| 1 | //===--- PatternInit.cpp - Pattern Initialization -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "PatternInit.h" |
| 10 | #include "CodeGenModule.h" |
| 11 | #include "clang/Basic/TargetInfo.h" |
| 12 | #include "llvm/IR/Constant.h" |
| 13 | #include "llvm/IR/Type.h" |
| 14 | |
| 15 | llvm::Constant *clang::CodeGen::initializationPatternFor(CodeGenModule &CGM, |
| 16 | llvm::Type *Ty) { |
| 17 | // The following value is a guaranteed unmappable pointer value and has a |
| 18 | // repeated byte-pattern which makes it easier to synthesize. We use it for |
| 19 | // pointers as well as integers so that aggregates are likely to be |
| 20 | // initialized with this repeated value. |
| 21 | // For 32-bit platforms it's a bit trickier because, across systems, only the |
| 22 | // zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF |
| 23 | // assuming that memory access will overlap into zero page. |
| 24 | const uint64_t IntValue = |
| 25 | CGM.getContext().getTargetInfo().getMaxPointerWidth() < 64 |
| 26 | ? 0xFFFFFFFFFFFFFFFFull |
| 27 | : 0xAAAAAAAAAAAAAAAAull; |
| 28 | // Floating-point values are initialized as NaNs because they propagate. Using |
| 29 | // a repeated byte pattern means that it will be easier to initialize |
| 30 | // all-floating-point aggregates and arrays with memset. Further, aggregates |
| 31 | // which mix integral and a few floats might also initialize with memset |
| 32 | // followed by a handful of stores for the floats. Using fairly unique NaNs |
| 33 | // also means they'll be easier to distinguish in a crash. |
| 34 | constexpr bool NegativeNaN = true; |
| 35 | constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; |
| 36 | if (Ty->isIntOrIntVectorTy()) { |
| 37 | unsigned BitWidth = |
| 38 | cast<llvm::IntegerType>(Val: Ty->getScalarType())->getBitWidth(); |
| 39 | if (BitWidth <= 64) |
| 40 | return llvm::ConstantInt::get(Ty, V: IntValue); |
| 41 | return llvm::ConstantInt::get( |
| 42 | Ty, V: llvm::APInt::getSplat(NewLen: BitWidth, V: llvm::APInt(64, IntValue))); |
| 43 | } |
| 44 | if (Ty->isPtrOrPtrVectorTy()) { |
| 45 | auto *PtrTy = cast<llvm::PointerType>(Val: Ty->getScalarType()); |
| 46 | unsigned PtrWidth = |
| 47 | CGM.getDataLayout().getPointerSizeInBits(AS: PtrTy->getAddressSpace()); |
| 48 | if (PtrWidth > 64) |
| 49 | llvm_unreachable("pattern initialization of unsupported pointer width" ); |
| 50 | llvm::Type *IntTy = llvm::IntegerType::get(C&: CGM.getLLVMContext(), NumBits: PtrWidth); |
| 51 | auto *Int = llvm::ConstantInt::get(Ty: IntTy, V: IntValue); |
| 52 | return llvm::ConstantExpr::getIntToPtr(C: Int, Ty: PtrTy); |
| 53 | } |
| 54 | if (Ty->isFPOrFPVectorTy()) { |
| 55 | unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( |
| 56 | Ty->getScalarType()->getFltSemantics()); |
| 57 | llvm::APInt Payload(64, NaNPayload); |
| 58 | if (BitWidth >= 64) |
| 59 | Payload = llvm::APInt::getSplat(NewLen: BitWidth, V: Payload); |
| 60 | return llvm::ConstantFP::getQNaN(Ty, Negative: NegativeNaN, Payload: &Payload); |
| 61 | } |
| 62 | if (Ty->isArrayTy()) { |
| 63 | // Note: this doesn't touch tail padding (at the end of an object, before |
| 64 | // the next array object). It is instead handled by replaceUndef. |
| 65 | auto *ArrTy = cast<llvm::ArrayType>(Val: Ty); |
| 66 | llvm::SmallVector<llvm::Constant *, 8> Element( |
| 67 | ArrTy->getNumElements(), |
| 68 | initializationPatternFor(CGM, Ty: ArrTy->getElementType())); |
| 69 | return llvm::ConstantArray::get(T: ArrTy, V: Element); |
| 70 | } |
| 71 | |
| 72 | // Note: this doesn't touch struct padding. It will initialize as much union |
| 73 | // padding as is required for the largest type in the union. Padding is |
| 74 | // instead handled by replaceUndef. Stores to structs with volatile members |
| 75 | // don't have a volatile qualifier when initialized according to C++. This is |
| 76 | // fine because stack-based volatiles don't really have volatile semantics |
| 77 | // anyways, and the initialization shouldn't be observable. |
| 78 | auto *StructTy = cast<llvm::StructType>(Val: Ty); |
| 79 | llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); |
| 80 | for (unsigned El = 0; El != Struct.size(); ++El) |
| 81 | Struct[El] = initializationPatternFor(CGM, Ty: StructTy->getElementType(N: El)); |
| 82 | return llvm::ConstantStruct::get(T: StructTy, V: Struct); |
| 83 | } |
| 84 | |