| 1 | //===- Hexagon.cpp --------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIInfoImpl.h" |
| 10 | #include "TargetInfo.h" |
| 11 | |
| 12 | using namespace clang; |
| 13 | using namespace clang::CodeGen; |
| 14 | |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | // Hexagon ABI Implementation |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | namespace { |
| 20 | |
| 21 | class HexagonABIInfo : public DefaultABIInfo { |
| 22 | public: |
| 23 | HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
| 24 | |
| 25 | private: |
| 26 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
| 27 | ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| 28 | ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; |
| 29 | |
| 30 | void computeInfo(CGFunctionInfo &FI) const override; |
| 31 | |
| 32 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
| 33 | AggValueSlot Slot) const override; |
| 34 | Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, |
| 35 | QualType Ty) const; |
| 36 | Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, |
| 37 | QualType Ty) const; |
| 38 | Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, |
| 39 | QualType Ty) const; |
| 40 | }; |
| 41 | |
| 42 | class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { |
| 43 | public: |
| 44 | HexagonTargetCodeGenInfo(CodeGenTypes &CGT) |
| 45 | : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(args&: CGT)) {} |
| 46 | |
| 47 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| 48 | return 29; |
| 49 | } |
| 50 | |
| 51 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| 52 | CodeGen::CodeGenModule &GCM) const override { |
| 53 | if (GV->isDeclaration()) |
| 54 | return; |
| 55 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
| 56 | if (!FD) |
| 57 | return; |
| 58 | } |
| 59 | }; |
| 60 | |
| 61 | } // namespace |
| 62 | |
| 63 | void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| 64 | unsigned RegsLeft = 6; |
| 65 | if (!getCXXABI().classifyReturnType(FI)) |
| 66 | FI.getReturnInfo() = classifyReturnType(RetTy: FI.getReturnType()); |
| 67 | for (auto &I : FI.arguments()) |
| 68 | I.info = classifyArgumentType(RetTy: I.type, RegsLeft: &RegsLeft); |
| 69 | } |
| 70 | |
| 71 | static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { |
| 72 | assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" |
| 73 | " through registers" ); |
| 74 | |
| 75 | if (*RegsLeft == 0) |
| 76 | return false; |
| 77 | |
| 78 | if (Size <= 32) { |
| 79 | (*RegsLeft)--; |
| 80 | return true; |
| 81 | } |
| 82 | |
| 83 | if (2 <= (*RegsLeft & (~1U))) { |
| 84 | *RegsLeft = (*RegsLeft & (~1U)) - 2; |
| 85 | return true; |
| 86 | } |
| 87 | |
| 88 | // Next available register was r5 but candidate was greater than 32-bits so it |
| 89 | // has to go on the stack. However we still consume r5 |
| 90 | if (*RegsLeft == 1) |
| 91 | *RegsLeft = 0; |
| 92 | |
| 93 | return false; |
| 94 | } |
| 95 | |
| 96 | ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, |
| 97 | unsigned *RegsLeft) const { |
| 98 | if (!isAggregateTypeForABI(T: Ty)) { |
| 99 | // Treat an enum type as its underlying type. |
| 100 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| 101 | Ty = EnumTy->getDecl()->getIntegerType(); |
| 102 | |
| 103 | uint64_t Size = getContext().getTypeSize(T: Ty); |
| 104 | if (Size <= 64) |
| 105 | HexagonAdjustRegsLeft(Size, RegsLeft); |
| 106 | |
| 107 | if (Size > 64 && Ty->isBitIntType()) |
| 108 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 109 | /*ByVal=*/true); |
| 110 | |
| 111 | return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
| 112 | : ABIArgInfo::getDirect(); |
| 113 | } |
| 114 | |
| 115 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) |
| 116 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 117 | ByVal: RAA == CGCXXABI::RAA_DirectInMemory); |
| 118 | |
| 119 | // Ignore empty records. |
| 120 | if (isEmptyRecord(Context&: getContext(), T: Ty, AllowArrays: true)) |
| 121 | return ABIArgInfo::getIgnore(); |
| 122 | |
| 123 | uint64_t Size = getContext().getTypeSize(T: Ty); |
| 124 | unsigned Align = getContext().getTypeAlign(T: Ty); |
| 125 | |
| 126 | if (Size > 64) |
| 127 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 128 | /*ByVal=*/true); |
| 129 | |
| 130 | if (HexagonAdjustRegsLeft(Size, RegsLeft)) |
| 131 | Align = Size <= 32 ? 32 : 64; |
| 132 | if (Size <= Align) { |
| 133 | // Pass in the smallest viable integer type. |
| 134 | Size = llvm::bit_ceil(Value: Size); |
| 135 | return ABIArgInfo::getDirect(T: llvm::Type::getIntNTy(C&: getVMContext(), N: Size)); |
| 136 | } |
| 137 | return DefaultABIInfo::classifyArgumentType(RetTy: Ty); |
| 138 | } |
| 139 | |
| 140 | ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { |
| 141 | if (RetTy->isVoidType()) |
| 142 | return ABIArgInfo::getIgnore(); |
| 143 | |
| 144 | const TargetInfo &T = CGT.getTarget(); |
| 145 | uint64_t Size = getContext().getTypeSize(T: RetTy); |
| 146 | |
| 147 | if (RetTy->getAs<VectorType>()) { |
| 148 | // HVX vectors are returned in vector registers or register pairs. |
| 149 | if (T.hasFeature(Feature: "hvx" )) { |
| 150 | assert(T.hasFeature("hvx-length64b" ) || T.hasFeature("hvx-length128b" )); |
| 151 | uint64_t VecSize = T.hasFeature(Feature: "hvx-length64b" ) ? 64*8 : 128*8; |
| 152 | if (Size == VecSize || Size == 2*VecSize) |
| 153 | return ABIArgInfo::getDirectInReg(); |
| 154 | } |
| 155 | // Large vector types should be returned via memory. |
| 156 | if (Size > 64) |
| 157 | return getNaturalAlignIndirect(Ty: RetTy, |
| 158 | AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 159 | } |
| 160 | |
| 161 | if (!isAggregateTypeForABI(T: RetTy)) { |
| 162 | // Treat an enum type as its underlying type. |
| 163 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| 164 | RetTy = EnumTy->getDecl()->getIntegerType(); |
| 165 | |
| 166 | if (Size > 64 && RetTy->isBitIntType()) |
| 167 | return getNaturalAlignIndirect( |
| 168 | Ty: RetTy, AddrSpace: getDataLayout().getAllocaAddrSpace(), /*ByVal=*/false); |
| 169 | |
| 170 | return isPromotableIntegerTypeForABI(Ty: RetTy) ? ABIArgInfo::getExtend(Ty: RetTy) |
| 171 | : ABIArgInfo::getDirect(); |
| 172 | } |
| 173 | |
| 174 | if (isEmptyRecord(Context&: getContext(), T: RetTy, AllowArrays: true)) |
| 175 | return ABIArgInfo::getIgnore(); |
| 176 | |
| 177 | // Aggregates <= 8 bytes are returned in registers, other aggregates |
| 178 | // are returned indirectly. |
| 179 | if (Size <= 64) { |
| 180 | // Return in the smallest viable integer type. |
| 181 | Size = llvm::bit_ceil(Value: Size); |
| 182 | return ABIArgInfo::getDirect(T: llvm::Type::getIntNTy(C&: getVMContext(), N: Size)); |
| 183 | } |
| 184 | return getNaturalAlignIndirect(Ty: RetTy, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 185 | /*ByVal=*/true); |
| 186 | } |
| 187 | |
| 188 | Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, |
| 189 | Address VAListAddr, |
| 190 | QualType Ty) const { |
| 191 | // Load the overflow area pointer. |
| 192 | Address __overflow_area_pointer_p = |
| 193 | CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 2, Name: "__overflow_area_pointer_p" ); |
| 194 | llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( |
| 195 | Addr: __overflow_area_pointer_p, Name: "__overflow_area_pointer" ); |
| 196 | |
| 197 | uint64_t Align = CGF.getContext().getTypeAlign(T: Ty) / 8; |
| 198 | if (Align > 4) { |
| 199 | // Alignment should be a power of 2. |
| 200 | assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!" ); |
| 201 | |
| 202 | // overflow_arg_area = (overflow_arg_area + align - 1) & -align; |
| 203 | llvm::Value *Offset = llvm::ConstantInt::get(Ty: CGF.Int64Ty, V: Align - 1); |
| 204 | |
| 205 | // Add offset to the current pointer to access the argument. |
| 206 | __overflow_area_pointer = |
| 207 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: __overflow_area_pointer, IdxList: Offset); |
| 208 | llvm::Value *AsInt = |
| 209 | CGF.Builder.CreatePtrToInt(V: __overflow_area_pointer, DestTy: CGF.Int32Ty); |
| 210 | |
| 211 | // Create a mask which should be "AND"ed |
| 212 | // with (overflow_arg_area + align - 1) |
| 213 | llvm::Value *Mask = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -(int)Align); |
| 214 | __overflow_area_pointer = CGF.Builder.CreateIntToPtr( |
| 215 | V: CGF.Builder.CreateAnd(LHS: AsInt, RHS: Mask), DestTy: __overflow_area_pointer->getType(), |
| 216 | Name: "__overflow_area_pointer.align" ); |
| 217 | } |
| 218 | |
| 219 | // Get the type of the argument from memory and bitcast |
| 220 | // overflow area pointer to the argument type. |
| 221 | llvm::Type *PTy = CGF.ConvertTypeForMem(T: Ty); |
| 222 | Address AddrTyped = |
| 223 | Address(__overflow_area_pointer, PTy, CharUnits::fromQuantity(Quantity: Align)); |
| 224 | |
| 225 | // Round up to the minimum stack alignment for varargs which is 4 bytes. |
| 226 | uint64_t Offset = llvm::alignTo(Value: CGF.getContext().getTypeSize(T: Ty) / 8, Align: 4); |
| 227 | |
| 228 | __overflow_area_pointer = CGF.Builder.CreateGEP( |
| 229 | Ty: CGF.Int8Ty, Ptr: __overflow_area_pointer, |
| 230 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset), |
| 231 | Name: "__overflow_area_pointer.next" ); |
| 232 | CGF.Builder.CreateStore(Val: __overflow_area_pointer, Addr: __overflow_area_pointer_p); |
| 233 | |
| 234 | return AddrTyped; |
| 235 | } |
| 236 | |
| 237 | Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, |
| 238 | Address VAListAddr, |
| 239 | QualType Ty) const { |
| 240 | // FIXME: Need to handle alignment |
| 241 | llvm::Type *BP = CGF.Int8PtrTy; |
| 242 | CGBuilderTy &Builder = CGF.Builder; |
| 243 | Address VAListAddrAsBPP = VAListAddr.withElementType(ElemTy: BP); |
| 244 | llvm::Value *Addr = Builder.CreateLoad(Addr: VAListAddrAsBPP, Name: "ap.cur" ); |
| 245 | // Handle address alignment for type alignment > 32 bits |
| 246 | uint64_t TyAlign = CGF.getContext().getTypeAlign(T: Ty) / 8; |
| 247 | if (TyAlign > 4) { |
| 248 | assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!" ); |
| 249 | llvm::Value *AddrAsInt = Builder.CreatePtrToInt(V: Addr, DestTy: CGF.Int32Ty); |
| 250 | AddrAsInt = Builder.CreateAdd(LHS: AddrAsInt, RHS: Builder.getInt32(C: TyAlign - 1)); |
| 251 | AddrAsInt = Builder.CreateAnd(LHS: AddrAsInt, RHS: Builder.getInt32(C: ~(TyAlign - 1))); |
| 252 | Addr = Builder.CreateIntToPtr(V: AddrAsInt, DestTy: BP); |
| 253 | } |
| 254 | Address AddrTyped = |
| 255 | Address(Addr, CGF.ConvertType(T: Ty), CharUnits::fromQuantity(Quantity: TyAlign)); |
| 256 | |
| 257 | uint64_t Offset = llvm::alignTo(Value: CGF.getContext().getTypeSize(T: Ty) / 8, Align: 4); |
| 258 | llvm::Value *NextAddr = Builder.CreateGEP( |
| 259 | Ty: CGF.Int8Ty, Ptr: Addr, IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset), Name: "ap.next" ); |
| 260 | Builder.CreateStore(Val: NextAddr, Addr: VAListAddrAsBPP); |
| 261 | |
| 262 | return AddrTyped; |
| 263 | } |
| 264 | |
| 265 | Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, |
| 266 | Address VAListAddr, |
| 267 | QualType Ty) const { |
| 268 | int ArgSize = CGF.getContext().getTypeSize(T: Ty) / 8; |
| 269 | |
| 270 | if (ArgSize > 8) |
| 271 | return EmitVAArgFromMemory(CGF, VAListAddr, Ty); |
| 272 | |
| 273 | // Here we have check if the argument is in register area or |
| 274 | // in overflow area. |
| 275 | // If the saved register area pointer + argsize rounded up to alignment > |
| 276 | // saved register area end pointer, argument is in overflow area. |
| 277 | unsigned RegsLeft = 6; |
| 278 | Ty = CGF.getContext().getCanonicalType(T: Ty); |
| 279 | (void)classifyArgumentType(Ty, RegsLeft: &RegsLeft); |
| 280 | |
| 281 | llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock(name: "vaarg.maybe_reg" ); |
| 282 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock(name: "vaarg.in_reg" ); |
| 283 | llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock(name: "vaarg.on_stack" ); |
| 284 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "vaarg.end" ); |
| 285 | |
| 286 | // Get rounded size of the argument.GCC does not allow vararg of |
| 287 | // size < 4 bytes. We follow the same logic here. |
| 288 | ArgSize = (CGF.getContext().getTypeSize(T: Ty) <= 32) ? 4 : 8; |
| 289 | int ArgAlign = (CGF.getContext().getTypeSize(T: Ty) <= 32) ? 4 : 8; |
| 290 | |
| 291 | // Argument may be in saved register area |
| 292 | CGF.EmitBlock(BB: MaybeRegBlock); |
| 293 | |
| 294 | // Load the current saved register area pointer. |
| 295 | Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( |
| 296 | Addr: VAListAddr, Index: 0, Name: "__current_saved_reg_area_pointer_p" ); |
| 297 | llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( |
| 298 | Addr: __current_saved_reg_area_pointer_p, Name: "__current_saved_reg_area_pointer" ); |
| 299 | |
| 300 | // Load the saved register area end pointer. |
| 301 | Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( |
| 302 | Addr: VAListAddr, Index: 1, Name: "__saved_reg_area_end_pointer_p" ); |
| 303 | llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( |
| 304 | Addr: __saved_reg_area_end_pointer_p, Name: "__saved_reg_area_end_pointer" ); |
| 305 | |
| 306 | // If the size of argument is > 4 bytes, check if the stack |
| 307 | // location is aligned to 8 bytes |
| 308 | if (ArgAlign > 4) { |
| 309 | |
| 310 | llvm::Value *__current_saved_reg_area_pointer_int = |
| 311 | CGF.Builder.CreatePtrToInt(V: __current_saved_reg_area_pointer, |
| 312 | DestTy: CGF.Int32Ty); |
| 313 | |
| 314 | __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( |
| 315 | LHS: __current_saved_reg_area_pointer_int, |
| 316 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: (ArgAlign - 1)), |
| 317 | Name: "align_current_saved_reg_area_pointer" ); |
| 318 | |
| 319 | __current_saved_reg_area_pointer_int = |
| 320 | CGF.Builder.CreateAnd(LHS: __current_saved_reg_area_pointer_int, |
| 321 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -ArgAlign), |
| 322 | Name: "align_current_saved_reg_area_pointer" ); |
| 323 | |
| 324 | __current_saved_reg_area_pointer = |
| 325 | CGF.Builder.CreateIntToPtr(V: __current_saved_reg_area_pointer_int, |
| 326 | DestTy: __current_saved_reg_area_pointer->getType(), |
| 327 | Name: "align_current_saved_reg_area_pointer" ); |
| 328 | } |
| 329 | |
| 330 | llvm::Value *__new_saved_reg_area_pointer = |
| 331 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: __current_saved_reg_area_pointer, |
| 332 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: ArgSize), |
| 333 | Name: "__new_saved_reg_area_pointer" ); |
| 334 | |
| 335 | llvm::Value *UsingStack = nullptr; |
| 336 | UsingStack = CGF.Builder.CreateICmpSGT(LHS: __new_saved_reg_area_pointer, |
| 337 | RHS: __saved_reg_area_end_pointer); |
| 338 | |
| 339 | CGF.Builder.CreateCondBr(Cond: UsingStack, True: OnStackBlock, False: InRegBlock); |
| 340 | |
| 341 | // Argument in saved register area |
| 342 | // Implement the block where argument is in register saved area |
| 343 | CGF.EmitBlock(BB: InRegBlock); |
| 344 | |
| 345 | CGF.Builder.CreateStore(Val: __new_saved_reg_area_pointer, |
| 346 | Addr: __current_saved_reg_area_pointer_p); |
| 347 | |
| 348 | CGF.EmitBranch(Block: ContBlock); |
| 349 | |
| 350 | // Argument in overflow area |
| 351 | // Implement the block where the argument is in overflow area. |
| 352 | CGF.EmitBlock(BB: OnStackBlock); |
| 353 | |
| 354 | // Load the overflow area pointer |
| 355 | Address __overflow_area_pointer_p = |
| 356 | CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 2, Name: "__overflow_area_pointer_p" ); |
| 357 | llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( |
| 358 | Addr: __overflow_area_pointer_p, Name: "__overflow_area_pointer" ); |
| 359 | |
| 360 | // Align the overflow area pointer according to the alignment of the argument |
| 361 | if (ArgAlign > 4) { |
| 362 | llvm::Value *__overflow_area_pointer_int = |
| 363 | CGF.Builder.CreatePtrToInt(V: __overflow_area_pointer, DestTy: CGF.Int32Ty); |
| 364 | |
| 365 | __overflow_area_pointer_int = |
| 366 | CGF.Builder.CreateAdd(LHS: __overflow_area_pointer_int, |
| 367 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: ArgAlign - 1), |
| 368 | Name: "align_overflow_area_pointer" ); |
| 369 | |
| 370 | __overflow_area_pointer_int = |
| 371 | CGF.Builder.CreateAnd(LHS: __overflow_area_pointer_int, |
| 372 | RHS: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -ArgAlign), |
| 373 | Name: "align_overflow_area_pointer" ); |
| 374 | |
| 375 | __overflow_area_pointer = CGF.Builder.CreateIntToPtr( |
| 376 | V: __overflow_area_pointer_int, DestTy: __overflow_area_pointer->getType(), |
| 377 | Name: "align_overflow_area_pointer" ); |
| 378 | } |
| 379 | |
| 380 | // Get the pointer for next argument in overflow area and store it |
| 381 | // to overflow area pointer. |
| 382 | llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( |
| 383 | Ty: CGF.Int8Ty, Ptr: __overflow_area_pointer, |
| 384 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: ArgSize), |
| 385 | Name: "__overflow_area_pointer.next" ); |
| 386 | |
| 387 | CGF.Builder.CreateStore(Val: __new_overflow_area_pointer, |
| 388 | Addr: __overflow_area_pointer_p); |
| 389 | |
| 390 | CGF.Builder.CreateStore(Val: __new_overflow_area_pointer, |
| 391 | Addr: __current_saved_reg_area_pointer_p); |
| 392 | |
| 393 | CGF.EmitBranch(Block: ContBlock); |
| 394 | // Get the correct pointer to load the variable argument |
| 395 | // Implement the ContBlock |
| 396 | CGF.EmitBlock(BB: ContBlock); |
| 397 | |
| 398 | llvm::Type *MemTy = CGF.ConvertTypeForMem(T: Ty); |
| 399 | llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI( |
| 400 | Ty: llvm::PointerType::getUnqual(C&: MemTy->getContext()), NumReservedValues: 2, Name: "vaarg.addr" ); |
| 401 | ArgAddr->addIncoming(V: __current_saved_reg_area_pointer, BB: InRegBlock); |
| 402 | ArgAddr->addIncoming(V: __overflow_area_pointer, BB: OnStackBlock); |
| 403 | |
| 404 | return Address(ArgAddr, MemTy, CharUnits::fromQuantity(Quantity: ArgAlign)); |
| 405 | } |
| 406 | |
| 407 | RValue HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 408 | QualType Ty, AggValueSlot Slot) const { |
| 409 | |
| 410 | if (getTarget().getTriple().isMusl()) |
| 411 | return CGF.EmitLoadOfAnyValue( |
| 412 | V: CGF.MakeAddrLValue(Addr: EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty), T: Ty), |
| 413 | Slot); |
| 414 | |
| 415 | return CGF.EmitLoadOfAnyValue( |
| 416 | V: CGF.MakeAddrLValue(Addr: EmitVAArgForHexagon(CGF, VAListAddr, Ty), T: Ty), Slot); |
| 417 | } |
| 418 | |
| 419 | std::unique_ptr<TargetCodeGenInfo> |
| 420 | CodeGen::createHexagonTargetCodeGenInfo(CodeGenModule &CGM) { |
| 421 | return std::make_unique<HexagonTargetCodeGenInfo>(args&: CGM.getTypes()); |
| 422 | } |
| 423 | |