1 | //===- Hexagon.cpp --------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABIInfoImpl.h" |
10 | #include "TargetInfo.h" |
11 | |
12 | using namespace clang; |
13 | using namespace clang::CodeGen; |
14 | |
15 | //===----------------------------------------------------------------------===// |
16 | // Hexagon ABI Implementation |
17 | //===----------------------------------------------------------------------===// |
18 | |
19 | namespace { |
20 | |
21 | class HexagonABIInfo : public DefaultABIInfo { |
22 | public: |
23 | HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
24 | |
25 | private: |
26 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
27 | ABIArgInfo classifyArgumentType(QualType RetTy) const; |
28 | ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; |
29 | |
30 | void computeInfo(CGFunctionInfo &FI) const override; |
31 | |
32 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
33 | AggValueSlot Slot) const override; |
34 | Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, |
35 | QualType Ty) const; |
36 | Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, |
37 | QualType Ty) const; |
38 | Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, |
39 | QualType Ty) const; |
40 | }; |
41 | |
42 | class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { |
43 | public: |
44 | HexagonTargetCodeGenInfo(CodeGenTypes &CGT) |
45 | : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(args&: CGT)) {} |
46 | |
47 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
48 | return 29; |
49 | } |
50 | |
51 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
52 | CodeGen::CodeGenModule &GCM) const override { |
53 | if (GV->isDeclaration()) |
54 | return; |
55 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
56 | if (!FD) |
57 | return; |
58 | } |
59 | }; |
60 | |
61 | } // namespace |
62 | |
63 | void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { |
64 | unsigned RegsLeft = 6; |
65 | if (!getCXXABI().classifyReturnType(FI)) |
66 | FI.getReturnInfo() = classifyReturnType(RetTy: FI.getReturnType()); |
67 | for (auto &I : FI.arguments()) |
68 | I.info = classifyArgumentType(RetTy: I.type, RegsLeft: &RegsLeft); |
69 | } |
70 | |
71 | static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { |
72 | assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" |
73 | " through registers" ); |
74 | |
75 | if (*RegsLeft == 0) |
76 | return false; |
77 | |
78 | if (Size <= 32) { |
79 | (*RegsLeft)--; |
80 | return true; |
81 | } |
82 | |
83 | if (2 <= (*RegsLeft & (~1U))) { |
84 | *RegsLeft = (*RegsLeft & (~1U)) - 2; |
85 | return true; |
86 | } |
87 | |
88 | // Next available register was r5 but candidate was greater than 32-bits so it |
89 | // has to go on the stack. However we still consume r5 |
90 | if (*RegsLeft == 1) |
91 | *RegsLeft = 0; |
92 | |
93 | return false; |
94 | } |
95 | |
96 | ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, |
97 | unsigned *RegsLeft) const { |
98 | if (!isAggregateTypeForABI(T: Ty)) { |
99 | // Treat an enum type as its underlying type. |
100 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
101 | Ty = EnumTy->getDecl()->getIntegerType(); |
102 | |
103 | uint64_t Size = getContext().getTypeSize(T: Ty); |
104 | if (Size <= 64) |
105 | HexagonAdjustRegsLeft(Size, RegsLeft); |
106 | |
107 | if (Size > 64 && Ty->isBitIntType()) |
108 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
109 | /*ByVal=*/true); |
110 | |
111 | return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
112 | : ABIArgInfo::getDirect(); |
113 | } |
114 | |
115 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) |
116 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
117 | ByVal: RAA == CGCXXABI::RAA_DirectInMemory); |
118 | |
119 | // Ignore empty records. |
120 | if (isEmptyRecord(Context&: getContext(), T: Ty, AllowArrays: true)) |
121 | return ABIArgInfo::getIgnore(); |
122 | |
123 | uint64_t Size = getContext().getTypeSize(T: Ty); |
124 | unsigned Align = getContext().getTypeAlign(T: Ty); |
125 | |
126 | if (Size > 64) |
127 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
128 | /*ByVal=*/true); |
129 | |
130 | if (HexagonAdjustRegsLeft(Size, RegsLeft)) |
131 | Align = Size <= 32 ? 32 : 64; |
132 | if (Size <= Align) { |
133 | // Pass in the smallest viable integer type. |
134 | Size = llvm::bit_ceil(Value: Size); |
135 | return ABIArgInfo::getDirect(T: llvm::Type::getIntNTy(C&: getVMContext(), N: Size)); |
136 | } |
137 | return DefaultABIInfo::classifyArgumentType(RetTy: Ty); |
138 | } |
139 | |
140 | ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { |
141 | if (RetTy->isVoidType()) |
142 | return ABIArgInfo::getIgnore(); |
143 | |
144 | const TargetInfo &T = CGT.getTarget(); |
145 | uint64_t Size = getContext().getTypeSize(T: RetTy); |
146 | |
147 | if (RetTy->getAs<VectorType>()) { |
148 | // HVX vectors are returned in vector registers or register pairs. |
149 | if (T.hasFeature(Feature: "hvx" )) { |
150 | assert(T.hasFeature("hvx-length64b" ) || T.hasFeature("hvx-length128b" )); |
151 | uint64_t VecSize = T.hasFeature(Feature: "hvx-length64b" ) ? 64*8 : 128*8; |
152 | if (Size == VecSize || Size == 2*VecSize) |
153 | return ABIArgInfo::getDirectInReg(); |
154 | } |
155 | // Large vector types should be returned via memory. |
156 | if (Size > 64) |
157 | return getNaturalAlignIndirect(Ty: RetTy, |
158 | AddrSpace: getDataLayout().getAllocaAddrSpace()); |
159 | } |
160 | |
161 | if (!isAggregateTypeForABI(T: RetTy)) { |
162 | // Treat an enum type as its underlying type. |
163 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
164 | RetTy = EnumTy->getDecl()->getIntegerType(); |
165 | |
166 | if (Size > 64 && RetTy->isBitIntType()) |
167 | return getNaturalAlignIndirect( |
168 | Ty: RetTy, AddrSpace: getDataLayout().getAllocaAddrSpace(), /*ByVal=*/false); |
169 | |
170 | return isPromotableIntegerTypeForABI(Ty: RetTy) ? ABIArgInfo::getExtend(Ty: RetTy) |
171 | : ABIArgInfo::getDirect(); |
172 | } |
173 | |
174 | if (isEmptyRecord(Context&: getContext(), T: RetTy, AllowArrays: true)) |
175 | return ABIArgInfo::getIgnore(); |
176 | |
177 | // Aggregates <= 8 bytes are returned in registers, other aggregates |
178 | // are returned indirectly. |
179 | if (Size <= 64) { |
180 | // Return in the smallest viable integer type. |
181 | Size = llvm::bit_ceil(Value: Size); |
182 | return ABIArgInfo::getDirect(T: llvm::Type::getIntNTy(C&: getVMContext(), N: Size)); |
183 | } |
184 | return getNaturalAlignIndirect(Ty: RetTy, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
185 | /*ByVal=*/true); |
186 | } |
187 | |
188 | Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, |
189 | Address VAListAddr, |
190 | QualType Ty) const { |
191 | // Load the overflow area pointer. |
192 | Address __overflow_area_pointer_p = |
193 | CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 2, Name: "__overflow_area_pointer_p" ); |
194 | llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( |
195 | Addr: __overflow_area_pointer_p, Name: "__overflow_area_pointer" ); |
196 | |
197 | uint64_t Align = CGF.getContext().getTypeAlign(T: Ty) / 8; |
198 | if (Align > 4) { |
199 | // Alignment should be a power of 2. |
200 | assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!" ); |
201 | |
202 | // overflow_arg_area = (overflow_arg_area + align - 1) & -align; |
203 | llvm::Value *Offset = llvm::ConstantInt::get(Ty: CGF.Int64Ty, V: Align - 1); |
204 | |
205 | // Add offset to the current pointer to access the argument. |
206 | __overflow_area_pointer = |
207 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: __overflow_area_pointer, IdxList: Offset); |
208 | llvm::Value *AsInt = |
209 | CGF.Builder.CreatePtrToInt(V: __overflow_area_pointer, DestTy: CGF.Int32Ty); |
210 | |
211 | // Create a mask which should be "AND"ed |
212 | // with (overflow_arg_area + align - 1) |
213 | llvm::Value *Mask = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -(int)Align); |
214 | __overflow_area_pointer = CGF.Builder.CreateIntToPtr( |
215 | V: CGF.Builder.CreateAnd(LHS: AsInt, RHS: Mask), DestTy: __overflow_area_pointer->getType(), |
216 | Name: "__overflow_area_pointer.align" ); |
217 | } |
218 | |
219 | // Get the type of the argument from memory and bitcast |
220 | // overflow area pointer to the argument type. |
221 | llvm::Type *PTy = CGF.ConvertTypeForMem(T: Ty); |
222 | Address AddrTyped = |
223 | Address(__overflow_area_pointer, PTy, CharUnits::fromQuantity(Quantity: Align)); |
224 | |
225 | // Round up to the minimum stack alignment for varargs which is 4 bytes. |
226 | uint64_t Offset = llvm::alignTo(Value: CGF.getContext().getTypeSize(T: Ty) / 8, Align: 4); |
227 | |
228 | __overflow_area_pointer = CGF.Builder.CreateGEP( |
229 | Ty: CGF.Int8Ty, Ptr: __overflow_area_pointer, |
230 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset), |
231 | Name: "__overflow_area_pointer.next" ); |
232 | CGF.Builder.CreateStore(Val: __overflow_area_pointer, Addr: __overflow_area_pointer_p); |
233 | |
234 | return AddrTyped; |
235 | } |
236 | |
237 | Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, |
238 | Address VAListAddr, |
239 | QualType Ty) const { |
240 | // FIXME: Need to handle alignment |
241 | llvm::Type *BP = CGF.Int8PtrTy; |
242 | CGBuilderTy &Builder = CGF.Builder; |
243 | Address VAListAddrAsBPP = VAListAddr.withElementType(ElemTy: BP); |
244 | llvm::Value *Addr = Builder.CreateLoad(Addr: VAListAddrAsBPP, Name: "ap.cur" ); |
245 | // Handle address alignment for type alignment > 32 bits |
246 | uint64_t TyAlign = CGF.getContext().getTypeAlign(T: Ty) / 8; |
247 | if (TyAlign > 4) { |
248 | assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!" ); |
249 | llvm::Value *AddrAsInt = Builder.CreatePtrToInt(V: Addr, DestTy: CGF.Int32Ty); |
250 | AddrAsInt = Builder.CreateAdd(LHS: AddrAsInt, RHS: Builder.getInt32(C: TyAlign - 1)); |
251 | AddrAsInt = Builder.CreateAnd(LHS: AddrAsInt, RHS: Builder.getInt32(C: ~(TyAlign - 1))); |
252 | Addr = Builder.CreateIntToPtr(V: AddrAsInt, DestTy: BP); |
253 | } |
254 | Address AddrTyped = |
255 | Address(Addr, CGF.ConvertType(T: Ty), CharUnits::fromQuantity(Quantity: TyAlign)); |
256 | |
257 | uint64_t Offset = llvm::alignTo(Value: CGF.getContext().getTypeSize(T: Ty) / 8, Align: 4); |
258 | llvm::Value *NextAddr = Builder.CreateGEP( |
259 | Ty: CGF.Int8Ty, Ptr: Addr, IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset), Name: "ap.next" ); |
260 | Builder.CreateStore(Val: NextAddr, Addr: VAListAddrAsBPP); |
261 | |
262 | return AddrTyped; |
263 | } |
264 | |
265 | Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, |
266 | Address VAListAddr, |
267 | QualType Ty) const { |
268 | int ArgSize = CGF.getContext().getTypeSize(T: Ty) / 8; |
269 | |
270 | if (ArgSize > 8) |
271 | return EmitVAArgFromMemory(CGF, VAListAddr, Ty); |
272 | |
273 | // Here we have check if the argument is in register area or |
274 | // in overflow area. |
275 | // If the saved register area pointer + argsize rounded up to alignment > |
276 | // saved register area end pointer, argument is in overflow area. |
277 | unsigned RegsLeft = 6; |
278 | Ty = CGF.getContext().getCanonicalType(T: Ty); |
279 | (void)classifyArgumentType(Ty, RegsLeft: &RegsLeft); |
280 | |
281 | llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock(name: "vaarg.maybe_reg" ); |
282 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock(name: "vaarg.in_reg" ); |
283 | llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock(name: "vaarg.on_stack" ); |
284 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "vaarg.end" ); |
285 | |
286 | // Get rounded size of the argument.GCC does not allow vararg of |
287 | // size < 4 bytes. We follow the same logic here. |
288 | ArgSize = (CGF.getContext().getTypeSize(T: Ty) <= 32) ? 4 : 8; |
289 | int ArgAlign = (CGF.getContext().getTypeSize(T: Ty) <= 32) ? 4 : 8; |
290 | |
291 | // Argument may be in saved register area |
292 | CGF.EmitBlock(BB: MaybeRegBlock); |
293 | |
294 | // Load the current saved register area pointer. |
295 | Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( |
296 | Addr: VAListAddr, Index: 0, Name: "__current_saved_reg_area_pointer_p" ); |
297 | llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( |
298 | Addr: __current_saved_reg_area_pointer_p, Name: "__current_saved_reg_area_pointer" ); |
299 | |
300 | // Load the saved register area end pointer. |
301 | Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( |
302 | Addr: VAListAddr, Index: 1, Name: "__saved_reg_area_end_pointer_p" ); |
303 | llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( |
304 | Addr: __saved_reg_area_end_pointer_p, Name: "__saved_reg_area_end_pointer" ); |
305 | |
306 | // If the size of argument is > 4 bytes, check if the stack |
307 | // location is aligned to 8 bytes |
308 | if (ArgAlign > 4) { |
309 | |
310 | llvm::Value *__current_saved_reg_area_pointer_int = |
311 | CGF.Builder.CreatePtrToInt(V: __current_saved_reg_area_pointer, |
312 | DestTy: CGF.Int32Ty); |
313 | |
314 | __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( |
315 | LHS: __current_saved_reg_area_pointer_int, |
316 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: (ArgAlign - 1)), |
317 | Name: "align_current_saved_reg_area_pointer" ); |
318 | |
319 | __current_saved_reg_area_pointer_int = |
320 | CGF.Builder.CreateAnd(LHS: __current_saved_reg_area_pointer_int, |
321 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -ArgAlign), |
322 | Name: "align_current_saved_reg_area_pointer" ); |
323 | |
324 | __current_saved_reg_area_pointer = |
325 | CGF.Builder.CreateIntToPtr(V: __current_saved_reg_area_pointer_int, |
326 | DestTy: __current_saved_reg_area_pointer->getType(), |
327 | Name: "align_current_saved_reg_area_pointer" ); |
328 | } |
329 | |
330 | llvm::Value *__new_saved_reg_area_pointer = |
331 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: __current_saved_reg_area_pointer, |
332 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: ArgSize), |
333 | Name: "__new_saved_reg_area_pointer" ); |
334 | |
335 | llvm::Value *UsingStack = nullptr; |
336 | UsingStack = CGF.Builder.CreateICmpSGT(LHS: __new_saved_reg_area_pointer, |
337 | RHS: __saved_reg_area_end_pointer); |
338 | |
339 | CGF.Builder.CreateCondBr(Cond: UsingStack, True: OnStackBlock, False: InRegBlock); |
340 | |
341 | // Argument in saved register area |
342 | // Implement the block where argument is in register saved area |
343 | CGF.EmitBlock(BB: InRegBlock); |
344 | |
345 | CGF.Builder.CreateStore(Val: __new_saved_reg_area_pointer, |
346 | Addr: __current_saved_reg_area_pointer_p); |
347 | |
348 | CGF.EmitBranch(Block: ContBlock); |
349 | |
350 | // Argument in overflow area |
351 | // Implement the block where the argument is in overflow area. |
352 | CGF.EmitBlock(BB: OnStackBlock); |
353 | |
354 | // Load the overflow area pointer |
355 | Address __overflow_area_pointer_p = |
356 | CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 2, Name: "__overflow_area_pointer_p" ); |
357 | llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( |
358 | Addr: __overflow_area_pointer_p, Name: "__overflow_area_pointer" ); |
359 | |
360 | // Align the overflow area pointer according to the alignment of the argument |
361 | if (ArgAlign > 4) { |
362 | llvm::Value *__overflow_area_pointer_int = |
363 | CGF.Builder.CreatePtrToInt(V: __overflow_area_pointer, DestTy: CGF.Int32Ty); |
364 | |
365 | __overflow_area_pointer_int = |
366 | CGF.Builder.CreateAdd(LHS: __overflow_area_pointer_int, |
367 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: ArgAlign - 1), |
368 | Name: "align_overflow_area_pointer" ); |
369 | |
370 | __overflow_area_pointer_int = |
371 | CGF.Builder.CreateAnd(LHS: __overflow_area_pointer_int, |
372 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -ArgAlign), |
373 | Name: "align_overflow_area_pointer" ); |
374 | |
375 | __overflow_area_pointer = CGF.Builder.CreateIntToPtr( |
376 | V: __overflow_area_pointer_int, DestTy: __overflow_area_pointer->getType(), |
377 | Name: "align_overflow_area_pointer" ); |
378 | } |
379 | |
380 | // Get the pointer for next argument in overflow area and store it |
381 | // to overflow area pointer. |
382 | llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( |
383 | Ty: CGF.Int8Ty, Ptr: __overflow_area_pointer, |
384 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: ArgSize), |
385 | Name: "__overflow_area_pointer.next" ); |
386 | |
387 | CGF.Builder.CreateStore(Val: __new_overflow_area_pointer, |
388 | Addr: __overflow_area_pointer_p); |
389 | |
390 | CGF.Builder.CreateStore(Val: __new_overflow_area_pointer, |
391 | Addr: __current_saved_reg_area_pointer_p); |
392 | |
393 | CGF.EmitBranch(Block: ContBlock); |
394 | // Get the correct pointer to load the variable argument |
395 | // Implement the ContBlock |
396 | CGF.EmitBlock(BB: ContBlock); |
397 | |
398 | llvm::Type *MemTy = CGF.ConvertTypeForMem(T: Ty); |
399 | llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI( |
400 | Ty: llvm::PointerType::getUnqual(C&: MemTy->getContext()), NumReservedValues: 2, Name: "vaarg.addr" ); |
401 | ArgAddr->addIncoming(V: __current_saved_reg_area_pointer, BB: InRegBlock); |
402 | ArgAddr->addIncoming(V: __overflow_area_pointer, BB: OnStackBlock); |
403 | |
404 | return Address(ArgAddr, MemTy, CharUnits::fromQuantity(Quantity: ArgAlign)); |
405 | } |
406 | |
407 | RValue HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
408 | QualType Ty, AggValueSlot Slot) const { |
409 | |
410 | if (getTarget().getTriple().isMusl()) |
411 | return CGF.EmitLoadOfAnyValue( |
412 | V: CGF.MakeAddrLValue(Addr: EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty), T: Ty), |
413 | Slot); |
414 | |
415 | return CGF.EmitLoadOfAnyValue( |
416 | V: CGF.MakeAddrLValue(Addr: EmitVAArgForHexagon(CGF, VAListAddr, Ty), T: Ty), Slot); |
417 | } |
418 | |
419 | std::unique_ptr<TargetCodeGenInfo> |
420 | CodeGen::createHexagonTargetCodeGenInfo(CodeGenModule &CGM) { |
421 | return std::make_unique<HexagonTargetCodeGenInfo>(args&: CGM.getTypes()); |
422 | } |
423 | |