1//===---------- X86.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBuiltin.h"
14#include "clang/Basic/TargetBuiltins.h"
15#include "llvm/IR/InlineAsm.h"
16#include "llvm/IR/IntrinsicsX86.h"
17#include "llvm/TargetParser/X86TargetParser.h"
18
19using namespace clang;
20using namespace CodeGen;
21using namespace llvm;
22
23static std::optional<CodeGenFunction::MSVCIntrin>
24translateX86ToMsvcIntrin(unsigned BuiltinID) {
25 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
26 switch (BuiltinID) {
27 default:
28 return std::nullopt;
29 case clang::X86::BI_BitScanForward:
30 case clang::X86::BI_BitScanForward64:
31 return MSVCIntrin::_BitScanForward;
32 case clang::X86::BI_BitScanReverse:
33 case clang::X86::BI_BitScanReverse64:
34 return MSVCIntrin::_BitScanReverse;
35 case clang::X86::BI_InterlockedAnd64:
36 return MSVCIntrin::_InterlockedAnd;
37 case clang::X86::BI_InterlockedCompareExchange128:
38 return MSVCIntrin::_InterlockedCompareExchange128;
39 case clang::X86::BI_InterlockedExchange64:
40 return MSVCIntrin::_InterlockedExchange;
41 case clang::X86::BI_InterlockedExchangeAdd64:
42 return MSVCIntrin::_InterlockedExchangeAdd;
43 case clang::X86::BI_InterlockedExchangeSub64:
44 return MSVCIntrin::_InterlockedExchangeSub;
45 case clang::X86::BI_InterlockedOr64:
46 return MSVCIntrin::_InterlockedOr;
47 case clang::X86::BI_InterlockedXor64:
48 return MSVCIntrin::_InterlockedXor;
49 case clang::X86::BI_InterlockedDecrement64:
50 return MSVCIntrin::_InterlockedDecrement;
51 case clang::X86::BI_InterlockedIncrement64:
52 return MSVCIntrin::_InterlockedIncrement;
53 }
54 llvm_unreachable("must return from switch");
55}
56
57// Convert the mask from an integer type to a vector of i1.
58static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
59 unsigned NumElts) {
60
61 auto *MaskTy = llvm::FixedVectorType::get(
62 ElementType: CGF.Builder.getInt1Ty(),
63 NumElts: cast<IntegerType>(Val: Mask->getType())->getBitWidth());
64 Value *MaskVec = CGF.Builder.CreateBitCast(V: Mask, DestTy: MaskTy);
65
66 // If we have less than 8 elements, then the starting mask was an i8 and
67 // we need to extract down to the right number of elements.
68 if (NumElts < 8) {
69 int Indices[4];
70 for (unsigned i = 0; i != NumElts; ++i)
71 Indices[i] = i;
72 MaskVec = CGF.Builder.CreateShuffleVector(
73 V1: MaskVec, V2: MaskVec, Mask: ArrayRef(Indices, NumElts), Name: "extract");
74 }
75 return MaskVec;
76}
77
78static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
79 Align Alignment) {
80 Value *Ptr = Ops[0];
81
82 Value *MaskVec = getMaskVecValue(
83 CGF, Mask: Ops[2],
84 NumElts: cast<llvm::FixedVectorType>(Val: Ops[1]->getType())->getNumElements());
85
86 return CGF.Builder.CreateMaskedStore(Val: Ops[1], Ptr, Alignment, Mask: MaskVec);
87}
88
89static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
90 Align Alignment) {
91 llvm::Type *Ty = Ops[1]->getType();
92 Value *Ptr = Ops[0];
93
94 Value *MaskVec = getMaskVecValue(
95 CGF, Mask: Ops[2], NumElts: cast<llvm::FixedVectorType>(Val: Ty)->getNumElements());
96
97 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask: MaskVec, PassThru: Ops[1]);
98}
99
100static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
101 ArrayRef<Value *> Ops) {
102 auto *ResultTy = cast<llvm::VectorType>(Val: Ops[1]->getType());
103 Value *Ptr = Ops[0];
104
105 Value *MaskVec = getMaskVecValue(
106 CGF, Mask: Ops[2], NumElts: cast<FixedVectorType>(Val: ResultTy)->getNumElements());
107
108 llvm::Function *F = CGF.CGM.getIntrinsic(IID: Intrinsic::masked_expandload,
109 Tys: ResultTy);
110 return CGF.Builder.CreateCall(Callee: F, Args: { Ptr, MaskVec, Ops[1] });
111}
112
113static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
114 ArrayRef<Value *> Ops,
115 bool IsCompress) {
116 auto *ResultTy = cast<llvm::FixedVectorType>(Val: Ops[1]->getType());
117
118 Value *MaskVec = getMaskVecValue(CGF, Mask: Ops[2], NumElts: ResultTy->getNumElements());
119
120 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
121 : Intrinsic::x86_avx512_mask_expand;
122 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Tys: ResultTy);
123 return CGF.Builder.CreateCall(Callee: F, Args: { Ops[0], Ops[1], MaskVec });
124}
125
126static Value *EmitX86CompressStore(CodeGenFunction &CGF,
127 ArrayRef<Value *> Ops) {
128 auto *ResultTy = cast<llvm::FixedVectorType>(Val: Ops[1]->getType());
129 Value *Ptr = Ops[0];
130
131 Value *MaskVec = getMaskVecValue(CGF, Mask: Ops[2], NumElts: ResultTy->getNumElements());
132
133 llvm::Function *F = CGF.CGM.getIntrinsic(IID: Intrinsic::masked_compressstore,
134 Tys: ResultTy);
135 return CGF.Builder.CreateCall(Callee: F, Args: { Ops[1], Ptr, MaskVec });
136}
137
138static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
139 ArrayRef<Value *> Ops,
140 bool InvertLHS = false) {
141 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
142 Value *LHS = getMaskVecValue(CGF, Mask: Ops[0], NumElts);
143 Value *RHS = getMaskVecValue(CGF, Mask: Ops[1], NumElts);
144
145 if (InvertLHS)
146 LHS = CGF.Builder.CreateNot(V: LHS);
147
148 return CGF.Builder.CreateBitCast(V: CGF.Builder.CreateBinOp(Opc, LHS, RHS),
149 DestTy: Ops[0]->getType());
150}
151
152static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
153 Value *Amt, bool IsRight) {
154 llvm::Type *Ty = Op0->getType();
155
156 // Amount may be scalar immediate, in which case create a splat vector.
157 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
158 // we only care about the lowest log2 bits anyway.
159 if (Amt->getType() != Ty) {
160 unsigned NumElts = cast<llvm::FixedVectorType>(Val: Ty)->getNumElements();
161 Amt = CGF.Builder.CreateIntCast(V: Amt, DestTy: Ty->getScalarType(), isSigned: false);
162 Amt = CGF.Builder.CreateVectorSplat(NumElts, V: Amt);
163 }
164
165 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
166 Function *F = CGF.CGM.getIntrinsic(IID, Tys: Ty);
167 return CGF.Builder.CreateCall(Callee: F, Args: {Op0, Op1, Amt});
168}
169
170static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
171 bool IsSigned) {
172 Value *Op0 = Ops[0];
173 Value *Op1 = Ops[1];
174 llvm::Type *Ty = Op0->getType();
175 uint64_t Imm = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue() & 0x7;
176
177 CmpInst::Predicate Pred;
178 switch (Imm) {
179 case 0x0:
180 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
181 break;
182 case 0x1:
183 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
184 break;
185 case 0x2:
186 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
187 break;
188 case 0x3:
189 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
190 break;
191 case 0x4:
192 Pred = ICmpInst::ICMP_EQ;
193 break;
194 case 0x5:
195 Pred = ICmpInst::ICMP_NE;
196 break;
197 case 0x6:
198 return llvm::Constant::getNullValue(Ty); // FALSE
199 case 0x7:
200 return llvm::Constant::getAllOnesValue(Ty); // TRUE
201 default:
202 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
203 }
204
205 Value *Cmp = CGF.Builder.CreateICmp(P: Pred, LHS: Op0, RHS: Op1);
206 Value *Res = CGF.Builder.CreateSExt(V: Cmp, DestTy: Ty);
207 return Res;
208}
209
210static Value *EmitX86Select(CodeGenFunction &CGF,
211 Value *Mask, Value *Op0, Value *Op1) {
212
213 // If the mask is all ones just return first argument.
214 if (const auto *C = dyn_cast<Constant>(Val: Mask))
215 if (C->isAllOnesValue())
216 return Op0;
217
218 Mask = getMaskVecValue(
219 CGF, Mask, NumElts: cast<llvm::FixedVectorType>(Val: Op0->getType())->getNumElements());
220
221 return CGF.Builder.CreateSelect(C: Mask, True: Op0, False: Op1);
222}
223
224static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
225 Value *Mask, Value *Op0, Value *Op1) {
226 // If the mask is all ones just return first argument.
227 if (const auto *C = dyn_cast<Constant>(Val: Mask))
228 if (C->isAllOnesValue())
229 return Op0;
230
231 auto *MaskTy = llvm::FixedVectorType::get(
232 ElementType: CGF.Builder.getInt1Ty(), NumElts: Mask->getType()->getIntegerBitWidth());
233 Mask = CGF.Builder.CreateBitCast(V: Mask, DestTy: MaskTy);
234 Mask = CGF.Builder.CreateExtractElement(Vec: Mask, Idx: (uint64_t)0);
235 return CGF.Builder.CreateSelect(C: Mask, True: Op0, False: Op1);
236}
237
238static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
239 unsigned NumElts, Value *MaskIn) {
240 if (MaskIn) {
241 const auto *C = dyn_cast<Constant>(Val: MaskIn);
242 if (!C || !C->isAllOnesValue())
243 Cmp = CGF.Builder.CreateAnd(LHS: Cmp, RHS: getMaskVecValue(CGF, Mask: MaskIn, NumElts));
244 }
245
246 if (NumElts < 8) {
247 int Indices[8];
248 for (unsigned i = 0; i != NumElts; ++i)
249 Indices[i] = i;
250 for (unsigned i = NumElts; i != 8; ++i)
251 Indices[i] = i % NumElts + NumElts;
252 Cmp = CGF.Builder.CreateShuffleVector(
253 V1: Cmp, V2: llvm::Constant::getNullValue(Ty: Cmp->getType()), Mask: Indices);
254 }
255
256 return CGF.Builder.CreateBitCast(V: Cmp,
257 DestTy: IntegerType::get(C&: CGF.getLLVMContext(),
258 NumBits: std::max(a: NumElts, b: 8U)));
259}
260
261static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
262 bool Signed, ArrayRef<Value *> Ops) {
263 assert((Ops.size() == 2 || Ops.size() == 4) &&
264 "Unexpected number of arguments");
265 unsigned NumElts =
266 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
267 Value *Cmp;
268
269 if (CC == 3) {
270 Cmp = Constant::getNullValue(
271 Ty: llvm::FixedVectorType::get(ElementType: CGF.Builder.getInt1Ty(), NumElts));
272 } else if (CC == 7) {
273 Cmp = Constant::getAllOnesValue(
274 Ty: llvm::FixedVectorType::get(ElementType: CGF.Builder.getInt1Ty(), NumElts));
275 } else {
276 ICmpInst::Predicate Pred;
277 switch (CC) {
278 default: llvm_unreachable("Unknown condition code");
279 case 0: Pred = ICmpInst::ICMP_EQ; break;
280 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
281 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
282 case 4: Pred = ICmpInst::ICMP_NE; break;
283 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
284 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
285 }
286 Cmp = CGF.Builder.CreateICmp(P: Pred, LHS: Ops[0], RHS: Ops[1]);
287 }
288
289 Value *MaskIn = nullptr;
290 if (Ops.size() == 4)
291 MaskIn = Ops[3];
292
293 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
294}
295
296static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
297 Value *Zero = Constant::getNullValue(Ty: In->getType());
298 return EmitX86MaskedCompare(CGF, CC: 1, Signed: true, Ops: { In, Zero });
299}
300
301static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
302 ArrayRef<Value *> Ops, bool IsSigned) {
303 unsigned Rnd = cast<llvm::ConstantInt>(Val: Ops[3])->getZExtValue();
304 llvm::Type *Ty = Ops[1]->getType();
305
306 Value *Res;
307 if (Rnd != 4) {
308 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
309 : Intrinsic::x86_avx512_uitofp_round;
310 Function *F = CGF.CGM.getIntrinsic(IID, Tys: { Ty, Ops[0]->getType() });
311 Res = CGF.Builder.CreateCall(Callee: F, Args: { Ops[0], Ops[3] });
312 } else {
313 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
314 Res = IsSigned ? CGF.Builder.CreateSIToFP(V: Ops[0], DestTy: Ty)
315 : CGF.Builder.CreateUIToFP(V: Ops[0], DestTy: Ty);
316 }
317
318 return EmitX86Select(CGF, Mask: Ops[2], Op0: Res, Op1: Ops[1]);
319}
320
321// Lowers X86 FMA intrinsics to IR.
322static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
323 ArrayRef<Value *> Ops, unsigned BuiltinID,
324 bool IsAddSub) {
325
326 bool Subtract = false;
327 Intrinsic::ID IID = Intrinsic::not_intrinsic;
328 switch (BuiltinID) {
329 default: break;
330 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
331 Subtract = true;
332 [[fallthrough]];
333 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
334 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
335 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
336 IID = Intrinsic::x86_avx512fp16_vfmadd_ph_512;
337 break;
338 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
339 Subtract = true;
340 [[fallthrough]];
341 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
342 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
343 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
344 IID = Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
345 break;
346 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
347 Subtract = true;
348 [[fallthrough]];
349 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
350 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
351 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
352 IID = Intrinsic::x86_avx512_vfmadd_ps_512; break;
353 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
354 Subtract = true;
355 [[fallthrough]];
356 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
357 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
358 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
359 IID = Intrinsic::x86_avx512_vfmadd_pd_512; break;
360 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
361 Subtract = true;
362 [[fallthrough]];
363 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
364 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
365 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
366 IID = Intrinsic::x86_avx512_vfmaddsub_ps_512;
367 break;
368 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
369 Subtract = true;
370 [[fallthrough]];
371 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
372 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
373 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
374 IID = Intrinsic::x86_avx512_vfmaddsub_pd_512;
375 break;
376 }
377
378 Value *A = Ops[0];
379 Value *B = Ops[1];
380 Value *C = Ops[2];
381
382 if (Subtract)
383 C = CGF.Builder.CreateFNeg(V: C);
384
385 Value *Res;
386
387 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
388 if (IID != Intrinsic::not_intrinsic &&
389 (cast<llvm::ConstantInt>(Val: Ops.back())->getZExtValue() != (uint64_t)4 ||
390 IsAddSub)) {
391 Function *Intr = CGF.CGM.getIntrinsic(IID);
392 Res = CGF.Builder.CreateCall(Callee: Intr, Args: {A, B, C, Ops.back() });
393 } else {
394 llvm::Type *Ty = A->getType();
395 Function *FMA;
396 if (CGF.Builder.getIsFPConstrained()) {
397 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
398 FMA = CGF.CGM.getIntrinsic(IID: Intrinsic::experimental_constrained_fma, Tys: Ty);
399 Res = CGF.Builder.CreateConstrainedFPCall(Callee: FMA, Args: {A, B, C});
400 } else {
401 FMA = CGF.CGM.getIntrinsic(IID: Intrinsic::fma, Tys: Ty);
402 Res = CGF.Builder.CreateCall(Callee: FMA, Args: {A, B, C});
403 }
404 }
405
406 // Handle any required masking.
407 Value *MaskFalseVal = nullptr;
408 switch (BuiltinID) {
409 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
410 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
411 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
412 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
413 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
414 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
415 MaskFalseVal = Ops[0];
416 break;
417 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
418 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
419 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
420 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
421 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
422 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
423 MaskFalseVal = Constant::getNullValue(Ty: Ops[0]->getType());
424 break;
425 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
426 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
427 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
428 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
429 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
430 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
431 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
432 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
433 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
434 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
435 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
436 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
437 MaskFalseVal = Ops[2];
438 break;
439 }
440
441 if (MaskFalseVal)
442 return EmitX86Select(CGF, Mask: Ops[3], Op0: Res, Op1: MaskFalseVal);
443
444 return Res;
445}
446
447static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
448 MutableArrayRef<Value *> Ops, Value *Upper,
449 bool ZeroMask = false, unsigned PTIdx = 0,
450 bool NegAcc = false) {
451 unsigned Rnd = 4;
452 if (Ops.size() > 4)
453 Rnd = cast<llvm::ConstantInt>(Val: Ops[4])->getZExtValue();
454
455 if (NegAcc)
456 Ops[2] = CGF.Builder.CreateFNeg(V: Ops[2]);
457
458 Ops[0] = CGF.Builder.CreateExtractElement(Vec: Ops[0], Idx: (uint64_t)0);
459 Ops[1] = CGF.Builder.CreateExtractElement(Vec: Ops[1], Idx: (uint64_t)0);
460 Ops[2] = CGF.Builder.CreateExtractElement(Vec: Ops[2], Idx: (uint64_t)0);
461 Value *Res;
462 if (Rnd != 4) {
463 Intrinsic::ID IID;
464
465 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
466 case 16:
467 IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
468 break;
469 case 32:
470 IID = Intrinsic::x86_avx512_vfmadd_f32;
471 break;
472 case 64:
473 IID = Intrinsic::x86_avx512_vfmadd_f64;
474 break;
475 default:
476 llvm_unreachable("Unexpected size");
477 }
478 Res = CGF.Builder.CreateCall(Callee: CGF.CGM.getIntrinsic(IID),
479 Args: {Ops[0], Ops[1], Ops[2], Ops[4]});
480 } else if (CGF.Builder.getIsFPConstrained()) {
481 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
482 Function *FMA = CGF.CGM.getIntrinsic(
483 IID: Intrinsic::experimental_constrained_fma, Tys: Ops[0]->getType());
484 Res = CGF.Builder.CreateConstrainedFPCall(Callee: FMA, Args: Ops.slice(N: 0, M: 3));
485 } else {
486 Function *FMA = CGF.CGM.getIntrinsic(IID: Intrinsic::fma, Tys: Ops[0]->getType());
487 Res = CGF.Builder.CreateCall(Callee: FMA, Args: Ops.slice(N: 0, M: 3));
488 }
489 // If we have more than 3 arguments, we need to do masking.
490 if (Ops.size() > 3) {
491 Value *PassThru = ZeroMask ? Constant::getNullValue(Ty: Res->getType())
492 : Ops[PTIdx];
493
494 // If we negated the accumulator and the its the PassThru value we need to
495 // bypass the negate. Conveniently Upper should be the same thing in this
496 // case.
497 if (NegAcc && PTIdx == 2)
498 PassThru = CGF.Builder.CreateExtractElement(Vec: Upper, Idx: (uint64_t)0);
499
500 Res = EmitX86ScalarSelect(CGF, Mask: Ops[3], Op0: Res, Op1: PassThru);
501 }
502 return CGF.Builder.CreateInsertElement(Vec: Upper, NewElt: Res, Idx: (uint64_t)0);
503}
504
505static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
506 ArrayRef<Value *> Ops) {
507 llvm::Type *Ty = Ops[0]->getType();
508 // Arguments have a vXi32 type so cast to vXi64.
509 Ty = llvm::FixedVectorType::get(ElementType: CGF.Int64Ty,
510 NumElts: Ty->getPrimitiveSizeInBits() / 64);
511 Value *LHS = CGF.Builder.CreateBitCast(V: Ops[0], DestTy: Ty);
512 Value *RHS = CGF.Builder.CreateBitCast(V: Ops[1], DestTy: Ty);
513
514 if (IsSigned) {
515 // Shift left then arithmetic shift right.
516 Constant *ShiftAmt = ConstantInt::get(Ty, V: 32);
517 LHS = CGF.Builder.CreateShl(LHS, RHS: ShiftAmt);
518 LHS = CGF.Builder.CreateAShr(LHS, RHS: ShiftAmt);
519 RHS = CGF.Builder.CreateShl(LHS: RHS, RHS: ShiftAmt);
520 RHS = CGF.Builder.CreateAShr(LHS: RHS, RHS: ShiftAmt);
521 } else {
522 // Clear the upper bits.
523 Constant *Mask = ConstantInt::get(Ty, V: 0xffffffff);
524 LHS = CGF.Builder.CreateAnd(LHS, RHS: Mask);
525 RHS = CGF.Builder.CreateAnd(LHS: RHS, RHS: Mask);
526 }
527
528 return CGF.Builder.CreateMul(LHS, RHS);
529}
530
531// Emit a masked pternlog intrinsic. This only exists because the header has to
532// use a macro and we aren't able to pass the input argument to a pternlog
533// builtin and a select builtin without evaluating it twice.
534static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
535 ArrayRef<Value *> Ops) {
536 llvm::Type *Ty = Ops[0]->getType();
537
538 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
539 unsigned EltWidth = Ty->getScalarSizeInBits();
540 Intrinsic::ID IID;
541 if (VecWidth == 128 && EltWidth == 32)
542 IID = Intrinsic::x86_avx512_pternlog_d_128;
543 else if (VecWidth == 256 && EltWidth == 32)
544 IID = Intrinsic::x86_avx512_pternlog_d_256;
545 else if (VecWidth == 512 && EltWidth == 32)
546 IID = Intrinsic::x86_avx512_pternlog_d_512;
547 else if (VecWidth == 128 && EltWidth == 64)
548 IID = Intrinsic::x86_avx512_pternlog_q_128;
549 else if (VecWidth == 256 && EltWidth == 64)
550 IID = Intrinsic::x86_avx512_pternlog_q_256;
551 else if (VecWidth == 512 && EltWidth == 64)
552 IID = Intrinsic::x86_avx512_pternlog_q_512;
553 else
554 llvm_unreachable("Unexpected intrinsic");
555
556 Value *Ternlog = CGF.Builder.CreateCall(Callee: CGF.CGM.getIntrinsic(IID),
557 Args: Ops.drop_back());
558 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
559 return EmitX86Select(CGF, Mask: Ops[4], Op0: Ternlog, Op1: PassThru);
560}
561
562static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
563 llvm::Type *DstTy) {
564 unsigned NumberOfElements =
565 cast<llvm::FixedVectorType>(Val: DstTy)->getNumElements();
566 Value *Mask = getMaskVecValue(CGF, Mask: Op, NumElts: NumberOfElements);
567 return CGF.Builder.CreateSExt(V: Mask, DestTy: DstTy, Name: "vpmovm2");
568}
569
570Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
571 const Expr *CPUExpr = E->getArg(Arg: 0)->IgnoreParenCasts();
572 StringRef CPUStr = cast<clang::StringLiteral>(Val: CPUExpr)->getString();
573 return EmitX86CpuIs(CPUStr);
574}
575
576// Convert F16 halfs to floats.
577static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
578 ArrayRef<Value *> Ops,
579 llvm::Type *DstTy) {
580 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
581 "Unknown cvtph2ps intrinsic");
582
583 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
584 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Val: Ops[3])->getZExtValue() != 4) {
585 Function *F =
586 CGF.CGM.getIntrinsic(IID: Intrinsic::x86_avx512_mask_vcvtph2ps_512);
587 return CGF.Builder.CreateCall(Callee: F, Args: {Ops[0], Ops[1], Ops[2], Ops[3]});
588 }
589
590 unsigned NumDstElts = cast<llvm::FixedVectorType>(Val: DstTy)->getNumElements();
591 Value *Src = Ops[0];
592
593 // Extract the subvector.
594 if (NumDstElts !=
595 cast<llvm::FixedVectorType>(Val: Src->getType())->getNumElements()) {
596 assert(NumDstElts == 4 && "Unexpected vector size");
597 Src = CGF.Builder.CreateShuffleVector(V: Src, Mask: {0, 1, 2, 3});
598 }
599
600 // Bitcast from vXi16 to vXf16.
601 auto *HalfTy = llvm::FixedVectorType::get(
602 ElementType: llvm::Type::getHalfTy(C&: CGF.getLLVMContext()), NumElts: NumDstElts);
603 Src = CGF.Builder.CreateBitCast(V: Src, DestTy: HalfTy);
604
605 // Perform the fp-extension.
606 Value *Res = CGF.Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "cvtph2ps");
607
608 if (Ops.size() >= 3)
609 Res = EmitX86Select(CGF, Mask: Ops[2], Op0: Res, Op1: Ops[1]);
610 return Res;
611}
612
613Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
614
615 llvm::Type *Int32Ty = Builder.getInt32Ty();
616
617 // Matching the struct layout from the compiler-rt/libgcc structure that is
618 // filled in:
619 // unsigned int __cpu_vendor;
620 // unsigned int __cpu_type;
621 // unsigned int __cpu_subtype;
622 // unsigned int __cpu_features[1];
623 llvm::Type *STy = llvm::StructType::get(elt1: Int32Ty, elts: Int32Ty, elts: Int32Ty,
624 elts: llvm::ArrayType::get(ElementType: Int32Ty, NumElements: 1));
625
626 // Grab the global __cpu_model.
627 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(Ty: STy, Name: "__cpu_model");
628 cast<llvm::GlobalValue>(Val: CpuModel)->setDSOLocal(true);
629
630 // Calculate the index needed to access the correct field based on the
631 // range. Also adjust the expected value.
632 auto [Index, Value] = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
633#define X86_VENDOR(ENUM, STRING) \
634 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
635#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
636 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
637#define X86_CPU_TYPE(ENUM, STR) \
638 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
639#define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) \
640 .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
641#define X86_CPU_SUBTYPE(ENUM, STR) \
642 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
643#include "llvm/TargetParser/X86TargetParser.def"
644 .Default(Value: {0, 0});
645 assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
646
647 // Grab the appropriate field from __cpu_model.
648 llvm::Value *Idxs[] = {ConstantInt::get(Ty: Int32Ty, V: 0),
649 ConstantInt::get(Ty: Int32Ty, V: Index)};
650 llvm::Value *CpuValue = Builder.CreateInBoundsGEP(Ty: STy, Ptr: CpuModel, IdxList: Idxs);
651 CpuValue = Builder.CreateAlignedLoad(Ty: Int32Ty, Addr: CpuValue,
652 Align: CharUnits::fromQuantity(Quantity: 4));
653
654 // Check the value of the field against the requested value.
655 return Builder.CreateICmpEQ(LHS: CpuValue,
656 RHS: llvm::ConstantInt::get(Ty: Int32Ty, V: Value));
657}
658
659Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
660 const Expr *FeatureExpr = E->getArg(Arg: 0)->IgnoreParenCasts();
661 StringRef FeatureStr = cast<StringLiteral>(Val: FeatureExpr)->getString();
662 if (!getContext().getTargetInfo().validateCpuSupports(Name: FeatureStr))
663 return Builder.getFalse();
664 return EmitX86CpuSupports(FeatureStrs: FeatureStr);
665}
666
667Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
668 return EmitX86CpuSupports(FeatureMask: llvm::X86::getCpuSupportsMask(FeatureStrs));
669}
670
671llvm::Value *
672CodeGenFunction::EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask) {
673 Value *Result = Builder.getTrue();
674 if (FeatureMask[0] != 0) {
675 // Matching the struct layout from the compiler-rt/libgcc structure that is
676 // filled in:
677 // unsigned int __cpu_vendor;
678 // unsigned int __cpu_type;
679 // unsigned int __cpu_subtype;
680 // unsigned int __cpu_features[1];
681 llvm::Type *STy = llvm::StructType::get(elt1: Int32Ty, elts: Int32Ty, elts: Int32Ty,
682 elts: llvm::ArrayType::get(ElementType: Int32Ty, NumElements: 1));
683
684 // Grab the global __cpu_model.
685 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(Ty: STy, Name: "__cpu_model");
686 cast<llvm::GlobalValue>(Val: CpuModel)->setDSOLocal(true);
687
688 // Grab the first (0th) element from the field __cpu_features off of the
689 // global in the struct STy.
690 Value *Idxs[] = {Builder.getInt32(C: 0), Builder.getInt32(C: 3),
691 Builder.getInt32(C: 0)};
692 Value *CpuFeatures = Builder.CreateInBoundsGEP(Ty: STy, Ptr: CpuModel, IdxList: Idxs);
693 Value *Features = Builder.CreateAlignedLoad(Ty: Int32Ty, Addr: CpuFeatures,
694 Align: CharUnits::fromQuantity(Quantity: 4));
695
696 // Check the value of the bit corresponding to the feature requested.
697 Value *Mask = Builder.getInt32(C: FeatureMask[0]);
698 Value *Bitset = Builder.CreateAnd(LHS: Features, RHS: Mask);
699 Value *Cmp = Builder.CreateICmpEQ(LHS: Bitset, RHS: Mask);
700 Result = Builder.CreateAnd(LHS: Result, RHS: Cmp);
701 }
702
703 llvm::Type *ATy = llvm::ArrayType::get(ElementType: Int32Ty, NumElements: 3);
704 llvm::Constant *CpuFeatures2 =
705 CGM.CreateRuntimeVariable(Ty: ATy, Name: "__cpu_features2");
706 cast<llvm::GlobalValue>(Val: CpuFeatures2)->setDSOLocal(true);
707 for (int i = 1; i != 4; ++i) {
708 const uint32_t M = FeatureMask[i];
709 if (!M)
710 continue;
711 Value *Idxs[] = {Builder.getInt32(C: 0), Builder.getInt32(C: i - 1)};
712 Value *Features = Builder.CreateAlignedLoad(
713 Ty: Int32Ty, Addr: Builder.CreateInBoundsGEP(Ty: ATy, Ptr: CpuFeatures2, IdxList: Idxs),
714 Align: CharUnits::fromQuantity(Quantity: 4));
715 // Check the value of the bit corresponding to the feature requested.
716 Value *Mask = Builder.getInt32(C: M);
717 Value *Bitset = Builder.CreateAnd(LHS: Features, RHS: Mask);
718 Value *Cmp = Builder.CreateICmpEQ(LHS: Bitset, RHS: Mask);
719 Result = Builder.CreateAnd(LHS: Result, RHS: Cmp);
720 }
721
722 return Result;
723}
724
725Value *CodeGenFunction::EmitX86CpuInit() {
726 llvm::FunctionType *FTy = llvm::FunctionType::get(Result: VoidTy,
727 /*Variadic*/ isVarArg: false);
728 llvm::FunctionCallee Func =
729 CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cpu_indicator_init");
730 cast<llvm::GlobalValue>(Val: Func.getCallee())->setDSOLocal(true);
731 cast<llvm::GlobalValue>(Val: Func.getCallee())
732 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
733 return Builder.CreateCall(Callee: Func);
734}
735
736
737Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
738 const CallExpr *E) {
739 if (BuiltinID == Builtin::BI__builtin_cpu_is)
740 return EmitX86CpuIs(E);
741 if (BuiltinID == Builtin::BI__builtin_cpu_supports)
742 return EmitX86CpuSupports(E);
743 if (BuiltinID == Builtin::BI__builtin_cpu_init)
744 return EmitX86CpuInit();
745
746 // Handle MSVC intrinsics before argument evaluation to prevent double
747 // evaluation.
748 if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
749 return EmitMSVCBuiltinExpr(BuiltinID: *MsvcIntId, E);
750
751 SmallVector<Value*, 4> Ops;
752 bool IsMaskFCmp = false;
753 bool IsConjFMA = false;
754
755 // Find out if any arguments are required to be integer constant expressions.
756 unsigned ICEArguments = 0;
757 ASTContext::GetBuiltinTypeError Error;
758 getContext().GetBuiltinType(ID: BuiltinID, Error, IntegerConstantArgs: &ICEArguments);
759 assert(Error == ASTContext::GE_None && "Should not codegen an error");
760
761 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
762 Ops.push_back(Elt: EmitScalarOrConstFoldImmArg(ICEArguments, Idx: i, E));
763 }
764
765 // These exist so that the builtin that takes an immediate can be bounds
766 // checked by clang to avoid passing bad immediates to the backend. Since
767 // AVX has a larger immediate than SSE we would need separate builtins to
768 // do the different bounds checking. Rather than create a clang specific
769 // SSE only builtin, this implements eight separate builtins to match gcc
770 // implementation.
771 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
772 Ops.push_back(Elt: llvm::ConstantInt::get(Ty: Int8Ty, V: Imm));
773 llvm::Function *F = CGM.getIntrinsic(IID: ID);
774 return Builder.CreateCall(Callee: F, Args: Ops);
775 };
776
777 // For the vector forms of FP comparisons, translate the builtins directly to
778 // IR.
779 // TODO: The builtins could be removed if the SSE header files used vector
780 // extension comparisons directly (vector ordered/unordered may need
781 // additional support via __builtin_isnan()).
782 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
783 bool IsSignaling) {
784 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
785 Value *Cmp;
786 if (IsSignaling)
787 Cmp = Builder.CreateFCmpS(P: Pred, LHS: Ops[0], RHS: Ops[1]);
788 else
789 Cmp = Builder.CreateFCmp(P: Pred, LHS: Ops[0], RHS: Ops[1]);
790 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Val: Ops[0]->getType());
791 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(VTy: FPVecTy);
792 Value *Sext = Builder.CreateSExt(V: Cmp, DestTy: IntVecTy);
793 return Builder.CreateBitCast(V: Sext, DestTy: FPVecTy);
794 };
795
796 switch (BuiltinID) {
797 default: return nullptr;
798 case X86::BI_mm_prefetch: {
799 Value *Address = Ops[0];
800 ConstantInt *C = cast<ConstantInt>(Val: Ops[1]);
801 Value *RW = ConstantInt::get(Ty: Int32Ty, V: (C->getZExtValue() >> 2) & 0x1);
802 Value *Locality = ConstantInt::get(Ty: Int32Ty, V: C->getZExtValue() & 0x3);
803 Value *Data = ConstantInt::get(Ty: Int32Ty, V: 1);
804 Function *F = CGM.getIntrinsic(IID: Intrinsic::prefetch, Tys: Address->getType());
805 return Builder.CreateCall(Callee: F, Args: {Address, RW, Locality, Data});
806 }
807 case X86::BI_m_prefetch:
808 case X86::BI_m_prefetchw: {
809 Value *Address = Ops[0];
810 // The 'w' suffix implies write.
811 Value *RW =
812 ConstantInt::get(Ty: Int32Ty, V: BuiltinID == X86::BI_m_prefetchw ? 1 : 0);
813 Value *Locality = ConstantInt::get(Ty: Int32Ty, V: 0x3);
814 Value *Data = ConstantInt::get(Ty: Int32Ty, V: 1);
815 Function *F = CGM.getIntrinsic(IID: Intrinsic::prefetch, Tys: Address->getType());
816 return Builder.CreateCall(Callee: F, Args: {Address, RW, Locality, Data});
817 }
818 case X86::BI_mm_clflush: {
819 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse2_clflush),
820 Args: Ops[0]);
821 }
822 case X86::BI_mm_lfence: {
823 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse2_lfence));
824 }
825 case X86::BI_mm_mfence: {
826 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse2_mfence));
827 }
828 case X86::BI_mm_sfence: {
829 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse_sfence));
830 }
831 case X86::BI_mm_pause: {
832 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse2_pause));
833 }
834 case X86::BI__rdtsc: {
835 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_rdtsc));
836 }
837 case X86::BI__builtin_ia32_rdtscp: {
838 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_rdtscp));
839 Builder.CreateDefaultAlignedStore(Val: Builder.CreateExtractValue(Agg: Call, Idxs: 1),
840 Addr: Ops[0]);
841 return Builder.CreateExtractValue(Agg: Call, Idxs: 0);
842 }
843 case X86::BI__builtin_ia32_lzcnt_u16:
844 case X86::BI__builtin_ia32_lzcnt_u32:
845 case X86::BI__builtin_ia32_lzcnt_u64: {
846 Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: Ops[0]->getType());
847 return Builder.CreateCall(Callee: F, Args: {Ops[0], Builder.getInt1(V: false)});
848 }
849 case X86::BI__builtin_ia32_tzcnt_u16:
850 case X86::BI__builtin_ia32_tzcnt_u32:
851 case X86::BI__builtin_ia32_tzcnt_u64: {
852 Function *F = CGM.getIntrinsic(IID: Intrinsic::cttz, Tys: Ops[0]->getType());
853 return Builder.CreateCall(Callee: F, Args: {Ops[0], Builder.getInt1(V: false)});
854 }
855 case X86::BI__builtin_ia32_undef128:
856 case X86::BI__builtin_ia32_undef256:
857 case X86::BI__builtin_ia32_undef512:
858 // The x86 definition of "undef" is not the same as the LLVM definition
859 // (PR32176). We leave optimizing away an unnecessary zero constant to the
860 // IR optimizer and backend.
861 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
862 // value, we should use that here instead of a zero.
863 return llvm::Constant::getNullValue(Ty: ConvertType(T: E->getType()));
864 case X86::BI__builtin_ia32_vec_ext_v4hi:
865 case X86::BI__builtin_ia32_vec_ext_v16qi:
866 case X86::BI__builtin_ia32_vec_ext_v8hi:
867 case X86::BI__builtin_ia32_vec_ext_v4si:
868 case X86::BI__builtin_ia32_vec_ext_v4sf:
869 case X86::BI__builtin_ia32_vec_ext_v2di:
870 case X86::BI__builtin_ia32_vec_ext_v32qi:
871 case X86::BI__builtin_ia32_vec_ext_v16hi:
872 case X86::BI__builtin_ia32_vec_ext_v8si:
873 case X86::BI__builtin_ia32_vec_ext_v4di: {
874 unsigned NumElts =
875 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
876 uint64_t Index = cast<ConstantInt>(Val: Ops[1])->getZExtValue();
877 Index &= NumElts - 1;
878 // These builtins exist so we can ensure the index is an ICE and in range.
879 // Otherwise we could just do this in the header file.
880 return Builder.CreateExtractElement(Vec: Ops[0], Idx: Index);
881 }
882 case X86::BI__builtin_ia32_vec_set_v4hi:
883 case X86::BI__builtin_ia32_vec_set_v16qi:
884 case X86::BI__builtin_ia32_vec_set_v8hi:
885 case X86::BI__builtin_ia32_vec_set_v4si:
886 case X86::BI__builtin_ia32_vec_set_v2di:
887 case X86::BI__builtin_ia32_vec_set_v32qi:
888 case X86::BI__builtin_ia32_vec_set_v16hi:
889 case X86::BI__builtin_ia32_vec_set_v8si:
890 case X86::BI__builtin_ia32_vec_set_v4di: {
891 unsigned NumElts =
892 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
893 unsigned Index = cast<ConstantInt>(Val: Ops[2])->getZExtValue();
894 Index &= NumElts - 1;
895 // These builtins exist so we can ensure the index is an ICE and in range.
896 // Otherwise we could just do this in the header file.
897 return Builder.CreateInsertElement(Vec: Ops[0], NewElt: Ops[1], Idx: Index);
898 }
899 case X86::BI_mm_setcsr:
900 case X86::BI__builtin_ia32_ldmxcsr: {
901 RawAddress Tmp = CreateMemTemp(T: E->getArg(Arg: 0)->getType());
902 Builder.CreateStore(Val: Ops[0], Addr: Tmp);
903 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse_ldmxcsr),
904 Args: Tmp.getPointer());
905 }
906 case X86::BI_mm_getcsr:
907 case X86::BI__builtin_ia32_stmxcsr: {
908 RawAddress Tmp = CreateMemTemp(T: E->getType());
909 Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_sse_stmxcsr),
910 Args: Tmp.getPointer());
911 return Builder.CreateLoad(Addr: Tmp, Name: "stmxcsr");
912 }
913 case X86::BI__builtin_ia32_xsave:
914 case X86::BI__builtin_ia32_xsave64:
915 case X86::BI__builtin_ia32_xrstor:
916 case X86::BI__builtin_ia32_xrstor64:
917 case X86::BI__builtin_ia32_xsaveopt:
918 case X86::BI__builtin_ia32_xsaveopt64:
919 case X86::BI__builtin_ia32_xrstors:
920 case X86::BI__builtin_ia32_xrstors64:
921 case X86::BI__builtin_ia32_xsavec:
922 case X86::BI__builtin_ia32_xsavec64:
923 case X86::BI__builtin_ia32_xsaves:
924 case X86::BI__builtin_ia32_xsaves64:
925 case X86::BI__builtin_ia32_xsetbv:
926 case X86::BI_xsetbv: {
927 Intrinsic::ID ID;
928#define INTRINSIC_X86_XSAVE_ID(NAME) \
929 case X86::BI__builtin_ia32_##NAME: \
930 ID = Intrinsic::x86_##NAME; \
931 break
932 switch (BuiltinID) {
933 default: llvm_unreachable("Unsupported intrinsic!");
934 INTRINSIC_X86_XSAVE_ID(xsave);
935 INTRINSIC_X86_XSAVE_ID(xsave64);
936 INTRINSIC_X86_XSAVE_ID(xrstor);
937 INTRINSIC_X86_XSAVE_ID(xrstor64);
938 INTRINSIC_X86_XSAVE_ID(xsaveopt);
939 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
940 INTRINSIC_X86_XSAVE_ID(xrstors);
941 INTRINSIC_X86_XSAVE_ID(xrstors64);
942 INTRINSIC_X86_XSAVE_ID(xsavec);
943 INTRINSIC_X86_XSAVE_ID(xsavec64);
944 INTRINSIC_X86_XSAVE_ID(xsaves);
945 INTRINSIC_X86_XSAVE_ID(xsaves64);
946 INTRINSIC_X86_XSAVE_ID(xsetbv);
947 case X86::BI_xsetbv:
948 ID = Intrinsic::x86_xsetbv;
949 break;
950 }
951#undef INTRINSIC_X86_XSAVE_ID
952 Value *Mhi = Builder.CreateTrunc(
953 V: Builder.CreateLShr(LHS: Ops[1], RHS: ConstantInt::get(Ty: Int64Ty, V: 32)), DestTy: Int32Ty);
954 Value *Mlo = Builder.CreateTrunc(V: Ops[1], DestTy: Int32Ty);
955 Ops[1] = Mhi;
956 Ops.push_back(Elt: Mlo);
957 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: Ops);
958 }
959 case X86::BI__builtin_ia32_xgetbv:
960 case X86::BI_xgetbv:
961 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::x86_xgetbv), Args: Ops);
962 case X86::BI__builtin_ia32_storedqudi128_mask:
963 case X86::BI__builtin_ia32_storedqusi128_mask:
964 case X86::BI__builtin_ia32_storedquhi128_mask:
965 case X86::BI__builtin_ia32_storedquqi128_mask:
966 case X86::BI__builtin_ia32_storeupd128_mask:
967 case X86::BI__builtin_ia32_storeups128_mask:
968 case X86::BI__builtin_ia32_storedqudi256_mask:
969 case X86::BI__builtin_ia32_storedqusi256_mask:
970 case X86::BI__builtin_ia32_storedquhi256_mask:
971 case X86::BI__builtin_ia32_storedquqi256_mask:
972 case X86::BI__builtin_ia32_storeupd256_mask:
973 case X86::BI__builtin_ia32_storeups256_mask:
974 case X86::BI__builtin_ia32_storedqudi512_mask:
975 case X86::BI__builtin_ia32_storedqusi512_mask:
976 case X86::BI__builtin_ia32_storedquhi512_mask:
977 case X86::BI__builtin_ia32_storedquqi512_mask:
978 case X86::BI__builtin_ia32_storeupd512_mask:
979 case X86::BI__builtin_ia32_storeups512_mask:
980 return EmitX86MaskedStore(CGF&: *this, Ops, Alignment: Align(1));
981
982 case X86::BI__builtin_ia32_storesbf16128_mask:
983 case X86::BI__builtin_ia32_storesh128_mask:
984 case X86::BI__builtin_ia32_storess128_mask:
985 case X86::BI__builtin_ia32_storesd128_mask:
986 return EmitX86MaskedStore(CGF&: *this, Ops, Alignment: Align(1));
987
988 case X86::BI__builtin_ia32_cvtmask2b128:
989 case X86::BI__builtin_ia32_cvtmask2b256:
990 case X86::BI__builtin_ia32_cvtmask2b512:
991 case X86::BI__builtin_ia32_cvtmask2w128:
992 case X86::BI__builtin_ia32_cvtmask2w256:
993 case X86::BI__builtin_ia32_cvtmask2w512:
994 case X86::BI__builtin_ia32_cvtmask2d128:
995 case X86::BI__builtin_ia32_cvtmask2d256:
996 case X86::BI__builtin_ia32_cvtmask2d512:
997 case X86::BI__builtin_ia32_cvtmask2q128:
998 case X86::BI__builtin_ia32_cvtmask2q256:
999 case X86::BI__builtin_ia32_cvtmask2q512:
1000 return EmitX86SExtMask(CGF&: *this, Op: Ops[0], DstTy: ConvertType(T: E->getType()));
1001
1002 case X86::BI__builtin_ia32_cvtb2mask128:
1003 case X86::BI__builtin_ia32_cvtb2mask256:
1004 case X86::BI__builtin_ia32_cvtb2mask512:
1005 case X86::BI__builtin_ia32_cvtw2mask128:
1006 case X86::BI__builtin_ia32_cvtw2mask256:
1007 case X86::BI__builtin_ia32_cvtw2mask512:
1008 case X86::BI__builtin_ia32_cvtd2mask128:
1009 case X86::BI__builtin_ia32_cvtd2mask256:
1010 case X86::BI__builtin_ia32_cvtd2mask512:
1011 case X86::BI__builtin_ia32_cvtq2mask128:
1012 case X86::BI__builtin_ia32_cvtq2mask256:
1013 case X86::BI__builtin_ia32_cvtq2mask512:
1014 return EmitX86ConvertToMask(CGF&: *this, In: Ops[0]);
1015
1016 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
1017 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
1018 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
1019 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
1020 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
1021 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
1022 return EmitX86ConvertIntToFp(CGF&: *this, E, Ops, /*IsSigned*/ true);
1023 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
1024 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
1025 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
1026 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
1027 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
1028 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
1029 return EmitX86ConvertIntToFp(CGF&: *this, E, Ops, /*IsSigned*/ false);
1030
1031 case X86::BI__builtin_ia32_vfmaddss3:
1032 case X86::BI__builtin_ia32_vfmaddsd3:
1033 case X86::BI__builtin_ia32_vfmaddsh3_mask:
1034 case X86::BI__builtin_ia32_vfmaddss3_mask:
1035 case X86::BI__builtin_ia32_vfmaddsd3_mask:
1036 return EmitScalarFMAExpr(CGF&: *this, E, Ops, Upper: Ops[0]);
1037 case X86::BI__builtin_ia32_vfmaddss:
1038 case X86::BI__builtin_ia32_vfmaddsd:
1039 return EmitScalarFMAExpr(CGF&: *this, E, Ops,
1040 Upper: Constant::getNullValue(Ty: Ops[0]->getType()));
1041 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
1042 case X86::BI__builtin_ia32_vfmaddss3_maskz:
1043 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
1044 return EmitScalarFMAExpr(CGF&: *this, E, Ops, Upper: Ops[0], /*ZeroMask*/ true);
1045 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
1046 case X86::BI__builtin_ia32_vfmaddss3_mask3:
1047 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
1048 return EmitScalarFMAExpr(CGF&: *this, E, Ops, Upper: Ops[2], /*ZeroMask*/ false, PTIdx: 2);
1049 case X86::BI__builtin_ia32_vfmsubsh3_mask3:
1050 case X86::BI__builtin_ia32_vfmsubss3_mask3:
1051 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
1052 return EmitScalarFMAExpr(CGF&: *this, E, Ops, Upper: Ops[2], /*ZeroMask*/ false, PTIdx: 2,
1053 /*NegAcc*/ true);
1054 case X86::BI__builtin_ia32_vfmaddph:
1055 case X86::BI__builtin_ia32_vfmaddps:
1056 case X86::BI__builtin_ia32_vfmaddpd:
1057 case X86::BI__builtin_ia32_vfmaddph256:
1058 case X86::BI__builtin_ia32_vfmaddps256:
1059 case X86::BI__builtin_ia32_vfmaddpd256:
1060 case X86::BI__builtin_ia32_vfmaddph512_mask:
1061 case X86::BI__builtin_ia32_vfmaddph512_maskz:
1062 case X86::BI__builtin_ia32_vfmaddph512_mask3:
1063 case X86::BI__builtin_ia32_vfmaddbf16128:
1064 case X86::BI__builtin_ia32_vfmaddbf16256:
1065 case X86::BI__builtin_ia32_vfmaddbf16512:
1066 case X86::BI__builtin_ia32_vfmaddps512_mask:
1067 case X86::BI__builtin_ia32_vfmaddps512_maskz:
1068 case X86::BI__builtin_ia32_vfmaddps512_mask3:
1069 case X86::BI__builtin_ia32_vfmsubps512_mask3:
1070 case X86::BI__builtin_ia32_vfmaddpd512_mask:
1071 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
1072 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
1073 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
1074 case X86::BI__builtin_ia32_vfmsubph512_mask3:
1075 return EmitX86FMAExpr(CGF&: *this, E, Ops, BuiltinID, /*IsAddSub*/ false);
1076 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
1077 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
1078 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
1079 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
1080 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
1081 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
1082 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
1083 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
1084 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
1085 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
1086 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
1087 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
1088 return EmitX86FMAExpr(CGF&: *this, E, Ops, BuiltinID, /*IsAddSub*/ true);
1089
1090 case X86::BI__builtin_ia32_movdqa32store128_mask:
1091 case X86::BI__builtin_ia32_movdqa64store128_mask:
1092 case X86::BI__builtin_ia32_storeaps128_mask:
1093 case X86::BI__builtin_ia32_storeapd128_mask:
1094 case X86::BI__builtin_ia32_movdqa32store256_mask:
1095 case X86::BI__builtin_ia32_movdqa64store256_mask:
1096 case X86::BI__builtin_ia32_storeaps256_mask:
1097 case X86::BI__builtin_ia32_storeapd256_mask:
1098 case X86::BI__builtin_ia32_movdqa32store512_mask:
1099 case X86::BI__builtin_ia32_movdqa64store512_mask:
1100 case X86::BI__builtin_ia32_storeaps512_mask:
1101 case X86::BI__builtin_ia32_storeapd512_mask:
1102 return EmitX86MaskedStore(
1103 CGF&: *this, Ops,
1104 Alignment: getContext().getTypeAlignInChars(T: E->getArg(Arg: 1)->getType()).getAsAlign());
1105
1106 case X86::BI__builtin_ia32_loadups128_mask:
1107 case X86::BI__builtin_ia32_loadups256_mask:
1108 case X86::BI__builtin_ia32_loadups512_mask:
1109 case X86::BI__builtin_ia32_loadupd128_mask:
1110 case X86::BI__builtin_ia32_loadupd256_mask:
1111 case X86::BI__builtin_ia32_loadupd512_mask:
1112 case X86::BI__builtin_ia32_loaddquqi128_mask:
1113 case X86::BI__builtin_ia32_loaddquqi256_mask:
1114 case X86::BI__builtin_ia32_loaddquqi512_mask:
1115 case X86::BI__builtin_ia32_loaddquhi128_mask:
1116 case X86::BI__builtin_ia32_loaddquhi256_mask:
1117 case X86::BI__builtin_ia32_loaddquhi512_mask:
1118 case X86::BI__builtin_ia32_loaddqusi128_mask:
1119 case X86::BI__builtin_ia32_loaddqusi256_mask:
1120 case X86::BI__builtin_ia32_loaddqusi512_mask:
1121 case X86::BI__builtin_ia32_loaddqudi128_mask:
1122 case X86::BI__builtin_ia32_loaddqudi256_mask:
1123 case X86::BI__builtin_ia32_loaddqudi512_mask:
1124 return EmitX86MaskedLoad(CGF&: *this, Ops, Alignment: Align(1));
1125
1126 case X86::BI__builtin_ia32_loadsbf16128_mask:
1127 case X86::BI__builtin_ia32_loadsh128_mask:
1128 case X86::BI__builtin_ia32_loadss128_mask:
1129 case X86::BI__builtin_ia32_loadsd128_mask:
1130 return EmitX86MaskedLoad(CGF&: *this, Ops, Alignment: Align(1));
1131
1132 case X86::BI__builtin_ia32_loadaps128_mask:
1133 case X86::BI__builtin_ia32_loadaps256_mask:
1134 case X86::BI__builtin_ia32_loadaps512_mask:
1135 case X86::BI__builtin_ia32_loadapd128_mask:
1136 case X86::BI__builtin_ia32_loadapd256_mask:
1137 case X86::BI__builtin_ia32_loadapd512_mask:
1138 case X86::BI__builtin_ia32_movdqa32load128_mask:
1139 case X86::BI__builtin_ia32_movdqa32load256_mask:
1140 case X86::BI__builtin_ia32_movdqa32load512_mask:
1141 case X86::BI__builtin_ia32_movdqa64load128_mask:
1142 case X86::BI__builtin_ia32_movdqa64load256_mask:
1143 case X86::BI__builtin_ia32_movdqa64load512_mask:
1144 return EmitX86MaskedLoad(
1145 CGF&: *this, Ops,
1146 Alignment: getContext().getTypeAlignInChars(T: E->getArg(Arg: 1)->getType()).getAsAlign());
1147
1148 case X86::BI__builtin_ia32_expandloaddf128_mask:
1149 case X86::BI__builtin_ia32_expandloaddf256_mask:
1150 case X86::BI__builtin_ia32_expandloaddf512_mask:
1151 case X86::BI__builtin_ia32_expandloadsf128_mask:
1152 case X86::BI__builtin_ia32_expandloadsf256_mask:
1153 case X86::BI__builtin_ia32_expandloadsf512_mask:
1154 case X86::BI__builtin_ia32_expandloaddi128_mask:
1155 case X86::BI__builtin_ia32_expandloaddi256_mask:
1156 case X86::BI__builtin_ia32_expandloaddi512_mask:
1157 case X86::BI__builtin_ia32_expandloadsi128_mask:
1158 case X86::BI__builtin_ia32_expandloadsi256_mask:
1159 case X86::BI__builtin_ia32_expandloadsi512_mask:
1160 case X86::BI__builtin_ia32_expandloadhi128_mask:
1161 case X86::BI__builtin_ia32_expandloadhi256_mask:
1162 case X86::BI__builtin_ia32_expandloadhi512_mask:
1163 case X86::BI__builtin_ia32_expandloadqi128_mask:
1164 case X86::BI__builtin_ia32_expandloadqi256_mask:
1165 case X86::BI__builtin_ia32_expandloadqi512_mask:
1166 return EmitX86ExpandLoad(CGF&: *this, Ops);
1167
1168 case X86::BI__builtin_ia32_compressstoredf128_mask:
1169 case X86::BI__builtin_ia32_compressstoredf256_mask:
1170 case X86::BI__builtin_ia32_compressstoredf512_mask:
1171 case X86::BI__builtin_ia32_compressstoresf128_mask:
1172 case X86::BI__builtin_ia32_compressstoresf256_mask:
1173 case X86::BI__builtin_ia32_compressstoresf512_mask:
1174 case X86::BI__builtin_ia32_compressstoredi128_mask:
1175 case X86::BI__builtin_ia32_compressstoredi256_mask:
1176 case X86::BI__builtin_ia32_compressstoredi512_mask:
1177 case X86::BI__builtin_ia32_compressstoresi128_mask:
1178 case X86::BI__builtin_ia32_compressstoresi256_mask:
1179 case X86::BI__builtin_ia32_compressstoresi512_mask:
1180 case X86::BI__builtin_ia32_compressstorehi128_mask:
1181 case X86::BI__builtin_ia32_compressstorehi256_mask:
1182 case X86::BI__builtin_ia32_compressstorehi512_mask:
1183 case X86::BI__builtin_ia32_compressstoreqi128_mask:
1184 case X86::BI__builtin_ia32_compressstoreqi256_mask:
1185 case X86::BI__builtin_ia32_compressstoreqi512_mask:
1186 return EmitX86CompressStore(CGF&: *this, Ops);
1187
1188 case X86::BI__builtin_ia32_expanddf128_mask:
1189 case X86::BI__builtin_ia32_expanddf256_mask:
1190 case X86::BI__builtin_ia32_expanddf512_mask:
1191 case X86::BI__builtin_ia32_expandsf128_mask:
1192 case X86::BI__builtin_ia32_expandsf256_mask:
1193 case X86::BI__builtin_ia32_expandsf512_mask:
1194 case X86::BI__builtin_ia32_expanddi128_mask:
1195 case X86::BI__builtin_ia32_expanddi256_mask:
1196 case X86::BI__builtin_ia32_expanddi512_mask:
1197 case X86::BI__builtin_ia32_expandsi128_mask:
1198 case X86::BI__builtin_ia32_expandsi256_mask:
1199 case X86::BI__builtin_ia32_expandsi512_mask:
1200 case X86::BI__builtin_ia32_expandhi128_mask:
1201 case X86::BI__builtin_ia32_expandhi256_mask:
1202 case X86::BI__builtin_ia32_expandhi512_mask:
1203 case X86::BI__builtin_ia32_expandqi128_mask:
1204 case X86::BI__builtin_ia32_expandqi256_mask:
1205 case X86::BI__builtin_ia32_expandqi512_mask:
1206 return EmitX86CompressExpand(CGF&: *this, Ops, /*IsCompress*/false);
1207
1208 case X86::BI__builtin_ia32_compressdf128_mask:
1209 case X86::BI__builtin_ia32_compressdf256_mask:
1210 case X86::BI__builtin_ia32_compressdf512_mask:
1211 case X86::BI__builtin_ia32_compresssf128_mask:
1212 case X86::BI__builtin_ia32_compresssf256_mask:
1213 case X86::BI__builtin_ia32_compresssf512_mask:
1214 case X86::BI__builtin_ia32_compressdi128_mask:
1215 case X86::BI__builtin_ia32_compressdi256_mask:
1216 case X86::BI__builtin_ia32_compressdi512_mask:
1217 case X86::BI__builtin_ia32_compresssi128_mask:
1218 case X86::BI__builtin_ia32_compresssi256_mask:
1219 case X86::BI__builtin_ia32_compresssi512_mask:
1220 case X86::BI__builtin_ia32_compresshi128_mask:
1221 case X86::BI__builtin_ia32_compresshi256_mask:
1222 case X86::BI__builtin_ia32_compresshi512_mask:
1223 case X86::BI__builtin_ia32_compressqi128_mask:
1224 case X86::BI__builtin_ia32_compressqi256_mask:
1225 case X86::BI__builtin_ia32_compressqi512_mask:
1226 return EmitX86CompressExpand(CGF&: *this, Ops, /*IsCompress*/true);
1227
1228 case X86::BI__builtin_ia32_gather3div2df:
1229 case X86::BI__builtin_ia32_gather3div2di:
1230 case X86::BI__builtin_ia32_gather3div4df:
1231 case X86::BI__builtin_ia32_gather3div4di:
1232 case X86::BI__builtin_ia32_gather3div4sf:
1233 case X86::BI__builtin_ia32_gather3div4si:
1234 case X86::BI__builtin_ia32_gather3div8sf:
1235 case X86::BI__builtin_ia32_gather3div8si:
1236 case X86::BI__builtin_ia32_gather3siv2df:
1237 case X86::BI__builtin_ia32_gather3siv2di:
1238 case X86::BI__builtin_ia32_gather3siv4df:
1239 case X86::BI__builtin_ia32_gather3siv4di:
1240 case X86::BI__builtin_ia32_gather3siv4sf:
1241 case X86::BI__builtin_ia32_gather3siv4si:
1242 case X86::BI__builtin_ia32_gather3siv8sf:
1243 case X86::BI__builtin_ia32_gather3siv8si:
1244 case X86::BI__builtin_ia32_gathersiv8df:
1245 case X86::BI__builtin_ia32_gathersiv16sf:
1246 case X86::BI__builtin_ia32_gatherdiv8df:
1247 case X86::BI__builtin_ia32_gatherdiv16sf:
1248 case X86::BI__builtin_ia32_gathersiv8di:
1249 case X86::BI__builtin_ia32_gathersiv16si:
1250 case X86::BI__builtin_ia32_gatherdiv8di:
1251 case X86::BI__builtin_ia32_gatherdiv16si: {
1252 Intrinsic::ID IID;
1253 switch (BuiltinID) {
1254 default: llvm_unreachable("Unexpected builtin");
1255 case X86::BI__builtin_ia32_gather3div2df:
1256 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
1257 break;
1258 case X86::BI__builtin_ia32_gather3div2di:
1259 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
1260 break;
1261 case X86::BI__builtin_ia32_gather3div4df:
1262 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
1263 break;
1264 case X86::BI__builtin_ia32_gather3div4di:
1265 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
1266 break;
1267 case X86::BI__builtin_ia32_gather3div4sf:
1268 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
1269 break;
1270 case X86::BI__builtin_ia32_gather3div4si:
1271 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
1272 break;
1273 case X86::BI__builtin_ia32_gather3div8sf:
1274 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
1275 break;
1276 case X86::BI__builtin_ia32_gather3div8si:
1277 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
1278 break;
1279 case X86::BI__builtin_ia32_gather3siv2df:
1280 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
1281 break;
1282 case X86::BI__builtin_ia32_gather3siv2di:
1283 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
1284 break;
1285 case X86::BI__builtin_ia32_gather3siv4df:
1286 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
1287 break;
1288 case X86::BI__builtin_ia32_gather3siv4di:
1289 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
1290 break;
1291 case X86::BI__builtin_ia32_gather3siv4sf:
1292 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
1293 break;
1294 case X86::BI__builtin_ia32_gather3siv4si:
1295 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
1296 break;
1297 case X86::BI__builtin_ia32_gather3siv8sf:
1298 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
1299 break;
1300 case X86::BI__builtin_ia32_gather3siv8si:
1301 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
1302 break;
1303 case X86::BI__builtin_ia32_gathersiv8df:
1304 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
1305 break;
1306 case X86::BI__builtin_ia32_gathersiv16sf:
1307 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
1308 break;
1309 case X86::BI__builtin_ia32_gatherdiv8df:
1310 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
1311 break;
1312 case X86::BI__builtin_ia32_gatherdiv16sf:
1313 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
1314 break;
1315 case X86::BI__builtin_ia32_gathersiv8di:
1316 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
1317 break;
1318 case X86::BI__builtin_ia32_gathersiv16si:
1319 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
1320 break;
1321 case X86::BI__builtin_ia32_gatherdiv8di:
1322 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
1323 break;
1324 case X86::BI__builtin_ia32_gatherdiv16si:
1325 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
1326 break;
1327 }
1328
1329 unsigned MinElts = std::min(
1330 a: cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements(),
1331 b: cast<llvm::FixedVectorType>(Val: Ops[2]->getType())->getNumElements());
1332 Ops[3] = getMaskVecValue(CGF&: *this, Mask: Ops[3], NumElts: MinElts);
1333 Function *Intr = CGM.getIntrinsic(IID);
1334 return Builder.CreateCall(Callee: Intr, Args: Ops);
1335 }
1336
1337 case X86::BI__builtin_ia32_scattersiv8df:
1338 case X86::BI__builtin_ia32_scattersiv16sf:
1339 case X86::BI__builtin_ia32_scatterdiv8df:
1340 case X86::BI__builtin_ia32_scatterdiv16sf:
1341 case X86::BI__builtin_ia32_scattersiv8di:
1342 case X86::BI__builtin_ia32_scattersiv16si:
1343 case X86::BI__builtin_ia32_scatterdiv8di:
1344 case X86::BI__builtin_ia32_scatterdiv16si:
1345 case X86::BI__builtin_ia32_scatterdiv2df:
1346 case X86::BI__builtin_ia32_scatterdiv2di:
1347 case X86::BI__builtin_ia32_scatterdiv4df:
1348 case X86::BI__builtin_ia32_scatterdiv4di:
1349 case X86::BI__builtin_ia32_scatterdiv4sf:
1350 case X86::BI__builtin_ia32_scatterdiv4si:
1351 case X86::BI__builtin_ia32_scatterdiv8sf:
1352 case X86::BI__builtin_ia32_scatterdiv8si:
1353 case X86::BI__builtin_ia32_scattersiv2df:
1354 case X86::BI__builtin_ia32_scattersiv2di:
1355 case X86::BI__builtin_ia32_scattersiv4df:
1356 case X86::BI__builtin_ia32_scattersiv4di:
1357 case X86::BI__builtin_ia32_scattersiv4sf:
1358 case X86::BI__builtin_ia32_scattersiv4si:
1359 case X86::BI__builtin_ia32_scattersiv8sf:
1360 case X86::BI__builtin_ia32_scattersiv8si: {
1361 Intrinsic::ID IID;
1362 switch (BuiltinID) {
1363 default: llvm_unreachable("Unexpected builtin");
1364 case X86::BI__builtin_ia32_scattersiv8df:
1365 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
1366 break;
1367 case X86::BI__builtin_ia32_scattersiv16sf:
1368 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
1369 break;
1370 case X86::BI__builtin_ia32_scatterdiv8df:
1371 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
1372 break;
1373 case X86::BI__builtin_ia32_scatterdiv16sf:
1374 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
1375 break;
1376 case X86::BI__builtin_ia32_scattersiv8di:
1377 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
1378 break;
1379 case X86::BI__builtin_ia32_scattersiv16si:
1380 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
1381 break;
1382 case X86::BI__builtin_ia32_scatterdiv8di:
1383 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
1384 break;
1385 case X86::BI__builtin_ia32_scatterdiv16si:
1386 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
1387 break;
1388 case X86::BI__builtin_ia32_scatterdiv2df:
1389 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
1390 break;
1391 case X86::BI__builtin_ia32_scatterdiv2di:
1392 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
1393 break;
1394 case X86::BI__builtin_ia32_scatterdiv4df:
1395 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
1396 break;
1397 case X86::BI__builtin_ia32_scatterdiv4di:
1398 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
1399 break;
1400 case X86::BI__builtin_ia32_scatterdiv4sf:
1401 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
1402 break;
1403 case X86::BI__builtin_ia32_scatterdiv4si:
1404 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
1405 break;
1406 case X86::BI__builtin_ia32_scatterdiv8sf:
1407 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
1408 break;
1409 case X86::BI__builtin_ia32_scatterdiv8si:
1410 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
1411 break;
1412 case X86::BI__builtin_ia32_scattersiv2df:
1413 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
1414 break;
1415 case X86::BI__builtin_ia32_scattersiv2di:
1416 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
1417 break;
1418 case X86::BI__builtin_ia32_scattersiv4df:
1419 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
1420 break;
1421 case X86::BI__builtin_ia32_scattersiv4di:
1422 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
1423 break;
1424 case X86::BI__builtin_ia32_scattersiv4sf:
1425 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
1426 break;
1427 case X86::BI__builtin_ia32_scattersiv4si:
1428 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
1429 break;
1430 case X86::BI__builtin_ia32_scattersiv8sf:
1431 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
1432 break;
1433 case X86::BI__builtin_ia32_scattersiv8si:
1434 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
1435 break;
1436 }
1437
1438 unsigned MinElts = std::min(
1439 a: cast<llvm::FixedVectorType>(Val: Ops[2]->getType())->getNumElements(),
1440 b: cast<llvm::FixedVectorType>(Val: Ops[3]->getType())->getNumElements());
1441 Ops[1] = getMaskVecValue(CGF&: *this, Mask: Ops[1], NumElts: MinElts);
1442 Function *Intr = CGM.getIntrinsic(IID);
1443 return Builder.CreateCall(Callee: Intr, Args: Ops);
1444 }
1445
1446 case X86::BI__builtin_ia32_vextractf128_pd256:
1447 case X86::BI__builtin_ia32_vextractf128_ps256:
1448 case X86::BI__builtin_ia32_vextractf128_si256:
1449 case X86::BI__builtin_ia32_extract128i256:
1450 case X86::BI__builtin_ia32_extractf64x4_mask:
1451 case X86::BI__builtin_ia32_extractf32x4_mask:
1452 case X86::BI__builtin_ia32_extracti64x4_mask:
1453 case X86::BI__builtin_ia32_extracti32x4_mask:
1454 case X86::BI__builtin_ia32_extractf32x8_mask:
1455 case X86::BI__builtin_ia32_extracti32x8_mask:
1456 case X86::BI__builtin_ia32_extractf32x4_256_mask:
1457 case X86::BI__builtin_ia32_extracti32x4_256_mask:
1458 case X86::BI__builtin_ia32_extractf64x2_256_mask:
1459 case X86::BI__builtin_ia32_extracti64x2_256_mask:
1460 case X86::BI__builtin_ia32_extractf64x2_512_mask:
1461 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
1462 auto *DstTy = cast<llvm::FixedVectorType>(Val: ConvertType(T: E->getType()));
1463 unsigned NumElts = DstTy->getNumElements();
1464 unsigned SrcNumElts =
1465 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
1466 unsigned SubVectors = SrcNumElts / NumElts;
1467 unsigned Index = cast<ConstantInt>(Val: Ops[1])->getZExtValue();
1468 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
1469 Index &= SubVectors - 1; // Remove any extra bits.
1470 Index *= NumElts;
1471
1472 int Indices[16];
1473 for (unsigned i = 0; i != NumElts; ++i)
1474 Indices[i] = i + Index;
1475
1476 Value *Res = Builder.CreateShuffleVector(V: Ops[0], Mask: ArrayRef(Indices, NumElts),
1477 Name: "extract");
1478
1479 if (Ops.size() == 4)
1480 Res = EmitX86Select(CGF&: *this, Mask: Ops[3], Op0: Res, Op1: Ops[2]);
1481
1482 return Res;
1483 }
1484 case X86::BI__builtin_ia32_vinsertf128_pd256:
1485 case X86::BI__builtin_ia32_vinsertf128_ps256:
1486 case X86::BI__builtin_ia32_vinsertf128_si256:
1487 case X86::BI__builtin_ia32_insert128i256:
1488 case X86::BI__builtin_ia32_insertf64x4:
1489 case X86::BI__builtin_ia32_insertf32x4:
1490 case X86::BI__builtin_ia32_inserti64x4:
1491 case X86::BI__builtin_ia32_inserti32x4:
1492 case X86::BI__builtin_ia32_insertf32x8:
1493 case X86::BI__builtin_ia32_inserti32x8:
1494 case X86::BI__builtin_ia32_insertf32x4_256:
1495 case X86::BI__builtin_ia32_inserti32x4_256:
1496 case X86::BI__builtin_ia32_insertf64x2_256:
1497 case X86::BI__builtin_ia32_inserti64x2_256:
1498 case X86::BI__builtin_ia32_insertf64x2_512:
1499 case X86::BI__builtin_ia32_inserti64x2_512: {
1500 unsigned DstNumElts =
1501 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
1502 unsigned SrcNumElts =
1503 cast<llvm::FixedVectorType>(Val: Ops[1]->getType())->getNumElements();
1504 unsigned SubVectors = DstNumElts / SrcNumElts;
1505 unsigned Index = cast<ConstantInt>(Val: Ops[2])->getZExtValue();
1506 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
1507 Index &= SubVectors - 1; // Remove any extra bits.
1508 Index *= SrcNumElts;
1509
1510 int Indices[16];
1511 for (unsigned i = 0; i != DstNumElts; ++i)
1512 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
1513
1514 Value *Op1 = Builder.CreateShuffleVector(
1515 V: Ops[1], Mask: ArrayRef(Indices, DstNumElts), Name: "widen");
1516
1517 for (unsigned i = 0; i != DstNumElts; ++i) {
1518 if (i >= Index && i < (Index + SrcNumElts))
1519 Indices[i] = (i - Index) + DstNumElts;
1520 else
1521 Indices[i] = i;
1522 }
1523
1524 return Builder.CreateShuffleVector(V1: Ops[0], V2: Op1,
1525 Mask: ArrayRef(Indices, DstNumElts), Name: "insert");
1526 }
1527 case X86::BI__builtin_ia32_pmovqd512_mask:
1528 case X86::BI__builtin_ia32_pmovwb512_mask: {
1529 Value *Res = Builder.CreateTrunc(V: Ops[0], DestTy: Ops[1]->getType());
1530 return EmitX86Select(CGF&: *this, Mask: Ops[2], Op0: Res, Op1: Ops[1]);
1531 }
1532 case X86::BI__builtin_ia32_pmovdb512_mask:
1533 case X86::BI__builtin_ia32_pmovdw512_mask:
1534 case X86::BI__builtin_ia32_pmovqw512_mask: {
1535 if (const auto *C = dyn_cast<Constant>(Val: Ops[2]))
1536 if (C->isAllOnesValue())
1537 return Builder.CreateTrunc(V: Ops[0], DestTy: Ops[1]->getType());
1538
1539 Intrinsic::ID IID;
1540 switch (BuiltinID) {
1541 default: llvm_unreachable("Unsupported intrinsic!");
1542 case X86::BI__builtin_ia32_pmovdb512_mask:
1543 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
1544 break;
1545 case X86::BI__builtin_ia32_pmovdw512_mask:
1546 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
1547 break;
1548 case X86::BI__builtin_ia32_pmovqw512_mask:
1549 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
1550 break;
1551 }
1552
1553 Function *Intr = CGM.getIntrinsic(IID);
1554 return Builder.CreateCall(Callee: Intr, Args: Ops);
1555 }
1556 case X86::BI__builtin_ia32_pblendw128:
1557 case X86::BI__builtin_ia32_blendpd:
1558 case X86::BI__builtin_ia32_blendps:
1559 case X86::BI__builtin_ia32_blendpd256:
1560 case X86::BI__builtin_ia32_blendps256:
1561 case X86::BI__builtin_ia32_pblendw256:
1562 case X86::BI__builtin_ia32_pblendd128:
1563 case X86::BI__builtin_ia32_pblendd256: {
1564 unsigned NumElts =
1565 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
1566 unsigned Imm = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue();
1567
1568 int Indices[16];
1569 // If there are more than 8 elements, the immediate is used twice so make
1570 // sure we handle that.
1571 for (unsigned i = 0; i != NumElts; ++i)
1572 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
1573
1574 return Builder.CreateShuffleVector(V1: Ops[0], V2: Ops[1],
1575 Mask: ArrayRef(Indices, NumElts), Name: "blend");
1576 }
1577 case X86::BI__builtin_ia32_pshuflw:
1578 case X86::BI__builtin_ia32_pshuflw256:
1579 case X86::BI__builtin_ia32_pshuflw512: {
1580 uint32_t Imm = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue();
1581 auto *Ty = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1582 unsigned NumElts = Ty->getNumElements();
1583
1584 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
1585 Imm = (Imm & 0xff) * 0x01010101;
1586
1587 int Indices[32];
1588 for (unsigned l = 0; l != NumElts; l += 8) {
1589 for (unsigned i = 0; i != 4; ++i) {
1590 Indices[l + i] = l + (Imm & 3);
1591 Imm >>= 2;
1592 }
1593 for (unsigned i = 4; i != 8; ++i)
1594 Indices[l + i] = l + i;
1595 }
1596
1597 return Builder.CreateShuffleVector(V: Ops[0], Mask: ArrayRef(Indices, NumElts),
1598 Name: "pshuflw");
1599 }
1600 case X86::BI__builtin_ia32_pshufhw:
1601 case X86::BI__builtin_ia32_pshufhw256:
1602 case X86::BI__builtin_ia32_pshufhw512: {
1603 uint32_t Imm = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue();
1604 auto *Ty = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1605 unsigned NumElts = Ty->getNumElements();
1606
1607 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
1608 Imm = (Imm & 0xff) * 0x01010101;
1609
1610 int Indices[32];
1611 for (unsigned l = 0; l != NumElts; l += 8) {
1612 for (unsigned i = 0; i != 4; ++i)
1613 Indices[l + i] = l + i;
1614 for (unsigned i = 4; i != 8; ++i) {
1615 Indices[l + i] = l + 4 + (Imm & 3);
1616 Imm >>= 2;
1617 }
1618 }
1619
1620 return Builder.CreateShuffleVector(V: Ops[0], Mask: ArrayRef(Indices, NumElts),
1621 Name: "pshufhw");
1622 }
1623 case X86::BI__builtin_ia32_pshufd:
1624 case X86::BI__builtin_ia32_pshufd256:
1625 case X86::BI__builtin_ia32_pshufd512:
1626 case X86::BI__builtin_ia32_vpermilpd:
1627 case X86::BI__builtin_ia32_vpermilps:
1628 case X86::BI__builtin_ia32_vpermilpd256:
1629 case X86::BI__builtin_ia32_vpermilps256:
1630 case X86::BI__builtin_ia32_vpermilpd512:
1631 case X86::BI__builtin_ia32_vpermilps512: {
1632 uint32_t Imm = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue();
1633 auto *Ty = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1634 unsigned NumElts = Ty->getNumElements();
1635 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
1636 unsigned NumLaneElts = NumElts / NumLanes;
1637
1638 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
1639 Imm = (Imm & 0xff) * 0x01010101;
1640
1641 int Indices[16];
1642 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
1643 for (unsigned i = 0; i != NumLaneElts; ++i) {
1644 Indices[i + l] = (Imm % NumLaneElts) + l;
1645 Imm /= NumLaneElts;
1646 }
1647 }
1648
1649 return Builder.CreateShuffleVector(V: Ops[0], Mask: ArrayRef(Indices, NumElts),
1650 Name: "permil");
1651 }
1652 case X86::BI__builtin_ia32_shufpd:
1653 case X86::BI__builtin_ia32_shufpd256:
1654 case X86::BI__builtin_ia32_shufpd512:
1655 case X86::BI__builtin_ia32_shufps:
1656 case X86::BI__builtin_ia32_shufps256:
1657 case X86::BI__builtin_ia32_shufps512: {
1658 uint32_t Imm = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue();
1659 auto *Ty = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1660 unsigned NumElts = Ty->getNumElements();
1661 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
1662 unsigned NumLaneElts = NumElts / NumLanes;
1663
1664 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
1665 Imm = (Imm & 0xff) * 0x01010101;
1666
1667 int Indices[16];
1668 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
1669 for (unsigned i = 0; i != NumLaneElts; ++i) {
1670 unsigned Index = Imm % NumLaneElts;
1671 Imm /= NumLaneElts;
1672 if (i >= (NumLaneElts / 2))
1673 Index += NumElts;
1674 Indices[l + i] = l + Index;
1675 }
1676 }
1677
1678 return Builder.CreateShuffleVector(V1: Ops[0], V2: Ops[1],
1679 Mask: ArrayRef(Indices, NumElts), Name: "shufp");
1680 }
1681 case X86::BI__builtin_ia32_permdi256:
1682 case X86::BI__builtin_ia32_permdf256:
1683 case X86::BI__builtin_ia32_permdi512:
1684 case X86::BI__builtin_ia32_permdf512: {
1685 unsigned Imm = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue();
1686 auto *Ty = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1687 unsigned NumElts = Ty->getNumElements();
1688
1689 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
1690 int Indices[8];
1691 for (unsigned l = 0; l != NumElts; l += 4)
1692 for (unsigned i = 0; i != 4; ++i)
1693 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
1694
1695 return Builder.CreateShuffleVector(V: Ops[0], Mask: ArrayRef(Indices, NumElts),
1696 Name: "perm");
1697 }
1698 case X86::BI__builtin_ia32_palignr128:
1699 case X86::BI__builtin_ia32_palignr256:
1700 case X86::BI__builtin_ia32_palignr512: {
1701 unsigned ShiftVal = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue() & 0xff;
1702
1703 unsigned NumElts =
1704 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
1705 assert(NumElts % 16 == 0);
1706
1707 // If palignr is shifting the pair of vectors more than the size of two
1708 // lanes, emit zero.
1709 if (ShiftVal >= 32)
1710 return llvm::Constant::getNullValue(Ty: ConvertType(T: E->getType()));
1711
1712 // If palignr is shifting the pair of input vectors more than one lane,
1713 // but less than two lanes, convert to shifting in zeroes.
1714 if (ShiftVal > 16) {
1715 ShiftVal -= 16;
1716 Ops[1] = Ops[0];
1717 Ops[0] = llvm::Constant::getNullValue(Ty: Ops[0]->getType());
1718 }
1719
1720 int Indices[64];
1721 // 256-bit palignr operates on 128-bit lanes so we need to handle that
1722 for (unsigned l = 0; l != NumElts; l += 16) {
1723 for (unsigned i = 0; i != 16; ++i) {
1724 unsigned Idx = ShiftVal + i;
1725 if (Idx >= 16)
1726 Idx += NumElts - 16; // End of lane, switch operand.
1727 Indices[l + i] = Idx + l;
1728 }
1729 }
1730
1731 return Builder.CreateShuffleVector(V1: Ops[1], V2: Ops[0],
1732 Mask: ArrayRef(Indices, NumElts), Name: "palignr");
1733 }
1734 case X86::BI__builtin_ia32_alignd128:
1735 case X86::BI__builtin_ia32_alignd256:
1736 case X86::BI__builtin_ia32_alignd512:
1737 case X86::BI__builtin_ia32_alignq128:
1738 case X86::BI__builtin_ia32_alignq256:
1739 case X86::BI__builtin_ia32_alignq512: {
1740 unsigned NumElts =
1741 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
1742 unsigned ShiftVal = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue() & 0xff;
1743
1744 // Mask the shift amount to width of a vector.
1745 ShiftVal &= NumElts - 1;
1746
1747 int Indices[16];
1748 for (unsigned i = 0; i != NumElts; ++i)
1749 Indices[i] = i + ShiftVal;
1750
1751 return Builder.CreateShuffleVector(V1: Ops[1], V2: Ops[0],
1752 Mask: ArrayRef(Indices, NumElts), Name: "valign");
1753 }
1754 case X86::BI__builtin_ia32_shuf_f32x4_256:
1755 case X86::BI__builtin_ia32_shuf_f64x2_256:
1756 case X86::BI__builtin_ia32_shuf_i32x4_256:
1757 case X86::BI__builtin_ia32_shuf_i64x2_256:
1758 case X86::BI__builtin_ia32_shuf_f32x4:
1759 case X86::BI__builtin_ia32_shuf_f64x2:
1760 case X86::BI__builtin_ia32_shuf_i32x4:
1761 case X86::BI__builtin_ia32_shuf_i64x2: {
1762 unsigned Imm = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue();
1763 auto *Ty = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1764 unsigned NumElts = Ty->getNumElements();
1765 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
1766 unsigned NumLaneElts = NumElts / NumLanes;
1767
1768 int Indices[16];
1769 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
1770 unsigned Index = (Imm % NumLanes) * NumLaneElts;
1771 Imm /= NumLanes; // Discard the bits we just used.
1772 if (l >= (NumElts / 2))
1773 Index += NumElts; // Switch to other source.
1774 for (unsigned i = 0; i != NumLaneElts; ++i) {
1775 Indices[l + i] = Index + i;
1776 }
1777 }
1778
1779 return Builder.CreateShuffleVector(V1: Ops[0], V2: Ops[1],
1780 Mask: ArrayRef(Indices, NumElts), Name: "shuf");
1781 }
1782
1783 case X86::BI__builtin_ia32_vperm2f128_pd256:
1784 case X86::BI__builtin_ia32_vperm2f128_ps256:
1785 case X86::BI__builtin_ia32_vperm2f128_si256:
1786 case X86::BI__builtin_ia32_permti256: {
1787 unsigned Imm = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue();
1788 unsigned NumElts =
1789 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
1790
1791 // This takes a very simple approach since there are two lanes and a
1792 // shuffle can have 2 inputs. So we reserve the first input for the first
1793 // lane and the second input for the second lane. This may result in
1794 // duplicate sources, but this can be dealt with in the backend.
1795
1796 Value *OutOps[2];
1797 int Indices[8];
1798 for (unsigned l = 0; l != 2; ++l) {
1799 // Determine the source for this lane.
1800 if (Imm & (1 << ((l * 4) + 3)))
1801 OutOps[l] = llvm::ConstantAggregateZero::get(Ty: Ops[0]->getType());
1802 else if (Imm & (1 << ((l * 4) + 1)))
1803 OutOps[l] = Ops[1];
1804 else
1805 OutOps[l] = Ops[0];
1806
1807 for (unsigned i = 0; i != NumElts/2; ++i) {
1808 // Start with ith element of the source for this lane.
1809 unsigned Idx = (l * NumElts) + i;
1810 // If bit 0 of the immediate half is set, switch to the high half of
1811 // the source.
1812 if (Imm & (1 << (l * 4)))
1813 Idx += NumElts/2;
1814 Indices[(l * (NumElts/2)) + i] = Idx;
1815 }
1816 }
1817
1818 return Builder.CreateShuffleVector(V1: OutOps[0], V2: OutOps[1],
1819 Mask: ArrayRef(Indices, NumElts), Name: "vperm");
1820 }
1821
1822 case X86::BI__builtin_ia32_pslldqi128_byteshift:
1823 case X86::BI__builtin_ia32_pslldqi256_byteshift:
1824 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
1825 unsigned ShiftVal = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue() & 0xff;
1826 auto *ResultType = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1827 // Builtin type is vXi64 so multiply by 8 to get bytes.
1828 unsigned NumElts = ResultType->getNumElements() * 8;
1829
1830 // If pslldq is shifting the vector more than 15 bytes, emit zero.
1831 if (ShiftVal >= 16)
1832 return llvm::Constant::getNullValue(Ty: ResultType);
1833
1834 int Indices[64];
1835 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
1836 for (unsigned l = 0; l != NumElts; l += 16) {
1837 for (unsigned i = 0; i != 16; ++i) {
1838 unsigned Idx = NumElts + i - ShiftVal;
1839 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
1840 Indices[l + i] = Idx + l;
1841 }
1842 }
1843
1844 auto *VecTy = llvm::FixedVectorType::get(ElementType: Int8Ty, NumElts);
1845 Value *Cast = Builder.CreateBitCast(V: Ops[0], DestTy: VecTy, Name: "cast");
1846 Value *Zero = llvm::Constant::getNullValue(Ty: VecTy);
1847 Value *SV = Builder.CreateShuffleVector(
1848 V1: Zero, V2: Cast, Mask: ArrayRef(Indices, NumElts), Name: "pslldq");
1849 return Builder.CreateBitCast(V: SV, DestTy: Ops[0]->getType(), Name: "cast");
1850 }
1851 case X86::BI__builtin_ia32_psrldqi128_byteshift:
1852 case X86::BI__builtin_ia32_psrldqi256_byteshift:
1853 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
1854 unsigned ShiftVal = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue() & 0xff;
1855 auto *ResultType = cast<llvm::FixedVectorType>(Val: Ops[0]->getType());
1856 // Builtin type is vXi64 so multiply by 8 to get bytes.
1857 unsigned NumElts = ResultType->getNumElements() * 8;
1858
1859 // If psrldq is shifting the vector more than 15 bytes, emit zero.
1860 if (ShiftVal >= 16)
1861 return llvm::Constant::getNullValue(Ty: ResultType);
1862
1863 int Indices[64];
1864 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
1865 for (unsigned l = 0; l != NumElts; l += 16) {
1866 for (unsigned i = 0; i != 16; ++i) {
1867 unsigned Idx = i + ShiftVal;
1868 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
1869 Indices[l + i] = Idx + l;
1870 }
1871 }
1872
1873 auto *VecTy = llvm::FixedVectorType::get(ElementType: Int8Ty, NumElts);
1874 Value *Cast = Builder.CreateBitCast(V: Ops[0], DestTy: VecTy, Name: "cast");
1875 Value *Zero = llvm::Constant::getNullValue(Ty: VecTy);
1876 Value *SV = Builder.CreateShuffleVector(
1877 V1: Cast, V2: Zero, Mask: ArrayRef(Indices, NumElts), Name: "psrldq");
1878 return Builder.CreateBitCast(V: SV, DestTy: ResultType, Name: "cast");
1879 }
1880 case X86::BI__builtin_ia32_kshiftliqi:
1881 case X86::BI__builtin_ia32_kshiftlihi:
1882 case X86::BI__builtin_ia32_kshiftlisi:
1883 case X86::BI__builtin_ia32_kshiftlidi: {
1884 unsigned ShiftVal = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue() & 0xff;
1885 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
1886
1887 if (ShiftVal >= NumElts)
1888 return llvm::Constant::getNullValue(Ty: Ops[0]->getType());
1889
1890 Value *In = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
1891
1892 int Indices[64];
1893 for (unsigned i = 0; i != NumElts; ++i)
1894 Indices[i] = NumElts + i - ShiftVal;
1895
1896 Value *Zero = llvm::Constant::getNullValue(Ty: In->getType());
1897 Value *SV = Builder.CreateShuffleVector(
1898 V1: Zero, V2: In, Mask: ArrayRef(Indices, NumElts), Name: "kshiftl");
1899 return Builder.CreateBitCast(V: SV, DestTy: Ops[0]->getType());
1900 }
1901 case X86::BI__builtin_ia32_kshiftriqi:
1902 case X86::BI__builtin_ia32_kshiftrihi:
1903 case X86::BI__builtin_ia32_kshiftrisi:
1904 case X86::BI__builtin_ia32_kshiftridi: {
1905 unsigned ShiftVal = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue() & 0xff;
1906 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
1907
1908 if (ShiftVal >= NumElts)
1909 return llvm::Constant::getNullValue(Ty: Ops[0]->getType());
1910
1911 Value *In = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
1912
1913 int Indices[64];
1914 for (unsigned i = 0; i != NumElts; ++i)
1915 Indices[i] = i + ShiftVal;
1916
1917 Value *Zero = llvm::Constant::getNullValue(Ty: In->getType());
1918 Value *SV = Builder.CreateShuffleVector(
1919 V1: In, V2: Zero, Mask: ArrayRef(Indices, NumElts), Name: "kshiftr");
1920 return Builder.CreateBitCast(V: SV, DestTy: Ops[0]->getType());
1921 }
1922 case X86::BI__builtin_ia32_movnti:
1923 case X86::BI__builtin_ia32_movnti64:
1924 case X86::BI__builtin_ia32_movntsd:
1925 case X86::BI__builtin_ia32_movntss: {
1926 llvm::MDNode *Node = llvm::MDNode::get(
1927 Context&: getLLVMContext(), MDs: llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: 1)));
1928
1929 Value *Ptr = Ops[0];
1930 Value *Src = Ops[1];
1931
1932 // Extract the 0'th element of the source vector.
1933 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
1934 BuiltinID == X86::BI__builtin_ia32_movntss)
1935 Src = Builder.CreateExtractElement(Vec: Src, Idx: (uint64_t)0, Name: "extract");
1936
1937 // Unaligned nontemporal store of the scalar value.
1938 StoreInst *SI = Builder.CreateDefaultAlignedStore(Val: Src, Addr: Ptr);
1939 SI->setMetadata(KindID: llvm::LLVMContext::MD_nontemporal, Node);
1940 SI->setAlignment(llvm::Align(1));
1941 return SI;
1942 }
1943 // Rotate is a special case of funnel shift - 1st 2 args are the same.
1944 case X86::BI__builtin_ia32_vprotb:
1945 case X86::BI__builtin_ia32_vprotw:
1946 case X86::BI__builtin_ia32_vprotd:
1947 case X86::BI__builtin_ia32_vprotq:
1948 case X86::BI__builtin_ia32_vprotbi:
1949 case X86::BI__builtin_ia32_vprotwi:
1950 case X86::BI__builtin_ia32_vprotdi:
1951 case X86::BI__builtin_ia32_vprotqi:
1952 case X86::BI__builtin_ia32_prold128:
1953 case X86::BI__builtin_ia32_prold256:
1954 case X86::BI__builtin_ia32_prold512:
1955 case X86::BI__builtin_ia32_prolq128:
1956 case X86::BI__builtin_ia32_prolq256:
1957 case X86::BI__builtin_ia32_prolq512:
1958 case X86::BI__builtin_ia32_prolvd128:
1959 case X86::BI__builtin_ia32_prolvd256:
1960 case X86::BI__builtin_ia32_prolvd512:
1961 case X86::BI__builtin_ia32_prolvq128:
1962 case X86::BI__builtin_ia32_prolvq256:
1963 case X86::BI__builtin_ia32_prolvq512:
1964 return EmitX86FunnelShift(CGF&: *this, Op0: Ops[0], Op1: Ops[0], Amt: Ops[1], IsRight: false);
1965 case X86::BI__builtin_ia32_prord128:
1966 case X86::BI__builtin_ia32_prord256:
1967 case X86::BI__builtin_ia32_prord512:
1968 case X86::BI__builtin_ia32_prorq128:
1969 case X86::BI__builtin_ia32_prorq256:
1970 case X86::BI__builtin_ia32_prorq512:
1971 case X86::BI__builtin_ia32_prorvd128:
1972 case X86::BI__builtin_ia32_prorvd256:
1973 case X86::BI__builtin_ia32_prorvd512:
1974 case X86::BI__builtin_ia32_prorvq128:
1975 case X86::BI__builtin_ia32_prorvq256:
1976 case X86::BI__builtin_ia32_prorvq512:
1977 return EmitX86FunnelShift(CGF&: *this, Op0: Ops[0], Op1: Ops[0], Amt: Ops[1], IsRight: true);
1978 case X86::BI__builtin_ia32_selectb_128:
1979 case X86::BI__builtin_ia32_selectb_256:
1980 case X86::BI__builtin_ia32_selectb_512:
1981 case X86::BI__builtin_ia32_selectw_128:
1982 case X86::BI__builtin_ia32_selectw_256:
1983 case X86::BI__builtin_ia32_selectw_512:
1984 case X86::BI__builtin_ia32_selectd_128:
1985 case X86::BI__builtin_ia32_selectd_256:
1986 case X86::BI__builtin_ia32_selectd_512:
1987 case X86::BI__builtin_ia32_selectq_128:
1988 case X86::BI__builtin_ia32_selectq_256:
1989 case X86::BI__builtin_ia32_selectq_512:
1990 case X86::BI__builtin_ia32_selectph_128:
1991 case X86::BI__builtin_ia32_selectph_256:
1992 case X86::BI__builtin_ia32_selectph_512:
1993 case X86::BI__builtin_ia32_selectpbf_128:
1994 case X86::BI__builtin_ia32_selectpbf_256:
1995 case X86::BI__builtin_ia32_selectpbf_512:
1996 case X86::BI__builtin_ia32_selectps_128:
1997 case X86::BI__builtin_ia32_selectps_256:
1998 case X86::BI__builtin_ia32_selectps_512:
1999 case X86::BI__builtin_ia32_selectpd_128:
2000 case X86::BI__builtin_ia32_selectpd_256:
2001 case X86::BI__builtin_ia32_selectpd_512:
2002 return EmitX86Select(CGF&: *this, Mask: Ops[0], Op0: Ops[1], Op1: Ops[2]);
2003 case X86::BI__builtin_ia32_selectsh_128:
2004 case X86::BI__builtin_ia32_selectsbf_128:
2005 case X86::BI__builtin_ia32_selectss_128:
2006 case X86::BI__builtin_ia32_selectsd_128: {
2007 Value *A = Builder.CreateExtractElement(Vec: Ops[1], Idx: (uint64_t)0);
2008 Value *B = Builder.CreateExtractElement(Vec: Ops[2], Idx: (uint64_t)0);
2009 A = EmitX86ScalarSelect(CGF&: *this, Mask: Ops[0], Op0: A, Op1: B);
2010 return Builder.CreateInsertElement(Vec: Ops[1], NewElt: A, Idx: (uint64_t)0);
2011 }
2012 case X86::BI__builtin_ia32_cmpb128_mask:
2013 case X86::BI__builtin_ia32_cmpb256_mask:
2014 case X86::BI__builtin_ia32_cmpb512_mask:
2015 case X86::BI__builtin_ia32_cmpw128_mask:
2016 case X86::BI__builtin_ia32_cmpw256_mask:
2017 case X86::BI__builtin_ia32_cmpw512_mask:
2018 case X86::BI__builtin_ia32_cmpd128_mask:
2019 case X86::BI__builtin_ia32_cmpd256_mask:
2020 case X86::BI__builtin_ia32_cmpd512_mask:
2021 case X86::BI__builtin_ia32_cmpq128_mask:
2022 case X86::BI__builtin_ia32_cmpq256_mask:
2023 case X86::BI__builtin_ia32_cmpq512_mask: {
2024 unsigned CC = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue() & 0x7;
2025 return EmitX86MaskedCompare(CGF&: *this, CC, Signed: true, Ops);
2026 }
2027 case X86::BI__builtin_ia32_ucmpb128_mask:
2028 case X86::BI__builtin_ia32_ucmpb256_mask:
2029 case X86::BI__builtin_ia32_ucmpb512_mask:
2030 case X86::BI__builtin_ia32_ucmpw128_mask:
2031 case X86::BI__builtin_ia32_ucmpw256_mask:
2032 case X86::BI__builtin_ia32_ucmpw512_mask:
2033 case X86::BI__builtin_ia32_ucmpd128_mask:
2034 case X86::BI__builtin_ia32_ucmpd256_mask:
2035 case X86::BI__builtin_ia32_ucmpd512_mask:
2036 case X86::BI__builtin_ia32_ucmpq128_mask:
2037 case X86::BI__builtin_ia32_ucmpq256_mask:
2038 case X86::BI__builtin_ia32_ucmpq512_mask: {
2039 unsigned CC = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue() & 0x7;
2040 return EmitX86MaskedCompare(CGF&: *this, CC, Signed: false, Ops);
2041 }
2042 case X86::BI__builtin_ia32_vpcomb:
2043 case X86::BI__builtin_ia32_vpcomw:
2044 case X86::BI__builtin_ia32_vpcomd:
2045 case X86::BI__builtin_ia32_vpcomq:
2046 return EmitX86vpcom(CGF&: *this, Ops, IsSigned: true);
2047 case X86::BI__builtin_ia32_vpcomub:
2048 case X86::BI__builtin_ia32_vpcomuw:
2049 case X86::BI__builtin_ia32_vpcomud:
2050 case X86::BI__builtin_ia32_vpcomuq:
2051 return EmitX86vpcom(CGF&: *this, Ops, IsSigned: false);
2052
2053 case X86::BI__builtin_ia32_kortestcqi:
2054 case X86::BI__builtin_ia32_kortestchi:
2055 case X86::BI__builtin_ia32_kortestcsi:
2056 case X86::BI__builtin_ia32_kortestcdi: {
2057 Value *Or = EmitX86MaskLogic(CGF&: *this, Opc: Instruction::Or, Ops);
2058 Value *C = llvm::Constant::getAllOnesValue(Ty: Ops[0]->getType());
2059 Value *Cmp = Builder.CreateICmpEQ(LHS: Or, RHS: C);
2060 return Builder.CreateZExt(V: Cmp, DestTy: ConvertType(T: E->getType()));
2061 }
2062 case X86::BI__builtin_ia32_kortestzqi:
2063 case X86::BI__builtin_ia32_kortestzhi:
2064 case X86::BI__builtin_ia32_kortestzsi:
2065 case X86::BI__builtin_ia32_kortestzdi: {
2066 Value *Or = EmitX86MaskLogic(CGF&: *this, Opc: Instruction::Or, Ops);
2067 Value *C = llvm::Constant::getNullValue(Ty: Ops[0]->getType());
2068 Value *Cmp = Builder.CreateICmpEQ(LHS: Or, RHS: C);
2069 return Builder.CreateZExt(V: Cmp, DestTy: ConvertType(T: E->getType()));
2070 }
2071
2072 case X86::BI__builtin_ia32_ktestcqi:
2073 case X86::BI__builtin_ia32_ktestzqi:
2074 case X86::BI__builtin_ia32_ktestchi:
2075 case X86::BI__builtin_ia32_ktestzhi:
2076 case X86::BI__builtin_ia32_ktestcsi:
2077 case X86::BI__builtin_ia32_ktestzsi:
2078 case X86::BI__builtin_ia32_ktestcdi:
2079 case X86::BI__builtin_ia32_ktestzdi: {
2080 Intrinsic::ID IID;
2081 switch (BuiltinID) {
2082 default: llvm_unreachable("Unsupported intrinsic!");
2083 case X86::BI__builtin_ia32_ktestcqi:
2084 IID = Intrinsic::x86_avx512_ktestc_b;
2085 break;
2086 case X86::BI__builtin_ia32_ktestzqi:
2087 IID = Intrinsic::x86_avx512_ktestz_b;
2088 break;
2089 case X86::BI__builtin_ia32_ktestchi:
2090 IID = Intrinsic::x86_avx512_ktestc_w;
2091 break;
2092 case X86::BI__builtin_ia32_ktestzhi:
2093 IID = Intrinsic::x86_avx512_ktestz_w;
2094 break;
2095 case X86::BI__builtin_ia32_ktestcsi:
2096 IID = Intrinsic::x86_avx512_ktestc_d;
2097 break;
2098 case X86::BI__builtin_ia32_ktestzsi:
2099 IID = Intrinsic::x86_avx512_ktestz_d;
2100 break;
2101 case X86::BI__builtin_ia32_ktestcdi:
2102 IID = Intrinsic::x86_avx512_ktestc_q;
2103 break;
2104 case X86::BI__builtin_ia32_ktestzdi:
2105 IID = Intrinsic::x86_avx512_ktestz_q;
2106 break;
2107 }
2108
2109 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
2110 Value *LHS = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
2111 Value *RHS = getMaskVecValue(CGF&: *this, Mask: Ops[1], NumElts);
2112 Function *Intr = CGM.getIntrinsic(IID);
2113 return Builder.CreateCall(Callee: Intr, Args: {LHS, RHS});
2114 }
2115
2116 case X86::BI__builtin_ia32_kaddqi:
2117 case X86::BI__builtin_ia32_kaddhi:
2118 case X86::BI__builtin_ia32_kaddsi:
2119 case X86::BI__builtin_ia32_kadddi: {
2120 Intrinsic::ID IID;
2121 switch (BuiltinID) {
2122 default: llvm_unreachable("Unsupported intrinsic!");
2123 case X86::BI__builtin_ia32_kaddqi:
2124 IID = Intrinsic::x86_avx512_kadd_b;
2125 break;
2126 case X86::BI__builtin_ia32_kaddhi:
2127 IID = Intrinsic::x86_avx512_kadd_w;
2128 break;
2129 case X86::BI__builtin_ia32_kaddsi:
2130 IID = Intrinsic::x86_avx512_kadd_d;
2131 break;
2132 case X86::BI__builtin_ia32_kadddi:
2133 IID = Intrinsic::x86_avx512_kadd_q;
2134 break;
2135 }
2136
2137 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
2138 Value *LHS = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
2139 Value *RHS = getMaskVecValue(CGF&: *this, Mask: Ops[1], NumElts);
2140 Function *Intr = CGM.getIntrinsic(IID);
2141 Value *Res = Builder.CreateCall(Callee: Intr, Args: {LHS, RHS});
2142 return Builder.CreateBitCast(V: Res, DestTy: Ops[0]->getType());
2143 }
2144 case X86::BI__builtin_ia32_kandqi:
2145 case X86::BI__builtin_ia32_kandhi:
2146 case X86::BI__builtin_ia32_kandsi:
2147 case X86::BI__builtin_ia32_kanddi:
2148 return EmitX86MaskLogic(CGF&: *this, Opc: Instruction::And, Ops);
2149 case X86::BI__builtin_ia32_kandnqi:
2150 case X86::BI__builtin_ia32_kandnhi:
2151 case X86::BI__builtin_ia32_kandnsi:
2152 case X86::BI__builtin_ia32_kandndi:
2153 return EmitX86MaskLogic(CGF&: *this, Opc: Instruction::And, Ops, InvertLHS: true);
2154 case X86::BI__builtin_ia32_korqi:
2155 case X86::BI__builtin_ia32_korhi:
2156 case X86::BI__builtin_ia32_korsi:
2157 case X86::BI__builtin_ia32_kordi:
2158 return EmitX86MaskLogic(CGF&: *this, Opc: Instruction::Or, Ops);
2159 case X86::BI__builtin_ia32_kxnorqi:
2160 case X86::BI__builtin_ia32_kxnorhi:
2161 case X86::BI__builtin_ia32_kxnorsi:
2162 case X86::BI__builtin_ia32_kxnordi:
2163 return EmitX86MaskLogic(CGF&: *this, Opc: Instruction::Xor, Ops, InvertLHS: true);
2164 case X86::BI__builtin_ia32_kxorqi:
2165 case X86::BI__builtin_ia32_kxorhi:
2166 case X86::BI__builtin_ia32_kxorsi:
2167 case X86::BI__builtin_ia32_kxordi:
2168 return EmitX86MaskLogic(CGF&: *this, Opc: Instruction::Xor, Ops);
2169 case X86::BI__builtin_ia32_knotqi:
2170 case X86::BI__builtin_ia32_knothi:
2171 case X86::BI__builtin_ia32_knotsi:
2172 case X86::BI__builtin_ia32_knotdi: {
2173 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
2174 Value *Res = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
2175 return Builder.CreateBitCast(V: Builder.CreateNot(V: Res),
2176 DestTy: Ops[0]->getType());
2177 }
2178 case X86::BI__builtin_ia32_kmovb:
2179 case X86::BI__builtin_ia32_kmovw:
2180 case X86::BI__builtin_ia32_kmovd:
2181 case X86::BI__builtin_ia32_kmovq: {
2182 // Bitcast to vXi1 type and then back to integer. This gets the mask
2183 // register type into the IR, but might be optimized out depending on
2184 // what's around it.
2185 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
2186 Value *Res = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
2187 return Builder.CreateBitCast(V: Res, DestTy: Ops[0]->getType());
2188 }
2189
2190 case X86::BI__builtin_ia32_kunpckdi:
2191 case X86::BI__builtin_ia32_kunpcksi:
2192 case X86::BI__builtin_ia32_kunpckhi: {
2193 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
2194 Value *LHS = getMaskVecValue(CGF&: *this, Mask: Ops[0], NumElts);
2195 Value *RHS = getMaskVecValue(CGF&: *this, Mask: Ops[1], NumElts);
2196 int Indices[64];
2197 for (unsigned i = 0; i != NumElts; ++i)
2198 Indices[i] = i;
2199
2200 // First extract half of each vector. This gives better codegen than
2201 // doing it in a single shuffle.
2202 LHS = Builder.CreateShuffleVector(V1: LHS, V2: LHS, Mask: ArrayRef(Indices, NumElts / 2));
2203 RHS = Builder.CreateShuffleVector(V1: RHS, V2: RHS, Mask: ArrayRef(Indices, NumElts / 2));
2204 // Concat the vectors.
2205 // NOTE: Operands are swapped to match the intrinsic definition.
2206 Value *Res =
2207 Builder.CreateShuffleVector(V1: RHS, V2: LHS, Mask: ArrayRef(Indices, NumElts));
2208 return Builder.CreateBitCast(V: Res, DestTy: Ops[0]->getType());
2209 }
2210
2211 case X86::BI__builtin_ia32_vplzcntd_128:
2212 case X86::BI__builtin_ia32_vplzcntd_256:
2213 case X86::BI__builtin_ia32_vplzcntd_512:
2214 case X86::BI__builtin_ia32_vplzcntq_128:
2215 case X86::BI__builtin_ia32_vplzcntq_256:
2216 case X86::BI__builtin_ia32_vplzcntq_512: {
2217 Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: Ops[0]->getType());
2218 return Builder.CreateCall(Callee: F, Args: {Ops[0],Builder.getInt1(V: false)});
2219 }
2220 case X86::BI__builtin_ia32_sqrtss:
2221 case X86::BI__builtin_ia32_sqrtsd: {
2222 Value *A = Builder.CreateExtractElement(Vec: Ops[0], Idx: (uint64_t)0);
2223 Function *F;
2224 if (Builder.getIsFPConstrained()) {
2225 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2226 F = CGM.getIntrinsic(IID: Intrinsic::experimental_constrained_sqrt,
2227 Tys: A->getType());
2228 A = Builder.CreateConstrainedFPCall(Callee: F, Args: {A});
2229 } else {
2230 F = CGM.getIntrinsic(IID: Intrinsic::sqrt, Tys: A->getType());
2231 A = Builder.CreateCall(Callee: F, Args: {A});
2232 }
2233 return Builder.CreateInsertElement(Vec: Ops[0], NewElt: A, Idx: (uint64_t)0);
2234 }
2235 case X86::BI__builtin_ia32_sqrtsh_round_mask:
2236 case X86::BI__builtin_ia32_sqrtsd_round_mask:
2237 case X86::BI__builtin_ia32_sqrtss_round_mask: {
2238 unsigned CC = cast<llvm::ConstantInt>(Val: Ops[4])->getZExtValue();
2239 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
2240 // otherwise keep the intrinsic.
2241 if (CC != 4) {
2242 Intrinsic::ID IID;
2243
2244 switch (BuiltinID) {
2245 default:
2246 llvm_unreachable("Unsupported intrinsic!");
2247 case X86::BI__builtin_ia32_sqrtsh_round_mask:
2248 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
2249 break;
2250 case X86::BI__builtin_ia32_sqrtsd_round_mask:
2251 IID = Intrinsic::x86_avx512_mask_sqrt_sd;
2252 break;
2253 case X86::BI__builtin_ia32_sqrtss_round_mask:
2254 IID = Intrinsic::x86_avx512_mask_sqrt_ss;
2255 break;
2256 }
2257 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops);
2258 }
2259 Value *A = Builder.CreateExtractElement(Vec: Ops[1], Idx: (uint64_t)0);
2260 Function *F;
2261 if (Builder.getIsFPConstrained()) {
2262 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2263 F = CGM.getIntrinsic(IID: Intrinsic::experimental_constrained_sqrt,
2264 Tys: A->getType());
2265 A = Builder.CreateConstrainedFPCall(Callee: F, Args: A);
2266 } else {
2267 F = CGM.getIntrinsic(IID: Intrinsic::sqrt, Tys: A->getType());
2268 A = Builder.CreateCall(Callee: F, Args: A);
2269 }
2270 Value *Src = Builder.CreateExtractElement(Vec: Ops[2], Idx: (uint64_t)0);
2271 A = EmitX86ScalarSelect(CGF&: *this, Mask: Ops[3], Op0: A, Op1: Src);
2272 return Builder.CreateInsertElement(Vec: Ops[0], NewElt: A, Idx: (uint64_t)0);
2273 }
2274 case X86::BI__builtin_ia32_sqrtpd256:
2275 case X86::BI__builtin_ia32_sqrtpd:
2276 case X86::BI__builtin_ia32_sqrtps256:
2277 case X86::BI__builtin_ia32_sqrtps:
2278 case X86::BI__builtin_ia32_sqrtph256:
2279 case X86::BI__builtin_ia32_sqrtph:
2280 case X86::BI__builtin_ia32_sqrtph512:
2281 case X86::BI__builtin_ia32_vsqrtbf16256:
2282 case X86::BI__builtin_ia32_vsqrtbf16:
2283 case X86::BI__builtin_ia32_vsqrtbf16512:
2284 case X86::BI__builtin_ia32_sqrtps512:
2285 case X86::BI__builtin_ia32_sqrtpd512: {
2286 if (Ops.size() == 2) {
2287 unsigned CC = cast<llvm::ConstantInt>(Val: Ops[1])->getZExtValue();
2288 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
2289 // otherwise keep the intrinsic.
2290 if (CC != 4) {
2291 Intrinsic::ID IID;
2292
2293 switch (BuiltinID) {
2294 default:
2295 llvm_unreachable("Unsupported intrinsic!");
2296 case X86::BI__builtin_ia32_sqrtph512:
2297 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
2298 break;
2299 case X86::BI__builtin_ia32_sqrtps512:
2300 IID = Intrinsic::x86_avx512_sqrt_ps_512;
2301 break;
2302 case X86::BI__builtin_ia32_sqrtpd512:
2303 IID = Intrinsic::x86_avx512_sqrt_pd_512;
2304 break;
2305 }
2306 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops);
2307 }
2308 }
2309 if (Builder.getIsFPConstrained()) {
2310 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2311 Function *F = CGM.getIntrinsic(IID: Intrinsic::experimental_constrained_sqrt,
2312 Tys: Ops[0]->getType());
2313 return Builder.CreateConstrainedFPCall(Callee: F, Args: Ops[0]);
2314 } else {
2315 Function *F = CGM.getIntrinsic(IID: Intrinsic::sqrt, Tys: Ops[0]->getType());
2316 return Builder.CreateCall(Callee: F, Args: Ops[0]);
2317 }
2318 }
2319
2320 case X86::BI__builtin_ia32_pmuludq128:
2321 case X86::BI__builtin_ia32_pmuludq256:
2322 case X86::BI__builtin_ia32_pmuludq512:
2323 return EmitX86Muldq(CGF&: *this, /*IsSigned*/false, Ops);
2324
2325 case X86::BI__builtin_ia32_pmuldq128:
2326 case X86::BI__builtin_ia32_pmuldq256:
2327 case X86::BI__builtin_ia32_pmuldq512:
2328 return EmitX86Muldq(CGF&: *this, /*IsSigned*/true, Ops);
2329
2330 case X86::BI__builtin_ia32_pternlogd512_mask:
2331 case X86::BI__builtin_ia32_pternlogq512_mask:
2332 case X86::BI__builtin_ia32_pternlogd128_mask:
2333 case X86::BI__builtin_ia32_pternlogd256_mask:
2334 case X86::BI__builtin_ia32_pternlogq128_mask:
2335 case X86::BI__builtin_ia32_pternlogq256_mask:
2336 return EmitX86Ternlog(CGF&: *this, /*ZeroMask*/false, Ops);
2337
2338 case X86::BI__builtin_ia32_pternlogd512_maskz:
2339 case X86::BI__builtin_ia32_pternlogq512_maskz:
2340 case X86::BI__builtin_ia32_pternlogd128_maskz:
2341 case X86::BI__builtin_ia32_pternlogd256_maskz:
2342 case X86::BI__builtin_ia32_pternlogq128_maskz:
2343 case X86::BI__builtin_ia32_pternlogq256_maskz:
2344 return EmitX86Ternlog(CGF&: *this, /*ZeroMask*/true, Ops);
2345
2346 case X86::BI__builtin_ia32_vpshldd128:
2347 case X86::BI__builtin_ia32_vpshldd256:
2348 case X86::BI__builtin_ia32_vpshldd512:
2349 case X86::BI__builtin_ia32_vpshldq128:
2350 case X86::BI__builtin_ia32_vpshldq256:
2351 case X86::BI__builtin_ia32_vpshldq512:
2352 case X86::BI__builtin_ia32_vpshldw128:
2353 case X86::BI__builtin_ia32_vpshldw256:
2354 case X86::BI__builtin_ia32_vpshldw512:
2355 return EmitX86FunnelShift(CGF&: *this, Op0: Ops[0], Op1: Ops[1], Amt: Ops[2], IsRight: false);
2356
2357 case X86::BI__builtin_ia32_vpshrdd128:
2358 case X86::BI__builtin_ia32_vpshrdd256:
2359 case X86::BI__builtin_ia32_vpshrdd512:
2360 case X86::BI__builtin_ia32_vpshrdq128:
2361 case X86::BI__builtin_ia32_vpshrdq256:
2362 case X86::BI__builtin_ia32_vpshrdq512:
2363 case X86::BI__builtin_ia32_vpshrdw128:
2364 case X86::BI__builtin_ia32_vpshrdw256:
2365 case X86::BI__builtin_ia32_vpshrdw512:
2366 // Ops 0 and 1 are swapped.
2367 return EmitX86FunnelShift(CGF&: *this, Op0: Ops[1], Op1: Ops[0], Amt: Ops[2], IsRight: true);
2368
2369 case X86::BI__builtin_ia32_vpshldvd128:
2370 case X86::BI__builtin_ia32_vpshldvd256:
2371 case X86::BI__builtin_ia32_vpshldvd512:
2372 case X86::BI__builtin_ia32_vpshldvq128:
2373 case X86::BI__builtin_ia32_vpshldvq256:
2374 case X86::BI__builtin_ia32_vpshldvq512:
2375 case X86::BI__builtin_ia32_vpshldvw128:
2376 case X86::BI__builtin_ia32_vpshldvw256:
2377 case X86::BI__builtin_ia32_vpshldvw512:
2378 return EmitX86FunnelShift(CGF&: *this, Op0: Ops[0], Op1: Ops[1], Amt: Ops[2], IsRight: false);
2379
2380 case X86::BI__builtin_ia32_vpshrdvd128:
2381 case X86::BI__builtin_ia32_vpshrdvd256:
2382 case X86::BI__builtin_ia32_vpshrdvd512:
2383 case X86::BI__builtin_ia32_vpshrdvq128:
2384 case X86::BI__builtin_ia32_vpshrdvq256:
2385 case X86::BI__builtin_ia32_vpshrdvq512:
2386 case X86::BI__builtin_ia32_vpshrdvw128:
2387 case X86::BI__builtin_ia32_vpshrdvw256:
2388 case X86::BI__builtin_ia32_vpshrdvw512:
2389 // Ops 0 and 1 are swapped.
2390 return EmitX86FunnelShift(CGF&: *this, Op0: Ops[1], Op1: Ops[0], Amt: Ops[2], IsRight: true);
2391
2392 // Reductions
2393 case X86::BI__builtin_ia32_reduce_fadd_pd512:
2394 case X86::BI__builtin_ia32_reduce_fadd_ps512:
2395 case X86::BI__builtin_ia32_reduce_fadd_ph512:
2396 case X86::BI__builtin_ia32_reduce_fadd_ph256:
2397 case X86::BI__builtin_ia32_reduce_fadd_ph128: {
2398 Function *F =
2399 CGM.getIntrinsic(IID: Intrinsic::vector_reduce_fadd, Tys: Ops[1]->getType());
2400 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2401 Builder.getFastMathFlags().setAllowReassoc();
2402 return Builder.CreateCall(Callee: F, Args: {Ops[0], Ops[1]});
2403 }
2404 case X86::BI__builtin_ia32_reduce_fmul_pd512:
2405 case X86::BI__builtin_ia32_reduce_fmul_ps512:
2406 case X86::BI__builtin_ia32_reduce_fmul_ph512:
2407 case X86::BI__builtin_ia32_reduce_fmul_ph256:
2408 case X86::BI__builtin_ia32_reduce_fmul_ph128: {
2409 Function *F =
2410 CGM.getIntrinsic(IID: Intrinsic::vector_reduce_fmul, Tys: Ops[1]->getType());
2411 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2412 Builder.getFastMathFlags().setAllowReassoc();
2413 return Builder.CreateCall(Callee: F, Args: {Ops[0], Ops[1]});
2414 }
2415 case X86::BI__builtin_ia32_reduce_fmax_pd512:
2416 case X86::BI__builtin_ia32_reduce_fmax_ps512:
2417 case X86::BI__builtin_ia32_reduce_fmax_ph512:
2418 case X86::BI__builtin_ia32_reduce_fmax_ph256:
2419 case X86::BI__builtin_ia32_reduce_fmax_ph128: {
2420 Function *F =
2421 CGM.getIntrinsic(IID: Intrinsic::vector_reduce_fmax, Tys: Ops[0]->getType());
2422 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2423 Builder.getFastMathFlags().setNoNaNs();
2424 return Builder.CreateCall(Callee: F, Args: {Ops[0]});
2425 }
2426 case X86::BI__builtin_ia32_reduce_fmin_pd512:
2427 case X86::BI__builtin_ia32_reduce_fmin_ps512:
2428 case X86::BI__builtin_ia32_reduce_fmin_ph512:
2429 case X86::BI__builtin_ia32_reduce_fmin_ph256:
2430 case X86::BI__builtin_ia32_reduce_fmin_ph128: {
2431 Function *F =
2432 CGM.getIntrinsic(IID: Intrinsic::vector_reduce_fmin, Tys: Ops[0]->getType());
2433 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2434 Builder.getFastMathFlags().setNoNaNs();
2435 return Builder.CreateCall(Callee: F, Args: {Ops[0]});
2436 }
2437
2438 case X86::BI__builtin_ia32_rdrand16_step:
2439 case X86::BI__builtin_ia32_rdrand32_step:
2440 case X86::BI__builtin_ia32_rdrand64_step:
2441 case X86::BI__builtin_ia32_rdseed16_step:
2442 case X86::BI__builtin_ia32_rdseed32_step:
2443 case X86::BI__builtin_ia32_rdseed64_step: {
2444 Intrinsic::ID ID;
2445 switch (BuiltinID) {
2446 default: llvm_unreachable("Unsupported intrinsic!");
2447 case X86::BI__builtin_ia32_rdrand16_step:
2448 ID = Intrinsic::x86_rdrand_16;
2449 break;
2450 case X86::BI__builtin_ia32_rdrand32_step:
2451 ID = Intrinsic::x86_rdrand_32;
2452 break;
2453 case X86::BI__builtin_ia32_rdrand64_step:
2454 ID = Intrinsic::x86_rdrand_64;
2455 break;
2456 case X86::BI__builtin_ia32_rdseed16_step:
2457 ID = Intrinsic::x86_rdseed_16;
2458 break;
2459 case X86::BI__builtin_ia32_rdseed32_step:
2460 ID = Intrinsic::x86_rdseed_32;
2461 break;
2462 case X86::BI__builtin_ia32_rdseed64_step:
2463 ID = Intrinsic::x86_rdseed_64;
2464 break;
2465 }
2466
2467 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID));
2468 Builder.CreateDefaultAlignedStore(Val: Builder.CreateExtractValue(Agg: Call, Idxs: 0),
2469 Addr: Ops[0]);
2470 return Builder.CreateExtractValue(Agg: Call, Idxs: 1);
2471 }
2472 case X86::BI__builtin_ia32_addcarryx_u32:
2473 case X86::BI__builtin_ia32_addcarryx_u64:
2474 case X86::BI__builtin_ia32_subborrow_u32:
2475 case X86::BI__builtin_ia32_subborrow_u64: {
2476 Intrinsic::ID IID;
2477 switch (BuiltinID) {
2478 default: llvm_unreachable("Unsupported intrinsic!");
2479 case X86::BI__builtin_ia32_addcarryx_u32:
2480 IID = Intrinsic::x86_addcarry_32;
2481 break;
2482 case X86::BI__builtin_ia32_addcarryx_u64:
2483 IID = Intrinsic::x86_addcarry_64;
2484 break;
2485 case X86::BI__builtin_ia32_subborrow_u32:
2486 IID = Intrinsic::x86_subborrow_32;
2487 break;
2488 case X86::BI__builtin_ia32_subborrow_u64:
2489 IID = Intrinsic::x86_subborrow_64;
2490 break;
2491 }
2492
2493 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID),
2494 Args: { Ops[0], Ops[1], Ops[2] });
2495 Builder.CreateDefaultAlignedStore(Val: Builder.CreateExtractValue(Agg: Call, Idxs: 1),
2496 Addr: Ops[3]);
2497 return Builder.CreateExtractValue(Agg: Call, Idxs: 0);
2498 }
2499
2500 case X86::BI__builtin_ia32_fpclassps128_mask:
2501 case X86::BI__builtin_ia32_fpclassps256_mask:
2502 case X86::BI__builtin_ia32_fpclassps512_mask:
2503 case X86::BI__builtin_ia32_vfpclassbf16128_mask:
2504 case X86::BI__builtin_ia32_vfpclassbf16256_mask:
2505 case X86::BI__builtin_ia32_vfpclassbf16512_mask:
2506 case X86::BI__builtin_ia32_fpclassph128_mask:
2507 case X86::BI__builtin_ia32_fpclassph256_mask:
2508 case X86::BI__builtin_ia32_fpclassph512_mask:
2509 case X86::BI__builtin_ia32_fpclasspd128_mask:
2510 case X86::BI__builtin_ia32_fpclasspd256_mask:
2511 case X86::BI__builtin_ia32_fpclasspd512_mask: {
2512 unsigned NumElts =
2513 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
2514 Value *MaskIn = Ops[2];
2515 Ops.erase(CI: &Ops[2]);
2516
2517 Intrinsic::ID ID;
2518 switch (BuiltinID) {
2519 default: llvm_unreachable("Unsupported intrinsic!");
2520 case X86::BI__builtin_ia32_vfpclassbf16128_mask:
2521 ID = Intrinsic::x86_avx10_fpclass_bf16_128;
2522 break;
2523 case X86::BI__builtin_ia32_vfpclassbf16256_mask:
2524 ID = Intrinsic::x86_avx10_fpclass_bf16_256;
2525 break;
2526 case X86::BI__builtin_ia32_vfpclassbf16512_mask:
2527 ID = Intrinsic::x86_avx10_fpclass_bf16_512;
2528 break;
2529 case X86::BI__builtin_ia32_fpclassph128_mask:
2530 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
2531 break;
2532 case X86::BI__builtin_ia32_fpclassph256_mask:
2533 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
2534 break;
2535 case X86::BI__builtin_ia32_fpclassph512_mask:
2536 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
2537 break;
2538 case X86::BI__builtin_ia32_fpclassps128_mask:
2539 ID = Intrinsic::x86_avx512_fpclass_ps_128;
2540 break;
2541 case X86::BI__builtin_ia32_fpclassps256_mask:
2542 ID = Intrinsic::x86_avx512_fpclass_ps_256;
2543 break;
2544 case X86::BI__builtin_ia32_fpclassps512_mask:
2545 ID = Intrinsic::x86_avx512_fpclass_ps_512;
2546 break;
2547 case X86::BI__builtin_ia32_fpclasspd128_mask:
2548 ID = Intrinsic::x86_avx512_fpclass_pd_128;
2549 break;
2550 case X86::BI__builtin_ia32_fpclasspd256_mask:
2551 ID = Intrinsic::x86_avx512_fpclass_pd_256;
2552 break;
2553 case X86::BI__builtin_ia32_fpclasspd512_mask:
2554 ID = Intrinsic::x86_avx512_fpclass_pd_512;
2555 break;
2556 }
2557
2558 Value *Fpclass = Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: Ops);
2559 return EmitX86MaskedCompareResult(CGF&: *this, Cmp: Fpclass, NumElts, MaskIn);
2560 }
2561
2562 case X86::BI__builtin_ia32_vp2intersect_q_512:
2563 case X86::BI__builtin_ia32_vp2intersect_q_256:
2564 case X86::BI__builtin_ia32_vp2intersect_q_128:
2565 case X86::BI__builtin_ia32_vp2intersect_d_512:
2566 case X86::BI__builtin_ia32_vp2intersect_d_256:
2567 case X86::BI__builtin_ia32_vp2intersect_d_128: {
2568 unsigned NumElts =
2569 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
2570 Intrinsic::ID ID;
2571
2572 switch (BuiltinID) {
2573 default: llvm_unreachable("Unsupported intrinsic!");
2574 case X86::BI__builtin_ia32_vp2intersect_q_512:
2575 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
2576 break;
2577 case X86::BI__builtin_ia32_vp2intersect_q_256:
2578 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
2579 break;
2580 case X86::BI__builtin_ia32_vp2intersect_q_128:
2581 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
2582 break;
2583 case X86::BI__builtin_ia32_vp2intersect_d_512:
2584 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
2585 break;
2586 case X86::BI__builtin_ia32_vp2intersect_d_256:
2587 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
2588 break;
2589 case X86::BI__builtin_ia32_vp2intersect_d_128:
2590 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
2591 break;
2592 }
2593
2594 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: {Ops[0], Ops[1]});
2595 Value *Result = Builder.CreateExtractValue(Agg: Call, Idxs: 0);
2596 Result = EmitX86MaskedCompareResult(CGF&: *this, Cmp: Result, NumElts, MaskIn: nullptr);
2597 Builder.CreateDefaultAlignedStore(Val: Result, Addr: Ops[2]);
2598
2599 Result = Builder.CreateExtractValue(Agg: Call, Idxs: 1);
2600 Result = EmitX86MaskedCompareResult(CGF&: *this, Cmp: Result, NumElts, MaskIn: nullptr);
2601 return Builder.CreateDefaultAlignedStore(Val: Result, Addr: Ops[3]);
2602 }
2603
2604 case X86::BI__builtin_ia32_vpmultishiftqb128:
2605 case X86::BI__builtin_ia32_vpmultishiftqb256:
2606 case X86::BI__builtin_ia32_vpmultishiftqb512: {
2607 Intrinsic::ID ID;
2608 switch (BuiltinID) {
2609 default: llvm_unreachable("Unsupported intrinsic!");
2610 case X86::BI__builtin_ia32_vpmultishiftqb128:
2611 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
2612 break;
2613 case X86::BI__builtin_ia32_vpmultishiftqb256:
2614 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
2615 break;
2616 case X86::BI__builtin_ia32_vpmultishiftqb512:
2617 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
2618 break;
2619 }
2620
2621 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: Ops);
2622 }
2623
2624 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
2625 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
2626 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
2627 unsigned NumElts =
2628 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
2629 Value *MaskIn = Ops[2];
2630 Ops.erase(CI: &Ops[2]);
2631
2632 Intrinsic::ID ID;
2633 switch (BuiltinID) {
2634 default: llvm_unreachable("Unsupported intrinsic!");
2635 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
2636 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
2637 break;
2638 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
2639 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
2640 break;
2641 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
2642 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
2643 break;
2644 }
2645
2646 Value *Shufbit = Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: Ops);
2647 return EmitX86MaskedCompareResult(CGF&: *this, Cmp: Shufbit, NumElts, MaskIn);
2648 }
2649
2650 // packed comparison intrinsics
2651 case X86::BI__builtin_ia32_cmpeqps:
2652 case X86::BI__builtin_ia32_cmpeqpd:
2653 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
2654 case X86::BI__builtin_ia32_cmpltps:
2655 case X86::BI__builtin_ia32_cmpltpd:
2656 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
2657 case X86::BI__builtin_ia32_cmpleps:
2658 case X86::BI__builtin_ia32_cmplepd:
2659 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
2660 case X86::BI__builtin_ia32_cmpunordps:
2661 case X86::BI__builtin_ia32_cmpunordpd:
2662 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
2663 case X86::BI__builtin_ia32_cmpneqps:
2664 case X86::BI__builtin_ia32_cmpneqpd:
2665 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
2666 case X86::BI__builtin_ia32_cmpnltps:
2667 case X86::BI__builtin_ia32_cmpnltpd:
2668 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
2669 case X86::BI__builtin_ia32_cmpnleps:
2670 case X86::BI__builtin_ia32_cmpnlepd:
2671 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
2672 case X86::BI__builtin_ia32_cmpordps:
2673 case X86::BI__builtin_ia32_cmpordpd:
2674 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
2675 case X86::BI__builtin_ia32_cmpph128_mask:
2676 case X86::BI__builtin_ia32_cmpph256_mask:
2677 case X86::BI__builtin_ia32_cmpph512_mask:
2678 case X86::BI__builtin_ia32_cmpps128_mask:
2679 case X86::BI__builtin_ia32_cmpps256_mask:
2680 case X86::BI__builtin_ia32_cmpps512_mask:
2681 case X86::BI__builtin_ia32_cmppd128_mask:
2682 case X86::BI__builtin_ia32_cmppd256_mask:
2683 case X86::BI__builtin_ia32_cmppd512_mask:
2684 case X86::BI__builtin_ia32_vcmpbf16512_mask:
2685 case X86::BI__builtin_ia32_vcmpbf16256_mask:
2686 case X86::BI__builtin_ia32_vcmpbf16128_mask:
2687 IsMaskFCmp = true;
2688 [[fallthrough]];
2689 case X86::BI__builtin_ia32_cmpps:
2690 case X86::BI__builtin_ia32_cmpps256:
2691 case X86::BI__builtin_ia32_cmppd:
2692 case X86::BI__builtin_ia32_cmppd256: {
2693 // Lowering vector comparisons to fcmp instructions, while
2694 // ignoring signalling behaviour requested
2695 // ignoring rounding mode requested
2696 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
2697
2698 // The third argument is the comparison condition, and integer in the
2699 // range [0, 31]
2700 unsigned CC = cast<llvm::ConstantInt>(Val: Ops[2])->getZExtValue() & 0x1f;
2701
2702 // Lowering to IR fcmp instruction.
2703 // Ignoring requested signaling behaviour,
2704 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
2705 FCmpInst::Predicate Pred;
2706 bool IsSignaling;
2707 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
2708 // behavior is inverted. We'll handle that after the switch.
2709 switch (CC & 0xf) {
2710 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
2711 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
2712 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
2713 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
2714 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
2715 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
2716 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
2717 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
2718 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
2719 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
2720 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
2721 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
2722 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
2723 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
2724 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
2725 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
2726 default: llvm_unreachable("Unhandled CC");
2727 }
2728
2729 // Invert the signalling behavior for 16-31.
2730 if (CC & 0x10)
2731 IsSignaling = !IsSignaling;
2732
2733 // If the predicate is true or false and we're using constrained intrinsics,
2734 // we don't have a compare intrinsic we can use. Just use the legacy X86
2735 // specific intrinsic.
2736 // If the intrinsic is mask enabled and we're using constrained intrinsics,
2737 // use the legacy X86 specific intrinsic.
2738 if (Builder.getIsFPConstrained() &&
2739 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
2740 IsMaskFCmp)) {
2741
2742 Intrinsic::ID IID;
2743 switch (BuiltinID) {
2744 default: llvm_unreachable("Unexpected builtin");
2745 case X86::BI__builtin_ia32_cmpps:
2746 IID = Intrinsic::x86_sse_cmp_ps;
2747 break;
2748 case X86::BI__builtin_ia32_cmpps256:
2749 IID = Intrinsic::x86_avx_cmp_ps_256;
2750 break;
2751 case X86::BI__builtin_ia32_cmppd:
2752 IID = Intrinsic::x86_sse2_cmp_pd;
2753 break;
2754 case X86::BI__builtin_ia32_cmppd256:
2755 IID = Intrinsic::x86_avx_cmp_pd_256;
2756 break;
2757 case X86::BI__builtin_ia32_cmpph128_mask:
2758 IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_128;
2759 break;
2760 case X86::BI__builtin_ia32_cmpph256_mask:
2761 IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_256;
2762 break;
2763 case X86::BI__builtin_ia32_cmpph512_mask:
2764 IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_512;
2765 break;
2766 case X86::BI__builtin_ia32_cmpps512_mask:
2767 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
2768 break;
2769 case X86::BI__builtin_ia32_cmppd512_mask:
2770 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
2771 break;
2772 case X86::BI__builtin_ia32_cmpps128_mask:
2773 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
2774 break;
2775 case X86::BI__builtin_ia32_cmpps256_mask:
2776 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
2777 break;
2778 case X86::BI__builtin_ia32_cmppd128_mask:
2779 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
2780 break;
2781 case X86::BI__builtin_ia32_cmppd256_mask:
2782 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
2783 break;
2784 }
2785
2786 Function *Intr = CGM.getIntrinsic(IID);
2787 if (IsMaskFCmp) {
2788 unsigned NumElts =
2789 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
2790 Ops[3] = getMaskVecValue(CGF&: *this, Mask: Ops[3], NumElts);
2791 Value *Cmp = Builder.CreateCall(Callee: Intr, Args: Ops);
2792 return EmitX86MaskedCompareResult(CGF&: *this, Cmp, NumElts, MaskIn: nullptr);
2793 }
2794
2795 return Builder.CreateCall(Callee: Intr, Args: Ops);
2796 }
2797
2798 // Builtins without the _mask suffix return a vector of integers
2799 // of the same width as the input vectors
2800 if (IsMaskFCmp) {
2801 // We ignore SAE if strict FP is disabled. We only keep precise
2802 // exception behavior under strict FP.
2803 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
2804 // object will be required.
2805 unsigned NumElts =
2806 cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements();
2807 Value *Cmp;
2808 if (IsSignaling)
2809 Cmp = Builder.CreateFCmpS(P: Pred, LHS: Ops[0], RHS: Ops[1]);
2810 else
2811 Cmp = Builder.CreateFCmp(P: Pred, LHS: Ops[0], RHS: Ops[1]);
2812 return EmitX86MaskedCompareResult(CGF&: *this, Cmp, NumElts, MaskIn: Ops[3]);
2813 }
2814
2815 return getVectorFCmpIR(Pred, IsSignaling);
2816 }
2817
2818 // SSE scalar comparison intrinsics
2819 case X86::BI__builtin_ia32_cmpeqss:
2820 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
2821 case X86::BI__builtin_ia32_cmpltss:
2822 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
2823 case X86::BI__builtin_ia32_cmpless:
2824 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
2825 case X86::BI__builtin_ia32_cmpunordss:
2826 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
2827 case X86::BI__builtin_ia32_cmpneqss:
2828 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
2829 case X86::BI__builtin_ia32_cmpnltss:
2830 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
2831 case X86::BI__builtin_ia32_cmpnless:
2832 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
2833 case X86::BI__builtin_ia32_cmpordss:
2834 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
2835 case X86::BI__builtin_ia32_cmpeqsd:
2836 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
2837 case X86::BI__builtin_ia32_cmpltsd:
2838 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
2839 case X86::BI__builtin_ia32_cmplesd:
2840 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
2841 case X86::BI__builtin_ia32_cmpunordsd:
2842 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
2843 case X86::BI__builtin_ia32_cmpneqsd:
2844 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
2845 case X86::BI__builtin_ia32_cmpnltsd:
2846 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
2847 case X86::BI__builtin_ia32_cmpnlesd:
2848 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
2849 case X86::BI__builtin_ia32_cmpordsd:
2850 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
2851
2852 // f16c half2float intrinsics
2853 case X86::BI__builtin_ia32_vcvtph2ps:
2854 case X86::BI__builtin_ia32_vcvtph2ps256:
2855 case X86::BI__builtin_ia32_vcvtph2ps_mask:
2856 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
2857 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
2858 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2859 return EmitX86CvtF16ToFloatExpr(CGF&: *this, Ops, DstTy: ConvertType(T: E->getType()));
2860 }
2861
2862 // AVX512 bf16 intrinsics
2863 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
2864 Ops[2] = getMaskVecValue(
2865 CGF&: *this, Mask: Ops[2],
2866 NumElts: cast<llvm::FixedVectorType>(Val: Ops[0]->getType())->getNumElements());
2867 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
2868 return Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops);
2869 }
2870 case X86::BI__builtin_ia32_cvtsbf162ss_32:
2871 return Builder.CreateFPExt(V: Ops[0], DestTy: Builder.getFloatTy());
2872
2873 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
2874 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
2875 Intrinsic::ID IID;
2876 switch (BuiltinID) {
2877 default: llvm_unreachable("Unsupported intrinsic!");
2878 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
2879 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
2880 break;
2881 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
2882 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
2883 break;
2884 }
2885 Value *Res = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops[0]);
2886 return EmitX86Select(CGF&: *this, Mask: Ops[2], Op0: Res, Op1: Ops[1]);
2887 }
2888
2889 case X86::BI__cpuid:
2890 case X86::BI__cpuidex: {
2891 Value *FuncId = EmitScalarExpr(E: E->getArg(Arg: 1));
2892 Value *SubFuncId = BuiltinID == X86::BI__cpuidex
2893 ? EmitScalarExpr(E: E->getArg(Arg: 2))
2894 : llvm::ConstantInt::get(Ty: Int32Ty, V: 0);
2895
2896 llvm::StructType *CpuidRetTy =
2897 llvm::StructType::get(elt1: Int32Ty, elts: Int32Ty, elts: Int32Ty, elts: Int32Ty);
2898 llvm::FunctionType *FTy =
2899 llvm::FunctionType::get(Result: CpuidRetTy, Params: {Int32Ty, Int32Ty}, isVarArg: false);
2900
2901 StringRef Asm, Constraints;
2902 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
2903 Asm = "cpuid";
2904 Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
2905 } else {
2906 // x86-64 uses %rbx as the base register, so preserve it.
2907 Asm = "xchgq %rbx, ${1:q}\n"
2908 "cpuid\n"
2909 "xchgq %rbx, ${1:q}";
2910 Constraints = "={ax},=r,={cx},={dx},0,2";
2911 }
2912
2913 llvm::InlineAsm *IA = llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints,
2914 /*hasSideEffects=*/false);
2915 Value *IACall = Builder.CreateCall(Callee: IA, Args: {FuncId, SubFuncId});
2916 Value *BasePtr = EmitScalarExpr(E: E->getArg(Arg: 0));
2917 Value *Store = nullptr;
2918 for (unsigned i = 0; i < 4; i++) {
2919 Value *Extracted = Builder.CreateExtractValue(Agg: IACall, Idxs: i);
2920 Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Ty: Int32Ty, Ptr: BasePtr, Idx0: i);
2921 Store = Builder.CreateAlignedStore(Val: Extracted, Addr: StorePtr, Align: getIntAlign());
2922 }
2923
2924 // Return the last store instruction to signal that we have emitted the
2925 // the intrinsic.
2926 return Store;
2927 }
2928
2929 case X86::BI__emul:
2930 case X86::BI__emulu: {
2931 llvm::Type *Int64Ty = llvm::IntegerType::get(C&: getLLVMContext(), NumBits: 64);
2932 bool isSigned = (BuiltinID == X86::BI__emul);
2933 Value *LHS = Builder.CreateIntCast(V: Ops[0], DestTy: Int64Ty, isSigned);
2934 Value *RHS = Builder.CreateIntCast(V: Ops[1], DestTy: Int64Ty, isSigned);
2935 return Builder.CreateMul(LHS, RHS, Name: "", HasNUW: !isSigned, HasNSW: isSigned);
2936 }
2937 case X86::BI__mulh:
2938 case X86::BI__umulh:
2939 case X86::BI_mul128:
2940 case X86::BI_umul128: {
2941 llvm::Type *ResType = ConvertType(T: E->getType());
2942 llvm::Type *Int128Ty = llvm::IntegerType::get(C&: getLLVMContext(), NumBits: 128);
2943
2944 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
2945 Value *LHS = Builder.CreateIntCast(V: Ops[0], DestTy: Int128Ty, isSigned: IsSigned);
2946 Value *RHS = Builder.CreateIntCast(V: Ops[1], DestTy: Int128Ty, isSigned: IsSigned);
2947
2948 Value *MulResult, *HigherBits;
2949 if (IsSigned) {
2950 MulResult = Builder.CreateNSWMul(LHS, RHS);
2951 HigherBits = Builder.CreateAShr(LHS: MulResult, RHS: 64);
2952 } else {
2953 MulResult = Builder.CreateNUWMul(LHS, RHS);
2954 HigherBits = Builder.CreateLShr(LHS: MulResult, RHS: 64);
2955 }
2956 HigherBits = Builder.CreateIntCast(V: HigherBits, DestTy: ResType, isSigned: IsSigned);
2957
2958 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
2959 return HigherBits;
2960
2961 Address HighBitsAddress = EmitPointerWithAlignment(Addr: E->getArg(Arg: 2));
2962 Builder.CreateStore(Val: HigherBits, Addr: HighBitsAddress);
2963 return Builder.CreateIntCast(V: MulResult, DestTy: ResType, isSigned: IsSigned);
2964 }
2965
2966 case X86::BI__faststorefence: {
2967 return Builder.CreateFence(Ordering: llvm::AtomicOrdering::SequentiallyConsistent,
2968 SSID: llvm::SyncScope::System);
2969 }
2970 case X86::BI__shiftleft128:
2971 case X86::BI__shiftright128: {
2972 llvm::Function *F = CGM.getIntrinsic(
2973 IID: BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
2974 Tys: Int64Ty);
2975 // Flip low/high ops and zero-extend amount to matching type.
2976 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
2977 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
2978 std::swap(a&: Ops[0], b&: Ops[1]);
2979 Ops[2] = Builder.CreateZExt(V: Ops[2], DestTy: Int64Ty);
2980 return Builder.CreateCall(Callee: F, Args: Ops);
2981 }
2982 case X86::BI_ReadWriteBarrier:
2983 case X86::BI_ReadBarrier:
2984 case X86::BI_WriteBarrier: {
2985 return Builder.CreateFence(Ordering: llvm::AtomicOrdering::SequentiallyConsistent,
2986 SSID: llvm::SyncScope::SingleThread);
2987 }
2988
2989 case X86::BI_AddressOfReturnAddress: {
2990 Function *F =
2991 CGM.getIntrinsic(IID: Intrinsic::addressofreturnaddress, Tys: AllocaInt8PtrTy);
2992 return Builder.CreateCall(Callee: F);
2993 }
2994 case X86::BI__stosb: {
2995 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
2996 // instruction, but it will create a memset that won't be optimized away.
2997 return Builder.CreateMemSet(Ptr: Ops[0], Val: Ops[1], Size: Ops[2], Align: Align(1), isVolatile: true);
2998 }
2999 // Corresponding to intrisics which will return 2 tiles (tile0_tile1).
3000 case X86::BI__builtin_ia32_t2rpntlvwz0_internal:
3001 case X86::BI__builtin_ia32_t2rpntlvwz0rs_internal:
3002 case X86::BI__builtin_ia32_t2rpntlvwz0t1_internal:
3003 case X86::BI__builtin_ia32_t2rpntlvwz0rst1_internal:
3004 case X86::BI__builtin_ia32_t2rpntlvwz1_internal:
3005 case X86::BI__builtin_ia32_t2rpntlvwz1rs_internal:
3006 case X86::BI__builtin_ia32_t2rpntlvwz1t1_internal:
3007 case X86::BI__builtin_ia32_t2rpntlvwz1rst1_internal: {
3008 Intrinsic::ID IID;
3009 switch (BuiltinID) {
3010 default:
3011 llvm_unreachable("Unsupported intrinsic!");
3012 case X86::BI__builtin_ia32_t2rpntlvwz0_internal:
3013 IID = Intrinsic::x86_t2rpntlvwz0_internal;
3014 break;
3015 case X86::BI__builtin_ia32_t2rpntlvwz0rs_internal:
3016 IID = Intrinsic::x86_t2rpntlvwz0rs_internal;
3017 break;
3018 case X86::BI__builtin_ia32_t2rpntlvwz0t1_internal:
3019 IID = Intrinsic::x86_t2rpntlvwz0t1_internal;
3020 break;
3021 case X86::BI__builtin_ia32_t2rpntlvwz0rst1_internal:
3022 IID = Intrinsic::x86_t2rpntlvwz0rst1_internal;
3023 break;
3024 case X86::BI__builtin_ia32_t2rpntlvwz1_internal:
3025 IID = Intrinsic::x86_t2rpntlvwz1_internal;
3026 break;
3027 case X86::BI__builtin_ia32_t2rpntlvwz1rs_internal:
3028 IID = Intrinsic::x86_t2rpntlvwz1rs_internal;
3029 break;
3030 case X86::BI__builtin_ia32_t2rpntlvwz1t1_internal:
3031 IID = Intrinsic::x86_t2rpntlvwz1t1_internal;
3032 break;
3033 case X86::BI__builtin_ia32_t2rpntlvwz1rst1_internal:
3034 IID = Intrinsic::x86_t2rpntlvwz1rst1_internal;
3035 break;
3036 }
3037
3038 // Ops = (Row0, Col0, Col1, DstPtr0, DstPtr1, SrcPtr, Stride)
3039 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID),
3040 Args: {Ops[0], Ops[1], Ops[2], Ops[5], Ops[6]});
3041
3042 auto *PtrTy = E->getArg(Arg: 3)->getType()->getAs<PointerType>();
3043 assert(PtrTy && "arg3 must be of pointer type");
3044 QualType PtreeTy = PtrTy->getPointeeType();
3045 llvm::Type *TyPtee = ConvertType(T: PtreeTy);
3046
3047 // Bitcast amx type (x86_amx) to vector type (256 x i32)
3048 // Then store tile0 into DstPtr0
3049 Value *T0 = Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3050 Value *VecT0 = Builder.CreateIntrinsic(ID: Intrinsic::x86_cast_tile_to_vector,
3051 Types: {TyPtee}, Args: {T0});
3052 Builder.CreateDefaultAlignedStore(Val: VecT0, Addr: Ops[3]);
3053
3054 // Then store tile1 into DstPtr1
3055 Value *T1 = Builder.CreateExtractValue(Agg: Call, Idxs: 1);
3056 Value *VecT1 = Builder.CreateIntrinsic(ID: Intrinsic::x86_cast_tile_to_vector,
3057 Types: {TyPtee}, Args: {T1});
3058 Value *Store = Builder.CreateDefaultAlignedStore(Val: VecT1, Addr: Ops[4]);
3059
3060 // Note: Here we escape directly use x86_tilestored64_internal to store
3061 // the results due to it can't make sure the Mem written scope. This may
3062 // cause shapes reloads after first amx intrinsic, which current amx reg-
3063 // ister allocation has no ability to handle it.
3064
3065 return Store;
3066 }
3067 case X86::BI__ud2:
3068 // llvm.trap makes a ud2a instruction on x86.
3069 return EmitTrapCall(IntrID: Intrinsic::trap);
3070 case X86::BI__int2c: {
3071 // This syscall signals a driver assertion failure in x86 NT kernels.
3072 llvm::FunctionType *FTy = llvm::FunctionType::get(Result: VoidTy, isVarArg: false);
3073 llvm::InlineAsm *IA =
3074 llvm::InlineAsm::get(Ty: FTy, AsmString: "int $$0x2c", Constraints: "", /*hasSideEffects=*/true);
3075 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
3076 C&: getLLVMContext(), Index: llvm::AttributeList::FunctionIndex,
3077 Kinds: llvm::Attribute::NoReturn);
3078 llvm::CallInst *CI = Builder.CreateCall(Callee: IA);
3079 CI->setAttributes(NoReturnAttr);
3080 return CI;
3081 }
3082 case X86::BI__readfsbyte:
3083 case X86::BI__readfsword:
3084 case X86::BI__readfsdword:
3085 case X86::BI__readfsqword: {
3086 llvm::Type *IntTy = ConvertType(T: E->getType());
3087 Value *Ptr = Builder.CreateIntToPtr(
3088 V: Ops[0], DestTy: llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: 257));
3089 LoadInst *Load = Builder.CreateAlignedLoad(
3090 Ty: IntTy, Addr: Ptr, Align: getContext().getTypeAlignInChars(T: E->getType()));
3091 Load->setVolatile(true);
3092 return Load;
3093 }
3094 case X86::BI__readgsbyte:
3095 case X86::BI__readgsword:
3096 case X86::BI__readgsdword:
3097 case X86::BI__readgsqword: {
3098 llvm::Type *IntTy = ConvertType(T: E->getType());
3099 Value *Ptr = Builder.CreateIntToPtr(
3100 V: Ops[0], DestTy: llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: 256));
3101 LoadInst *Load = Builder.CreateAlignedLoad(
3102 Ty: IntTy, Addr: Ptr, Align: getContext().getTypeAlignInChars(T: E->getType()));
3103 Load->setVolatile(true);
3104 return Load;
3105 }
3106 case X86::BI__builtin_ia32_encodekey128_u32: {
3107 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
3108
3109 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: {Ops[0], Ops[1]});
3110
3111 for (int i = 0; i < 3; ++i) {
3112 Value *Extract = Builder.CreateExtractValue(Agg: Call, Idxs: i + 1);
3113 Value *Ptr = Builder.CreateConstGEP1_32(Ty: Int8Ty, Ptr: Ops[2], Idx0: i * 16);
3114 Builder.CreateAlignedStore(Val: Extract, Ptr, Align: Align(1));
3115 }
3116
3117 return Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3118 }
3119 case X86::BI__builtin_ia32_encodekey256_u32: {
3120 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
3121
3122 Value *Call =
3123 Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: {Ops[0], Ops[1], Ops[2]});
3124
3125 for (int i = 0; i < 4; ++i) {
3126 Value *Extract = Builder.CreateExtractValue(Agg: Call, Idxs: i + 1);
3127 Value *Ptr = Builder.CreateConstGEP1_32(Ty: Int8Ty, Ptr: Ops[3], Idx0: i * 16);
3128 Builder.CreateAlignedStore(Val: Extract, Ptr, Align: Align(1));
3129 }
3130
3131 return Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3132 }
3133 case X86::BI__builtin_ia32_aesenc128kl_u8:
3134 case X86::BI__builtin_ia32_aesdec128kl_u8:
3135 case X86::BI__builtin_ia32_aesenc256kl_u8:
3136 case X86::BI__builtin_ia32_aesdec256kl_u8: {
3137 Intrinsic::ID IID;
3138 StringRef BlockName;
3139 switch (BuiltinID) {
3140 default:
3141 llvm_unreachable("Unexpected builtin");
3142 case X86::BI__builtin_ia32_aesenc128kl_u8:
3143 IID = Intrinsic::x86_aesenc128kl;
3144 BlockName = "aesenc128kl";
3145 break;
3146 case X86::BI__builtin_ia32_aesdec128kl_u8:
3147 IID = Intrinsic::x86_aesdec128kl;
3148 BlockName = "aesdec128kl";
3149 break;
3150 case X86::BI__builtin_ia32_aesenc256kl_u8:
3151 IID = Intrinsic::x86_aesenc256kl;
3152 BlockName = "aesenc256kl";
3153 break;
3154 case X86::BI__builtin_ia32_aesdec256kl_u8:
3155 IID = Intrinsic::x86_aesdec256kl;
3156 BlockName = "aesdec256kl";
3157 break;
3158 }
3159
3160 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: {Ops[1], Ops[2]});
3161
3162 BasicBlock *NoError =
3163 createBasicBlock(name: BlockName + "_no_error", parent: this->CurFn);
3164 BasicBlock *Error = createBasicBlock(name: BlockName + "_error", parent: this->CurFn);
3165 BasicBlock *End = createBasicBlock(name: BlockName + "_end", parent: this->CurFn);
3166
3167 Value *Ret = Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3168 Value *Succ = Builder.CreateTrunc(V: Ret, DestTy: Builder.getInt1Ty());
3169 Value *Out = Builder.CreateExtractValue(Agg: Call, Idxs: 1);
3170 Builder.CreateCondBr(Cond: Succ, True: NoError, False: Error);
3171
3172 Builder.SetInsertPoint(NoError);
3173 Builder.CreateDefaultAlignedStore(Val: Out, Addr: Ops[0]);
3174 Builder.CreateBr(Dest: End);
3175
3176 Builder.SetInsertPoint(Error);
3177 Constant *Zero = llvm::Constant::getNullValue(Ty: Out->getType());
3178 Builder.CreateDefaultAlignedStore(Val: Zero, Addr: Ops[0]);
3179 Builder.CreateBr(Dest: End);
3180
3181 Builder.SetInsertPoint(End);
3182 return Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3183 }
3184 case X86::BI__builtin_ia32_aesencwide128kl_u8:
3185 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
3186 case X86::BI__builtin_ia32_aesencwide256kl_u8:
3187 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
3188 Intrinsic::ID IID;
3189 StringRef BlockName;
3190 switch (BuiltinID) {
3191 case X86::BI__builtin_ia32_aesencwide128kl_u8:
3192 IID = Intrinsic::x86_aesencwide128kl;
3193 BlockName = "aesencwide128kl";
3194 break;
3195 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
3196 IID = Intrinsic::x86_aesdecwide128kl;
3197 BlockName = "aesdecwide128kl";
3198 break;
3199 case X86::BI__builtin_ia32_aesencwide256kl_u8:
3200 IID = Intrinsic::x86_aesencwide256kl;
3201 BlockName = "aesencwide256kl";
3202 break;
3203 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
3204 IID = Intrinsic::x86_aesdecwide256kl;
3205 BlockName = "aesdecwide256kl";
3206 break;
3207 }
3208
3209 llvm::Type *Ty = FixedVectorType::get(ElementType: Builder.getInt64Ty(), NumElts: 2);
3210 Value *InOps[9];
3211 InOps[0] = Ops[2];
3212 for (int i = 0; i != 8; ++i) {
3213 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ptr: Ops[1], Idx0: i);
3214 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align: Align(16));
3215 }
3216
3217 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: InOps);
3218
3219 BasicBlock *NoError =
3220 createBasicBlock(name: BlockName + "_no_error", parent: this->CurFn);
3221 BasicBlock *Error = createBasicBlock(name: BlockName + "_error", parent: this->CurFn);
3222 BasicBlock *End = createBasicBlock(name: BlockName + "_end", parent: this->CurFn);
3223
3224 Value *Ret = Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3225 Value *Succ = Builder.CreateTrunc(V: Ret, DestTy: Builder.getInt1Ty());
3226 Builder.CreateCondBr(Cond: Succ, True: NoError, False: Error);
3227
3228 Builder.SetInsertPoint(NoError);
3229 for (int i = 0; i != 8; ++i) {
3230 Value *Extract = Builder.CreateExtractValue(Agg: Call, Idxs: i + 1);
3231 Value *Ptr = Builder.CreateConstGEP1_32(Ty: Extract->getType(), Ptr: Ops[0], Idx0: i);
3232 Builder.CreateAlignedStore(Val: Extract, Ptr, Align: Align(16));
3233 }
3234 Builder.CreateBr(Dest: End);
3235
3236 Builder.SetInsertPoint(Error);
3237 for (int i = 0; i != 8; ++i) {
3238 Value *Out = Builder.CreateExtractValue(Agg: Call, Idxs: i + 1);
3239 Constant *Zero = llvm::Constant::getNullValue(Ty: Out->getType());
3240 Value *Ptr = Builder.CreateConstGEP1_32(Ty: Out->getType(), Ptr: Ops[0], Idx0: i);
3241 Builder.CreateAlignedStore(Val: Zero, Ptr, Align: Align(16));
3242 }
3243 Builder.CreateBr(Dest: End);
3244
3245 Builder.SetInsertPoint(End);
3246 return Builder.CreateExtractValue(Agg: Call, Idxs: 0);
3247 }
3248 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
3249 IsConjFMA = true;
3250 [[fallthrough]];
3251 case X86::BI__builtin_ia32_vfmaddcph512_mask: {
3252 Intrinsic::ID IID = IsConjFMA
3253 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
3254 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
3255 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops);
3256 return EmitX86Select(CGF&: *this, Mask: Ops[3], Op0: Call, Op1: Ops[0]);
3257 }
3258 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
3259 IsConjFMA = true;
3260 [[fallthrough]];
3261 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
3262 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
3263 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
3264 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops);
3265 Value *And = Builder.CreateAnd(LHS: Ops[3], RHS: llvm::ConstantInt::get(Ty: Int8Ty, V: 1));
3266 return EmitX86Select(CGF&: *this, Mask: And, Op0: Call, Op1: Ops[0]);
3267 }
3268 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
3269 IsConjFMA = true;
3270 [[fallthrough]];
3271 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
3272 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
3273 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
3274 Value *Call = Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: Ops);
3275 static constexpr int Mask[] = {0, 5, 6, 7};
3276 return Builder.CreateShuffleVector(V1: Call, V2: Ops[2], Mask);
3277 }
3278 case X86::BI__builtin_ia32_prefetchi:
3279 return Builder.CreateCall(
3280 Callee: CGM.getIntrinsic(IID: Intrinsic::prefetch, Tys: Ops[0]->getType()),
3281 Args: {Ops[0], llvm::ConstantInt::get(Ty: Int32Ty, V: 0), Ops[1],
3282 llvm::ConstantInt::get(Ty: Int32Ty, V: 0)});
3283 }
3284}
3285