return Block; } |
264 | EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } |
265 | unsigned getDestIndex() const { return Index; } |
266 | |
267 | // This should be used cautiously. |
268 | void setScopeDepth(EHScopeStack::stable_iterator depth) { |
269 | ScopeDepth = depth; |
270 | } |
271 | |
272 | private: |
273 | llvm::BasicBlock *Block; |
274 | EHScopeStack::stable_iterator ScopeDepth; |
275 | unsigned Index; |
276 | }; |
277 | |
278 | CodeGenModule &CGM; // Per-module state. |
279 | const TargetInfo &Target; |
280 | |
281 | // For EH/SEH outlined funclets, this field points to parent's CGF |
282 | CodeGenFunction *ParentCGF = nullptr; |
283 | |
284 | typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; |
285 | LoopInfoStack LoopStack; |
286 | CGBuilderTy Builder; |
287 | |
288 | // Stores variables for which we can't generate correct lifetime markers |
289 | // because of jumps. |
290 | VarBypassDetector Bypasses; |
291 | |
292 | /// List of recently emitted OMPCanonicalLoops. |
293 | /// |
294 | /// Since OMPCanonicalLoops are nested inside other statements (in particular |
295 | /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested |
296 | /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its |
297 | /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any |
298 | /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to |
299 | /// this stack when done. Entering a new loop requires clearing this list; it |
300 | /// either means we start parsing a new loop nest (in which case the previous |
301 | /// loop nest goes out of scope) or a second loop in the same level in which |
302 | /// case it would be ambiguous into which of the two (or more) loops the loop |
303 | /// nest would extend. |
304 | SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; |
305 | |
306 | /// Stack to track the Logical Operator recursion nest for MC/DC. |
307 | SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; |
308 | |
309 | /// Stack to track the controlled convergence tokens. |
310 | SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack; |
311 | |
312 | /// Number of nested loop to be consumed by the last surrounding |
313 | /// loop-associated directive. |
314 | int ExpectedOMPLoopDepth = 0; |
315 | |
316 | // CodeGen lambda for loops and support for ordered clause |
317 | typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, |
318 | JumpDest)> |
319 | CodeGenLoopTy; |
320 | typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, |
321 | const unsigned, const bool)> |
322 | CodeGenOrderedTy; |
323 | |
324 | // Codegen lambda for loop bounds in worksharing loop constructs |
325 | typedef llvm::function_ref<std::pair<LValue, LValue>( |
326 | CodeGenFunction &, const OMPExecutableDirective &S)> |
327 | CodeGenLoopBoundsTy; |
328 | |
329 | // Codegen lambda for loop bounds in dispatch-based loop implementation |
330 | typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( |
331 | CodeGenFunction &, const OMPExecutableDirective &S, Address LB, |
332 | Address UB)> |
333 | CodeGenDispatchBoundsTy; |
334 | |
335 | /// CGBuilder insert helper. This function is called after an |
336 | /// instruction is created using Builder. |
337 | void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, |
338 | llvm::BasicBlock::iterator InsertPt) const; |
339 | |
340 | /// CurFuncDecl - Holds the Decl for the current outermost |
341 | /// non-closure context. |
342 | const Decl *CurFuncDecl = nullptr; |
343 | /// CurCodeDecl - This is the inner-most code context, which includes blocks. |
344 | const Decl *CurCodeDecl = nullptr; |
345 | const CGFunctionInfo *CurFnInfo = nullptr; |
346 | QualType FnRetTy; |
347 | llvm::Function *CurFn = nullptr; |
348 | |
349 | /// Save Parameter Decl for coroutine. |
350 | llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; |
351 | |
352 | // Holds coroutine data if the current function is a coroutine. We use a |
353 | // wrapper to manage its lifetime, so that we don't have to define CGCoroData |
354 | // in this header. |
355 | struct CGCoroInfo { |
356 | std::unique_ptr<CGCoroData> Data; |
357 | bool InSuspendBlock = false; |
358 | CGCoroInfo(); |
359 | ~CGCoroInfo(); |
360 | }; |
361 | CGCoroInfo CurCoro; |
362 | |
363 | bool isCoroutine() const { return CurCoro.Data != nullptr; } |
364 | |
365 | bool inSuspendBlock() const { |
366 | return isCoroutine() && CurCoro.InSuspendBlock; |
367 | } |
368 | |
369 | // Holds FramePtr for await_suspend wrapper generation, |
370 | // so that __builtin_coro_frame call can be lowered |
371 | // directly to value of its second argument |
372 | struct AwaitSuspendWrapperInfo { |
373 | llvm::Value *FramePtr = nullptr; |
374 | }; |
375 | AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; |
376 | |
377 | // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. |
378 | // It encapsulates SuspendExpr in a function, to separate it's body |
379 | // from the main coroutine to avoid miscompilations. Intrinisic |
380 | // is lowered to this function call in CoroSplit pass |
381 | // Function signature is: |
382 | // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) |
383 | // where type is one of (void, i1, ptr) |
384 | llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, |
385 | Twine const &SuspendPointName, |
386 | CoroutineSuspendExpr const &S); |
387 | |
388 | /// CurGD - The GlobalDecl for the current function being compiled. |
389 | GlobalDecl CurGD; |
390 | |
391 | /// PrologueCleanupDepth - The cleanup depth enclosing all the |
392 | /// cleanups associated with the parameters. |
393 | EHScopeStack::stable_iterator PrologueCleanupDepth; |
394 | |
395 | /// ReturnBlock - Unified return block. |
396 | JumpDest ReturnBlock; |
397 | |
398 | /// ReturnValue - The temporary alloca to hold the return |
399 | /// value. This is invalid iff the function has no return value. |
400 | Address ReturnValue = Address::invalid(); |
401 | |
402 | /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. |
403 | /// This is invalid if sret is not in use. |
404 | Address ReturnValuePointer = Address::invalid(); |
405 | |
406 | /// If a return statement is being visited, this holds the return statment's |
407 | /// result expression. |
408 | const Expr *RetExpr = nullptr; |
409 | |
410 | /// Return true if a label was seen in the current scope. |
411 | bool hasLabelBeenSeenInCurrentScope() const { |
412 | if (CurLexicalScope) |
413 | return CurLexicalScope->hasLabels(); |
414 | return !LabelMap.empty(); |
415 | } |
416 | |
417 | /// AllocaInsertPoint - This is an instruction in the entry block before which |
418 | /// we prefer to insert allocas. |
419 | llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; |
420 | |
421 | private: |
422 | /// PostAllocaInsertPt - This is a place in the prologue where code can be |
423 | /// inserted that will be dominated by all the static allocas. This helps |
424 | /// achieve two things: |
425 | /// 1. Contiguity of all static allocas (within the prologue) is maintained. |
426 | /// 2. All other prologue code (which are dominated by static allocas) do |
427 | /// appear in the source order immediately after all static allocas. |
428 | /// |
429 | /// PostAllocaInsertPt will be lazily created when it is *really* required. |
430 | llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; |
431 | |
432 | public: |
433 | /// Return PostAllocaInsertPt. If it is not yet created, then insert it |
434 | /// immediately after AllocaInsertPt. |
435 | llvm::Instruction *getPostAllocaInsertPoint() { |
436 | if (!PostAllocaInsertPt) { |
437 | assert(AllocaInsertPt && |
438 | "Expected static alloca insertion point at function prologue" ); |
439 | assert(AllocaInsertPt->getParent()->isEntryBlock() && |
440 | "EBB should be entry block of the current code gen function" ); |
441 | PostAllocaInsertPt = AllocaInsertPt->clone(); |
442 | PostAllocaInsertPt->setName("postallocapt" ); |
443 | PostAllocaInsertPt->insertAfter(InsertPos: AllocaInsertPt->getIterator()); |
444 | } |
445 | |
446 | return PostAllocaInsertPt; |
447 | } |
448 | |
449 | /// API for captured statement code generation. |
450 | class CGCapturedStmtInfo { |
451 | public: |
452 | explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) |
453 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} |
454 | explicit CGCapturedStmtInfo(const CapturedStmt &S, |
455 | CapturedRegionKind K = CR_Default) |
456 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { |
457 | |
458 | RecordDecl::field_iterator Field = |
459 | S.getCapturedRecordDecl()->field_begin(); |
460 | for (CapturedStmt::const_capture_iterator I = S.capture_begin(), |
461 | E = S.capture_end(); |
462 | I != E; ++I, ++Field) { |
463 | if (I->capturesThis()) |
464 | CXXThisFieldDecl = *Field; |
465 | else if (I->capturesVariable()) |
466 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
467 | else if (I->capturesVariableByCopy()) |
468 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
469 | } |
470 | } |
471 | |
472 | virtual ~CGCapturedStmtInfo(); |
473 | |
474 | CapturedRegionKind getKind() const { return Kind; } |
475 | |
476 | virtual void setContextValue(llvm::Value *V) { ThisValue = V; } |
477 | // Retrieve the value of the context parameter. |
478 | virtual llvm::Value *getContextValue() const { return ThisValue; } |
479 | |
480 | /// Lookup the captured field decl for a variable. |
481 | virtual const FieldDecl *lookup(const VarDecl *VD) const { |
482 | return CaptureFields.lookup(Val: VD->getCanonicalDecl()); |
483 | } |
484 | |
485 | bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } |
486 | virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } |
487 | |
488 | static bool classof(const CGCapturedStmtInfo *) { return true; } |
489 | |
490 | /// Emit the captured statement body. |
491 | virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { |
492 | CGF.incrementProfileCounter(S); |
493 | CGF.EmitStmt(S); |
494 | } |
495 | |
496 | /// Get the name of the capture helper. |
497 | virtual StringRef getHelperName() const { return "__captured_stmt" ; } |
498 | |
499 | /// Get the CaptureFields |
500 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { |
501 | return CaptureFields; |
502 | } |
503 | |
504 | private: |
505 | /// The kind of captured statement being generated. |
506 | CapturedRegionKind Kind; |
507 | |
508 | /// Keep the map between VarDecl and FieldDecl. |
509 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; |
510 | |
511 | /// The base address of the captured record, passed in as the first |
512 | /// argument of the parallel region function. |
513 | llvm::Value *ThisValue; |
514 | |
515 | /// Captured 'this' type. |
516 | FieldDecl *CXXThisFieldDecl; |
517 | }; |
518 | CGCapturedStmtInfo *CapturedStmtInfo = nullptr; |
519 | |
520 | /// RAII for correct setting/restoring of CapturedStmtInfo. |
521 | class CGCapturedStmtRAII { |
522 | private: |
523 | CodeGenFunction &CGF; |
524 | CGCapturedStmtInfo *PrevCapturedStmtInfo; |
525 | |
526 | public: |
527 | CGCapturedStmtRAII(CodeGenFunction &CGF, |
528 | CGCapturedStmtInfo *NewCapturedStmtInfo) |
529 | : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { |
530 | CGF.CapturedStmtInfo = NewCapturedStmtInfo; |
531 | } |
532 | ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } |
533 | }; |
534 | |
535 | /// An abstract representation of regular/ObjC call/message targets. |
536 | class AbstractCallee { |
537 | /// The function declaration of the callee. |
538 | const Decl *CalleeDecl; |
539 | |
540 | public: |
541 | AbstractCallee() : CalleeDecl(nullptr) {} |
542 | AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} |
543 | AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} |
544 | bool hasFunctionDecl() const { |
545 | return isa_and_nonnull<FunctionDecl>(Val: CalleeDecl); |
546 | } |
547 | const Decl *getDecl() const { return CalleeDecl; } |
548 | unsigned getNumParams() const { |
549 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
550 | return FD->getNumParams(); |
551 | return cast<ObjCMethodDecl>(Val: CalleeDecl)->param_size(); |
552 | } |
553 | const ParmVarDecl *getParamDecl(unsigned I) const { |
554 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
555 | return FD->getParamDecl(i: I); |
556 | return *(cast<ObjCMethodDecl>(Val: CalleeDecl)->param_begin() + I); |
557 | } |
558 | }; |
559 | |
560 | /// Sanitizers enabled for this function. |
561 | SanitizerSet SanOpts; |
562 | |
563 | /// True if CodeGen currently emits code implementing sanitizer checks. |
564 | bool IsSanitizerScope = false; |
565 | |
566 | /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. |
567 | class SanitizerScope { |
568 | CodeGenFunction *CGF; |
569 | |
570 | public: |
571 | SanitizerScope(CodeGenFunction *CGF); |
572 | ~SanitizerScope(); |
573 | }; |
574 | |
575 | /// In C++, whether we are code generating a thunk. This controls whether we |
576 | /// should emit cleanups. |
577 | bool CurFuncIsThunk = false; |
578 | |
579 | /// In ARC, whether we should autorelease the return value. |
580 | bool AutoreleaseResult = false; |
581 | |
582 | /// Whether we processed a Microsoft-style asm block during CodeGen. These can |
583 | /// potentially set the return value. |
584 | bool SawAsmBlock = false; |
585 | |
586 | GlobalDecl CurSEHParent; |
587 | |
588 | /// True if the current function is an outlined SEH helper. This can be a |
589 | /// finally block or filter expression. |
590 | bool IsOutlinedSEHHelper = false; |
591 | |
592 | /// True if CodeGen currently emits code inside presereved access index |
593 | /// region. |
594 | bool IsInPreservedAIRegion = false; |
595 | |
596 | /// True if the current statement has nomerge attribute. |
597 | bool InNoMergeAttributedStmt = false; |
598 | |
599 | /// True if the current statement has noinline attribute. |
600 | bool InNoInlineAttributedStmt = false; |
601 | |
602 | /// True if the current statement has always_inline attribute. |
603 | bool InAlwaysInlineAttributedStmt = false; |
604 | |
605 | /// True if the current statement has noconvergent attribute. |
606 | bool InNoConvergentAttributedStmt = false; |
607 | |
608 | /// HLSL Branch attribute. |
609 | HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr = |
610 | HLSLControlFlowHintAttr::SpellingNotCalculated; |
611 | |
612 | // The CallExpr within the current statement that the musttail attribute |
613 | // applies to. nullptr if there is no 'musttail' on the current statement. |
614 | const CallExpr *MustTailCall = nullptr; |
615 | |
616 | /// Returns true if a function must make progress, which means the |
617 | /// mustprogress attribute can be added. |
618 | bool checkIfFunctionMustProgress() { |
619 | if (CGM.getCodeGenOpts().getFiniteLoops() == |
620 | CodeGenOptions::FiniteLoopsKind::Never) |
621 | return false; |
622 | |
623 | // C++11 and later guarantees that a thread eventually will do one of the |
624 | // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): |
625 | // - terminate, |
626 | // - make a call to a library I/O function, |
627 | // - perform an access through a volatile glvalue, or |
628 | // - perform a synchronization operation or an atomic operation. |
629 | // |
630 | // Hence each function is 'mustprogress' in C++11 or later. |
631 | return getLangOpts().CPlusPlus11; |
632 | } |
633 | |
634 | /// Returns true if a loop must make progress, which means the mustprogress |
635 | /// attribute can be added. \p HasConstantCond indicates whether the branch |
636 | /// condition is a known constant. |
637 | bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); |
638 | |
639 | const CodeGen::CGBlockInfo *BlockInfo = nullptr; |
640 | llvm::Value *BlockPointer = nullptr; |
641 | |
642 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
643 | FieldDecl *LambdaThisCaptureField = nullptr; |
644 | |
645 | /// A mapping from NRVO variables to the flags used to indicate |
646 | /// when the NRVO has been applied to this variable. |
647 | llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; |
648 | |
649 | EHScopeStack EHStack; |
650 | llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; |
651 | |
652 | // A stack of cleanups which were added to EHStack but have to be deactivated |
653 | // later before being popped or emitted. These are usually deactivated on |
654 | // exiting a `CleanupDeactivationScope` scope. For instance, after a |
655 | // full-expr. |
656 | // |
657 | // These are specially useful for correctly emitting cleanups while |
658 | // encountering branches out of expression (through stmt-expr or coroutine |
659 | // suspensions). |
660 | struct DeferredDeactivateCleanup { |
661 | EHScopeStack::stable_iterator Cleanup; |
662 | llvm::Instruction *DominatingIP; |
663 | }; |
664 | llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; |
665 | |
666 | // Enters a new scope for capturing cleanups which are deferred to be |
667 | // deactivated, all of which will be deactivated once the scope is exited. |
668 | struct CleanupDeactivationScope { |
669 | CodeGenFunction &CGF; |
670 | size_t OldDeactivateCleanupStackSize; |
671 | bool Deactivated; |
672 | CleanupDeactivationScope(CodeGenFunction &CGF) |
673 | : CGF(CGF), OldDeactivateCleanupStackSize( |
674 | CGF.DeferredDeactivationCleanupStack.size()), |
675 | Deactivated(false) {} |
676 | |
677 | void ForceDeactivate() { |
678 | assert(!Deactivated && "Deactivating already deactivated scope" ); |
679 | auto &Stack = CGF.DeferredDeactivationCleanupStack; |
680 | for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { |
681 | CGF.DeactivateCleanupBlock(Cleanup: Stack[I - 1].Cleanup, |
682 | DominatingIP: Stack[I - 1].DominatingIP); |
683 | Stack[I - 1].DominatingIP->eraseFromParent(); |
684 | } |
685 | Stack.resize(N: OldDeactivateCleanupStackSize); |
686 | Deactivated = true; |
687 | } |
688 | |
689 | ~CleanupDeactivationScope() { |
690 | if (Deactivated) |
691 | return; |
692 | ForceDeactivate(); |
693 | } |
694 | }; |
695 | |
696 | llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; |
697 | |
698 | llvm::Instruction *CurrentFuncletPad = nullptr; |
699 | |
700 | class CallLifetimeEnd final : public EHScopeStack::Cleanup { |
701 | bool isRedundantBeforeReturn() override { return true; } |
702 | |
703 | llvm::Value *Addr; |
704 | llvm::Value *Size; |
705 | |
706 | public: |
707 | CallLifetimeEnd(RawAddress addr, llvm::Value *size) |
708 | : Addr(addr.getPointer()), Size(size) {} |
709 | |
710 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
711 | CGF.EmitLifetimeEnd(Size, Addr); |
712 | } |
713 | }; |
714 | |
715 | // We are using objects of this 'cleanup' class to emit fake.use calls |
716 | // for -fextend-variable-liveness. They are placed at the end of a variable's |
717 | // scope analogous to lifetime markers. |
718 | class FakeUse final : public EHScopeStack::Cleanup { |
719 | Address Addr; |
720 | |
721 | public: |
722 | FakeUse(Address addr) : Addr(addr) {} |
723 | |
724 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
725 | CGF.EmitFakeUse(Addr); |
726 | } |
727 | }; |
728 | |
729 | /// Header for data within LifetimeExtendedCleanupStack. |
730 | struct { |
731 | /// The size of the following cleanup object. |
732 | unsigned ; |
733 | /// The kind of cleanup to push. |
734 | LLVM_PREFERRED_TYPE(CleanupKind) |
735 | unsigned : 31; |
736 | /// Whether this is a conditional cleanup. |
737 | LLVM_PREFERRED_TYPE(bool) |
738 | unsigned : 1; |
739 | |
740 | size_t () const { return Size; } |
741 | CleanupKind () const { return (CleanupKind)Kind; } |
742 | bool () const { return IsConditional; } |
743 | }; |
744 | |
745 | /// i32s containing the indexes of the cleanup destinations. |
746 | RawAddress NormalCleanupDest = RawAddress::invalid(); |
747 | |
748 | unsigned NextCleanupDestIndex = 1; |
749 | |
750 | /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. |
751 | llvm::BasicBlock *EHResumeBlock = nullptr; |
752 | |
753 | /// The exception slot. All landing pads write the current exception pointer |
754 | /// into this alloca. |
755 | llvm::Value *ExceptionSlot = nullptr; |
756 | |
757 | /// The selector slot. Under the MandatoryCleanup model, all landing pads |
758 | /// write the current selector value into this alloca. |
759 | llvm::AllocaInst *EHSelectorSlot = nullptr; |
760 | |
761 | /// A stack of exception code slots. Entering an __except block pushes a slot |
762 | /// on the stack and leaving pops one. The __exception_code() intrinsic loads |
763 | /// a value from the top of the stack. |
764 | SmallVector<Address, 1> SEHCodeSlotStack; |
765 | |
766 | /// Value returned by __exception_info intrinsic. |
767 | llvm::Value *SEHInfo = nullptr; |
768 | |
769 | /// Emits a landing pad for the current EH stack. |
770 | llvm::BasicBlock *EmitLandingPad(); |
771 | |
772 | llvm::BasicBlock *getInvokeDestImpl(); |
773 | |
774 | /// Parent loop-based directive for scan directive. |
775 | const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; |
776 | llvm::BasicBlock *OMPBeforeScanBlock = nullptr; |
777 | llvm::BasicBlock *OMPAfterScanBlock = nullptr; |
778 | llvm::BasicBlock *OMPScanExitBlock = nullptr; |
779 | llvm::BasicBlock *OMPScanDispatch = nullptr; |
780 | bool OMPFirstScanLoop = false; |
781 | |
782 | /// Manages parent directive for scan directives. |
783 | class ParentLoopDirectiveForScanRegion { |
784 | CodeGenFunction &CGF; |
785 | const OMPExecutableDirective *ParentLoopDirectiveForScan; |
786 | |
787 | public: |
788 | ParentLoopDirectiveForScanRegion( |
789 | CodeGenFunction &CGF, |
790 | const OMPExecutableDirective &ParentLoopDirectiveForScan) |
791 | : CGF(CGF), |
792 | ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { |
793 | CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; |
794 | } |
795 | ~ParentLoopDirectiveForScanRegion() { |
796 | CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; |
797 | } |
798 | }; |
799 | |
800 | template <class T> |
801 | typename DominatingValue<T>::saved_type saveValueInCond(T value) { |
802 | return DominatingValue<T>::save(*this, value); |
803 | } |
804 | |
805 | class CGFPOptionsRAII { |
806 | public: |
807 | CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); |
808 | CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); |
809 | ~CGFPOptionsRAII(); |
810 | |
811 | private: |
812 | void ConstructorHelper(FPOptions FPFeatures); |
813 | CodeGenFunction &CGF; |
814 | FPOptions OldFPFeatures; |
815 | llvm::fp::ExceptionBehavior OldExcept; |
816 | llvm::RoundingMode OldRounding; |
817 | std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; |
818 | }; |
819 | FPOptions CurFPFeatures; |
820 | |
821 | class CGAtomicOptionsRAII { |
822 | public: |
823 | CGAtomicOptionsRAII(CodeGenModule &CGM_, AtomicOptions AO) |
824 | : CGM(CGM_), SavedAtomicOpts(CGM.getAtomicOpts()) { |
825 | CGM.setAtomicOpts(AO); |
826 | } |
827 | CGAtomicOptionsRAII(CodeGenModule &CGM_, const AtomicAttr *AA) |
828 | : CGM(CGM_), SavedAtomicOpts(CGM.getAtomicOpts()) { |
829 | if (!AA) |
830 | return; |
831 | AtomicOptions AO = SavedAtomicOpts; |
832 | for (auto Option : AA->atomicOptions()) { |
833 | switch (Option) { |
834 | case AtomicAttr::remote_memory: |
835 | AO.remote_memory = true; |
836 | break; |
837 | case AtomicAttr::no_remote_memory: |
838 | AO.remote_memory = false; |
839 | break; |
840 | case AtomicAttr::fine_grained_memory: |
841 | AO.fine_grained_memory = true; |
842 | break; |
843 | case AtomicAttr::no_fine_grained_memory: |
844 | AO.fine_grained_memory = false; |
845 | break; |
846 | case AtomicAttr::ignore_denormal_mode: |
847 | AO.ignore_denormal_mode = true; |
848 | break; |
849 | case AtomicAttr::no_ignore_denormal_mode: |
850 | AO.ignore_denormal_mode = false; |
851 | break; |
852 | } |
853 | } |
854 | CGM.setAtomicOpts(AO); |
855 | } |
856 | |
857 | CGAtomicOptionsRAII(const CGAtomicOptionsRAII &) = delete; |
858 | CGAtomicOptionsRAII &operator=(const CGAtomicOptionsRAII &) = delete; |
859 | ~CGAtomicOptionsRAII() { CGM.setAtomicOpts(SavedAtomicOpts); } |
860 | |
861 | private: |
862 | CodeGenModule &CGM; |
863 | AtomicOptions SavedAtomicOpts; |
864 | }; |
865 | |
866 | public: |
867 | /// ObjCEHValueStack - Stack of Objective-C exception values, used for |
868 | /// rethrows. |
869 | SmallVector<llvm::Value *, 8> ObjCEHValueStack; |
870 | |
871 | /// A class controlling the emission of a finally block. |
872 | class FinallyInfo { |
873 | /// Where the catchall's edge through the cleanup should go. |
874 | JumpDest RethrowDest; |
875 | |
876 | /// A function to call to enter the catch. |
877 | llvm::FunctionCallee BeginCatchFn; |
878 | |
879 | /// An i1 variable indicating whether or not the @finally is |
880 | /// running for an exception. |
881 | llvm::AllocaInst *ForEHVar = nullptr; |
882 | |
883 | /// An i8* variable into which the exception pointer to rethrow |
884 | /// has been saved. |
885 | llvm::AllocaInst *SavedExnVar = nullptr; |
886 | |
887 | public: |
888 | void enter(CodeGenFunction &CGF, const Stmt *Finally, |
889 | llvm::FunctionCallee beginCatchFn, |
890 | llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); |
891 | void exit(CodeGenFunction &CGF); |
892 | }; |
893 | |
894 | /// Returns true inside SEH __try blocks. |
895 | bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } |
896 | |
897 | /// Returns true while emitting a cleanuppad. |
898 | bool isCleanupPadScope() const { |
899 | return CurrentFuncletPad && isa<llvm::CleanupPadInst>(Val: CurrentFuncletPad); |
900 | } |
901 | |
902 | /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
903 | /// current full-expression. Safe against the possibility that |
904 | /// we're currently inside a conditionally-evaluated expression. |
905 | template <class T, class... As> |
906 | void pushFullExprCleanup(CleanupKind kind, As... A) { |
907 | // If we're not in a conditional branch, or if none of the |
908 | // arguments requires saving, then use the unconditional cleanup. |
909 | if (!isInConditionalBranch()) |
910 | return EHStack.pushCleanup<T>(kind, A...); |
911 | |
912 | // Stash values in a tuple so we can guarantee the order of saves. |
913 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
914 | SavedTuple Saved{saveValueInCond(A)...}; |
915 | |
916 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
917 | EHStack.pushCleanupTuple<CleanupType>(kind, Saved); |
918 | initFullExprCleanup(); |
919 | } |
920 | |
921 | /// Queue a cleanup to be pushed after finishing the current full-expression, |
922 | /// potentially with an active flag. |
923 | template <class T, class... As> |
924 | void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { |
925 | if (!isInConditionalBranch()) |
926 | return pushCleanupAfterFullExprWithActiveFlag<T>( |
927 | Kind, RawAddress::invalid(), A...); |
928 | |
929 | RawAddress ActiveFlag = createCleanupActiveFlag(); |
930 | assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && |
931 | "cleanup active flag should never need saving" ); |
932 | |
933 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
934 | SavedTuple Saved{saveValueInCond(A)...}; |
935 | |
936 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
937 | pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, |
938 | Saved); |
939 | } |
940 | |
941 | template <class T, class... As> |
942 | void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, |
943 | RawAddress ActiveFlag, As... A) { |
944 | LifetimeExtendedCleanupHeader = {.Size: sizeof(T), .Kind: Kind, |
945 | .IsConditional: ActiveFlag.isValid()}; |
946 | |
947 | size_t OldSize = LifetimeExtendedCleanupStack.size(); |
948 | LifetimeExtendedCleanupStack.resize( |
949 | N: LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + |
950 | (Header.IsConditional ? sizeof(ActiveFlag) : 0)); |
951 | |
952 | static_assert(sizeof(Header) % alignof(T) == 0, |
953 | "Cleanup will be allocated on misaligned address" ); |
954 | char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; |
955 | new (Buffer) LifetimeExtendedCleanupHeader(Header); |
956 | new (Buffer + sizeof(Header)) T(A...); |
957 | if (Header.IsConditional) |
958 | new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); |
959 | } |
960 | |
961 | // Push a cleanup onto EHStack and deactivate it later. It is usually |
962 | // deactivated when exiting a `CleanupDeactivationScope` (for example: after a |
963 | // full expression). |
964 | template <class T, class... As> |
965 | void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { |
966 | // Placeholder dominating IP for this cleanup. |
967 | llvm::Instruction *DominatingIP = |
968 | Builder.CreateFlagLoad(Addr: llvm::Constant::getNullValue(Ty: Int8PtrTy)); |
969 | EHStack.pushCleanup<T>(Kind, A...); |
970 | DeferredDeactivationCleanupStack.push_back( |
971 | Elt: {.Cleanup: EHStack.stable_begin(), .DominatingIP: DominatingIP}); |
972 | } |
973 | |
974 | /// Set up the last cleanup that was pushed as a conditional |
975 | /// full-expression cleanup. |
976 | void initFullExprCleanup() { |
977 | initFullExprCleanupWithFlag(ActiveFlag: createCleanupActiveFlag()); |
978 | } |
979 | |
980 | void initFullExprCleanupWithFlag(RawAddress ActiveFlag); |
981 | RawAddress createCleanupActiveFlag(); |
982 | |
983 | /// PushDestructorCleanup - Push a cleanup to call the |
984 | /// complete-object destructor of an object of the given type at the |
985 | /// given address. Does nothing if T is not a C++ class type with a |
986 | /// non-trivial destructor. |
987 | void PushDestructorCleanup(QualType T, Address Addr); |
988 | |
989 | /// PushDestructorCleanup - Push a cleanup to call the |
990 | /// complete-object variant of the given destructor on the object at |
991 | /// the given address. |
992 | void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, |
993 | Address Addr); |
994 | |
995 | /// PopCleanupBlock - Will pop the cleanup entry on the stack and |
996 | /// process all branch fixups. |
997 | void PopCleanupBlock(bool FallThroughIsBranchThrough = false, |
998 | bool ForDeactivation = false); |
999 | |
1000 | /// DeactivateCleanupBlock - Deactivates the given cleanup block. |
1001 | /// The block cannot be reactivated. Pops it if it's the top of the |
1002 | /// stack. |
1003 | /// |
1004 | /// \param DominatingIP - An instruction which is known to |
1005 | /// dominate the current IP (if set) and which lies along |
1006 | /// all paths of execution between the current IP and the |
1007 | /// the point at which the cleanup comes into scope. |
1008 | void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
1009 | llvm::Instruction *DominatingIP); |
1010 | |
1011 | /// ActivateCleanupBlock - Activates an initially-inactive cleanup. |
1012 | /// Cannot be used to resurrect a deactivated cleanup. |
1013 | /// |
1014 | /// \param DominatingIP - An instruction which is known to |
1015 | /// dominate the current IP (if set) and which lies along |
1016 | /// all paths of execution between the current IP and the |
1017 | /// the point at which the cleanup comes into scope. |
1018 | void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
1019 | llvm::Instruction *DominatingIP); |
1020 | |
1021 | /// Enters a new scope for capturing cleanups, all of which |
1022 | /// will be executed once the scope is exited. |
1023 | class RunCleanupsScope { |
1024 | EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; |
1025 | size_t LifetimeExtendedCleanupStackSize; |
1026 | CleanupDeactivationScope DeactivateCleanups; |
1027 | bool OldDidCallStackSave; |
1028 | |
1029 | protected: |
1030 | bool PerformCleanup; |
1031 | |
1032 | private: |
1033 | RunCleanupsScope(const RunCleanupsScope &) = delete; |
1034 | void operator=(const RunCleanupsScope &) = delete; |
1035 | |
1036 | protected: |
1037 | CodeGenFunction &CGF; |
1038 | |
1039 | public: |
1040 | /// Enter a new cleanup scope. |
1041 | explicit RunCleanupsScope(CodeGenFunction &CGF) |
1042 | : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { |
1043 | CleanupStackDepth = CGF.EHStack.stable_begin(); |
1044 | LifetimeExtendedCleanupStackSize = |
1045 | CGF.LifetimeExtendedCleanupStack.size(); |
1046 | OldDidCallStackSave = CGF.DidCallStackSave; |
1047 | CGF.DidCallStackSave = false; |
1048 | OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; |
1049 | CGF.CurrentCleanupScopeDepth = CleanupStackDepth; |
1050 | } |
1051 | |
1052 | /// Exit this cleanup scope, emitting any accumulated cleanups. |
1053 | ~RunCleanupsScope() { |
1054 | if (PerformCleanup) |
1055 | ForceCleanup(); |
1056 | } |
1057 | |
1058 | /// Determine whether this scope requires any cleanups. |
1059 | bool requiresCleanups() const { |
1060 | return CGF.EHStack.stable_begin() != CleanupStackDepth; |
1061 | } |
1062 | |
1063 | /// Force the emission of cleanups now, instead of waiting |
1064 | /// until this object is destroyed. |
1065 | /// \param ValuesToReload - A list of values that need to be available at |
1066 | /// the insertion point after cleanup emission. If cleanup emission created |
1067 | /// a shared cleanup block, these value pointers will be rewritten. |
1068 | /// Otherwise, they not will be modified. |
1069 | void |
1070 | ForceCleanup(std::initializer_list<llvm::Value **> ValuesToReload = {}) { |
1071 | assert(PerformCleanup && "Already forced cleanup" ); |
1072 | CGF.DidCallStackSave = OldDidCallStackSave; |
1073 | DeactivateCleanups.ForceDeactivate(); |
1074 | CGF.PopCleanupBlocks(OldCleanupStackSize: CleanupStackDepth, OldLifetimeExtendedStackSize: LifetimeExtendedCleanupStackSize, |
1075 | ValuesToReload); |
1076 | PerformCleanup = false; |
1077 | CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; |
1078 | } |
1079 | }; |
1080 | |
1081 | // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. |
1082 | EHScopeStack::stable_iterator CurrentCleanupScopeDepth = |
1083 | EHScopeStack::stable_end(); |
1084 | |
1085 | class LexicalScope : public RunCleanupsScope { |
1086 | SourceRange Range; |
1087 | SmallVector<const LabelDecl *, 4> Labels; |
1088 | LexicalScope *ParentScope; |
1089 | |
1090 | LexicalScope(const LexicalScope &) = delete; |
1091 | void operator=(const LexicalScope &) = delete; |
1092 | |
1093 | public: |
1094 | /// Enter a new cleanup scope. |
1095 | explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range); |
1096 | |
1097 | void addLabel(const LabelDecl *label) { |
1098 | assert(PerformCleanup && "adding label to dead scope?" ); |
1099 | Labels.push_back(Elt: label); |
1100 | } |
1101 | |
1102 | /// Exit this cleanup scope, emitting any accumulated |
1103 | /// cleanups. |
1104 | ~LexicalScope(); |
1105 | |
1106 | /// Force the emission of cleanups now, instead of waiting |
1107 | /// until this object is destroyed. |
1108 | void ForceCleanup() { |
1109 | CGF.CurLexicalScope = ParentScope; |
1110 | RunCleanupsScope::ForceCleanup(); |
1111 | |
1112 | if (!Labels.empty()) |
1113 | rescopeLabels(); |
1114 | } |
1115 | |
1116 | bool hasLabels() const { return !Labels.empty(); } |
1117 | |
1118 | void rescopeLabels(); |
1119 | }; |
1120 | |
1121 | typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; |
1122 | |
1123 | /// The class used to assign some variables some temporarily addresses. |
1124 | class OMPMapVars { |
1125 | DeclMapTy SavedLocals; |
1126 | DeclMapTy SavedTempAddresses; |
1127 | OMPMapVars(const OMPMapVars &) = delete; |
1128 | void operator=(const OMPMapVars &) = delete; |
1129 | |
1130 | public: |
1131 | explicit OMPMapVars() = default; |
1132 | ~OMPMapVars() { |
1133 | assert(SavedLocals.empty() && "Did not restored original addresses." ); |
1134 | }; |
1135 | |
1136 | /// Sets the address of the variable \p LocalVD to be \p TempAddr in |
1137 | /// function \p CGF. |
1138 | /// \return true if at least one variable was set already, false otherwise. |
1139 | bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, |
1140 | Address TempAddr) { |
1141 | LocalVD = LocalVD->getCanonicalDecl(); |
1142 | // Only save it once. |
1143 | if (SavedLocals.count(Val: LocalVD)) |
1144 | return false; |
1145 | |
1146 | // Copy the existing local entry to SavedLocals. |
1147 | auto it = CGF.LocalDeclMap.find(Val: LocalVD); |
1148 | if (it != CGF.LocalDeclMap.end()) |
1149 | SavedLocals.try_emplace(Key: LocalVD, Args&: it->second); |
1150 | else |
1151 | SavedLocals.try_emplace(Key: LocalVD, Args: Address::invalid()); |
1152 | |
1153 | // Generate the private entry. |
1154 | QualType VarTy = LocalVD->getType(); |
1155 | if (VarTy->isReferenceType()) { |
1156 | Address Temp = CGF.CreateMemTemp(T: VarTy); |
1157 | CGF.Builder.CreateStore(Val: TempAddr.emitRawPointer(CGF), Addr: Temp); |
1158 | TempAddr = Temp; |
1159 | } |
1160 | SavedTempAddresses.try_emplace(Key: LocalVD, Args&: TempAddr); |
1161 | |
1162 | return true; |
1163 | } |
1164 | |
1165 | /// Applies new addresses to the list of the variables. |
1166 | /// \return true if at least one variable is using new address, false |
1167 | /// otherwise. |
1168 | bool apply(CodeGenFunction &CGF) { |
1169 | copyInto(Src: SavedTempAddresses, Dest&: CGF.LocalDeclMap); |
1170 | SavedTempAddresses.clear(); |
1171 | return !SavedLocals.empty(); |
1172 | } |
1173 | |
1174 | /// Restores original addresses of the variables. |
1175 | void restore(CodeGenFunction &CGF) { |
1176 | if (!SavedLocals.empty()) { |
1177 | copyInto(Src: SavedLocals, Dest&: CGF.LocalDeclMap); |
1178 | SavedLocals.clear(); |
1179 | } |
1180 | } |
1181 | |
1182 | private: |
1183 | /// Copy all the entries in the source map over the corresponding |
1184 | /// entries in the destination, which must exist. |
1185 | static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { |
1186 | for (auto &[Decl, Addr] : Src) { |
1187 | if (!Addr.isValid()) |
1188 | Dest.erase(Val: Decl); |
1189 | else |
1190 | Dest.insert_or_assign(Key: Decl, Val: Addr); |
1191 | } |
1192 | } |
1193 | }; |
1194 | |
1195 | /// The scope used to remap some variables as private in the OpenMP loop body |
1196 | /// (or other captured region emitted without outlining), and to restore old |
1197 | /// vars back on exit. |
1198 | class OMPPrivateScope : public RunCleanupsScope { |
1199 | OMPMapVars MappedVars; |
1200 | OMPPrivateScope(const OMPPrivateScope &) = delete; |
1201 | void operator=(const OMPPrivateScope &) = delete; |
1202 | |
1203 | public: |
1204 | /// Enter a new OpenMP private scope. |
1205 | explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} |
1206 | |
1207 | /// Registers \p LocalVD variable as a private with \p Addr as the address |
1208 | /// of the corresponding private variable. \p |
1209 | /// PrivateGen is the address of the generated private variable. |
1210 | /// \return true if the variable is registered as private, false if it has |
1211 | /// been privatized already. |
1212 | bool addPrivate(const VarDecl *LocalVD, Address Addr) { |
1213 | assert(PerformCleanup && "adding private to dead scope" ); |
1214 | return MappedVars.setVarAddr(CGF, LocalVD, TempAddr: Addr); |
1215 | } |
1216 | |
1217 | /// Privatizes local variables previously registered as private. |
1218 | /// Registration is separate from the actual privatization to allow |
1219 | /// initializers use values of the original variables, not the private one. |
1220 | /// This is important, for example, if the private variable is a class |
1221 | /// variable initialized by a constructor that references other private |
1222 | /// variables. But at initialization original variables must be used, not |
1223 | /// private copies. |
1224 | /// \return true if at least one variable was privatized, false otherwise. |
1225 | bool Privatize() { return MappedVars.apply(CGF); } |
1226 | |
1227 | void ForceCleanup() { |
1228 | RunCleanupsScope::ForceCleanup(); |
1229 | restoreMap(); |
1230 | } |
1231 | |
1232 | /// Exit scope - all the mapped variables are restored. |
1233 | ~OMPPrivateScope() { |
1234 | if (PerformCleanup) |
1235 | ForceCleanup(); |
1236 | } |
1237 | |
1238 | /// Checks if the global variable is captured in current function. |
1239 | bool isGlobalVarCaptured(const VarDecl *VD) const { |
1240 | VD = VD->getCanonicalDecl(); |
1241 | return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(Val: VD) > 0; |
1242 | } |
1243 | |
1244 | /// Restore all mapped variables w/o clean up. This is usefully when we want |
1245 | /// to reference the original variables but don't want the clean up because |
1246 | /// that could emit lifetime end too early, causing backend issue #56913. |
1247 | void restoreMap() { MappedVars.restore(CGF); } |
1248 | }; |
1249 | |
1250 | /// Save/restore original map of previously emitted local vars in case when we |
1251 | /// need to duplicate emission of the same code several times in the same |
1252 | /// function for OpenMP code. |
1253 | class OMPLocalDeclMapRAII { |
1254 | CodeGenFunction &CGF; |
1255 | DeclMapTy SavedMap; |
1256 | |
1257 | public: |
1258 | OMPLocalDeclMapRAII(CodeGenFunction &CGF) |
1259 | : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} |
1260 | ~OMPLocalDeclMapRAII() { SavedMap.swap(RHS&: CGF.LocalDeclMap); } |
1261 | }; |
1262 | |
1263 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1264 | /// that have been added. |
1265 | void |
1266 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1267 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1268 | |
1269 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1270 | /// that have been added, then adds all lifetime-extended cleanups from |
1271 | /// the given position to the stack. |
1272 | void |
1273 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1274 | size_t OldLifetimeExtendedStackSize, |
1275 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1276 | |
1277 | void ResolveBranchFixups(llvm::BasicBlock *Target); |
1278 | |
1279 | /// The given basic block lies in the current EH scope, but may be a |
1280 | /// target of a potentially scope-crossing jump; get a stable handle |
1281 | /// to which we can perform this jump later. |
1282 | JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { |
1283 | return JumpDest(Target, EHStack.getInnermostNormalCleanup(), |
1284 | NextCleanupDestIndex++); |
1285 | } |
1286 | |
1287 | /// The given basic block lies in the current EH scope, but may be a |
1288 | /// target of a potentially scope-crossing jump; get a stable handle |
1289 | /// to which we can perform this jump later. |
1290 | JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { |
1291 | return getJumpDestInCurrentScope(Target: createBasicBlock(name: Name)); |
1292 | } |
1293 | |
1294 | /// EmitBranchThroughCleanup - Emit a branch from the current insert |
1295 | /// block through the normal cleanup handling code (if any) and then |
1296 | /// on to \arg Dest. |
1297 | void EmitBranchThroughCleanup(JumpDest Dest); |
1298 | |
1299 | /// isObviouslyBranchWithoutCleanups - Return true if a branch to the |
1300 | /// specified destination obviously has no cleanups to run. 'false' is always |
1301 | /// a conservatively correct answer for this method. |
1302 | bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; |
1303 | |
1304 | /// popCatchScope - Pops the catch scope at the top of the EHScope |
1305 | /// stack, emitting any required code (other than the catch handlers |
1306 | /// themselves). |
1307 | void popCatchScope(); |
1308 | |
1309 | llvm::BasicBlock *getEHResumeBlock(bool isCleanup); |
1310 | llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1311 | llvm::BasicBlock * |
1312 | getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1313 | |
1314 | /// An object to manage conditionally-evaluated expressions. |
1315 | class ConditionalEvaluation { |
1316 | llvm::BasicBlock *StartBB; |
1317 | |
1318 | public: |
1319 | ConditionalEvaluation(CodeGenFunction &CGF) |
1320 | : StartBB(CGF.Builder.GetInsertBlock()) {} |
1321 | |
1322 | void begin(CodeGenFunction &CGF) { |
1323 | assert(CGF.OutermostConditional != this); |
1324 | if (!CGF.OutermostConditional) |
1325 | CGF.OutermostConditional = this; |
1326 | } |
1327 | |
1328 | void end(CodeGenFunction &CGF) { |
1329 | assert(CGF.OutermostConditional != nullptr); |
1330 | if (CGF.OutermostConditional == this) |
1331 | CGF.OutermostConditional = nullptr; |
1332 | } |
1333 | |
1334 | /// Returns a block which will be executed prior to each |
1335 | /// evaluation of the conditional code. |
1336 | llvm::BasicBlock *getStartingBlock() const { return StartBB; } |
1337 | }; |
1338 | |
1339 | /// isInConditionalBranch - Return true if we're currently emitting |
1340 | /// one branch or the other of a conditional expression. |
1341 | bool isInConditionalBranch() const { return OutermostConditional != nullptr; } |
1342 | |
1343 | void setBeforeOutermostConditional(llvm::Value *value, Address addr, |
1344 | CodeGenFunction &CGF) { |
1345 | assert(isInConditionalBranch()); |
1346 | llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); |
1347 | auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), |
1348 | block->back().getIterator()); |
1349 | store->setAlignment(addr.getAlignment().getAsAlign()); |
1350 | } |
1351 | |
1352 | /// An RAII object to record that we're evaluating a statement |
1353 | /// expression. |
1354 | class StmtExprEvaluation { |
1355 | CodeGenFunction &CGF; |
1356 | |
1357 | /// We have to save the outermost conditional: cleanups in a |
1358 | /// statement expression aren't conditional just because the |
1359 | /// StmtExpr is. |
1360 | ConditionalEvaluation *SavedOutermostConditional; |
1361 | |
1362 | public: |
1363 | StmtExprEvaluation(CodeGenFunction &CGF) |
1364 | : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { |
1365 | CGF.OutermostConditional = nullptr; |
1366 | } |
1367 | |
1368 | ~StmtExprEvaluation() { |
1369 | CGF.OutermostConditional = SavedOutermostConditional; |
1370 | CGF.EnsureInsertPoint(); |
1371 | } |
1372 | }; |
1373 | |
1374 | /// An object which temporarily prevents a value from being |
1375 | /// destroyed by aggressive peephole optimizations that assume that |
1376 | /// all uses of a value have been realized in the IR. |
1377 | class PeepholeProtection { |
1378 | llvm::Instruction *Inst = nullptr; |
1379 | friend class CodeGenFunction; |
1380 | |
1381 | public: |
1382 | PeepholeProtection() = default; |
1383 | }; |
1384 | |
1385 | /// A non-RAII class containing all the information about a bound |
1386 | /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for |
1387 | /// this which makes individual mappings very simple; using this |
1388 | /// class directly is useful when you have a variable number of |
1389 | /// opaque values or don't want the RAII functionality for some |
1390 | /// reason. |
1391 | class OpaqueValueMappingData { |
1392 | const OpaqueValueExpr *OpaqueValue; |
1393 | bool BoundLValue; |
1394 | CodeGenFunction::PeepholeProtection Protection; |
1395 | |
1396 | OpaqueValueMappingData(const OpaqueValueExpr *ov, bool boundLValue) |
1397 | : OpaqueValue(ov), BoundLValue(boundLValue) {} |
1398 | |
1399 | public: |
1400 | OpaqueValueMappingData() : OpaqueValue(nullptr) {} |
1401 | |
1402 | static bool shouldBindAsLValue(const Expr *expr) { |
1403 | // gl-values should be bound as l-values for obvious reasons. |
1404 | // Records should be bound as l-values because IR generation |
1405 | // always keeps them in memory. Expressions of function type |
1406 | // act exactly like l-values but are formally required to be |
1407 | // r-values in C. |
1408 | return expr->isGLValue() || expr->getType()->isFunctionType() || |
1409 | hasAggregateEvaluationKind(T: expr->getType()); |
1410 | } |
1411 | |
1412 | static OpaqueValueMappingData |
1413 | bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e) { |
1414 | if (shouldBindAsLValue(expr: ov)) |
1415 | return bind(CGF, ov, lv: CGF.EmitLValue(E: e)); |
1416 | return bind(CGF, ov, rv: CGF.EmitAnyExpr(E: e)); |
1417 | } |
1418 | |
1419 | static OpaqueValueMappingData |
1420 | bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv) { |
1421 | assert(shouldBindAsLValue(ov)); |
1422 | CGF.OpaqueLValues.insert(KV: std::make_pair(x&: ov, y: lv)); |
1423 | return OpaqueValueMappingData(ov, true); |
1424 | } |
1425 | |
1426 | static OpaqueValueMappingData |
1427 | bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv) { |
1428 | assert(!shouldBindAsLValue(ov)); |
1429 | CGF.OpaqueRValues.insert(KV: std::make_pair(x&: ov, y: rv)); |
1430 | |
1431 | OpaqueValueMappingData data(ov, false); |
1432 | |
1433 | // Work around an extremely aggressive peephole optimization in |
1434 | // EmitScalarConversion which assumes that all other uses of a |
1435 | // value are extant. |
1436 | data.Protection = CGF.protectFromPeepholes(rvalue: rv); |
1437 | |
1438 | return data; |
1439 | } |
1440 | |
1441 | bool isValid() const { return OpaqueValue != nullptr; } |
1442 | void clear() { OpaqueValue = nullptr; } |
1443 | |
1444 | void unbind(CodeGenFunction &CGF) { |
1445 | assert(OpaqueValue && "no data to unbind!" ); |
1446 | |
1447 | if (BoundLValue) { |
1448 | CGF.OpaqueLValues.erase(Val: OpaqueValue); |
1449 | } else { |
1450 | CGF.OpaqueRValues.erase(Val: OpaqueValue); |
1451 | CGF.unprotectFromPeepholes(protection: Protection); |
1452 | } |
1453 | } |
1454 | }; |
1455 | |
1456 | /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. |
1457 | class OpaqueValueMapping { |
1458 | CodeGenFunction &CGF; |
1459 | OpaqueValueMappingData Data; |
1460 | |
1461 | public: |
1462 | static bool shouldBindAsLValue(const Expr *expr) { |
1463 | return OpaqueValueMappingData::shouldBindAsLValue(expr); |
1464 | } |
1465 | |
1466 | /// Build the opaque value mapping for the given conditional |
1467 | /// operator if it's the GNU ?: extension. This is a common |
1468 | /// enough pattern that the convenience operator is really |
1469 | /// helpful. |
1470 | /// |
1471 | OpaqueValueMapping(CodeGenFunction &CGF, |
1472 | const AbstractConditionalOperator *op) |
1473 | : CGF(CGF) { |
1474 | if (isa<ConditionalOperator>(Val: op)) |
1475 | // Leave Data empty. |
1476 | return; |
1477 | |
1478 | const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(Val: op); |
1479 | Data = OpaqueValueMappingData::bind(CGF, ov: e->getOpaqueValue(), |
1480 | e: e->getCommon()); |
1481 | } |
1482 | |
1483 | /// Build the opaque value mapping for an OpaqueValueExpr whose source |
1484 | /// expression is set to the expression the OVE represents. |
1485 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) |
1486 | : CGF(CGF) { |
1487 | if (OV) { |
1488 | assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " |
1489 | "for OVE with no source expression" ); |
1490 | Data = OpaqueValueMappingData::bind(CGF, ov: OV, e: OV->getSourceExpr()); |
1491 | } |
1492 | } |
1493 | |
1494 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, |
1495 | LValue lvalue) |
1496 | : CGF(CGF), |
1497 | Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, lv: lvalue)) {} |
1498 | |
1499 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, |
1500 | RValue rvalue) |
1501 | : CGF(CGF), |
1502 | Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, rv: rvalue)) {} |
1503 | |
1504 | void pop() { |
1505 | Data.unbind(CGF); |
1506 | Data.clear(); |
1507 | } |
1508 | |
1509 | ~OpaqueValueMapping() { |
1510 | if (Data.isValid()) |
1511 | Data.unbind(CGF); |
1512 | } |
1513 | }; |
1514 | |
1515 | private: |
1516 | CGDebugInfo *DebugInfo; |
1517 | /// Used to create unique names for artificial VLA size debug info variables. |
1518 | unsigned VLAExprCounter = 0; |
1519 | bool DisableDebugInfo = false; |
1520 | |
1521 | /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid |
1522 | /// calling llvm.stacksave for multiple VLAs in the same scope. |
1523 | bool DidCallStackSave = false; |
1524 | |
1525 | /// IndirectBranch - The first time an indirect goto is seen we create a block |
1526 | /// with an indirect branch. Every time we see the address of a label taken, |
1527 | /// we add the label to the indirect goto. Every subsequent indirect goto is |
1528 | /// codegen'd as a jump to the IndirectBranch's basic block. |
1529 | llvm::IndirectBrInst *IndirectBranch = nullptr; |
1530 | |
1531 | /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C |
1532 | /// decls. |
1533 | DeclMapTy LocalDeclMap; |
1534 | |
1535 | // Keep track of the cleanups for callee-destructed parameters pushed to the |
1536 | // cleanup stack so that they can be deactivated later. |
1537 | llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> |
1538 | CalleeDestructedParamCleanups; |
1539 | |
1540 | /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this |
1541 | /// will contain a mapping from said ParmVarDecl to its implicit "object_size" |
1542 | /// parameter. |
1543 | llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> |
1544 | SizeArguments; |
1545 | |
1546 | /// Track escaped local variables with auto storage. Used during SEH |
1547 | /// outlining to produce a call to llvm.localescape. |
1548 | llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; |
1549 | |
1550 | /// LabelMap - This keeps track of the LLVM basic block for each C label. |
1551 | llvm::DenseMap<const LabelDecl *, JumpDest> LabelMap; |
1552 | |
1553 | // BreakContinueStack - This keeps track of where break and continue |
1554 | // statements should jump to. |
1555 | struct BreakContinue { |
1556 | BreakContinue(JumpDest Break, JumpDest Continue) |
1557 | : BreakBlock(Break), ContinueBlock(Continue) {} |
1558 | |
1559 | JumpDest BreakBlock; |
1560 | JumpDest ContinueBlock; |
1561 | }; |
1562 | SmallVector<BreakContinue, 8> BreakContinueStack; |
1563 | |
1564 | /// Handles cancellation exit points in OpenMP-related constructs. |
1565 | class OpenMPCancelExitStack { |
1566 | /// Tracks cancellation exit point and join point for cancel-related exit |
1567 | /// and normal exit. |
1568 | struct CancelExit { |
1569 | CancelExit() = default; |
1570 | CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, |
1571 | JumpDest ContBlock) |
1572 | : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} |
1573 | OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; |
1574 | /// true if the exit block has been emitted already by the special |
1575 | /// emitExit() call, false if the default codegen is used. |
1576 | bool HasBeenEmitted = false; |
1577 | JumpDest ExitBlock; |
1578 | JumpDest ContBlock; |
1579 | }; |
1580 | |
1581 | SmallVector<CancelExit, 8> Stack; |
1582 | |
1583 | public: |
1584 | OpenMPCancelExitStack() : Stack(1) {} |
1585 | ~OpenMPCancelExitStack() = default; |
1586 | /// Fetches the exit block for the current OpenMP construct. |
1587 | JumpDest getExitBlock() const { return Stack.back().ExitBlock; } |
1588 | /// Emits exit block with special codegen procedure specific for the related |
1589 | /// OpenMP construct + emits code for normal construct cleanup. |
1590 | void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
1591 | const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { |
1592 | if (Stack.back().Kind == Kind && getExitBlock().isValid()) { |
1593 | assert(CGF.getOMPCancelDestination(Kind).isValid()); |
1594 | assert(CGF.HaveInsertPoint()); |
1595 | assert(!Stack.back().HasBeenEmitted); |
1596 | auto IP = CGF.Builder.saveAndClearIP(); |
1597 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1598 | CodeGen(CGF); |
1599 | CGF.EmitBranch(Block: Stack.back().ContBlock.getBlock()); |
1600 | CGF.Builder.restoreIP(IP); |
1601 | Stack.back().HasBeenEmitted = true; |
1602 | } |
1603 | CodeGen(CGF); |
1604 | } |
1605 | /// Enter the cancel supporting \a Kind construct. |
1606 | /// \param Kind OpenMP directive that supports cancel constructs. |
1607 | /// \param HasCancel true, if the construct has inner cancel directive, |
1608 | /// false otherwise. |
1609 | void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { |
1610 | Stack.push_back(Elt: {Kind, |
1611 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.exit" ) |
1612 | : JumpDest(), |
1613 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.cont" ) |
1614 | : JumpDest()}); |
1615 | } |
1616 | /// Emits default exit point for the cancel construct (if the special one |
1617 | /// has not be used) + join point for cancel/normal exits. |
1618 | void exit(CodeGenFunction &CGF) { |
1619 | if (getExitBlock().isValid()) { |
1620 | assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); |
1621 | bool HaveIP = CGF.HaveInsertPoint(); |
1622 | if (!Stack.back().HasBeenEmitted) { |
1623 | if (HaveIP) |
1624 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1625 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1626 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1627 | } |
1628 | CGF.EmitBlock(BB: Stack.back().ContBlock.getBlock()); |
1629 | if (!HaveIP) { |
1630 | CGF.Builder.CreateUnreachable(); |
1631 | CGF.Builder.ClearInsertionPoint(); |
1632 | } |
1633 | } |
1634 | Stack.pop_back(); |
1635 | } |
1636 | }; |
1637 | OpenMPCancelExitStack OMPCancelStack; |
1638 | |
1639 | /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. |
1640 | llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
1641 | Stmt::Likelihood LH); |
1642 | |
1643 | std::unique_ptr<CodeGenPGO> PGO; |
1644 | |
1645 | /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. |
1646 | Address MCDCCondBitmapAddr = Address::invalid(); |
1647 | |
1648 | /// Calculate branch weights appropriate for PGO data |
1649 | llvm::MDNode *createProfileWeights(uint64_t TrueCount, |
1650 | uint64_t FalseCount) const; |
1651 | llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; |
1652 | llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, |
1653 | uint64_t LoopCount) const; |
1654 | |
1655 | public: |
1656 | std::pair<bool, bool> getIsCounterPair(const Stmt *S) const; |
1657 | void markStmtAsUsed(bool Skipped, const Stmt *S); |
1658 | void markStmtMaybeUsed(const Stmt *S); |
1659 | |
1660 | /// Increment the profiler's counter for the given statement by \p StepV. |
1661 | /// If \p StepV is null, the default increment is 1. |
1662 | void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr); |
1663 | |
1664 | bool isMCDCCoverageEnabled() const { |
1665 | return (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1666 | CGM.getCodeGenOpts().MCDCCoverage && |
1667 | !CurFn->hasFnAttribute(Kind: llvm::Attribute::NoProfile)); |
1668 | } |
1669 | |
1670 | /// Allocate a temp value on the stack that MCDC can use to track condition |
1671 | /// results. |
1672 | void maybeCreateMCDCCondBitmap(); |
1673 | |
1674 | bool isBinaryLogicalOp(const Expr *E) const { |
1675 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: E->IgnoreParens()); |
1676 | return (BOp && BOp->isLogicalOp()); |
1677 | } |
1678 | |
1679 | /// Zero-init the MCDC temp value. |
1680 | void maybeResetMCDCCondBitmap(const Expr *E); |
1681 | |
1682 | /// Increment the profiler's counter for the given expression by \p StepV. |
1683 | /// If \p StepV is null, the default increment is 1. |
1684 | void maybeUpdateMCDCTestVectorBitmap(const Expr *E); |
1685 | |
1686 | /// Update the MCDC temp value with the condition's evaluated result. |
1687 | void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val); |
1688 | |
1689 | /// Get the profiler's count for the given statement. |
1690 | uint64_t getProfileCount(const Stmt *S); |
1691 | |
1692 | /// Set the profiler's current count. |
1693 | void setCurrentProfileCount(uint64_t Count); |
1694 | |
1695 | /// Get the profiler's current count. This is generally the count for the most |
1696 | /// recently incremented counter. |
1697 | uint64_t getCurrentProfileCount(); |
1698 | |
1699 | /// See CGDebugInfo::addInstToCurrentSourceAtom. |
1700 | void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, |
1701 | llvm::Value *Backup); |
1702 | |
1703 | /// See CGDebugInfo::addInstToSpecificSourceAtom. |
1704 | void addInstToSpecificSourceAtom(llvm::Instruction *KeyInstruction, |
1705 | llvm::Value *Backup, uint64_t Atom); |
1706 | |
1707 | /// Add \p KeyInstruction and an optional \p Backup instruction to a new atom |
1708 | /// group (See ApplyAtomGroup for more info). |
1709 | void addInstToNewSourceAtom(llvm::Instruction *KeyInstruction, |
1710 | llvm::Value *Backup); |
1711 | |
1712 | private: |
1713 | /// SwitchInsn - This is nearest current switch instruction. It is null if |
1714 | /// current context is not in a switch. |
1715 | llvm::SwitchInst *SwitchInsn = nullptr; |
1716 | /// The branch weights of SwitchInsn when doing instrumentation based PGO. |
1717 | SmallVector<uint64_t, 16> *SwitchWeights = nullptr; |
1718 | |
1719 | /// The likelihood attributes of the SwitchCase. |
1720 | SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; |
1721 | |
1722 | /// CaseRangeBlock - This block holds if condition check for last case |
1723 | /// statement range in current switch instruction. |
1724 | llvm::BasicBlock *CaseRangeBlock = nullptr; |
1725 | |
1726 | /// OpaqueLValues - Keeps track of the current set of opaque value |
1727 | /// expressions. |
1728 | llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; |
1729 | llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; |
1730 | |
1731 | // VLASizeMap - This keeps track of the associated size for each VLA type. |
1732 | // We track this by the size expression rather than the type itself because |
1733 | // in certain situations, like a const qualifier applied to an VLA typedef, |
1734 | // multiple VLA types can share the same size expression. |
1735 | // FIXME: Maybe this could be a stack of maps that is pushed/popped as we |
1736 | // enter/leave scopes. |
1737 | llvm::DenseMap<const Expr *, llvm::Value *> VLASizeMap; |
1738 | |
1739 | /// A block containing a single 'unreachable' instruction. Created |
1740 | /// lazily by getUnreachableBlock(). |
1741 | llvm::BasicBlock *UnreachableBlock = nullptr; |
1742 | |
1743 | /// Counts of the number return expressions in the function. |
1744 | unsigned NumReturnExprs = 0; |
1745 | |
1746 | /// Count the number of simple (constant) return expressions in the function. |
1747 | unsigned NumSimpleReturnExprs = 0; |
1748 | |
1749 | /// The last regular (non-return) debug location (breakpoint) in the function. |
1750 | SourceLocation LastStopPoint; |
1751 | |
1752 | public: |
1753 | /// Source location information about the default argument or member |
1754 | /// initializer expression we're evaluating, if any. |
1755 | CurrentSourceLocExprScope CurSourceLocExprScope; |
1756 | using SourceLocExprScopeGuard = |
1757 | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
1758 | |
1759 | /// A scope within which we are constructing the fields of an object which |
1760 | /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use |
1761 | /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. |
1762 | class FieldConstructionScope { |
1763 | public: |
1764 | FieldConstructionScope(CodeGenFunction &CGF, Address This) |
1765 | : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { |
1766 | CGF.CXXDefaultInitExprThis = This; |
1767 | } |
1768 | ~FieldConstructionScope() { |
1769 | CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; |
1770 | } |
1771 | |
1772 | private: |
1773 | CodeGenFunction &CGF; |
1774 | Address OldCXXDefaultInitExprThis; |
1775 | }; |
1776 | |
1777 | /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' |
1778 | /// is overridden to be the object under construction. |
1779 | class CXXDefaultInitExprScope { |
1780 | public: |
1781 | CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) |
1782 | : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), |
1783 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1784 | SourceLocScope(E, CGF.CurSourceLocExprScope) { |
1785 | CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); |
1786 | CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); |
1787 | } |
1788 | ~CXXDefaultInitExprScope() { |
1789 | CGF.CXXThisValue = OldCXXThisValue; |
1790 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1791 | } |
1792 | |
1793 | public: |
1794 | CodeGenFunction &CGF; |
1795 | llvm::Value *OldCXXThisValue; |
1796 | CharUnits OldCXXThisAlignment; |
1797 | SourceLocExprScopeGuard SourceLocScope; |
1798 | }; |
1799 | |
1800 | struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { |
1801 | CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) |
1802 | : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} |
1803 | }; |
1804 | |
1805 | /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the |
1806 | /// current loop index is overridden. |
1807 | class ArrayInitLoopExprScope { |
1808 | public: |
1809 | ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) |
1810 | : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { |
1811 | CGF.ArrayInitIndex = Index; |
1812 | } |
1813 | ~ArrayInitLoopExprScope() { CGF.ArrayInitIndex = OldArrayInitIndex; } |
1814 | |
1815 | private: |
1816 | CodeGenFunction &CGF; |
1817 | llvm::Value *OldArrayInitIndex; |
1818 | }; |
1819 | |
1820 | class InlinedInheritingConstructorScope { |
1821 | public: |
1822 | InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) |
1823 | : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), |
1824 | OldCurCodeDecl(CGF.CurCodeDecl), |
1825 | OldCXXABIThisDecl(CGF.CXXABIThisDecl), |
1826 | OldCXXABIThisValue(CGF.CXXABIThisValue), |
1827 | OldCXXThisValue(CGF.CXXThisValue), |
1828 | OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), |
1829 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1830 | OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), |
1831 | OldCXXInheritedCtorInitExprArgs( |
1832 | std::move(CGF.CXXInheritedCtorInitExprArgs)) { |
1833 | CGF.CurGD = GD; |
1834 | CGF.CurFuncDecl = CGF.CurCodeDecl = |
1835 | cast<CXXConstructorDecl>(Val: GD.getDecl()); |
1836 | CGF.CXXABIThisDecl = nullptr; |
1837 | CGF.CXXABIThisValue = nullptr; |
1838 | CGF.CXXThisValue = nullptr; |
1839 | CGF.CXXABIThisAlignment = CharUnits(); |
1840 | CGF.CXXThisAlignment = CharUnits(); |
1841 | CGF.ReturnValue = Address::invalid(); |
1842 | CGF.FnRetTy = QualType(); |
1843 | CGF.CXXInheritedCtorInitExprArgs.clear(); |
1844 | } |
1845 | ~InlinedInheritingConstructorScope() { |
1846 | CGF.CurGD = OldCurGD; |
1847 | CGF.CurFuncDecl = OldCurFuncDecl; |
1848 | CGF.CurCodeDecl = OldCurCodeDecl; |
1849 | CGF.CXXABIThisDecl = OldCXXABIThisDecl; |
1850 | CGF.CXXABIThisValue = OldCXXABIThisValue; |
1851 | CGF.CXXThisValue = OldCXXThisValue; |
1852 | CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; |
1853 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1854 | CGF.ReturnValue = OldReturnValue; |
1855 | CGF.FnRetTy = OldFnRetTy; |
1856 | CGF.CXXInheritedCtorInitExprArgs = |
1857 | std::move(OldCXXInheritedCtorInitExprArgs); |
1858 | } |
1859 | |
1860 | private: |
1861 | CodeGenFunction &CGF; |
1862 | GlobalDecl OldCurGD; |
1863 | const Decl *OldCurFuncDecl; |
1864 | const Decl *OldCurCodeDecl; |
1865 | ImplicitParamDecl *OldCXXABIThisDecl; |
1866 | llvm::Value *OldCXXABIThisValue; |
1867 | llvm::Value *OldCXXThisValue; |
1868 | CharUnits OldCXXABIThisAlignment; |
1869 | CharUnits OldCXXThisAlignment; |
1870 | Address OldReturnValue; |
1871 | QualType OldFnRetTy; |
1872 | CallArgList OldCXXInheritedCtorInitExprArgs; |
1873 | }; |
1874 | |
1875 | // Helper class for the OpenMP IR Builder. Allows reusability of code used for |
1876 | // region body, and finalization codegen callbacks. This will class will also |
1877 | // contain privatization functions used by the privatization call backs |
1878 | // |
1879 | // TODO: this is temporary class for things that are being moved out of |
1880 | // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or |
1881 | // utility function for use with the OMPBuilder. Once that move to use the |
1882 | // OMPBuilder is done, everything here will either become part of CodeGenFunc. |
1883 | // directly, or a new helper class that will contain functions used by both |
1884 | // this and the OMPBuilder |
1885 | |
1886 | struct OMPBuilderCBHelpers { |
1887 | |
1888 | OMPBuilderCBHelpers() = delete; |
1889 | OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; |
1890 | OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; |
1891 | |
1892 | using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; |
1893 | |
1894 | /// Cleanup action for allocate support. |
1895 | class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { |
1896 | |
1897 | private: |
1898 | llvm::CallInst *RTLFnCI; |
1899 | |
1900 | public: |
1901 | OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { |
1902 | RLFnCI->removeFromParent(); |
1903 | } |
1904 | |
1905 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
1906 | if (!CGF.HaveInsertPoint()) |
1907 | return; |
1908 | CGF.Builder.Insert(I: RTLFnCI); |
1909 | } |
1910 | }; |
1911 | |
1912 | /// Returns address of the threadprivate variable for the current |
1913 | /// thread. This Also create any necessary OMP runtime calls. |
1914 | /// |
1915 | /// \param VD VarDecl for Threadprivate variable. |
1916 | /// \param VDAddr Address of the Vardecl |
1917 | /// \param Loc The location where the barrier directive was encountered |
1918 | static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, |
1919 | const VarDecl *VD, Address VDAddr, |
1920 | SourceLocation Loc); |
1921 | |
1922 | /// Gets the OpenMP-specific address of the local variable /p VD. |
1923 | static Address getAddressOfLocalVariable(CodeGenFunction &CGF, |
1924 | const VarDecl *VD); |
1925 | /// Get the platform-specific name separator. |
1926 | /// \param Parts different parts of the final name that needs separation |
1927 | /// \param FirstSeparator First separator used between the initial two |
1928 | /// parts of the name. |
1929 | /// \param Separator separator used between all of the rest consecutinve |
1930 | /// parts of the name |
1931 | static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, |
1932 | StringRef FirstSeparator = "." , |
1933 | StringRef Separator = "." ); |
1934 | /// Emit the Finalization for an OMP region |
1935 | /// \param CGF The Codegen function this belongs to |
1936 | /// \param IP Insertion point for generating the finalization code. |
1937 | static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { |
1938 | CGBuilderTy::InsertPointGuard IPG(CGF.Builder); |
1939 | assert(IP.getBlock()->end() != IP.getPoint() && |
1940 | "OpenMP IR Builder should cause terminated block!" ); |
1941 | |
1942 | llvm::BasicBlock *IPBB = IP.getBlock(); |
1943 | llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); |
1944 | assert(DestBB && "Finalization block should have one successor!" ); |
1945 | |
1946 | // erase and replace with cleanup branch. |
1947 | IPBB->getTerminator()->eraseFromParent(); |
1948 | CGF.Builder.SetInsertPoint(IPBB); |
1949 | CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(Target: DestBB); |
1950 | CGF.EmitBranchThroughCleanup(Dest); |
1951 | } |
1952 | |
1953 | /// Emit the body of an OMP region |
1954 | /// \param CGF The Codegen function this belongs to |
1955 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1956 | /// generated |
1957 | /// \param AllocaIP Where to insert alloca instructions |
1958 | /// \param CodeGenIP Where to insert the region code |
1959 | /// \param RegionName Name to be used for new blocks |
1960 | static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, |
1961 | const Stmt *RegionBodyStmt, |
1962 | InsertPointTy AllocaIP, |
1963 | InsertPointTy CodeGenIP, |
1964 | Twine RegionName); |
1965 | |
1966 | static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, |
1967 | llvm::BasicBlock &FiniBB, llvm::Function *Fn, |
1968 | ArrayRef<llvm::Value *> Args) { |
1969 | llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); |
1970 | if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) |
1971 | CodeGenIPBBTI->eraseFromParent(); |
1972 | |
1973 | CGF.Builder.SetInsertPoint(CodeGenIPBB); |
1974 | |
1975 | if (Fn->doesNotThrow()) |
1976 | CGF.EmitNounwindRuntimeCall(callee: Fn, args: Args); |
1977 | else |
1978 | CGF.EmitRuntimeCall(callee: Fn, args: Args); |
1979 | |
1980 | if (CGF.Builder.saveIP().isSet()) |
1981 | CGF.Builder.CreateBr(Dest: &FiniBB); |
1982 | } |
1983 | |
1984 | /// Emit the body of an OMP region that will be outlined in |
1985 | /// OpenMPIRBuilder::finalize(). |
1986 | /// \param CGF The Codegen function this belongs to |
1987 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1988 | /// generated |
1989 | /// \param AllocaIP Where to insert alloca instructions |
1990 | /// \param CodeGenIP Where to insert the region code |
1991 | /// \param RegionName Name to be used for new blocks |
1992 | static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, |
1993 | const Stmt *RegionBodyStmt, |
1994 | InsertPointTy AllocaIP, |
1995 | InsertPointTy CodeGenIP, |
1996 | Twine RegionName); |
1997 | |
1998 | /// RAII for preserving necessary info during Outlined region body codegen. |
1999 | class OutlinedRegionBodyRAII { |
2000 | |
2001 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
2002 | CodeGenFunction::JumpDest OldReturnBlock; |
2003 | CodeGenFunction &CGF; |
2004 | |
2005 | public: |
2006 | OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
2007 | llvm::BasicBlock &RetBB) |
2008 | : CGF(cgf) { |
2009 | assert(AllocaIP.isSet() && |
2010 | "Must specify Insertion point for allocas of outlined function" ); |
2011 | OldAllocaIP = CGF.AllocaInsertPt; |
2012 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
2013 | |
2014 | OldReturnBlock = CGF.ReturnBlock; |
2015 | CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(Target: &RetBB); |
2016 | } |
2017 | |
2018 | ~OutlinedRegionBodyRAII() { |
2019 | CGF.AllocaInsertPt = OldAllocaIP; |
2020 | CGF.ReturnBlock = OldReturnBlock; |
2021 | } |
2022 | }; |
2023 | |
2024 | /// RAII for preserving necessary info during inlined region body codegen. |
2025 | class InlinedRegionBodyRAII { |
2026 | |
2027 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
2028 | CodeGenFunction &CGF; |
2029 | |
2030 | public: |
2031 | InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
2032 | llvm::BasicBlock &FiniBB) |
2033 | : CGF(cgf) { |
2034 | // Alloca insertion block should be in the entry block of the containing |
2035 | // function so it expects an empty AllocaIP in which case will reuse the |
2036 | // old alloca insertion point, or a new AllocaIP in the same block as |
2037 | // the old one |
2038 | assert((!AllocaIP.isSet() || |
2039 | CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && |
2040 | "Insertion point should be in the entry block of containing " |
2041 | "function!" ); |
2042 | OldAllocaIP = CGF.AllocaInsertPt; |
2043 | if (AllocaIP.isSet()) |
2044 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
2045 | |
2046 | // TODO: Remove the call, after making sure the counter is not used by |
2047 | // the EHStack. |
2048 | // Since this is an inlined region, it should not modify the |
2049 | // ReturnBlock, and should reuse the one for the enclosing outlined |
2050 | // region. So, the JumpDest being return by the function is discarded |
2051 | (void)CGF.getJumpDestInCurrentScope(Target: &FiniBB); |
2052 | } |
2053 | |
2054 | ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } |
2055 | }; |
2056 | }; |
2057 | |
2058 | private: |
2059 | /// CXXThisDecl - When generating code for a C++ member function, |
2060 | /// this will hold the implicit 'this' declaration. |
2061 | ImplicitParamDecl *CXXABIThisDecl = nullptr; |
2062 | llvm::Value *CXXABIThisValue = nullptr; |
2063 | llvm::Value *CXXThisValue = nullptr; |
2064 | CharUnits CXXABIThisAlignment; |
2065 | CharUnits CXXThisAlignment; |
2066 | |
2067 | /// The value of 'this' to use when evaluating CXXDefaultInitExprs within |
2068 | /// this expression. |
2069 | Address CXXDefaultInitExprThis = Address::invalid(); |
2070 | |
2071 | /// The current array initialization index when evaluating an |
2072 | /// ArrayInitIndexExpr within an ArrayInitLoopExpr. |
2073 | llvm::Value *ArrayInitIndex = nullptr; |
2074 | |
2075 | /// The values of function arguments to use when evaluating |
2076 | /// CXXInheritedCtorInitExprs within this context. |
2077 | CallArgList CXXInheritedCtorInitExprArgs; |
2078 | |
2079 | /// CXXStructorImplicitParamDecl - When generating code for a constructor or |
2080 | /// destructor, this will hold the implicit argument (e.g. VTT). |
2081 | ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; |
2082 | llvm::Value *CXXStructorImplicitParamValue = nullptr; |
2083 | |
2084 | /// OutermostConditional - Points to the outermost active |
2085 | /// conditional control. This is used so that we know if a |
2086 | /// temporary should be destroyed conditionally. |
2087 | ConditionalEvaluation *OutermostConditional = nullptr; |
2088 | |
2089 | /// The current lexical scope. |
2090 | LexicalScope *CurLexicalScope = nullptr; |
2091 | |
2092 | /// The current source location that should be used for exception |
2093 | /// handling code. |
2094 | SourceLocation CurEHLocation; |
2095 | |
2096 | /// BlockByrefInfos - For each __block variable, contains |
2097 | /// information about the layout of the variable. |
2098 | llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; |
2099 | |
2100 | /// Used by -fsanitize=nullability-return to determine whether the return |
2101 | /// value can be checked. |
2102 | llvm::Value *RetValNullabilityPrecondition = nullptr; |
2103 | |
2104 | /// Check if -fsanitize=nullability-return instrumentation is required for |
2105 | /// this function. |
2106 | bool requiresReturnValueNullabilityCheck() const { |
2107 | return RetValNullabilityPrecondition; |
2108 | } |
2109 | |
2110 | /// Used to store precise source locations for return statements by the |
2111 | /// runtime return value checks. |
2112 | Address ReturnLocation = Address::invalid(); |
2113 | |
2114 | /// Check if the return value of this function requires sanitization. |
2115 | bool requiresReturnValueCheck() const; |
2116 | |
2117 | bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); |
2118 | bool hasInAllocaArg(const CXXMethodDecl *MD); |
2119 | |
2120 | llvm::BasicBlock *TerminateLandingPad = nullptr; |
2121 | llvm::BasicBlock *TerminateHandler = nullptr; |
2122 | llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; |
2123 | |
2124 | /// Terminate funclets keyed by parent funclet pad. |
2125 | llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; |
2126 | |
2127 | /// Largest vector width used in ths function. Will be used to create a |
2128 | /// function attribute. |
2129 | unsigned LargestVectorWidth = 0; |
2130 | |
2131 | /// True if we need emit the life-time markers. This is initially set in |
2132 | /// the constructor, but could be overwritten to true if this is a coroutine. |
2133 | bool ShouldEmitLifetimeMarkers; |
2134 | |
2135 | /// Add OpenCL kernel arg metadata and the kernel attribute metadata to |
2136 | /// the function metadata. |
2137 | void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); |
2138 | |
2139 | public: |
2140 | CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext = false); |
2141 | ~CodeGenFunction(); |
2142 | |
2143 | CodeGenTypes &getTypes() const { return CGM.getTypes(); } |
2144 | ASTContext &getContext() const { return CGM.getContext(); } |
2145 | CGDebugInfo *getDebugInfo() { |
2146 | if (DisableDebugInfo) |
2147 | return nullptr; |
2148 | return DebugInfo; |
2149 | } |
2150 | void disableDebugInfo() { DisableDebugInfo = true; } |
2151 | void enableDebugInfo() { DisableDebugInfo = false; } |
2152 | |
2153 | bool shouldUseFusedARCCalls() { |
2154 | return CGM.getCodeGenOpts().OptimizationLevel == 0; |
2155 | } |
2156 | |
2157 | const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } |
2158 | |
2159 | /// Returns a pointer to the function's exception object and selector slot, |
2160 | /// which is assigned in every landing pad. |
2161 | Address getExceptionSlot(); |
2162 | Address getEHSelectorSlot(); |
2163 | |
2164 | /// Returns the contents of the function's exception object and selector |
2165 | /// slots. |
2166 | llvm::Value *getExceptionFromSlot(); |
2167 | llvm::Value *getSelectorFromSlot(); |
2168 | |
2169 | RawAddress getNormalCleanupDestSlot(); |
2170 | |
2171 | llvm::BasicBlock *getUnreachableBlock() { |
2172 | if (!UnreachableBlock) { |
2173 | UnreachableBlock = createBasicBlock(name: "unreachable" ); |
2174 | new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); |
2175 | } |
2176 | return UnreachableBlock; |
2177 | } |
2178 | |
2179 | llvm::BasicBlock *getInvokeDest() { |
2180 | if (!EHStack.requiresLandingPad()) |
2181 | return nullptr; |
2182 | return getInvokeDestImpl(); |
2183 | } |
2184 | |
2185 | bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } |
2186 | |
2187 | const TargetInfo &getTarget() const { return Target; } |
2188 | llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } |
2189 | const TargetCodeGenInfo &getTargetHooks() const { |
2190 | return CGM.getTargetCodeGenInfo(); |
2191 | } |
2192 | |
2193 | //===--------------------------------------------------------------------===// |
2194 | // Cleanups |
2195 | //===--------------------------------------------------------------------===// |
2196 | |
2197 | typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); |
2198 | |
2199 | void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, |
2200 | Address arrayEndPointer, |
2201 | QualType elementType, |
2202 | CharUnits elementAlignment, |
2203 | Destroyer *destroyer); |
2204 | void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, |
2205 | llvm::Value *arrayEnd, |
2206 | QualType elementType, |
2207 | CharUnits elementAlignment, |
2208 | Destroyer *destroyer); |
2209 | |
2210 | void pushDestroy(QualType::DestructionKind dtorKind, Address addr, |
2211 | QualType type); |
2212 | void pushEHDestroy(QualType::DestructionKind dtorKind, Address addr, |
2213 | QualType type); |
2214 | void pushDestroy(CleanupKind kind, Address addr, QualType type, |
2215 | Destroyer *destroyer, bool useEHCleanupForArray); |
2216 | void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, |
2217 | Address addr, QualType type); |
2218 | void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, |
2219 | QualType type, Destroyer *destroyer, |
2220 | bool useEHCleanupForArray); |
2221 | void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, |
2222 | QualType type, Destroyer *destroyer, |
2223 | bool useEHCleanupForArray); |
2224 | void pushLifetimeExtendedDestroy(QualType::DestructionKind dtorKind, |
2225 | Address addr, QualType type); |
2226 | void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, |
2227 | llvm::Value *CompletePtr, |
2228 | QualType ElementType); |
2229 | void pushStackRestore(CleanupKind kind, Address SPMem); |
2230 | void pushKmpcAllocFree(CleanupKind Kind, |
2231 | std::pair<llvm::Value *, llvm::Value *> AddrSizePair); |
2232 | void emitDestroy(Address addr, QualType type, Destroyer *destroyer, |
2233 | bool useEHCleanupForArray); |
2234 | llvm::Function *generateDestroyHelper(Address addr, QualType type, |
2235 | Destroyer *destroyer, |
2236 | bool useEHCleanupForArray, |
2237 | const VarDecl *VD); |
2238 | void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, |
2239 | QualType elementType, CharUnits elementAlign, |
2240 | Destroyer *destroyer, bool checkZeroLength, |
2241 | bool useEHCleanup); |
2242 | |
2243 | Destroyer *getDestroyer(QualType::DestructionKind destructionKind); |
2244 | |
2245 | /// Determines whether an EH cleanup is required to destroy a type |
2246 | /// with the given destruction kind. |
2247 | bool needsEHCleanup(QualType::DestructionKind kind) { |
2248 | switch (kind) { |
2249 | case QualType::DK_none: |
2250 | return false; |
2251 | case QualType::DK_cxx_destructor: |
2252 | case QualType::DK_objc_weak_lifetime: |
2253 | case QualType::DK_nontrivial_c_struct: |
2254 | return getLangOpts().Exceptions; |
2255 | case QualType::DK_objc_strong_lifetime: |
2256 | return getLangOpts().Exceptions && |
2257 | CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; |
2258 | } |
2259 | llvm_unreachable("bad destruction kind" ); |
2260 | } |
2261 | |
2262 | CleanupKind getCleanupKind(QualType::DestructionKind kind) { |
2263 | return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); |
2264 | } |
2265 | |
2266 | //===--------------------------------------------------------------------===// |
2267 | // Objective-C |
2268 | //===--------------------------------------------------------------------===// |
2269 | |
2270 | void GenerateObjCMethod(const ObjCMethodDecl *OMD); |
2271 | |
2272 | void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); |
2273 | |
2274 | /// GenerateObjCGetter - Synthesize an Objective-C property getter function. |
2275 | void GenerateObjCGetter(ObjCImplementationDecl *IMP, |
2276 | const ObjCPropertyImplDecl *PID); |
2277 | void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
2278 | const ObjCPropertyImplDecl *propImpl, |
2279 | const ObjCMethodDecl *GetterMothodDecl, |
2280 | llvm::Constant *AtomicHelperFn); |
2281 | |
2282 | void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
2283 | ObjCMethodDecl *MD, bool ctor); |
2284 | |
2285 | /// GenerateObjCSetter - Synthesize an Objective-C property setter function |
2286 | /// for the given property. |
2287 | void GenerateObjCSetter(ObjCImplementationDecl *IMP, |
2288 | const ObjCPropertyImplDecl *PID); |
2289 | void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
2290 | const ObjCPropertyImplDecl *propImpl, |
2291 | llvm::Constant *AtomicHelperFn); |
2292 | |
2293 | //===--------------------------------------------------------------------===// |
2294 | // Block Bits |
2295 | //===--------------------------------------------------------------------===// |
2296 | |
2297 | /// Emit block literal. |
2298 | /// \return an LLVM value which is a pointer to a struct which contains |
2299 | /// information about the block, including the block invoke function, the |
2300 | /// captured variables, etc. |
2301 | llvm::Value *EmitBlockLiteral(const BlockExpr *); |
2302 | |
2303 | llvm::Function *GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &Info, |
2304 | const DeclMapTy &ldm, |
2305 | bool IsLambdaConversionToBlock, |
2306 | bool BuildGlobalBlock); |
2307 | |
2308 | /// Check if \p T is a C++ class that has a destructor that can throw. |
2309 | static bool cxxDestructorCanThrow(QualType T); |
2310 | |
2311 | llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); |
2312 | llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); |
2313 | llvm::Constant * |
2314 | GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl *PID); |
2315 | llvm::Constant * |
2316 | GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl *PID); |
2317 | llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); |
2318 | |
2319 | void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, |
2320 | bool CanThrow); |
2321 | |
2322 | class AutoVarEmission; |
2323 | |
2324 | void emitByrefStructureInit(const AutoVarEmission &emission); |
2325 | |
2326 | /// Enter a cleanup to destroy a __block variable. Note that this |
2327 | /// cleanup should be a no-op if the variable hasn't left the stack |
2328 | /// yet; if a cleanup is required for the variable itself, that needs |
2329 | /// to be done externally. |
2330 | /// |
2331 | /// \param Kind Cleanup kind. |
2332 | /// |
2333 | /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block |
2334 | /// structure that will be passed to _Block_object_dispose. When |
2335 | /// \p LoadBlockVarAddr is true, the address of the field of the block |
2336 | /// structure that holds the address of the __block structure. |
2337 | /// |
2338 | /// \param Flags The flag that will be passed to _Block_object_dispose. |
2339 | /// |
2340 | /// \param LoadBlockVarAddr Indicates whether we need to emit a load from |
2341 | /// \p Addr to get the address of the __block structure. |
2342 | void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, |
2343 | bool LoadBlockVarAddr, bool CanThrow); |
2344 | |
2345 | void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, |
2346 | llvm::Value *ptr); |
2347 | |
2348 | Address LoadBlockStruct(); |
2349 | Address GetAddrOfBlockDecl(const VarDecl *var); |
2350 | |
2351 | /// BuildBlockByrefAddress - Computes the location of the |
2352 | /// data in a variable which is declared as __block. |
2353 | Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, |
2354 | bool followForward = true); |
2355 | Address emitBlockByrefAddress(Address baseAddr, const BlockByrefInfo &info, |
2356 | bool followForward, const llvm::Twine &name); |
2357 | |
2358 | const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); |
2359 | |
2360 | QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); |
2361 | |
2362 | void GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
2363 | const CGFunctionInfo &FnInfo); |
2364 | |
2365 | /// Annotate the function with an attribute that disables TSan checking at |
2366 | /// runtime. |
2367 | void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); |
2368 | |
2369 | /// Emit code for the start of a function. |
2370 | /// \param Loc The location to be associated with the function. |
2371 | /// \param StartLoc The location of the function body. |
2372 | void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, |
2373 | const CGFunctionInfo &FnInfo, const FunctionArgList &Args, |
2374 | SourceLocation Loc = SourceLocation(), |
2375 | SourceLocation StartLoc = SourceLocation()); |
2376 | |
2377 | static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); |
2378 | |
2379 | void EmitConstructorBody(FunctionArgList &Args); |
2380 | void EmitDestructorBody(FunctionArgList &Args); |
2381 | void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); |
2382 | void EmitFunctionBody(const Stmt *Body); |
2383 | void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); |
2384 | |
2385 | void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, |
2386 | CallArgList &CallArgs, |
2387 | const CGFunctionInfo *CallOpFnInfo = nullptr, |
2388 | llvm::Constant *CallOpFn = nullptr); |
2389 | void EmitLambdaBlockInvokeBody(); |
2390 | void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); |
2391 | void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, |
2392 | CallArgList &CallArgs); |
2393 | void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, |
2394 | const CGFunctionInfo **ImplFnInfo, |
2395 | llvm::Function **ImplFn); |
2396 | void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); |
2397 | void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { |
2398 | EmitStoreThroughLValue(Src: RValue::get(V: VLASizeMap[VAT->getSizeExpr()]), Dst: LV); |
2399 | } |
2400 | void EmitAsanPrologueOrEpilogue(bool Prologue); |
2401 | |
2402 | /// Emit the unified return block, trying to avoid its emission when |
2403 | /// possible. |
2404 | /// \return The debug location of the user written return statement if the |
2405 | /// return block is avoided. |
2406 | llvm::DebugLoc EmitReturnBlock(); |
2407 | |
2408 | /// FinishFunction - Complete IR generation of the current function. It is |
2409 | /// legal to call this function even if there is no current insertion point. |
2410 | void FinishFunction(SourceLocation EndLoc = SourceLocation()); |
2411 | |
2412 | void StartThunk(llvm::Function *Fn, GlobalDecl GD, |
2413 | const CGFunctionInfo &FnInfo, bool IsUnprototyped); |
2414 | |
2415 | void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, |
2416 | const ThunkInfo *Thunk, bool IsUnprototyped); |
2417 | |
2418 | void FinishThunk(); |
2419 | |
2420 | /// Emit a musttail call for a thunk with a potentially adjusted this pointer. |
2421 | void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, |
2422 | llvm::FunctionCallee Callee); |
2423 | |
2424 | /// Generate a thunk for the given method. |
2425 | void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
2426 | GlobalDecl GD, const ThunkInfo &Thunk, |
2427 | bool IsUnprototyped); |
2428 | |
2429 | llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, |
2430 | const CGFunctionInfo &FnInfo, |
2431 | GlobalDecl GD, const ThunkInfo &Thunk); |
2432 | |
2433 | void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, |
2434 | FunctionArgList &Args); |
2435 | |
2436 | void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); |
2437 | |
2438 | /// Struct with all information about dynamic [sub]class needed to set vptr. |
2439 | struct VPtr { |
2440 | BaseSubobject Base; |
2441 | const CXXRecordDecl *NearestVBase; |
2442 | CharUnits OffsetFromNearestVBase; |
2443 | const CXXRecordDecl *VTableClass; |
2444 | }; |
2445 | |
2446 | /// Initialize the vtable pointer of the given subobject. |
2447 | void InitializeVTablePointer(const VPtr &vptr); |
2448 | |
2449 | typedef llvm::SmallVector<VPtr, 4> VPtrsVector; |
2450 | |
2451 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
2452 | VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); |
2453 | |
2454 | void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, |
2455 | CharUnits OffsetFromNearestVBase, |
2456 | bool BaseIsNonVirtualPrimaryBase, |
2457 | const CXXRecordDecl *VTableClass, |
2458 | VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); |
2459 | |
2460 | void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); |
2461 | |
2462 | // VTableTrapMode - whether we guarantee that loading the |
2463 | // vtable is guaranteed to trap on authentication failure, |
2464 | // even if the resulting vtable pointer is unused. |
2465 | enum class VTableAuthMode { |
2466 | Authenticate, |
2467 | MustTrap, |
2468 | UnsafeUbsanStrip // Should only be used for Vptr UBSan check |
2469 | }; |
2470 | /// GetVTablePtr - Return the Value of the vtable pointer member pointed |
2471 | /// to by This. |
2472 | llvm::Value * |
2473 | GetVTablePtr(Address This, llvm::Type *VTableTy, |
2474 | const CXXRecordDecl *VTableClass, |
2475 | VTableAuthMode AuthMode = VTableAuthMode::Authenticate); |
2476 | |
2477 | enum CFITypeCheckKind { |
2478 | CFITCK_VCall, |
2479 | CFITCK_NVCall, |
2480 | CFITCK_DerivedCast, |
2481 | CFITCK_UnrelatedCast, |
2482 | CFITCK_ICall, |
2483 | CFITCK_NVMFCall, |
2484 | CFITCK_VMFCall, |
2485 | }; |
2486 | |
2487 | /// Derived is the presumed address of an object of type T after a |
2488 | /// cast. If T is a polymorphic class type, emit a check that the virtual |
2489 | /// table for Derived belongs to a class derived from T. |
2490 | void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, |
2491 | CFITypeCheckKind TCK, SourceLocation Loc); |
2492 | |
2493 | /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. |
2494 | /// If vptr CFI is enabled, emit a check that VTable is valid. |
2495 | void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, |
2496 | CFITypeCheckKind TCK, SourceLocation Loc); |
2497 | |
2498 | /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for |
2499 | /// RD using llvm.type.test. |
2500 | void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, |
2501 | CFITypeCheckKind TCK, SourceLocation Loc); |
2502 | |
2503 | /// If whole-program virtual table optimization is enabled, emit an assumption |
2504 | /// that VTable is a member of RD's type identifier. Or, if vptr CFI is |
2505 | /// enabled, emit a check that VTable is a member of RD's type identifier. |
2506 | void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, |
2507 | llvm::Value *VTable, SourceLocation Loc); |
2508 | |
2509 | /// Returns whether we should perform a type checked load when loading a |
2510 | /// virtual function for virtual calls to members of RD. This is generally |
2511 | /// true when both vcall CFI and whole-program-vtables are enabled. |
2512 | bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); |
2513 | |
2514 | /// Emit a type checked load from the given vtable. |
2515 | llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, |
2516 | llvm::Value *VTable, |
2517 | llvm::Type *VTableTy, |
2518 | uint64_t VTableByteOffset); |
2519 | |
2520 | /// EnterDtorCleanups - Enter the cleanups necessary to complete the |
2521 | /// given phase of destruction for a destructor. The end result |
2522 | /// should call destructors on members and base classes in reverse |
2523 | /// order of their construction. |
2524 | void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); |
2525 | |
2526 | /// ShouldInstrumentFunction - Return true if the current function should be |
2527 | /// instrumented with __cyg_profile_func_* calls |
2528 | bool ShouldInstrumentFunction(); |
2529 | |
2530 | /// ShouldSkipSanitizerInstrumentation - Return true if the current function |
2531 | /// should not be instrumented with sanitizers. |
2532 | bool ShouldSkipSanitizerInstrumentation(); |
2533 | |
2534 | /// ShouldXRayInstrument - Return true if the current function should be |
2535 | /// instrumented with XRay nop sleds. |
2536 | bool ShouldXRayInstrumentFunction() const; |
2537 | |
2538 | /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit |
2539 | /// XRay custom event handling calls. |
2540 | bool AlwaysEmitXRayCustomEvents() const; |
2541 | |
2542 | /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit |
2543 | /// XRay typed event handling calls. |
2544 | bool AlwaysEmitXRayTypedEvents() const; |
2545 | |
2546 | /// Return a type hash constant for a function instrumented by |
2547 | /// -fsanitize=function. |
2548 | llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; |
2549 | |
2550 | /// EmitFunctionProlog - Emit the target specific LLVM code to load the |
2551 | /// arguments for the given function. This is also responsible for naming the |
2552 | /// LLVM function arguments. |
2553 | void EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, |
2554 | const FunctionArgList &Args); |
2555 | |
2556 | /// EmitFunctionEpilog - Emit the target specific LLVM code to return the |
2557 | /// given temporary. Specify the source location atom group (Key Instructions |
2558 | /// debug info feature) for the `ret` using \p RetKeyInstructionsSourceAtom. |
2559 | /// If it's 0, the `ret` will get added to a new source atom group. |
2560 | void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, |
2561 | SourceLocation EndLoc, |
2562 | uint64_t RetKeyInstructionsSourceAtom); |
2563 | |
2564 | /// Emit a test that checks if the return value \p RV is nonnull. |
2565 | void EmitReturnValueCheck(llvm::Value *RV); |
2566 | |
2567 | /// EmitStartEHSpec - Emit the start of the exception spec. |
2568 | void EmitStartEHSpec(const Decl *D); |
2569 | |
2570 | /// EmitEndEHSpec - Emit the end of the exception spec. |
2571 | void EmitEndEHSpec(const Decl *D); |
2572 | |
2573 | /// getTerminateLandingPad - Return a landing pad that just calls terminate. |
2574 | llvm::BasicBlock *getTerminateLandingPad(); |
2575 | |
2576 | /// getTerminateLandingPad - Return a cleanup funclet that just calls |
2577 | /// terminate. |
2578 | llvm::BasicBlock *getTerminateFunclet(); |
2579 | |
2580 | /// getTerminateHandler - Return a handler (not a landing pad, just |
2581 | /// a catch handler) that just calls terminate. This is used when |
2582 | /// a terminate scope encloses a try. |
2583 | llvm::BasicBlock *getTerminateHandler(); |
2584 | |
2585 | llvm::Type *ConvertTypeForMem(QualType T); |
2586 | llvm::Type *ConvertType(QualType T); |
2587 | llvm::Type *convertTypeForLoadStore(QualType ASTTy, |
2588 | llvm::Type *LLVMTy = nullptr); |
2589 | llvm::Type *ConvertType(const TypeDecl *T) { |
2590 | return ConvertType(T: getContext().getTypeDeclType(Decl: T)); |
2591 | } |
2592 | |
2593 | /// LoadObjCSelf - Load the value of self. This function is only valid while |
2594 | /// generating code for an Objective-C method. |
2595 | llvm::Value *LoadObjCSelf(); |
2596 | |
2597 | /// TypeOfSelfObject - Return type of object that this self represents. |
2598 | QualType TypeOfSelfObject(); |
2599 | |
2600 | /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. |
2601 | static TypeEvaluationKind getEvaluationKind(QualType T); |
2602 | |
2603 | static bool hasScalarEvaluationKind(QualType T) { |
2604 | return getEvaluationKind(T) == TEK_Scalar; |
2605 | } |
2606 | |
2607 | static bool hasAggregateEvaluationKind(QualType T) { |
2608 | return getEvaluationKind(T) == TEK_Aggregate; |
2609 | } |
2610 | |
2611 | /// createBasicBlock - Create an LLVM basic block. |
2612 | llvm::BasicBlock *createBasicBlock(const Twine &name = "" , |
2613 | llvm::Function *parent = nullptr, |
2614 | llvm::BasicBlock *before = nullptr) { |
2615 | return llvm::BasicBlock::Create(Context&: getLLVMContext(), Name: name, Parent: parent, InsertBefore: before); |
2616 | } |
2617 | |
2618 | /// getBasicBlockForLabel - Return the LLVM basicblock that the specified |
2619 | /// label maps to. |
2620 | JumpDest getJumpDestForLabel(const LabelDecl *S); |
2621 | |
2622 | /// SimplifyForwardingBlocks - If the given basic block is only a branch to |
2623 | /// another basic block, simplify it. This assumes that no other code could |
2624 | /// potentially reference the basic block. |
2625 | void SimplifyForwardingBlocks(llvm::BasicBlock *BB); |
2626 | |
2627 | /// EmitBlock - Emit the given block \arg BB and set it as the insert point, |
2628 | /// adding a fall-through branch from the current insert block if |
2629 | /// necessary. It is legal to call this function even if there is no current |
2630 | /// insertion point. |
2631 | /// |
2632 | /// IsFinished - If true, indicates that the caller has finished emitting |
2633 | /// branches to the given block and does not expect to emit code into it. This |
2634 | /// means the block can be ignored if it is unreachable. |
2635 | void EmitBlock(llvm::BasicBlock *BB, bool IsFinished = false); |
2636 | |
2637 | /// EmitBlockAfterUses - Emit the given block somewhere hopefully |
2638 | /// near its uses, and leave the insertion point in it. |
2639 | void EmitBlockAfterUses(llvm::BasicBlock *BB); |
2640 | |
2641 | /// EmitBranch - Emit a branch to the specified basic block from the current |
2642 | /// insert block, taking care to avoid creation of branches from dummy |
2643 | /// blocks. It is legal to call this function even if there is no current |
2644 | /// insertion point. |
2645 | /// |
2646 | /// This function clears the current insertion point. The caller should follow |
2647 | /// calls to this function with calls to Emit*Block prior to generation new |
2648 | /// code. |
2649 | void EmitBranch(llvm::BasicBlock *Block); |
2650 | |
2651 | /// HaveInsertPoint - True if an insertion point is defined. If not, this |
2652 | /// indicates that the current code being emitted is unreachable. |
2653 | bool HaveInsertPoint() const { return Builder.GetInsertBlock() != nullptr; } |
2654 | |
2655 | /// EnsureInsertPoint - Ensure that an insertion point is defined so that |
2656 | /// emitted IR has a place to go. Note that by definition, if this function |
2657 | /// creates a block then that block is unreachable; callers may do better to |
2658 | /// detect when no insertion point is defined and simply skip IR generation. |
2659 | void EnsureInsertPoint() { |
2660 | if (!HaveInsertPoint()) |
2661 | EmitBlock(BB: createBasicBlock()); |
2662 | } |
2663 | |
2664 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2665 | /// specified stmt yet. |
2666 | void ErrorUnsupported(const Stmt *S, const char *Type); |
2667 | |
2668 | //===--------------------------------------------------------------------===// |
2669 | // Helpers |
2670 | //===--------------------------------------------------------------------===// |
2671 | |
2672 | Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, |
2673 | llvm::BasicBlock *LHSBlock, |
2674 | llvm::BasicBlock *RHSBlock, |
2675 | llvm::BasicBlock *MergeBlock, |
2676 | QualType MergedType) { |
2677 | Builder.SetInsertPoint(MergeBlock); |
2678 | llvm::PHINode *PtrPhi = Builder.CreatePHI(Ty: LHS.getType(), NumReservedValues: 2, Name: "cond" ); |
2679 | PtrPhi->addIncoming(V: LHS.getBasePointer(), BB: LHSBlock); |
2680 | PtrPhi->addIncoming(V: RHS.getBasePointer(), BB: RHSBlock); |
2681 | LHS.replaceBasePointer(P: PtrPhi); |
2682 | LHS.setAlignment(std::min(a: LHS.getAlignment(), b: RHS.getAlignment())); |
2683 | return LHS; |
2684 | } |
2685 | |
2686 | /// Construct an address with the natural alignment of T. If a pointer to T |
2687 | /// is expected to be signed, the pointer passed to this function must have |
2688 | /// been signed, and the returned Address will have the pointer authentication |
2689 | /// information needed to authenticate the signed pointer. |
2690 | Address makeNaturalAddressForPointer( |
2691 | llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), |
2692 | bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, |
2693 | TBAAAccessInfo *TBAAInfo = nullptr, |
2694 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { |
2695 | if (Alignment.isZero()) |
2696 | Alignment = |
2697 | CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, forPointeeType: ForPointeeType); |
2698 | return Address(Ptr, ConvertTypeForMem(T), Alignment, |
2699 | CGM.getPointerAuthInfoForPointeeType(type: T), /*Offset=*/nullptr, |
2700 | IsKnownNonNull); |
2701 | } |
2702 | |
2703 | LValue MakeAddrLValue(Address Addr, QualType T, |
2704 | AlignmentSource Source = AlignmentSource::Type) { |
2705 | return MakeAddrLValue(Addr, T, BaseInfo: LValueBaseInfo(Source), |
2706 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2707 | } |
2708 | |
2709 | LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, |
2710 | TBAAAccessInfo TBAAInfo) { |
2711 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo, TBAAInfo); |
2712 | } |
2713 | |
2714 | LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2715 | AlignmentSource Source = AlignmentSource::Type) { |
2716 | return MakeAddrLValue(Addr: makeNaturalAddressForPointer(Ptr: V, T, Alignment), T, |
2717 | BaseInfo: LValueBaseInfo(Source), TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2718 | } |
2719 | |
2720 | /// Same as MakeAddrLValue above except that the pointer is known to be |
2721 | /// unsigned. |
2722 | LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2723 | AlignmentSource Source = AlignmentSource::Type) { |
2724 | Address Addr(V, ConvertTypeForMem(T), Alignment); |
2725 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2726 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2727 | } |
2728 | |
2729 | LValue |
2730 | MakeAddrLValueWithoutTBAA(Address Addr, QualType T, |
2731 | AlignmentSource Source = AlignmentSource::Type) { |
2732 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2733 | TBAAInfo: TBAAAccessInfo()); |
2734 | } |
2735 | |
2736 | /// Given a value of type T* that may not be to a complete object, construct |
2737 | /// an l-value with the natural pointee alignment of T. |
2738 | LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); |
2739 | |
2740 | LValue |
2741 | MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, |
2742 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
2743 | |
2744 | /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known |
2745 | /// to be unsigned. |
2746 | LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); |
2747 | |
2748 | LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); |
2749 | |
2750 | Address EmitLoadOfReference(LValue RefLVal, |
2751 | LValueBaseInfo *PointeeBaseInfo = nullptr, |
2752 | TBAAAccessInfo *PointeeTBAAInfo = nullptr); |
2753 | LValue EmitLoadOfReferenceLValue(LValue RefLVal); |
2754 | LValue |
2755 | EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, |
2756 | AlignmentSource Source = AlignmentSource::Type) { |
2757 | LValue RefLVal = MakeAddrLValue(Addr: RefAddr, T: RefTy, BaseInfo: LValueBaseInfo(Source), |
2758 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: RefTy)); |
2759 | return EmitLoadOfReferenceLValue(RefLVal); |
2760 | } |
2761 | |
2762 | /// Load a pointer with type \p PtrTy stored at address \p Ptr. |
2763 | /// Note that \p PtrTy is the type of the loaded pointer, not the addresses |
2764 | /// it is loaded from. |
2765 | Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, |
2766 | LValueBaseInfo *BaseInfo = nullptr, |
2767 | TBAAAccessInfo *TBAAInfo = nullptr); |
2768 | LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); |
2769 | |
2770 | private: |
2771 | struct AllocaTracker { |
2772 | void Add(llvm::AllocaInst *I) { Allocas.push_back(Elt: I); } |
2773 | llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } |
2774 | |
2775 | private: |
2776 | llvm::SmallVector<llvm::AllocaInst *> Allocas; |
2777 | }; |
2778 | AllocaTracker *Allocas = nullptr; |
2779 | |
2780 | /// CGDecl helper. |
2781 | void emitStoresForConstant(const VarDecl &D, Address Loc, bool isVolatile, |
2782 | llvm::Constant *constant, bool IsAutoInit); |
2783 | /// CGDecl helper. |
2784 | void emitStoresForZeroInit(const VarDecl &D, Address Loc, bool isVolatile); |
2785 | /// CGDecl helper. |
2786 | void emitStoresForPatternInit(const VarDecl &D, Address Loc, bool isVolatile); |
2787 | /// CGDecl helper. |
2788 | void emitStoresForInitAfterBZero(llvm::Constant *Init, Address Loc, |
2789 | bool isVolatile, bool IsAutoInit); |
2790 | |
2791 | public: |
2792 | // Captures all the allocas created during the scope of its RAII object. |
2793 | struct AllocaTrackerRAII { |
2794 | AllocaTrackerRAII(CodeGenFunction &CGF) |
2795 | : CGF(CGF), OldTracker(CGF.Allocas) { |
2796 | CGF.Allocas = &Tracker; |
2797 | } |
2798 | ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } |
2799 | |
2800 | llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } |
2801 | |
2802 | private: |
2803 | CodeGenFunction &CGF; |
2804 | AllocaTracker *OldTracker; |
2805 | AllocaTracker Tracker; |
2806 | }; |
2807 | |
2808 | /// CreateTempAlloca - This creates an alloca and inserts it into the entry |
2809 | /// block if \p ArraySize is nullptr, otherwise inserts it at the current |
2810 | /// insertion point of the builder. The caller is responsible for setting an |
2811 | /// appropriate alignment on |
2812 | /// the alloca. |
2813 | /// |
2814 | /// \p ArraySize is the number of array elements to be allocated if it |
2815 | /// is not nullptr. |
2816 | /// |
2817 | /// LangAS::Default is the address space of pointers to local variables and |
2818 | /// temporaries, as exposed in the source language. In certain |
2819 | /// configurations, this is not the same as the alloca address space, and a |
2820 | /// cast is needed to lift the pointer from the alloca AS into |
2821 | /// LangAS::Default. This can happen when the target uses a restricted |
2822 | /// address space for the stack but the source language requires |
2823 | /// LangAS::Default to be a generic address space. The latter condition is |
2824 | /// common for most programming languages; OpenCL is an exception in that |
2825 | /// LangAS::Default is the private address space, which naturally maps |
2826 | /// to the stack. |
2827 | /// |
2828 | /// Because the address of a temporary is often exposed to the program in |
2829 | /// various ways, this function will perform the cast. The original alloca |
2830 | /// instruction is returned through \p Alloca if it is not nullptr. |
2831 | /// |
2832 | /// The cast is not performaed in CreateTempAllocaWithoutCast. This is |
2833 | /// more efficient if the caller knows that the address will not be exposed. |
2834 | llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp" , |
2835 | llvm::Value *ArraySize = nullptr); |
2836 | |
2837 | /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
2838 | /// block. The alloca is casted to the address space of \p UseAddrSpace if |
2839 | /// necessary. |
2840 | RawAddress CreateTempAlloca(llvm::Type *Ty, LangAS UseAddrSpace, |
2841 | CharUnits align, const Twine &Name = "tmp" , |
2842 | llvm::Value *ArraySize = nullptr, |
2843 | RawAddress *Alloca = nullptr); |
2844 | |
2845 | /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
2846 | /// block. The alloca is casted to default address space if necessary. |
2847 | /// |
2848 | /// FIXME: This version should be removed, and context should provide the |
2849 | /// context use address space used instead of default. |
2850 | RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, |
2851 | const Twine &Name = "tmp" , |
2852 | llvm::Value *ArraySize = nullptr, |
2853 | RawAddress *Alloca = nullptr) { |
2854 | return CreateTempAlloca(Ty, UseAddrSpace: LangAS::Default, align, Name, ArraySize, |
2855 | Alloca); |
2856 | } |
2857 | |
2858 | RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, |
2859 | const Twine &Name = "tmp" , |
2860 | llvm::Value *ArraySize = nullptr); |
2861 | |
2862 | /// CreateDefaultAlignedTempAlloca - This creates an alloca with the |
2863 | /// default ABI alignment of the given LLVM type. |
2864 | /// |
2865 | /// IMPORTANT NOTE: This is *not* generally the right alignment for |
2866 | /// any given AST type that happens to have been lowered to the |
2867 | /// given IR type. This should only ever be used for function-local, |
2868 | /// IR-driven manipulations like saving and restoring a value. Do |
2869 | /// not hand this address off to arbitrary IRGen routines, and especially |
2870 | /// do not pass it as an argument to a function that might expect a |
2871 | /// properly ABI-aligned value. |
2872 | RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, |
2873 | const Twine &Name = "tmp" ); |
2874 | |
2875 | /// CreateIRTemp - Create a temporary IR object of the given type, with |
2876 | /// appropriate alignment. This routine should only be used when an temporary |
2877 | /// value needs to be stored into an alloca (for example, to avoid explicit |
2878 | /// PHI construction), but the type is the IR type, not the type appropriate |
2879 | /// for storing in memory. |
2880 | /// |
2881 | /// That is, this is exactly equivalent to CreateMemTemp, but calling |
2882 | /// ConvertType instead of ConvertTypeForMem. |
2883 | RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp" ); |
2884 | |
2885 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2886 | /// appropriate alignmen and cast it to the default address space. Returns |
2887 | /// the original alloca instruction by \p Alloca if it is not nullptr. |
2888 | RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp" , |
2889 | RawAddress *Alloca = nullptr); |
2890 | RawAddress CreateMemTemp(QualType T, CharUnits Align, |
2891 | const Twine &Name = "tmp" , |
2892 | RawAddress *Alloca = nullptr); |
2893 | |
2894 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2895 | /// appropriate alignmen without casting it to the default address space. |
2896 | RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp" ); |
2897 | RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, |
2898 | const Twine &Name = "tmp" ); |
2899 | |
2900 | /// CreateAggTemp - Create a temporary memory object for the given |
2901 | /// aggregate type. |
2902 | AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp" , |
2903 | RawAddress *Alloca = nullptr) { |
2904 | return AggValueSlot::forAddr( |
2905 | addr: CreateMemTemp(T, Name, Alloca), quals: T.getQualifiers(), |
2906 | isDestructed: AggValueSlot::IsNotDestructed, needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
2907 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap); |
2908 | } |
2909 | |
2910 | /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
2911 | /// expression and compare the result against zero, returning an Int1Ty value. |
2912 | llvm::Value *EvaluateExprAsBool(const Expr *E); |
2913 | |
2914 | /// Retrieve the implicit cast expression of the rhs in a binary operator |
2915 | /// expression by passing pointers to Value and QualType |
2916 | /// This is used for implicit bitfield conversion checks, which |
2917 | /// must compare with the value before potential truncation. |
2918 | llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, |
2919 | llvm::Value **Previous, |
2920 | QualType *SrcType); |
2921 | |
2922 | /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, |
2923 | /// so we use the value after conversion. |
2924 | void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, |
2925 | llvm::Value *Dst, QualType DstType, |
2926 | const CGBitFieldInfo &Info, |
2927 | SourceLocation Loc); |
2928 | |
2929 | /// EmitIgnoredExpr - Emit an expression in a context which ignores the |
2930 | /// result. |
2931 | void EmitIgnoredExpr(const Expr *E); |
2932 | |
2933 | /// EmitAnyExpr - Emit code to compute the specified expression which can have |
2934 | /// any type. The result is returned as an RValue struct. If this is an |
2935 | /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
2936 | /// the result should be returned. |
2937 | /// |
2938 | /// \param ignoreResult True if the resulting value isn't used. |
2939 | RValue EmitAnyExpr(const Expr *E, |
2940 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
2941 | bool ignoreResult = false); |
2942 | |
2943 | // EmitVAListRef - Emit a "reference" to a va_list; this is either the address |
2944 | // or the value of the expression, depending on how va_list is defined. |
2945 | Address EmitVAListRef(const Expr *E); |
2946 | |
2947 | /// Emit a "reference" to a __builtin_ms_va_list; this is |
2948 | /// always the value of the expression, because a __builtin_ms_va_list is a |
2949 | /// pointer to a char. |
2950 | Address EmitMSVAListRef(const Expr *E); |
2951 | |
2952 | /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will |
2953 | /// always be accessible even if no aggregate location is provided. |
2954 | RValue EmitAnyExprToTemp(const Expr *E); |
2955 | |
2956 | /// EmitAnyExprToMem - Emits the code necessary to evaluate an |
2957 | /// arbitrary expression into the given memory location. |
2958 | void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, |
2959 | bool IsInitializer); |
2960 | |
2961 | void EmitAnyExprToExn(const Expr *E, Address Addr); |
2962 | |
2963 | /// EmitInitializationToLValue - Emit an initializer to an LValue. |
2964 | void EmitInitializationToLValue( |
2965 | const Expr *E, LValue LV, |
2966 | AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed); |
2967 | |
2968 | /// EmitExprAsInit - Emits the code necessary to initialize a |
2969 | /// location in memory with the given initializer. |
2970 | void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
2971 | bool capturedByInit); |
2972 | |
2973 | /// hasVolatileMember - returns true if aggregate type has a volatile |
2974 | /// member. |
2975 | bool hasVolatileMember(QualType T) { |
2976 | if (const RecordType *RT = T->getAs<RecordType>()) { |
2977 | const RecordDecl *RD = cast<RecordDecl>(Val: RT->getDecl()); |
2978 | return RD->hasVolatileMember(); |
2979 | } |
2980 | return false; |
2981 | } |
2982 | |
2983 | /// Determine whether a return value slot may overlap some other object. |
2984 | AggValueSlot::Overlap_t getOverlapForReturnValue() { |
2985 | // FIXME: Assuming no overlap here breaks guaranteed copy elision for base |
2986 | // class subobjects. These cases may need to be revisited depending on the |
2987 | // resolution of the relevant core issue. |
2988 | return AggValueSlot::DoesNotOverlap; |
2989 | } |
2990 | |
2991 | /// Determine whether a field initialization may overlap some other object. |
2992 | AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); |
2993 | |
2994 | /// Determine whether a base class initialization may overlap some other |
2995 | /// object. |
2996 | AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, |
2997 | const CXXRecordDecl *BaseRD, |
2998 | bool IsVirtual); |
2999 | |
3000 | /// Emit an aggregate assignment. |
3001 | void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { |
3002 | ApplyAtomGroup Grp(getDebugInfo()); |
3003 | bool IsVolatile = hasVolatileMember(T: EltTy); |
3004 | EmitAggregateCopy(Dest, Src, EltTy, MayOverlap: AggValueSlot::MayOverlap, isVolatile: IsVolatile); |
3005 | } |
3006 | |
3007 | void EmitAggregateCopyCtor(LValue Dest, LValue Src, |
3008 | AggValueSlot::Overlap_t MayOverlap) { |
3009 | EmitAggregateCopy(Dest, Src, EltTy: Src.getType(), MayOverlap); |
3010 | } |
3011 | |
3012 | /// EmitAggregateCopy - Emit an aggregate copy. |
3013 | /// |
3014 | /// \param isVolatile \c true iff either the source or the destination is |
3015 | /// volatile. |
3016 | /// \param MayOverlap Whether the tail padding of the destination might be |
3017 | /// occupied by some other object. More efficient code can often be |
3018 | /// generated if not. |
3019 | void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, |
3020 | AggValueSlot::Overlap_t MayOverlap, |
3021 | bool isVolatile = false); |
3022 | |
3023 | /// GetAddrOfLocalVar - Return the address of a local variable. |
3024 | Address GetAddrOfLocalVar(const VarDecl *VD) { |
3025 | auto it = LocalDeclMap.find(Val: VD); |
3026 | assert(it != LocalDeclMap.end() && |
3027 | "Invalid argument to GetAddrOfLocalVar(), no decl!" ); |
3028 | return it->second; |
3029 | } |
3030 | |
3031 | /// Given an opaque value expression, return its LValue mapping if it exists, |
3032 | /// otherwise create one. |
3033 | LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); |
3034 | |
3035 | /// Given an opaque value expression, return its RValue mapping if it exists, |
3036 | /// otherwise create one. |
3037 | RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); |
3038 | |
3039 | /// isOpaqueValueEmitted - Return true if the opaque value expression has |
3040 | /// already been emitted. |
3041 | bool isOpaqueValueEmitted(const OpaqueValueExpr *E); |
3042 | |
3043 | /// Get the index of the current ArrayInitLoopExpr, if any. |
3044 | llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } |
3045 | |
3046 | /// getAccessedFieldNo - Given an encoded value and a result number, return |
3047 | /// the input field number being accessed. |
3048 | static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); |
3049 | |
3050 | llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); |
3051 | llvm::BasicBlock *GetIndirectGotoBlock(); |
3052 | |
3053 | /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. |
3054 | static bool IsWrappedCXXThis(const Expr *E); |
3055 | |
3056 | /// EmitNullInitialization - Generate code to set a value of the given type to |
3057 | /// null, If the type contains data member pointers, they will be initialized |
3058 | /// to -1 in accordance with the Itanium C++ ABI. |
3059 | void EmitNullInitialization(Address DestPtr, QualType Ty); |
3060 | |
3061 | /// Emits a call to an LLVM variable-argument intrinsic, either |
3062 | /// \c llvm.va_start or \c llvm.va_end. |
3063 | /// \param ArgValue A reference to the \c va_list as emitted by either |
3064 | /// \c EmitVAListRef or \c EmitMSVAListRef. |
3065 | /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, |
3066 | /// calls \c llvm.va_end. |
3067 | llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); |
3068 | |
3069 | /// Generate code to get an argument from the passed in pointer |
3070 | /// and update it accordingly. |
3071 | /// \param VE The \c VAArgExpr for which to generate code. |
3072 | /// \param VAListAddr Receives a reference to the \c va_list as emitted by |
3073 | /// either \c EmitVAListRef or \c EmitMSVAListRef. |
3074 | /// \returns A pointer to the argument. |
3075 | // FIXME: We should be able to get rid of this method and use the va_arg |
3076 | // instruction in LLVM instead once it works well enough. |
3077 | RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, |
3078 | AggValueSlot Slot = AggValueSlot::ignored()); |
3079 | |
3080 | /// emitArrayLength - Compute the length of an array, even if it's a |
3081 | /// VLA, and drill down to the base element type. |
3082 | llvm::Value *emitArrayLength(const ArrayType *arrayType, QualType &baseType, |
3083 | Address &addr); |
3084 | |
3085 | /// EmitVLASize - Capture all the sizes for the VLA expressions in |
3086 | /// the given variably-modified type and store them in the VLASizeMap. |
3087 | /// |
3088 | /// This function can be called with a null (unreachable) insert point. |
3089 | void EmitVariablyModifiedType(QualType Ty); |
3090 | |
3091 | struct VlaSizePair { |
3092 | llvm::Value *NumElts; |
3093 | QualType Type; |
3094 | |
3095 | VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} |
3096 | }; |
3097 | |
3098 | /// Return the number of elements for a single dimension |
3099 | /// for the given array type. |
3100 | VlaSizePair getVLAElements1D(const VariableArrayType *vla); |
3101 | VlaSizePair getVLAElements1D(QualType vla); |
3102 | |
3103 | /// Returns an LLVM value that corresponds to the size, |
3104 | /// in non-variably-sized elements, of a variable length array type, |
3105 | /// plus that largest non-variably-sized element type. Assumes that |
3106 | /// the type has already been emitted with EmitVariablyModifiedType. |
3107 | VlaSizePair getVLASize(const VariableArrayType *vla); |
3108 | VlaSizePair getVLASize(QualType vla); |
3109 | |
3110 | /// LoadCXXThis - Load the value of 'this'. This function is only valid while |
3111 | /// generating code for an C++ member function. |
3112 | llvm::Value *LoadCXXThis() { |
3113 | assert(CXXThisValue && "no 'this' value for this function" ); |
3114 | return CXXThisValue; |
3115 | } |
3116 | Address LoadCXXThisAddress(); |
3117 | |
3118 | /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have |
3119 | /// virtual bases. |
3120 | // FIXME: Every place that calls LoadCXXVTT is something |
3121 | // that needs to be abstracted properly. |
3122 | llvm::Value *LoadCXXVTT() { |
3123 | assert(CXXStructorImplicitParamValue && "no VTT value for this function" ); |
3124 | return CXXStructorImplicitParamValue; |
3125 | } |
3126 | |
3127 | /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a |
3128 | /// complete class to the given direct base. |
3129 | Address GetAddressOfDirectBaseInCompleteClass(Address Value, |
3130 | const CXXRecordDecl *Derived, |
3131 | const CXXRecordDecl *Base, |
3132 | bool BaseIsVirtual); |
3133 | |
3134 | static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); |
3135 | |
3136 | /// GetAddressOfBaseClass - This function will add the necessary delta to the |
3137 | /// load of 'this' and returns address of the base class. |
3138 | Address GetAddressOfBaseClass(Address Value, const CXXRecordDecl *Derived, |
3139 | CastExpr::path_const_iterator PathBegin, |
3140 | CastExpr::path_const_iterator PathEnd, |
3141 | bool NullCheckValue, SourceLocation Loc); |
3142 | |
3143 | Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, |
3144 | CastExpr::path_const_iterator PathBegin, |
3145 | CastExpr::path_const_iterator PathEnd, |
3146 | bool NullCheckValue); |
3147 | |
3148 | /// GetVTTParameter - Return the VTT parameter that should be passed to a |
3149 | /// base constructor/destructor with virtual bases. |
3150 | /// FIXME: VTTs are Itanium ABI-specific, so the definition should move |
3151 | /// to ItaniumCXXABI.cpp together with all the references to VTT. |
3152 | llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, |
3153 | bool Delegating); |
3154 | |
3155 | void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3156 | CXXCtorType CtorType, |
3157 | const FunctionArgList &Args, |
3158 | SourceLocation Loc); |
3159 | // It's important not to confuse this and the previous function. Delegating |
3160 | // constructors are the C++0x feature. The constructor delegate optimization |
3161 | // is used to reduce duplication in the base and complete consturctors where |
3162 | // they are substantially the same. |
3163 | void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3164 | const FunctionArgList &Args); |
3165 | |
3166 | /// Emit a call to an inheriting constructor (that is, one that invokes a |
3167 | /// constructor inherited from a base class) by inlining its definition. This |
3168 | /// is necessary if the ABI does not support forwarding the arguments to the |
3169 | /// base class constructor (because they're variadic or similar). |
3170 | void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3171 | CXXCtorType CtorType, |
3172 | bool ForVirtualBase, |
3173 | bool Delegating, |
3174 | CallArgList &Args); |
3175 | |
3176 | /// Emit a call to a constructor inherited from a base class, passing the |
3177 | /// current constructor's arguments along unmodified (without even making |
3178 | /// a copy). |
3179 | void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, |
3180 | bool ForVirtualBase, Address This, |
3181 | bool InheritedFromVBase, |
3182 | const CXXInheritedCtorInitExpr *E); |
3183 | |
3184 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3185 | bool ForVirtualBase, bool Delegating, |
3186 | AggValueSlot ThisAVS, const CXXConstructExpr *E); |
3187 | |
3188 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3189 | bool ForVirtualBase, bool Delegating, |
3190 | Address This, CallArgList &Args, |
3191 | AggValueSlot::Overlap_t Overlap, |
3192 | SourceLocation Loc, bool NewPointerIsChecked, |
3193 | llvm::CallBase **CallOrInvoke = nullptr); |
3194 | |
3195 | /// Emit assumption load for all bases. Requires to be called only on |
3196 | /// most-derived class and not under construction of the object. |
3197 | void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); |
3198 | |
3199 | /// Emit assumption that vptr load == global vtable. |
3200 | void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); |
3201 | |
3202 | void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, Address This, |
3203 | Address Src, const CXXConstructExpr *E); |
3204 | |
3205 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3206 | const ArrayType *ArrayTy, Address ArrayPtr, |
3207 | const CXXConstructExpr *E, |
3208 | bool NewPointerIsChecked, |
3209 | bool ZeroInitialization = false); |
3210 | |
3211 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3212 | llvm::Value *NumElements, Address ArrayPtr, |
3213 | const CXXConstructExpr *E, |
3214 | bool NewPointerIsChecked, |
3215 | bool ZeroInitialization = false); |
3216 | |
3217 | static Destroyer destroyCXXObject; |
3218 | |
3219 | void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, |
3220 | bool ForVirtualBase, bool Delegating, Address This, |
3221 | QualType ThisTy); |
3222 | |
3223 | void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, |
3224 | llvm::Type *ElementTy, Address NewPtr, |
3225 | llvm::Value *NumElements, |
3226 | llvm::Value *AllocSizeWithoutCookie); |
3227 | |
3228 | void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, |
3229 | Address Ptr); |
3230 | |
3231 | void EmitSehCppScopeBegin(); |
3232 | void EmitSehCppScopeEnd(); |
3233 | void EmitSehTryScopeBegin(); |
3234 | void EmitSehTryScopeEnd(); |
3235 | |
3236 | llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); |
3237 | void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); |
3238 | |
3239 | llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); |
3240 | void EmitCXXDeleteExpr(const CXXDeleteExpr *E); |
3241 | |
3242 | void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, |
3243 | QualType DeleteTy, llvm::Value *NumElements = nullptr, |
3244 | CharUnits CookieSize = CharUnits()); |
3245 | |
3246 | RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, |
3247 | const CallExpr *TheCallExpr, bool IsDelete); |
3248 | |
3249 | llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); |
3250 | llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); |
3251 | Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); |
3252 | |
3253 | /// Situations in which we might emit a check for the suitability of a |
3254 | /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in |
3255 | /// compiler-rt. |
3256 | enum TypeCheckKind { |
3257 | /// Checking the operand of a load. Must be suitably sized and aligned. |
3258 | TCK_Load, |
3259 | /// Checking the destination of a store. Must be suitably sized and aligned. |
3260 | TCK_Store, |
3261 | /// Checking the bound value in a reference binding. Must be suitably sized |
3262 | /// and aligned, but is not required to refer to an object (until the |
3263 | /// reference is used), per core issue 453. |
3264 | TCK_ReferenceBinding, |
3265 | /// Checking the object expression in a non-static data member access. Must |
3266 | /// be an object within its lifetime. |
3267 | TCK_MemberAccess, |
3268 | /// Checking the 'this' pointer for a call to a non-static member function. |
3269 | /// Must be an object within its lifetime. |
3270 | TCK_MemberCall, |
3271 | /// Checking the 'this' pointer for a constructor call. |
3272 | TCK_ConstructorCall, |
3273 | /// Checking the operand of a static_cast to a derived pointer type. Must be |
3274 | /// null or an object within its lifetime. |
3275 | TCK_DowncastPointer, |
3276 | /// Checking the operand of a static_cast to a derived reference type. Must |
3277 | /// be an object within its lifetime. |
3278 | TCK_DowncastReference, |
3279 | /// Checking the operand of a cast to a base object. Must be suitably sized |
3280 | /// and aligned. |
3281 | TCK_Upcast, |
3282 | /// Checking the operand of a cast to a virtual base object. Must be an |
3283 | /// object within its lifetime. |
3284 | TCK_UpcastToVirtualBase, |
3285 | /// Checking the value assigned to a _Nonnull pointer. Must not be null. |
3286 | TCK_NonnullAssign, |
3287 | /// Checking the operand of a dynamic_cast or a typeid expression. Must be |
3288 | /// null or an object within its lifetime. |
3289 | TCK_DynamicOperation |
3290 | }; |
3291 | |
3292 | /// Determine whether the pointer type check \p TCK permits null pointers. |
3293 | static bool isNullPointerAllowed(TypeCheckKind TCK); |
3294 | |
3295 | /// Determine whether the pointer type check \p TCK requires a vptr check. |
3296 | static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); |
3297 | |
3298 | /// Whether any type-checking sanitizers are enabled. If \c false, |
3299 | /// calls to EmitTypeCheck can be skipped. |
3300 | bool sanitizePerformTypeCheck() const; |
3301 | |
3302 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, |
3303 | QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), |
3304 | llvm::Value *ArraySize = nullptr) { |
3305 | if (!sanitizePerformTypeCheck()) |
3306 | return; |
3307 | EmitTypeCheck(TCK, Loc, V: LV.emitRawPointer(CGF&: *this), Type, Alignment: LV.getAlignment(), |
3308 | SkippedChecks, ArraySize); |
3309 | } |
3310 | |
3311 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, |
3312 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3313 | SanitizerSet SkippedChecks = SanitizerSet(), |
3314 | llvm::Value *ArraySize = nullptr) { |
3315 | if (!sanitizePerformTypeCheck()) |
3316 | return; |
3317 | EmitTypeCheck(TCK, Loc, V: Addr.emitRawPointer(CGF&: *this), Type, Alignment, |
3318 | SkippedChecks, ArraySize); |
3319 | } |
3320 | |
3321 | /// Emit a check that \p V is the address of storage of the |
3322 | /// appropriate size and alignment for an object of type \p Type |
3323 | /// (or if ArraySize is provided, for an array of that bound). |
3324 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, |
3325 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3326 | SanitizerSet SkippedChecks = SanitizerSet(), |
3327 | llvm::Value *ArraySize = nullptr); |
3328 | |
3329 | /// Emit a check that \p Base points into an array object, which |
3330 | /// we can access at index \p Index. \p Accessed should be \c false if we |
3331 | /// this expression is used as an lvalue, for instance in "&Arr[Idx]". |
3332 | void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, |
3333 | QualType IndexType, bool Accessed); |
3334 | void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, |
3335 | llvm::Value *Index, QualType IndexType, |
3336 | QualType IndexedType, bool Accessed); |
3337 | |
3338 | /// Returns debug info, with additional annotation if |
3339 | /// CGM.getCodeGenOpts().SanitizeAnnotateDebugInfo[Ordinal] is enabled for |
3340 | /// any of the ordinals. |
3341 | llvm::DILocation * |
3342 | SanitizerAnnotateDebugInfo(ArrayRef<SanitizerKind::SanitizerOrdinal> Ordinals, |
3343 | SanitizerHandler Handler); |
3344 | |
3345 | llvm::Value *GetCountedByFieldExprGEP(const Expr *Base, const FieldDecl *FD, |
3346 | const FieldDecl *CountDecl); |
3347 | |
3348 | /// Build an expression accessing the "counted_by" field. |
3349 | llvm::Value *EmitLoadOfCountedByField(const Expr *Base, const FieldDecl *FD, |
3350 | const FieldDecl *CountDecl); |
3351 | |
3352 | // Emit bounds checking for flexible array and pointer members with the |
3353 | // counted_by attribute. |
3354 | void EmitCountedByBoundsChecking(const Expr *E, llvm::Value *Idx, |
3355 | Address Addr, QualType IdxTy, |
3356 | QualType ArrayTy, bool Accessed, |
3357 | bool FlexibleArray); |
3358 | |
3359 | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
3360 | bool isInc, bool isPre); |
3361 | ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
3362 | bool isInc, bool isPre); |
3363 | |
3364 | /// Converts Location to a DebugLoc, if debug information is enabled. |
3365 | llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); |
3366 | |
3367 | /// Get the record field index as represented in debug info. |
3368 | unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); |
3369 | |
3370 | //===--------------------------------------------------------------------===// |
3371 | // Declaration Emission |
3372 | //===--------------------------------------------------------------------===// |
3373 | |
3374 | /// EmitDecl - Emit a declaration. |
3375 | /// |
3376 | /// This function can be called with a null (unreachable) insert point. |
3377 | void EmitDecl(const Decl &D, bool EvaluateConditionDecl = false); |
3378 | |
3379 | /// EmitVarDecl - Emit a local variable declaration. |
3380 | /// |
3381 | /// This function can be called with a null (unreachable) insert point. |
3382 | void EmitVarDecl(const VarDecl &D); |
3383 | |
3384 | void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
3385 | bool capturedByInit); |
3386 | |
3387 | typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, |
3388 | llvm::Value *Address); |
3389 | |
3390 | /// Determine whether the given initializer is trivial in the sense |
3391 | /// that it requires no code to be generated. |
3392 | bool isTrivialInitializer(const Expr *Init); |
3393 | |
3394 | /// EmitAutoVarDecl - Emit an auto variable declaration. |
3395 | /// |
3396 | /// This function can be called with a null (unreachable) insert point. |
3397 | void EmitAutoVarDecl(const VarDecl &D); |
3398 | |
3399 | class AutoVarEmission { |
3400 | friend class CodeGenFunction; |
3401 | |
3402 | const VarDecl *Variable; |
3403 | |
3404 | /// The address of the alloca for languages with explicit address space |
3405 | /// (e.g. OpenCL) or alloca casted to generic pointer for address space |
3406 | /// agnostic languages (e.g. C++). Invalid if the variable was emitted |
3407 | /// as a global constant. |
3408 | Address Addr; |
3409 | |
3410 | llvm::Value *NRVOFlag; |
3411 | |
3412 | /// True if the variable is a __block variable that is captured by an |
3413 | /// escaping block. |
3414 | bool IsEscapingByRef; |
3415 | |
3416 | /// True if the variable is of aggregate type and has a constant |
3417 | /// initializer. |
3418 | bool IsConstantAggregate; |
3419 | |
3420 | /// Non-null if we should use lifetime annotations. |
3421 | llvm::Value *SizeForLifetimeMarkers; |
3422 | |
3423 | /// Address with original alloca instruction. Invalid if the variable was |
3424 | /// emitted as a global constant. |
3425 | RawAddress AllocaAddr; |
3426 | |
3427 | struct Invalid {}; |
3428 | AutoVarEmission(Invalid) |
3429 | : Variable(nullptr), Addr(Address::invalid()), |
3430 | AllocaAddr(RawAddress::invalid()) {} |
3431 | |
3432 | AutoVarEmission(const VarDecl &variable) |
3433 | : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), |
3434 | IsEscapingByRef(false), IsConstantAggregate(false), |
3435 | SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} |
3436 | |
3437 | bool wasEmittedAsGlobal() const { return !Addr.isValid(); } |
3438 | |
3439 | public: |
3440 | static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } |
3441 | |
3442 | bool useLifetimeMarkers() const { |
3443 | return SizeForLifetimeMarkers != nullptr; |
3444 | } |
3445 | llvm::Value *getSizeForLifetimeMarkers() const { |
3446 | assert(useLifetimeMarkers()); |
3447 | return SizeForLifetimeMarkers; |
3448 | } |
3449 | |
3450 | /// Returns the raw, allocated address, which is not necessarily |
3451 | /// the address of the object itself. It is casted to default |
3452 | /// address space for address space agnostic languages. |
3453 | Address getAllocatedAddress() const { return Addr; } |
3454 | |
3455 | /// Returns the address for the original alloca instruction. |
3456 | RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } |
3457 | |
3458 | /// Returns the address of the object within this declaration. |
3459 | /// Note that this does not chase the forwarding pointer for |
3460 | /// __block decls. |
3461 | Address getObjectAddress(CodeGenFunction &CGF) const { |
3462 | if (!IsEscapingByRef) |
3463 | return Addr; |
3464 | |
3465 | return CGF.emitBlockByrefAddress(baseAddr: Addr, V: Variable, /*forward*/ followForward: false); |
3466 | } |
3467 | }; |
3468 | AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); |
3469 | void EmitAutoVarInit(const AutoVarEmission &emission); |
3470 | void EmitAutoVarCleanups(const AutoVarEmission &emission); |
3471 | void emitAutoVarTypeCleanup(const AutoVarEmission &emission, |
3472 | QualType::DestructionKind dtorKind); |
3473 | |
3474 | void MaybeEmitDeferredVarDeclInit(const VarDecl *var); |
3475 | |
3476 | /// Emits the alloca and debug information for the size expressions for each |
3477 | /// dimension of an array. It registers the association of its (1-dimensional) |
3478 | /// QualTypes and size expression's debug node, so that CGDebugInfo can |
3479 | /// reference this node when creating the DISubrange object to describe the |
3480 | /// array types. |
3481 | void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, const VarDecl &D, |
3482 | bool EmitDebugInfo); |
3483 | |
3484 | void EmitStaticVarDecl(const VarDecl &D, |
3485 | llvm::GlobalValue::LinkageTypes Linkage); |
3486 | |
3487 | class ParamValue { |
3488 | union { |
3489 | Address Addr; |
3490 | llvm::Value *Value; |
3491 | }; |
3492 | |
3493 | bool IsIndirect; |
3494 | |
3495 | ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} |
3496 | ParamValue(Address A) : Addr(A), IsIndirect(true) {} |
3497 | |
3498 | public: |
3499 | static ParamValue forDirect(llvm::Value *value) { |
3500 | return ParamValue(value); |
3501 | } |
3502 | static ParamValue forIndirect(Address addr) { |
3503 | assert(!addr.getAlignment().isZero()); |
3504 | return ParamValue(addr); |
3505 | } |
3506 | |
3507 | bool isIndirect() const { return IsIndirect; } |
3508 | llvm::Value *getAnyValue() const { |
3509 | if (!isIndirect()) |
3510 | return Value; |
3511 | assert(!Addr.hasOffset() && "unexpected offset" ); |
3512 | return Addr.getBasePointer(); |
3513 | } |
3514 | |
3515 | llvm::Value *getDirectValue() const { |
3516 | assert(!isIndirect()); |
3517 | return Value; |
3518 | } |
3519 | |
3520 | Address getIndirectAddress() const { |
3521 | assert(isIndirect()); |
3522 | return Addr; |
3523 | } |
3524 | }; |
3525 | |
3526 | /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. |
3527 | void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); |
3528 | |
3529 | /// protectFromPeepholes - Protect a value that we're intending to |
3530 | /// store to the side, but which will probably be used later, from |
3531 | /// aggressive peepholing optimizations that might delete it. |
3532 | /// |
3533 | /// Pass the result to unprotectFromPeepholes to declare that |
3534 | /// protection is no longer required. |
3535 | /// |
3536 | /// There's no particular reason why this shouldn't apply to |
3537 | /// l-values, it's just that no existing peepholes work on pointers. |
3538 | PeepholeProtection protectFromPeepholes(RValue rvalue); |
3539 | void unprotectFromPeepholes(PeepholeProtection protection); |
3540 | |
3541 | void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, |
3542 | SourceLocation Loc, |
3543 | SourceLocation AssumptionLoc, |
3544 | llvm::Value *Alignment, |
3545 | llvm::Value *OffsetValue, |
3546 | llvm::Value *TheCheck, |
3547 | llvm::Instruction *Assumption); |
3548 | |
3549 | void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, |
3550 | SourceLocation Loc, SourceLocation AssumptionLoc, |
3551 | llvm::Value *Alignment, |
3552 | llvm::Value *OffsetValue = nullptr); |
3553 | |
3554 | void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, |
3555 | SourceLocation AssumptionLoc, |
3556 | llvm::Value *Alignment, |
3557 | llvm::Value *OffsetValue = nullptr); |
3558 | |
3559 | //===--------------------------------------------------------------------===// |
3560 | // Statement Emission |
3561 | //===--------------------------------------------------------------------===// |
3562 | |
3563 | /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. |
3564 | void EmitStopPoint(const Stmt *S); |
3565 | |
3566 | /// EmitStmt - Emit the code for the statement \arg S. It is legal to call |
3567 | /// this function even if there is no current insertion point. |
3568 | /// |
3569 | /// This function may clear the current insertion point; callers should use |
3570 | /// EnsureInsertPoint if they wish to subsequently generate code without first |
3571 | /// calling EmitBlock, EmitBranch, or EmitStmt. |
3572 | void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {}); |
3573 | |
3574 | /// EmitSimpleStmt - Try to emit a "simple" statement which does not |
3575 | /// necessarily require an insertion point or debug information; typically |
3576 | /// because the statement amounts to a jump or a container of other |
3577 | /// statements. |
3578 | /// |
3579 | /// \return True if the statement was handled. |
3580 | bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); |
3581 | |
3582 | Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, |
3583 | AggValueSlot AVS = AggValueSlot::ignored()); |
3584 | Address |
3585 | EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast = false, |
3586 | AggValueSlot AVS = AggValueSlot::ignored()); |
3587 | |
3588 | /// EmitLabel - Emit the block for the given label. It is legal to call this |
3589 | /// function even if there is no current insertion point. |
3590 | void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. |
3591 | |
3592 | void EmitLabelStmt(const LabelStmt &S); |
3593 | void EmitAttributedStmt(const AttributedStmt &S); |
3594 | void EmitGotoStmt(const GotoStmt &S); |
3595 | void EmitIndirectGotoStmt(const IndirectGotoStmt &S); |
3596 | void EmitIfStmt(const IfStmt &S); |
3597 | |
3598 | void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {}); |
3599 | void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {}); |
3600 | void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {}); |
3601 | void EmitReturnStmt(const ReturnStmt &S); |
3602 | void EmitDeclStmt(const DeclStmt &S); |
3603 | void EmitBreakStmt(const BreakStmt &S); |
3604 | void EmitContinueStmt(const ContinueStmt &S); |
3605 | void EmitSwitchStmt(const SwitchStmt &S); |
3606 | void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); |
3607 | void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3608 | void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3609 | void EmitAsmStmt(const AsmStmt &S); |
3610 | |
3611 | void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); |
3612 | void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); |
3613 | void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); |
3614 | void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); |
3615 | void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); |
3616 | |
3617 | void EmitCoroutineBody(const CoroutineBodyStmt &S); |
3618 | void EmitCoreturnStmt(const CoreturnStmt &S); |
3619 | RValue EmitCoawaitExpr(const CoawaitExpr &E, |
3620 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3621 | bool ignoreResult = false); |
3622 | LValue EmitCoawaitLValue(const CoawaitExpr *E); |
3623 | RValue EmitCoyieldExpr(const CoyieldExpr &E, |
3624 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3625 | bool ignoreResult = false); |
3626 | LValue EmitCoyieldLValue(const CoyieldExpr *E); |
3627 | RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); |
3628 | |
3629 | void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3630 | void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3631 | |
3632 | void EmitCXXTryStmt(const CXXTryStmt &S); |
3633 | void EmitSEHTryStmt(const SEHTryStmt &S); |
3634 | void EmitSEHLeaveStmt(const SEHLeaveStmt &S); |
3635 | void EnterSEHTryStmt(const SEHTryStmt &S); |
3636 | void ExitSEHTryStmt(const SEHTryStmt &S); |
3637 | void VolatilizeTryBlocks(llvm::BasicBlock *BB, |
3638 | llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); |
3639 | |
3640 | void pushSEHCleanup(CleanupKind kind, llvm::Function *FinallyFunc); |
3641 | void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, |
3642 | const Stmt *OutlinedStmt); |
3643 | |
3644 | llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, |
3645 | const SEHExceptStmt &Except); |
3646 | |
3647 | llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, |
3648 | const SEHFinallyStmt &Finally); |
3649 | |
3650 | void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, |
3651 | llvm::Value *ParentFP, llvm::Value *EntryEBP); |
3652 | llvm::Value *EmitSEHExceptionCode(); |
3653 | llvm::Value *EmitSEHExceptionInfo(); |
3654 | llvm::Value *EmitSEHAbnormalTermination(); |
3655 | |
3656 | /// Emit simple code for OpenMP directives in Simd-only mode. |
3657 | void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); |
3658 | |
3659 | /// Scan the outlined statement for captures from the parent function. For |
3660 | /// each capture, mark the capture as escaped and emit a call to |
3661 | /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. |
3662 | void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, |
3663 | bool IsFilter); |
3664 | |
3665 | /// Recovers the address of a local in a parent function. ParentVar is the |
3666 | /// address of the variable used in the immediate parent function. It can |
3667 | /// either be an alloca or a call to llvm.localrecover if there are nested |
3668 | /// outlined functions. ParentFP is the frame pointer of the outermost parent |
3669 | /// frame. |
3670 | Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, |
3671 | Address ParentVar, llvm::Value *ParentFP); |
3672 | |
3673 | void EmitCXXForRangeStmt(const CXXForRangeStmt &S, |
3674 | ArrayRef<const Attr *> Attrs = {}); |
3675 | |
3676 | /// Controls insertion of cancellation exit blocks in worksharing constructs. |
3677 | class OMPCancelStackRAII { |
3678 | CodeGenFunction &CGF; |
3679 | |
3680 | public: |
3681 | OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
3682 | bool HasCancel) |
3683 | : CGF(CGF) { |
3684 | CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); |
3685 | } |
3686 | ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } |
3687 | }; |
3688 | |
3689 | /// Returns calculated size of the specified type. |
3690 | llvm::Value *getTypeSize(QualType Ty); |
3691 | LValue InitCapturedStruct(const CapturedStmt &S); |
3692 | llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); |
3693 | llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); |
3694 | Address GenerateCapturedStmtArgument(const CapturedStmt &S); |
3695 | llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, |
3696 | SourceLocation Loc); |
3697 | void GenerateOpenMPCapturedVars(const CapturedStmt &S, |
3698 | SmallVectorImpl<llvm::Value *> &CapturedVars); |
3699 | void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, |
3700 | SourceLocation Loc); |
3701 | /// Perform element by element copying of arrays with type \a |
3702 | /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure |
3703 | /// generated by \a CopyGen. |
3704 | /// |
3705 | /// \param DestAddr Address of the destination array. |
3706 | /// \param SrcAddr Address of the source array. |
3707 | /// \param OriginalType Type of destination and source arrays. |
3708 | /// \param CopyGen Copying procedure that copies value of single array element |
3709 | /// to another single array element. |
3710 | void EmitOMPAggregateAssign( |
3711 | Address DestAddr, Address SrcAddr, QualType OriginalType, |
3712 | const llvm::function_ref<void(Address, Address)> CopyGen); |
3713 | /// Emit proper copying of data from one variable to another. |
3714 | /// |
3715 | /// \param OriginalType Original type of the copied variables. |
3716 | /// \param DestAddr Destination address. |
3717 | /// \param SrcAddr Source address. |
3718 | /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has |
3719 | /// type of the base array element). |
3720 | /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of |
3721 | /// the base array element). |
3722 | /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a |
3723 | /// DestVD. |
3724 | void EmitOMPCopy(QualType OriginalType, Address DestAddr, Address SrcAddr, |
3725 | const VarDecl *DestVD, const VarDecl *SrcVD, |
3726 | const Expr *Copy); |
3727 | /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or |
3728 | /// \a X = \a E \a BO \a E. |
3729 | /// |
3730 | /// \param X Value to be updated. |
3731 | /// \param E Update value. |
3732 | /// \param BO Binary operation for update operation. |
3733 | /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update |
3734 | /// expression, false otherwise. |
3735 | /// \param AO Atomic ordering of the generated atomic instructions. |
3736 | /// \param CommonGen Code generator for complex expressions that cannot be |
3737 | /// expressed through atomicrmw instruction. |
3738 | /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was |
3739 | /// generated, <false, RValue::get(nullptr)> otherwise. |
3740 | std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( |
3741 | LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, |
3742 | llvm::AtomicOrdering AO, SourceLocation Loc, |
3743 | const llvm::function_ref<RValue(RValue)> CommonGen); |
3744 | bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, |
3745 | OMPPrivateScope &PrivateScope); |
3746 | void EmitOMPPrivateClause(const OMPExecutableDirective &D, |
3747 | OMPPrivateScope &PrivateScope); |
3748 | void EmitOMPUseDevicePtrClause( |
3749 | const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, |
3750 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3751 | CaptureDeviceAddrMap); |
3752 | void EmitOMPUseDeviceAddrClause( |
3753 | const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, |
3754 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3755 | CaptureDeviceAddrMap); |
3756 | /// Emit code for copyin clause in \a D directive. The next code is |
3757 | /// generated at the start of outlined functions for directives: |
3758 | /// \code |
3759 | /// threadprivate_var1 = master_threadprivate_var1; |
3760 | /// operator=(threadprivate_var2, master_threadprivate_var2); |
3761 | /// ... |
3762 | /// __kmpc_barrier(&loc, global_tid); |
3763 | /// \endcode |
3764 | /// |
3765 | /// \param D OpenMP directive possibly with 'copyin' clause(s). |
3766 | /// \returns true if at least one copyin variable is found, false otherwise. |
3767 | bool EmitOMPCopyinClause(const OMPExecutableDirective &D); |
3768 | /// Emit initial code for lastprivate variables. If some variable is |
3769 | /// not also firstprivate, then the default initialization is used. Otherwise |
3770 | /// initialization of this variable is performed by EmitOMPFirstprivateClause |
3771 | /// method. |
3772 | /// |
3773 | /// \param D Directive that may have 'lastprivate' directives. |
3774 | /// \param PrivateScope Private scope for capturing lastprivate variables for |
3775 | /// proper codegen in internal captured statement. |
3776 | /// |
3777 | /// \returns true if there is at least one lastprivate variable, false |
3778 | /// otherwise. |
3779 | bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, |
3780 | OMPPrivateScope &PrivateScope); |
3781 | /// Emit final copying of lastprivate values to original variables at |
3782 | /// the end of the worksharing or simd directive. |
3783 | /// |
3784 | /// \param D Directive that has at least one 'lastprivate' directives. |
3785 | /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if |
3786 | /// it is the last iteration of the loop code in associated directive, or to |
3787 | /// 'i1 false' otherwise. If this item is nullptr, no final check is required. |
3788 | void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, |
3789 | bool NoFinals, |
3790 | llvm::Value *IsLastIterCond = nullptr); |
3791 | /// Emit initial code for linear clauses. |
3792 | void EmitOMPLinearClause(const OMPLoopDirective &D, |
3793 | CodeGenFunction::OMPPrivateScope &PrivateScope); |
3794 | /// Emit final code for linear clauses. |
3795 | /// \param CondGen Optional conditional code for final part of codegen for |
3796 | /// linear clause. |
3797 | void EmitOMPLinearClauseFinal( |
3798 | const OMPLoopDirective &D, |
3799 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
3800 | /// Emit initial code for reduction variables. Creates reduction copies |
3801 | /// and initializes them with the values according to OpenMP standard. |
3802 | /// |
3803 | /// \param D Directive (possibly) with the 'reduction' clause. |
3804 | /// \param PrivateScope Private scope for capturing reduction variables for |
3805 | /// proper codegen in internal captured statement. |
3806 | /// |
3807 | void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, |
3808 | OMPPrivateScope &PrivateScope, |
3809 | bool ForInscan = false); |
3810 | /// Emit final update of reduction values to original variables at |
3811 | /// the end of the directive. |
3812 | /// |
3813 | /// \param D Directive that has at least one 'reduction' directives. |
3814 | /// \param ReductionKind The kind of reduction to perform. |
3815 | void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, |
3816 | const OpenMPDirectiveKind ReductionKind); |
3817 | /// Emit initial code for linear variables. Creates private copies |
3818 | /// and initializes them with the values according to OpenMP standard. |
3819 | /// |
3820 | /// \param D Directive (possibly) with the 'linear' clause. |
3821 | /// \return true if at least one linear variable is found that should be |
3822 | /// initialized with the value of the original variable, false otherwise. |
3823 | bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); |
3824 | |
3825 | typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, |
3826 | llvm::Function * /*OutlinedFn*/, |
3827 | const OMPTaskDataTy & /*Data*/)> |
3828 | TaskGenTy; |
3829 | void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, |
3830 | const OpenMPDirectiveKind CapturedRegion, |
3831 | const RegionCodeGenTy &BodyGen, |
3832 | const TaskGenTy &TaskGen, OMPTaskDataTy &Data); |
3833 | struct OMPTargetDataInfo { |
3834 | Address BasePointersArray = Address::invalid(); |
3835 | Address PointersArray = Address::invalid(); |
3836 | Address SizesArray = Address::invalid(); |
3837 | Address MappersArray = Address::invalid(); |
3838 | unsigned NumberOfTargetItems = 0; |
3839 | explicit OMPTargetDataInfo() = default; |
3840 | OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, |
3841 | Address SizesArray, Address MappersArray, |
3842 | unsigned NumberOfTargetItems) |
3843 | : BasePointersArray(BasePointersArray), PointersArray(PointersArray), |
3844 | SizesArray(SizesArray), MappersArray(MappersArray), |
3845 | NumberOfTargetItems(NumberOfTargetItems) {} |
3846 | }; |
3847 | void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, |
3848 | const RegionCodeGenTy &BodyGen, |
3849 | OMPTargetDataInfo &InputInfo); |
3850 | void processInReduction(const OMPExecutableDirective &S, OMPTaskDataTy &Data, |
3851 | CodeGenFunction &CGF, const CapturedStmt *CS, |
3852 | OMPPrivateScope &Scope); |
3853 | void EmitOMPMetaDirective(const OMPMetaDirective &S); |
3854 | void EmitOMPParallelDirective(const OMPParallelDirective &S); |
3855 | void EmitOMPSimdDirective(const OMPSimdDirective &S); |
3856 | void EmitOMPTileDirective(const OMPTileDirective &S); |
3857 | void EmitOMPStripeDirective(const OMPStripeDirective &S); |
3858 | void EmitOMPUnrollDirective(const OMPUnrollDirective &S); |
3859 | void EmitOMPReverseDirective(const OMPReverseDirective &S); |
3860 | void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); |
3861 | void EmitOMPForDirective(const OMPForDirective &S); |
3862 | void EmitOMPForSimdDirective(const OMPForSimdDirective &S); |
3863 | void EmitOMPScopeDirective(const OMPScopeDirective &S); |
3864 | void EmitOMPSectionsDirective(const OMPSectionsDirective &S); |
3865 | void EmitOMPSectionDirective(const OMPSectionDirective &S); |
3866 | void EmitOMPSingleDirective(const OMPSingleDirective &S); |
3867 | void EmitOMPMasterDirective(const OMPMasterDirective &S); |
3868 | void EmitOMPMaskedDirective(const OMPMaskedDirective &S); |
3869 | void EmitOMPCriticalDirective(const OMPCriticalDirective &S); |
3870 | void EmitOMPParallelForDirective(const OMPParallelForDirective &S); |
3871 | void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); |
3872 | void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); |
3873 | void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); |
3874 | void EmitOMPTaskDirective(const OMPTaskDirective &S); |
3875 | void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); |
3876 | void EmitOMPErrorDirective(const OMPErrorDirective &S); |
3877 | void EmitOMPBarrierDirective(const OMPBarrierDirective &S); |
3878 | void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); |
3879 | void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); |
3880 | void EmitOMPFlushDirective(const OMPFlushDirective &S); |
3881 | void EmitOMPDepobjDirective(const OMPDepobjDirective &S); |
3882 | void EmitOMPScanDirective(const OMPScanDirective &S); |
3883 | void EmitOMPOrderedDirective(const OMPOrderedDirective &S); |
3884 | void EmitOMPAtomicDirective(const OMPAtomicDirective &S); |
3885 | void EmitOMPTargetDirective(const OMPTargetDirective &S); |
3886 | void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); |
3887 | void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); |
3888 | void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); |
3889 | void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); |
3890 | void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); |
3891 | void |
3892 | EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); |
3893 | void EmitOMPTeamsDirective(const OMPTeamsDirective &S); |
3894 | void |
3895 | EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); |
3896 | void EmitOMPCancelDirective(const OMPCancelDirective &S); |
3897 | void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); |
3898 | void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); |
3899 | void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); |
3900 | void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); |
3901 | void EmitOMPMaskedTaskLoopDirective(const OMPMaskedTaskLoopDirective &S); |
3902 | void |
3903 | EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); |
3904 | void |
3905 | EmitOMPMaskedTaskLoopSimdDirective(const OMPMaskedTaskLoopSimdDirective &S); |
3906 | void EmitOMPParallelMasterTaskLoopDirective( |
3907 | const OMPParallelMasterTaskLoopDirective &S); |
3908 | void EmitOMPParallelMaskedTaskLoopDirective( |
3909 | const OMPParallelMaskedTaskLoopDirective &S); |
3910 | void EmitOMPParallelMasterTaskLoopSimdDirective( |
3911 | const OMPParallelMasterTaskLoopSimdDirective &S); |
3912 | void EmitOMPParallelMaskedTaskLoopSimdDirective( |
3913 | const OMPParallelMaskedTaskLoopSimdDirective &S); |
3914 | void EmitOMPDistributeDirective(const OMPDistributeDirective &S); |
3915 | void EmitOMPDistributeParallelForDirective( |
3916 | const OMPDistributeParallelForDirective &S); |
3917 | void EmitOMPDistributeParallelForSimdDirective( |
3918 | const OMPDistributeParallelForSimdDirective &S); |
3919 | void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); |
3920 | void EmitOMPTargetParallelForSimdDirective( |
3921 | const OMPTargetParallelForSimdDirective &S); |
3922 | void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); |
3923 | void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); |
3924 | void |
3925 | EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); |
3926 | void EmitOMPTeamsDistributeParallelForSimdDirective( |
3927 | const OMPTeamsDistributeParallelForSimdDirective &S); |
3928 | void EmitOMPTeamsDistributeParallelForDirective( |
3929 | const OMPTeamsDistributeParallelForDirective &S); |
3930 | void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); |
3931 | void EmitOMPTargetTeamsDistributeDirective( |
3932 | const OMPTargetTeamsDistributeDirective &S); |
3933 | void EmitOMPTargetTeamsDistributeParallelForDirective( |
3934 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3935 | void EmitOMPTargetTeamsDistributeParallelForSimdDirective( |
3936 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3937 | void EmitOMPTargetTeamsDistributeSimdDirective( |
3938 | const OMPTargetTeamsDistributeSimdDirective &S); |
3939 | void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); |
3940 | void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); |
3941 | void EmitOMPTargetParallelGenericLoopDirective( |
3942 | const OMPTargetParallelGenericLoopDirective &S); |
3943 | void EmitOMPTargetTeamsGenericLoopDirective( |
3944 | const OMPTargetTeamsGenericLoopDirective &S); |
3945 | void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); |
3946 | void EmitOMPInteropDirective(const OMPInteropDirective &S); |
3947 | void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); |
3948 | void EmitOMPAssumeDirective(const OMPAssumeDirective &S); |
3949 | |
3950 | /// Emit device code for the target directive. |
3951 | static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, |
3952 | StringRef ParentName, |
3953 | const OMPTargetDirective &S); |
3954 | static void |
3955 | EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3956 | const OMPTargetParallelDirective &S); |
3957 | /// Emit device code for the target parallel for directive. |
3958 | static void EmitOMPTargetParallelForDeviceFunction( |
3959 | CodeGenModule &CGM, StringRef ParentName, |
3960 | const OMPTargetParallelForDirective &S); |
3961 | /// Emit device code for the target parallel for simd directive. |
3962 | static void EmitOMPTargetParallelForSimdDeviceFunction( |
3963 | CodeGenModule &CGM, StringRef ParentName, |
3964 | const OMPTargetParallelForSimdDirective &S); |
3965 | /// Emit device code for the target teams directive. |
3966 | static void |
3967 | EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3968 | const OMPTargetTeamsDirective &S); |
3969 | /// Emit device code for the target teams distribute directive. |
3970 | static void EmitOMPTargetTeamsDistributeDeviceFunction( |
3971 | CodeGenModule &CGM, StringRef ParentName, |
3972 | const OMPTargetTeamsDistributeDirective &S); |
3973 | /// Emit device code for the target teams distribute simd directive. |
3974 | static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( |
3975 | CodeGenModule &CGM, StringRef ParentName, |
3976 | const OMPTargetTeamsDistributeSimdDirective &S); |
3977 | /// Emit device code for the target simd directive. |
3978 | static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, |
3979 | StringRef ParentName, |
3980 | const OMPTargetSimdDirective &S); |
3981 | /// Emit device code for the target teams distribute parallel for simd |
3982 | /// directive. |
3983 | static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( |
3984 | CodeGenModule &CGM, StringRef ParentName, |
3985 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3986 | |
3987 | /// Emit device code for the target teams loop directive. |
3988 | static void EmitOMPTargetTeamsGenericLoopDeviceFunction( |
3989 | CodeGenModule &CGM, StringRef ParentName, |
3990 | const OMPTargetTeamsGenericLoopDirective &S); |
3991 | |
3992 | /// Emit device code for the target parallel loop directive. |
3993 | static void EmitOMPTargetParallelGenericLoopDeviceFunction( |
3994 | CodeGenModule &CGM, StringRef ParentName, |
3995 | const OMPTargetParallelGenericLoopDirective &S); |
3996 | |
3997 | static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( |
3998 | CodeGenModule &CGM, StringRef ParentName, |
3999 | const OMPTargetTeamsDistributeParallelForDirective &S); |
4000 | |
4001 | /// Emit the Stmt \p S and return its topmost canonical loop, if any. |
4002 | /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the |
4003 | /// future it is meant to be the number of loops expected in the loop nests |
4004 | /// (usually specified by the "collapse" clause) that are collapsed to a |
4005 | /// single loop by this function. |
4006 | llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, |
4007 | int Depth); |
4008 | |
4009 | /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. |
4010 | void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); |
4011 | |
4012 | /// Emit inner loop of the worksharing/simd construct. |
4013 | /// |
4014 | /// \param S Directive, for which the inner loop must be emitted. |
4015 | /// \param RequiresCleanup true, if directive has some associated private |
4016 | /// variables. |
4017 | /// \param LoopCond Bollean condition for loop continuation. |
4018 | /// \param IncExpr Increment expression for loop control variable. |
4019 | /// \param BodyGen Generator for the inner body of the inner loop. |
4020 | /// \param PostIncGen Genrator for post-increment code (required for ordered |
4021 | /// loop directvies). |
4022 | void EmitOMPInnerLoop( |
4023 | const OMPExecutableDirective &S, bool RequiresCleanup, |
4024 | const Expr *LoopCond, const Expr *IncExpr, |
4025 | const llvm::function_ref<void(CodeGenFunction &)> BodyGen, |
4026 | const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); |
4027 | |
4028 | JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); |
4029 | /// Emit initial code for loop counters of loop-based directives. |
4030 | void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, |
4031 | OMPPrivateScope &LoopScope); |
4032 | |
4033 | /// Helper for the OpenMP loop directives. |
4034 | void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); |
4035 | |
4036 | /// Emit code for the worksharing loop-based directive. |
4037 | /// \return true, if this construct has any lastprivate clause, false - |
4038 | /// otherwise. |
4039 | bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, |
4040 | const CodeGenLoopBoundsTy &CodeGenLoopBounds, |
4041 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
4042 | |
4043 | /// Emit code for the distribute loop-based directive. |
4044 | void EmitOMPDistributeLoop(const OMPLoopDirective &S, |
4045 | const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); |
4046 | |
4047 | /// Helpers for the OpenMP loop directives. |
4048 | void EmitOMPSimdInit(const OMPLoopDirective &D); |
4049 | void EmitOMPSimdFinal( |
4050 | const OMPLoopDirective &D, |
4051 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
4052 | |
4053 | /// Emits the lvalue for the expression with possibly captured variable. |
4054 | LValue EmitOMPSharedLValue(const Expr *E); |
4055 | |
4056 | private: |
4057 | /// Helpers for blocks. |
4058 | llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); |
4059 | |
4060 | /// struct with the values to be passed to the OpenMP loop-related functions |
4061 | struct OMPLoopArguments { |
4062 | /// loop lower bound |
4063 | Address LB = Address::invalid(); |
4064 | /// loop upper bound |
4065 | Address UB = Address::invalid(); |
4066 | /// loop stride |
4067 | Address ST = Address::invalid(); |
4068 | /// isLastIteration argument for runtime functions |
4069 | Address IL = Address::invalid(); |
4070 | /// Chunk value generated by sema |
4071 | llvm::Value *Chunk = nullptr; |
4072 | /// EnsureUpperBound |
4073 | Expr *EUB = nullptr; |
4074 | /// IncrementExpression |
4075 | Expr *IncExpr = nullptr; |
4076 | /// Loop initialization |
4077 | Expr *Init = nullptr; |
4078 | /// Loop exit condition |
4079 | Expr *Cond = nullptr; |
4080 | /// Update of LB after a whole chunk has been executed |
4081 | Expr *NextLB = nullptr; |
4082 | /// Update of UB after a whole chunk has been executed |
4083 | Expr *NextUB = nullptr; |
4084 | /// Distinguish between the for distribute and sections |
4085 | OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; |
4086 | OMPLoopArguments() = default; |
4087 | OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, |
4088 | llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, |
4089 | Expr *IncExpr = nullptr, Expr *Init = nullptr, |
4090 | Expr *Cond = nullptr, Expr *NextLB = nullptr, |
4091 | Expr *NextUB = nullptr) |
4092 | : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), |
4093 | IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), |
4094 | NextUB(NextUB) {} |
4095 | }; |
4096 | void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, |
4097 | const OMPLoopDirective &S, OMPPrivateScope &LoopScope, |
4098 | const OMPLoopArguments &LoopArgs, |
4099 | const CodeGenLoopTy &CodeGenLoop, |
4100 | const CodeGenOrderedTy &CodeGenOrdered); |
4101 | void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, |
4102 | bool IsMonotonic, const OMPLoopDirective &S, |
4103 | OMPPrivateScope &LoopScope, bool Ordered, |
4104 | const OMPLoopArguments &LoopArgs, |
4105 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
4106 | void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, |
4107 | const OMPLoopDirective &S, |
4108 | OMPPrivateScope &LoopScope, |
4109 | const OMPLoopArguments &LoopArgs, |
4110 | const CodeGenLoopTy &CodeGenLoopContent); |
4111 | /// Emit code for sections directive. |
4112 | void EmitSections(const OMPExecutableDirective &S); |
4113 | |
4114 | public: |
4115 | //===--------------------------------------------------------------------===// |
4116 | // OpenACC Emission |
4117 | //===--------------------------------------------------------------------===// |
4118 | void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { |
4119 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4120 | // simply emitting its structured block, but in the future we will implement |
4121 | // some sort of IR. |
4122 | EmitStmt(S: S.getStructuredBlock()); |
4123 | } |
4124 | |
4125 | void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { |
4126 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4127 | // simply emitting its loop, but in the future we will implement |
4128 | // some sort of IR. |
4129 | EmitStmt(S: S.getLoop()); |
4130 | } |
4131 | |
4132 | void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) { |
4133 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4134 | // simply emitting its loop, but in the future we will implement |
4135 | // some sort of IR. |
4136 | EmitStmt(S: S.getLoop()); |
4137 | } |
4138 | |
4139 | void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) { |
4140 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4141 | // simply emitting its structured block, but in the future we will implement |
4142 | // some sort of IR. |
4143 | EmitStmt(S: S.getStructuredBlock()); |
4144 | } |
4145 | |
4146 | void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) { |
4147 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4148 | // but in the future we will implement some sort of IR. |
4149 | } |
4150 | |
4151 | void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) { |
4152 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4153 | // but in the future we will implement some sort of IR. |
4154 | } |
4155 | |
4156 | void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) { |
4157 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4158 | // simply emitting its structured block, but in the future we will implement |
4159 | // some sort of IR. |
4160 | EmitStmt(S: S.getStructuredBlock()); |
4161 | } |
4162 | |
4163 | void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) { |
4164 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4165 | // but in the future we will implement some sort of IR. |
4166 | } |
4167 | |
4168 | void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) { |
4169 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4170 | // but in the future we will implement some sort of IR. |
4171 | } |
4172 | |
4173 | void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) { |
4174 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4175 | // but in the future we will implement some sort of IR. |
4176 | } |
4177 | |
4178 | void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) { |
4179 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4180 | // but in the future we will implement some sort of IR. |
4181 | } |
4182 | |
4183 | void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) { |
4184 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4185 | // but in the future we will implement some sort of IR. |
4186 | } |
4187 | |
4188 | void EmitOpenACCAtomicConstruct(const OpenACCAtomicConstruct &S) { |
4189 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4190 | // simply emitting its associated stmt, but in the future we will implement |
4191 | // some sort of IR. |
4192 | EmitStmt(S: S.getAssociatedStmt()); |
4193 | } |
4194 | void EmitOpenACCCacheConstruct(const OpenACCCacheConstruct &S) { |
4195 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4196 | // but in the future we will implement some sort of IR. |
4197 | } |
4198 | |
4199 | //===--------------------------------------------------------------------===// |
4200 | // LValue Expression Emission |
4201 | //===--------------------------------------------------------------------===// |
4202 | |
4203 | /// Create a check that a scalar RValue is non-null. |
4204 | llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); |
4205 | |
4206 | /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. |
4207 | RValue GetUndefRValue(QualType Ty); |
4208 | |
4209 | /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E |
4210 | /// and issue an ErrorUnsupported style diagnostic (using the |
4211 | /// provided Name). |
4212 | RValue EmitUnsupportedRValue(const Expr *E, const char *Name); |
4213 | |
4214 | /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue |
4215 | /// an ErrorUnsupported style diagnostic (using the provided Name). |
4216 | LValue EmitUnsupportedLValue(const Expr *E, const char *Name); |
4217 | |
4218 | /// EmitLValue - Emit code to compute a designator that specifies the location |
4219 | /// of the expression. |
4220 | /// |
4221 | /// This can return one of two things: a simple address or a bitfield |
4222 | /// reference. In either case, the LLVM Value* in the LValue structure is |
4223 | /// guaranteed to be an LLVM pointer type. |
4224 | /// |
4225 | /// If this returns a bitfield reference, nothing about the pointee type of |
4226 | /// the LLVM value is known: For example, it may not be a pointer to an |
4227 | /// integer. |
4228 | /// |
4229 | /// If this returns a normal address, and if the lvalue's C type is fixed |
4230 | /// size, this method guarantees that the returned pointer type will point to |
4231 | /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
4232 | /// variable length type, this is not possible. |
4233 | /// |
4234 | LValue EmitLValue(const Expr *E, |
4235 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
4236 | |
4237 | private: |
4238 | LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); |
4239 | |
4240 | public: |
4241 | /// Same as EmitLValue but additionally we generate checking code to |
4242 | /// guard against undefined behavior. This is only suitable when we know |
4243 | /// that the address will be used to access the object. |
4244 | LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); |
4245 | |
4246 | RValue convertTempToRValue(Address addr, QualType type, SourceLocation Loc); |
4247 | |
4248 | void EmitAtomicInit(Expr *E, LValue lvalue); |
4249 | |
4250 | bool LValueIsSuitableForInlineAtomic(LValue Src); |
4251 | |
4252 | RValue EmitAtomicLoad(LValue LV, SourceLocation SL, |
4253 | AggValueSlot Slot = AggValueSlot::ignored()); |
4254 | |
4255 | RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, |
4256 | llvm::AtomicOrdering AO, bool IsVolatile = false, |
4257 | AggValueSlot slot = AggValueSlot::ignored()); |
4258 | |
4259 | void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); |
4260 | |
4261 | void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, |
4262 | bool IsVolatile, bool isInit); |
4263 | |
4264 | std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( |
4265 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
4266 | llvm::AtomicOrdering Success = |
4267 | llvm::AtomicOrdering::SequentiallyConsistent, |
4268 | llvm::AtomicOrdering Failure = |
4269 | llvm::AtomicOrdering::SequentiallyConsistent, |
4270 | bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); |
4271 | |
4272 | /// Emit an atomicrmw instruction, and applying relevant metadata when |
4273 | /// applicable. |
4274 | llvm::AtomicRMWInst *emitAtomicRMWInst( |
4275 | llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, |
4276 | llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent, |
4277 | llvm::SyncScope::ID SSID = llvm::SyncScope::System, |
4278 | const AtomicExpr *AE = nullptr); |
4279 | |
4280 | void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, |
4281 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
4282 | bool IsVolatile); |
4283 | |
4284 | /// EmitToMemory - Change a scalar value from its value |
4285 | /// representation to its in-memory representation. |
4286 | llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); |
4287 | |
4288 | /// EmitFromMemory - Change a scalar value from its memory |
4289 | /// representation to its value representation. |
4290 | llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); |
4291 | |
4292 | /// Check if the scalar \p Value is within the valid range for the given |
4293 | /// type \p Ty. |
4294 | /// |
4295 | /// Returns true if a check is needed (even if the range is unknown). |
4296 | bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, |
4297 | SourceLocation Loc); |
4298 | |
4299 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4300 | /// care to appropriately convert from the memory representation to |
4301 | /// the LLVM value representation. |
4302 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4303 | SourceLocation Loc, |
4304 | AlignmentSource Source = AlignmentSource::Type, |
4305 | bool isNontemporal = false) { |
4306 | return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, BaseInfo: LValueBaseInfo(Source), |
4307 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isNontemporal); |
4308 | } |
4309 | |
4310 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4311 | SourceLocation Loc, LValueBaseInfo BaseInfo, |
4312 | TBAAAccessInfo TBAAInfo, |
4313 | bool isNontemporal = false); |
4314 | |
4315 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4316 | /// care to appropriately convert from the memory representation to |
4317 | /// the LLVM value representation. The l-value must be a simple |
4318 | /// l-value. |
4319 | llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); |
4320 | |
4321 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4322 | /// care to appropriately convert from the memory representation to |
4323 | /// the LLVM value representation. |
4324 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, |
4325 | QualType Ty, |
4326 | AlignmentSource Source = AlignmentSource::Type, |
4327 | bool isInit = false, bool isNontemporal = false) { |
4328 | EmitStoreOfScalar(Value, Addr, Volatile, Ty, BaseInfo: LValueBaseInfo(Source), |
4329 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isInit, isNontemporal); |
4330 | } |
4331 | |
4332 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, |
4333 | QualType Ty, LValueBaseInfo BaseInfo, |
4334 | TBAAAccessInfo TBAAInfo, bool isInit = false, |
4335 | bool isNontemporal = false); |
4336 | |
4337 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4338 | /// care to appropriately convert from the memory representation to |
4339 | /// the LLVM value representation. The l-value must be a simple |
4340 | /// l-value. The isInit flag indicates whether this is an initialization. |
4341 | /// If so, atomic qualifiers are ignored and the store is always non-atomic. |
4342 | void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, |
4343 | bool isInit = false); |
4344 | |
4345 | /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
4346 | /// this method emits the address of the lvalue, then loads the result as an |
4347 | /// rvalue, returning the rvalue. |
4348 | RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); |
4349 | RValue EmitLoadOfExtVectorElementLValue(LValue V); |
4350 | RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); |
4351 | RValue EmitLoadOfGlobalRegLValue(LValue LV); |
4352 | |
4353 | /// Like EmitLoadOfLValue but also handles complex and aggregate types. |
4354 | RValue EmitLoadOfAnyValue(LValue V, |
4355 | AggValueSlot Slot = AggValueSlot::ignored(), |
4356 | SourceLocation Loc = {}); |
4357 | |
4358 | /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
4359 | /// lvalue, where both are guaranteed to the have the same type, and that type |
4360 | /// is 'Ty'. |
4361 | void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); |
4362 | void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); |
4363 | void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); |
4364 | |
4365 | /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints |
4366 | /// as EmitStoreThroughLValue. |
4367 | /// |
4368 | /// \param Result [out] - If non-null, this will be set to a Value* for the |
4369 | /// bit-field contents after the store, appropriate for use as the result of |
4370 | /// an assignment to the bit-field. |
4371 | void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
4372 | llvm::Value **Result = nullptr); |
4373 | |
4374 | /// Emit an l-value for an assignment (simple or compound) of complex type. |
4375 | LValue EmitComplexAssignmentLValue(const BinaryOperator *E); |
4376 | LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4377 | LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
4378 | llvm::Value *&Result); |
4379 | |
4380 | // Note: only available for agg return types |
4381 | LValue EmitBinaryOperatorLValue(const BinaryOperator *E); |
4382 | LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4383 | // Note: only available for agg return types |
4384 | LValue EmitCallExprLValue(const CallExpr *E, |
4385 | llvm::CallBase **CallOrInvoke = nullptr); |
4386 | // Note: only available for agg return types |
4387 | LValue EmitVAArgExprLValue(const VAArgExpr *E); |
4388 | LValue EmitDeclRefLValue(const DeclRefExpr *E); |
4389 | LValue EmitStringLiteralLValue(const StringLiteral *E); |
4390 | LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); |
4391 | LValue EmitPredefinedLValue(const PredefinedExpr *E); |
4392 | LValue EmitUnaryOpLValue(const UnaryOperator *E); |
4393 | LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
4394 | bool Accessed = false); |
4395 | llvm::Value *EmitMatrixIndexExpr(const Expr *E); |
4396 | LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); |
4397 | LValue EmitArraySectionExpr(const ArraySectionExpr *E, |
4398 | bool IsLowerBound = true); |
4399 | LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); |
4400 | LValue EmitMemberExpr(const MemberExpr *E); |
4401 | LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); |
4402 | LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); |
4403 | LValue EmitInitListLValue(const InitListExpr *E); |
4404 | void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); |
4405 | LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); |
4406 | LValue EmitCastLValue(const CastExpr *E); |
4407 | LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
4408 | LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); |
4409 | LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E); |
4410 | |
4411 | std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, |
4412 | QualType Ty); |
4413 | LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, |
4414 | QualType Ty); |
4415 | |
4416 | Address EmitExtVectorElementLValue(LValue V); |
4417 | |
4418 | RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); |
4419 | |
4420 | Address EmitArrayToPointerDecay(const Expr *Array, |
4421 | LValueBaseInfo *BaseInfo = nullptr, |
4422 | TBAAAccessInfo *TBAAInfo = nullptr); |
4423 | |
4424 | class ConstantEmission { |
4425 | llvm::PointerIntPair<llvm::Constant *, 1, bool> ValueAndIsReference; |
4426 | ConstantEmission(llvm::Constant *C, bool isReference) |
4427 | : ValueAndIsReference(C, isReference) {} |
4428 | |
4429 | public: |
4430 | ConstantEmission() {} |
4431 | static ConstantEmission forReference(llvm::Constant *C) { |
4432 | return ConstantEmission(C, true); |
4433 | } |
4434 | static ConstantEmission forValue(llvm::Constant *C) { |
4435 | return ConstantEmission(C, false); |
4436 | } |
4437 | |
4438 | explicit operator bool() const { |
4439 | return ValueAndIsReference.getOpaqueValue() != nullptr; |
4440 | } |
4441 | |
4442 | bool isReference() const { return ValueAndIsReference.getInt(); } |
4443 | LValue getReferenceLValue(CodeGenFunction &CGF, const Expr *RefExpr) const { |
4444 | assert(isReference()); |
4445 | return CGF.MakeNaturalAlignAddrLValue(V: ValueAndIsReference.getPointer(), |
4446 | T: RefExpr->getType()); |
4447 | } |
4448 | |
4449 | llvm::Constant *getValue() const { |
4450 | assert(!isReference()); |
4451 | return ValueAndIsReference.getPointer(); |
4452 | } |
4453 | }; |
4454 | |
4455 | ConstantEmission tryEmitAsConstant(const DeclRefExpr *RefExpr); |
4456 | ConstantEmission tryEmitAsConstant(const MemberExpr *ME); |
4457 | llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); |
4458 | |
4459 | RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, |
4460 | AggValueSlot slot = AggValueSlot::ignored()); |
4461 | LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); |
4462 | |
4463 | void FlattenAccessAndType( |
4464 | Address Addr, QualType AddrTy, |
4465 | SmallVectorImpl<std::pair<Address, llvm::Value *>> &AccessList, |
4466 | SmallVectorImpl<QualType> &FlatTypes); |
4467 | |
4468 | llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
4469 | const ObjCIvarDecl *Ivar); |
4470 | llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, |
4471 | const ObjCIvarDecl *Ivar); |
4472 | LValue EmitLValueForField(LValue Base, const FieldDecl *Field, |
4473 | bool IsInBounds = true); |
4474 | LValue EmitLValueForLambdaField(const FieldDecl *Field); |
4475 | LValue EmitLValueForLambdaField(const FieldDecl *Field, |
4476 | llvm::Value *ThisValue); |
4477 | |
4478 | /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that |
4479 | /// if the Field is a reference, this will return the address of the reference |
4480 | /// and not the address of the value stored in the reference. |
4481 | LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field); |
4482 | |
4483 | LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value *Base, |
4484 | const ObjCIvarDecl *Ivar, unsigned CVRQualifiers); |
4485 | |
4486 | LValue EmitCXXConstructLValue(const CXXConstructExpr *E); |
4487 | LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); |
4488 | LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); |
4489 | LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); |
4490 | |
4491 | LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); |
4492 | LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); |
4493 | LValue EmitStmtExprLValue(const StmtExpr *E); |
4494 | LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); |
4495 | LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); |
4496 | void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); |
4497 | |
4498 | //===--------------------------------------------------------------------===// |
4499 | // Scalar Expression Emission |
4500 | //===--------------------------------------------------------------------===// |
4501 | |
4502 | /// EmitCall - Generate a call of the given function, expecting the given |
4503 | /// result type, and using the given argument list which specifies both the |
4504 | /// LLVM arguments and the types they were derived from. |
4505 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4506 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4507 | llvm::CallBase **CallOrInvoke, bool IsMustTail, |
4508 | SourceLocation Loc, |
4509 | bool IsVirtualFunctionPointerThunk = false); |
4510 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4511 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4512 | llvm::CallBase **CallOrInvoke = nullptr, |
4513 | bool IsMustTail = false) { |
4514 | return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke, |
4515 | IsMustTail, Loc: SourceLocation()); |
4516 | } |
4517 | RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, |
4518 | ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr, |
4519 | llvm::CallBase **CallOrInvoke = nullptr, |
4520 | CGFunctionInfo const **ResolvedFnInfo = nullptr); |
4521 | |
4522 | // If a Call or Invoke instruction was emitted for this CallExpr, this method |
4523 | // writes the pointer to `CallOrInvoke` if it's not null. |
4524 | RValue EmitCallExpr(const CallExpr *E, |
4525 | ReturnValueSlot ReturnValue = ReturnValueSlot(), |
4526 | llvm::CallBase **CallOrInvoke = nullptr); |
4527 | RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, |
4528 | llvm::CallBase **CallOrInvoke = nullptr); |
4529 | CGCallee EmitCallee(const Expr *E); |
4530 | |
4531 | void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); |
4532 | void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); |
4533 | |
4534 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4535 | const Twine &name = "" ); |
4536 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4537 | ArrayRef<llvm::Value *> args, |
4538 | const Twine &name = "" ); |
4539 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4540 | const Twine &name = "" ); |
4541 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4542 | ArrayRef<Address> args, |
4543 | const Twine &name = "" ); |
4544 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4545 | ArrayRef<llvm::Value *> args, |
4546 | const Twine &name = "" ); |
4547 | |
4548 | SmallVector<llvm::OperandBundleDef, 1> |
4549 | getBundlesForFunclet(llvm::Value *Callee); |
4550 | |
4551 | llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, |
4552 | ArrayRef<llvm::Value *> Args, |
4553 | const Twine &Name = "" ); |
4554 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4555 | ArrayRef<llvm::Value *> args, |
4556 | const Twine &name = "" ); |
4557 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4558 | const Twine &name = "" ); |
4559 | void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4560 | ArrayRef<llvm::Value *> args); |
4561 | |
4562 | CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, |
4563 | NestedNameSpecifier *Qual, llvm::Type *Ty); |
4564 | |
4565 | CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, |
4566 | CXXDtorType Type, |
4567 | const CXXRecordDecl *RD); |
4568 | |
4569 | bool isPointerKnownNonNull(const Expr *E); |
4570 | /// Check whether the underlying base pointer is a constant null. |
4571 | bool isUnderlyingBasePointerConstantNull(const Expr *E); |
4572 | |
4573 | /// Create the discriminator from the storage address and the entity hash. |
4574 | llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, |
4575 | llvm::Value *Discriminator); |
4576 | CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, |
4577 | llvm::Value *StorageAddress, |
4578 | GlobalDecl SchemaDecl, |
4579 | QualType SchemaType); |
4580 | |
4581 | llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, |
4582 | llvm::Value *Pointer); |
4583 | |
4584 | llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, |
4585 | llvm::Value *Pointer); |
4586 | |
4587 | llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, |
4588 | const CGPointerAuthInfo &CurAuthInfo, |
4589 | const CGPointerAuthInfo &NewAuthInfo, |
4590 | bool IsKnownNonNull); |
4591 | llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, |
4592 | const CGPointerAuthInfo &CurInfo, |
4593 | const CGPointerAuthInfo &NewInfo); |
4594 | |
4595 | void EmitPointerAuthOperandBundle( |
4596 | const CGPointerAuthInfo &Info, |
4597 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
4598 | |
4599 | CGPointerAuthInfo EmitPointerAuthInfo(PointerAuthQualifier Qualifier, |
4600 | Address StorageAddress); |
4601 | llvm::Value *EmitPointerAuthQualify(PointerAuthQualifier Qualifier, |
4602 | llvm::Value *Pointer, QualType ValueType, |
4603 | Address StorageAddress, |
4604 | bool IsKnownNonNull); |
4605 | llvm::Value *EmitPointerAuthQualify(PointerAuthQualifier Qualifier, |
4606 | const Expr *PointerExpr, |
4607 | Address StorageAddress); |
4608 | llvm::Value *EmitPointerAuthUnqualify(PointerAuthQualifier Qualifier, |
4609 | llvm::Value *Pointer, |
4610 | QualType PointerType, |
4611 | Address StorageAddress, |
4612 | bool IsKnownNonNull); |
4613 | void EmitPointerAuthCopy(PointerAuthQualifier Qualifier, QualType Type, |
4614 | Address DestField, Address SrcField); |
4615 | |
4616 | std::pair<llvm::Value *, CGPointerAuthInfo> |
4617 | EmitOrigPointerRValue(const Expr *E); |
4618 | |
4619 | llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, |
4620 | QualType SourceType, QualType DestType); |
4621 | Address authPointerToPointerCast(Address Ptr, QualType SourceType, |
4622 | QualType DestType); |
4623 | |
4624 | Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); |
4625 | |
4626 | llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { |
4627 | return getAsNaturalAddressOf(Addr, PointeeTy: PointeeType).getBasePointer(); |
4628 | } |
4629 | |
4630 | // Return the copy constructor name with the prefix "__copy_constructor_" |
4631 | // removed. |
4632 | static std::string getNonTrivialCopyConstructorStr(QualType QT, |
4633 | CharUnits Alignment, |
4634 | bool IsVolatile, |
4635 | ASTContext &Ctx); |
4636 | |
4637 | // Return the destructor name with the prefix "__destructor_" removed. |
4638 | static std::string getNonTrivialDestructorStr(QualType QT, |
4639 | CharUnits Alignment, |
4640 | bool IsVolatile, |
4641 | ASTContext &Ctx); |
4642 | |
4643 | // These functions emit calls to the special functions of non-trivial C |
4644 | // structs. |
4645 | void defaultInitNonTrivialCStructVar(LValue Dst); |
4646 | void callCStructDefaultConstructor(LValue Dst); |
4647 | void callCStructDestructor(LValue Dst); |
4648 | void callCStructCopyConstructor(LValue Dst, LValue Src); |
4649 | void callCStructMoveConstructor(LValue Dst, LValue Src); |
4650 | void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); |
4651 | void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); |
4652 | |
4653 | RValue EmitCXXMemberOrOperatorCall( |
4654 | const CXXMethodDecl *Method, const CGCallee &Callee, |
4655 | ReturnValueSlot ReturnValue, llvm::Value *This, |
4656 | llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, |
4657 | CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke); |
4658 | RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, |
4659 | llvm::Value *This, QualType ThisTy, |
4660 | llvm::Value *ImplicitParam, |
4661 | QualType ImplicitParamTy, const CallExpr *E, |
4662 | llvm::CallBase **CallOrInvoke = nullptr); |
4663 | RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, |
4664 | ReturnValueSlot ReturnValue, |
4665 | llvm::CallBase **CallOrInvoke = nullptr); |
4666 | RValue EmitCXXMemberOrOperatorMemberCallExpr( |
4667 | const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, |
4668 | bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, |
4669 | const Expr *Base, llvm::CallBase **CallOrInvoke); |
4670 | // Compute the object pointer. |
4671 | Address EmitCXXMemberDataPointerAddress( |
4672 | const Expr *E, Address base, llvm::Value *memberPtr, |
4673 | const MemberPointerType *memberPtrType, bool IsInBounds, |
4674 | LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); |
4675 | RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, |
4676 | ReturnValueSlot ReturnValue, |
4677 | llvm::CallBase **CallOrInvoke); |
4678 | |
4679 | RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, |
4680 | const CXXMethodDecl *MD, |
4681 | ReturnValueSlot ReturnValue, |
4682 | llvm::CallBase **CallOrInvoke); |
4683 | RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); |
4684 | |
4685 | RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, |
4686 | ReturnValueSlot ReturnValue, |
4687 | llvm::CallBase **CallOrInvoke); |
4688 | |
4689 | RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); |
4690 | RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); |
4691 | |
4692 | RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
4693 | const CallExpr *E, ReturnValueSlot ReturnValue); |
4694 | |
4695 | RValue emitRotate(const CallExpr *E, bool IsRotateRight); |
4696 | |
4697 | /// Emit IR for __builtin_os_log_format. |
4698 | RValue emitBuiltinOSLogFormat(const CallExpr &E); |
4699 | |
4700 | /// Emit IR for __builtin_is_aligned. |
4701 | RValue EmitBuiltinIsAligned(const CallExpr *E); |
4702 | /// Emit IR for __builtin_align_up/__builtin_align_down. |
4703 | RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); |
4704 | |
4705 | llvm::Function *generateBuiltinOSLogHelperFunction( |
4706 | const analyze_os_log::OSLogBufferLayout &Layout, |
4707 | CharUnits BufferAlignment); |
4708 | |
4709 | RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue, |
4710 | llvm::CallBase **CallOrInvoke); |
4711 | |
4712 | /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call |
4713 | /// is unhandled by the current target. |
4714 | llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4715 | ReturnValueSlot ReturnValue); |
4716 | |
4717 | llvm::Value * |
4718 | EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, |
4719 | const llvm::CmpInst::Predicate Pred, |
4720 | const llvm::Twine &Name = "" ); |
4721 | llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4722 | ReturnValueSlot ReturnValue, |
4723 | llvm::Triple::ArchType Arch); |
4724 | llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4725 | ReturnValueSlot ReturnValue, |
4726 | llvm::Triple::ArchType Arch); |
4727 | llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4728 | ReturnValueSlot ReturnValue, |
4729 | llvm::Triple::ArchType Arch); |
4730 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, |
4731 | QualType RTy); |
4732 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, |
4733 | QualType RTy); |
4734 | |
4735 | llvm::Value * |
4736 | EmitCommonNeonBuiltinExpr(unsigned BuiltinID, unsigned LLVMIntrinsic, |
4737 | unsigned AltLLVMIntrinsic, const char *NameHint, |
4738 | unsigned Modifier, const CallExpr *E, |
4739 | SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, |
4740 | Address PtrOp1, llvm::Triple::ArchType Arch); |
4741 | |
4742 | llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
4743 | unsigned Modifier, llvm::Type *ArgTy, |
4744 | const CallExpr *E); |
4745 | llvm::Value *EmitNeonCall(llvm::Function *F, |
4746 | SmallVectorImpl<llvm::Value *> &O, const char *name, |
4747 | unsigned shift = 0, bool rightshift = false); |
4748 | llvm::Value *EmitFP8NeonCall(unsigned IID, ArrayRef<llvm::Type *> Tys, |
4749 | SmallVectorImpl<llvm::Value *> &O, |
4750 | const CallExpr *E, const char *name); |
4751 | llvm::Value *EmitFP8NeonCvtCall(unsigned IID, llvm::Type *Ty0, |
4752 | llvm::Type *Ty1, bool , |
4753 | SmallVectorImpl<llvm::Value *> &Ops, |
4754 | const CallExpr *E, const char *name); |
4755 | llvm::Value *EmitFP8NeonFDOTCall(unsigned IID, bool ExtendLaneArg, |
4756 | llvm::Type *RetTy, |
4757 | SmallVectorImpl<llvm::Value *> &Ops, |
4758 | const CallExpr *E, const char *name); |
4759 | llvm::Value *EmitFP8NeonFMLACall(unsigned IID, bool ExtendLaneArg, |
4760 | llvm::Type *RetTy, |
4761 | SmallVectorImpl<llvm::Value *> &Ops, |
4762 | const CallExpr *E, const char *name); |
4763 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, |
4764 | const llvm::ElementCount &Count); |
4765 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); |
4766 | llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, |
4767 | bool negateForRightShift); |
4768 | llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, |
4769 | llvm::Type *Ty, bool usgn, const char *name); |
4770 | llvm::Value *vectorWrapScalar16(llvm::Value *Op); |
4771 | /// SVEBuiltinMemEltTy - Returns the memory element type for this memory |
4772 | /// access builtin. Only required if it can't be inferred from the base |
4773 | /// pointer operand. |
4774 | llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); |
4775 | |
4776 | SmallVector<llvm::Type *, 2> |
4777 | getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, |
4778 | ArrayRef<llvm::Value *> Ops); |
4779 | llvm::Type *getEltType(const SVETypeFlags &TypeFlags); |
4780 | llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); |
4781 | llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); |
4782 | llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, |
4783 | ArrayRef<llvm::Value *> Ops); |
4784 | llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, |
4785 | llvm::Type *ReturnType, |
4786 | ArrayRef<llvm::Value *> Ops); |
4787 | llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); |
4788 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar); |
4789 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); |
4790 | llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); |
4791 | llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, |
4792 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4793 | unsigned BuiltinID); |
4794 | llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, |
4795 | llvm::ArrayRef<llvm::Value *> Ops, |
4796 | unsigned BuiltinID); |
4797 | llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, |
4798 | llvm::ScalableVectorType *VTy); |
4799 | llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple, |
4800 | llvm::StructType *Ty); |
4801 | llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, |
4802 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4803 | unsigned IntID); |
4804 | llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, |
4805 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4806 | unsigned IntID); |
4807 | llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, |
4808 | SmallVectorImpl<llvm::Value *> &Ops, |
4809 | unsigned BuiltinID, bool IsZExtReturn); |
4810 | llvm::Value *EmitSVEMaskedStore(const CallExpr *, |
4811 | SmallVectorImpl<llvm::Value *> &Ops, |
4812 | unsigned BuiltinID); |
4813 | llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, |
4814 | SmallVectorImpl<llvm::Value *> &Ops, |
4815 | unsigned BuiltinID); |
4816 | llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, |
4817 | SmallVectorImpl<llvm::Value *> &Ops, |
4818 | unsigned IntID); |
4819 | llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, |
4820 | SmallVectorImpl<llvm::Value *> &Ops, |
4821 | unsigned IntID); |
4822 | llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, |
4823 | SmallVectorImpl<llvm::Value *> &Ops, |
4824 | unsigned IntID); |
4825 | llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4826 | |
4827 | llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, |
4828 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4829 | unsigned IntID); |
4830 | llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, |
4831 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4832 | unsigned IntID); |
4833 | llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, |
4834 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4835 | unsigned IntID); |
4836 | llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, |
4837 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4838 | unsigned IntID); |
4839 | |
4840 | void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, |
4841 | SmallVectorImpl<llvm::Value *> &Ops, |
4842 | SVETypeFlags TypeFlags); |
4843 | |
4844 | llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4845 | |
4846 | llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4847 | llvm::Triple::ArchType Arch); |
4848 | llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4849 | |
4850 | llvm::Value *BuildVector(ArrayRef<llvm::Value *> Ops); |
4851 | llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4852 | llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4853 | llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4854 | llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4855 | ReturnValueSlot ReturnValue); |
4856 | |
4857 | // Returns a builtin function that the SPIR-V backend will expand into a spec |
4858 | // constant. |
4859 | llvm::Function * |
4860 | getSpecConstantFunction(const clang::QualType &SpecConstantType); |
4861 | |
4862 | llvm::Value *EmitDirectXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4863 | llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4864 | llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, |
4865 | const CallExpr *E); |
4866 | llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4867 | llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4868 | llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
4869 | const CallExpr *E); |
4870 | llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4871 | llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4872 | ReturnValueSlot ReturnValue); |
4873 | |
4874 | llvm::Value *EmitRISCVCpuSupports(const CallExpr *E); |
4875 | llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs); |
4876 | llvm::Value *EmitRISCVCpuInit(); |
4877 | llvm::Value *EmitRISCVCpuIs(const CallExpr *E); |
4878 | llvm::Value *EmitRISCVCpuIs(StringRef CPUStr); |
4879 | |
4880 | void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, |
4881 | const CallExpr *E); |
4882 | void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, |
4883 | llvm::AtomicOrdering &AO, |
4884 | llvm::SyncScope::ID &SSID); |
4885 | |
4886 | enum class MSVCIntrin; |
4887 | llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); |
4888 | |
4889 | llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); |
4890 | |
4891 | llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); |
4892 | llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); |
4893 | llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); |
4894 | llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); |
4895 | llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); |
4896 | llvm::Value * |
4897 | EmitObjCCollectionLiteral(const Expr *E, |
4898 | const ObjCMethodDecl *MethodWithObjects); |
4899 | llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); |
4900 | RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, |
4901 | ReturnValueSlot Return = ReturnValueSlot()); |
4902 | |
4903 | /// Retrieves the default cleanup kind for an ARC cleanup. |
4904 | /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. |
4905 | CleanupKind getARCCleanupKind() { |
4906 | return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions ? NormalAndEHCleanup |
4907 | : NormalCleanup; |
4908 | } |
4909 | |
4910 | // ARC primitives. |
4911 | void EmitARCInitWeak(Address addr, llvm::Value *value); |
4912 | void EmitARCDestroyWeak(Address addr); |
4913 | llvm::Value *EmitARCLoadWeak(Address addr); |
4914 | llvm::Value *EmitARCLoadWeakRetained(Address addr); |
4915 | llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); |
4916 | void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4917 | void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4918 | void EmitARCCopyWeak(Address dst, Address src); |
4919 | void EmitARCMoveWeak(Address dst, Address src); |
4920 | llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); |
4921 | llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); |
4922 | llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, |
4923 | bool resultIgnored); |
4924 | llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, |
4925 | bool resultIgnored); |
4926 | llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); |
4927 | llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); |
4928 | llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); |
4929 | void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); |
4930 | void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4931 | llvm::Value *EmitARCAutorelease(llvm::Value *value); |
4932 | llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); |
4933 | llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); |
4934 | llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); |
4935 | llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); |
4936 | |
4937 | llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); |
4938 | llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, |
4939 | llvm::Type *returnType); |
4940 | void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4941 | |
4942 | std::pair<LValue, llvm::Value *> |
4943 | EmitARCStoreAutoreleasing(const BinaryOperator *e); |
4944 | std::pair<LValue, llvm::Value *> EmitARCStoreStrong(const BinaryOperator *e, |
4945 | bool ignored); |
4946 | std::pair<LValue, llvm::Value *> |
4947 | EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); |
4948 | |
4949 | llvm::Value *EmitObjCAlloc(llvm::Value *value, llvm::Type *returnType); |
4950 | llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, |
4951 | llvm::Type *returnType); |
4952 | llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); |
4953 | |
4954 | llvm::Value *EmitObjCThrowOperand(const Expr *expr); |
4955 | llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); |
4956 | llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); |
4957 | |
4958 | llvm::Value *EmitARCExtendBlockObject(const Expr *expr); |
4959 | llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, |
4960 | bool allowUnsafeClaim); |
4961 | llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); |
4962 | llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); |
4963 | llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); |
4964 | |
4965 | void EmitARCIntrinsicUse(ArrayRef<llvm::Value *> values); |
4966 | |
4967 | void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); |
4968 | |
4969 | static Destroyer destroyARCStrongImprecise; |
4970 | static Destroyer destroyARCStrongPrecise; |
4971 | static Destroyer destroyARCWeak; |
4972 | static Destroyer emitARCIntrinsicUse; |
4973 | static Destroyer destroyNonTrivialCStruct; |
4974 | |
4975 | void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); |
4976 | llvm::Value *EmitObjCAutoreleasePoolPush(); |
4977 | llvm::Value *EmitObjCMRRAutoreleasePoolPush(); |
4978 | void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); |
4979 | void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); |
4980 | |
4981 | /// Emits a reference binding to the passed in expression. |
4982 | RValue EmitReferenceBindingToExpr(const Expr *E); |
4983 | |
4984 | //===--------------------------------------------------------------------===// |
4985 | // Expression Emission |
4986 | //===--------------------------------------------------------------------===// |
4987 | |
4988 | // Expressions are broken into three classes: scalar, complex, aggregate. |
4989 | |
4990 | /// EmitScalarExpr - Emit the computation of the specified expression of LLVM |
4991 | /// scalar type, returning the result. |
4992 | llvm::Value *EmitScalarExpr(const Expr *E, bool IgnoreResultAssign = false); |
4993 | |
4994 | /// Emit a conversion from the specified type to the specified destination |
4995 | /// type, both of which are LLVM scalar types. |
4996 | llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, |
4997 | QualType DstTy, SourceLocation Loc); |
4998 | |
4999 | /// Emit a conversion from the specified complex type to the specified |
5000 | /// destination type, where the destination type is an LLVM scalar type. |
5001 | llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, |
5002 | QualType DstTy, |
5003 | SourceLocation Loc); |
5004 | |
5005 | /// EmitAggExpr - Emit the computation of the specified expression |
5006 | /// of aggregate type. The result is computed into the given slot, |
5007 | /// which may be null to indicate that the value is not needed. |
5008 | void EmitAggExpr(const Expr *E, AggValueSlot AS); |
5009 | |
5010 | /// EmitAggExprToLValue - Emit the computation of the specified expression of |
5011 | /// aggregate type into a temporary LValue. |
5012 | LValue EmitAggExprToLValue(const Expr *E); |
5013 | |
5014 | enum ExprValueKind { EVK_RValue, EVK_NonRValue }; |
5015 | |
5016 | /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into |
5017 | /// destination address. |
5018 | void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, |
5019 | ExprValueKind SrcKind); |
5020 | |
5021 | /// Create a store to \arg DstPtr from \arg Src, truncating the stored value |
5022 | /// to at most \arg DstSize bytes. |
5023 | void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, |
5024 | bool DstIsVolatile); |
5025 | |
5026 | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
5027 | /// make sure it survives garbage collection until this point. |
5028 | void EmitExtendGCLifetime(llvm::Value *object); |
5029 | |
5030 | /// EmitComplexExpr - Emit the computation of the specified expression of |
5031 | /// complex type, returning the result. |
5032 | ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal = false, |
5033 | bool IgnoreImag = false); |
5034 | |
5035 | /// EmitComplexExprIntoLValue - Emit the given expression of complex |
5036 | /// type and place its result into the specified l-value. |
5037 | void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); |
5038 | |
5039 | /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
5040 | void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); |
5041 | |
5042 | /// EmitLoadOfComplex - Load a complex number from the specified l-value. |
5043 | ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); |
5044 | |
5045 | ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); |
5046 | llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); |
5047 | ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); |
5048 | ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, |
5049 | QualType PromotionType); |
5050 | |
5051 | Address emitAddrOfRealComponent(Address complex, QualType complexType); |
5052 | Address emitAddrOfImagComponent(Address complex, QualType complexType); |
5053 | |
5054 | /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the |
5055 | /// global variable that has already been created for it. If the initializer |
5056 | /// has a different type than GV does, this may free GV and return a different |
5057 | /// one. Otherwise it just returns GV. |
5058 | llvm::GlobalVariable *AddInitializerToStaticVarDecl(const VarDecl &D, |
5059 | llvm::GlobalVariable *GV); |
5060 | |
5061 | // Emit an @llvm.invariant.start call for the given memory region. |
5062 | void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); |
5063 | |
5064 | /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ |
5065 | /// variable with global storage. |
5066 | void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, |
5067 | bool PerformInit); |
5068 | |
5069 | llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, |
5070 | llvm::Constant *Addr); |
5071 | |
5072 | llvm::Function *createTLSAtExitStub(const VarDecl &VD, |
5073 | llvm::FunctionCallee Dtor, |
5074 | llvm::Constant *Addr, |
5075 | llvm::FunctionCallee &AtExit); |
5076 | |
5077 | /// Call atexit() with a function that passes the given argument to |
5078 | /// the given function. |
5079 | void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, |
5080 | llvm::Constant *addr); |
5081 | |
5082 | /// Registers the dtor using 'llvm.global_dtors' for platforms that do not |
5083 | /// support an 'atexit()' function. |
5084 | void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, |
5085 | llvm::Constant *addr); |
5086 | |
5087 | /// Call atexit() with function dtorStub. |
5088 | void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); |
5089 | |
5090 | /// Call unatexit() with function dtorStub. |
5091 | llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); |
5092 | |
5093 | /// Emit code in this function to perform a guarded variable |
5094 | /// initialization. Guarded initializations are used when it's not |
5095 | /// possible to prove that an initialization will be done exactly |
5096 | /// once, e.g. with a static local variable or a static data member |
5097 | /// of a class template. |
5098 | void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, |
5099 | bool PerformInit); |
5100 | |
5101 | enum class GuardKind { VariableGuard, TlsGuard }; |
5102 | |
5103 | /// Emit a branch to select whether or not to perform guarded initialization. |
5104 | void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, |
5105 | llvm::BasicBlock *InitBlock, |
5106 | llvm::BasicBlock *NoInitBlock, GuardKind Kind, |
5107 | const VarDecl *D); |
5108 | |
5109 | /// GenerateCXXGlobalInitFunc - Generates code for initializing global |
5110 | /// variables. |
5111 | void |
5112 | GenerateCXXGlobalInitFunc(llvm::Function *Fn, |
5113 | ArrayRef<llvm::Function *> CXXThreadLocals, |
5114 | ConstantAddress Guard = ConstantAddress::invalid()); |
5115 | |
5116 | /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global |
5117 | /// variables. |
5118 | void GenerateCXXGlobalCleanUpFunc( |
5119 | llvm::Function *Fn, |
5120 | ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, |
5121 | llvm::Constant *>> |
5122 | DtorsOrStermFinalizers); |
5123 | |
5124 | void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D, |
5125 | llvm::GlobalVariable *Addr, |
5126 | bool PerformInit); |
5127 | |
5128 | void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); |
5129 | |
5130 | void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); |
5131 | |
5132 | void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); |
5133 | |
5134 | RValue EmitAtomicExpr(AtomicExpr *E); |
5135 | |
5136 | void EmitFakeUse(Address Addr); |
5137 | |
5138 | //===--------------------------------------------------------------------===// |
5139 | // Annotations Emission |
5140 | //===--------------------------------------------------------------------===// |
5141 | |
5142 | /// Emit an annotation call (intrinsic). |
5143 | llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, |
5144 | llvm::Value *AnnotatedVal, |
5145 | StringRef AnnotationStr, |
5146 | SourceLocation Location, |
5147 | const AnnotateAttr *Attr); |
5148 | |
5149 | /// Emit local annotations for the local variable V, declared by D. |
5150 | void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); |
5151 | |
5152 | /// Emit field annotations for the given field & value. Returns the |
5153 | /// annotation result. |
5154 | Address EmitFieldAnnotations(const FieldDecl *D, Address V); |
5155 | |
5156 | //===--------------------------------------------------------------------===// |
5157 | // Internal Helpers |
5158 | //===--------------------------------------------------------------------===// |
5159 | |
5160 | /// ContainsLabel - Return true if the statement contains a label in it. If |
5161 | /// this statement is not executed normally, it not containing a label means |
5162 | /// that we can just remove the code. |
5163 | static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); |
5164 | |
5165 | /// containsBreak - Return true if the statement contains a break out of it. |
5166 | /// If the statement (recursively) contains a switch or loop with a break |
5167 | /// inside of it, this is fine. |
5168 | static bool containsBreak(const Stmt *S); |
5169 | |
5170 | /// Determine if the given statement might introduce a declaration into the |
5171 | /// current scope, by being a (possibly-labelled) DeclStmt. |
5172 | static bool mightAddDeclToScope(const Stmt *S); |
5173 | |
5174 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
5175 | /// to a constant, or if it does but contains a label, return false. If it |
5176 | /// constant folds return true and set the boolean result in Result. |
5177 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, |
5178 | bool AllowLabels = false); |
5179 | |
5180 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
5181 | /// to a constant, or if it does but contains a label, return false. If it |
5182 | /// constant folds return true and set the folded value. |
5183 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, |
5184 | bool AllowLabels = false); |
5185 | |
5186 | /// Ignore parentheses and logical-NOT to track conditions consistently. |
5187 | static const Expr *stripCond(const Expr *C); |
5188 | |
5189 | /// isInstrumentedCondition - Determine whether the given condition is an |
5190 | /// instrumentable condition (i.e. no "&&" or "||"). |
5191 | static bool isInstrumentedCondition(const Expr *C); |
5192 | |
5193 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
5194 | /// increments a profile counter based on the semantics of the given logical |
5195 | /// operator opcode. This is used to instrument branch condition coverage |
5196 | /// for logical operators. |
5197 | void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, |
5198 | llvm::BasicBlock *TrueBlock, |
5199 | llvm::BasicBlock *FalseBlock, |
5200 | uint64_t TrueCount = 0, |
5201 | Stmt::Likelihood LH = Stmt::LH_None, |
5202 | const Expr *CntrIdx = nullptr); |
5203 | |
5204 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an |
5205 | /// if statement) to the specified blocks. Based on the condition, this might |
5206 | /// try to simplify the codegen of the conditional based on the branch. |
5207 | /// TrueCount should be the number of times we expect the condition to |
5208 | /// evaluate to true based on PGO data. |
5209 | void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, |
5210 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount, |
5211 | Stmt::Likelihood LH = Stmt::LH_None, |
5212 | const Expr *ConditionalOp = nullptr, |
5213 | const VarDecl *ConditionalDecl = nullptr); |
5214 | |
5215 | /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is |
5216 | /// nonnull, if \p LHS is marked _Nonnull. |
5217 | void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); |
5218 | |
5219 | /// An enumeration which makes it easier to specify whether or not an |
5220 | /// operation is a subtraction. |
5221 | enum { NotSubtraction = false, IsSubtraction = true }; |
5222 | |
5223 | /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to |
5224 | /// detect undefined behavior when the pointer overflow sanitizer is enabled. |
5225 | /// \p SignedIndices indicates whether any of the GEP indices are signed. |
5226 | /// \p IsSubtraction indicates whether the expression used to form the GEP |
5227 | /// is a subtraction. |
5228 | llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, |
5229 | ArrayRef<llvm::Value *> IdxList, |
5230 | bool SignedIndices, bool IsSubtraction, |
5231 | SourceLocation Loc, |
5232 | const Twine &Name = "" ); |
5233 | |
5234 | Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, |
5235 | llvm::Type *elementType, bool SignedIndices, |
5236 | bool IsSubtraction, SourceLocation Loc, |
5237 | CharUnits Align, const Twine &Name = "" ); |
5238 | |
5239 | /// Specifies which type of sanitizer check to apply when handling a |
5240 | /// particular builtin. |
5241 | enum BuiltinCheckKind { |
5242 | BCK_CTZPassedZero, |
5243 | BCK_CLZPassedZero, |
5244 | BCK_AssumePassedFalse, |
5245 | }; |
5246 | |
5247 | /// Emits an argument for a call to a builtin. If the builtin sanitizer is |
5248 | /// enabled, a runtime check specified by \p Kind is also emitted. |
5249 | llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); |
5250 | |
5251 | /// Emits an argument for a call to a `__builtin_assume`. If the builtin |
5252 | /// sanitizer is enabled, a runtime check is also emitted. |
5253 | llvm::Value *EmitCheckedArgForAssume(const Expr *E); |
5254 | |
5255 | /// Emit a description of a type in a format suitable for passing to |
5256 | /// a runtime sanitizer handler. |
5257 | llvm::Constant *EmitCheckTypeDescriptor(QualType T); |
5258 | |
5259 | /// Convert a value into a format suitable for passing to a runtime |
5260 | /// sanitizer handler. |
5261 | llvm::Value *EmitCheckValue(llvm::Value *V); |
5262 | |
5263 | /// Emit a description of a source location in a format suitable for |
5264 | /// passing to a runtime sanitizer handler. |
5265 | llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); |
5266 | |
5267 | void EmitKCFIOperandBundle(const CGCallee &Callee, |
5268 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
5269 | |
5270 | /// Create a basic block that will either trap or call a handler function in |
5271 | /// the UBSan runtime with the provided arguments, and create a conditional |
5272 | /// branch to it. |
5273 | void |
5274 | EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
5275 | Checked, |
5276 | SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, |
5277 | ArrayRef<llvm::Value *> DynamicArgs); |
5278 | |
5279 | /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath |
5280 | /// if Cond if false. |
5281 | void EmitCfiSlowPathCheck(SanitizerKind::SanitizerOrdinal Ordinal, |
5282 | llvm::Value *Cond, llvm::ConstantInt *TypeId, |
5283 | llvm::Value *Ptr, |
5284 | ArrayRef<llvm::Constant *> StaticArgs); |
5285 | |
5286 | /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime |
5287 | /// checking is enabled. Otherwise, just emit an unreachable instruction. |
5288 | void EmitUnreachable(SourceLocation Loc); |
5289 | |
5290 | /// Create a basic block that will call the trap intrinsic, and emit a |
5291 | /// conditional branch to it, for the -ftrapv checks. |
5292 | void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, |
5293 | bool NoMerge = false); |
5294 | |
5295 | /// Emit a call to trap or debugtrap and attach function attribute |
5296 | /// "trap-func-name" if specified. |
5297 | llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); |
5298 | |
5299 | /// Emit a stub for the cross-DSO CFI check function. |
5300 | void EmitCfiCheckStub(); |
5301 | |
5302 | /// Emit a cross-DSO CFI failure handling function. |
5303 | void EmitCfiCheckFail(); |
5304 | |
5305 | /// Create a check for a function parameter that may potentially be |
5306 | /// declared as non-null. |
5307 | void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, |
5308 | AbstractCallee AC, unsigned ParmNum); |
5309 | |
5310 | void EmitNonNullArgCheck(Address Addr, QualType ArgType, |
5311 | SourceLocation ArgLoc, AbstractCallee AC, |
5312 | unsigned ParmNum); |
5313 | |
5314 | /// EmitWriteback - Emit callbacks for function. |
5315 | void EmitWritebacks(const CallArgList &Args); |
5316 | |
5317 | /// EmitCallArg - Emit a single call argument. |
5318 | void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); |
5319 | |
5320 | /// EmitDelegateCallArg - We are performing a delegate call; that |
5321 | /// is, the current function is delegating to another one. Produce |
5322 | /// a r-value suitable for passing the given parameter. |
5323 | void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, |
5324 | SourceLocation loc); |
5325 | |
5326 | /// SetFPAccuracy - Set the minimum required accuracy of the given floating |
5327 | /// point operation, expressed as the maximum relative error in ulp. |
5328 | void SetFPAccuracy(llvm::Value *Val, float Accuracy); |
5329 | |
5330 | /// Set the minimum required accuracy of the given sqrt operation |
5331 | /// based on CodeGenOpts. |
5332 | void SetSqrtFPAccuracy(llvm::Value *Val); |
5333 | |
5334 | /// Set the minimum required accuracy of the given sqrt operation based on |
5335 | /// CodeGenOpts. |
5336 | void SetDivFPAccuracy(llvm::Value *Val); |
5337 | |
5338 | /// Set the codegen fast-math flags. |
5339 | void SetFastMathFlags(FPOptions FPFeatures); |
5340 | |
5341 | // Truncate or extend a boolean vector to the requested number of elements. |
5342 | llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, |
5343 | unsigned NumElementsDst, |
5344 | const llvm::Twine &Name = "" ); |
5345 | |
5346 | void maybeAttachRangeForLoad(llvm::LoadInst *Load, QualType Ty, |
5347 | SourceLocation Loc); |
5348 | |
5349 | private: |
5350 | // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| |
5351 | // as it's parent convergence instr. |
5352 | llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB); |
5353 | |
5354 | // Adds a convergence_ctrl token with |ParentToken| as parent convergence |
5355 | // instr to the call |Input|. |
5356 | llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input); |
5357 | |
5358 | // Find the convergence_entry instruction |F|, or emits ones if none exists. |
5359 | // Returns the convergence instruction. |
5360 | llvm::ConvergenceControlInst * |
5361 | getOrEmitConvergenceEntryToken(llvm::Function *F); |
5362 | |
5363 | private: |
5364 | llvm::MDNode *getRangeForLoadFromType(QualType Ty); |
5365 | void EmitReturnOfRValue(RValue RV, QualType Ty); |
5366 | |
5367 | void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); |
5368 | |
5369 | llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> |
5370 | DeferredReplacements; |
5371 | |
5372 | /// Set the address of a local variable. |
5373 | void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { |
5374 | assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!" ); |
5375 | LocalDeclMap.insert(KV: {VD, Addr}); |
5376 | } |
5377 | |
5378 | /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty |
5379 | /// from function arguments into \arg Dst. See ABIArgInfo::Expand. |
5380 | /// |
5381 | /// \param AI - The first function argument of the expansion. |
5382 | void ExpandTypeFromArgs(QualType Ty, LValue Dst, |
5383 | llvm::Function::arg_iterator &AI); |
5384 | |
5385 | /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg |
5386 | /// Ty, into individual arguments on the provided vector \arg IRCallArgs, |
5387 | /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. |
5388 | void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
5389 | SmallVectorImpl<llvm::Value *> &IRCallArgs, |
5390 | unsigned &IRCallArgPos); |
5391 | |
5392 | std::pair<llvm::Value *, llvm::Type *> |
5393 | EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, |
5394 | std::string &ConstraintStr); |
5395 | |
5396 | std::pair<llvm::Value *, llvm::Type *> |
5397 | EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, |
5398 | QualType InputType, std::string &ConstraintStr, |
5399 | SourceLocation Loc); |
5400 | |
5401 | /// Attempts to statically evaluate the object size of E. If that |
5402 | /// fails, emits code to figure the size of E out for us. This is |
5403 | /// pass_object_size aware. |
5404 | /// |
5405 | /// If EmittedExpr is non-null, this will use that instead of re-emitting E. |
5406 | llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
5407 | llvm::IntegerType *ResType, |
5408 | llvm::Value *EmittedE, |
5409 | bool IsDynamic); |
5410 | |
5411 | /// Emits the size of E, as required by __builtin_object_size. This |
5412 | /// function is aware of pass_object_size parameters, and will act accordingly |
5413 | /// if E is a parameter with the pass_object_size attribute. |
5414 | llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, |
5415 | llvm::IntegerType *ResType, |
5416 | llvm::Value *EmittedE, bool IsDynamic); |
5417 | |
5418 | llvm::Value *emitCountedBySize(const Expr *E, llvm::Value *EmittedE, |
5419 | unsigned Type, llvm::IntegerType *ResType); |
5420 | |
5421 | llvm::Value *emitCountedByMemberSize(const MemberExpr *E, const Expr *Idx, |
5422 | llvm::Value *EmittedE, |
5423 | QualType CastedArrayElementTy, |
5424 | unsigned Type, |
5425 | llvm::IntegerType *ResType); |
5426 | |
5427 | llvm::Value *emitCountedByPointerSize(const ImplicitCastExpr *E, |
5428 | const Expr *Idx, llvm::Value *EmittedE, |
5429 | QualType CastedArrayElementTy, |
5430 | unsigned Type, |
5431 | llvm::IntegerType *ResType); |
5432 | |
5433 | void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, |
5434 | Address Loc); |
5435 | |
5436 | public: |
5437 | enum class EvaluationOrder { |
5438 | ///! No language constraints on evaluation order. |
5439 | Default, |
5440 | ///! Language semantics require left-to-right evaluation. |
5441 | ForceLeftToRight, |
5442 | ///! Language semantics require right-to-left evaluation. |
5443 | ForceRightToLeft |
5444 | }; |
5445 | |
5446 | // Wrapper for function prototype sources. Wraps either a FunctionProtoType or |
5447 | // an ObjCMethodDecl. |
5448 | struct PrototypeWrapper { |
5449 | llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; |
5450 | |
5451 | PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} |
5452 | PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} |
5453 | }; |
5454 | |
5455 | void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, |
5456 | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
5457 | AbstractCallee AC = AbstractCallee(), |
5458 | unsigned ParamsToSkip = 0, |
5459 | EvaluationOrder Order = EvaluationOrder::Default); |
5460 | |
5461 | /// EmitPointerWithAlignment - Given an expression with a pointer type, |
5462 | /// emit the value and compute our best estimate of the alignment of the |
5463 | /// pointee. |
5464 | /// |
5465 | /// \param BaseInfo - If non-null, this will be initialized with |
5466 | /// information about the source of the alignment and the may-alias |
5467 | /// attribute. Note that this function will conservatively fall back on |
5468 | /// the type when it doesn't recognize the expression and may-alias will |
5469 | /// be set to false. |
5470 | /// |
5471 | /// One reasonable way to use this information is when there's a language |
5472 | /// guarantee that the pointer must be aligned to some stricter value, and |
5473 | /// we're simply trying to ensure that sufficiently obvious uses of under- |
5474 | /// aligned objects don't get miscompiled; for example, a placement new |
5475 | /// into the address of a local variable. In such a case, it's quite |
5476 | /// reasonable to just ignore the returned alignment when it isn't from an |
5477 | /// explicit source. |
5478 | Address |
5479 | EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, |
5480 | TBAAAccessInfo *TBAAInfo = nullptr, |
5481 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
5482 | |
5483 | /// If \p E references a parameter with pass_object_size info or a constant |
5484 | /// array size modifier, emit the object size divided by the size of \p EltTy. |
5485 | /// Otherwise return null. |
5486 | llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); |
5487 | |
5488 | void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); |
5489 | |
5490 | struct FMVResolverOption { |
5491 | llvm::Function *Function; |
5492 | llvm::SmallVector<StringRef, 8> Features; |
5493 | std::optional<StringRef> Architecture; |
5494 | |
5495 | FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats, |
5496 | std::optional<StringRef> Arch = std::nullopt) |
5497 | : Function(F), Features(Feats), Architecture(Arch) {} |
5498 | }; |
5499 | |
5500 | // Emits the body of a multiversion function's resolver. Assumes that the |
5501 | // options are already sorted in the proper order, with the 'default' option |
5502 | // last (if it exists). |
5503 | void EmitMultiVersionResolver(llvm::Function *Resolver, |
5504 | ArrayRef<FMVResolverOption> Options); |
5505 | void EmitX86MultiVersionResolver(llvm::Function *Resolver, |
5506 | ArrayRef<FMVResolverOption> Options); |
5507 | void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, |
5508 | ArrayRef<FMVResolverOption> Options); |
5509 | void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, |
5510 | ArrayRef<FMVResolverOption> Options); |
5511 | |
5512 | private: |
5513 | QualType getVarArgType(const Expr *Arg); |
5514 | |
5515 | void EmitDeclMetadata(); |
5516 | |
5517 | BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, |
5518 | const AutoVarEmission &emission); |
5519 | |
5520 | void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); |
5521 | |
5522 | llvm::Value *GetValueForARMHint(unsigned BuiltinID); |
5523 | llvm::Value *EmitX86CpuIs(const CallExpr *E); |
5524 | llvm::Value *EmitX86CpuIs(StringRef CPUStr); |
5525 | llvm::Value *EmitX86CpuSupports(const CallExpr *E); |
5526 | llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5527 | llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); |
5528 | llvm::Value *EmitX86CpuInit(); |
5529 | llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO); |
5530 | llvm::Value *EmitAArch64CpuInit(); |
5531 | llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO); |
5532 | llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); |
5533 | llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5534 | }; |
5535 | |
5536 | inline DominatingLLVMValue::saved_type |
5537 | DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { |
5538 | if (!needsSaving(value)) |
5539 | return saved_type(value, false); |
5540 | |
5541 | // Otherwise, we need an alloca. |
5542 | auto align = CharUnits::fromQuantity( |
5543 | Quantity: CGF.CGM.getDataLayout().getPrefTypeAlign(Ty: value->getType())); |
5544 | Address alloca = |
5545 | CGF.CreateTempAlloca(Ty: value->getType(), align, Name: "cond-cleanup.save" ); |
5546 | CGF.Builder.CreateStore(Val: value, Addr: alloca); |
5547 | |
5548 | return saved_type(alloca.emitRawPointer(CGF), true); |
5549 | } |
5550 | |
5551 | inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, |
5552 | saved_type value) { |
5553 | // If the value says it wasn't saved, trust that it's still dominating. |
5554 | if (!value.getInt()) |
5555 | return value.getPointer(); |
5556 | |
5557 | // Otherwise, it should be an alloca instruction, as set up in save(). |
5558 | auto alloca = cast<llvm::AllocaInst>(Val: value.getPointer()); |
5559 | return CGF.Builder.CreateAlignedLoad(Ty: alloca->getAllocatedType(), Ptr: alloca, |
5560 | Align: alloca->getAlign()); |
5561 | } |
5562 | |
5563 | } // end namespace CodeGen |
5564 | |
5565 | // Map the LangOption for floating point exception behavior into |
5566 | // the corresponding enum in the IR. |
5567 | llvm::fp::ExceptionBehavior |
5568 | ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); |
5569 | } // end namespace clang |
5570 | |
5571 | #endif |
5572 | |