1 | //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Generates code for built-in GPU calls which are not runtime-specific. |
10 | // (Runtime-specific codegen lives in programming model specific files.) |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "CodeGenFunction.h" |
15 | #include "clang/Basic/Builtins.h" |
16 | #include "llvm/IR/DataLayout.h" |
17 | #include "llvm/IR/Instruction.h" |
18 | #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h" |
19 | |
20 | using namespace clang; |
21 | using namespace CodeGen; |
22 | |
23 | namespace { |
24 | llvm::Function *GetVprintfDeclaration(llvm::Module &M) { |
25 | llvm::Type *ArgTypes[] = {llvm::PointerType::getUnqual(C&: M.getContext()), |
26 | llvm::PointerType::getUnqual(C&: M.getContext())}; |
27 | llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( |
28 | Result: llvm::Type::getInt32Ty(C&: M.getContext()), Params: ArgTypes, isVarArg: false); |
29 | |
30 | if (auto *F = M.getFunction(Name: "vprintf" )) { |
31 | // Our CUDA system header declares vprintf with the right signature, so |
32 | // nobody else should have been able to declare vprintf with a bogus |
33 | // signature. |
34 | assert(F->getFunctionType() == VprintfFuncType); |
35 | return F; |
36 | } |
37 | |
38 | // vprintf doesn't already exist; create a declaration and insert it into the |
39 | // module. |
40 | return llvm::Function::Create( |
41 | Ty: VprintfFuncType, Linkage: llvm::GlobalVariable::ExternalLinkage, N: "vprintf" , M: &M); |
42 | } |
43 | |
44 | // Transforms a call to printf into a call to the NVPTX vprintf syscall (which |
45 | // isn't particularly special; it's invoked just like a regular function). |
46 | // vprintf takes two args: A format string, and a pointer to a buffer containing |
47 | // the varargs. |
48 | // |
49 | // For example, the call |
50 | // |
51 | // printf("format string", arg1, arg2, arg3); |
52 | // |
53 | // is converted into something resembling |
54 | // |
55 | // struct Tmp { |
56 | // Arg1 a1; |
57 | // Arg2 a2; |
58 | // Arg3 a3; |
59 | // }; |
60 | // char* buf = alloca(sizeof(Tmp)); |
61 | // *(Tmp*)buf = {a1, a2, a3}; |
62 | // vprintf("format string", buf); |
63 | // |
64 | // buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the |
65 | // args is itself aligned to its preferred alignment. |
66 | // |
67 | // Note that by the time this function runs, E's args have already undergone the |
68 | // standard C vararg promotion (short -> int, float -> double, etc.). |
69 | |
70 | std::pair<llvm::Value *, llvm::TypeSize> |
71 | packArgsIntoNVPTXFormatBuffer(CodeGenFunction *CGF, const CallArgList &Args) { |
72 | const llvm::DataLayout &DL = CGF->CGM.getDataLayout(); |
73 | llvm::LLVMContext &Ctx = CGF->CGM.getLLVMContext(); |
74 | CGBuilderTy &Builder = CGF->Builder; |
75 | |
76 | // Construct and fill the args buffer that we'll pass to vprintf. |
77 | if (Args.size() <= 1) { |
78 | // If there are no args, pass a null pointer and size 0 |
79 | llvm::Value *BufferPtr = |
80 | llvm::ConstantPointerNull::get(T: llvm::PointerType::getUnqual(C&: Ctx)); |
81 | return {BufferPtr, llvm::TypeSize::getFixed(ExactSize: 0)}; |
82 | } else { |
83 | llvm::SmallVector<llvm::Type *, 8> ArgTypes; |
84 | for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) |
85 | ArgTypes.push_back(Elt: Args[I].getRValue(CGF&: *CGF).getScalarVal()->getType()); |
86 | |
87 | // Using llvm::StructType is correct only because printf doesn't accept |
88 | // aggregates. If we had to handle aggregates here, we'd have to manually |
89 | // compute the offsets within the alloca -- we wouldn't be able to assume |
90 | // that the alignment of the llvm type was the same as the alignment of the |
91 | // clang type. |
92 | llvm::Type *AllocaTy = llvm::StructType::create(Elements: ArgTypes, Name: "printf_args" ); |
93 | llvm::Value *Alloca = CGF->CreateTempAlloca(Ty: AllocaTy); |
94 | |
95 | for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) { |
96 | llvm::Value *P = Builder.CreateStructGEP(Ty: AllocaTy, Ptr: Alloca, Idx: I - 1); |
97 | llvm::Value *Arg = Args[I].getRValue(CGF&: *CGF).getScalarVal(); |
98 | Builder.CreateAlignedStore(Val: Arg, Ptr: P, Align: DL.getPrefTypeAlign(Ty: Arg->getType())); |
99 | } |
100 | llvm::Value *BufferPtr = |
101 | Builder.CreatePointerCast(V: Alloca, DestTy: llvm::PointerType::getUnqual(C&: Ctx)); |
102 | return {BufferPtr, DL.getTypeAllocSize(Ty: AllocaTy)}; |
103 | } |
104 | } |
105 | |
106 | bool containsNonScalarVarargs(CodeGenFunction *CGF, const CallArgList &Args) { |
107 | return llvm::any_of(Range: llvm::drop_begin(RangeOrContainer: Args), P: [&](const CallArg &A) { |
108 | return !A.getRValue(CGF&: *CGF).isScalar(); |
109 | }); |
110 | } |
111 | |
112 | RValue EmitDevicePrintfCallExpr(const CallExpr *E, CodeGenFunction *CGF, |
113 | llvm::Function *Decl, bool WithSizeArg) { |
114 | CodeGenModule &CGM = CGF->CGM; |
115 | CGBuilderTy &Builder = CGF->Builder; |
116 | assert(E->getBuiltinCallee() == Builtin::BIprintf || |
117 | E->getBuiltinCallee() == Builtin::BI__builtin_printf); |
118 | assert(E->getNumArgs() >= 1); // printf always has at least one arg. |
119 | |
120 | // Uses the same format as nvptx for the argument packing, but also passes |
121 | // an i32 for the total size of the passed pointer |
122 | CallArgList Args; |
123 | CGF->EmitCallArgs(Args, |
124 | Prototype: E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), |
125 | ArgRange: E->arguments(), AC: E->getDirectCallee(), |
126 | /* ParamsToSkip = */ 0); |
127 | |
128 | // We don't know how to emit non-scalar varargs. |
129 | if (containsNonScalarVarargs(CGF, Args)) { |
130 | CGM.ErrorUnsupported(S: E, Type: "non-scalar arg to printf" ); |
131 | return RValue::get(V: llvm::ConstantInt::get(Ty: CGF->IntTy, V: 0)); |
132 | } |
133 | |
134 | auto r = packArgsIntoNVPTXFormatBuffer(CGF, Args); |
135 | llvm::Value *BufferPtr = r.first; |
136 | |
137 | llvm::SmallVector<llvm::Value *, 3> Vec = { |
138 | Args[0].getRValue(CGF&: *CGF).getScalarVal(), BufferPtr}; |
139 | if (WithSizeArg) { |
140 | // Passing > 32bit of data as a local alloca doesn't work for nvptx or |
141 | // amdgpu |
142 | llvm::Constant *Size = |
143 | llvm::ConstantInt::get(Ty: llvm::Type::getInt32Ty(C&: CGM.getLLVMContext()), |
144 | V: static_cast<uint32_t>(r.second.getFixedValue())); |
145 | |
146 | Vec.push_back(Elt: Size); |
147 | } |
148 | return RValue::get(V: Builder.CreateCall(Callee: Decl, Args: Vec)); |
149 | } |
150 | } // namespace |
151 | |
152 | RValue CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E) { |
153 | assert(getTarget().getTriple().isNVPTX()); |
154 | return EmitDevicePrintfCallExpr( |
155 | E, CGF: this, Decl: GetVprintfDeclaration(M&: CGM.getModule()), WithSizeArg: false); |
156 | } |
157 | |
158 | RValue CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E) { |
159 | assert(getTarget().getTriple().isAMDGCN() || |
160 | (getTarget().getTriple().isSPIRV() && |
161 | getTarget().getTriple().getVendor() == llvm::Triple::AMD)); |
162 | assert(E->getBuiltinCallee() == Builtin::BIprintf || |
163 | E->getBuiltinCallee() == Builtin::BI__builtin_printf); |
164 | assert(E->getNumArgs() >= 1); // printf always has at least one arg. |
165 | |
166 | CallArgList CallArgs; |
167 | EmitCallArgs(Args&: CallArgs, |
168 | Prototype: E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), |
169 | ArgRange: E->arguments(), AC: E->getDirectCallee(), |
170 | /* ParamsToSkip = */ 0); |
171 | |
172 | SmallVector<llvm::Value *, 8> Args; |
173 | for (const auto &A : CallArgs) { |
174 | // We don't know how to emit non-scalar varargs. |
175 | if (!A.getRValue(CGF&: *this).isScalar()) { |
176 | CGM.ErrorUnsupported(S: E, Type: "non-scalar arg to printf" ); |
177 | return RValue::get(V: llvm::ConstantInt::get(Ty: IntTy, V: -1)); |
178 | } |
179 | |
180 | llvm::Value *Arg = A.getRValue(CGF&: *this).getScalarVal(); |
181 | Args.push_back(Elt: Arg); |
182 | } |
183 | |
184 | llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); |
185 | IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); |
186 | |
187 | bool isBuffered = (CGM.getTarget().getTargetOpts().AMDGPUPrintfKindVal == |
188 | clang::TargetOptions::AMDGPUPrintfKind::Buffered); |
189 | auto Printf = llvm::emitAMDGPUPrintfCall(Builder&: IRB, Args, isBuffered); |
190 | Builder.SetInsertPoint(TheBB: IRB.GetInsertBlock(), IP: IRB.GetInsertPoint()); |
191 | return RValue::get(V: Printf); |
192 | } |
193 | |