1//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/Driver/Driver.h"
10#include "ToolChains/AIX.h"
11#include "ToolChains/AMDGPU.h"
12#include "ToolChains/AMDGPUOpenMP.h"
13#include "ToolChains/AVR.h"
14#include "ToolChains/Arch/RISCV.h"
15#include "ToolChains/BareMetal.h"
16#include "ToolChains/CSKYToolChain.h"
17#include "ToolChains/Clang.h"
18#include "ToolChains/CrossWindows.h"
19#include "ToolChains/Cuda.h"
20#include "ToolChains/Cygwin.h"
21#include "ToolChains/Darwin.h"
22#include "ToolChains/DragonFly.h"
23#include "ToolChains/FreeBSD.h"
24#include "ToolChains/Fuchsia.h"
25#include "ToolChains/Gnu.h"
26#include "ToolChains/HIPAMD.h"
27#include "ToolChains/HIPSPV.h"
28#include "ToolChains/HLSL.h"
29#include "ToolChains/Haiku.h"
30#include "ToolChains/Hexagon.h"
31#include "ToolChains/Hurd.h"
32#include "ToolChains/Lanai.h"
33#include "ToolChains/Linux.h"
34#include "ToolChains/MSP430.h"
35#include "ToolChains/MSVC.h"
36#include "ToolChains/Managarm.h"
37#include "ToolChains/MinGW.h"
38#include "ToolChains/MipsLinux.h"
39#include "ToolChains/NaCl.h"
40#include "ToolChains/NetBSD.h"
41#include "ToolChains/OHOS.h"
42#include "ToolChains/OpenBSD.h"
43#include "ToolChains/PPCFreeBSD.h"
44#include "ToolChains/PPCLinux.h"
45#include "ToolChains/PS4CPU.h"
46#include "ToolChains/SPIRV.h"
47#include "ToolChains/SPIRVOpenMP.h"
48#include "ToolChains/SYCL.h"
49#include "ToolChains/Solaris.h"
50#include "ToolChains/TCE.h"
51#include "ToolChains/UEFI.h"
52#include "ToolChains/VEToolchain.h"
53#include "ToolChains/WebAssembly.h"
54#include "ToolChains/XCore.h"
55#include "ToolChains/ZOS.h"
56#include "clang/Basic/DiagnosticDriver.h"
57#include "clang/Basic/TargetID.h"
58#include "clang/Basic/Version.h"
59#include "clang/Config/config.h"
60#include "clang/Driver/Action.h"
61#include "clang/Driver/Compilation.h"
62#include "clang/Driver/InputInfo.h"
63#include "clang/Driver/Job.h"
64#include "clang/Driver/Options.h"
65#include "clang/Driver/Phases.h"
66#include "clang/Driver/SanitizerArgs.h"
67#include "clang/Driver/Tool.h"
68#include "clang/Driver/ToolChain.h"
69#include "clang/Driver/Types.h"
70#include "llvm/ADT/ArrayRef.h"
71#include "llvm/ADT/STLExtras.h"
72#include "llvm/ADT/StringExtras.h"
73#include "llvm/ADT/StringRef.h"
74#include "llvm/ADT/StringSet.h"
75#include "llvm/ADT/StringSwitch.h"
76#include "llvm/Config/llvm-config.h"
77#include "llvm/MC/TargetRegistry.h"
78#include "llvm/Option/Arg.h"
79#include "llvm/Option/ArgList.h"
80#include "llvm/Option/OptSpecifier.h"
81#include "llvm/Option/OptTable.h"
82#include "llvm/Option/Option.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/ExitCodes.h"
86#include "llvm/Support/FileSystem.h"
87#include "llvm/Support/FormatVariadic.h"
88#include "llvm/Support/MD5.h"
89#include "llvm/Support/Path.h"
90#include "llvm/Support/PrettyStackTrace.h"
91#include "llvm/Support/Process.h"
92#include "llvm/Support/Program.h"
93#include "llvm/Support/Regex.h"
94#include "llvm/Support/StringSaver.h"
95#include "llvm/Support/VirtualFileSystem.h"
96#include "llvm/Support/raw_ostream.h"
97#include "llvm/TargetParser/Host.h"
98#include "llvm/TargetParser/RISCVISAInfo.h"
99#include <cstdlib> // ::getenv
100#include <map>
101#include <memory>
102#include <optional>
103#include <set>
104#include <utility>
105#if LLVM_ON_UNIX
106#include <unistd.h> // getpid
107#endif
108
109using namespace clang::driver;
110using namespace clang;
111using namespace llvm::opt;
112
113static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
114 const ArgList &Args) {
115 auto OffloadTargets = Args.getAllArgValues(Id: options::OPT_offload_EQ);
116 // Offload compilation flow does not support multiple targets for now. We
117 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
118 // to support multiple tool chains first.
119 switch (OffloadTargets.size()) {
120 default:
121 D.Diag(DiagID: diag::err_drv_only_one_offload_target_supported);
122 return std::nullopt;
123 case 0:
124 D.Diag(DiagID: diag::err_drv_invalid_or_unsupported_offload_target) << "";
125 return std::nullopt;
126 case 1:
127 break;
128 }
129 return llvm::Triple(OffloadTargets[0]);
130}
131
132static std::optional<llvm::Triple>
133getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
134 const llvm::Triple &HostTriple) {
135 if (!Args.hasArg(Ids: options::OPT_offload_EQ)) {
136 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
137 : "nvptx-nvidia-cuda");
138 }
139 auto TT = getOffloadTargetTriple(D, Args);
140 if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
141 TT->getArch() == llvm::Triple::spirv64)) {
142 if (Args.hasArg(Ids: options::OPT_emit_llvm))
143 return TT;
144 D.Diag(DiagID: diag::err_drv_cuda_offload_only_emit_bc);
145 return std::nullopt;
146 }
147 D.Diag(DiagID: diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
148 return std::nullopt;
149}
150
151static std::optional<llvm::Triple>
152getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
153 if (!Args.hasArg(Ids: options::OPT_offload_EQ)) {
154 auto OffloadArchs = Args.getAllArgValues(Id: options::OPT_offload_arch_EQ);
155 if (llvm::is_contained(Range&: OffloadArchs, Element: "amdgcnspirv") &&
156 OffloadArchs.size() == 1)
157 return llvm::Triple("spirv64-amd-amdhsa");
158 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
159 }
160 auto TT = getOffloadTargetTriple(D, Args);
161 if (!TT)
162 return std::nullopt;
163 if (TT->isAMDGCN() && TT->getVendor() == llvm::Triple::AMD &&
164 TT->getOS() == llvm::Triple::AMDHSA)
165 return TT;
166 if (TT->getArch() == llvm::Triple::spirv64)
167 return TT;
168 D.Diag(DiagID: diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
169 return std::nullopt;
170}
171
172template <typename F> static bool usesInput(const ArgList &Args, F &&Fn) {
173 return llvm::any_of(Args, [&](Arg *A) {
174 return (A->getOption().matches(ID: options::OPT_x) &&
175 Fn(types::lookupTypeForTypeSpecifier(Name: A->getValue()))) ||
176 (A->getOption().getKind() == Option::InputClass &&
177 StringRef(A->getValue()).rfind(C: '.') != StringRef::npos &&
178 Fn(types::lookupTypeForExtension(
179 Ext: &A->getValue()[StringRef(A->getValue()).rfind(C: '.') + 1])));
180 });
181}
182
183// static
184std::string Driver::GetResourcesPath(StringRef BinaryPath) {
185 // Since the resource directory is embedded in the module hash, it's important
186 // that all places that need it call this function, so that they get the
187 // exact same string ("a/../b/" and "b/" get different hashes, for example).
188
189 // Dir is bin/ or lib/, depending on where BinaryPath is.
190 StringRef Dir = llvm::sys::path::parent_path(path: BinaryPath);
191 SmallString<128> P(Dir);
192
193 StringRef ConfiguredResourceDir(CLANG_RESOURCE_DIR);
194 if (!ConfiguredResourceDir.empty()) {
195 // FIXME: We should fix the behavior of llvm::sys::path::append so we don't
196 // need to check for absolute paths here.
197 if (llvm::sys::path::is_absolute(path: ConfiguredResourceDir))
198 P = ConfiguredResourceDir;
199 else
200 llvm::sys::path::append(path&: P, a: ConfiguredResourceDir);
201 } else {
202 // On Windows, libclang.dll is in bin/.
203 // On non-Windows, libclang.so/.dylib is in lib/.
204 // With a static-library build of libclang, LibClangPath will contain the
205 // path of the embedding binary, which for LLVM binaries will be in bin/.
206 // ../lib gets us to lib/ in both cases.
207 P = llvm::sys::path::parent_path(path: Dir);
208 // This search path is also created in the COFF driver of lld, so any
209 // changes here also needs to happen in lld/COFF/Driver.cpp
210 llvm::sys::path::append(path&: P, CLANG_INSTALL_LIBDIR_BASENAME, b: "clang",
211 CLANG_VERSION_MAJOR_STRING);
212 }
213
214 return std::string(P);
215}
216
217CUIDOptions::CUIDOptions(llvm::opt::DerivedArgList &Args, const Driver &D)
218 : UseCUID(Kind::Hash) {
219 if (Arg *A = Args.getLastArg(Ids: options::OPT_fuse_cuid_EQ)) {
220 StringRef UseCUIDStr = A->getValue();
221 UseCUID = llvm::StringSwitch<Kind>(UseCUIDStr)
222 .Case(S: "hash", Value: Kind::Hash)
223 .Case(S: "random", Value: Kind::Random)
224 .Case(S: "none", Value: Kind::None)
225 .Default(Value: Kind::Invalid);
226 if (UseCUID == Kind::Invalid)
227 D.Diag(DiagID: clang::diag::err_drv_invalid_value)
228 << A->getAsString(Args) << UseCUIDStr;
229 }
230
231 FixedCUID = Args.getLastArgValue(Id: options::OPT_cuid_EQ);
232 if (!FixedCUID.empty())
233 UseCUID = Kind::Fixed;
234}
235
236std::string CUIDOptions::getCUID(StringRef InputFile,
237 llvm::opt::DerivedArgList &Args) const {
238 std::string CUID = FixedCUID.str();
239 if (CUID.empty()) {
240 if (UseCUID == Kind::Random)
241 CUID = llvm::utohexstr(X: llvm::sys::Process::GetRandomNumber(),
242 /*LowerCase=*/true);
243 else if (UseCUID == Kind::Hash) {
244 llvm::MD5 Hasher;
245 llvm::MD5::MD5Result Hash;
246 Hasher.update(Str: InputFile);
247 for (auto *A : Args) {
248 if (A->getOption().matches(ID: options::OPT_INPUT))
249 continue;
250 Hasher.update(Str: A->getAsString(Args));
251 }
252 Hasher.final(Result&: Hash);
253 CUID = llvm::utohexstr(X: Hash.low(), /*LowerCase=*/true);
254 }
255 }
256 return CUID;
257}
258Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
259 DiagnosticsEngine &Diags, std::string Title,
260 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
261 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
262 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
263 Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
264 ModulesModeCXX20(false), LTOMode(LTOK_None),
265 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
266 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
267 CCLogDiagnostics(false), CCGenDiagnostics(false),
268 CCPrintProcessStats(false), CCPrintInternalStats(false),
269 TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
270 CheckInputsExist(true), ProbePrecompiled(true),
271 SuppressMissingInputWarning(false) {
272 // Provide a sane fallback if no VFS is specified.
273 if (!this->VFS)
274 this->VFS = llvm::vfs::getRealFileSystem();
275
276 Name = std::string(llvm::sys::path::filename(path: ClangExecutable));
277 Dir = std::string(llvm::sys::path::parent_path(path: ClangExecutable));
278
279 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(path: SysRoot)) {
280 // Prepend InstalledDir if SysRoot is relative
281 SmallString<128> P(Dir);
282 llvm::sys::path::append(path&: P, a: SysRoot);
283 SysRoot = std::string(P);
284 }
285
286#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
287 if (llvm::sys::path::is_absolute(CLANG_CONFIG_FILE_SYSTEM_DIR)) {
288 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
289 } else {
290 SmallString<128> configFileDir(Dir);
291 llvm::sys::path::append(configFileDir, CLANG_CONFIG_FILE_SYSTEM_DIR);
292 llvm::sys::path::remove_dots(configFileDir, true);
293 SystemConfigDir = static_cast<std::string>(configFileDir);
294 }
295#endif
296#if defined(CLANG_CONFIG_FILE_USER_DIR)
297 {
298 SmallString<128> P;
299 llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
300 UserConfigDir = static_cast<std::string>(P);
301 }
302#endif
303
304 // Compute the path to the resource directory.
305 ResourceDir = GetResourcesPath(BinaryPath: ClangExecutable);
306}
307
308void Driver::setDriverMode(StringRef Value) {
309 static StringRef OptName =
310 getOpts().getOption(Opt: options::OPT_driver_mode).getPrefixedName();
311 if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
312 .Case(S: "gcc", Value: GCCMode)
313 .Case(S: "g++", Value: GXXMode)
314 .Case(S: "cpp", Value: CPPMode)
315 .Case(S: "cl", Value: CLMode)
316 .Case(S: "flang", Value: FlangMode)
317 .Case(S: "dxc", Value: DXCMode)
318 .Default(Value: std::nullopt))
319 Mode = *M;
320 else
321 Diag(DiagID: diag::err_drv_unsupported_option_argument) << OptName << Value;
322}
323
324InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
325 bool UseDriverMode,
326 bool &ContainsError) const {
327 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
328 ContainsError = false;
329
330 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
331 unsigned MissingArgIndex, MissingArgCount;
332 InputArgList Args = getOpts().ParseArgs(Args: ArgStrings, MissingArgIndex,
333 MissingArgCount, VisibilityMask);
334
335 // Check for missing argument error.
336 if (MissingArgCount) {
337 Diag(DiagID: diag::err_drv_missing_argument)
338 << Args.getArgString(Index: MissingArgIndex) << MissingArgCount;
339 ContainsError |=
340 Diags.getDiagnosticLevel(DiagID: diag::err_drv_missing_argument,
341 Loc: SourceLocation()) > DiagnosticsEngine::Warning;
342 }
343
344 // Check for unsupported options.
345 for (const Arg *A : Args) {
346 if (A->getOption().hasFlag(Val: options::Unsupported)) {
347 Diag(DiagID: diag::err_drv_unsupported_opt) << A->getAsString(Args);
348 ContainsError |= Diags.getDiagnosticLevel(DiagID: diag::err_drv_unsupported_opt,
349 Loc: SourceLocation()) >
350 DiagnosticsEngine::Warning;
351 continue;
352 }
353
354 // Warn about -mcpu= without an argument.
355 if (A->getOption().matches(ID: options::OPT_mcpu_EQ) && A->containsValue(Value: "")) {
356 Diag(DiagID: diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
357 ContainsError |= Diags.getDiagnosticLevel(
358 DiagID: diag::warn_drv_empty_joined_argument,
359 Loc: SourceLocation()) > DiagnosticsEngine::Warning;
360 }
361 }
362
363 for (const Arg *A : Args.filtered(Ids: options::OPT_UNKNOWN)) {
364 unsigned DiagID;
365 auto ArgString = A->getAsString(Args);
366 std::string Nearest;
367 if (getOpts().findNearest(Option: ArgString, NearestString&: Nearest, VisibilityMask) > 1) {
368 if (!IsCLMode() &&
369 getOpts().findExact(Option: ArgString, ExactString&: Nearest,
370 VisibilityMask: llvm::opt::Visibility(options::CC1Option))) {
371 DiagID = diag::err_drv_unknown_argument_with_suggestion;
372 Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
373 } else {
374 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
375 : diag::err_drv_unknown_argument;
376 Diags.Report(DiagID) << ArgString;
377 }
378 } else {
379 DiagID = IsCLMode()
380 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
381 : diag::err_drv_unknown_argument_with_suggestion;
382 Diags.Report(DiagID) << ArgString << Nearest;
383 }
384 ContainsError |= Diags.getDiagnosticLevel(DiagID, Loc: SourceLocation()) >
385 DiagnosticsEngine::Warning;
386 }
387
388 for (const Arg *A : Args.filtered(Ids: options::OPT_o)) {
389 if (ArgStrings[A->getIndex()] == A->getSpelling())
390 continue;
391
392 // Warn on joined arguments that are similar to a long argument.
393 std::string ArgString = ArgStrings[A->getIndex()];
394 std::string Nearest;
395 if (getOpts().findExact(Option: "-" + ArgString, ExactString&: Nearest, VisibilityMask))
396 Diags.Report(DiagID: diag::warn_drv_potentially_misspelled_joined_argument)
397 << A->getAsString(Args) << Nearest;
398 }
399
400 return Args;
401}
402
403// Determine which compilation mode we are in. We look for options which
404// affect the phase, starting with the earliest phases, and record which
405// option we used to determine the final phase.
406phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
407 Arg **FinalPhaseArg) const {
408 Arg *PhaseArg = nullptr;
409 phases::ID FinalPhase;
410
411 // -{E,EP,P,M,MM} only run the preprocessor.
412 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(Ids: options::OPT_E)) ||
413 (PhaseArg = DAL.getLastArg(Ids: options::OPT__SLASH_EP)) ||
414 (PhaseArg = DAL.getLastArg(Ids: options::OPT_M, Ids: options::OPT_MM)) ||
415 (PhaseArg = DAL.getLastArg(Ids: options::OPT__SLASH_P)) ||
416 CCGenDiagnostics) {
417 FinalPhase = phases::Preprocess;
418
419 // --precompile only runs up to precompilation.
420 // Options that cause the output of C++20 compiled module interfaces or
421 // header units have the same effect.
422 } else if ((PhaseArg = DAL.getLastArg(Ids: options::OPT__precompile)) ||
423 (PhaseArg = DAL.getLastArg(Ids: options::OPT_extract_api)) ||
424 (PhaseArg = DAL.getLastArg(Ids: options::OPT_fmodule_header,
425 Ids: options::OPT_fmodule_header_EQ))) {
426 FinalPhase = phases::Precompile;
427 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
428 } else if ((PhaseArg = DAL.getLastArg(Ids: options::OPT_fsyntax_only)) ||
429 (PhaseArg = DAL.getLastArg(Ids: options::OPT_print_supported_cpus)) ||
430 (PhaseArg =
431 DAL.getLastArg(Ids: options::OPT_print_enabled_extensions)) ||
432 (PhaseArg = DAL.getLastArg(Ids: options::OPT_module_file_info)) ||
433 (PhaseArg = DAL.getLastArg(Ids: options::OPT_verify_pch)) ||
434 (PhaseArg = DAL.getLastArg(Ids: options::OPT_rewrite_objc)) ||
435 (PhaseArg = DAL.getLastArg(Ids: options::OPT_rewrite_legacy_objc)) ||
436 (PhaseArg = DAL.getLastArg(Ids: options::OPT__analyze)) ||
437 (PhaseArg = DAL.getLastArg(Ids: options::OPT_emit_cir)) ||
438 (PhaseArg = DAL.getLastArg(Ids: options::OPT_emit_ast))) {
439 FinalPhase = phases::Compile;
440
441 // -S only runs up to the backend.
442 } else if ((PhaseArg = DAL.getLastArg(Ids: options::OPT_S))) {
443 FinalPhase = phases::Backend;
444
445 // -c compilation only runs up to the assembler.
446 } else if ((PhaseArg = DAL.getLastArg(Ids: options::OPT_c))) {
447 FinalPhase = phases::Assemble;
448
449 } else if ((PhaseArg = DAL.getLastArg(Ids: options::OPT_emit_interface_stubs))) {
450 FinalPhase = phases::IfsMerge;
451
452 // Otherwise do everything.
453 } else
454 FinalPhase = phases::Link;
455
456 if (FinalPhaseArg)
457 *FinalPhaseArg = PhaseArg;
458
459 return FinalPhase;
460}
461
462static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
463 StringRef Value, bool Claim = true) {
464 Arg *A = new Arg(Opts.getOption(Opt: options::OPT_INPUT), Value,
465 Args.getBaseArgs().MakeIndex(String0: Value), Value.data());
466 Args.AddSynthesizedArg(A);
467 if (Claim)
468 A->claim();
469 return A;
470}
471
472DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
473 const llvm::opt::OptTable &Opts = getOpts();
474 DerivedArgList *DAL = new DerivedArgList(Args);
475
476 bool HasNostdlib = Args.hasArg(Ids: options::OPT_nostdlib);
477 bool HasNostdlibxx = Args.hasArg(Ids: options::OPT_nostdlibxx);
478 bool HasNodefaultlib = Args.hasArg(Ids: options::OPT_nodefaultlibs);
479 bool IgnoreUnused = false;
480 for (Arg *A : Args) {
481 if (IgnoreUnused)
482 A->claim();
483
484 if (A->getOption().matches(ID: options::OPT_start_no_unused_arguments)) {
485 IgnoreUnused = true;
486 continue;
487 }
488 if (A->getOption().matches(ID: options::OPT_end_no_unused_arguments)) {
489 IgnoreUnused = false;
490 continue;
491 }
492
493 // Unfortunately, we have to parse some forwarding options (-Xassembler,
494 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
495 // (assembler and preprocessor), or bypass a previous driver ('collect2').
496
497 // Rewrite linker options, to replace --no-demangle with a custom internal
498 // option.
499 if ((A->getOption().matches(ID: options::OPT_Wl_COMMA) ||
500 A->getOption().matches(ID: options::OPT_Xlinker)) &&
501 A->containsValue(Value: "--no-demangle")) {
502 // Add the rewritten no-demangle argument.
503 DAL->AddFlagArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_Z_Xlinker__no_demangle));
504
505 // Add the remaining values as Xlinker arguments.
506 for (StringRef Val : A->getValues())
507 if (Val != "--no-demangle")
508 DAL->AddSeparateArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_Xlinker), Value: Val);
509
510 continue;
511 }
512
513 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
514 // some build systems. We don't try to be complete here because we don't
515 // care to encourage this usage model.
516 if (A->getOption().matches(ID: options::OPT_Wp_COMMA) &&
517 A->getNumValues() > 0 &&
518 (A->getValue(N: 0) == StringRef("-MD") ||
519 A->getValue(N: 0) == StringRef("-MMD"))) {
520 // Rewrite to -MD/-MMD along with -MF.
521 if (A->getValue(N: 0) == StringRef("-MD"))
522 DAL->AddFlagArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_MD));
523 else
524 DAL->AddFlagArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_MMD));
525 if (A->getNumValues() == 2)
526 DAL->AddSeparateArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_MF), Value: A->getValue(N: 1));
527 continue;
528 }
529
530 // Rewrite reserved library names.
531 if (A->getOption().matches(ID: options::OPT_l)) {
532 StringRef Value = A->getValue();
533
534 // Rewrite unless -nostdlib is present.
535 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
536 Value == "stdc++") {
537 DAL->AddFlagArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_Z_reserved_lib_stdcxx));
538 continue;
539 }
540
541 // Rewrite unconditionally.
542 if (Value == "cc_kext") {
543 DAL->AddFlagArg(BaseArg: A, Opt: Opts.getOption(Opt: options::OPT_Z_reserved_lib_cckext));
544 continue;
545 }
546 }
547
548 // Pick up inputs via the -- option.
549 if (A->getOption().matches(ID: options::OPT__DASH_DASH)) {
550 A->claim();
551 for (StringRef Val : A->getValues())
552 DAL->append(A: MakeInputArg(Args&: *DAL, Opts, Value: Val, Claim: false));
553 continue;
554 }
555
556 DAL->append(A);
557 }
558
559 // DXC mode quits before assembly if an output object file isn't specified.
560 if (IsDXCMode() && !Args.hasArg(Ids: options::OPT_dxc_Fo))
561 DAL->AddFlagArg(BaseArg: nullptr, Opt: Opts.getOption(Opt: options::OPT_S));
562
563 // Enforce -static if -miamcu is present.
564 if (Args.hasFlag(Pos: options::OPT_miamcu, Neg: options::OPT_mno_iamcu, Default: false))
565 DAL->AddFlagArg(BaseArg: nullptr, Opt: Opts.getOption(Opt: options::OPT_static));
566
567// Add a default value of -mlinker-version=, if one was given and the user
568// didn't specify one.
569#if defined(HOST_LINK_VERSION)
570 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
571 strlen(HOST_LINK_VERSION) > 0) {
572 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
573 HOST_LINK_VERSION);
574 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
575 }
576#endif
577
578 return DAL;
579}
580
581static void setZosTargetVersion(const Driver &D, llvm::Triple &Target,
582 StringRef ArgTarget) {
583
584 static bool BeSilent = false;
585 auto IsTooOldToBeSupported = [](int v, int r) -> bool {
586 return ((v < 2) || ((v == 2) && (r < 4)));
587 };
588
589 /* expect CURRENT, zOSV2R[45], or 0xnnnnnnnn */
590 if (ArgTarget.equals_insensitive(RHS: "CURRENT")) {
591 /* If the user gives CURRENT, then we rely on the LE to set */
592 /* __TARGET_LIB__. There's nothing more we need to do. */
593 } else {
594 unsigned int Version = 0;
595 unsigned int Release = 0;
596 unsigned int Modification = 0;
597 bool IsOk = true;
598 llvm::Regex ZOsvRegex("[zZ][oO][sS][vV]([0-9])[rR]([0-9])");
599 llvm::Regex HexRegex(
600 "0x4" /* product */
601 "([0-9a-fA-F])" /* version */
602 "([0-9a-fA-F][0-9a-fA-F])" /* release */
603 "([0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F])" /* modification */);
604 SmallVector<StringRef> Matches;
605
606 if (ZOsvRegex.match(String: ArgTarget, Matches: &Matches)) {
607 Matches[1].getAsInteger(Radix: 10, Result&: Version);
608 Matches[2].getAsInteger(Radix: 10, Result&: Release);
609 Modification = 0;
610 if (IsTooOldToBeSupported(Version, Release)) {
611 if (!BeSilent)
612 D.Diag(DiagID: diag::err_zos_target_release_discontinued) << ArgTarget;
613 IsOk = false;
614 }
615 } else if (HexRegex.match(String: ArgTarget, Matches: &Matches)) {
616 Matches[1].getAsInteger(Radix: 16, Result&: Version);
617 Matches[2].getAsInteger(Radix: 16, Result&: Release);
618 Matches[3].getAsInteger(Radix: 16, Result&: Modification);
619 if (IsTooOldToBeSupported(Version, Release)) {
620 if (!BeSilent)
621 D.Diag(DiagID: diag::err_zos_target_release_discontinued) << ArgTarget;
622 IsOk = false;
623 }
624 } else {
625 /* something else: need to report an error */
626 if (!BeSilent)
627 D.Diag(DiagID: diag::err_zos_target_unrecognized_release) << ArgTarget;
628 IsOk = false;
629 }
630
631 if (IsOk) {
632 llvm::VersionTuple V(Version, Release, Modification);
633 llvm::VersionTuple TV = Target.getOSVersion();
634 // The goal is to pick the minimally supported version of
635 // the OS. Pick the lesser as the target.
636 if (TV.empty() || V < TV) {
637 SmallString<16> Str;
638 Str = llvm::Triple::getOSTypeName(Kind: Target.getOS());
639 Str += V.getAsString();
640 Target.setOSName(Str);
641 }
642 }
643 }
644 BeSilent = true;
645}
646
647/// Compute target triple from args.
648///
649/// This routine provides the logic to compute a target triple from various
650/// args passed to the driver and the default triple string.
651static llvm::Triple computeTargetTriple(const Driver &D,
652 StringRef TargetTriple,
653 const ArgList &Args,
654 StringRef DarwinArchName = "") {
655 // FIXME: Already done in Compilation *Driver::BuildCompilation
656 if (const Arg *A = Args.getLastArg(Ids: options::OPT_target))
657 TargetTriple = A->getValue();
658
659 llvm::Triple Target(llvm::Triple::normalize(Str: TargetTriple));
660
661 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
662 // -gnu* only, and we can not change this, so we have to detect that case as
663 // being the Hurd OS.
664 if (TargetTriple.contains(Other: "-unknown-gnu") || TargetTriple.contains(Other: "-pc-gnu"))
665 Target.setOSName("hurd");
666
667 // Handle Apple-specific options available here.
668 if (Target.isOSBinFormatMachO()) {
669 // If an explicit Darwin arch name is given, that trumps all.
670 if (!DarwinArchName.empty()) {
671 tools::darwin::setTripleTypeForMachOArchName(T&: Target, Str: DarwinArchName,
672 Args);
673 return Target;
674 }
675
676 // Handle the Darwin '-arch' flag.
677 if (Arg *A = Args.getLastArg(Ids: options::OPT_arch)) {
678 StringRef ArchName = A->getValue();
679 tools::darwin::setTripleTypeForMachOArchName(T&: Target, Str: ArchName, Args);
680 }
681 }
682
683 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
684 // '-mbig-endian'/'-EB'.
685 if (Arg *A = Args.getLastArgNoClaim(Ids: options::OPT_mlittle_endian,
686 Ids: options::OPT_mbig_endian)) {
687 llvm::Triple T = A->getOption().matches(ID: options::OPT_mlittle_endian)
688 ? Target.getLittleEndianArchVariant()
689 : Target.getBigEndianArchVariant();
690 if (T.getArch() != llvm::Triple::UnknownArch) {
691 Target = std::move(T);
692 Args.claimAllArgs(Ids: options::OPT_mlittle_endian, Ids: options::OPT_mbig_endian);
693 }
694 }
695
696 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
697 if (Target.getArch() == llvm::Triple::tce)
698 return Target;
699
700 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
701 if (Target.isOSAIX()) {
702 if (std::optional<std::string> ObjectModeValue =
703 llvm::sys::Process::GetEnv(name: "OBJECT_MODE")) {
704 StringRef ObjectMode = *ObjectModeValue;
705 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
706
707 if (ObjectMode == "64") {
708 AT = Target.get64BitArchVariant().getArch();
709 } else if (ObjectMode == "32") {
710 AT = Target.get32BitArchVariant().getArch();
711 } else {
712 D.Diag(DiagID: diag::err_drv_invalid_object_mode) << ObjectMode;
713 }
714
715 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
716 Target.setArch(Kind: AT);
717 }
718 }
719
720 // Currently the only architecture supported by *-uefi triples are x86_64.
721 if (Target.isUEFI() && Target.getArch() != llvm::Triple::x86_64)
722 D.Diag(DiagID: diag::err_target_unknown_triple) << Target.str();
723
724 // The `-maix[32|64]` flags are only valid for AIX targets.
725 if (Arg *A = Args.getLastArgNoClaim(Ids: options::OPT_maix32, Ids: options::OPT_maix64);
726 A && !Target.isOSAIX())
727 D.Diag(DiagID: diag::err_drv_unsupported_opt_for_target)
728 << A->getAsString(Args) << Target.str();
729
730 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
731 Arg *A = Args.getLastArg(Ids: options::OPT_m64, Ids: options::OPT_mx32,
732 Ids: options::OPT_m32, Ids: options::OPT_m16,
733 Ids: options::OPT_maix32, Ids: options::OPT_maix64);
734 if (A) {
735 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
736
737 if (A->getOption().matches(ID: options::OPT_m64) ||
738 A->getOption().matches(ID: options::OPT_maix64)) {
739 AT = Target.get64BitArchVariant().getArch();
740 if (Target.getEnvironment() == llvm::Triple::GNUX32 ||
741 Target.getEnvironment() == llvm::Triple::GNUT64)
742 Target.setEnvironment(llvm::Triple::GNU);
743 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
744 Target.setEnvironment(llvm::Triple::Musl);
745 } else if (A->getOption().matches(ID: options::OPT_mx32) &&
746 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
747 AT = llvm::Triple::x86_64;
748 if (Target.getEnvironment() == llvm::Triple::Musl)
749 Target.setEnvironment(llvm::Triple::MuslX32);
750 else
751 Target.setEnvironment(llvm::Triple::GNUX32);
752 } else if (A->getOption().matches(ID: options::OPT_m32) ||
753 A->getOption().matches(ID: options::OPT_maix32)) {
754 if (D.IsFlangMode() && !Target.isOSAIX()) {
755 D.Diag(DiagID: diag::err_drv_unsupported_opt_for_target)
756 << A->getAsString(Args) << Target.str();
757 } else {
758 AT = Target.get32BitArchVariant().getArch();
759 if (Target.getEnvironment() == llvm::Triple::GNUX32)
760 Target.setEnvironment(llvm::Triple::GNU);
761 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
762 Target.setEnvironment(llvm::Triple::Musl);
763 }
764 } else if (A->getOption().matches(ID: options::OPT_m16) &&
765 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
766 AT = llvm::Triple::x86;
767 Target.setEnvironment(llvm::Triple::CODE16);
768 }
769
770 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
771 Target.setArch(Kind: AT);
772 if (Target.isWindowsGNUEnvironment())
773 toolchains::MinGW::fixTripleArch(D, Triple&: Target, Args);
774 }
775 }
776
777 if (Target.isOSzOS()) {
778 if ((A = Args.getLastArg(Ids: options::OPT_mzos_target_EQ))) {
779 setZosTargetVersion(D, Target, ArgTarget: A->getValue());
780 }
781 }
782
783 // Handle -miamcu flag.
784 if (Args.hasFlag(Pos: options::OPT_miamcu, Neg: options::OPT_mno_iamcu, Default: false)) {
785 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
786 D.Diag(DiagID: diag::err_drv_unsupported_opt_for_target) << "-miamcu"
787 << Target.str();
788
789 if (A && !A->getOption().matches(ID: options::OPT_m32))
790 D.Diag(DiagID: diag::err_drv_argument_not_allowed_with)
791 << "-miamcu" << A->getBaseArg().getAsString(Args);
792
793 Target.setArch(Kind: llvm::Triple::x86);
794 Target.setArchName("i586");
795 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
796 Target.setEnvironmentName("");
797 Target.setOS(llvm::Triple::ELFIAMCU);
798 Target.setVendor(llvm::Triple::UnknownVendor);
799 Target.setVendorName("intel");
800 }
801
802 // If target is MIPS adjust the target triple
803 // accordingly to provided ABI name.
804 if (Target.isMIPS()) {
805 if ((A = Args.getLastArg(Ids: options::OPT_mabi_EQ))) {
806 StringRef ABIName = A->getValue();
807 if (ABIName == "32") {
808 Target = Target.get32BitArchVariant();
809 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
810 Target.getEnvironment() == llvm::Triple::GNUABIN32)
811 Target.setEnvironment(llvm::Triple::GNU);
812 } else if (ABIName == "n32") {
813 Target = Target.get64BitArchVariant();
814 if (Target.getEnvironment() == llvm::Triple::GNU ||
815 Target.getEnvironment() == llvm::Triple::GNUT64 ||
816 Target.getEnvironment() == llvm::Triple::GNUABI64)
817 Target.setEnvironment(llvm::Triple::GNUABIN32);
818 else if (Target.getEnvironment() == llvm::Triple::Musl ||
819 Target.getEnvironment() == llvm::Triple::MuslABI64)
820 Target.setEnvironment(llvm::Triple::MuslABIN32);
821 } else if (ABIName == "64") {
822 Target = Target.get64BitArchVariant();
823 if (Target.getEnvironment() == llvm::Triple::GNU ||
824 Target.getEnvironment() == llvm::Triple::GNUT64 ||
825 Target.getEnvironment() == llvm::Triple::GNUABIN32)
826 Target.setEnvironment(llvm::Triple::GNUABI64);
827 else if (Target.getEnvironment() == llvm::Triple::Musl ||
828 Target.getEnvironment() == llvm::Triple::MuslABIN32)
829 Target.setEnvironment(llvm::Triple::MuslABI64);
830 }
831 }
832 }
833
834 // If target is RISC-V adjust the target triple according to
835 // provided architecture name
836 if (Target.isRISCV()) {
837 if (Args.hasArg(Ids: options::OPT_march_EQ) ||
838 Args.hasArg(Ids: options::OPT_mcpu_EQ)) {
839 std::string ArchName = tools::riscv::getRISCVArch(Args, Triple: Target);
840 auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
841 Arch: ArchName, /*EnableExperimentalExtensions=*/EnableExperimentalExtension: true);
842 if (!llvm::errorToBool(Err: ISAInfo.takeError())) {
843 unsigned XLen = (*ISAInfo)->getXLen();
844 if (XLen == 32)
845 Target.setArch(Kind: llvm::Triple::riscv32);
846 else if (XLen == 64)
847 Target.setArch(Kind: llvm::Triple::riscv64);
848 }
849 }
850 }
851
852 return Target;
853}
854
855// Parse the LTO options and record the type of LTO compilation
856// based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
857// option occurs last.
858static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
859 OptSpecifier OptEq, OptSpecifier OptNeg) {
860 if (!Args.hasFlag(Pos: OptEq, Neg: OptNeg, Default: false))
861 return LTOK_None;
862
863 const Arg *A = Args.getLastArg(Ids: OptEq);
864 StringRef LTOName = A->getValue();
865
866 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
867 .Case(S: "full", Value: LTOK_Full)
868 .Case(S: "thin", Value: LTOK_Thin)
869 .Default(Value: LTOK_Unknown);
870
871 if (LTOMode == LTOK_Unknown) {
872 D.Diag(DiagID: diag::err_drv_unsupported_option_argument)
873 << A->getSpelling() << A->getValue();
874 return LTOK_None;
875 }
876 return LTOMode;
877}
878
879// Parse the LTO options.
880void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
881 LTOMode =
882 parseLTOMode(D&: *this, Args, OptEq: options::OPT_flto_EQ, OptNeg: options::OPT_fno_lto);
883
884 OffloadLTOMode = parseLTOMode(D&: *this, Args, OptEq: options::OPT_foffload_lto_EQ,
885 OptNeg: options::OPT_fno_offload_lto);
886
887 // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
888 if (Args.hasFlag(Pos: options::OPT_fopenmp_target_jit,
889 Neg: options::OPT_fno_openmp_target_jit, Default: false)) {
890 if (Arg *A = Args.getLastArg(Ids: options::OPT_foffload_lto_EQ,
891 Ids: options::OPT_fno_offload_lto))
892 if (OffloadLTOMode != LTOK_Full)
893 Diag(DiagID: diag::err_drv_incompatible_options)
894 << A->getSpelling() << "-fopenmp-target-jit";
895 OffloadLTOMode = LTOK_Full;
896 }
897}
898
899/// Compute the desired OpenMP runtime from the flags provided.
900Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
901 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
902
903 const Arg *A = Args.getLastArg(Ids: options::OPT_fopenmp_EQ);
904 if (A)
905 RuntimeName = A->getValue();
906
907 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
908 .Case(S: "libomp", Value: OMPRT_OMP)
909 .Case(S: "libgomp", Value: OMPRT_GOMP)
910 .Case(S: "libiomp5", Value: OMPRT_IOMP5)
911 .Default(Value: OMPRT_Unknown);
912
913 if (RT == OMPRT_Unknown) {
914 if (A)
915 Diag(DiagID: diag::err_drv_unsupported_option_argument)
916 << A->getSpelling() << A->getValue();
917 else
918 // FIXME: We could use a nicer diagnostic here.
919 Diag(DiagID: diag::err_drv_unsupported_opt) << "-fopenmp";
920 }
921
922 return RT;
923}
924
925static llvm::Triple getSYCLDeviceTriple(StringRef TargetArch) {
926 SmallVector<StringRef, 5> SYCLAlias = {"spir", "spir64", "spirv", "spirv32",
927 "spirv64"};
928 if (llvm::is_contained(Range&: SYCLAlias, Element: TargetArch)) {
929 llvm::Triple TargetTriple;
930 TargetTriple.setArchName(TargetArch);
931 TargetTriple.setVendor(llvm::Triple::UnknownVendor);
932 TargetTriple.setOS(llvm::Triple::UnknownOS);
933 return TargetTriple;
934 }
935 return llvm::Triple(TargetArch);
936}
937
938static bool addSYCLDefaultTriple(Compilation &C,
939 SmallVectorImpl<llvm::Triple> &SYCLTriples) {
940 // Check current set of triples to see if the default has already been set.
941 for (const auto &SYCLTriple : SYCLTriples) {
942 if (SYCLTriple.getSubArch() == llvm::Triple::NoSubArch &&
943 SYCLTriple.isSPIROrSPIRV())
944 return false;
945 }
946 // Add the default triple as it was not found.
947 llvm::Triple DefaultTriple = getSYCLDeviceTriple(
948 TargetArch: C.getDefaultToolChain().getTriple().isArch32Bit() ? "spirv32"
949 : "spirv64");
950 SYCLTriples.insert(I: SYCLTriples.begin(), Elt: DefaultTriple);
951 return true;
952}
953
954void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
955 InputList &Inputs) {
956
957 //
958 // CUDA/HIP
959 //
960 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
961 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
962 bool IsCuda =
963 llvm::any_of(Range&: Inputs, P: [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
964 return types::isCuda(Id: I.first);
965 });
966 bool IsHIP =
967 llvm::any_of(Range&: Inputs,
968 P: [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
969 return types::isHIP(Id: I.first);
970 }) ||
971 C.getInputArgs().hasArg(Ids: options::OPT_hip_link) ||
972 C.getInputArgs().hasArg(Ids: options::OPT_hipstdpar);
973 bool UseLLVMOffload = C.getInputArgs().hasArg(
974 Ids: options::OPT_foffload_via_llvm, Ids: options::OPT_fno_offload_via_llvm, Ids: false);
975 if (IsCuda && IsHIP) {
976 Diag(DiagID: clang::diag::err_drv_mix_cuda_hip);
977 return;
978 }
979 if (IsCuda && !UseLLVMOffload) {
980 auto CudaTriple = getNVIDIAOffloadTargetTriple(
981 D: *this, Args: C.getInputArgs(), HostTriple: C.getDefaultToolChain().getTriple());
982 if (!CudaTriple)
983 return;
984
985 auto &TC =
986 getOffloadToolChain(Args: C.getInputArgs(), Kind: Action::OFK_Cuda, Target: *CudaTriple,
987 AuxTarget: C.getDefaultToolChain().getTriple());
988
989 // Emit a warning if the detected CUDA version is too new.
990 const CudaInstallationDetector &CudaInstallation =
991 static_cast<const toolchains::CudaToolChain &>(TC).CudaInstallation;
992 if (CudaInstallation.isValid())
993 CudaInstallation.WarnIfUnsupportedVersion();
994 C.addOffloadDeviceToolChain(DeviceToolChain: &TC, OffloadKind: Action::OFK_Cuda);
995 OffloadArchs[&TC] = getOffloadArchs(C, Args: C.getArgs(), Kind: Action::OFK_Cuda, TC: &TC,
996 /*SpecificToolchain=*/true);
997 } else if (IsHIP && !UseLLVMOffload) {
998 if (auto *OMPTargetArg =
999 C.getInputArgs().getLastArg(Ids: options::OPT_fopenmp_targets_EQ)) {
1000 Diag(DiagID: clang::diag::err_drv_unsupported_opt_for_language_mode)
1001 << OMPTargetArg->getSpelling() << "HIP";
1002 return;
1003 }
1004
1005 auto HIPTriple = getHIPOffloadTargetTriple(D: *this, Args: C.getInputArgs());
1006 if (!HIPTriple)
1007 return;
1008
1009 auto &TC =
1010 getOffloadToolChain(Args: C.getInputArgs(), Kind: Action::OFK_HIP, Target: *HIPTriple,
1011 AuxTarget: C.getDefaultToolChain().getTriple());
1012 C.addOffloadDeviceToolChain(DeviceToolChain: &TC, OffloadKind: Action::OFK_HIP);
1013
1014 // TODO: Fix 'amdgcnspirv' handling with the new driver.
1015 if (C.getInputArgs().hasFlag(Pos: options::OPT_offload_new_driver,
1016 Neg: options::OPT_no_offload_new_driver, Default: false))
1017 OffloadArchs[&TC] = getOffloadArchs(C, Args: C.getArgs(), Kind: Action::OFK_HIP, TC: &TC,
1018 /*SpecificToolchain=*/true);
1019 }
1020
1021 if (IsCuda || IsHIP)
1022 CUIDOpts = CUIDOptions(C.getArgs(), *this);
1023
1024 //
1025 // OpenMP
1026 //
1027 // We need to generate an OpenMP toolchain if the user specified targets with
1028 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
1029 bool IsOpenMPOffloading =
1030 ((IsCuda || IsHIP) && UseLLVMOffload) ||
1031 (C.getInputArgs().hasFlag(Pos: options::OPT_fopenmp, PosAlias: options::OPT_fopenmp_EQ,
1032 Neg: options::OPT_fno_openmp, Default: false) &&
1033 (C.getInputArgs().hasArg(Ids: options::OPT_fopenmp_targets_EQ) ||
1034 C.getInputArgs().hasArg(Ids: options::OPT_offload_arch_EQ)));
1035 if (IsOpenMPOffloading) {
1036 // We expect that -fopenmp-targets is always used in conjunction with the
1037 // option -fopenmp specifying a valid runtime with offloading support, i.e.
1038 // libomp or libiomp.
1039 OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(Args: C.getInputArgs());
1040 if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
1041 Diag(DiagID: clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
1042 return;
1043 }
1044
1045 // If the user specified -fopenmp-targets= we create a toolchain for each
1046 // valid triple. Otherwise, if only --offload-arch= was specified we instead
1047 // attempt to derive the appropriate toolchains from the arguments.
1048 if (Arg *OpenMPTargets =
1049 C.getInputArgs().getLastArg(Ids: options::OPT_fopenmp_targets_EQ)) {
1050 if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
1051 Diag(DiagID: clang::diag::warn_drv_empty_joined_argument)
1052 << OpenMPTargets->getAsString(Args: C.getInputArgs());
1053 return;
1054 }
1055
1056 // Make sure these show up in a deterministic order.
1057 std::multiset<StringRef> OpenMPTriples;
1058 for (StringRef T : OpenMPTargets->getValues())
1059 OpenMPTriples.insert(x: T);
1060
1061 llvm::StringMap<StringRef> FoundNormalizedTriples;
1062 for (StringRef T : OpenMPTriples) {
1063 llvm::Triple TT(ToolChain::getOpenMPTriple(TripleStr: T));
1064 std::string NormalizedName = TT.normalize();
1065
1066 // Make sure we don't have a duplicate triple.
1067 auto [TripleIt, Inserted] =
1068 FoundNormalizedTriples.try_emplace(Key: NormalizedName, Args&: T);
1069 if (!Inserted) {
1070 Diag(DiagID: clang::diag::warn_drv_omp_offload_target_duplicate)
1071 << T << TripleIt->second;
1072 continue;
1073 }
1074
1075 // If the specified target is invalid, emit a diagnostic.
1076 if (TT.getArch() == llvm::Triple::UnknownArch) {
1077 Diag(DiagID: clang::diag::err_drv_invalid_omp_target) << T;
1078 continue;
1079 }
1080
1081 auto &TC = getOffloadToolChain(Args: C.getInputArgs(), Kind: Action::OFK_OpenMP, Target: TT,
1082 AuxTarget: C.getDefaultToolChain().getTriple());
1083 C.addOffloadDeviceToolChain(DeviceToolChain: &TC, OffloadKind: Action::OFK_OpenMP);
1084 OffloadArchs[&TC] =
1085 getOffloadArchs(C, Args: C.getArgs(), Kind: Action::OFK_OpenMP, TC: &TC,
1086 /*SpecificToolchain=*/true);
1087 }
1088 } else if (C.getInputArgs().hasArg(Ids: options::OPT_offload_arch_EQ) &&
1089 ((!IsHIP && !IsCuda) || UseLLVMOffload)) {
1090 llvm::Triple AMDTriple("amdgcn-amd-amdhsa");
1091 llvm::Triple NVPTXTriple("nvptx64-nvidia-cuda");
1092
1093 for (StringRef Arch :
1094 C.getInputArgs().getAllArgValues(Id: options::OPT_offload_arch_EQ)) {
1095 bool IsNVPTX = IsNVIDIAOffloadArch(
1096 A: StringToOffloadArch(S: getProcessorFromTargetID(T: NVPTXTriple, OffloadArch: Arch)));
1097 bool IsAMDGPU = IsAMDOffloadArch(
1098 A: StringToOffloadArch(S: getProcessorFromTargetID(T: AMDTriple, OffloadArch: Arch)));
1099 if (!IsNVPTX && !IsAMDGPU && !Arch.empty() &&
1100 !Arch.equals_insensitive(RHS: "native")) {
1101 Diag(DiagID: clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
1102 return;
1103 }
1104 }
1105
1106 // Attempt to deduce the offloading triple from the set of architectures.
1107 // We can only correctly deduce NVPTX / AMDGPU triples currently.
1108 for (const llvm::Triple &TT : {AMDTriple, NVPTXTriple}) {
1109 auto &TC = getOffloadToolChain(Args: C.getInputArgs(), Kind: Action::OFK_OpenMP, Target: TT,
1110 AuxTarget: C.getDefaultToolChain().getTriple());
1111
1112 llvm::SmallVector<StringRef> Archs =
1113 getOffloadArchs(C, Args: C.getArgs(), Kind: Action::OFK_OpenMP, TC: &TC,
1114 /*SpecificToolchain=*/false);
1115 if (!Archs.empty()) {
1116 C.addOffloadDeviceToolChain(DeviceToolChain: &TC, OffloadKind: Action::OFK_OpenMP);
1117 OffloadArchs[&TC] = Archs;
1118 }
1119 }
1120
1121 // If the set is empty then we failed to find a native architecture.
1122 auto TCRange = C.getOffloadToolChains(Kind: Action::OFK_OpenMP);
1123 if (TCRange.first == TCRange.second)
1124 Diag(DiagID: clang::diag::err_drv_failed_to_deduce_target_from_arch)
1125 << "native";
1126 }
1127 } else if (C.getInputArgs().hasArg(Ids: options::OPT_fopenmp_targets_EQ)) {
1128 Diag(DiagID: clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
1129 return;
1130 }
1131
1132 // We need to generate a SYCL toolchain if the user specified -fsycl.
1133 bool IsSYCL = C.getInputArgs().hasFlag(Pos: options::OPT_fsycl,
1134 Neg: options::OPT_fno_sycl, Default: false);
1135
1136 auto argSYCLIncompatible = [&](OptSpecifier OptId) {
1137 if (!IsSYCL)
1138 return;
1139 if (Arg *IncompatArg = C.getInputArgs().getLastArg(Ids: OptId))
1140 Diag(DiagID: clang::diag::err_drv_argument_not_allowed_with)
1141 << IncompatArg->getSpelling() << "-fsycl";
1142 };
1143 // -static-libstdc++ is not compatible with -fsycl.
1144 argSYCLIncompatible(options::OPT_static_libstdcxx);
1145 // -ffreestanding cannot be used with -fsycl
1146 argSYCLIncompatible(options::OPT_ffreestanding);
1147
1148 llvm::SmallVector<llvm::Triple, 4> UniqueSYCLTriplesVec;
1149
1150 if (IsSYCL) {
1151 addSYCLDefaultTriple(C, SYCLTriples&: UniqueSYCLTriplesVec);
1152
1153 // We'll need to use the SYCL and host triples as the key into
1154 // getOffloadingDeviceToolChain, because the device toolchains we're
1155 // going to create will depend on both.
1156 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
1157 for (const auto &TT : UniqueSYCLTriplesVec) {
1158 auto &TC = getOffloadToolChain(Args: C.getInputArgs(), Kind: Action::OFK_SYCL, Target: TT,
1159 AuxTarget: HostTC->getTriple());
1160 C.addOffloadDeviceToolChain(DeviceToolChain: &TC, OffloadKind: Action::OFK_SYCL);
1161 OffloadArchs[&TC] = getOffloadArchs(C, Args: C.getArgs(), Kind: Action::OFK_SYCL, TC: &TC,
1162 /*SpecificToolchain=*/true);
1163 }
1164 }
1165
1166 //
1167 // TODO: Add support for other offloading programming models here.
1168 //
1169}
1170
1171bool Driver::loadZOSCustomizationFile(llvm::cl::ExpansionContext &ExpCtx) {
1172 if (IsCLMode() || IsDXCMode() || IsFlangMode())
1173 return false;
1174
1175 SmallString<128> CustomizationFile;
1176 StringRef PathLIBEnv = StringRef(getenv(name: "CLANG_CONFIG_PATH")).trim();
1177 // If the env var is a directory then append "/clang.cfg" and treat
1178 // that as the config file. Otherwise treat the env var as the
1179 // config file.
1180 if (!PathLIBEnv.empty()) {
1181 llvm::sys::path::append(path&: CustomizationFile, a: PathLIBEnv);
1182 if (llvm::sys::fs::is_directory(Path: PathLIBEnv))
1183 llvm::sys::path::append(path&: CustomizationFile, a: "/clang.cfg");
1184 if (llvm::sys::fs::is_regular_file(Path: CustomizationFile))
1185 return readConfigFile(FileName: CustomizationFile, ExpCtx);
1186 Diag(DiagID: diag::err_drv_config_file_not_found) << CustomizationFile;
1187 return true;
1188 }
1189
1190 SmallString<128> BaseDir(llvm::sys::path::parent_path(path: Dir));
1191 llvm::sys::path::append(path&: CustomizationFile, a: BaseDir + "/etc/clang.cfg");
1192 if (llvm::sys::fs::is_regular_file(Path: CustomizationFile))
1193 return readConfigFile(FileName: CustomizationFile, ExpCtx);
1194
1195 // If no customization file, just return
1196 return false;
1197}
1198
1199static void appendOneArg(InputArgList &Args, const Arg *Opt) {
1200 // The args for config files or /clang: flags belong to different InputArgList
1201 // objects than Args. This copies an Arg from one of those other InputArgLists
1202 // to the ownership of Args.
1203 unsigned Index = Args.MakeIndex(String0: Opt->getSpelling());
1204 Arg *Copy = new Arg(Opt->getOption(), Args.getArgString(Index), Index);
1205 Copy->getValues() = Opt->getValues();
1206 if (Opt->isClaimed())
1207 Copy->claim();
1208 Copy->setOwnsValues(Opt->getOwnsValues());
1209 Opt->setOwnsValues(false);
1210 Args.append(A: Copy);
1211 if (Opt->getAlias()) {
1212 const Arg *Alias = Opt->getAlias();
1213 unsigned Index = Args.MakeIndex(String0: Alias->getSpelling());
1214 auto AliasCopy = std::make_unique<Arg>(args: Alias->getOption(),
1215 args: Args.getArgString(Index), args&: Index);
1216 AliasCopy->getValues() = Alias->getValues();
1217 AliasCopy->setOwnsValues(false);
1218 if (Alias->isClaimed())
1219 AliasCopy->claim();
1220 Copy->setAlias(std::move(AliasCopy));
1221 }
1222}
1223
1224bool Driver::readConfigFile(StringRef FileName,
1225 llvm::cl::ExpansionContext &ExpCtx) {
1226 // Try opening the given file.
1227 auto Status = getVFS().status(Path: FileName);
1228 if (!Status) {
1229 Diag(DiagID: diag::err_drv_cannot_open_config_file)
1230 << FileName << Status.getError().message();
1231 return true;
1232 }
1233 if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
1234 Diag(DiagID: diag::err_drv_cannot_open_config_file)
1235 << FileName << "not a regular file";
1236 return true;
1237 }
1238
1239 // Try reading the given file.
1240 SmallVector<const char *, 32> NewCfgFileArgs;
1241 if (llvm::Error Err = ExpCtx.readConfigFile(CfgFile: FileName, Argv&: NewCfgFileArgs)) {
1242 Diag(DiagID: diag::err_drv_cannot_read_config_file)
1243 << FileName << toString(E: std::move(Err));
1244 return true;
1245 }
1246
1247 // Populate head and tail lists. The tail list is used only when linking.
1248 SmallVector<const char *, 32> NewCfgHeadArgs, NewCfgTailArgs;
1249 for (const char *Opt : NewCfgFileArgs) {
1250 // An $-prefixed option should go to the tail list.
1251 if (Opt[0] == '$' && Opt[1])
1252 NewCfgTailArgs.push_back(Elt: Opt + 1);
1253 else
1254 NewCfgHeadArgs.push_back(Elt: Opt);
1255 }
1256
1257 // Read options from config file.
1258 llvm::SmallString<128> CfgFileName(FileName);
1259 llvm::sys::path::native(path&: CfgFileName);
1260 bool ContainErrors = false;
1261 auto NewHeadOptions = std::make_unique<InputArgList>(
1262 args: ParseArgStrings(ArgStrings: NewCfgHeadArgs, /*UseDriverMode=*/true, ContainsError&: ContainErrors));
1263 if (ContainErrors)
1264 return true;
1265 auto NewTailOptions = std::make_unique<InputArgList>(
1266 args: ParseArgStrings(ArgStrings: NewCfgTailArgs, /*UseDriverMode=*/true, ContainsError&: ContainErrors));
1267 if (ContainErrors)
1268 return true;
1269
1270 // Claim all arguments that come from a configuration file so that the driver
1271 // does not warn on any that is unused.
1272 for (Arg *A : *NewHeadOptions)
1273 A->claim();
1274 for (Arg *A : *NewTailOptions)
1275 A->claim();
1276
1277 if (!CfgOptionsHead)
1278 CfgOptionsHead = std::move(NewHeadOptions);
1279 else {
1280 // If this is a subsequent config file, append options to the previous one.
1281 for (auto *Opt : *NewHeadOptions)
1282 appendOneArg(Args&: *CfgOptionsHead, Opt);
1283 }
1284
1285 if (!CfgOptionsTail)
1286 CfgOptionsTail = std::move(NewTailOptions);
1287 else {
1288 // If this is a subsequent config file, append options to the previous one.
1289 for (auto *Opt : *NewTailOptions)
1290 appendOneArg(Args&: *CfgOptionsTail, Opt);
1291 }
1292
1293 ConfigFiles.push_back(x: std::string(CfgFileName));
1294 return false;
1295}
1296
1297bool Driver::loadConfigFiles() {
1298 llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1299 llvm::cl::tokenizeConfigFile);
1300 ExpCtx.setVFS(&getVFS());
1301
1302 // Process options that change search path for config files.
1303 if (CLOptions) {
1304 if (CLOptions->hasArg(Ids: options::OPT_config_system_dir_EQ)) {
1305 SmallString<128> CfgDir;
1306 CfgDir.append(
1307 RHS: CLOptions->getLastArgValue(Id: options::OPT_config_system_dir_EQ));
1308 if (CfgDir.empty() || getVFS().makeAbsolute(Path&: CfgDir))
1309 SystemConfigDir.clear();
1310 else
1311 SystemConfigDir = static_cast<std::string>(CfgDir);
1312 }
1313 if (CLOptions->hasArg(Ids: options::OPT_config_user_dir_EQ)) {
1314 SmallString<128> CfgDir;
1315 llvm::sys::fs::expand_tilde(
1316 path: CLOptions->getLastArgValue(Id: options::OPT_config_user_dir_EQ), output&: CfgDir);
1317 if (CfgDir.empty() || getVFS().makeAbsolute(Path&: CfgDir))
1318 UserConfigDir.clear();
1319 else
1320 UserConfigDir = static_cast<std::string>(CfgDir);
1321 }
1322 }
1323
1324 // Prepare list of directories where config file is searched for.
1325 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1326 ExpCtx.setSearchDirs(CfgFileSearchDirs);
1327
1328 // First try to load configuration from the default files, return on error.
1329 if (loadDefaultConfigFiles(ExpCtx))
1330 return true;
1331
1332 // Then load configuration files specified explicitly.
1333 SmallString<128> CfgFilePath;
1334 if (CLOptions) {
1335 for (auto CfgFileName : CLOptions->getAllArgValues(Id: options::OPT_config)) {
1336 // If argument contains directory separator, treat it as a path to
1337 // configuration file.
1338 if (llvm::sys::path::has_parent_path(path: CfgFileName)) {
1339 CfgFilePath.assign(RHS: CfgFileName);
1340 if (llvm::sys::path::is_relative(path: CfgFilePath)) {
1341 if (getVFS().makeAbsolute(Path&: CfgFilePath)) {
1342 Diag(DiagID: diag::err_drv_cannot_open_config_file)
1343 << CfgFilePath << "cannot get absolute path";
1344 return true;
1345 }
1346 }
1347 } else if (!ExpCtx.findConfigFile(FileName: CfgFileName, FilePath&: CfgFilePath)) {
1348 // Report an error that the config file could not be found.
1349 Diag(DiagID: diag::err_drv_config_file_not_found) << CfgFileName;
1350 for (const StringRef &SearchDir : CfgFileSearchDirs)
1351 if (!SearchDir.empty())
1352 Diag(DiagID: diag::note_drv_config_file_searched_in) << SearchDir;
1353 return true;
1354 }
1355
1356 // Try to read the config file, return on error.
1357 if (readConfigFile(FileName: CfgFilePath, ExpCtx))
1358 return true;
1359 }
1360 }
1361
1362 // No error occurred.
1363 return false;
1364}
1365
1366static bool findTripleConfigFile(llvm::cl::ExpansionContext &ExpCtx,
1367 SmallString<128> &ConfigFilePath,
1368 llvm::Triple Triple, std::string Suffix) {
1369 // First, try the full unmodified triple.
1370 if (ExpCtx.findConfigFile(FileName: Triple.str() + Suffix, FilePath&: ConfigFilePath))
1371 return true;
1372
1373 // Don't continue if we didn't find a parsable version in the triple.
1374 VersionTuple OSVersion = Triple.getOSVersion();
1375 if (!OSVersion.getMinor().has_value())
1376 return false;
1377
1378 std::string BaseOSName = Triple.getOSTypeName(Kind: Triple.getOS()).str();
1379
1380 // Next try strip the version to only include the major component.
1381 // e.g. arm64-apple-darwin23.6.0 -> arm64-apple-darwin23
1382 if (OSVersion.getMajor() != 0) {
1383 Triple.setOSName(BaseOSName + llvm::utostr(X: OSVersion.getMajor()));
1384 if (ExpCtx.findConfigFile(FileName: Triple.str() + Suffix, FilePath&: ConfigFilePath))
1385 return true;
1386 }
1387
1388 // Finally, try without any version suffix at all.
1389 // e.g. arm64-apple-darwin23.6.0 -> arm64-apple-darwin
1390 Triple.setOSName(BaseOSName);
1391 return ExpCtx.findConfigFile(FileName: Triple.str() + Suffix, FilePath&: ConfigFilePath);
1392}
1393
1394bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1395 // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1396 // value.
1397 if (const char *NoConfigEnv = ::getenv(name: "CLANG_NO_DEFAULT_CONFIG")) {
1398 if (*NoConfigEnv)
1399 return false;
1400 }
1401 if (CLOptions && CLOptions->hasArg(Ids: options::OPT_no_default_config))
1402 return false;
1403
1404 std::string RealMode = getExecutableForDriverMode(Mode);
1405 llvm::Triple Triple;
1406
1407 // If name prefix is present, no --target= override was passed via CLOptions
1408 // and the name prefix is not a valid triple, force it for backwards
1409 // compatibility.
1410 if (!ClangNameParts.TargetPrefix.empty() &&
1411 computeTargetTriple(D: *this, TargetTriple: "/invalid/", Args: *CLOptions).str() ==
1412 "/invalid/") {
1413 llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1414 if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1415 PrefixTriple.isOSUnknown())
1416 Triple = PrefixTriple;
1417 }
1418
1419 // Otherwise, use the real triple as used by the driver.
1420 llvm::Triple RealTriple =
1421 computeTargetTriple(D: *this, TargetTriple, Args: *CLOptions);
1422 if (Triple.str().empty()) {
1423 Triple = RealTriple;
1424 assert(!Triple.str().empty());
1425 }
1426
1427 // On z/OS, start by loading the customization file before loading
1428 // the usual default config file(s).
1429 if (RealTriple.isOSzOS() && loadZOSCustomizationFile(ExpCtx))
1430 return true;
1431
1432 // Search for config files in the following order:
1433 // 1. <triple>-<mode>.cfg using real driver mode
1434 // (e.g. i386-pc-linux-gnu-clang++.cfg).
1435 // 2. <triple>-<mode>.cfg using executable suffix
1436 // (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1437 // 3. <triple>.cfg + <mode>.cfg using real driver mode
1438 // (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1439 // 4. <triple>.cfg + <mode>.cfg using executable suffix
1440 // (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1441
1442 // Try loading <triple>-<mode>.cfg, and return if we find a match.
1443 SmallString<128> CfgFilePath;
1444 if (findTripleConfigFile(ExpCtx, ConfigFilePath&: CfgFilePath, Triple,
1445 Suffix: "-" + RealMode + ".cfg"))
1446 return readConfigFile(FileName: CfgFilePath, ExpCtx);
1447
1448 bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1449 ClangNameParts.ModeSuffix != RealMode;
1450 if (TryModeSuffix) {
1451 if (findTripleConfigFile(ExpCtx, ConfigFilePath&: CfgFilePath, Triple,
1452 Suffix: "-" + ClangNameParts.ModeSuffix + ".cfg"))
1453 return readConfigFile(FileName: CfgFilePath, ExpCtx);
1454 }
1455
1456 // Try loading <mode>.cfg, and return if loading failed. If a matching file
1457 // was not found, still proceed on to try <triple>.cfg.
1458 std::string CfgFileName = RealMode + ".cfg";
1459 if (ExpCtx.findConfigFile(FileName: CfgFileName, FilePath&: CfgFilePath)) {
1460 if (readConfigFile(FileName: CfgFilePath, ExpCtx))
1461 return true;
1462 } else if (TryModeSuffix) {
1463 CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1464 if (ExpCtx.findConfigFile(FileName: CfgFileName, FilePath&: CfgFilePath) &&
1465 readConfigFile(FileName: CfgFilePath, ExpCtx))
1466 return true;
1467 }
1468
1469 // Try loading <triple>.cfg and return if we find a match.
1470 if (findTripleConfigFile(ExpCtx, ConfigFilePath&: CfgFilePath, Triple, Suffix: ".cfg"))
1471 return readConfigFile(FileName: CfgFilePath, ExpCtx);
1472
1473 // If we were unable to find a config file deduced from executable name,
1474 // that is not an error.
1475 return false;
1476}
1477
1478Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1479 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1480
1481 // FIXME: Handle environment options which affect driver behavior, somewhere
1482 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1483
1484 // We look for the driver mode option early, because the mode can affect
1485 // how other options are parsed.
1486
1487 auto DriverMode = getDriverMode(ProgName: ClangExecutable, Args: ArgList.slice(N: 1));
1488 if (!DriverMode.empty())
1489 setDriverMode(DriverMode);
1490
1491 // FIXME: What are we going to do with -V and -b?
1492
1493 // Arguments specified in command line.
1494 bool ContainsError;
1495 CLOptions = std::make_unique<InputArgList>(
1496 args: ParseArgStrings(ArgStrings: ArgList.slice(N: 1), /*UseDriverMode=*/true, ContainsError));
1497
1498 // Try parsing configuration file.
1499 if (!ContainsError)
1500 ContainsError = loadConfigFiles();
1501 bool HasConfigFileHead = !ContainsError && CfgOptionsHead;
1502 bool HasConfigFileTail = !ContainsError && CfgOptionsTail;
1503
1504 // All arguments, from both config file and command line.
1505 InputArgList Args =
1506 HasConfigFileHead ? std::move(*CfgOptionsHead) : std::move(*CLOptions);
1507
1508 if (HasConfigFileHead)
1509 for (auto *Opt : *CLOptions)
1510 if (!Opt->getOption().matches(ID: options::OPT_config))
1511 appendOneArg(Args, Opt);
1512
1513 // In CL mode, look for any pass-through arguments
1514 if (IsCLMode() && !ContainsError) {
1515 SmallVector<const char *, 16> CLModePassThroughArgList;
1516 for (const auto *A : Args.filtered(Ids: options::OPT__SLASH_clang)) {
1517 A->claim();
1518 CLModePassThroughArgList.push_back(Elt: A->getValue());
1519 }
1520
1521 if (!CLModePassThroughArgList.empty()) {
1522 // Parse any pass through args using default clang processing rather
1523 // than clang-cl processing.
1524 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1525 args: ParseArgStrings(ArgStrings: CLModePassThroughArgList, /*UseDriverMode=*/false,
1526 ContainsError));
1527
1528 if (!ContainsError)
1529 for (auto *Opt : *CLModePassThroughOptions)
1530 appendOneArg(Args, Opt);
1531 }
1532 }
1533
1534 // Check for working directory option before accessing any files
1535 if (Arg *WD = Args.getLastArg(Ids: options::OPT_working_directory))
1536 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1537 Diag(DiagID: diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1538
1539 // Check for missing include directories.
1540 if (!Diags.isIgnored(DiagID: diag::warn_missing_include_dirs, Loc: SourceLocation())) {
1541 for (auto IncludeDir : Args.getAllArgValues(Id: options::OPT_I_Group)) {
1542 if (!VFS->exists(Path: IncludeDir))
1543 Diag(DiagID: diag::warn_missing_include_dirs) << IncludeDir;
1544 }
1545 }
1546
1547 // FIXME: This stuff needs to go into the Compilation, not the driver.
1548 bool CCCPrintPhases;
1549
1550 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1551 Args.ClaimAllArgs(Id0: options::OPT_canonical_prefixes);
1552 Args.ClaimAllArgs(Id0: options::OPT_no_canonical_prefixes);
1553
1554 // f(no-)integated-cc1 is also used very early in main.
1555 Args.ClaimAllArgs(Id0: options::OPT_fintegrated_cc1);
1556 Args.ClaimAllArgs(Id0: options::OPT_fno_integrated_cc1);
1557
1558 // Ignore -pipe.
1559 Args.ClaimAllArgs(Id0: options::OPT_pipe);
1560
1561 // Extract -ccc args.
1562 //
1563 // FIXME: We need to figure out where this behavior should live. Most of it
1564 // should be outside in the client; the parts that aren't should have proper
1565 // options, either by introducing new ones or by overloading gcc ones like -V
1566 // or -b.
1567 CCCPrintPhases = Args.hasArg(Ids: options::OPT_ccc_print_phases);
1568 CCCPrintBindings = Args.hasArg(Ids: options::OPT_ccc_print_bindings);
1569 if (const Arg *A = Args.getLastArg(Ids: options::OPT_ccc_gcc_name))
1570 CCCGenericGCCName = A->getValue();
1571
1572 // Process -fproc-stat-report options.
1573 if (const Arg *A = Args.getLastArg(Ids: options::OPT_fproc_stat_report_EQ)) {
1574 CCPrintProcessStats = true;
1575 CCPrintStatReportFilename = A->getValue();
1576 }
1577 if (Args.hasArg(Ids: options::OPT_fproc_stat_report))
1578 CCPrintProcessStats = true;
1579
1580 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1581 // and getToolChain is const.
1582 if (IsCLMode()) {
1583 // clang-cl targets MSVC-style Win32.
1584 llvm::Triple T(TargetTriple);
1585 T.setOS(llvm::Triple::Win32);
1586 T.setVendor(llvm::Triple::PC);
1587 T.setEnvironment(llvm::Triple::MSVC);
1588 T.setObjectFormat(llvm::Triple::COFF);
1589 if (Args.hasArg(Ids: options::OPT__SLASH_arm64EC))
1590 T.setArch(Kind: llvm::Triple::aarch64, SubArch: llvm::Triple::AArch64SubArch_arm64ec);
1591 TargetTriple = T.str();
1592 } else if (IsDXCMode()) {
1593 // Build TargetTriple from target_profile option for clang-dxc.
1594 if (const Arg *A = Args.getLastArg(Ids: options::OPT_target_profile)) {
1595 StringRef TargetProfile = A->getValue();
1596 if (auto Triple =
1597 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1598 TargetTriple = *Triple;
1599 else
1600 Diag(DiagID: diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1601
1602 A->claim();
1603
1604 if (Args.hasArg(Ids: options::OPT_spirv)) {
1605 const llvm::StringMap<llvm::Triple::SubArchType> ValidTargets = {
1606 {"vulkan1.2", llvm::Triple::SPIRVSubArch_v15},
1607 {"vulkan1.3", llvm::Triple::SPIRVSubArch_v16}};
1608 llvm::Triple T(TargetTriple);
1609
1610 // Set specific Vulkan version. Default to vulkan1.3.
1611 auto TargetInfo = ValidTargets.find(Key: "vulkan1.3");
1612 assert(TargetInfo != ValidTargets.end());
1613 if (const Arg *A = Args.getLastArg(Ids: options::OPT_fspv_target_env_EQ)) {
1614 TargetInfo = ValidTargets.find(Key: A->getValue());
1615 if (TargetInfo == ValidTargets.end()) {
1616 Diag(DiagID: diag::err_drv_invalid_value)
1617 << A->getAsString(Args) << A->getValue();
1618 }
1619 A->claim();
1620 }
1621 if (TargetInfo != ValidTargets.end()) {
1622 T.setOSName(TargetInfo->getKey());
1623 T.setArch(Kind: llvm::Triple::spirv, SubArch: TargetInfo->getValue());
1624 TargetTriple = T.str();
1625 }
1626 }
1627 } else {
1628 Diag(DiagID: diag::err_drv_dxc_missing_target_profile);
1629 }
1630 }
1631
1632 if (const Arg *A = Args.getLastArg(Ids: options::OPT_target))
1633 TargetTriple = A->getValue();
1634 if (const Arg *A = Args.getLastArg(Ids: options::OPT_ccc_install_dir))
1635 Dir = Dir = A->getValue();
1636 for (const Arg *A : Args.filtered(Ids: options::OPT_B)) {
1637 A->claim();
1638 PrefixDirs.push_back(Elt: A->getValue(N: 0));
1639 }
1640 if (std::optional<std::string> CompilerPathValue =
1641 llvm::sys::Process::GetEnv(name: "COMPILER_PATH")) {
1642 StringRef CompilerPath = *CompilerPathValue;
1643 while (!CompilerPath.empty()) {
1644 std::pair<StringRef, StringRef> Split =
1645 CompilerPath.split(Separator: llvm::sys::EnvPathSeparator);
1646 PrefixDirs.push_back(Elt: std::string(Split.first));
1647 CompilerPath = Split.second;
1648 }
1649 }
1650 if (const Arg *A = Args.getLastArg(Ids: options::OPT__sysroot_EQ))
1651 SysRoot = A->getValue();
1652 if (const Arg *A = Args.getLastArg(Ids: options::OPT__dyld_prefix_EQ))
1653 DyldPrefix = A->getValue();
1654
1655 if (const Arg *A = Args.getLastArg(Ids: options::OPT_resource_dir))
1656 ResourceDir = A->getValue();
1657
1658 if (const Arg *A = Args.getLastArg(Ids: options::OPT_save_temps_EQ)) {
1659 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1660 .Case(S: "cwd", Value: SaveTempsCwd)
1661 .Case(S: "obj", Value: SaveTempsObj)
1662 .Default(Value: SaveTempsCwd);
1663 }
1664
1665 if (const Arg *A = Args.getLastArg(Ids: options::OPT_offload_host_only,
1666 Ids: options::OPT_offload_device_only,
1667 Ids: options::OPT_offload_host_device)) {
1668 if (A->getOption().matches(ID: options::OPT_offload_host_only))
1669 Offload = OffloadHost;
1670 else if (A->getOption().matches(ID: options::OPT_offload_device_only))
1671 Offload = OffloadDevice;
1672 else
1673 Offload = OffloadHostDevice;
1674 }
1675
1676 setLTOMode(Args);
1677
1678 // Process -fembed-bitcode= flags.
1679 if (Arg *A = Args.getLastArg(Ids: options::OPT_fembed_bitcode_EQ)) {
1680 StringRef Name = A->getValue();
1681 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1682 .Case(S: "off", Value: EmbedNone)
1683 .Case(S: "all", Value: EmbedBitcode)
1684 .Case(S: "bitcode", Value: EmbedBitcode)
1685 .Case(S: "marker", Value: EmbedMarker)
1686 .Default(Value: ~0U);
1687 if (Model == ~0U) {
1688 Diags.Report(DiagID: diag::err_drv_invalid_value) << A->getAsString(Args)
1689 << Name;
1690 } else
1691 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1692 }
1693
1694 // Remove existing compilation database so that each job can append to it.
1695 if (Arg *A = Args.getLastArg(Ids: options::OPT_MJ))
1696 llvm::sys::fs::remove(path: A->getValue());
1697
1698 // Setting up the jobs for some precompile cases depends on whether we are
1699 // treating them as PCH, implicit modules or C++20 ones.
1700 // TODO: inferring the mode like this seems fragile (it meets the objective
1701 // of not requiring anything new for operation, however).
1702 const Arg *Std = Args.getLastArg(Ids: options::OPT_std_EQ);
1703 ModulesModeCXX20 =
1704 !Args.hasArg(Ids: options::OPT_fmodules) && Std &&
1705 (Std->containsValue(Value: "c++20") || Std->containsValue(Value: "c++2a") ||
1706 Std->containsValue(Value: "c++23") || Std->containsValue(Value: "c++2b") ||
1707 Std->containsValue(Value: "c++26") || Std->containsValue(Value: "c++2c") ||
1708 Std->containsValue(Value: "c++latest"));
1709
1710 // Process -fmodule-header{=} flags.
1711 if (Arg *A = Args.getLastArg(Ids: options::OPT_fmodule_header_EQ,
1712 Ids: options::OPT_fmodule_header)) {
1713 // These flags force C++20 handling of headers.
1714 ModulesModeCXX20 = true;
1715 if (A->getOption().matches(ID: options::OPT_fmodule_header))
1716 CXX20HeaderType = HeaderMode_Default;
1717 else {
1718 StringRef ArgName = A->getValue();
1719 unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1720 .Case(S: "user", Value: HeaderMode_User)
1721 .Case(S: "system", Value: HeaderMode_System)
1722 .Default(Value: ~0U);
1723 if (Kind == ~0U) {
1724 Diags.Report(DiagID: diag::err_drv_invalid_value)
1725 << A->getAsString(Args) << ArgName;
1726 } else
1727 CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1728 }
1729 }
1730
1731 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1732 std::make_unique<InputArgList>(args: std::move(Args));
1733
1734 // Owned by the host.
1735 const ToolChain &TC =
1736 getToolChain(Args: *UArgs, Target: computeTargetTriple(D: *this, TargetTriple, Args: *UArgs));
1737
1738 {
1739 SmallVector<std::string> MultilibMacroDefinesStr =
1740 TC.getMultilibMacroDefinesStr(Args&: *UArgs);
1741 SmallVector<const char *> MLMacroDefinesChar(
1742 llvm::map_range(C&: MultilibMacroDefinesStr, F: [&UArgs](const auto &S) {
1743 return UArgs->MakeArgString(Str: Twine("-D") + Twine(S));
1744 }));
1745 bool MLContainsError;
1746 auto MultilibMacroDefineList =
1747 std::make_unique<InputArgList>(args: ParseArgStrings(
1748 ArgStrings: MLMacroDefinesChar, /*UseDriverMode=*/false, ContainsError&: MLContainsError));
1749 if (!MLContainsError) {
1750 for (auto *Opt : *MultilibMacroDefineList) {
1751 appendOneArg(Args&: *UArgs, Opt);
1752 }
1753 }
1754 }
1755
1756 // Perform the default argument translations.
1757 DerivedArgList *TranslatedArgs = TranslateInputArgs(Args: *UArgs);
1758
1759 // Check if the environment version is valid except wasm case.
1760 llvm::Triple Triple = TC.getTriple();
1761 if (!Triple.isWasm()) {
1762 StringRef TripleVersionName = Triple.getEnvironmentVersionString();
1763 StringRef TripleObjectFormat =
1764 Triple.getObjectFormatTypeName(ObjectFormat: Triple.getObjectFormat());
1765 if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "" &&
1766 TripleVersionName != TripleObjectFormat) {
1767 Diags.Report(DiagID: diag::err_drv_triple_version_invalid)
1768 << TripleVersionName << TC.getTripleString();
1769 ContainsError = true;
1770 }
1771 }
1772
1773 // Report warning when arm64EC option is overridden by specified target
1774 if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1775 TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1776 UArgs->hasArg(Ids: options::OPT__SLASH_arm64EC)) {
1777 getDiags().Report(DiagID: clang::diag::warn_target_override_arm64ec)
1778 << TC.getTriple().str();
1779 }
1780
1781 // A common user mistake is specifying a target of aarch64-none-eabi or
1782 // arm-none-elf whereas the correct names are aarch64-none-elf &
1783 // arm-none-eabi. Detect these cases and issue a warning.
1784 if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1785 TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1786 switch (TC.getTriple().getArch()) {
1787 case llvm::Triple::arm:
1788 case llvm::Triple::armeb:
1789 case llvm::Triple::thumb:
1790 case llvm::Triple::thumbeb:
1791 if (TC.getTriple().getEnvironmentName() == "elf") {
1792 Diag(DiagID: diag::warn_target_unrecognized_env)
1793 << TargetTriple
1794 << (TC.getTriple().getArchName().str() + "-none-eabi");
1795 }
1796 break;
1797 case llvm::Triple::aarch64:
1798 case llvm::Triple::aarch64_be:
1799 case llvm::Triple::aarch64_32:
1800 if (TC.getTriple().getEnvironmentName().starts_with(Prefix: "eabi")) {
1801 Diag(DiagID: diag::warn_target_unrecognized_env)
1802 << TargetTriple
1803 << (TC.getTriple().getArchName().str() + "-none-elf");
1804 }
1805 break;
1806 default:
1807 break;
1808 }
1809 }
1810
1811 // The compilation takes ownership of Args.
1812 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1813 ContainsError);
1814
1815 if (!HandleImmediateArgs(C&: *C))
1816 return C;
1817
1818 // Construct the list of inputs.
1819 InputList Inputs;
1820 BuildInputs(TC: C->getDefaultToolChain(), Args&: *TranslatedArgs, Inputs);
1821 if (HasConfigFileTail && Inputs.size()) {
1822 Arg *FinalPhaseArg;
1823 if (getFinalPhase(DAL: *TranslatedArgs, FinalPhaseArg: &FinalPhaseArg) == phases::Link) {
1824 DerivedArgList TranslatedLinkerIns(*CfgOptionsTail);
1825 for (Arg *A : *CfgOptionsTail)
1826 TranslatedLinkerIns.append(A);
1827 BuildInputs(TC: C->getDefaultToolChain(), Args&: TranslatedLinkerIns, Inputs);
1828 }
1829 }
1830
1831 // Populate the tool chains for the offloading devices, if any.
1832 CreateOffloadingDeviceToolChains(C&: *C, Inputs);
1833
1834 // Construct the list of abstract actions to perform for this compilation. On
1835 // MachO targets this uses the driver-driver and universal actions.
1836 if (TC.getTriple().isOSBinFormatMachO())
1837 BuildUniversalActions(C&: *C, TC: C->getDefaultToolChain(), BAInputs: Inputs);
1838 else
1839 BuildActions(C&: *C, Args&: C->getArgs(), Inputs, Actions&: C->getActions());
1840
1841 if (CCCPrintPhases) {
1842 PrintActions(C: *C);
1843 return C;
1844 }
1845
1846 BuildJobs(C&: *C);
1847
1848 return C;
1849}
1850
1851static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1852 llvm::opt::ArgStringList ASL;
1853 for (const auto *A : Args) {
1854 // Use user's original spelling of flags. For example, use
1855 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1856 // wrote the former.
1857 while (A->getAlias())
1858 A = A->getAlias();
1859 A->render(Args, Output&: ASL);
1860 }
1861
1862 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1863 if (I != ASL.begin())
1864 OS << ' ';
1865 llvm::sys::printArg(OS, Arg: *I, Quote: true);
1866 }
1867 OS << '\n';
1868}
1869
1870bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1871 SmallString<128> &CrashDiagDir) {
1872 using namespace llvm::sys;
1873 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1874 "Only knows about .crash files on Darwin");
1875
1876 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1877 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1878 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1879 path::home_directory(result&: CrashDiagDir);
1880 if (CrashDiagDir.starts_with(Prefix: "/var/root"))
1881 CrashDiagDir = "/";
1882 path::append(path&: CrashDiagDir, a: "Library/Logs/DiagnosticReports");
1883 int PID =
1884#if LLVM_ON_UNIX
1885 getpid();
1886#else
1887 0;
1888#endif
1889 std::error_code EC;
1890 fs::file_status FileStatus;
1891 TimePoint<> LastAccessTime;
1892 SmallString<128> CrashFilePath;
1893 // Lookup the .crash files and get the one generated by a subprocess spawned
1894 // by this driver invocation.
1895 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1896 File != FileEnd && !EC; File.increment(ec&: EC)) {
1897 StringRef FileName = path::filename(path: File->path());
1898 if (!FileName.starts_with(Prefix: Name))
1899 continue;
1900 if (fs::status(path: File->path(), result&: FileStatus))
1901 continue;
1902 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1903 llvm::MemoryBuffer::getFile(Filename: File->path());
1904 if (!CrashFile)
1905 continue;
1906 // The first line should start with "Process:", otherwise this isn't a real
1907 // .crash file.
1908 StringRef Data = CrashFile.get()->getBuffer();
1909 if (!Data.starts_with(Prefix: "Process:"))
1910 continue;
1911 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1912 size_t ParentProcPos = Data.find(Str: "Parent Process:");
1913 if (ParentProcPos == StringRef::npos)
1914 continue;
1915 size_t LineEnd = Data.find_first_of(Chars: "\n", From: ParentProcPos);
1916 if (LineEnd == StringRef::npos)
1917 continue;
1918 StringRef ParentProcess = Data.slice(Start: ParentProcPos+15, End: LineEnd).trim();
1919 int OpenBracket = -1, CloseBracket = -1;
1920 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1921 if (ParentProcess[i] == '[')
1922 OpenBracket = i;
1923 if (ParentProcess[i] == ']')
1924 CloseBracket = i;
1925 }
1926 // Extract the parent process PID from the .crash file and check whether
1927 // it matches this driver invocation pid.
1928 int CrashPID;
1929 if (OpenBracket < 0 || CloseBracket < 0 ||
1930 ParentProcess.slice(Start: OpenBracket + 1, End: CloseBracket)
1931 .getAsInteger(Radix: 10, Result&: CrashPID) || CrashPID != PID) {
1932 continue;
1933 }
1934
1935 // Found a .crash file matching the driver pid. To avoid getting an older
1936 // and misleading crash file, continue looking for the most recent.
1937 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1938 // multiple crashes poiting to the same parent process. Since the driver
1939 // does not collect pid information for the dispatched invocation there's
1940 // currently no way to distinguish among them.
1941 const auto FileAccessTime = FileStatus.getLastModificationTime();
1942 if (FileAccessTime > LastAccessTime) {
1943 CrashFilePath.assign(RHS: File->path());
1944 LastAccessTime = FileAccessTime;
1945 }
1946 }
1947
1948 // If found, copy it over to the location of other reproducer files.
1949 if (!CrashFilePath.empty()) {
1950 EC = fs::copy_file(From: CrashFilePath, To: ReproCrashFilename);
1951 if (EC)
1952 return false;
1953 return true;
1954 }
1955
1956 return false;
1957}
1958
1959static const char BugReporMsg[] =
1960 "\n********************\n\n"
1961 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1962 "Preprocessed source(s) and associated run script(s) are located at:";
1963
1964// When clang crashes, produce diagnostic information including the fully
1965// preprocessed source file(s). Request that the developer attach the
1966// diagnostic information to a bug report.
1967void Driver::generateCompilationDiagnostics(
1968 Compilation &C, const Command &FailingCommand,
1969 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1970 if (C.getArgs().hasArg(Ids: options::OPT_fno_crash_diagnostics))
1971 return;
1972
1973 unsigned Level = 1;
1974 if (Arg *A = C.getArgs().getLastArg(Ids: options::OPT_fcrash_diagnostics_EQ)) {
1975 Level = llvm::StringSwitch<unsigned>(A->getValue())
1976 .Case(S: "off", Value: 0)
1977 .Case(S: "compiler", Value: 1)
1978 .Case(S: "all", Value: 2)
1979 .Default(Value: 1);
1980 }
1981 if (!Level)
1982 return;
1983
1984 // Don't try to generate diagnostics for dsymutil jobs.
1985 if (FailingCommand.getCreator().isDsymutilJob())
1986 return;
1987
1988 bool IsLLD = false;
1989 ArgStringList SavedTemps;
1990 if (FailingCommand.getCreator().isLinkJob()) {
1991 C.getDefaultToolChain().GetLinkerPath(LinkerIsLLD: &IsLLD);
1992 if (!IsLLD || Level < 2)
1993 return;
1994
1995 // If lld crashed, we will re-run the same command with the input it used
1996 // to have. In that case we should not remove temp files in
1997 // initCompilationForDiagnostics yet. They will be added back and removed
1998 // later.
1999 SavedTemps = std::move(C.getTempFiles());
2000 assert(!C.getTempFiles().size());
2001 }
2002
2003 // Print the version of the compiler.
2004 PrintVersion(C, OS&: llvm::errs());
2005
2006 // Suppress driver output and emit preprocessor output to temp file.
2007 CCGenDiagnostics = true;
2008
2009 // Save the original job command(s).
2010 Command Cmd = FailingCommand;
2011
2012 // Keep track of whether we produce any errors while trying to produce
2013 // preprocessed sources.
2014 DiagnosticErrorTrap Trap(Diags);
2015
2016 // Suppress tool output.
2017 C.initCompilationForDiagnostics();
2018
2019 // If lld failed, rerun it again with --reproduce.
2020 if (IsLLD) {
2021 const char *TmpName = CreateTempFile(C, Prefix: "linker-crash", Suffix: "tar");
2022 Command NewLLDInvocation = Cmd;
2023 llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
2024 StringRef ReproduceOption =
2025 C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
2026 ? "/reproduce:"
2027 : "--reproduce=";
2028 ArgList.push_back(Elt: Saver.save(S: Twine(ReproduceOption) + TmpName).data());
2029 NewLLDInvocation.replaceArguments(List: std::move(ArgList));
2030
2031 // Redirect stdout/stderr to /dev/null.
2032 NewLLDInvocation.Execute(Redirects: {std::nullopt, {""}, {""}}, ErrMsg: nullptr, ExecutionFailed: nullptr);
2033 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
2034 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg) << TmpName;
2035 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2036 << "\n\n********************";
2037 if (Report)
2038 Report->TemporaryFiles.push_back(Elt: TmpName);
2039 return;
2040 }
2041
2042 // Construct the list of inputs.
2043 InputList Inputs;
2044 BuildInputs(TC: C.getDefaultToolChain(), Args&: C.getArgs(), Inputs);
2045
2046 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
2047 bool IgnoreInput = false;
2048
2049 // Ignore input from stdin or any inputs that cannot be preprocessed.
2050 // Check type first as not all linker inputs have a value.
2051 if (types::getPreprocessedType(Id: it->first) == types::TY_INVALID) {
2052 IgnoreInput = true;
2053 } else if (!strcmp(s1: it->second->getValue(), s2: "-")) {
2054 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2055 << "Error generating preprocessed source(s) - "
2056 "ignoring input from stdin.";
2057 IgnoreInput = true;
2058 }
2059
2060 if (IgnoreInput) {
2061 it = Inputs.erase(CI: it);
2062 ie = Inputs.end();
2063 } else {
2064 ++it;
2065 }
2066 }
2067
2068 if (Inputs.empty()) {
2069 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2070 << "Error generating preprocessed source(s) - "
2071 "no preprocessable inputs.";
2072 return;
2073 }
2074
2075 // Don't attempt to generate preprocessed files if multiple -arch options are
2076 // used, unless they're all duplicates.
2077 llvm::StringSet<> ArchNames;
2078 for (const Arg *A : C.getArgs()) {
2079 if (A->getOption().matches(ID: options::OPT_arch)) {
2080 StringRef ArchName = A->getValue();
2081 ArchNames.insert(key: ArchName);
2082 }
2083 }
2084 if (ArchNames.size() > 1) {
2085 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2086 << "Error generating preprocessed source(s) - cannot generate "
2087 "preprocessed source with multiple -arch options.";
2088 return;
2089 }
2090
2091 // Construct the list of abstract actions to perform for this compilation. On
2092 // Darwin OSes this uses the driver-driver and builds universal actions.
2093 const ToolChain &TC = C.getDefaultToolChain();
2094 if (TC.getTriple().isOSBinFormatMachO())
2095 BuildUniversalActions(C, TC, BAInputs: Inputs);
2096 else
2097 BuildActions(C, Args&: C.getArgs(), Inputs, Actions&: C.getActions());
2098
2099 BuildJobs(C);
2100
2101 // If there were errors building the compilation, quit now.
2102 if (Trap.hasErrorOccurred()) {
2103 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2104 << "Error generating preprocessed source(s).";
2105 return;
2106 }
2107
2108 // Generate preprocessed output.
2109 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
2110 C.ExecuteJobs(Jobs: C.getJobs(), FailingCommands);
2111
2112 // If any of the preprocessing commands failed, clean up and exit.
2113 if (!FailingCommands.empty()) {
2114 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2115 << "Error generating preprocessed source(s).";
2116 return;
2117 }
2118
2119 const ArgStringList &TempFiles = C.getTempFiles();
2120 if (TempFiles.empty()) {
2121 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2122 << "Error generating preprocessed source(s).";
2123 return;
2124 }
2125
2126 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
2127
2128 SmallString<128> VFS;
2129 SmallString<128> ReproCrashFilename;
2130 for (const char *TempFile : TempFiles) {
2131 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg) << TempFile;
2132 if (Report)
2133 Report->TemporaryFiles.push_back(Elt: TempFile);
2134 if (ReproCrashFilename.empty()) {
2135 ReproCrashFilename = TempFile;
2136 llvm::sys::path::replace_extension(path&: ReproCrashFilename, extension: ".crash");
2137 }
2138 if (StringRef(TempFile).ends_with(Suffix: ".cache")) {
2139 // In some cases (modules) we'll dump extra data to help with reproducing
2140 // the crash into a directory next to the output.
2141 VFS = llvm::sys::path::filename(path: TempFile);
2142 llvm::sys::path::append(path&: VFS, a: "vfs", b: "vfs.yaml");
2143 }
2144 }
2145
2146 for (const char *TempFile : SavedTemps)
2147 C.addTempFile(Name: TempFile);
2148
2149 // Assume associated files are based off of the first temporary file.
2150 CrashReportInfo CrashInfo(TempFiles[0], VFS);
2151
2152 llvm::SmallString<128> Script(CrashInfo.Filename);
2153 llvm::sys::path::replace_extension(path&: Script, extension: "sh");
2154 std::error_code EC;
2155 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
2156 llvm::sys::fs::FA_Write,
2157 llvm::sys::fs::OF_Text);
2158 if (EC) {
2159 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2160 << "Error generating run script: " << Script << " " << EC.message();
2161 } else {
2162 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
2163 << "# Driver args: ";
2164 printArgList(OS&: ScriptOS, Args: C.getInputArgs());
2165 ScriptOS << "# Original command: ";
2166 Cmd.Print(OS&: ScriptOS, Terminator: "\n", /*Quote=*/true);
2167 Cmd.Print(OS&: ScriptOS, Terminator: "\n", /*Quote=*/true, CrashInfo: &CrashInfo);
2168 if (!AdditionalInformation.empty())
2169 ScriptOS << "\n# Additional information: " << AdditionalInformation
2170 << "\n";
2171 if (Report)
2172 Report->TemporaryFiles.push_back(Elt: std::string(Script));
2173 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg) << Script;
2174 }
2175
2176 // On darwin, provide information about the .crash diagnostic report.
2177 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
2178 SmallString<128> CrashDiagDir;
2179 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
2180 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2181 << ReproCrashFilename.str();
2182 } else { // Suggest a directory for the user to look for .crash files.
2183 llvm::sys::path::append(path&: CrashDiagDir, a: Name);
2184 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
2185 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2186 << "Crash backtrace is located in";
2187 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2188 << CrashDiagDir.str();
2189 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2190 << "(choose the .crash file that corresponds to your crash)";
2191 }
2192 }
2193
2194 Diag(DiagID: clang::diag::note_drv_command_failed_diag_msg)
2195 << "\n\n********************";
2196}
2197
2198void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
2199 // Since commandLineFitsWithinSystemLimits() may underestimate system's
2200 // capacity if the tool does not support response files, there is a chance/
2201 // that things will just work without a response file, so we silently just
2202 // skip it.
2203 if (Cmd.getResponseFileSupport().ResponseKind ==
2204 ResponseFileSupport::RF_None ||
2205 llvm::sys::commandLineFitsWithinSystemLimits(Program: Cmd.getExecutable(),
2206 Args: Cmd.getArguments()))
2207 return;
2208
2209 std::string TmpName = GetTemporaryPath(Prefix: "response", Suffix: "txt");
2210 Cmd.setResponseFile(C.addTempFile(Name: C.getArgs().MakeArgString(Str: TmpName)));
2211}
2212
2213int Driver::ExecuteCompilation(
2214 Compilation &C,
2215 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
2216 if (C.getArgs().hasArg(Ids: options::OPT_fdriver_only)) {
2217 if (C.getArgs().hasArg(Ids: options::OPT_v))
2218 C.getJobs().Print(OS&: llvm::errs(), Terminator: "\n", Quote: true);
2219
2220 C.ExecuteJobs(Jobs: C.getJobs(), FailingCommands, /*LogOnly=*/true);
2221
2222 // If there were errors building the compilation, quit now.
2223 if (!FailingCommands.empty() || Diags.hasErrorOccurred())
2224 return 1;
2225
2226 return 0;
2227 }
2228
2229 // Just print if -### was present.
2230 if (C.getArgs().hasArg(Ids: options::OPT__HASH_HASH_HASH)) {
2231 C.getJobs().Print(OS&: llvm::errs(), Terminator: "\n", Quote: true);
2232 return Diags.hasErrorOccurred() ? 1 : 0;
2233 }
2234
2235 // If there were errors building the compilation, quit now.
2236 if (Diags.hasErrorOccurred())
2237 return 1;
2238
2239 // Set up response file names for each command, if necessary.
2240 for (auto &Job : C.getJobs())
2241 setUpResponseFiles(C, Cmd&: Job);
2242
2243 C.ExecuteJobs(Jobs: C.getJobs(), FailingCommands);
2244
2245 // If the command succeeded, we are done.
2246 if (FailingCommands.empty())
2247 return 0;
2248
2249 // Otherwise, remove result files and print extra information about abnormal
2250 // failures.
2251 int Res = 0;
2252 for (const auto &CmdPair : FailingCommands) {
2253 int CommandRes = CmdPair.first;
2254 const Command *FailingCommand = CmdPair.second;
2255
2256 // Remove result files if we're not saving temps.
2257 if (!isSaveTempsEnabled()) {
2258 const JobAction *JA = cast<JobAction>(Val: &FailingCommand->getSource());
2259 C.CleanupFileMap(Files: C.getResultFiles(), JA, IssueErrors: true);
2260
2261 // Failure result files are valid unless we crashed.
2262 if (CommandRes < 0)
2263 C.CleanupFileMap(Files: C.getFailureResultFiles(), JA, IssueErrors: true);
2264 }
2265
2266 // llvm/lib/Support/*/Signals.inc will exit with a special return code
2267 // for SIGPIPE. Do not print diagnostics for this case.
2268 if (CommandRes == EX_IOERR) {
2269 Res = CommandRes;
2270 continue;
2271 }
2272
2273 // Print extra information about abnormal failures, if possible.
2274 //
2275 // This is ad-hoc, but we don't want to be excessively noisy. If the result
2276 // status was 1, assume the command failed normally. In particular, if it
2277 // was the compiler then assume it gave a reasonable error code. Failures
2278 // in other tools are less common, and they generally have worse
2279 // diagnostics, so always print the diagnostic there.
2280 const Tool &FailingTool = FailingCommand->getCreator();
2281
2282 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
2283 // FIXME: See FIXME above regarding result code interpretation.
2284 if (CommandRes < 0)
2285 Diag(DiagID: clang::diag::err_drv_command_signalled)
2286 << FailingTool.getShortName();
2287 else
2288 Diag(DiagID: clang::diag::err_drv_command_failed)
2289 << FailingTool.getShortName() << CommandRes;
2290 }
2291 }
2292 return Res;
2293}
2294
2295void Driver::PrintHelp(bool ShowHidden) const {
2296 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
2297
2298 std::string Usage = llvm::formatv(Fmt: "{0} [options] file...", Vals: Name).str();
2299 getOpts().printHelp(OS&: llvm::outs(), Usage: Usage.c_str(), Title: DriverTitle.c_str(),
2300 ShowHidden, /*ShowAllAliases=*/false,
2301 VisibilityMask);
2302}
2303
2304void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
2305 if (IsFlangMode()) {
2306 OS << getClangToolFullVersion(ToolName: "flang") << '\n';
2307 } else {
2308 // FIXME: The following handlers should use a callback mechanism, we don't
2309 // know what the client would like to do.
2310 OS << getClangFullVersion() << '\n';
2311 }
2312 const ToolChain &TC = C.getDefaultToolChain();
2313 OS << "Target: " << TC.getTripleString() << '\n';
2314
2315 // Print the threading model.
2316 if (Arg *A = C.getArgs().getLastArg(Ids: options::OPT_mthread_model)) {
2317 // Don't print if the ToolChain would have barfed on it already
2318 if (TC.isThreadModelSupported(Model: A->getValue()))
2319 OS << "Thread model: " << A->getValue();
2320 } else
2321 OS << "Thread model: " << TC.getThreadModel();
2322 OS << '\n';
2323
2324 // Print out the install directory.
2325 OS << "InstalledDir: " << Dir << '\n';
2326
2327 // Print the build config if it's non-default.
2328 // Intended to help LLVM developers understand the configs of compilers
2329 // they're investigating.
2330 if (!llvm::cl::getCompilerBuildConfig().empty())
2331 llvm::cl::printBuildConfig(OS);
2332
2333 // If configuration files were used, print their paths.
2334 for (auto ConfigFile : ConfigFiles)
2335 OS << "Configuration file: " << ConfigFile << '\n';
2336}
2337
2338/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
2339/// option.
2340static void PrintDiagnosticCategories(raw_ostream &OS) {
2341 // Skip the empty category.
2342 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
2343 ++i)
2344 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(CategoryID: i) << '\n';
2345}
2346
2347void Driver::HandleAutocompletions(StringRef PassedFlags) const {
2348 if (PassedFlags == "")
2349 return;
2350 // Print out all options that start with a given argument. This is used for
2351 // shell autocompletion.
2352 std::vector<std::string> SuggestedCompletions;
2353 std::vector<std::string> Flags;
2354
2355 llvm::opt::Visibility VisibilityMask(options::ClangOption);
2356
2357 // Make sure that Flang-only options don't pollute the Clang output
2358 // TODO: Make sure that Clang-only options don't pollute Flang output
2359 if (IsFlangMode())
2360 VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2361
2362 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2363 // because the latter indicates that the user put space before pushing tab
2364 // which should end up in a file completion.
2365 const bool HasSpace = PassedFlags.ends_with(Suffix: ",");
2366
2367 // Parse PassedFlags by "," as all the command-line flags are passed to this
2368 // function separated by ","
2369 StringRef TargetFlags = PassedFlags;
2370 while (TargetFlags != "") {
2371 StringRef CurFlag;
2372 std::tie(args&: CurFlag, args&: TargetFlags) = TargetFlags.split(Separator: ",");
2373 Flags.push_back(x: std::string(CurFlag));
2374 }
2375
2376 // We want to show cc1-only options only when clang is invoked with -cc1 or
2377 // -Xclang.
2378 if (llvm::is_contained(Range&: Flags, Element: "-Xclang") || llvm::is_contained(Range&: Flags, Element: "-cc1"))
2379 VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2380
2381 const llvm::opt::OptTable &Opts = getOpts();
2382 StringRef Cur;
2383 Cur = Flags.at(n: Flags.size() - 1);
2384 StringRef Prev;
2385 if (Flags.size() >= 2) {
2386 Prev = Flags.at(n: Flags.size() - 2);
2387 SuggestedCompletions = Opts.suggestValueCompletions(Option: Prev, Arg: Cur);
2388 }
2389
2390 if (SuggestedCompletions.empty())
2391 SuggestedCompletions = Opts.suggestValueCompletions(Option: Cur, Arg: "");
2392
2393 // If Flags were empty, it means the user typed `clang [tab]` where we should
2394 // list all possible flags. If there was no value completion and the user
2395 // pressed tab after a space, we should fall back to a file completion.
2396 // We're printing a newline to be consistent with what we print at the end of
2397 // this function.
2398 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2399 llvm::outs() << '\n';
2400 return;
2401 }
2402
2403 // When flag ends with '=' and there was no value completion, return empty
2404 // string and fall back to the file autocompletion.
2405 if (SuggestedCompletions.empty() && !Cur.ends_with(Suffix: "=")) {
2406 // If the flag is in the form of "--autocomplete=-foo",
2407 // we were requested to print out all option names that start with "-foo".
2408 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2409 SuggestedCompletions = Opts.findByPrefix(
2410 Cur, VisibilityMask,
2411 /*DisableFlags=*/options::Unsupported | options::Ignored);
2412
2413 // We have to query the -W flags manually as they're not in the OptTable.
2414 // TODO: Find a good way to add them to OptTable instead and them remove
2415 // this code.
2416 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2417 if (S.starts_with(Prefix: Cur))
2418 SuggestedCompletions.push_back(x: std::string(S));
2419 }
2420
2421 // Sort the autocomplete candidates so that shells print them out in a
2422 // deterministic order. We could sort in any way, but we chose
2423 // case-insensitive sorting for consistency with the -help option
2424 // which prints out options in the case-insensitive alphabetical order.
2425 llvm::sort(C&: SuggestedCompletions, Comp: [](StringRef A, StringRef B) {
2426 if (int X = A.compare_insensitive(RHS: B))
2427 return X < 0;
2428 return A.compare(RHS: B) > 0;
2429 });
2430
2431 llvm::outs() << llvm::join(R&: SuggestedCompletions, Separator: "\n") << '\n';
2432}
2433
2434bool Driver::HandleImmediateArgs(Compilation &C) {
2435 // The order these options are handled in gcc is all over the place, but we
2436 // don't expect inconsistencies w.r.t. that to matter in practice.
2437
2438 if (C.getArgs().hasArg(Ids: options::OPT_dumpmachine)) {
2439 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2440 return false;
2441 }
2442
2443 if (C.getArgs().hasArg(Ids: options::OPT_dumpversion)) {
2444 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2445 // return an answer which matches our definition of __VERSION__.
2446 llvm::outs() << CLANG_VERSION_STRING << "\n";
2447 return false;
2448 }
2449
2450 if (C.getArgs().hasArg(Ids: options::OPT__print_diagnostic_categories)) {
2451 PrintDiagnosticCategories(OS&: llvm::outs());
2452 return false;
2453 }
2454
2455 if (C.getArgs().hasArg(Ids: options::OPT_help) ||
2456 C.getArgs().hasArg(Ids: options::OPT__help_hidden)) {
2457 PrintHelp(ShowHidden: C.getArgs().hasArg(Ids: options::OPT__help_hidden));
2458 return false;
2459 }
2460
2461 if (C.getArgs().hasArg(Ids: options::OPT__version)) {
2462 // Follow gcc behavior and use stdout for --version and stderr for -v.
2463 PrintVersion(C, OS&: llvm::outs());
2464 return false;
2465 }
2466
2467 if (C.getArgs().hasArg(Ids: options::OPT_v) ||
2468 C.getArgs().hasArg(Ids: options::OPT__HASH_HASH_HASH) ||
2469 C.getArgs().hasArg(Ids: options::OPT_print_supported_cpus) ||
2470 C.getArgs().hasArg(Ids: options::OPT_print_supported_extensions) ||
2471 C.getArgs().hasArg(Ids: options::OPT_print_enabled_extensions)) {
2472 PrintVersion(C, OS&: llvm::errs());
2473 SuppressMissingInputWarning = true;
2474 }
2475
2476 if (C.getArgs().hasArg(Ids: options::OPT_v)) {
2477 if (!SystemConfigDir.empty())
2478 llvm::errs() << "System configuration file directory: "
2479 << SystemConfigDir << "\n";
2480 if (!UserConfigDir.empty())
2481 llvm::errs() << "User configuration file directory: "
2482 << UserConfigDir << "\n";
2483 }
2484
2485 const ToolChain &TC = C.getDefaultToolChain();
2486
2487 if (C.getArgs().hasArg(Ids: options::OPT_v))
2488 TC.printVerboseInfo(OS&: llvm::errs());
2489
2490 if (C.getArgs().hasArg(Ids: options::OPT_print_resource_dir)) {
2491 llvm::outs() << ResourceDir << '\n';
2492 return false;
2493 }
2494
2495 if (C.getArgs().hasArg(Ids: options::OPT_print_search_dirs)) {
2496 llvm::outs() << "programs: =";
2497 bool separator = false;
2498 // Print -B and COMPILER_PATH.
2499 for (const std::string &Path : PrefixDirs) {
2500 if (separator)
2501 llvm::outs() << llvm::sys::EnvPathSeparator;
2502 llvm::outs() << Path;
2503 separator = true;
2504 }
2505 for (const std::string &Path : TC.getProgramPaths()) {
2506 if (separator)
2507 llvm::outs() << llvm::sys::EnvPathSeparator;
2508 llvm::outs() << Path;
2509 separator = true;
2510 }
2511 llvm::outs() << "\n";
2512 llvm::outs() << "libraries: =" << ResourceDir;
2513
2514 StringRef sysroot = C.getSysRoot();
2515
2516 for (const std::string &Path : TC.getFilePaths()) {
2517 // Always print a separator. ResourceDir was the first item shown.
2518 llvm::outs() << llvm::sys::EnvPathSeparator;
2519 // Interpretation of leading '=' is needed only for NetBSD.
2520 if (Path[0] == '=')
2521 llvm::outs() << sysroot << Path.substr(pos: 1);
2522 else
2523 llvm::outs() << Path;
2524 }
2525 llvm::outs() << "\n";
2526 return false;
2527 }
2528
2529 if (C.getArgs().hasArg(Ids: options::OPT_print_std_module_manifest_path)) {
2530 llvm::outs() << GetStdModuleManifestPath(C, TC: C.getDefaultToolChain())
2531 << '\n';
2532 return false;
2533 }
2534
2535 if (C.getArgs().hasArg(Ids: options::OPT_print_runtime_dir)) {
2536 if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2537 llvm::outs() << *RuntimePath << '\n';
2538 else
2539 llvm::outs() << TC.getCompilerRTPath() << '\n';
2540 return false;
2541 }
2542
2543 if (C.getArgs().hasArg(Ids: options::OPT_print_diagnostic_options)) {
2544 std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2545 for (std::size_t I = 0; I != Flags.size(); I += 2)
2546 llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n";
2547 return false;
2548 }
2549
2550 // FIXME: The following handlers should use a callback mechanism, we don't
2551 // know what the client would like to do.
2552 if (Arg *A = C.getArgs().getLastArg(Ids: options::OPT_print_file_name_EQ)) {
2553 llvm::outs() << GetFilePath(Name: A->getValue(), TC) << "\n";
2554 return false;
2555 }
2556
2557 if (Arg *A = C.getArgs().getLastArg(Ids: options::OPT_print_prog_name_EQ)) {
2558 StringRef ProgName = A->getValue();
2559
2560 // Null program name cannot have a path.
2561 if (! ProgName.empty())
2562 llvm::outs() << GetProgramPath(Name: ProgName, TC);
2563
2564 llvm::outs() << "\n";
2565 return false;
2566 }
2567
2568 if (Arg *A = C.getArgs().getLastArg(Ids: options::OPT_autocomplete)) {
2569 StringRef PassedFlags = A->getValue();
2570 HandleAutocompletions(PassedFlags);
2571 return false;
2572 }
2573
2574 if (C.getArgs().hasArg(Ids: options::OPT_print_libgcc_file_name)) {
2575 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(Args: C.getArgs());
2576 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(Args: C.getArgs()));
2577 // The 'Darwin' toolchain is initialized only when its arguments are
2578 // computed. Get the default arguments for OFK_None to ensure that
2579 // initialization is performed before trying to access properties of
2580 // the toolchain in the functions below.
2581 // FIXME: Remove when darwin's toolchain is initialized during construction.
2582 // FIXME: For some more esoteric targets the default toolchain is not the
2583 // correct one.
2584 C.getArgsForToolChain(TC: &TC, BoundArch: Triple.getArchName(), DeviceOffloadKind: Action::OFK_None);
2585 RegisterEffectiveTriple TripleRAII(TC, Triple);
2586 switch (RLT) {
2587 case ToolChain::RLT_CompilerRT:
2588 llvm::outs() << TC.getCompilerRT(Args: C.getArgs(), Component: "builtins") << "\n";
2589 break;
2590 case ToolChain::RLT_Libgcc:
2591 llvm::outs() << GetFilePath(Name: "libgcc.a", TC) << "\n";
2592 break;
2593 }
2594 return false;
2595 }
2596
2597 if (C.getArgs().hasArg(Ids: options::OPT_print_multi_lib)) {
2598 for (const Multilib &Multilib : TC.getMultilibs())
2599 if (!Multilib.isError())
2600 llvm::outs() << Multilib << "\n";
2601 return false;
2602 }
2603
2604 if (C.getArgs().hasArg(Ids: options::OPT_print_multi_flags)) {
2605 Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2606 llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2607 std::set<llvm::StringRef> SortedFlags;
2608 for (const auto &FlagEntry : ExpandedFlags)
2609 SortedFlags.insert(x: FlagEntry.getKey());
2610 for (auto Flag : SortedFlags)
2611 llvm::outs() << Flag << '\n';
2612 return false;
2613 }
2614
2615 if (C.getArgs().hasArg(Ids: options::OPT_print_multi_directory)) {
2616 for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2617 if (Multilib.gccSuffix().empty())
2618 llvm::outs() << ".\n";
2619 else {
2620 StringRef Suffix(Multilib.gccSuffix());
2621 assert(Suffix.front() == '/');
2622 llvm::outs() << Suffix.substr(Start: 1) << "\n";
2623 }
2624 }
2625 return false;
2626 }
2627
2628 if (C.getArgs().hasArg(Ids: options::OPT_print_target_triple)) {
2629 llvm::outs() << TC.getTripleString() << "\n";
2630 return false;
2631 }
2632
2633 if (C.getArgs().hasArg(Ids: options::OPT_print_effective_triple)) {
2634 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(Args: C.getArgs()));
2635 llvm::outs() << Triple.getTriple() << "\n";
2636 return false;
2637 }
2638
2639 if (C.getArgs().hasArg(Ids: options::OPT_print_targets)) {
2640 llvm::TargetRegistry::printRegisteredTargetsForVersion(OS&: llvm::outs());
2641 return false;
2642 }
2643
2644 return true;
2645}
2646
2647enum {
2648 TopLevelAction = 0,
2649 HeadSibAction = 1,
2650 OtherSibAction = 2,
2651};
2652
2653// Display an action graph human-readably. Action A is the "sink" node
2654// and latest-occuring action. Traversal is in pre-order, visiting the
2655// inputs to each action before printing the action itself.
2656static unsigned PrintActions1(const Compilation &C, Action *A,
2657 std::map<Action *, unsigned> &Ids,
2658 Twine Indent = {}, int Kind = TopLevelAction) {
2659 if (auto It = Ids.find(x: A); It != Ids.end()) // A was already visited.
2660 return It->second;
2661
2662 std::string str;
2663 llvm::raw_string_ostream os(str);
2664
2665 auto getSibIndent = [](int K) -> Twine {
2666 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2667 };
2668
2669 Twine SibIndent = Indent + getSibIndent(Kind);
2670 int SibKind = HeadSibAction;
2671 os << Action::getClassName(AC: A->getKind()) << ", ";
2672 if (InputAction *IA = dyn_cast<InputAction>(Val: A)) {
2673 os << "\"" << IA->getInputArg().getValue() << "\"";
2674 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(Val: A)) {
2675 os << '"' << BIA->getArchName() << '"' << ", {"
2676 << PrintActions1(C, A: *BIA->input_begin(), Ids, Indent: SibIndent, Kind: SibKind) << "}";
2677 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(Val: A)) {
2678 bool IsFirst = true;
2679 OA->doOnEachDependence(
2680 Work: [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2681 assert(TC && "Unknown host toolchain");
2682 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2683 // sm_35 this will generate:
2684 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2685 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2686 if (!IsFirst)
2687 os << ", ";
2688 os << '"';
2689 os << A->getOffloadingKindPrefix();
2690 os << " (";
2691 os << TC->getTriple().normalize();
2692 if (BoundArch)
2693 os << ":" << BoundArch;
2694 os << ")";
2695 os << '"';
2696 os << " {" << PrintActions1(C, A, Ids, Indent: SibIndent, Kind: SibKind) << "}";
2697 IsFirst = false;
2698 SibKind = OtherSibAction;
2699 });
2700 } else {
2701 const ActionList *AL = &A->getInputs();
2702
2703 if (AL->size()) {
2704 const char *Prefix = "{";
2705 for (Action *PreRequisite : *AL) {
2706 os << Prefix << PrintActions1(C, A: PreRequisite, Ids, Indent: SibIndent, Kind: SibKind);
2707 Prefix = ", ";
2708 SibKind = OtherSibAction;
2709 }
2710 os << "}";
2711 } else
2712 os << "{}";
2713 }
2714
2715 // Append offload info for all options other than the offloading action
2716 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2717 std::string offload_str;
2718 llvm::raw_string_ostream offload_os(offload_str);
2719 if (!isa<OffloadAction>(Val: A)) {
2720 auto S = A->getOffloadingKindPrefix();
2721 if (!S.empty()) {
2722 offload_os << ", (" << S;
2723 if (A->getOffloadingArch())
2724 offload_os << ", " << A->getOffloadingArch();
2725 offload_os << ")";
2726 }
2727 }
2728
2729 auto getSelfIndent = [](int K) -> Twine {
2730 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2731 };
2732
2733 unsigned Id = Ids.size();
2734 Ids[A] = Id;
2735 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2736 << types::getTypeName(Id: A->getType()) << offload_os.str() << "\n";
2737
2738 return Id;
2739}
2740
2741// Print the action graphs in a compilation C.
2742// For example "clang -c file1.c file2.c" is composed of two subgraphs.
2743void Driver::PrintActions(const Compilation &C) const {
2744 std::map<Action *, unsigned> Ids;
2745 for (Action *A : C.getActions())
2746 PrintActions1(C, A, Ids);
2747}
2748
2749/// Check whether the given input tree contains any compilation or
2750/// assembly actions.
2751static bool ContainsCompileOrAssembleAction(const Action *A) {
2752 if (isa<CompileJobAction>(Val: A) || isa<BackendJobAction>(Val: A) ||
2753 isa<AssembleJobAction>(Val: A))
2754 return true;
2755
2756 return llvm::any_of(Range: A->inputs(), P: ContainsCompileOrAssembleAction);
2757}
2758
2759void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2760 const InputList &BAInputs) const {
2761 DerivedArgList &Args = C.getArgs();
2762 ActionList &Actions = C.getActions();
2763 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2764 // Collect the list of architectures. Duplicates are allowed, but should only
2765 // be handled once (in the order seen).
2766 llvm::StringSet<> ArchNames;
2767 SmallVector<const char *, 4> Archs;
2768 for (Arg *A : Args) {
2769 if (A->getOption().matches(ID: options::OPT_arch)) {
2770 // Validate the option here; we don't save the type here because its
2771 // particular spelling may participate in other driver choices.
2772 llvm::Triple::ArchType Arch =
2773 tools::darwin::getArchTypeForMachOArchName(Str: A->getValue());
2774 if (Arch == llvm::Triple::UnknownArch) {
2775 Diag(DiagID: clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2776 continue;
2777 }
2778
2779 A->claim();
2780 if (ArchNames.insert(key: A->getValue()).second)
2781 Archs.push_back(Elt: A->getValue());
2782 }
2783 }
2784
2785 // When there is no explicit arch for this platform, make sure we still bind
2786 // the architecture (to the default) so that -Xarch_ is handled correctly.
2787 if (!Archs.size())
2788 Archs.push_back(Elt: Args.MakeArgString(Str: TC.getDefaultUniversalArchName()));
2789
2790 ActionList SingleActions;
2791 BuildActions(C, Args, Inputs: BAInputs, Actions&: SingleActions);
2792
2793 // Add in arch bindings for every top level action, as well as lipo and
2794 // dsymutil steps if needed.
2795 for (Action* Act : SingleActions) {
2796 // Make sure we can lipo this kind of output. If not (and it is an actual
2797 // output) then we disallow, since we can't create an output file with the
2798 // right name without overwriting it. We could remove this oddity by just
2799 // changing the output names to include the arch, which would also fix
2800 // -save-temps. Compatibility wins for now.
2801
2802 if (Archs.size() > 1 && !types::canLipoType(Id: Act->getType()))
2803 Diag(DiagID: clang::diag::err_drv_invalid_output_with_multiple_archs)
2804 << types::getTypeName(Id: Act->getType());
2805
2806 ActionList Inputs;
2807 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2808 Inputs.push_back(Elt: C.MakeAction<BindArchAction>(Arg&: Act, Arg&: Archs[i]));
2809
2810 // Lipo if necessary, we do it this way because we need to set the arch flag
2811 // so that -Xarch_ gets overwritten.
2812 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2813 Actions.append(in_start: Inputs.begin(), in_end: Inputs.end());
2814 else
2815 Actions.push_back(Elt: C.MakeAction<LipoJobAction>(Arg&: Inputs, Arg: Act->getType()));
2816
2817 // Handle debug info queries.
2818 Arg *A = Args.getLastArg(Ids: options::OPT_g_Group);
2819 bool enablesDebugInfo = A && !A->getOption().matches(ID: options::OPT_g0) &&
2820 !A->getOption().matches(ID: options::OPT_gstabs);
2821 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2822 ContainsCompileOrAssembleAction(A: Actions.back())) {
2823
2824 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2825 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2826 // because the debug info will refer to a temporary object file which
2827 // will be removed at the end of the compilation process.
2828 if (Act->getType() == types::TY_Image) {
2829 ActionList Inputs;
2830 Inputs.push_back(Elt: Actions.back());
2831 Actions.pop_back();
2832 Actions.push_back(
2833 Elt: C.MakeAction<DsymutilJobAction>(Arg&: Inputs, Arg: types::TY_dSYM));
2834 }
2835
2836 // Verify the debug info output.
2837 if (Args.hasArg(Ids: options::OPT_verify_debug_info)) {
2838 Action *LastAction = Actions.pop_back_val();
2839 Actions.push_back(Elt: C.MakeAction<VerifyDebugInfoJobAction>(
2840 Arg&: LastAction, Arg: types::TY_Nothing));
2841 }
2842 }
2843 }
2844}
2845
2846bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2847 types::ID Ty, bool TypoCorrect) const {
2848 if (!getCheckInputsExist())
2849 return true;
2850
2851 // stdin always exists.
2852 if (Value == "-")
2853 return true;
2854
2855 // If it's a header to be found in the system or user search path, then defer
2856 // complaints about its absence until those searches can be done. When we
2857 // are definitely processing headers for C++20 header units, extend this to
2858 // allow the user to put "-fmodule-header -xc++-header vector" for example.
2859 if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2860 (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2861 return true;
2862
2863 if (getVFS().exists(Path: Value))
2864 return true;
2865
2866 if (TypoCorrect) {
2867 // Check if the filename is a typo for an option flag. OptTable thinks
2868 // that all args that are not known options and that start with / are
2869 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2870 // the option `/diagnostics:caret` than a reference to a file in the root
2871 // directory.
2872 std::string Nearest;
2873 if (getOpts().findNearest(Option: Value, NearestString&: Nearest, VisibilityMask: getOptionVisibilityMask()) <= 1) {
2874 Diag(DiagID: clang::diag::err_drv_no_such_file_with_suggestion)
2875 << Value << Nearest;
2876 return false;
2877 }
2878 }
2879
2880 // In CL mode, don't error on apparently non-existent linker inputs, because
2881 // they can be influenced by linker flags the clang driver might not
2882 // understand.
2883 // Examples:
2884 // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2885 // module look for an MSVC installation in the registry. (We could ask
2886 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2887 // look in the registry might move into lld-link in the future so that
2888 // lld-link invocations in non-MSVC shells just work too.)
2889 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2890 // including /libpath:, which is used to find .lib and .obj files.
2891 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2892 // it. (If we don't end up invoking the linker, this means we'll emit a
2893 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2894 // of an error.)
2895 //
2896 // Only do this skip after the typo correction step above. `/Brepo` is treated
2897 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2898 // an error if we have a flag that's within an edit distance of 1 from a
2899 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2900 // driver in the unlikely case they run into this.)
2901 //
2902 // Don't do this for inputs that start with a '/', else we'd pass options
2903 // like /libpath: through to the linker silently.
2904 //
2905 // Emitting an error for linker inputs can also cause incorrect diagnostics
2906 // with the gcc driver. The command
2907 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2908 // will make lld look for some/dir/file.o, while we will diagnose here that
2909 // `/file.o` does not exist. However, configure scripts check if
2910 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2911 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2912 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2913 // unknown flags.)
2914 if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with(Prefix: "/"))
2915 return true;
2916
2917 Diag(DiagID: clang::diag::err_drv_no_such_file) << Value;
2918 return false;
2919}
2920
2921// Get the C++20 Header Unit type corresponding to the input type.
2922static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2923 switch (HM) {
2924 case HeaderMode_User:
2925 return types::TY_CXXUHeader;
2926 case HeaderMode_System:
2927 return types::TY_CXXSHeader;
2928 case HeaderMode_Default:
2929 break;
2930 case HeaderMode_None:
2931 llvm_unreachable("should not be called in this case");
2932 }
2933 return types::TY_CXXHUHeader;
2934}
2935
2936// Construct a the list of inputs and their types.
2937void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2938 InputList &Inputs) const {
2939 const llvm::opt::OptTable &Opts = getOpts();
2940 // Track the current user specified (-x) input. We also explicitly track the
2941 // argument used to set the type; we only want to claim the type when we
2942 // actually use it, so we warn about unused -x arguments.
2943 types::ID InputType = types::TY_Nothing;
2944 Arg *InputTypeArg = nullptr;
2945
2946 // The last /TC or /TP option sets the input type to C or C++ globally.
2947 if (Arg *TCTP = Args.getLastArgNoClaim(Ids: options::OPT__SLASH_TC,
2948 Ids: options::OPT__SLASH_TP)) {
2949 InputTypeArg = TCTP;
2950 InputType = TCTP->getOption().matches(ID: options::OPT__SLASH_TC)
2951 ? types::TY_C
2952 : types::TY_CXX;
2953
2954 Arg *Previous = nullptr;
2955 bool ShowNote = false;
2956 for (Arg *A :
2957 Args.filtered(Ids: options::OPT__SLASH_TC, Ids: options::OPT__SLASH_TP)) {
2958 if (Previous) {
2959 Diag(DiagID: clang::diag::warn_drv_overriding_option)
2960 << Previous->getSpelling() << A->getSpelling();
2961 ShowNote = true;
2962 }
2963 Previous = A;
2964 }
2965 if (ShowNote)
2966 Diag(DiagID: clang::diag::note_drv_t_option_is_global);
2967 }
2968
2969 // Warn -x after last input file has no effect
2970 {
2971 Arg *LastXArg = Args.getLastArgNoClaim(Ids: options::OPT_x);
2972 Arg *LastInputArg = Args.getLastArgNoClaim(Ids: options::OPT_INPUT);
2973 if (LastXArg && LastInputArg &&
2974 LastInputArg->getIndex() < LastXArg->getIndex())
2975 Diag(DiagID: clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2976 }
2977
2978 for (Arg *A : Args) {
2979 if (A->getOption().getKind() == Option::InputClass) {
2980 const char *Value = A->getValue();
2981 types::ID Ty = types::TY_INVALID;
2982
2983 // Infer the input type if necessary.
2984 if (InputType == types::TY_Nothing) {
2985 // If there was an explicit arg for this, claim it.
2986 if (InputTypeArg)
2987 InputTypeArg->claim();
2988
2989 // stdin must be handled specially.
2990 if (memcmp(s1: Value, s2: "-", n: 2) == 0) {
2991 if (IsFlangMode()) {
2992 Ty = types::TY_Fortran;
2993 } else if (IsDXCMode()) {
2994 Ty = types::TY_HLSL;
2995 } else {
2996 // If running with -E, treat as a C input (this changes the
2997 // builtin macros, for example). This may be overridden by -ObjC
2998 // below.
2999 //
3000 // Otherwise emit an error but still use a valid type to avoid
3001 // spurious errors (e.g., no inputs).
3002 assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
3003 if (!Args.hasArgNoClaim(Ids: options::OPT_E) && !CCCIsCPP())
3004 Diag(DiagID: IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
3005 : clang::diag::err_drv_unknown_stdin_type);
3006 Ty = types::TY_C;
3007 }
3008 } else {
3009 // Otherwise lookup by extension.
3010 // Fallback is C if invoked as C preprocessor, C++ if invoked with
3011 // clang-cl /E, or Object otherwise.
3012 // We use a host hook here because Darwin at least has its own
3013 // idea of what .s is.
3014 if (const char *Ext = strrchr(s: Value, c: '.'))
3015 Ty = TC.LookupTypeForExtension(Ext: Ext + 1);
3016
3017 if (Ty == types::TY_INVALID) {
3018 if (IsCLMode() && (Args.hasArgNoClaim(Ids: options::OPT_E) || CCGenDiagnostics))
3019 Ty = types::TY_CXX;
3020 else if (CCCIsCPP() || CCGenDiagnostics)
3021 Ty = types::TY_C;
3022 else if (IsDXCMode())
3023 Ty = types::TY_HLSL;
3024 else
3025 Ty = types::TY_Object;
3026 }
3027
3028 // If the driver is invoked as C++ compiler (like clang++ or c++) it
3029 // should autodetect some input files as C++ for g++ compatibility.
3030 if (CCCIsCXX()) {
3031 types::ID OldTy = Ty;
3032 Ty = types::lookupCXXTypeForCType(Id: Ty);
3033
3034 // Do not complain about foo.h, when we are known to be processing
3035 // it as a C++20 header unit.
3036 if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
3037 Diag(DiagID: clang::diag::warn_drv_treating_input_as_cxx)
3038 << getTypeName(Id: OldTy) << getTypeName(Id: Ty);
3039 }
3040
3041 // If running with -fthinlto-index=, extensions that normally identify
3042 // native object files actually identify LLVM bitcode files.
3043 if (Args.hasArgNoClaim(Ids: options::OPT_fthinlto_index_EQ) &&
3044 Ty == types::TY_Object)
3045 Ty = types::TY_LLVM_BC;
3046 }
3047
3048 // -ObjC and -ObjC++ override the default language, but only for "source
3049 // files". We just treat everything that isn't a linker input as a
3050 // source file.
3051 //
3052 // FIXME: Clean this up if we move the phase sequence into the type.
3053 if (Ty != types::TY_Object) {
3054 if (Args.hasArg(Ids: options::OPT_ObjC))
3055 Ty = types::TY_ObjC;
3056 else if (Args.hasArg(Ids: options::OPT_ObjCXX))
3057 Ty = types::TY_ObjCXX;
3058 }
3059
3060 // Disambiguate headers that are meant to be header units from those
3061 // intended to be PCH. Avoid missing '.h' cases that are counted as
3062 // C headers by default - we know we are in C++ mode and we do not
3063 // want to issue a complaint about compiling things in the wrong mode.
3064 if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
3065 hasHeaderMode())
3066 Ty = CXXHeaderUnitType(HM: CXX20HeaderType);
3067 } else {
3068 assert(InputTypeArg && "InputType set w/o InputTypeArg");
3069 if (!InputTypeArg->getOption().matches(ID: options::OPT_x)) {
3070 // If emulating cl.exe, make sure that /TC and /TP don't affect input
3071 // object files.
3072 const char *Ext = strrchr(s: Value, c: '.');
3073 if (Ext && TC.LookupTypeForExtension(Ext: Ext + 1) == types::TY_Object)
3074 Ty = types::TY_Object;
3075 }
3076 if (Ty == types::TY_INVALID) {
3077 Ty = InputType;
3078 InputTypeArg->claim();
3079 }
3080 }
3081
3082 if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
3083 Args.hasArgNoClaim(Ids: options::OPT_hipstdpar))
3084 Ty = types::TY_HIP;
3085
3086 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
3087 Inputs.push_back(Elt: std::make_pair(x&: Ty, y&: A));
3088
3089 } else if (A->getOption().matches(ID: options::OPT__SLASH_Tc)) {
3090 StringRef Value = A->getValue();
3091 if (DiagnoseInputExistence(Args, Value, Ty: types::TY_C,
3092 /*TypoCorrect=*/false)) {
3093 Arg *InputArg = MakeInputArg(Args, Opts, Value: A->getValue());
3094 Inputs.push_back(Elt: std::make_pair(x: types::TY_C, y&: InputArg));
3095 }
3096 A->claim();
3097 } else if (A->getOption().matches(ID: options::OPT__SLASH_Tp)) {
3098 StringRef Value = A->getValue();
3099 if (DiagnoseInputExistence(Args, Value, Ty: types::TY_CXX,
3100 /*TypoCorrect=*/false)) {
3101 Arg *InputArg = MakeInputArg(Args, Opts, Value: A->getValue());
3102 Inputs.push_back(Elt: std::make_pair(x: types::TY_CXX, y&: InputArg));
3103 }
3104 A->claim();
3105 } else if (A->getOption().hasFlag(Val: options::LinkerInput)) {
3106 // Just treat as object type, we could make a special type for this if
3107 // necessary.
3108 Inputs.push_back(Elt: std::make_pair(x: types::TY_Object, y&: A));
3109
3110 } else if (A->getOption().matches(ID: options::OPT_x)) {
3111 InputTypeArg = A;
3112 InputType = types::lookupTypeForTypeSpecifier(Name: A->getValue());
3113 A->claim();
3114
3115 // Follow gcc behavior and treat as linker input for invalid -x
3116 // options. Its not clear why we shouldn't just revert to unknown; but
3117 // this isn't very important, we might as well be bug compatible.
3118 if (!InputType) {
3119 Diag(DiagID: clang::diag::err_drv_unknown_language) << A->getValue();
3120 InputType = types::TY_Object;
3121 }
3122
3123 // If the user has put -fmodule-header{,=} then we treat C++ headers as
3124 // header unit inputs. So we 'promote' -xc++-header appropriately.
3125 if (InputType == types::TY_CXXHeader && hasHeaderMode())
3126 InputType = CXXHeaderUnitType(HM: CXX20HeaderType);
3127 } else if (A->getOption().getID() == options::OPT_U) {
3128 assert(A->getNumValues() == 1 && "The /U option has one value.");
3129 StringRef Val = A->getValue(N: 0);
3130 if (Val.find_first_of(Chars: "/\\") != StringRef::npos) {
3131 // Warn about e.g. "/Users/me/myfile.c".
3132 Diag(DiagID: diag::warn_slash_u_filename) << Val;
3133 Diag(DiagID: diag::note_use_dashdash);
3134 }
3135 }
3136 }
3137 if (CCCIsCPP() && Inputs.empty()) {
3138 // If called as standalone preprocessor, stdin is processed
3139 // if no other input is present.
3140 Arg *A = MakeInputArg(Args, Opts, Value: "-");
3141 Inputs.push_back(Elt: std::make_pair(x: types::TY_C, y&: A));
3142 }
3143}
3144
3145namespace {
3146/// Provides a convenient interface for different programming models to generate
3147/// the required device actions.
3148class OffloadingActionBuilder final {
3149 /// Flag used to trace errors in the builder.
3150 bool IsValid = false;
3151
3152 /// The compilation that is using this builder.
3153 Compilation &C;
3154
3155 /// Map between an input argument and the offload kinds used to process it.
3156 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
3157
3158 /// Map between a host action and its originating input argument.
3159 std::map<Action *, const Arg *> HostActionToInputArgMap;
3160
3161 /// Builder interface. It doesn't build anything or keep any state.
3162 class DeviceActionBuilder {
3163 public:
3164 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
3165
3166 enum ActionBuilderReturnCode {
3167 // The builder acted successfully on the current action.
3168 ABRT_Success,
3169 // The builder didn't have to act on the current action.
3170 ABRT_Inactive,
3171 // The builder was successful and requested the host action to not be
3172 // generated.
3173 ABRT_Ignore_Host,
3174 };
3175
3176 protected:
3177 /// Compilation associated with this builder.
3178 Compilation &C;
3179
3180 /// Tool chains associated with this builder. The same programming
3181 /// model may have associated one or more tool chains.
3182 SmallVector<const ToolChain *, 2> ToolChains;
3183
3184 /// The derived arguments associated with this builder.
3185 DerivedArgList &Args;
3186
3187 /// The inputs associated with this builder.
3188 const Driver::InputList &Inputs;
3189
3190 /// The associated offload kind.
3191 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
3192
3193 public:
3194 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
3195 const Driver::InputList &Inputs,
3196 Action::OffloadKind AssociatedOffloadKind)
3197 : C(C), Args(Args), Inputs(Inputs),
3198 AssociatedOffloadKind(AssociatedOffloadKind) {}
3199 virtual ~DeviceActionBuilder() {}
3200
3201 /// Fill up the array \a DA with all the device dependences that should be
3202 /// added to the provided host action \a HostAction. By default it is
3203 /// inactive.
3204 virtual ActionBuilderReturnCode
3205 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3206 phases::ID CurPhase, phases::ID FinalPhase,
3207 PhasesTy &Phases) {
3208 return ABRT_Inactive;
3209 }
3210
3211 /// Update the state to include the provided host action \a HostAction as a
3212 /// dependency of the current device action. By default it is inactive.
3213 virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
3214 return ABRT_Inactive;
3215 }
3216
3217 /// Append top level actions generated by the builder.
3218 virtual void appendTopLevelActions(ActionList &AL) {}
3219
3220 /// Append linker device actions generated by the builder.
3221 virtual void appendLinkDeviceActions(ActionList &AL) {}
3222
3223 /// Append linker host action generated by the builder.
3224 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
3225
3226 /// Append linker actions generated by the builder.
3227 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
3228
3229 /// Initialize the builder. Return true if any initialization errors are
3230 /// found.
3231 virtual bool initialize() { return false; }
3232
3233 /// Return true if the builder can use bundling/unbundling.
3234 virtual bool canUseBundlerUnbundler() const { return false; }
3235
3236 /// Return true if this builder is valid. We have a valid builder if we have
3237 /// associated device tool chains.
3238 bool isValid() { return !ToolChains.empty(); }
3239
3240 /// Return the associated offload kind.
3241 Action::OffloadKind getAssociatedOffloadKind() {
3242 return AssociatedOffloadKind;
3243 }
3244 };
3245
3246 /// Base class for CUDA/HIP action builder. It injects device code in
3247 /// the host backend action.
3248 class CudaActionBuilderBase : public DeviceActionBuilder {
3249 protected:
3250 /// Flags to signal if the user requested host-only or device-only
3251 /// compilation.
3252 bool CompileHostOnly = false;
3253 bool CompileDeviceOnly = false;
3254 bool EmitLLVM = false;
3255 bool EmitAsm = false;
3256
3257 /// ID to identify each device compilation. For CUDA it is simply the
3258 /// GPU arch string. For HIP it is either the GPU arch string or GPU
3259 /// arch string plus feature strings delimited by a plus sign, e.g.
3260 /// gfx906+xnack.
3261 struct TargetID {
3262 /// Target ID string which is persistent throughout the compilation.
3263 const char *ID;
3264 TargetID(OffloadArch Arch) { ID = OffloadArchToString(A: Arch); }
3265 TargetID(const char *ID) : ID(ID) {}
3266 operator const char *() { return ID; }
3267 operator StringRef() { return StringRef(ID); }
3268 };
3269 /// List of GPU architectures to use in this compilation.
3270 SmallVector<TargetID, 4> GpuArchList;
3271
3272 /// The CUDA actions for the current input.
3273 ActionList CudaDeviceActions;
3274
3275 /// The CUDA fat binary if it was generated for the current input.
3276 Action *CudaFatBinary = nullptr;
3277
3278 /// Flag that is set to true if this builder acted on the current input.
3279 bool IsActive = false;
3280
3281 /// Flag for -fgpu-rdc.
3282 bool Relocatable = false;
3283
3284 /// Default GPU architecture if there's no one specified.
3285 OffloadArch DefaultOffloadArch = OffloadArch::UNKNOWN;
3286
3287 /// Compilation unit ID specified by option '-fuse-cuid=' or'-cuid='.
3288 const CUIDOptions &CUIDOpts;
3289
3290 public:
3291 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
3292 const Driver::InputList &Inputs,
3293 Action::OffloadKind OFKind)
3294 : DeviceActionBuilder(C, Args, Inputs, OFKind),
3295 CUIDOpts(C.getDriver().getCUIDOpts()) {
3296
3297 CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
3298 Relocatable = Args.hasFlag(Pos: options::OPT_fgpu_rdc,
3299 Neg: options::OPT_fno_gpu_rdc, /*Default=*/false);
3300 }
3301
3302 ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
3303 // While generating code for CUDA, we only depend on the host input action
3304 // to trigger the creation of all the CUDA device actions.
3305
3306 // If we are dealing with an input action, replicate it for each GPU
3307 // architecture. If we are in host-only mode we return 'success' so that
3308 // the host uses the CUDA offload kind.
3309 if (auto *IA = dyn_cast<InputAction>(Val: HostAction)) {
3310 assert(!GpuArchList.empty() &&
3311 "We should have at least one GPU architecture.");
3312
3313 // If the host input is not CUDA or HIP, we don't need to bother about
3314 // this input.
3315 if (!(IA->getType() == types::TY_CUDA ||
3316 IA->getType() == types::TY_HIP ||
3317 IA->getType() == types::TY_PP_HIP)) {
3318 // The builder will ignore this input.
3319 IsActive = false;
3320 return ABRT_Inactive;
3321 }
3322
3323 // Set the flag to true, so that the builder acts on the current input.
3324 IsActive = true;
3325
3326 if (CUIDOpts.isEnabled())
3327 IA->setId(CUIDOpts.getCUID(InputFile: IA->getInputArg().getValue(), Args));
3328
3329 if (CompileHostOnly)
3330 return ABRT_Success;
3331
3332 // Replicate inputs for each GPU architecture.
3333 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
3334 : types::TY_CUDA_DEVICE;
3335 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3336 CudaDeviceActions.push_back(
3337 Elt: C.MakeAction<InputAction>(Arg: IA->getInputArg(), Arg&: Ty, Arg: IA->getId()));
3338 }
3339
3340 return ABRT_Success;
3341 }
3342
3343 // If this is an unbundling action use it as is for each CUDA toolchain.
3344 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(Val: HostAction)) {
3345
3346 // If -fgpu-rdc is disabled, should not unbundle since there is no
3347 // device code to link.
3348 if (UA->getType() == types::TY_Object && !Relocatable)
3349 return ABRT_Inactive;
3350
3351 CudaDeviceActions.clear();
3352 auto *IA = cast<InputAction>(Val: UA->getInputs().back());
3353 std::string FileName = IA->getInputArg().getAsString(Args);
3354 // Check if the type of the file is the same as the action. Do not
3355 // unbundle it if it is not. Do not unbundle .so files, for example,
3356 // which are not object files. Files with extension ".lib" is classified
3357 // as TY_Object but they are actually archives, therefore should not be
3358 // unbundled here as objects. They will be handled at other places.
3359 const StringRef LibFileExt = ".lib";
3360 if (IA->getType() == types::TY_Object &&
3361 (!llvm::sys::path::has_extension(path: FileName) ||
3362 types::lookupTypeForExtension(
3363 Ext: llvm::sys::path::extension(path: FileName).drop_front()) !=
3364 types::TY_Object ||
3365 llvm::sys::path::extension(path: FileName) == LibFileExt))
3366 return ABRT_Inactive;
3367
3368 for (auto Arch : GpuArchList) {
3369 CudaDeviceActions.push_back(Elt: UA);
3370 UA->registerDependentActionInfo(TC: ToolChains[0], BoundArch: Arch,
3371 Kind: AssociatedOffloadKind);
3372 }
3373 IsActive = true;
3374 return ABRT_Success;
3375 }
3376
3377 return IsActive ? ABRT_Success : ABRT_Inactive;
3378 }
3379
3380 void appendTopLevelActions(ActionList &AL) override {
3381 // Utility to append actions to the top level list.
3382 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3383 OffloadAction::DeviceDependences Dep;
3384 Dep.add(A&: *A, TC: *ToolChains.front(), BoundArch: TargetID, OKind: AssociatedOffloadKind);
3385 AL.push_back(Elt: C.MakeAction<OffloadAction>(Arg&: Dep, Arg: A->getType()));
3386 };
3387
3388 // If we have a fat binary, add it to the list.
3389 if (CudaFatBinary) {
3390 AddTopLevel(CudaFatBinary, OffloadArch::UNUSED);
3391 CudaDeviceActions.clear();
3392 CudaFatBinary = nullptr;
3393 return;
3394 }
3395
3396 if (CudaDeviceActions.empty())
3397 return;
3398
3399 // If we have CUDA actions at this point, that's because we have a have
3400 // partial compilation, so we should have an action for each GPU
3401 // architecture.
3402 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3403 "Expecting one action per GPU architecture.");
3404 assert(ToolChains.size() == 1 &&
3405 "Expecting to have a single CUDA toolchain.");
3406 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3407 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3408
3409 CudaDeviceActions.clear();
3410 }
3411
3412 /// Get canonicalized offload arch option. \returns empty StringRef if the
3413 /// option is invalid.
3414 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3415
3416 virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3417 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3418
3419 bool initialize() override {
3420 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3421 AssociatedOffloadKind == Action::OFK_HIP);
3422
3423 // We don't need to support CUDA.
3424 if (AssociatedOffloadKind == Action::OFK_Cuda &&
3425 !C.hasOffloadToolChain<Action::OFK_Cuda>())
3426 return false;
3427
3428 // We don't need to support HIP.
3429 if (AssociatedOffloadKind == Action::OFK_HIP &&
3430 !C.hasOffloadToolChain<Action::OFK_HIP>())
3431 return false;
3432
3433 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3434 assert(HostTC && "No toolchain for host compilation.");
3435 if (HostTC->getTriple().isNVPTX() || HostTC->getTriple().isAMDGCN()) {
3436 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3437 // an error and abort pipeline construction early so we don't trip
3438 // asserts that assume device-side compilation.
3439 C.getDriver().Diag(DiagID: diag::err_drv_cuda_host_arch)
3440 << HostTC->getTriple().getArchName();
3441 return true;
3442 }
3443
3444 ToolChains.push_back(
3445 Elt: AssociatedOffloadKind == Action::OFK_Cuda
3446 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3447 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3448
3449 CompileHostOnly = C.getDriver().offloadHostOnly();
3450 EmitLLVM = Args.getLastArg(Ids: options::OPT_emit_llvm);
3451 EmitAsm = Args.getLastArg(Ids: options::OPT_S);
3452
3453 // --offload and --offload-arch options are mutually exclusive.
3454 if (Args.hasArgNoClaim(Ids: options::OPT_offload_EQ) &&
3455 Args.hasArgNoClaim(Ids: options::OPT_offload_arch_EQ,
3456 Ids: options::OPT_no_offload_arch_EQ)) {
3457 C.getDriver().Diag(DiagID: diag::err_opt_not_valid_with_opt) << "--offload-arch"
3458 << "--offload";
3459 }
3460
3461 // Collect all offload arch parameters, removing duplicates.
3462 std::set<StringRef> GpuArchs;
3463 bool Error = false;
3464 const ToolChain &TC = *ToolChains.front();
3465 for (Arg *A : C.getArgsForToolChain(TC: &TC, /*BoundArch=*/"",
3466 DeviceOffloadKind: AssociatedOffloadKind)) {
3467 if (!(A->getOption().matches(ID: options::OPT_offload_arch_EQ) ||
3468 A->getOption().matches(ID: options::OPT_no_offload_arch_EQ)))
3469 continue;
3470 A->claim();
3471
3472 for (StringRef ArchStr : llvm::split(Str: A->getValue(), Separator: ",")) {
3473 if (A->getOption().matches(ID: options::OPT_no_offload_arch_EQ) &&
3474 ArchStr == "all") {
3475 GpuArchs.clear();
3476 } else if (ArchStr == "native") {
3477 auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3478 if (!GPUsOrErr) {
3479 TC.getDriver().Diag(DiagID: diag::err_drv_undetermined_gpu_arch)
3480 << llvm::Triple::getArchTypeName(Kind: TC.getArch())
3481 << llvm::toString(E: GPUsOrErr.takeError()) << "--offload-arch";
3482 continue;
3483 }
3484
3485 for (auto GPU : *GPUsOrErr) {
3486 GpuArchs.insert(x: Args.MakeArgString(Str: GPU));
3487 }
3488 } else {
3489 ArchStr = getCanonicalOffloadArch(Arch: ArchStr);
3490 if (ArchStr.empty()) {
3491 Error = true;
3492 } else if (A->getOption().matches(ID: options::OPT_offload_arch_EQ))
3493 GpuArchs.insert(x: ArchStr);
3494 else if (A->getOption().matches(ID: options::OPT_no_offload_arch_EQ))
3495 GpuArchs.erase(x: ArchStr);
3496 else
3497 llvm_unreachable("Unexpected option.");
3498 }
3499 }
3500 }
3501
3502 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3503 if (ConflictingArchs) {
3504 C.getDriver().Diag(DiagID: clang::diag::err_drv_bad_offload_arch_combo)
3505 << ConflictingArchs->first << ConflictingArchs->second;
3506 C.setContainsError();
3507 return true;
3508 }
3509
3510 // Collect list of GPUs remaining in the set.
3511 for (auto Arch : GpuArchs)
3512 GpuArchList.push_back(Elt: Arch.data());
3513
3514 // Default to sm_20 which is the lowest common denominator for
3515 // supported GPUs. sm_20 code should work correctly, if
3516 // suboptimally, on all newer GPUs.
3517 if (GpuArchList.empty()) {
3518 if (ToolChains.front()->getTriple().isSPIRV()) {
3519 if (ToolChains.front()->getTriple().getVendor() == llvm::Triple::AMD)
3520 GpuArchList.push_back(Elt: OffloadArch::AMDGCNSPIRV);
3521 else
3522 GpuArchList.push_back(Elt: OffloadArch::Generic);
3523 } else {
3524 GpuArchList.push_back(Elt: DefaultOffloadArch);
3525 }
3526 }
3527
3528 return Error;
3529 }
3530 };
3531
3532 /// \brief CUDA action builder. It injects device code in the host backend
3533 /// action.
3534 class CudaActionBuilder final : public CudaActionBuilderBase {
3535 public:
3536 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3537 const Driver::InputList &Inputs)
3538 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3539 DefaultOffloadArch = OffloadArch::CudaDefault;
3540 }
3541
3542 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3543 OffloadArch Arch = StringToOffloadArch(S: ArchStr);
3544 if (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(A: Arch)) {
3545 C.getDriver().Diag(DiagID: clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3546 return StringRef();
3547 }
3548 return OffloadArchToString(A: Arch);
3549 }
3550
3551 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3552 getConflictOffloadArchCombination(
3553 const std::set<StringRef> &GpuArchs) override {
3554 return std::nullopt;
3555 }
3556
3557 ActionBuilderReturnCode
3558 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3559 phases::ID CurPhase, phases::ID FinalPhase,
3560 PhasesTy &Phases) override {
3561 if (!IsActive)
3562 return ABRT_Inactive;
3563
3564 // If we don't have more CUDA actions, we don't have any dependences to
3565 // create for the host.
3566 if (CudaDeviceActions.empty())
3567 return ABRT_Success;
3568
3569 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3570 "Expecting one action per GPU architecture.");
3571 assert(!CompileHostOnly &&
3572 "Not expecting CUDA actions in host-only compilation.");
3573
3574 // If we are generating code for the device or we are in a backend phase,
3575 // we attempt to generate the fat binary. We compile each arch to ptx and
3576 // assemble to cubin, then feed the cubin *and* the ptx into a device
3577 // "link" action, which uses fatbinary to combine these cubins into one
3578 // fatbin. The fatbin is then an input to the host action if not in
3579 // device-only mode.
3580 if (CompileDeviceOnly || CurPhase == phases::Backend) {
3581 ActionList DeviceActions;
3582 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3583 // Produce the device action from the current phase up to the assemble
3584 // phase.
3585 for (auto Ph : Phases) {
3586 // Skip the phases that were already dealt with.
3587 if (Ph < CurPhase)
3588 continue;
3589 // We have to be consistent with the host final phase.
3590 if (Ph > FinalPhase)
3591 break;
3592
3593 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3594 C, Args, Phase: Ph, Input: CudaDeviceActions[I], TargetDeviceOffloadKind: Action::OFK_Cuda);
3595
3596 if (Ph == phases::Assemble)
3597 break;
3598 }
3599
3600 // If we didn't reach the assemble phase, we can't generate the fat
3601 // binary. We don't need to generate the fat binary if we are not in
3602 // device-only mode.
3603 if (!isa<AssembleJobAction>(Val: CudaDeviceActions[I]) ||
3604 CompileDeviceOnly)
3605 continue;
3606
3607 Action *AssembleAction = CudaDeviceActions[I];
3608 assert(AssembleAction->getType() == types::TY_Object);
3609 assert(AssembleAction->getInputs().size() == 1);
3610
3611 Action *BackendAction = AssembleAction->getInputs()[0];
3612 assert(BackendAction->getType() == types::TY_PP_Asm);
3613
3614 for (auto &A : {AssembleAction, BackendAction}) {
3615 OffloadAction::DeviceDependences DDep;
3616 DDep.add(A&: *A, TC: *ToolChains.front(), BoundArch: GpuArchList[I], OKind: Action::OFK_Cuda);
3617 DeviceActions.push_back(
3618 Elt: C.MakeAction<OffloadAction>(Arg&: DDep, Arg: A->getType()));
3619 }
3620 }
3621
3622 // We generate the fat binary if we have device input actions.
3623 if (!DeviceActions.empty()) {
3624 CudaFatBinary =
3625 C.MakeAction<LinkJobAction>(Arg&: DeviceActions, Arg: types::TY_CUDA_FATBIN);
3626
3627 if (!CompileDeviceOnly) {
3628 DA.add(A&: *CudaFatBinary, TC: *ToolChains.front(), /*BoundArch=*/nullptr,
3629 OKind: Action::OFK_Cuda);
3630 // Clear the fat binary, it is already a dependence to an host
3631 // action.
3632 CudaFatBinary = nullptr;
3633 }
3634
3635 // Remove the CUDA actions as they are already connected to an host
3636 // action or fat binary.
3637 CudaDeviceActions.clear();
3638 }
3639
3640 // We avoid creating host action in device-only mode.
3641 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3642 } else if (CurPhase > phases::Backend) {
3643 // If we are past the backend phase and still have a device action, we
3644 // don't have to do anything as this action is already a device
3645 // top-level action.
3646 return ABRT_Success;
3647 }
3648
3649 assert(CurPhase < phases::Backend && "Generating single CUDA "
3650 "instructions should only occur "
3651 "before the backend phase!");
3652
3653 // By default, we produce an action for each device arch.
3654 for (Action *&A : CudaDeviceActions)
3655 A = C.getDriver().ConstructPhaseAction(C, Args, Phase: CurPhase, Input: A);
3656
3657 return ABRT_Success;
3658 }
3659 };
3660 /// \brief HIP action builder. It injects device code in the host backend
3661 /// action.
3662 class HIPActionBuilder final : public CudaActionBuilderBase {
3663 /// The linker inputs obtained for each device arch.
3664 SmallVector<ActionList, 8> DeviceLinkerInputs;
3665 // The default bundling behavior depends on the type of output, therefore
3666 // BundleOutput needs to be tri-value: None, true, or false.
3667 // Bundle code objects except --no-gpu-output is specified for device
3668 // only compilation. Bundle other type of output files only if
3669 // --gpu-bundle-output is specified for device only compilation.
3670 std::optional<bool> BundleOutput;
3671 std::optional<bool> EmitReloc;
3672
3673 public:
3674 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3675 const Driver::InputList &Inputs)
3676 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3677
3678 DefaultOffloadArch = OffloadArch::HIPDefault;
3679
3680 if (Args.hasArg(Ids: options::OPT_fhip_emit_relocatable,
3681 Ids: options::OPT_fno_hip_emit_relocatable)) {
3682 EmitReloc = Args.hasFlag(Pos: options::OPT_fhip_emit_relocatable,
3683 Neg: options::OPT_fno_hip_emit_relocatable, Default: false);
3684
3685 if (*EmitReloc) {
3686 if (Relocatable) {
3687 C.getDriver().Diag(DiagID: diag::err_opt_not_valid_with_opt)
3688 << "-fhip-emit-relocatable"
3689 << "-fgpu-rdc";
3690 }
3691
3692 if (!CompileDeviceOnly) {
3693 C.getDriver().Diag(DiagID: diag::err_opt_not_valid_without_opt)
3694 << "-fhip-emit-relocatable"
3695 << "--cuda-device-only";
3696 }
3697 }
3698 }
3699
3700 if (Args.hasArg(Ids: options::OPT_gpu_bundle_output,
3701 Ids: options::OPT_no_gpu_bundle_output))
3702 BundleOutput = Args.hasFlag(Pos: options::OPT_gpu_bundle_output,
3703 Neg: options::OPT_no_gpu_bundle_output, Default: true) &&
3704 (!EmitReloc || !*EmitReloc);
3705 }
3706
3707 bool canUseBundlerUnbundler() const override { return true; }
3708
3709 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3710 llvm::StringMap<bool> Features;
3711 // getHIPOffloadTargetTriple() is known to return valid value as it has
3712 // been called successfully in the CreateOffloadingDeviceToolChains().
3713 auto T =
3714 (IdStr == "amdgcnspirv")
3715 ? llvm::Triple("spirv64-amd-amdhsa")
3716 : *getHIPOffloadTargetTriple(D: C.getDriver(), Args: C.getInputArgs());
3717 auto ArchStr = parseTargetID(T, OffloadArch: IdStr, FeatureMap: &Features);
3718 if (!ArchStr) {
3719 C.getDriver().Diag(DiagID: clang::diag::err_drv_bad_target_id) << IdStr;
3720 C.setContainsError();
3721 return StringRef();
3722 }
3723 auto CanId = getCanonicalTargetID(Processor: *ArchStr, Features);
3724 return Args.MakeArgStringRef(Str: CanId);
3725 };
3726
3727 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3728 getConflictOffloadArchCombination(
3729 const std::set<StringRef> &GpuArchs) override {
3730 return getConflictTargetIDCombination(TargetIDs: GpuArchs);
3731 }
3732
3733 ActionBuilderReturnCode
3734 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3735 phases::ID CurPhase, phases::ID FinalPhase,
3736 PhasesTy &Phases) override {
3737 if (!IsActive)
3738 return ABRT_Inactive;
3739
3740 // amdgcn does not support linking of object files, therefore we skip
3741 // backend and assemble phases to output LLVM IR. Except for generating
3742 // non-relocatable device code, where we generate fat binary for device
3743 // code and pass to host in Backend phase.
3744 if (CudaDeviceActions.empty())
3745 return ABRT_Success;
3746
3747 assert(((CurPhase == phases::Link && Relocatable) ||
3748 CudaDeviceActions.size() == GpuArchList.size()) &&
3749 "Expecting one action per GPU architecture.");
3750 assert(!CompileHostOnly &&
3751 "Not expecting HIP actions in host-only compilation.");
3752
3753 bool ShouldLink = !EmitReloc || !*EmitReloc;
3754
3755 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3756 !EmitAsm && ShouldLink) {
3757 // If we are in backend phase, we attempt to generate the fat binary.
3758 // We compile each arch to IR and use a link action to generate code
3759 // object containing ISA. Then we use a special "link" action to create
3760 // a fat binary containing all the code objects for different GPU's.
3761 // The fat binary is then an input to the host action.
3762 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3763 if (C.getDriver().isUsingOffloadLTO()) {
3764 // When LTO is enabled, skip the backend and assemble phases and
3765 // use lld to link the bitcode.
3766 ActionList AL;
3767 AL.push_back(Elt: CudaDeviceActions[I]);
3768 // Create a link action to link device IR with device library
3769 // and generate ISA.
3770 CudaDeviceActions[I] =
3771 C.MakeAction<LinkJobAction>(Arg&: AL, Arg: types::TY_Image);
3772 } else {
3773 // When LTO is not enabled, we follow the conventional
3774 // compiler phases, including backend and assemble phases.
3775 ActionList AL;
3776 Action *BackendAction = nullptr;
3777 if (ToolChains.front()->getTriple().isSPIRV() ||
3778 (ToolChains.front()->getTriple().isAMDGCN() &&
3779 GpuArchList[I] == StringRef("amdgcnspirv"))) {
3780 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3781 // (HIPSPVToolChain or HIPAMDToolChain) runs post-link LLVM IR
3782 // passes.
3783 types::ID Output = Args.hasArg(Ids: options::OPT_S)
3784 ? types::TY_LLVM_IR
3785 : types::TY_LLVM_BC;
3786 BackendAction =
3787 C.MakeAction<BackendJobAction>(Arg&: CudaDeviceActions[I], Arg&: Output);
3788 } else
3789 BackendAction = C.getDriver().ConstructPhaseAction(
3790 C, Args, Phase: phases::Backend, Input: CudaDeviceActions[I],
3791 TargetDeviceOffloadKind: AssociatedOffloadKind);
3792 auto AssembleAction = C.getDriver().ConstructPhaseAction(
3793 C, Args, Phase: phases::Assemble, Input: BackendAction,
3794 TargetDeviceOffloadKind: AssociatedOffloadKind);
3795 AL.push_back(Elt: AssembleAction);
3796 // Create a link action to link device IR with device library
3797 // and generate ISA.
3798 CudaDeviceActions[I] =
3799 C.MakeAction<LinkJobAction>(Arg&: AL, Arg: types::TY_Image);
3800 }
3801
3802 // OffloadingActionBuilder propagates device arch until an offload
3803 // action. Since the next action for creating fatbin does
3804 // not have device arch, whereas the above link action and its input
3805 // have device arch, an offload action is needed to stop the null
3806 // device arch of the next action being propagated to the above link
3807 // action.
3808 OffloadAction::DeviceDependences DDep;
3809 DDep.add(A&: *CudaDeviceActions[I], TC: *ToolChains.front(), BoundArch: GpuArchList[I],
3810 OKind: AssociatedOffloadKind);
3811 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3812 Arg&: DDep, Arg: CudaDeviceActions[I]->getType());
3813 }
3814
3815 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3816 // Create HIP fat binary with a special "link" action.
3817 CudaFatBinary = C.MakeAction<LinkJobAction>(Arg&: CudaDeviceActions,
3818 Arg: types::TY_HIP_FATBIN);
3819
3820 if (!CompileDeviceOnly) {
3821 DA.add(A&: *CudaFatBinary, TC: *ToolChains.front(), /*BoundArch=*/nullptr,
3822 OKind: AssociatedOffloadKind);
3823 // Clear the fat binary, it is already a dependence to an host
3824 // action.
3825 CudaFatBinary = nullptr;
3826 }
3827
3828 // Remove the CUDA actions as they are already connected to an host
3829 // action or fat binary.
3830 CudaDeviceActions.clear();
3831 }
3832
3833 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3834 } else if (CurPhase == phases::Link) {
3835 if (!ShouldLink)
3836 return ABRT_Success;
3837 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3838 // This happens to each device action originated from each input file.
3839 // Later on, device actions in DeviceLinkerInputs are used to create
3840 // device link actions in appendLinkDependences and the created device
3841 // link actions are passed to the offload action as device dependence.
3842 DeviceLinkerInputs.resize(N: CudaDeviceActions.size());
3843 auto LI = DeviceLinkerInputs.begin();
3844 for (auto *A : CudaDeviceActions) {
3845 LI->push_back(Elt: A);
3846 ++LI;
3847 }
3848
3849 // We will pass the device action as a host dependence, so we don't
3850 // need to do anything else with them.
3851 CudaDeviceActions.clear();
3852 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3853 }
3854
3855 // By default, we produce an action for each device arch.
3856 for (Action *&A : CudaDeviceActions)
3857 A = C.getDriver().ConstructPhaseAction(C, Args, Phase: CurPhase, Input: A,
3858 TargetDeviceOffloadKind: AssociatedOffloadKind);
3859
3860 if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3861 *BundleOutput) {
3862 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3863 OffloadAction::DeviceDependences DDep;
3864 DDep.add(A&: *CudaDeviceActions[I], TC: *ToolChains.front(), BoundArch: GpuArchList[I],
3865 OKind: AssociatedOffloadKind);
3866 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3867 Arg&: DDep, Arg: CudaDeviceActions[I]->getType());
3868 }
3869 CudaFatBinary =
3870 C.MakeAction<OffloadBundlingJobAction>(Arg&: CudaDeviceActions);
3871 CudaDeviceActions.clear();
3872 }
3873
3874 return (CompileDeviceOnly &&
3875 (CurPhase == FinalPhase ||
3876 (!ShouldLink && CurPhase == phases::Assemble)))
3877 ? ABRT_Ignore_Host
3878 : ABRT_Success;
3879 }
3880
3881 void appendLinkDeviceActions(ActionList &AL) override {
3882 if (DeviceLinkerInputs.size() == 0)
3883 return;
3884
3885 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3886 "Linker inputs and GPU arch list sizes do not match.");
3887
3888 ActionList Actions;
3889 unsigned I = 0;
3890 // Append a new link action for each device.
3891 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3892 for (auto &LI : DeviceLinkerInputs) {
3893
3894 types::ID Output = Args.hasArg(Ids: options::OPT_emit_llvm)
3895 ? types::TY_LLVM_BC
3896 : types::TY_Image;
3897
3898 auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(Arg&: LI, Arg&: Output);
3899 // Linking all inputs for the current GPU arch.
3900 // LI contains all the inputs for the linker.
3901 OffloadAction::DeviceDependences DeviceLinkDeps;
3902 DeviceLinkDeps.add(A&: *DeviceLinkAction, TC: *ToolChains[0],
3903 BoundArch: GpuArchList[I], OKind: AssociatedOffloadKind);
3904 Actions.push_back(Elt: C.MakeAction<OffloadAction>(
3905 Arg&: DeviceLinkDeps, Arg: DeviceLinkAction->getType()));
3906 ++I;
3907 }
3908 DeviceLinkerInputs.clear();
3909
3910 // If emitting LLVM, do not generate final host/device compilation action
3911 if (Args.hasArg(Ids: options::OPT_emit_llvm)) {
3912 AL.append(RHS: Actions);
3913 return;
3914 }
3915
3916 // Create a host object from all the device images by embedding them
3917 // in a fat binary for mixed host-device compilation. For device-only
3918 // compilation, creates a fat binary.
3919 OffloadAction::DeviceDependences DDeps;
3920 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3921 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3922 Arg&: Actions,
3923 Arg: CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3924 DDeps.add(A&: *TopDeviceLinkAction, TC: *ToolChains[0], BoundArch: nullptr,
3925 OKind: AssociatedOffloadKind);
3926 // Offload the host object to the host linker.
3927 AL.push_back(
3928 Elt: C.MakeAction<OffloadAction>(Arg&: DDeps, Arg: TopDeviceLinkAction->getType()));
3929 } else {
3930 AL.append(RHS: Actions);
3931 }
3932 }
3933
3934 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3935
3936 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3937 };
3938
3939 ///
3940 /// TODO: Add the implementation for other specialized builders here.
3941 ///
3942
3943 /// Specialized builders being used by this offloading action builder.
3944 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3945
3946 /// Flag set to true if all valid builders allow file bundling/unbundling.
3947 bool CanUseBundler;
3948
3949public:
3950 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3951 const Driver::InputList &Inputs)
3952 : C(C) {
3953 // Create a specialized builder for each device toolchain.
3954
3955 IsValid = true;
3956
3957 // Create a specialized builder for CUDA.
3958 SpecializedBuilders.push_back(Elt: new CudaActionBuilder(C, Args, Inputs));
3959
3960 // Create a specialized builder for HIP.
3961 SpecializedBuilders.push_back(Elt: new HIPActionBuilder(C, Args, Inputs));
3962
3963 //
3964 // TODO: Build other specialized builders here.
3965 //
3966
3967 // Initialize all the builders, keeping track of errors. If all valid
3968 // builders agree that we can use bundling, set the flag to true.
3969 unsigned ValidBuilders = 0u;
3970 unsigned ValidBuildersSupportingBundling = 0u;
3971 for (auto *SB : SpecializedBuilders) {
3972 IsValid = IsValid && !SB->initialize();
3973
3974 // Update the counters if the builder is valid.
3975 if (SB->isValid()) {
3976 ++ValidBuilders;
3977 if (SB->canUseBundlerUnbundler())
3978 ++ValidBuildersSupportingBundling;
3979 }
3980 }
3981 CanUseBundler =
3982 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3983 }
3984
3985 ~OffloadingActionBuilder() {
3986 for (auto *SB : SpecializedBuilders)
3987 delete SB;
3988 }
3989
3990 /// Record a host action and its originating input argument.
3991 void recordHostAction(Action *HostAction, const Arg *InputArg) {
3992 assert(HostAction && "Invalid host action");
3993 assert(InputArg && "Invalid input argument");
3994 auto Loc = HostActionToInputArgMap.try_emplace(k: HostAction, args&: InputArg).first;
3995 assert(Loc->second == InputArg &&
3996 "host action mapped to multiple input arguments");
3997 (void)Loc;
3998 }
3999
4000 /// Generate an action that adds device dependences (if any) to a host action.
4001 /// If no device dependence actions exist, just return the host action \a
4002 /// HostAction. If an error is found or if no builder requires the host action
4003 /// to be generated, return nullptr.
4004 Action *
4005 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
4006 phases::ID CurPhase, phases::ID FinalPhase,
4007 DeviceActionBuilder::PhasesTy &Phases) {
4008 if (!IsValid)
4009 return nullptr;
4010
4011 if (SpecializedBuilders.empty())
4012 return HostAction;
4013
4014 assert(HostAction && "Invalid host action!");
4015 recordHostAction(HostAction, InputArg);
4016
4017 OffloadAction::DeviceDependences DDeps;
4018 // Check if all the programming models agree we should not emit the host
4019 // action. Also, keep track of the offloading kinds employed.
4020 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
4021 unsigned InactiveBuilders = 0u;
4022 unsigned IgnoringBuilders = 0u;
4023 for (auto *SB : SpecializedBuilders) {
4024 if (!SB->isValid()) {
4025 ++InactiveBuilders;
4026 continue;
4027 }
4028 auto RetCode =
4029 SB->getDeviceDependences(DA&: DDeps, CurPhase, FinalPhase, Phases);
4030
4031 // If the builder explicitly says the host action should be ignored,
4032 // we need to increment the variable that tracks the builders that request
4033 // the host object to be ignored.
4034 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
4035 ++IgnoringBuilders;
4036
4037 // Unless the builder was inactive for this action, we have to record the
4038 // offload kind because the host will have to use it.
4039 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
4040 OffloadKind |= SB->getAssociatedOffloadKind();
4041 }
4042
4043 // If all builders agree that the host object should be ignored, just return
4044 // nullptr.
4045 if (IgnoringBuilders &&
4046 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
4047 return nullptr;
4048
4049 if (DDeps.getActions().empty())
4050 return HostAction;
4051
4052 // We have dependences we need to bundle together. We use an offload action
4053 // for that.
4054 OffloadAction::HostDependence HDep(
4055 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4056 /*BoundArch=*/nullptr, DDeps);
4057 return C.MakeAction<OffloadAction>(Arg&: HDep, Arg&: DDeps);
4058 }
4059
4060 /// Generate an action that adds a host dependence to a device action. The
4061 /// results will be kept in this action builder. Return true if an error was
4062 /// found.
4063 bool addHostDependenceToDeviceActions(Action *&HostAction,
4064 const Arg *InputArg) {
4065 if (!IsValid)
4066 return true;
4067
4068 recordHostAction(HostAction, InputArg);
4069
4070 // If we are supporting bundling/unbundling and the current action is an
4071 // input action of non-source file, we replace the host action by the
4072 // unbundling action. The bundler tool has the logic to detect if an input
4073 // is a bundle or not and if the input is not a bundle it assumes it is a
4074 // host file. Therefore it is safe to create an unbundling action even if
4075 // the input is not a bundle.
4076 if (CanUseBundler && isa<InputAction>(Val: HostAction) &&
4077 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
4078 (!types::isSrcFile(Id: HostAction->getType()) ||
4079 HostAction->getType() == types::TY_PP_HIP)) {
4080 auto UnbundlingHostAction =
4081 C.MakeAction<OffloadUnbundlingJobAction>(Arg&: HostAction);
4082 UnbundlingHostAction->registerDependentActionInfo(
4083 TC: C.getSingleOffloadToolChain<Action::OFK_Host>(),
4084 /*BoundArch=*/StringRef(), Kind: Action::OFK_Host);
4085 HostAction = UnbundlingHostAction;
4086 recordHostAction(HostAction, InputArg);
4087 }
4088
4089 assert(HostAction && "Invalid host action!");
4090
4091 // Register the offload kinds that are used.
4092 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
4093 for (auto *SB : SpecializedBuilders) {
4094 if (!SB->isValid())
4095 continue;
4096
4097 auto RetCode = SB->addDeviceDependences(HostAction);
4098
4099 // Host dependences for device actions are not compatible with that same
4100 // action being ignored.
4101 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
4102 "Host dependence not expected to be ignored.!");
4103
4104 // Unless the builder was inactive for this action, we have to record the
4105 // offload kind because the host will have to use it.
4106 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
4107 OffloadKind |= SB->getAssociatedOffloadKind();
4108 }
4109
4110 // Do not use unbundler if the Host does not depend on device action.
4111 if (OffloadKind == Action::OFK_None && CanUseBundler)
4112 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(Val: HostAction))
4113 HostAction = UA->getInputs().back();
4114
4115 return false;
4116 }
4117
4118 /// Add the offloading top level actions to the provided action list. This
4119 /// function can replace the host action by a bundling action if the
4120 /// programming models allow it.
4121 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
4122 const Arg *InputArg) {
4123 if (HostAction)
4124 recordHostAction(HostAction, InputArg);
4125
4126 // Get the device actions to be appended.
4127 ActionList OffloadAL;
4128 for (auto *SB : SpecializedBuilders) {
4129 if (!SB->isValid())
4130 continue;
4131 SB->appendTopLevelActions(AL&: OffloadAL);
4132 }
4133
4134 // If we can use the bundler, replace the host action by the bundling one in
4135 // the resulting list. Otherwise, just append the device actions. For
4136 // device only compilation, HostAction is a null pointer, therefore only do
4137 // this when HostAction is not a null pointer.
4138 if (CanUseBundler && HostAction &&
4139 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
4140 // Add the host action to the list in order to create the bundling action.
4141 OffloadAL.push_back(Elt: HostAction);
4142
4143 // We expect that the host action was just appended to the action list
4144 // before this method was called.
4145 assert(HostAction == AL.back() && "Host action not in the list??");
4146 HostAction = C.MakeAction<OffloadBundlingJobAction>(Arg&: OffloadAL);
4147 recordHostAction(HostAction, InputArg);
4148 AL.back() = HostAction;
4149 } else
4150 AL.append(in_start: OffloadAL.begin(), in_end: OffloadAL.end());
4151
4152 // Propagate to the current host action (if any) the offload information
4153 // associated with the current input.
4154 if (HostAction)
4155 HostAction->propagateHostOffloadInfo(OKinds: InputArgToOffloadKindMap[InputArg],
4156 /*BoundArch=*/OArch: nullptr);
4157 return false;
4158 }
4159
4160 void appendDeviceLinkActions(ActionList &AL) {
4161 for (DeviceActionBuilder *SB : SpecializedBuilders) {
4162 if (!SB->isValid())
4163 continue;
4164 SB->appendLinkDeviceActions(AL);
4165 }
4166 }
4167
4168 Action *makeHostLinkAction() {
4169 // Build a list of device linking actions.
4170 ActionList DeviceAL;
4171 appendDeviceLinkActions(AL&: DeviceAL);
4172 if (DeviceAL.empty())
4173 return nullptr;
4174
4175 // Let builders add host linking actions.
4176 Action* HA = nullptr;
4177 for (DeviceActionBuilder *SB : SpecializedBuilders) {
4178 if (!SB->isValid())
4179 continue;
4180 HA = SB->appendLinkHostActions(AL&: DeviceAL);
4181 // This created host action has no originating input argument, therefore
4182 // needs to set its offloading kind directly.
4183 if (HA)
4184 HA->propagateHostOffloadInfo(OKinds: SB->getAssociatedOffloadKind(),
4185 /*BoundArch=*/OArch: nullptr);
4186 }
4187 return HA;
4188 }
4189
4190 /// Processes the host linker action. This currently consists of replacing it
4191 /// with an offload action if there are device link objects and propagate to
4192 /// the host action all the offload kinds used in the current compilation. The
4193 /// resulting action is returned.
4194 Action *processHostLinkAction(Action *HostAction) {
4195 // Add all the dependences from the device linking actions.
4196 OffloadAction::DeviceDependences DDeps;
4197 for (auto *SB : SpecializedBuilders) {
4198 if (!SB->isValid())
4199 continue;
4200
4201 SB->appendLinkDependences(DA&: DDeps);
4202 }
4203
4204 // Calculate all the offload kinds used in the current compilation.
4205 unsigned ActiveOffloadKinds = 0u;
4206 for (auto &I : InputArgToOffloadKindMap)
4207 ActiveOffloadKinds |= I.second;
4208
4209 // If we don't have device dependencies, we don't have to create an offload
4210 // action.
4211 if (DDeps.getActions().empty()) {
4212 // Set all the active offloading kinds to the link action. Given that it
4213 // is a link action it is assumed to depend on all actions generated so
4214 // far.
4215 HostAction->setHostOffloadInfo(OKinds: ActiveOffloadKinds,
4216 /*BoundArch=*/OArch: nullptr);
4217 // Propagate active offloading kinds for each input to the link action.
4218 // Each input may have different active offloading kind.
4219 for (auto *A : HostAction->inputs()) {
4220 auto ArgLoc = HostActionToInputArgMap.find(x: A);
4221 if (ArgLoc == HostActionToInputArgMap.end())
4222 continue;
4223 auto OFKLoc = InputArgToOffloadKindMap.find(x: ArgLoc->second);
4224 if (OFKLoc == InputArgToOffloadKindMap.end())
4225 continue;
4226 A->propagateHostOffloadInfo(OKinds: OFKLoc->second, /*BoundArch=*/OArch: nullptr);
4227 }
4228 return HostAction;
4229 }
4230
4231 // Create the offload action with all dependences. When an offload action
4232 // is created the kinds are propagated to the host action, so we don't have
4233 // to do that explicitly here.
4234 OffloadAction::HostDependence HDep(
4235 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4236 /*BoundArch*/ nullptr, ActiveOffloadKinds);
4237 return C.MakeAction<OffloadAction>(Arg&: HDep, Arg&: DDeps);
4238 }
4239};
4240} // anonymous namespace.
4241
4242void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
4243 const InputList &Inputs,
4244 ActionList &Actions) const {
4245
4246 // Diagnose misuse of /Fo.
4247 if (Arg *A = Args.getLastArg(Ids: options::OPT__SLASH_Fo)) {
4248 StringRef V = A->getValue();
4249 if (Inputs.size() > 1 && !V.empty() &&
4250 !llvm::sys::path::is_separator(value: V.back())) {
4251 // Check whether /Fo tries to name an output file for multiple inputs.
4252 Diag(DiagID: clang::diag::err_drv_out_file_argument_with_multiple_sources)
4253 << A->getSpelling() << V;
4254 Args.eraseArg(Id: options::OPT__SLASH_Fo);
4255 }
4256 }
4257
4258 // Diagnose misuse of /Fa.
4259 if (Arg *A = Args.getLastArg(Ids: options::OPT__SLASH_Fa)) {
4260 StringRef V = A->getValue();
4261 if (Inputs.size() > 1 && !V.empty() &&
4262 !llvm::sys::path::is_separator(value: V.back())) {
4263 // Check whether /Fa tries to name an asm file for multiple inputs.
4264 Diag(DiagID: clang::diag::err_drv_out_file_argument_with_multiple_sources)
4265 << A->getSpelling() << V;
4266 Args.eraseArg(Id: options::OPT__SLASH_Fa);
4267 }
4268 }
4269
4270 // Diagnose misuse of /o.
4271 if (Arg *A = Args.getLastArg(Ids: options::OPT__SLASH_o)) {
4272 if (A->getValue()[0] == '\0') {
4273 // It has to have a value.
4274 Diag(DiagID: clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4275 Args.eraseArg(Id: options::OPT__SLASH_o);
4276 }
4277 }
4278
4279 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
4280 Arg *YcArg = Args.getLastArg(Ids: options::OPT__SLASH_Yc);
4281 Arg *YuArg = Args.getLastArg(Ids: options::OPT__SLASH_Yu);
4282 if (YcArg && YuArg && strcmp(s1: YcArg->getValue(), s2: YuArg->getValue()) != 0) {
4283 Diag(DiagID: clang::diag::warn_drv_ycyu_different_arg_clang_cl);
4284 Args.eraseArg(Id: options::OPT__SLASH_Yc);
4285 Args.eraseArg(Id: options::OPT__SLASH_Yu);
4286 YcArg = YuArg = nullptr;
4287 }
4288 if (YcArg && Inputs.size() > 1) {
4289 Diag(DiagID: clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
4290 Args.eraseArg(Id: options::OPT__SLASH_Yc);
4291 YcArg = nullptr;
4292 }
4293
4294 Arg *FinalPhaseArg;
4295 phases::ID FinalPhase = getFinalPhase(DAL: Args, FinalPhaseArg: &FinalPhaseArg);
4296
4297 if (FinalPhase == phases::Link) {
4298 if (Args.hasArgNoClaim(Ids: options::OPT_hipstdpar)) {
4299 Args.AddFlagArg(BaseArg: nullptr, Opt: getOpts().getOption(Opt: options::OPT_hip_link));
4300 Args.AddFlagArg(BaseArg: nullptr,
4301 Opt: getOpts().getOption(Opt: options::OPT_frtlib_add_rpath));
4302 }
4303 // Emitting LLVM while linking disabled except in HIPAMD Toolchain
4304 if (Args.hasArg(Ids: options::OPT_emit_llvm) && !Args.hasArg(Ids: options::OPT_hip_link))
4305 Diag(DiagID: clang::diag::err_drv_emit_llvm_link);
4306 if (C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment() &&
4307 LTOMode != LTOK_None &&
4308 !Args.getLastArgValue(Id: options::OPT_fuse_ld_EQ)
4309 .starts_with_insensitive(Prefix: "lld"))
4310 Diag(DiagID: clang::diag::err_drv_lto_without_lld);
4311
4312 // If -dumpdir is not specified, give a default prefix derived from the link
4313 // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
4314 // `-dumpdir x-` to cc1. If -o is unspecified, use
4315 // stem(getDefaultImageName()) (usually stem("a.out") = "a").
4316 if (!Args.hasArg(Ids: options::OPT_dumpdir)) {
4317 Arg *FinalOutput = Args.getLastArg(Ids: options::OPT_o, Ids: options::OPT__SLASH_o);
4318 Arg *Arg = Args.MakeSeparateArg(
4319 BaseArg: nullptr, Opt: getOpts().getOption(Opt: options::OPT_dumpdir),
4320 Value: Args.MakeArgString(
4321 Str: (FinalOutput ? FinalOutput->getValue()
4322 : llvm::sys::path::stem(path: getDefaultImageName())) +
4323 "-"));
4324 Arg->claim();
4325 Args.append(A: Arg);
4326 }
4327 }
4328
4329 if (FinalPhase == phases::Preprocess || Args.hasArg(Ids: options::OPT__SLASH_Y_)) {
4330 // If only preprocessing or /Y- is used, all pch handling is disabled.
4331 // Rather than check for it everywhere, just remove clang-cl pch-related
4332 // flags here.
4333 Args.eraseArg(Id: options::OPT__SLASH_Fp);
4334 Args.eraseArg(Id: options::OPT__SLASH_Yc);
4335 Args.eraseArg(Id: options::OPT__SLASH_Yu);
4336 YcArg = YuArg = nullptr;
4337 }
4338
4339 if (Args.hasArg(Ids: options::OPT_include_pch) &&
4340 Args.hasArg(Ids: options::OPT_ignore_pch)) {
4341 // If -ignore-pch is used, -include-pch is disabled. Since -emit-pch is
4342 // CC1option, it will not be added to command argments if -ignore-pch is
4343 // used.
4344 Args.eraseArg(Id: options::OPT_include_pch);
4345 }
4346
4347 bool LinkOnly = phases::Link == FinalPhase && Inputs.size() > 0;
4348 for (auto &I : Inputs) {
4349 types::ID InputType = I.first;
4350 const Arg *InputArg = I.second;
4351
4352 auto PL = types::getCompilationPhases(Id: InputType);
4353
4354 phases::ID InitialPhase = PL[0];
4355 LinkOnly = LinkOnly && phases::Link == InitialPhase && PL.size() == 1;
4356
4357 // If the first step comes after the final phase we are doing as part of
4358 // this compilation, warn the user about it.
4359 if (InitialPhase > FinalPhase) {
4360 if (InputArg->isClaimed())
4361 continue;
4362
4363 // Claim here to avoid the more general unused warning.
4364 InputArg->claim();
4365
4366 // Suppress all unused style warnings with -Qunused-arguments
4367 if (Args.hasArg(Ids: options::OPT_Qunused_arguments))
4368 continue;
4369
4370 // Special case when final phase determined by binary name, rather than
4371 // by a command-line argument with a corresponding Arg.
4372 if (CCCIsCPP())
4373 Diag(DiagID: clang::diag::warn_drv_input_file_unused_by_cpp)
4374 << InputArg->getAsString(Args) << getPhaseName(Id: InitialPhase);
4375 // Special case '-E' warning on a previously preprocessed file to make
4376 // more sense.
4377 else if (InitialPhase == phases::Compile &&
4378 (Args.getLastArg(Ids: options::OPT__SLASH_EP,
4379 Ids: options::OPT__SLASH_P) ||
4380 Args.getLastArg(Ids: options::OPT_E) ||
4381 Args.getLastArg(Ids: options::OPT_M, Ids: options::OPT_MM)) &&
4382 getPreprocessedType(Id: InputType) == types::TY_INVALID)
4383 Diag(DiagID: clang::diag::warn_drv_preprocessed_input_file_unused)
4384 << InputArg->getAsString(Args) << !!FinalPhaseArg
4385 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4386 else
4387 Diag(DiagID: clang::diag::warn_drv_input_file_unused)
4388 << InputArg->getAsString(Args) << getPhaseName(Id: InitialPhase)
4389 << !!FinalPhaseArg
4390 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4391 continue;
4392 }
4393
4394 if (YcArg) {
4395 // Add a separate precompile phase for the compile phase.
4396 if (FinalPhase >= phases::Compile) {
4397 const types::ID HeaderType = lookupHeaderTypeForSourceType(Id: InputType);
4398 // Build the pipeline for the pch file.
4399 Action *ClangClPch = C.MakeAction<InputAction>(Arg: *InputArg, Arg: HeaderType);
4400 for (phases::ID Phase : types::getCompilationPhases(Id: HeaderType))
4401 ClangClPch = ConstructPhaseAction(C, Args, Phase, Input: ClangClPch);
4402 assert(ClangClPch);
4403 Actions.push_back(Elt: ClangClPch);
4404 // The driver currently exits after the first failed command. This
4405 // relies on that behavior, to make sure if the pch generation fails,
4406 // the main compilation won't run.
4407 // FIXME: If the main compilation fails, the PCH generation should
4408 // probably not be considered successful either.
4409 }
4410 }
4411 }
4412
4413 // Claim any options which are obviously only used for compilation.
4414 if (LinkOnly) {
4415 Args.ClaimAllArgs(Id0: options::OPT_CompileOnly_Group);
4416 Args.ClaimAllArgs(Id0: options::OPT_cl_compile_Group);
4417 }
4418}
4419
4420void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4421 const InputList &Inputs, ActionList &Actions) const {
4422 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4423
4424 if (!SuppressMissingInputWarning && Inputs.empty()) {
4425 Diag(DiagID: clang::diag::err_drv_no_input_files);
4426 return;
4427 }
4428
4429 handleArguments(C, Args, Inputs, Actions);
4430
4431 bool UseNewOffloadingDriver =
4432 C.isOffloadingHostKind(Kind: Action::OFK_OpenMP) ||
4433 C.isOffloadingHostKind(Kind: Action::OFK_SYCL) ||
4434 Args.hasFlag(Pos: options::OPT_foffload_via_llvm,
4435 Neg: options::OPT_fno_offload_via_llvm, Default: false) ||
4436 Args.hasFlag(Pos: options::OPT_offload_new_driver,
4437 Neg: options::OPT_no_offload_new_driver,
4438 Default: C.isOffloadingHostKind(Kind: Action::OFK_Cuda));
4439
4440 bool HIPNoRDC =
4441 C.isOffloadingHostKind(Kind: Action::OFK_HIP) &&
4442 !Args.hasFlag(Pos: options::OPT_fgpu_rdc, Neg: options::OPT_fno_gpu_rdc, Default: false);
4443
4444 // Builder to be used to build offloading actions.
4445 std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4446 !UseNewOffloadingDriver
4447 ? std::make_unique<OffloadingActionBuilder>(args&: C, args&: Args, args: Inputs)
4448 : nullptr;
4449
4450 // Construct the actions to perform.
4451 ExtractAPIJobAction *ExtractAPIAction = nullptr;
4452 ActionList LinkerInputs;
4453 ActionList MergerInputs;
4454
4455 for (auto &I : Inputs) {
4456 types::ID InputType = I.first;
4457 const Arg *InputArg = I.second;
4458
4459 auto PL = types::getCompilationPhases(Driver: *this, DAL&: Args, Id: InputType);
4460 if (PL.empty())
4461 continue;
4462
4463 auto FullPL = types::getCompilationPhases(Id: InputType);
4464
4465 // Build the pipeline for this file.
4466 Action *Current = C.MakeAction<InputAction>(Arg: *InputArg, Arg&: InputType);
4467
4468 std::string CUID;
4469 if (CUIDOpts.isEnabled() && types::isSrcFile(Id: InputType)) {
4470 CUID = CUIDOpts.getCUID(InputFile: InputArg->getValue(), Args);
4471 cast<InputAction>(Val: Current)->setId(CUID);
4472 }
4473
4474 // Use the current host action in any of the offloading actions, if
4475 // required.
4476 if (!UseNewOffloadingDriver)
4477 if (OffloadBuilder->addHostDependenceToDeviceActions(HostAction&: Current, InputArg))
4478 break;
4479
4480 for (phases::ID Phase : PL) {
4481
4482 // Add any offload action the host action depends on.
4483 if (!UseNewOffloadingDriver)
4484 Current = OffloadBuilder->addDeviceDependencesToHostAction(
4485 HostAction: Current, InputArg, CurPhase: Phase, FinalPhase: PL.back(), Phases: FullPL);
4486 if (!Current)
4487 break;
4488
4489 // Queue linker inputs.
4490 if (Phase == phases::Link) {
4491 assert(Phase == PL.back() && "linking must be final compilation step.");
4492 // We don't need to generate additional link commands if emitting AMD
4493 // bitcode or compiling only for the offload device
4494 if (!(C.getInputArgs().hasArg(Ids: options::OPT_hip_link) &&
4495 (C.getInputArgs().hasArg(Ids: options::OPT_emit_llvm))) &&
4496 !offloadDeviceOnly())
4497 LinkerInputs.push_back(Elt: Current);
4498 Current = nullptr;
4499 break;
4500 }
4501
4502 // TODO: Consider removing this because the merged may not end up being
4503 // the final Phase in the pipeline. Perhaps the merged could just merge
4504 // and then pass an artifact of some sort to the Link Phase.
4505 // Queue merger inputs.
4506 if (Phase == phases::IfsMerge) {
4507 assert(Phase == PL.back() && "merging must be final compilation step.");
4508 MergerInputs.push_back(Elt: Current);
4509 Current = nullptr;
4510 break;
4511 }
4512
4513 if (Phase == phases::Precompile && ExtractAPIAction) {
4514 ExtractAPIAction->addHeaderInput(Input: Current);
4515 Current = nullptr;
4516 break;
4517 }
4518
4519 // FIXME: Should we include any prior module file outputs as inputs of
4520 // later actions in the same command line?
4521
4522 // Otherwise construct the appropriate action.
4523 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Input: Current);
4524
4525 // We didn't create a new action, so we will just move to the next phase.
4526 if (NewCurrent == Current)
4527 continue;
4528
4529 if (auto *EAA = dyn_cast<ExtractAPIJobAction>(Val: NewCurrent))
4530 ExtractAPIAction = EAA;
4531
4532 Current = NewCurrent;
4533
4534 // Try to build the offloading actions and add the result as a dependency
4535 // to the host.
4536 if (UseNewOffloadingDriver)
4537 Current = BuildOffloadingActions(C, Args, Input: I, CUID, HostAction: Current);
4538 // Use the current host action in any of the offloading actions, if
4539 // required.
4540 else if (OffloadBuilder->addHostDependenceToDeviceActions(HostAction&: Current,
4541 InputArg))
4542 break;
4543
4544 if (Current->getType() == types::TY_Nothing)
4545 break;
4546 }
4547
4548 // If we ended with something, add to the output list.
4549 if (Current)
4550 Actions.push_back(Elt: Current);
4551
4552 // Add any top level actions generated for offloading.
4553 if (!UseNewOffloadingDriver)
4554 OffloadBuilder->appendTopLevelActions(AL&: Actions, HostAction: Current, InputArg);
4555 else if (Current)
4556 Current->propagateHostOffloadInfo(OKinds: C.getActiveOffloadKinds(),
4557 /*BoundArch=*/OArch: nullptr);
4558 }
4559
4560 // Add a link action if necessary.
4561
4562 if (LinkerInputs.empty()) {
4563 Arg *FinalPhaseArg;
4564 if (getFinalPhase(DAL: Args, FinalPhaseArg: &FinalPhaseArg) == phases::Link)
4565 if (!UseNewOffloadingDriver)
4566 OffloadBuilder->appendDeviceLinkActions(AL&: Actions);
4567 }
4568
4569 if (!LinkerInputs.empty()) {
4570 if (!UseNewOffloadingDriver)
4571 if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4572 LinkerInputs.push_back(Elt: Wrapper);
4573 Action *LA;
4574 // Check if this Linker Job should emit a static library.
4575 if (ShouldEmitStaticLibrary(Args)) {
4576 LA = C.MakeAction<StaticLibJobAction>(Arg&: LinkerInputs, Arg: types::TY_Image);
4577 } else if ((UseNewOffloadingDriver && !HIPNoRDC) ||
4578 Args.hasArg(Ids: options::OPT_offload_link)) {
4579 LA = C.MakeAction<LinkerWrapperJobAction>(Arg&: LinkerInputs, Arg: types::TY_Image);
4580 LA->propagateHostOffloadInfo(OKinds: C.getActiveOffloadKinds(),
4581 /*BoundArch=*/OArch: nullptr);
4582 } else {
4583 LA = C.MakeAction<LinkJobAction>(Arg&: LinkerInputs, Arg: types::TY_Image);
4584 }
4585 if (!UseNewOffloadingDriver)
4586 LA = OffloadBuilder->processHostLinkAction(HostAction: LA);
4587 Actions.push_back(Elt: LA);
4588 }
4589
4590 // Add an interface stubs merge action if necessary.
4591 if (!MergerInputs.empty())
4592 Actions.push_back(
4593 Elt: C.MakeAction<IfsMergeJobAction>(Arg&: MergerInputs, Arg: types::TY_Image));
4594
4595 if (Args.hasArg(Ids: options::OPT_emit_interface_stubs)) {
4596 auto PhaseList = types::getCompilationPhases(
4597 Id: types::TY_IFS_CPP,
4598 LastPhase: Args.hasArg(Ids: options::OPT_c) ? phases::Compile : phases::IfsMerge);
4599
4600 ActionList MergerInputs;
4601
4602 for (auto &I : Inputs) {
4603 types::ID InputType = I.first;
4604 const Arg *InputArg = I.second;
4605
4606 // Currently clang and the llvm assembler do not support generating symbol
4607 // stubs from assembly, so we skip the input on asm files. For ifs files
4608 // we rely on the normal pipeline setup in the pipeline setup code above.
4609 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4610 InputType == types::TY_Asm)
4611 continue;
4612
4613 Action *Current = C.MakeAction<InputAction>(Arg: *InputArg, Arg&: InputType);
4614
4615 for (auto Phase : PhaseList) {
4616 switch (Phase) {
4617 default:
4618 llvm_unreachable(
4619 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4620 case phases::Compile: {
4621 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4622 // files where the .o file is located. The compile action can not
4623 // handle this.
4624 if (InputType == types::TY_Object)
4625 break;
4626
4627 Current = C.MakeAction<CompileJobAction>(Arg&: Current, Arg: types::TY_IFS_CPP);
4628 break;
4629 }
4630 case phases::IfsMerge: {
4631 assert(Phase == PhaseList.back() &&
4632 "merging must be final compilation step.");
4633 MergerInputs.push_back(Elt: Current);
4634 Current = nullptr;
4635 break;
4636 }
4637 }
4638 }
4639
4640 // If we ended with something, add to the output list.
4641 if (Current)
4642 Actions.push_back(Elt: Current);
4643 }
4644
4645 // Add an interface stubs merge action if necessary.
4646 if (!MergerInputs.empty())
4647 Actions.push_back(
4648 Elt: C.MakeAction<IfsMergeJobAction>(Arg&: MergerInputs, Arg: types::TY_Image));
4649 }
4650
4651 for (auto Opt : {options::OPT_print_supported_cpus,
4652 options::OPT_print_supported_extensions,
4653 options::OPT_print_enabled_extensions}) {
4654 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4655 // custom Compile phase that prints out supported cpu models and quits.
4656 //
4657 // If either --print-supported-extensions or --print-enabled-extensions is
4658 // specified, call the corresponding helper function that prints out the
4659 // supported/enabled extensions and quits.
4660 if (Arg *A = Args.getLastArg(Ids: Opt)) {
4661 if (Opt == options::OPT_print_supported_extensions &&
4662 !C.getDefaultToolChain().getTriple().isRISCV() &&
4663 !C.getDefaultToolChain().getTriple().isAArch64() &&
4664 !C.getDefaultToolChain().getTriple().isARM()) {
4665 C.getDriver().Diag(DiagID: diag::err_opt_not_valid_on_target)
4666 << "--print-supported-extensions";
4667 return;
4668 }
4669 if (Opt == options::OPT_print_enabled_extensions &&
4670 !C.getDefaultToolChain().getTriple().isRISCV() &&
4671 !C.getDefaultToolChain().getTriple().isAArch64()) {
4672 C.getDriver().Diag(DiagID: diag::err_opt_not_valid_on_target)
4673 << "--print-enabled-extensions";
4674 return;
4675 }
4676
4677 // Use the -mcpu=? flag as the dummy input to cc1.
4678 Actions.clear();
4679 Action *InputAc = C.MakeAction<InputAction>(
4680 Arg&: *A, Arg: IsFlangMode() ? types::TY_Fortran : types::TY_C);
4681 Actions.push_back(
4682 Elt: C.MakeAction<PrecompileJobAction>(Arg&: InputAc, Arg: types::TY_Nothing));
4683 for (auto &I : Inputs)
4684 I.second->claim();
4685 }
4686 }
4687
4688 // Call validator for dxil when -Vd not in Args.
4689 if (C.getDefaultToolChain().getTriple().isDXIL()) {
4690 // Only add action when needValidation.
4691 const auto &TC =
4692 static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4693 if (TC.requiresValidation(Args)) {
4694 Action *LastAction = Actions.back();
4695 Actions.push_back(Elt: C.MakeAction<BinaryAnalyzeJobAction>(
4696 Arg&: LastAction, Arg: types::TY_DX_CONTAINER));
4697 }
4698 if (TC.requiresBinaryTranslation(Args)) {
4699 Action *LastAction = Actions.back();
4700 // Metal shader converter runs on DXIL containers, which can either be
4701 // validated (in which case they are TY_DX_CONTAINER), or unvalidated
4702 // (TY_OBJECT).
4703 if (LastAction->getType() == types::TY_DX_CONTAINER ||
4704 LastAction->getType() == types::TY_Object)
4705 Actions.push_back(Elt: C.MakeAction<BinaryTranslatorJobAction>(
4706 Arg&: LastAction, Arg: types::TY_DX_CONTAINER));
4707 }
4708 }
4709
4710 // Claim ignored clang-cl options.
4711 Args.ClaimAllArgs(Id0: options::OPT_cl_ignored_Group);
4712}
4713
4714/// Returns the canonical name for the offloading architecture when using a HIP
4715/// or CUDA architecture.
4716static StringRef getCanonicalArchString(Compilation &C,
4717 const llvm::opt::DerivedArgList &Args,
4718 StringRef ArchStr,
4719 const llvm::Triple &Triple,
4720 bool SpecificToolchain) {
4721 // Lookup the CUDA / HIP architecture string. Only report an error if we were
4722 // expecting the triple to be only NVPTX / AMDGPU.
4723 OffloadArch Arch =
4724 StringToOffloadArch(S: getProcessorFromTargetID(T: Triple, OffloadArch: ArchStr));
4725 if (Triple.isNVPTX() &&
4726 (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(A: Arch))) {
4727 if (SpecificToolchain)
4728 C.getDriver().Diag(DiagID: clang::diag::err_drv_offload_bad_gpu_arch)
4729 << "CUDA" << ArchStr;
4730 return StringRef();
4731 } else if (Triple.isAMDGPU() &&
4732 (Arch == OffloadArch::UNKNOWN || !IsAMDOffloadArch(A: Arch))) {
4733 if (SpecificToolchain)
4734 C.getDriver().Diag(DiagID: clang::diag::err_drv_offload_bad_gpu_arch)
4735 << "HIP" << ArchStr;
4736 return StringRef();
4737 }
4738
4739 if (IsNVIDIAOffloadArch(A: Arch))
4740 return Args.MakeArgStringRef(Str: OffloadArchToString(A: Arch));
4741
4742 if (IsAMDOffloadArch(A: Arch)) {
4743 llvm::StringMap<bool> Features;
4744 std::optional<StringRef> Arch = parseTargetID(T: Triple, OffloadArch: ArchStr, FeatureMap: &Features);
4745 if (!Arch) {
4746 C.getDriver().Diag(DiagID: clang::diag::err_drv_bad_target_id) << ArchStr;
4747 return StringRef();
4748 }
4749 return Args.MakeArgStringRef(Str: getCanonicalTargetID(Processor: *Arch, Features));
4750 }
4751
4752 // If the input isn't CUDA or HIP just return the architecture.
4753 return ArchStr;
4754}
4755
4756/// Checks if the set offloading architectures does not conflict. Returns the
4757/// incompatible pair if a conflict occurs.
4758static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4759getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4760 llvm::Triple Triple) {
4761 if (!Triple.isAMDGPU())
4762 return std::nullopt;
4763
4764 std::set<StringRef> ArchSet;
4765 llvm::copy(Range: Archs, Out: std::inserter(x&: ArchSet, i: ArchSet.begin()));
4766 return getConflictTargetIDCombination(TargetIDs: ArchSet);
4767}
4768
4769llvm::SmallVector<StringRef>
4770Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4771 Action::OffloadKind Kind, const ToolChain *TC,
4772 bool SpecificToolchain) const {
4773 if (!TC)
4774 TC = &C.getDefaultToolChain();
4775
4776 // --offload and --offload-arch options are mutually exclusive.
4777 if (Args.hasArgNoClaim(Ids: options::OPT_offload_EQ) &&
4778 Args.hasArgNoClaim(Ids: options::OPT_offload_arch_EQ,
4779 Ids: options::OPT_no_offload_arch_EQ)) {
4780 C.getDriver().Diag(DiagID: diag::err_opt_not_valid_with_opt)
4781 << "--offload"
4782 << (Args.hasArgNoClaim(Ids: options::OPT_offload_arch_EQ)
4783 ? "--offload-arch"
4784 : "--no-offload-arch");
4785 }
4786
4787 llvm::DenseSet<StringRef> Archs;
4788 for (auto *Arg : C.getArgsForToolChain(TC, /*BoundArch=*/"", DeviceOffloadKind: Kind)) {
4789 // Add or remove the seen architectures in order of appearance. If an
4790 // invalid architecture is given we simply exit.
4791 if (Arg->getOption().matches(ID: options::OPT_offload_arch_EQ)) {
4792 for (StringRef Arch : Arg->getValues()) {
4793 if (Arch == "native" || Arch.empty()) {
4794 auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4795 if (!GPUsOrErr) {
4796 if (!SpecificToolchain)
4797 llvm::consumeError(Err: GPUsOrErr.takeError());
4798 else
4799 TC->getDriver().Diag(DiagID: diag::err_drv_undetermined_gpu_arch)
4800 << llvm::Triple::getArchTypeName(Kind: TC->getArch())
4801 << llvm::toString(E: GPUsOrErr.takeError()) << "--offload-arch";
4802 continue;
4803 }
4804
4805 for (auto ArchStr : *GPUsOrErr) {
4806 StringRef CanonicalStr =
4807 getCanonicalArchString(C, Args, ArchStr: Args.MakeArgString(Str: ArchStr),
4808 Triple: TC->getTriple(), SpecificToolchain);
4809 if (!CanonicalStr.empty())
4810 Archs.insert(V: CanonicalStr);
4811 else if (SpecificToolchain)
4812 return llvm::SmallVector<StringRef>();
4813 }
4814 } else {
4815 StringRef CanonicalStr = getCanonicalArchString(
4816 C, Args, ArchStr: Arch, Triple: TC->getTriple(), SpecificToolchain);
4817 if (!CanonicalStr.empty())
4818 Archs.insert(V: CanonicalStr);
4819 else if (SpecificToolchain)
4820 return llvm::SmallVector<StringRef>();
4821 }
4822 }
4823 } else if (Arg->getOption().matches(ID: options::OPT_no_offload_arch_EQ)) {
4824 for (StringRef Arch : llvm::split(Str: Arg->getValue(), Separator: ",")) {
4825 if (Arch == "all") {
4826 Archs.clear();
4827 } else {
4828 StringRef ArchStr = getCanonicalArchString(
4829 C, Args, ArchStr: Arch, Triple: TC->getTriple(), SpecificToolchain);
4830 Archs.erase(V: ArchStr);
4831 }
4832 }
4833 }
4834 }
4835
4836 if (auto ConflictingArchs =
4837 getConflictOffloadArchCombination(Archs, Triple: TC->getTriple()))
4838 C.getDriver().Diag(DiagID: clang::diag::err_drv_bad_offload_arch_combo)
4839 << ConflictingArchs->first << ConflictingArchs->second;
4840
4841 // Skip filling defaults if we're just querying what is availible.
4842 if (SpecificToolchain && Archs.empty()) {
4843 if (Kind == Action::OFK_Cuda) {
4844 Archs.insert(V: OffloadArchToString(A: OffloadArch::CudaDefault));
4845 } else if (Kind == Action::OFK_HIP) {
4846 Archs.insert(V: OffloadArchToString(A: OffloadArch::HIPDefault));
4847 } else if (Kind == Action::OFK_SYCL) {
4848 Archs.insert(V: StringRef());
4849 } else if (Kind == Action::OFK_OpenMP) {
4850 // Accept legacy `-march` device arguments for OpenMP.
4851 if (auto *Arg = C.getArgsForToolChain(TC, /*BoundArch=*/"", DeviceOffloadKind: Kind)
4852 .getLastArg(Ids: options::OPT_march_EQ)) {
4853 Archs.insert(V: Arg->getValue());
4854 } else {
4855 auto ArchsOrErr = TC->getSystemGPUArchs(Args);
4856 if (!ArchsOrErr) {
4857 TC->getDriver().Diag(DiagID: diag::err_drv_undetermined_gpu_arch)
4858 << llvm::Triple::getArchTypeName(Kind: TC->getArch())
4859 << llvm::toString(E: ArchsOrErr.takeError()) << "--offload-arch";
4860 } else if (!ArchsOrErr->empty()) {
4861 for (auto Arch : *ArchsOrErr)
4862 Archs.insert(V: Args.MakeArgStringRef(Str: Arch));
4863 } else {
4864 Archs.insert(V: StringRef());
4865 }
4866 }
4867 }
4868 }
4869 Args.ClaimAllArgs(Id0: options::OPT_offload_arch_EQ);
4870 Args.ClaimAllArgs(Id0: options::OPT_no_offload_arch_EQ);
4871
4872 SmallVector<StringRef> Sorted(Archs.begin(), Archs.end());
4873 llvm::sort(C&: Sorted);
4874 return Sorted;
4875}
4876
4877Action *Driver::BuildOffloadingActions(Compilation &C,
4878 llvm::opt::DerivedArgList &Args,
4879 const InputTy &Input, StringRef CUID,
4880 Action *HostAction) const {
4881 // Don't build offloading actions if explicitly disabled or we do not have a
4882 // valid source input.
4883 if (offloadHostOnly() || !types::isSrcFile(Id: Input.first))
4884 return HostAction;
4885
4886 bool HIPNoRDC =
4887 C.isOffloadingHostKind(Kind: Action::OFK_HIP) &&
4888 !Args.hasFlag(Pos: options::OPT_fgpu_rdc, Neg: options::OPT_fno_gpu_rdc, Default: false);
4889
4890 // For HIP non-rdc non-device-only compilation, create a linker wrapper
4891 // action for each host object to link, bundle and wrap device files in
4892 // it.
4893 if ((isa<AssembleJobAction>(Val: HostAction) ||
4894 (isa<BackendJobAction>(Val: HostAction) &&
4895 HostAction->getType() == types::TY_LTO_BC)) &&
4896 HIPNoRDC && !offloadDeviceOnly()) {
4897 ActionList AL{HostAction};
4898 HostAction = C.MakeAction<LinkerWrapperJobAction>(Arg&: AL, Arg: types::TY_Object);
4899 HostAction->propagateHostOffloadInfo(OKinds: C.getActiveOffloadKinds(),
4900 /*BoundArch=*/OArch: nullptr);
4901 return HostAction;
4902 }
4903
4904 // Don't build offloading actions if we do not have a compile action. If
4905 // preprocessing only ignore embedding.
4906 if (!(isa<CompileJobAction>(Val: HostAction) ||
4907 getFinalPhase(DAL: Args) == phases::Preprocess))
4908 return HostAction;
4909
4910 ActionList OffloadActions;
4911 OffloadAction::DeviceDependences DDeps;
4912
4913 const Action::OffloadKind OffloadKinds[] = {
4914 Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP, Action::OFK_SYCL};
4915
4916 for (Action::OffloadKind Kind : OffloadKinds) {
4917 SmallVector<const ToolChain *, 2> ToolChains;
4918 ActionList DeviceActions;
4919
4920 auto TCRange = C.getOffloadToolChains(Kind);
4921 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4922 ToolChains.push_back(Elt: TI->second);
4923
4924 if (ToolChains.empty())
4925 continue;
4926
4927 types::ID InputType = Input.first;
4928 const Arg *InputArg = Input.second;
4929
4930 // The toolchain can be active for unsupported file types.
4931 if ((Kind == Action::OFK_Cuda && !types::isCuda(Id: InputType)) ||
4932 (Kind == Action::OFK_HIP && !types::isHIP(Id: InputType)))
4933 continue;
4934
4935 // Get the product of all bound architectures and toolchains.
4936 SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4937 for (const ToolChain *TC : ToolChains) {
4938 for (StringRef Arch : OffloadArchs.lookup(Val: TC)) {
4939 TCAndArchs.push_back(Elt: std::make_pair(x&: TC, y&: Arch));
4940 DeviceActions.push_back(
4941 Elt: C.MakeAction<InputAction>(Arg: *InputArg, Arg&: InputType, Arg&: CUID));
4942 }
4943 }
4944
4945 if (DeviceActions.empty())
4946 return HostAction;
4947
4948 // FIXME: Do not collapse the host side for Darwin targets with SYCL offload
4949 // compilations. The toolchain is not properly initialized for the target.
4950 if (isa<CompileJobAction>(Val: HostAction) && Kind == Action::OFK_SYCL &&
4951 HostAction->getType() != types::TY_Nothing &&
4952 C.getSingleOffloadToolChain<Action::OFK_Host>()
4953 ->getTriple()
4954 .isOSDarwin())
4955 HostAction->setCannotBeCollapsedWithNextDependentAction();
4956
4957 auto PL = types::getCompilationPhases(Driver: *this, DAL&: Args, Id: InputType);
4958
4959 for (phases::ID Phase : PL) {
4960 if (Phase == phases::Link) {
4961 assert(Phase == PL.back() && "linking must be final compilation step.");
4962 break;
4963 }
4964
4965 // Assemble actions are not used for the SYCL device side. Both compile
4966 // and backend actions are used to generate IR and textual IR if needed.
4967 if (Kind == Action::OFK_SYCL && Phase == phases::Assemble)
4968 continue;
4969
4970 auto TCAndArch = TCAndArchs.begin();
4971 for (Action *&A : DeviceActions) {
4972 if (A->getType() == types::TY_Nothing)
4973 continue;
4974
4975 // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4976 A->propagateDeviceOffloadInfo(OKind: Kind, OArch: TCAndArch->second.data(),
4977 OToolChain: TCAndArch->first);
4978 A = ConstructPhaseAction(C, Args, Phase, Input: A, TargetDeviceOffloadKind: Kind);
4979
4980 if (isa<CompileJobAction>(Val: A) && isa<CompileJobAction>(Val: HostAction) &&
4981 Kind == Action::OFK_OpenMP &&
4982 HostAction->getType() != types::TY_Nothing) {
4983 // OpenMP offloading has a dependency on the host compile action to
4984 // identify which declarations need to be emitted. This shouldn't be
4985 // collapsed with any other actions so we can use it in the device.
4986 HostAction->setCannotBeCollapsedWithNextDependentAction();
4987 OffloadAction::HostDependence HDep(
4988 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4989 TCAndArch->second.data(), Kind);
4990 OffloadAction::DeviceDependences DDep;
4991 DDep.add(A&: *A, TC: *TCAndArch->first, BoundArch: TCAndArch->second.data(), OKind: Kind);
4992 A = C.MakeAction<OffloadAction>(Arg&: HDep, Arg&: DDep);
4993 }
4994
4995 ++TCAndArch;
4996 }
4997 }
4998
4999 // Compiling HIP in device-only non-RDC mode requires linking each action
5000 // individually.
5001 for (Action *&A : DeviceActions) {
5002 if ((A->getType() != types::TY_Object &&
5003 A->getType() != types::TY_LTO_BC) ||
5004 !HIPNoRDC || !offloadDeviceOnly())
5005 continue;
5006 ActionList LinkerInput = {A};
5007 A = C.MakeAction<LinkJobAction>(Arg&: LinkerInput, Arg: types::TY_Image);
5008 }
5009
5010 auto TCAndArch = TCAndArchs.begin();
5011 for (Action *A : DeviceActions) {
5012 DDeps.add(A&: *A, TC: *TCAndArch->first, BoundArch: TCAndArch->second.data(), OKind: Kind);
5013 OffloadAction::DeviceDependences DDep;
5014 DDep.add(A&: *A, TC: *TCAndArch->first, BoundArch: TCAndArch->second.data(), OKind: Kind);
5015
5016 // Compiling CUDA in non-RDC mode uses the PTX output if available.
5017 for (Action *Input : A->getInputs())
5018 if (Kind == Action::OFK_Cuda && A->getType() == types::TY_Object &&
5019 !Args.hasFlag(Pos: options::OPT_fgpu_rdc, Neg: options::OPT_fno_gpu_rdc,
5020 Default: false))
5021 DDep.add(A&: *Input, TC: *TCAndArch->first, BoundArch: TCAndArch->second.data(), OKind: Kind);
5022 OffloadActions.push_back(Elt: C.MakeAction<OffloadAction>(Arg&: DDep, Arg: A->getType()));
5023
5024 ++TCAndArch;
5025 }
5026 }
5027
5028 // HIP code in device-only non-RDC mode will bundle the output if it invoked
5029 // the linker.
5030 bool ShouldBundleHIP =
5031 HIPNoRDC && offloadDeviceOnly() &&
5032 Args.hasFlag(Pos: options::OPT_gpu_bundle_output,
5033 Neg: options::OPT_no_gpu_bundle_output, Default: true) &&
5034 !llvm::any_of(Range&: OffloadActions,
5035 P: [](Action *A) { return A->getType() != types::TY_Image; });
5036
5037 // All kinds exit now in device-only mode except for non-RDC mode HIP.
5038 if (offloadDeviceOnly() && !ShouldBundleHIP)
5039 return C.MakeAction<OffloadAction>(Arg&: DDeps, Arg: types::TY_Nothing);
5040
5041 if (OffloadActions.empty())
5042 return HostAction;
5043
5044 OffloadAction::DeviceDependences DDep;
5045 if (C.isOffloadingHostKind(Kind: Action::OFK_Cuda) &&
5046 !Args.hasFlag(Pos: options::OPT_fgpu_rdc, Neg: options::OPT_fno_gpu_rdc, Default: false)) {
5047 // If we are not in RDC-mode we just emit the final CUDA fatbinary for
5048 // each translation unit without requiring any linking.
5049 Action *FatbinAction =
5050 C.MakeAction<LinkJobAction>(Arg&: OffloadActions, Arg: types::TY_CUDA_FATBIN);
5051 DDep.add(A&: *FatbinAction, TC: *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
5052 BoundArch: nullptr, OKind: Action::OFK_Cuda);
5053 } else if (HIPNoRDC && offloadDeviceOnly()) {
5054 // If we are in device-only non-RDC-mode we just emit the final HIP
5055 // fatbinary for each translation unit, linking each input individually.
5056 Action *FatbinAction =
5057 C.MakeAction<LinkJobAction>(Arg&: OffloadActions, Arg: types::TY_HIP_FATBIN);
5058 DDep.add(A&: *FatbinAction, TC: *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
5059 BoundArch: nullptr, OKind: Action::OFK_HIP);
5060 } else {
5061 // Package all the offloading actions into a single output that can be
5062 // embedded in the host and linked.
5063 Action *PackagerAction =
5064 C.MakeAction<OffloadPackagerJobAction>(Arg&: OffloadActions, Arg: types::TY_Image);
5065 DDep.add(A&: *PackagerAction, TC: *C.getSingleOffloadToolChain<Action::OFK_Host>(),
5066 BoundArch: nullptr, OffloadKindMask: C.getActiveOffloadKinds());
5067 }
5068
5069 // HIP wants '--offload-device-only' to create a fatbinary by default.
5070 if (offloadDeviceOnly())
5071 return C.MakeAction<OffloadAction>(Arg&: DDep, Arg: types::TY_Nothing);
5072
5073 // If we are unable to embed a single device output into the host, we need to
5074 // add each device output as a host dependency to ensure they are still built.
5075 bool SingleDeviceOutput = !llvm::any_of(Range&: OffloadActions, P: [](Action *A) {
5076 return A->getType() == types::TY_Nothing;
5077 }) && isa<CompileJobAction>(Val: HostAction);
5078 OffloadAction::HostDependence HDep(
5079 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
5080 /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
5081 return C.MakeAction<OffloadAction>(Arg&: HDep, Arg&: SingleDeviceOutput ? DDep : DDeps);
5082}
5083
5084Action *Driver::ConstructPhaseAction(
5085 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
5086 Action::OffloadKind TargetDeviceOffloadKind) const {
5087 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
5088
5089 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
5090 // encode this in the steps because the intermediate type depends on
5091 // arguments. Just special case here.
5092 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
5093 return Input;
5094
5095 // Use of --sycl-link will only allow for the link phase to occur. This is
5096 // for all input files.
5097 if (Args.hasArg(Ids: options::OPT_sycl_link) && Phase != phases::Link)
5098 return Input;
5099
5100 // Build the appropriate action.
5101 switch (Phase) {
5102 case phases::Link:
5103 llvm_unreachable("link action invalid here.");
5104 case phases::IfsMerge:
5105 llvm_unreachable("ifsmerge action invalid here.");
5106 case phases::Preprocess: {
5107 types::ID OutputTy;
5108 // -M and -MM specify the dependency file name by altering the output type,
5109 // -if -MD and -MMD are not specified.
5110 if (Args.hasArg(Ids: options::OPT_M, Ids: options::OPT_MM) &&
5111 !Args.hasArg(Ids: options::OPT_MD, Ids: options::OPT_MMD)) {
5112 OutputTy = types::TY_Dependencies;
5113 } else {
5114 OutputTy = Input->getType();
5115 // For these cases, the preprocessor is only translating forms, the Output
5116 // still needs preprocessing.
5117 if (!Args.hasFlag(Pos: options::OPT_frewrite_includes,
5118 Neg: options::OPT_fno_rewrite_includes, Default: false) &&
5119 !Args.hasFlag(Pos: options::OPT_frewrite_imports,
5120 Neg: options::OPT_fno_rewrite_imports, Default: false) &&
5121 !Args.hasFlag(Pos: options::OPT_fdirectives_only,
5122 Neg: options::OPT_fno_directives_only, Default: false) &&
5123 !CCGenDiagnostics)
5124 OutputTy = types::getPreprocessedType(Id: OutputTy);
5125 assert(OutputTy != types::TY_INVALID &&
5126 "Cannot preprocess this input type!");
5127 }
5128 return C.MakeAction<PreprocessJobAction>(Arg&: Input, Arg&: OutputTy);
5129 }
5130 case phases::Precompile: {
5131 // API extraction should not generate an actual precompilation action.
5132 if (Args.hasArg(Ids: options::OPT_extract_api))
5133 return C.MakeAction<ExtractAPIJobAction>(Arg&: Input, Arg: types::TY_API_INFO);
5134
5135 // With 'fexperimental-modules-reduced-bmi', we don't want to run the
5136 // precompile phase unless the user specified '--precompile'. In the case
5137 // the '--precompile' flag is enabled, we will try to emit the reduced BMI
5138 // as a by product in GenerateModuleInterfaceAction.
5139 if (Args.hasArg(Ids: options::OPT_modules_reduced_bmi) &&
5140 !Args.getLastArg(Ids: options::OPT__precompile))
5141 return Input;
5142
5143 types::ID OutputTy = getPrecompiledType(Id: Input->getType());
5144 assert(OutputTy != types::TY_INVALID &&
5145 "Cannot precompile this input type!");
5146
5147 // If we're given a module name, precompile header file inputs as a
5148 // module, not as a precompiled header.
5149 const char *ModName = nullptr;
5150 if (OutputTy == types::TY_PCH) {
5151 if (Arg *A = Args.getLastArg(Ids: options::OPT_fmodule_name_EQ))
5152 ModName = A->getValue();
5153 if (ModName)
5154 OutputTy = types::TY_ModuleFile;
5155 }
5156
5157 if (Args.hasArg(Ids: options::OPT_fsyntax_only)) {
5158 // Syntax checks should not emit a PCH file
5159 OutputTy = types::TY_Nothing;
5160 }
5161
5162 return C.MakeAction<PrecompileJobAction>(Arg&: Input, Arg&: OutputTy);
5163 }
5164 case phases::Compile: {
5165 if (Args.hasArg(Ids: options::OPT_fsyntax_only))
5166 return C.MakeAction<CompileJobAction>(Arg&: Input, Arg: types::TY_Nothing);
5167 if (Args.hasArg(Ids: options::OPT_rewrite_objc))
5168 return C.MakeAction<CompileJobAction>(Arg&: Input, Arg: types::TY_RewrittenObjC);
5169 if (Args.hasArg(Ids: options::OPT_rewrite_legacy_objc))
5170 return C.MakeAction<CompileJobAction>(Arg&: Input,
5171 Arg: types::TY_RewrittenLegacyObjC);
5172 if (Args.hasArg(Ids: options::OPT__analyze))
5173 return C.MakeAction<AnalyzeJobAction>(Arg&: Input, Arg: types::TY_Plist);
5174 if (Args.hasArg(Ids: options::OPT_emit_ast))
5175 return C.MakeAction<CompileJobAction>(Arg&: Input, Arg: types::TY_AST);
5176 if (Args.hasArg(Ids: options::OPT_emit_cir))
5177 return C.MakeAction<CompileJobAction>(Arg&: Input, Arg: types::TY_CIR);
5178 if (Args.hasArg(Ids: options::OPT_module_file_info))
5179 return C.MakeAction<CompileJobAction>(Arg&: Input, Arg: types::TY_ModuleFile);
5180 if (Args.hasArg(Ids: options::OPT_verify_pch))
5181 return C.MakeAction<VerifyPCHJobAction>(Arg&: Input, Arg: types::TY_Nothing);
5182 if (Args.hasArg(Ids: options::OPT_extract_api))
5183 return C.MakeAction<ExtractAPIJobAction>(Arg&: Input, Arg: types::TY_API_INFO);
5184 return C.MakeAction<CompileJobAction>(Arg&: Input, Arg: types::TY_LLVM_BC);
5185 }
5186 case phases::Backend: {
5187 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
5188 types::ID Output;
5189 if (Args.hasArg(Ids: options::OPT_ffat_lto_objects) &&
5190 !Args.hasArg(Ids: options::OPT_emit_llvm))
5191 Output = types::TY_PP_Asm;
5192 else if (Args.hasArg(Ids: options::OPT_S))
5193 Output = types::TY_LTO_IR;
5194 else
5195 Output = types::TY_LTO_BC;
5196 return C.MakeAction<BackendJobAction>(Arg&: Input, Arg&: Output);
5197 }
5198 if (isUsingOffloadLTO() && TargetDeviceOffloadKind != Action::OFK_None) {
5199 types::ID Output =
5200 Args.hasArg(Ids: options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
5201 return C.MakeAction<BackendJobAction>(Arg&: Input, Arg&: Output);
5202 }
5203 if (Args.hasArg(Ids: options::OPT_emit_llvm) ||
5204 TargetDeviceOffloadKind == Action::OFK_SYCL ||
5205 (((Input->getOffloadingToolChain() &&
5206 Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
5207 TargetDeviceOffloadKind == Action::OFK_HIP) &&
5208 ((Args.hasFlag(Pos: options::OPT_fgpu_rdc, Neg: options::OPT_fno_gpu_rdc,
5209 Default: false) ||
5210 (Args.hasFlag(Pos: options::OPT_offload_new_driver,
5211 Neg: options::OPT_no_offload_new_driver, Default: false) &&
5212 !offloadDeviceOnly())) ||
5213 TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
5214 types::ID Output =
5215 Args.hasArg(Ids: options::OPT_S) &&
5216 (TargetDeviceOffloadKind == Action::OFK_None ||
5217 offloadDeviceOnly() ||
5218 (TargetDeviceOffloadKind == Action::OFK_HIP &&
5219 !Args.hasFlag(Pos: options::OPT_offload_new_driver,
5220 Neg: options::OPT_no_offload_new_driver,
5221 Default: C.isOffloadingHostKind(Kind: Action::OFK_Cuda))))
5222 ? types::TY_LLVM_IR
5223 : types::TY_LLVM_BC;
5224 return C.MakeAction<BackendJobAction>(Arg&: Input, Arg&: Output);
5225 }
5226 return C.MakeAction<BackendJobAction>(Arg&: Input, Arg: types::TY_PP_Asm);
5227 }
5228 case phases::Assemble:
5229 return C.MakeAction<AssembleJobAction>(Arg: std::move(Input), Arg: types::TY_Object);
5230 }
5231
5232 llvm_unreachable("invalid phase in ConstructPhaseAction");
5233}
5234
5235void Driver::BuildJobs(Compilation &C) const {
5236 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5237
5238 Arg *FinalOutput = C.getArgs().getLastArg(Ids: options::OPT_o);
5239
5240 // It is an error to provide a -o option if we are making multiple output
5241 // files. There are exceptions:
5242 //
5243 // IfsMergeJob: when generating interface stubs enabled we want to be able to
5244 // generate the stub file at the same time that we generate the real
5245 // library/a.out. So when a .o, .so, etc are the output, with clang interface
5246 // stubs there will also be a .ifs and .ifso at the same location.
5247 //
5248 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
5249 // and -c is passed, we still want to be able to generate a .ifs file while
5250 // we are also generating .o files. So we allow more than one output file in
5251 // this case as well.
5252 //
5253 // OffloadClass of type TY_Nothing: device-only output will place many outputs
5254 // into a single offloading action. We should count all inputs to the action
5255 // as outputs. Also ignore device-only outputs if we're compiling with
5256 // -fsyntax-only.
5257 if (FinalOutput) {
5258 unsigned NumOutputs = 0;
5259 unsigned NumIfsOutputs = 0;
5260 for (const Action *A : C.getActions()) {
5261 // The actions below do not increase the number of outputs, when operating
5262 // on DX containers.
5263 if (A->getType() == types::TY_DX_CONTAINER &&
5264 (A->getKind() == clang::driver::Action::BinaryAnalyzeJobClass ||
5265 A->getKind() == clang::driver::Action::BinaryTranslatorJobClass))
5266 continue;
5267
5268 if (A->getType() != types::TY_Nothing &&
5269 !(A->getKind() == Action::IfsMergeJobClass ||
5270 (A->getType() == clang::driver::types::TY_IFS_CPP &&
5271 A->getKind() == clang::driver::Action::CompileJobClass &&
5272 0 == NumIfsOutputs++) ||
5273 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
5274 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
5275 ++NumOutputs;
5276 else if (A->getKind() == Action::OffloadClass &&
5277 A->getType() == types::TY_Nothing &&
5278 !C.getArgs().hasArg(Ids: options::OPT_fsyntax_only))
5279 NumOutputs += A->size();
5280 }
5281
5282 if (NumOutputs > 1) {
5283 Diag(DiagID: clang::diag::err_drv_output_argument_with_multiple_files);
5284 FinalOutput = nullptr;
5285 }
5286 }
5287
5288 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
5289
5290 // Collect the list of architectures.
5291 llvm::StringSet<> ArchNames;
5292 if (RawTriple.isOSBinFormatMachO())
5293 for (const Arg *A : C.getArgs())
5294 if (A->getOption().matches(ID: options::OPT_arch))
5295 ArchNames.insert(key: A->getValue());
5296
5297 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
5298 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
5299 for (Action *A : C.getActions()) {
5300 // If we are linking an image for multiple archs then the linker wants
5301 // -arch_multiple and -final_output <final image name>. Unfortunately, this
5302 // doesn't fit in cleanly because we have to pass this information down.
5303 //
5304 // FIXME: This is a hack; find a cleaner way to integrate this into the
5305 // process.
5306 const char *LinkingOutput = nullptr;
5307 if (isa<LipoJobAction>(Val: A)) {
5308 if (FinalOutput)
5309 LinkingOutput = FinalOutput->getValue();
5310 else
5311 LinkingOutput = getDefaultImageName();
5312 }
5313
5314 BuildJobsForAction(C, A, TC: &C.getDefaultToolChain(),
5315 /*BoundArch*/ StringRef(),
5316 /*AtTopLevel*/ true,
5317 /*MultipleArchs*/ ArchNames.size() > 1,
5318 /*LinkingOutput*/ LinkingOutput, CachedResults,
5319 /*TargetDeviceOffloadKind*/ Action::OFK_None);
5320 }
5321
5322 // If we have more than one job, then disable integrated-cc1 for now. Do this
5323 // also when we need to report process execution statistics.
5324 if (C.getJobs().size() > 1 || CCPrintProcessStats)
5325 for (auto &J : C.getJobs())
5326 J.InProcess = false;
5327
5328 if (CCPrintProcessStats) {
5329 C.setPostCallback([=](const Command &Cmd, int Res) {
5330 std::optional<llvm::sys::ProcessStatistics> ProcStat =
5331 Cmd.getProcessStatistics();
5332 if (!ProcStat)
5333 return;
5334
5335 const char *LinkingOutput = nullptr;
5336 if (FinalOutput)
5337 LinkingOutput = FinalOutput->getValue();
5338 else if (!Cmd.getOutputFilenames().empty())
5339 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
5340 else
5341 LinkingOutput = getDefaultImageName();
5342
5343 if (CCPrintStatReportFilename.empty()) {
5344 using namespace llvm;
5345 // Human readable output.
5346 outs() << sys::path::filename(path: Cmd.getExecutable()) << ": "
5347 << "output=" << LinkingOutput;
5348 outs() << ", total="
5349 << format(Fmt: "%.3f", Vals: ProcStat->TotalTime.count() / 1000.) << " ms"
5350 << ", user="
5351 << format(Fmt: "%.3f", Vals: ProcStat->UserTime.count() / 1000.) << " ms"
5352 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
5353 } else {
5354 // CSV format.
5355 std::string Buffer;
5356 llvm::raw_string_ostream Out(Buffer);
5357 llvm::sys::printArg(OS&: Out, Arg: llvm::sys::path::filename(path: Cmd.getExecutable()),
5358 /*Quote*/ true);
5359 Out << ',';
5360 llvm::sys::printArg(OS&: Out, Arg: LinkingOutput, Quote: true);
5361 Out << ',' << ProcStat->TotalTime.count() << ','
5362 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
5363 << '\n';
5364 Out.flush();
5365 std::error_code EC;
5366 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
5367 llvm::sys::fs::OF_Append |
5368 llvm::sys::fs::OF_Text);
5369 if (EC)
5370 return;
5371 auto L = OS.lock();
5372 if (!L) {
5373 llvm::errs() << "ERROR: Cannot lock file "
5374 << CCPrintStatReportFilename << ": "
5375 << toString(E: L.takeError()) << "\n";
5376 return;
5377 }
5378 OS << Buffer;
5379 OS.flush();
5380 }
5381 });
5382 }
5383
5384 // If the user passed -Qunused-arguments or there were errors, don't
5385 // warn about any unused arguments.
5386 bool ReportUnusedArguments =
5387 !Diags.hasErrorOccurred() &&
5388 !C.getArgs().hasArg(Ids: options::OPT_Qunused_arguments);
5389
5390 // Claim -fdriver-only here.
5391 (void)C.getArgs().hasArg(Ids: options::OPT_fdriver_only);
5392 // Claim -### here.
5393 (void)C.getArgs().hasArg(Ids: options::OPT__HASH_HASH_HASH);
5394
5395 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
5396 (void)C.getArgs().hasArg(Ids: options::OPT_driver_mode);
5397 (void)C.getArgs().hasArg(Ids: options::OPT_rsp_quoting);
5398
5399 bool HasAssembleJob = llvm::any_of(Range&: C.getJobs(), P: [](auto &J) {
5400 // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
5401 // longer ShortName "clang integrated assembler" while other assemblers just
5402 // use "assembler".
5403 return strstr(J.getCreator().getShortName(), "assembler");
5404 });
5405 for (Arg *A : C.getArgs()) {
5406 // FIXME: It would be nice to be able to send the argument to the
5407 // DiagnosticsEngine, so that extra values, position, and so on could be
5408 // printed.
5409 if (!A->isClaimed()) {
5410 if (A->getOption().hasFlag(Val: options::NoArgumentUnused))
5411 continue;
5412
5413 // Suppress the warning automatically if this is just a flag, and it is an
5414 // instance of an argument we already claimed.
5415 const Option &Opt = A->getOption();
5416 if (Opt.getKind() == Option::FlagClass) {
5417 bool DuplicateClaimed = false;
5418
5419 for (const Arg *AA : C.getArgs().filtered(Ids: &Opt)) {
5420 if (AA->isClaimed()) {
5421 DuplicateClaimed = true;
5422 break;
5423 }
5424 }
5425
5426 if (DuplicateClaimed)
5427 continue;
5428 }
5429
5430 // In clang-cl, don't mention unknown arguments here since they have
5431 // already been warned about.
5432 if (!IsCLMode() || !A->getOption().matches(ID: options::OPT_UNKNOWN)) {
5433 if (A->getOption().hasFlag(Val: options::TargetSpecific) &&
5434 !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
5435 // When for example -### or -v is used
5436 // without a file, target specific options are not
5437 // consumed/validated.
5438 // Instead emitting an error emit a warning instead.
5439 !C.getActions().empty()) {
5440 Diag(DiagID: diag::err_drv_unsupported_opt_for_target)
5441 << A->getSpelling() << getTargetTriple();
5442 } else if (ReportUnusedArguments) {
5443 Diag(DiagID: clang::diag::warn_drv_unused_argument)
5444 << A->getAsString(Args: C.getArgs());
5445 }
5446 }
5447 }
5448 }
5449}
5450
5451namespace {
5452/// Utility class to control the collapse of dependent actions and select the
5453/// tools accordingly.
5454class ToolSelector final {
5455 /// The tool chain this selector refers to.
5456 const ToolChain &TC;
5457
5458 /// The compilation this selector refers to.
5459 const Compilation &C;
5460
5461 /// The base action this selector refers to.
5462 const JobAction *BaseAction;
5463
5464 /// Set to true if the current toolchain refers to host actions.
5465 bool IsHostSelector;
5466
5467 /// Set to true if save-temps and embed-bitcode functionalities are active.
5468 bool SaveTemps;
5469 bool EmbedBitcode;
5470
5471 /// Get previous dependent action or null if that does not exist. If
5472 /// \a CanBeCollapsed is false, that action must be legal to collapse or
5473 /// null will be returned.
5474 const JobAction *getPrevDependentAction(const ActionList &Inputs,
5475 ActionList &SavedOffloadAction,
5476 bool CanBeCollapsed = true) {
5477 // An option can be collapsed only if it has a single input.
5478 if (Inputs.size() != 1)
5479 return nullptr;
5480
5481 Action *CurAction = *Inputs.begin();
5482 if (CanBeCollapsed &&
5483 !CurAction->isCollapsingWithNextDependentActionLegal())
5484 return nullptr;
5485
5486 // If the input action is an offload action. Look through it and save any
5487 // offload action that can be dropped in the event of a collapse.
5488 if (auto *OA = dyn_cast<OffloadAction>(Val: CurAction)) {
5489 // If the dependent action is a device action, we will attempt to collapse
5490 // only with other device actions. Otherwise, we would do the same but
5491 // with host actions only.
5492 if (!IsHostSelector) {
5493 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5494 CurAction =
5495 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5496 if (CanBeCollapsed &&
5497 !CurAction->isCollapsingWithNextDependentActionLegal())
5498 return nullptr;
5499 SavedOffloadAction.push_back(Elt: OA);
5500 return dyn_cast<JobAction>(Val: CurAction);
5501 }
5502 } else if (OA->hasHostDependence()) {
5503 CurAction = OA->getHostDependence();
5504 if (CanBeCollapsed &&
5505 !CurAction->isCollapsingWithNextDependentActionLegal())
5506 return nullptr;
5507 SavedOffloadAction.push_back(Elt: OA);
5508 return dyn_cast<JobAction>(Val: CurAction);
5509 }
5510 return nullptr;
5511 }
5512
5513 return dyn_cast<JobAction>(Val: CurAction);
5514 }
5515
5516 /// Return true if an assemble action can be collapsed.
5517 bool canCollapseAssembleAction() const {
5518 return TC.useIntegratedAs() && !SaveTemps &&
5519 !C.getArgs().hasArg(Ids: options::OPT_via_file_asm) &&
5520 !C.getArgs().hasArg(Ids: options::OPT__SLASH_FA) &&
5521 !C.getArgs().hasArg(Ids: options::OPT__SLASH_Fa) &&
5522 !C.getArgs().hasArg(Ids: options::OPT_dxc_Fc);
5523 }
5524
5525 /// Return true if a preprocessor action can be collapsed.
5526 bool canCollapsePreprocessorAction() const {
5527 return !C.getArgs().hasArg(Ids: options::OPT_no_integrated_cpp) &&
5528 !C.getArgs().hasArg(Ids: options::OPT_traditional_cpp) && !SaveTemps &&
5529 !C.getArgs().hasArg(Ids: options::OPT_rewrite_objc);
5530 }
5531
5532 /// Struct that relates an action with the offload actions that would be
5533 /// collapsed with it.
5534 struct JobActionInfo final {
5535 /// The action this info refers to.
5536 const JobAction *JA = nullptr;
5537 /// The offload actions we need to take care off if this action is
5538 /// collapsed.
5539 ActionList SavedOffloadAction;
5540 };
5541
5542 /// Append collapsed offload actions from the give nnumber of elements in the
5543 /// action info array.
5544 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5545 ArrayRef<JobActionInfo> &ActionInfo,
5546 unsigned ElementNum) {
5547 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5548 for (unsigned I = 0; I < ElementNum; ++I)
5549 CollapsedOffloadAction.append(in_start: ActionInfo[I].SavedOffloadAction.begin(),
5550 in_end: ActionInfo[I].SavedOffloadAction.end());
5551 }
5552
5553 /// Functions that attempt to perform the combining. They detect if that is
5554 /// legal, and if so they update the inputs \a Inputs and the offload action
5555 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5556 /// the combined action is returned. If the combining is not legal or if the
5557 /// tool does not exist, null is returned.
5558 /// Currently three kinds of collapsing are supported:
5559 /// - Assemble + Backend + Compile;
5560 /// - Assemble + Backend ;
5561 /// - Backend + Compile.
5562 const Tool *
5563 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5564 ActionList &Inputs,
5565 ActionList &CollapsedOffloadAction) {
5566 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5567 return nullptr;
5568 auto *AJ = dyn_cast<AssembleJobAction>(Val: ActionInfo[0].JA);
5569 auto *BJ = dyn_cast<BackendJobAction>(Val: ActionInfo[1].JA);
5570 auto *CJ = dyn_cast<CompileJobAction>(Val: ActionInfo[2].JA);
5571 if (!AJ || !BJ || !CJ)
5572 return nullptr;
5573
5574 // Get compiler tool.
5575 const Tool *T = TC.SelectTool(JA: *CJ);
5576 if (!T)
5577 return nullptr;
5578
5579 // Can't collapse if we don't have codegen support unless we are
5580 // emitting LLVM IR.
5581 bool OutputIsLLVM = types::isLLVMIR(Id: ActionInfo[0].JA->getType());
5582 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5583 return nullptr;
5584
5585 // When using -fembed-bitcode, it is required to have the same tool (clang)
5586 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5587 if (EmbedBitcode) {
5588 const Tool *BT = TC.SelectTool(JA: *BJ);
5589 if (BT == T)
5590 return nullptr;
5591 }
5592
5593 if (!T->hasIntegratedAssembler())
5594 return nullptr;
5595
5596 Inputs = CJ->getInputs();
5597 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5598 /*NumElements=*/ElementNum: 3);
5599 return T;
5600 }
5601 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5602 ActionList &Inputs,
5603 ActionList &CollapsedOffloadAction) {
5604 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5605 return nullptr;
5606 auto *AJ = dyn_cast<AssembleJobAction>(Val: ActionInfo[0].JA);
5607 auto *BJ = dyn_cast<BackendJobAction>(Val: ActionInfo[1].JA);
5608 if (!AJ || !BJ)
5609 return nullptr;
5610
5611 // Get backend tool.
5612 const Tool *T = TC.SelectTool(JA: *BJ);
5613 if (!T)
5614 return nullptr;
5615
5616 if (!T->hasIntegratedAssembler())
5617 return nullptr;
5618
5619 Inputs = BJ->getInputs();
5620 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5621 /*NumElements=*/ElementNum: 2);
5622 return T;
5623 }
5624 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5625 ActionList &Inputs,
5626 ActionList &CollapsedOffloadAction) {
5627 if (ActionInfo.size() < 2)
5628 return nullptr;
5629 auto *BJ = dyn_cast<BackendJobAction>(Val: ActionInfo[0].JA);
5630 auto *CJ = dyn_cast<CompileJobAction>(Val: ActionInfo[1].JA);
5631 if (!BJ || !CJ)
5632 return nullptr;
5633
5634 auto HasBitcodeInput = [](const JobActionInfo &AI) {
5635 for (auto &Input : AI.JA->getInputs())
5636 if (!types::isLLVMIR(Id: Input->getType()))
5637 return false;
5638 return true;
5639 };
5640
5641 // Check if the initial input (to the compile job or its predessor if one
5642 // exists) is LLVM bitcode. In that case, no preprocessor step is required
5643 // and we can still collapse the compile and backend jobs when we have
5644 // -save-temps. I.e. there is no need for a separate compile job just to
5645 // emit unoptimized bitcode.
5646 bool InputIsBitcode = all_of(Range&: ActionInfo, P: HasBitcodeInput);
5647 if (SaveTemps && !InputIsBitcode)
5648 return nullptr;
5649
5650 // Get compiler tool.
5651 const Tool *T = TC.SelectTool(JA: *CJ);
5652 if (!T)
5653 return nullptr;
5654
5655 // Can't collapse if we don't have codegen support unless we are
5656 // emitting LLVM IR.
5657 bool OutputIsLLVM = types::isLLVMIR(Id: ActionInfo[0].JA->getType());
5658 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5659 return nullptr;
5660
5661 if (T->canEmitIR() && EmbedBitcode)
5662 return nullptr;
5663
5664 Inputs = CJ->getInputs();
5665 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5666 /*NumElements=*/ElementNum: 2);
5667 return T;
5668 }
5669
5670 /// Updates the inputs if the obtained tool supports combining with
5671 /// preprocessor action, and the current input is indeed a preprocessor
5672 /// action. If combining results in the collapse of offloading actions, those
5673 /// are appended to \a CollapsedOffloadAction.
5674 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5675 ActionList &CollapsedOffloadAction) {
5676 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5677 return;
5678
5679 // Attempt to get a preprocessor action dependence.
5680 ActionList PreprocessJobOffloadActions;
5681 ActionList NewInputs;
5682 for (Action *A : Inputs) {
5683 auto *PJ = getPrevDependentAction(Inputs: {A}, SavedOffloadAction&: PreprocessJobOffloadActions);
5684 if (!PJ || !isa<PreprocessJobAction>(Val: PJ)) {
5685 NewInputs.push_back(Elt: A);
5686 continue;
5687 }
5688
5689 // This is legal to combine. Append any offload action we found and add the
5690 // current input to preprocessor inputs.
5691 CollapsedOffloadAction.append(in_start: PreprocessJobOffloadActions.begin(),
5692 in_end: PreprocessJobOffloadActions.end());
5693 NewInputs.append(in_start: PJ->input_begin(), in_end: PJ->input_end());
5694 }
5695 Inputs = NewInputs;
5696 }
5697
5698public:
5699 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5700 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5701 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5702 EmbedBitcode(EmbedBitcode) {
5703 assert(BaseAction && "Invalid base action.");
5704 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5705 }
5706
5707 /// Check if a chain of actions can be combined and return the tool that can
5708 /// handle the combination of actions. The pointer to the current inputs \a
5709 /// Inputs and the list of offload actions \a CollapsedOffloadActions
5710 /// connected to collapsed actions are updated accordingly. The latter enables
5711 /// the caller of the selector to process them afterwards instead of just
5712 /// dropping them. If no suitable tool is found, null will be returned.
5713 const Tool *getTool(ActionList &Inputs,
5714 ActionList &CollapsedOffloadAction) {
5715 //
5716 // Get the largest chain of actions that we could combine.
5717 //
5718
5719 SmallVector<JobActionInfo, 5> ActionChain(1);
5720 ActionChain.back().JA = BaseAction;
5721 while (ActionChain.back().JA) {
5722 const Action *CurAction = ActionChain.back().JA;
5723
5724 // Grow the chain by one element.
5725 ActionChain.resize(N: ActionChain.size() + 1);
5726 JobActionInfo &AI = ActionChain.back();
5727
5728 // Attempt to fill it with the
5729 AI.JA =
5730 getPrevDependentAction(Inputs: CurAction->getInputs(), SavedOffloadAction&: AI.SavedOffloadAction);
5731 }
5732
5733 // Pop the last action info as it could not be filled.
5734 ActionChain.pop_back();
5735
5736 //
5737 // Attempt to combine actions. If all combining attempts failed, just return
5738 // the tool of the provided action. At the end we attempt to combine the
5739 // action with any preprocessor action it may depend on.
5740 //
5741
5742 const Tool *T = combineAssembleBackendCompile(ActionInfo: ActionChain, Inputs,
5743 CollapsedOffloadAction);
5744 if (!T)
5745 T = combineAssembleBackend(ActionInfo: ActionChain, Inputs, CollapsedOffloadAction);
5746 if (!T)
5747 T = combineBackendCompile(ActionInfo: ActionChain, Inputs, CollapsedOffloadAction);
5748 if (!T) {
5749 Inputs = BaseAction->getInputs();
5750 T = TC.SelectTool(JA: *BaseAction);
5751 }
5752
5753 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5754 return T;
5755 }
5756};
5757}
5758
5759/// Return a string that uniquely identifies the result of a job. The bound arch
5760/// is not necessarily represented in the toolchain's triple -- for example,
5761/// armv7 and armv7s both map to the same triple -- so we need both in our map.
5762/// Also, we need to add the offloading device kind, as the same tool chain can
5763/// be used for host and device for some programming models, e.g. OpenMP.
5764static std::string GetTriplePlusArchString(const ToolChain *TC,
5765 StringRef BoundArch,
5766 Action::OffloadKind OffloadKind) {
5767 std::string TriplePlusArch = TC->getTriple().normalize();
5768 if (!BoundArch.empty()) {
5769 TriplePlusArch += "-";
5770 TriplePlusArch += BoundArch;
5771 }
5772 TriplePlusArch += "-";
5773 TriplePlusArch += Action::GetOffloadKindName(Kind: OffloadKind);
5774 return TriplePlusArch;
5775}
5776
5777InputInfoList Driver::BuildJobsForAction(
5778 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5779 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5780 std::map<std::pair<const Action *, std::string>, InputInfoList>
5781 &CachedResults,
5782 Action::OffloadKind TargetDeviceOffloadKind) const {
5783 std::pair<const Action *, std::string> ActionTC = {
5784 A, GetTriplePlusArchString(TC, BoundArch, OffloadKind: TargetDeviceOffloadKind)};
5785 auto CachedResult = CachedResults.find(x: ActionTC);
5786 if (CachedResult != CachedResults.end()) {
5787 return CachedResult->second;
5788 }
5789 InputInfoList Result = BuildJobsForActionNoCache(
5790 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5791 CachedResults, TargetDeviceOffloadKind);
5792 CachedResults[ActionTC] = Result;
5793 return Result;
5794}
5795
5796static void handleTimeTrace(Compilation &C, const ArgList &Args,
5797 const JobAction *JA, const char *BaseInput,
5798 const InputInfo &Result) {
5799 Arg *A =
5800 Args.getLastArg(Ids: options::OPT_ftime_trace, Ids: options::OPT_ftime_trace_EQ);
5801 if (!A)
5802 return;
5803 SmallString<128> Path;
5804 if (A->getOption().matches(ID: options::OPT_ftime_trace_EQ)) {
5805 Path = A->getValue();
5806 if (llvm::sys::fs::is_directory(Path)) {
5807 SmallString<128> Tmp(Result.getFilename());
5808 llvm::sys::path::replace_extension(path&: Tmp, extension: "json");
5809 llvm::sys::path::append(path&: Path, a: llvm::sys::path::filename(path: Tmp));
5810 }
5811 } else {
5812 if (Arg *DumpDir = Args.getLastArgNoClaim(Ids: options::OPT_dumpdir)) {
5813 // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5814 // end with a path separator.
5815 Path = DumpDir->getValue();
5816 Path += llvm::sys::path::filename(path: BaseInput);
5817 } else {
5818 Path = Result.getFilename();
5819 }
5820 llvm::sys::path::replace_extension(path&: Path, extension: "json");
5821 }
5822 const char *ResultFile = C.getArgs().MakeArgString(Str: Path);
5823 C.addTimeTraceFile(Name: ResultFile, JA);
5824 C.addResultFile(Name: ResultFile, JA);
5825}
5826
5827InputInfoList Driver::BuildJobsForActionNoCache(
5828 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5829 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5830 std::map<std::pair<const Action *, std::string>, InputInfoList>
5831 &CachedResults,
5832 Action::OffloadKind TargetDeviceOffloadKind) const {
5833 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5834
5835 InputInfoList OffloadDependencesInputInfo;
5836 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5837 if (const OffloadAction *OA = dyn_cast<OffloadAction>(Val: A)) {
5838 // The 'Darwin' toolchain is initialized only when its arguments are
5839 // computed. Get the default arguments for OFK_None to ensure that
5840 // initialization is performed before processing the offload action.
5841 // FIXME: Remove when darwin's toolchain is initialized during construction.
5842 C.getArgsForToolChain(TC, BoundArch, DeviceOffloadKind: Action::OFK_None);
5843
5844 // The offload action is expected to be used in four different situations.
5845 //
5846 // a) Set a toolchain/architecture/kind for a host action:
5847 // Host Action 1 -> OffloadAction -> Host Action 2
5848 //
5849 // b) Set a toolchain/architecture/kind for a device action;
5850 // Device Action 1 -> OffloadAction -> Device Action 2
5851 //
5852 // c) Specify a device dependence to a host action;
5853 // Device Action 1 _
5854 // \
5855 // Host Action 1 ---> OffloadAction -> Host Action 2
5856 //
5857 // d) Specify a host dependence to a device action.
5858 // Host Action 1 _
5859 // \
5860 // Device Action 1 ---> OffloadAction -> Device Action 2
5861 //
5862 // For a) and b), we just return the job generated for the dependences. For
5863 // c) and d) we override the current action with the host/device dependence
5864 // if the current toolchain is host/device and set the offload dependences
5865 // info with the jobs obtained from the device/host dependence(s).
5866
5867 // If there is a single device option or has no host action, just generate
5868 // the job for it.
5869 if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5870 InputInfoList DevA;
5871 OA->doOnEachDeviceDependence(Work: [&](Action *DepA, const ToolChain *DepTC,
5872 const char *DepBoundArch) {
5873 DevA.append(RHS: BuildJobsForAction(C, A: DepA, TC: DepTC, BoundArch: DepBoundArch, AtTopLevel,
5874 /*MultipleArchs*/ !!DepBoundArch,
5875 LinkingOutput, CachedResults,
5876 TargetDeviceOffloadKind: DepA->getOffloadingDeviceKind()));
5877 });
5878 return DevA;
5879 }
5880
5881 // If 'Action 2' is host, we generate jobs for the device dependences and
5882 // override the current action with the host dependence. Otherwise, we
5883 // generate the host dependences and override the action with the device
5884 // dependence. The dependences can't therefore be a top-level action.
5885 OA->doOnEachDependence(
5886 /*IsHostDependence=*/BuildingForOffloadDevice,
5887 Work: [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5888 OffloadDependencesInputInfo.append(RHS: BuildJobsForAction(
5889 C, A: DepA, TC: DepTC, BoundArch: DepBoundArch, /*AtTopLevel=*/false,
5890 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5891 TargetDeviceOffloadKind: DepA->getOffloadingDeviceKind()));
5892 });
5893
5894 A = BuildingForOffloadDevice
5895 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5896 : OA->getHostDependence();
5897
5898 // We may have already built this action as a part of the offloading
5899 // toolchain, return the cached input if so.
5900 std::pair<const Action *, std::string> ActionTC = {
5901 OA->getHostDependence(),
5902 GetTriplePlusArchString(TC, BoundArch, OffloadKind: TargetDeviceOffloadKind)};
5903 auto It = CachedResults.find(x: ActionTC);
5904 if (It != CachedResults.end()) {
5905 InputInfoList Inputs = It->second;
5906 Inputs.append(RHS: OffloadDependencesInputInfo);
5907 return Inputs;
5908 }
5909 }
5910
5911 if (const InputAction *IA = dyn_cast<InputAction>(Val: A)) {
5912 // FIXME: It would be nice to not claim this here; maybe the old scheme of
5913 // just using Args was better?
5914 const Arg &Input = IA->getInputArg();
5915 Input.claim();
5916 if (Input.getOption().matches(ID: options::OPT_INPUT)) {
5917 const char *Name = Input.getValue();
5918 return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5919 }
5920 return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5921 }
5922
5923 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(Val: A)) {
5924 const ToolChain *TC;
5925 StringRef ArchName = BAA->getArchName();
5926
5927 if (!ArchName.empty())
5928 TC = &getToolChain(Args: C.getArgs(),
5929 Target: computeTargetTriple(D: *this, TargetTriple,
5930 Args: C.getArgs(), DarwinArchName: ArchName));
5931 else
5932 TC = &C.getDefaultToolChain();
5933
5934 return BuildJobsForAction(C, A: *BAA->input_begin(), TC, BoundArch: ArchName, AtTopLevel,
5935 MultipleArchs, LinkingOutput, CachedResults,
5936 TargetDeviceOffloadKind);
5937 }
5938
5939
5940 ActionList Inputs = A->getInputs();
5941
5942 const JobAction *JA = cast<JobAction>(Val: A);
5943 ActionList CollapsedOffloadActions;
5944
5945 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5946 embedBitcodeInObject() && !isUsingLTO());
5947 const Tool *T = TS.getTool(Inputs, CollapsedOffloadAction&: CollapsedOffloadActions);
5948
5949 if (!T)
5950 return {InputInfo()};
5951
5952 // If we've collapsed action list that contained OffloadAction we
5953 // need to build jobs for host/device-side inputs it may have held.
5954 for (const auto *OA : CollapsedOffloadActions)
5955 cast<OffloadAction>(Val: OA)->doOnEachDependence(
5956 /*IsHostDependence=*/BuildingForOffloadDevice,
5957 Work: [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5958 OffloadDependencesInputInfo.append(RHS: BuildJobsForAction(
5959 C, A: DepA, TC: DepTC, BoundArch: DepBoundArch, /* AtTopLevel */ false,
5960 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5961 TargetDeviceOffloadKind: DepA->getOffloadingDeviceKind()));
5962 });
5963
5964 // Only use pipes when there is exactly one input.
5965 InputInfoList InputInfos;
5966 for (const Action *Input : Inputs) {
5967 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5968 // shouldn't get temporary output names.
5969 // FIXME: Clean this up.
5970 bool SubJobAtTopLevel =
5971 AtTopLevel && (isa<DsymutilJobAction>(Val: A) || isa<VerifyJobAction>(Val: A));
5972 InputInfos.append(RHS: BuildJobsForAction(
5973 C, A: Input, TC, BoundArch, AtTopLevel: SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5974 CachedResults, TargetDeviceOffloadKind: A->getOffloadingDeviceKind()));
5975 }
5976
5977 // Always use the first file input as the base input.
5978 const char *BaseInput = InputInfos[0].getBaseInput();
5979 for (auto &Info : InputInfos) {
5980 if (Info.isFilename()) {
5981 BaseInput = Info.getBaseInput();
5982 break;
5983 }
5984 }
5985
5986 // ... except dsymutil actions, which use their actual input as the base
5987 // input.
5988 if (JA->getType() == types::TY_dSYM)
5989 BaseInput = InputInfos[0].getFilename();
5990
5991 // Append outputs of offload device jobs to the input list
5992 if (!OffloadDependencesInputInfo.empty())
5993 InputInfos.append(in_start: OffloadDependencesInputInfo.begin(),
5994 in_end: OffloadDependencesInputInfo.end());
5995
5996 // Set the effective triple of the toolchain for the duration of this job.
5997 llvm::Triple EffectiveTriple;
5998 const ToolChain &ToolTC = T->getToolChain();
5999 const ArgList &Args =
6000 C.getArgsForToolChain(TC, BoundArch, DeviceOffloadKind: A->getOffloadingDeviceKind());
6001 if (InputInfos.size() != 1) {
6002 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
6003 } else {
6004 // Pass along the input type if it can be unambiguously determined.
6005 EffectiveTriple = llvm::Triple(
6006 ToolTC.ComputeEffectiveClangTriple(Args, InputType: InputInfos[0].getType()));
6007 }
6008 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
6009
6010 // Determine the place to write output to, if any.
6011 InputInfo Result;
6012 InputInfoList UnbundlingResults;
6013 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(Val: JA)) {
6014 // If we have an unbundling job, we need to create results for all the
6015 // outputs. We also update the results cache so that other actions using
6016 // this unbundling action can get the right results.
6017 for (auto &UI : UA->getDependentActionsInfo()) {
6018 assert(UI.DependentOffloadKind != Action::OFK_None &&
6019 "Unbundling with no offloading??");
6020
6021 // Unbundling actions are never at the top level. When we generate the
6022 // offloading prefix, we also do that for the host file because the
6023 // unbundling action does not change the type of the output which can
6024 // cause a overwrite.
6025 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
6026 Kind: UI.DependentOffloadKind,
6027 NormalizedTriple: UI.DependentToolChain->getTriple().normalize(),
6028 /*CreatePrefixForHost=*/true);
6029 auto CurI = InputInfo(
6030 UA,
6031 GetNamedOutputPath(C, JA: *UA, BaseInput, BoundArch: UI.DependentBoundArch,
6032 /*AtTopLevel=*/false,
6033 MultipleArchs: MultipleArchs ||
6034 UI.DependentOffloadKind == Action::OFK_HIP,
6035 NormalizedTriple: OffloadingPrefix),
6036 BaseInput);
6037 // Save the unbundling result.
6038 UnbundlingResults.push_back(Elt: CurI);
6039
6040 // Get the unique string identifier for this dependence and cache the
6041 // result.
6042 StringRef Arch;
6043 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
6044 if (UI.DependentOffloadKind == Action::OFK_Host)
6045 Arch = StringRef();
6046 else
6047 Arch = UI.DependentBoundArch;
6048 } else
6049 Arch = BoundArch;
6050
6051 CachedResults[{A, GetTriplePlusArchString(TC: UI.DependentToolChain, BoundArch: Arch,
6052 OffloadKind: UI.DependentOffloadKind)}] = {
6053 CurI};
6054 }
6055
6056 // Now that we have all the results generated, select the one that should be
6057 // returned for the current depending action.
6058 std::pair<const Action *, std::string> ActionTC = {
6059 A, GetTriplePlusArchString(TC, BoundArch, OffloadKind: TargetDeviceOffloadKind)};
6060 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
6061 "Result does not exist??");
6062 Result = CachedResults[ActionTC].front();
6063 } else if (JA->getType() == types::TY_Nothing)
6064 Result = {InputInfo(A, BaseInput)};
6065 else {
6066 // We only have to generate a prefix for the host if this is not a top-level
6067 // action.
6068 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
6069 Kind: A->getOffloadingDeviceKind(), NormalizedTriple: EffectiveTriple.normalize(),
6070 /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(Val: A) ||
6071 !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
6072 AtTopLevel));
6073 Result = InputInfo(A, GetNamedOutputPath(C, JA: *JA, BaseInput, BoundArch,
6074 AtTopLevel, MultipleArchs,
6075 NormalizedTriple: OffloadingPrefix),
6076 BaseInput);
6077 if (T->canEmitIR() && OffloadingPrefix.empty())
6078 handleTimeTrace(C, Args, JA, BaseInput, Result);
6079 }
6080
6081 if (CCCPrintBindings && !CCGenDiagnostics) {
6082 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
6083 << " - \"" << T->getName() << "\", inputs: [";
6084 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
6085 llvm::errs() << InputInfos[i].getAsString();
6086 if (i + 1 != e)
6087 llvm::errs() << ", ";
6088 }
6089 if (UnbundlingResults.empty())
6090 llvm::errs() << "], output: " << Result.getAsString() << "\n";
6091 else {
6092 llvm::errs() << "], outputs: [";
6093 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
6094 llvm::errs() << UnbundlingResults[i].getAsString();
6095 if (i + 1 != e)
6096 llvm::errs() << ", ";
6097 }
6098 llvm::errs() << "] \n";
6099 }
6100 } else {
6101 if (UnbundlingResults.empty())
6102 T->ConstructJob(C, JA: *JA, Output: Result, Inputs: InputInfos, TCArgs: Args, LinkingOutput);
6103 else
6104 T->ConstructJobMultipleOutputs(C, JA: *JA, Outputs: UnbundlingResults, Inputs: InputInfos,
6105 TCArgs: Args, LinkingOutput);
6106 }
6107 return {Result};
6108}
6109
6110const char *Driver::getDefaultImageName() const {
6111 llvm::Triple Target(llvm::Triple::normalize(Str: TargetTriple));
6112 return Target.isOSWindows() ? "a.exe" : "a.out";
6113}
6114
6115/// Create output filename based on ArgValue, which could either be a
6116/// full filename, filename without extension, or a directory. If ArgValue
6117/// does not provide a filename, then use BaseName, and use the extension
6118/// suitable for FileType.
6119static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
6120 StringRef BaseName,
6121 types::ID FileType) {
6122 SmallString<128> Filename = ArgValue;
6123
6124 if (ArgValue.empty()) {
6125 // If the argument is empty, output to BaseName in the current dir.
6126 Filename = BaseName;
6127 } else if (llvm::sys::path::is_separator(value: Filename.back())) {
6128 // If the argument is a directory, output to BaseName in that dir.
6129 llvm::sys::path::append(path&: Filename, a: BaseName);
6130 }
6131
6132 if (!llvm::sys::path::has_extension(path: ArgValue)) {
6133 // If the argument didn't provide an extension, then set it.
6134 const char *Extension = types::getTypeTempSuffix(Id: FileType, CLStyle: true);
6135
6136 if (FileType == types::TY_Image &&
6137 Args.hasArg(Ids: options::OPT__SLASH_LD, Ids: options::OPT__SLASH_LDd)) {
6138 // The output file is a dll.
6139 Extension = "dll";
6140 }
6141
6142 llvm::sys::path::replace_extension(path&: Filename, extension: Extension);
6143 }
6144
6145 return Args.MakeArgString(Str: Filename.c_str());
6146}
6147
6148static bool HasPreprocessOutput(const Action &JA) {
6149 if (isa<PreprocessJobAction>(Val: JA))
6150 return true;
6151 if (isa<OffloadAction>(Val: JA) && isa<PreprocessJobAction>(Val: JA.getInputs()[0]))
6152 return true;
6153 if (isa<OffloadBundlingJobAction>(Val: JA) &&
6154 HasPreprocessOutput(JA: *(JA.getInputs()[0])))
6155 return true;
6156 return false;
6157}
6158
6159const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
6160 StringRef Suffix, bool MultipleArchs,
6161 StringRef BoundArch,
6162 bool NeedUniqueDirectory) const {
6163 SmallString<128> TmpName;
6164 Arg *A = C.getArgs().getLastArg(Ids: options::OPT_fcrash_diagnostics_dir);
6165 std::optional<std::string> CrashDirectory =
6166 CCGenDiagnostics && A
6167 ? std::string(A->getValue())
6168 : llvm::sys::Process::GetEnv(name: "CLANG_CRASH_DIAGNOSTICS_DIR");
6169 if (CrashDirectory) {
6170 if (!getVFS().exists(Path: *CrashDirectory))
6171 llvm::sys::fs::create_directories(path: *CrashDirectory);
6172 SmallString<128> Path(*CrashDirectory);
6173 llvm::sys::path::append(path&: Path, a: Prefix);
6174 const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
6175 if (std::error_code EC =
6176 llvm::sys::fs::createUniqueFile(Model: Path + Middle + Suffix, ResultPath&: TmpName)) {
6177 Diag(DiagID: clang::diag::err_unable_to_make_temp) << EC.message();
6178 return "";
6179 }
6180 } else {
6181 if (MultipleArchs && !BoundArch.empty()) {
6182 if (NeedUniqueDirectory) {
6183 TmpName = GetTemporaryDirectory(Prefix);
6184 llvm::sys::path::append(path&: TmpName,
6185 a: Twine(Prefix) + "-" + BoundArch + "." + Suffix);
6186 } else {
6187 TmpName =
6188 GetTemporaryPath(Prefix: (Twine(Prefix) + "-" + BoundArch).str(), Suffix);
6189 }
6190
6191 } else {
6192 TmpName = GetTemporaryPath(Prefix, Suffix);
6193 }
6194 }
6195 return C.addTempFile(Name: C.getArgs().MakeArgString(Str: TmpName));
6196}
6197
6198// Calculate the output path of the module file when compiling a module unit
6199// with the `-fmodule-output` option or `-fmodule-output=` option specified.
6200// The behavior is:
6201// - If `-fmodule-output=` is specfied, then the module file is
6202// writing to the value.
6203// - Otherwise if the output object file of the module unit is specified, the
6204// output path
6205// of the module file should be the same with the output object file except
6206// the corresponding suffix. This requires both `-o` and `-c` are specified.
6207// - Otherwise, the output path of the module file will be the same with the
6208// input with the corresponding suffix.
6209static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
6210 const char *BaseInput) {
6211 assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
6212 (C.getArgs().hasArg(options::OPT_fmodule_output) ||
6213 C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
6214
6215 SmallString<256> OutputPath =
6216 tools::getCXX20NamedModuleOutputPath(Args: C.getArgs(), BaseInput);
6217
6218 return C.addResultFile(Name: C.getArgs().MakeArgString(Str: OutputPath.c_str()), JA: &JA);
6219}
6220
6221const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
6222 const char *BaseInput,
6223 StringRef OrigBoundArch, bool AtTopLevel,
6224 bool MultipleArchs,
6225 StringRef OffloadingPrefix) const {
6226 std::string BoundArch = OrigBoundArch.str();
6227 if (is_style_windows(S: llvm::sys::path::Style::native)) {
6228 // BoundArch may contains ':', which is invalid in file names on Windows,
6229 // therefore replace it with '%'.
6230 llvm::replace(Range&: BoundArch, OldValue: ':', NewValue: '@');
6231 }
6232
6233 llvm::PrettyStackTraceString CrashInfo("Computing output path");
6234 // Output to a user requested destination?
6235 if (AtTopLevel && !isa<DsymutilJobAction>(Val: JA) && !isa<VerifyJobAction>(Val: JA)) {
6236 if (Arg *FinalOutput = C.getArgs().getLastArg(Ids: options::OPT_o))
6237 return C.addResultFile(Name: FinalOutput->getValue(), JA: &JA);
6238 }
6239
6240 // For /P, preprocess to file named after BaseInput.
6241 if (C.getArgs().hasArg(Ids: options::OPT__SLASH_P)) {
6242 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
6243 StringRef BaseName = llvm::sys::path::filename(path: BaseInput);
6244 StringRef NameArg;
6245 if (Arg *A = C.getArgs().getLastArg(Ids: options::OPT__SLASH_Fi))
6246 NameArg = A->getValue();
6247 return C.addResultFile(
6248 Name: MakeCLOutputFilename(Args: C.getArgs(), ArgValue: NameArg, BaseName, FileType: types::TY_PP_C),
6249 JA: &JA);
6250 }
6251
6252 // Default to writing to stdout?
6253 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
6254 return "-";
6255 }
6256
6257 if (JA.getType() == types::TY_ModuleFile &&
6258 C.getArgs().getLastArg(Ids: options::OPT_module_file_info)) {
6259 return "-";
6260 }
6261
6262 if (JA.getType() == types::TY_PP_Asm &&
6263 C.getArgs().hasArg(Ids: options::OPT_dxc_Fc)) {
6264 StringRef FcValue = C.getArgs().getLastArgValue(Id: options::OPT_dxc_Fc);
6265 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
6266 // handle this as part of the SLASH_Fa handling below.
6267 return C.addResultFile(Name: C.getArgs().MakeArgString(Str: FcValue.str()), JA: &JA);
6268 }
6269
6270 if ((JA.getType() == types::TY_Object &&
6271 C.getArgs().hasArg(Ids: options::OPT_dxc_Fo)) ||
6272 JA.getType() == types::TY_DX_CONTAINER) {
6273 StringRef FoValue = C.getArgs().getLastArgValue(Id: options::OPT_dxc_Fo);
6274 // If we are targeting DXIL and not validating or translating, we should set
6275 // the final result file. Otherwise we should emit to a temporary.
6276 if (C.getDefaultToolChain().getTriple().isDXIL()) {
6277 const auto &TC = static_cast<const toolchains::HLSLToolChain &>(
6278 C.getDefaultToolChain());
6279 // Fo can be empty here if the validator is running for a compiler flow
6280 // that is using Fc or just printing disassembly.
6281 if (TC.isLastJob(Args&: C.getArgs(), AC: JA.getKind()) && !FoValue.empty())
6282 return C.addResultFile(Name: C.getArgs().MakeArgString(Str: FoValue.str()), JA: &JA);
6283 StringRef Name = llvm::sys::path::filename(path: BaseInput);
6284 std::pair<StringRef, StringRef> Split = Name.split(Separator: '.');
6285 const char *Suffix = types::getTypeTempSuffix(Id: JA.getType(), CLStyle: true);
6286 return CreateTempFile(C, Prefix: Split.first, Suffix, MultipleArchs: false);
6287 }
6288 // We don't have SPIRV-val integrated (yet), so for now we can assume this
6289 // is the final output.
6290 assert(C.getDefaultToolChain().getTriple().isSPIRV());
6291 return C.addResultFile(Name: C.getArgs().MakeArgString(Str: FoValue.str()), JA: &JA);
6292 }
6293
6294 // Is this the assembly listing for /FA?
6295 if (JA.getType() == types::TY_PP_Asm &&
6296 (C.getArgs().hasArg(Ids: options::OPT__SLASH_FA) ||
6297 C.getArgs().hasArg(Ids: options::OPT__SLASH_Fa))) {
6298 // Use /Fa and the input filename to determine the asm file name.
6299 StringRef BaseName = llvm::sys::path::filename(path: BaseInput);
6300 StringRef FaValue = C.getArgs().getLastArgValue(Id: options::OPT__SLASH_Fa);
6301 return C.addResultFile(
6302 Name: MakeCLOutputFilename(Args: C.getArgs(), ArgValue: FaValue, BaseName, FileType: JA.getType()),
6303 JA: &JA);
6304 }
6305
6306 if (JA.getType() == types::TY_API_INFO &&
6307 C.getArgs().hasArg(Ids: options::OPT_emit_extension_symbol_graphs) &&
6308 C.getArgs().hasArg(Ids: options::OPT_o))
6309 Diag(DiagID: clang::diag::err_drv_unexpected_symbol_graph_output)
6310 << C.getArgs().getLastArgValue(Id: options::OPT_o);
6311
6312 // DXC defaults to standard out when generating assembly. We check this after
6313 // any DXC flags that might specify a file.
6314 if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
6315 return "-";
6316
6317 bool SpecifiedModuleOutput =
6318 C.getArgs().hasArg(Ids: options::OPT_fmodule_output) ||
6319 C.getArgs().hasArg(Ids: options::OPT_fmodule_output_EQ);
6320 if (MultipleArchs && SpecifiedModuleOutput)
6321 Diag(DiagID: clang::diag::err_drv_module_output_with_multiple_arch);
6322
6323 // If we're emitting a module output with the specified option
6324 // `-fmodule-output`.
6325 if (!AtTopLevel && isa<PrecompileJobAction>(Val: JA) &&
6326 JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput) {
6327 assert(!C.getArgs().hasArg(options::OPT_modules_reduced_bmi));
6328 return GetModuleOutputPath(C, JA, BaseInput);
6329 }
6330
6331 // Output to a temporary file?
6332 if ((!AtTopLevel && !isSaveTempsEnabled() &&
6333 !C.getArgs().hasArg(Ids: options::OPT__SLASH_Fo)) ||
6334 CCGenDiagnostics) {
6335 StringRef Name = llvm::sys::path::filename(path: BaseInput);
6336 std::pair<StringRef, StringRef> Split = Name.split(Separator: '.');
6337 const char *Suffix =
6338 types::getTypeTempSuffix(Id: JA.getType(), CLStyle: IsCLMode() || IsDXCMode());
6339 // The non-offloading toolchain on Darwin requires deterministic input
6340 // file name for binaries to be deterministic, therefore it needs unique
6341 // directory.
6342 llvm::Triple Triple(C.getDriver().getTargetTriple());
6343 bool NeedUniqueDirectory =
6344 (JA.getOffloadingDeviceKind() == Action::OFK_None ||
6345 JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
6346 Triple.isOSDarwin();
6347 return CreateTempFile(C, Prefix: Split.first, Suffix, MultipleArchs, BoundArch,
6348 NeedUniqueDirectory);
6349 }
6350
6351 SmallString<128> BasePath(BaseInput);
6352 SmallString<128> ExternalPath("");
6353 StringRef BaseName;
6354
6355 // Dsymutil actions should use the full path.
6356 if (isa<DsymutilJobAction>(Val: JA) && C.getArgs().hasArg(Ids: options::OPT_dsym_dir)) {
6357 ExternalPath += C.getArgs().getLastArg(Ids: options::OPT_dsym_dir)->getValue();
6358 // We use posix style here because the tests (specifically
6359 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
6360 // even on Windows and if we don't then the similar test covering this
6361 // fails.
6362 llvm::sys::path::append(path&: ExternalPath, style: llvm::sys::path::Style::posix,
6363 a: llvm::sys::path::filename(path: BasePath));
6364 BaseName = ExternalPath;
6365 } else if (isa<DsymutilJobAction>(Val: JA) || isa<VerifyJobAction>(Val: JA))
6366 BaseName = BasePath;
6367 else
6368 BaseName = llvm::sys::path::filename(path: BasePath);
6369
6370 // Determine what the derived output name should be.
6371 const char *NamedOutput;
6372
6373 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
6374 C.getArgs().hasArg(Ids: options::OPT__SLASH_Fo, Ids: options::OPT__SLASH_o)) {
6375 // The /Fo or /o flag decides the object filename.
6376 StringRef Val =
6377 C.getArgs()
6378 .getLastArg(Ids: options::OPT__SLASH_Fo, Ids: options::OPT__SLASH_o)
6379 ->getValue();
6380 NamedOutput =
6381 MakeCLOutputFilename(Args: C.getArgs(), ArgValue: Val, BaseName, FileType: types::TY_Object);
6382 } else if (JA.getType() == types::TY_Image &&
6383 C.getArgs().hasArg(Ids: options::OPT__SLASH_Fe,
6384 Ids: options::OPT__SLASH_o)) {
6385 // The /Fe or /o flag names the linked file.
6386 StringRef Val =
6387 C.getArgs()
6388 .getLastArg(Ids: options::OPT__SLASH_Fe, Ids: options::OPT__SLASH_o)
6389 ->getValue();
6390 NamedOutput =
6391 MakeCLOutputFilename(Args: C.getArgs(), ArgValue: Val, BaseName, FileType: types::TY_Image);
6392 } else if (JA.getType() == types::TY_Image) {
6393 if (IsCLMode()) {
6394 // clang-cl uses BaseName for the executable name.
6395 NamedOutput =
6396 MakeCLOutputFilename(Args: C.getArgs(), ArgValue: "", BaseName, FileType: types::TY_Image);
6397 } else {
6398 SmallString<128> Output(getDefaultImageName());
6399 // HIP image for device compilation with -fno-gpu-rdc is per compilation
6400 // unit.
6401 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6402 !C.getArgs().hasFlag(Pos: options::OPT_fgpu_rdc,
6403 Neg: options::OPT_fno_gpu_rdc, Default: false);
6404 bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(Val: JA);
6405 if (UseOutExtension) {
6406 Output = BaseName;
6407 llvm::sys::path::replace_extension(path&: Output, extension: "");
6408 }
6409 Output += OffloadingPrefix;
6410 if (MultipleArchs && !BoundArch.empty()) {
6411 Output += "-";
6412 Output.append(RHS: BoundArch);
6413 }
6414 if (UseOutExtension)
6415 Output += ".out";
6416 NamedOutput = C.getArgs().MakeArgString(Str: Output.c_str());
6417 }
6418 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
6419 NamedOutput = C.getArgs().MakeArgString(Str: GetClPchPath(C, BaseName));
6420 } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
6421 C.getArgs().hasArg(Ids: options::OPT__SLASH_o)) {
6422 StringRef Val =
6423 C.getArgs()
6424 .getLastArg(Ids: options::OPT__SLASH_o)
6425 ->getValue();
6426 NamedOutput =
6427 MakeCLOutputFilename(Args: C.getArgs(), ArgValue: Val, BaseName, FileType: types::TY_Object);
6428 } else {
6429 const char *Suffix =
6430 types::getTypeTempSuffix(Id: JA.getType(), CLStyle: IsCLMode() || IsDXCMode());
6431 assert(Suffix && "All types used for output should have a suffix.");
6432
6433 std::string::size_type End = std::string::npos;
6434 if (!types::appendSuffixForType(Id: JA.getType()))
6435 End = BaseName.rfind(C: '.');
6436 SmallString<128> Suffixed(BaseName.substr(Start: 0, N: End));
6437 Suffixed += OffloadingPrefix;
6438 if (MultipleArchs && !BoundArch.empty()) {
6439 Suffixed += "-";
6440 Suffixed.append(RHS: BoundArch);
6441 }
6442 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
6443 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
6444 // optimized bitcode output.
6445 auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
6446 const llvm::opt::DerivedArgList &Args) {
6447 // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
6448 // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
6449 // (generated in the compile phase.)
6450 const ToolChain *TC = JA.getOffloadingToolChain();
6451 return isa<CompileJobAction>(Val: JA) &&
6452 ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6453 Args.hasFlag(Pos: options::OPT_fgpu_rdc, Neg: options::OPT_fno_gpu_rdc,
6454 Default: false)) ||
6455 (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
6456 TC->getTriple().isAMDGPU()));
6457 };
6458 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
6459 (C.getArgs().hasArg(Ids: options::OPT_emit_llvm) ||
6460 IsAMDRDCInCompilePhase(JA, C.getArgs())))
6461 Suffixed += ".tmp";
6462 Suffixed += '.';
6463 Suffixed += Suffix;
6464 NamedOutput = C.getArgs().MakeArgString(Str: Suffixed.c_str());
6465 }
6466
6467 // Prepend object file path if -save-temps=obj
6468 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(Ids: options::OPT_o) &&
6469 JA.getType() != types::TY_PCH) {
6470 Arg *FinalOutput = C.getArgs().getLastArg(Ids: options::OPT_o);
6471 SmallString<128> TempPath(FinalOutput->getValue());
6472 llvm::sys::path::remove_filename(path&: TempPath);
6473 StringRef OutputFileName = llvm::sys::path::filename(path: NamedOutput);
6474 llvm::sys::path::append(path&: TempPath, a: OutputFileName);
6475 NamedOutput = C.getArgs().MakeArgString(Str: TempPath.c_str());
6476 }
6477
6478 // If we're saving temps and the temp file conflicts with the input file,
6479 // then avoid overwriting input file.
6480 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6481 bool SameFile = false;
6482 SmallString<256> Result;
6483 llvm::sys::fs::current_path(result&: Result);
6484 llvm::sys::path::append(path&: Result, a: BaseName);
6485 llvm::sys::fs::equivalent(A: BaseInput, B: Result.c_str(), result&: SameFile);
6486 // Must share the same path to conflict.
6487 if (SameFile) {
6488 StringRef Name = llvm::sys::path::filename(path: BaseInput);
6489 std::pair<StringRef, StringRef> Split = Name.split(Separator: '.');
6490 std::string TmpName = GetTemporaryPath(
6491 Prefix: Split.first,
6492 Suffix: types::getTypeTempSuffix(Id: JA.getType(), CLStyle: IsCLMode() || IsDXCMode()));
6493 return C.addTempFile(Name: C.getArgs().MakeArgString(Str: TmpName));
6494 }
6495 }
6496
6497 // As an annoying special case, PCH generation doesn't strip the pathname.
6498 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6499 llvm::sys::path::remove_filename(path&: BasePath);
6500 if (BasePath.empty())
6501 BasePath = NamedOutput;
6502 else
6503 llvm::sys::path::append(path&: BasePath, a: NamedOutput);
6504 return C.addResultFile(Name: C.getArgs().MakeArgString(Str: BasePath.c_str()), JA: &JA);
6505 }
6506
6507 return C.addResultFile(Name: NamedOutput, JA: &JA);
6508}
6509
6510std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6511 // Search for Name in a list of paths.
6512 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6513 -> std::optional<std::string> {
6514 // Respect a limited subset of the '-Bprefix' functionality in GCC by
6515 // attempting to use this prefix when looking for file paths.
6516 for (const auto &Dir : P) {
6517 if (Dir.empty())
6518 continue;
6519 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(pos: 1) : Dir);
6520 llvm::sys::path::append(path&: P, a: Name);
6521 if (llvm::sys::fs::exists(Path: Twine(P)))
6522 return std::string(P);
6523 }
6524 return std::nullopt;
6525 };
6526
6527 if (auto P = SearchPaths(PrefixDirs))
6528 return *P;
6529
6530 SmallString<128> R(ResourceDir);
6531 llvm::sys::path::append(path&: R, a: Name);
6532 if (llvm::sys::fs::exists(Path: Twine(R)))
6533 return std::string(R);
6534
6535 SmallString<128> P(TC.getCompilerRTPath());
6536 llvm::sys::path::append(path&: P, a: Name);
6537 if (llvm::sys::fs::exists(Path: Twine(P)))
6538 return std::string(P);
6539
6540 SmallString<128> D(Dir);
6541 llvm::sys::path::append(path&: D, a: "..", b: Name);
6542 if (llvm::sys::fs::exists(Path: Twine(D)))
6543 return std::string(D);
6544
6545 if (auto P = SearchPaths(TC.getLibraryPaths()))
6546 return *P;
6547
6548 if (auto P = SearchPaths(TC.getFilePaths()))
6549 return *P;
6550
6551 SmallString<128> R2(ResourceDir);
6552 llvm::sys::path::append(path&: R2, a: "..", b: "..", c: Name);
6553 if (llvm::sys::fs::exists(Path: Twine(R2)))
6554 return std::string(R2);
6555
6556 return std::string(Name);
6557}
6558
6559void Driver::generatePrefixedToolNames(
6560 StringRef Tool, const ToolChain &TC,
6561 SmallVectorImpl<std::string> &Names) const {
6562 // FIXME: Needs a better variable than TargetTriple
6563 Names.emplace_back(Args: (TargetTriple + "-" + Tool).str());
6564 Names.emplace_back(Args&: Tool);
6565}
6566
6567static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6568 llvm::sys::path::append(path&: Dir, a: Name);
6569 if (llvm::sys::fs::can_execute(Path: Twine(Dir)))
6570 return true;
6571 llvm::sys::path::remove_filename(path&: Dir);
6572 return false;
6573}
6574
6575std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6576 SmallVector<std::string, 2> TargetSpecificExecutables;
6577 generatePrefixedToolNames(Tool: Name, TC, Names&: TargetSpecificExecutables);
6578
6579 // Respect a limited subset of the '-Bprefix' functionality in GCC by
6580 // attempting to use this prefix when looking for program paths.
6581 for (const auto &PrefixDir : PrefixDirs) {
6582 if (llvm::sys::fs::is_directory(Path: PrefixDir)) {
6583 SmallString<128> P(PrefixDir);
6584 if (ScanDirForExecutable(Dir&: P, Name))
6585 return std::string(P);
6586 } else {
6587 SmallString<128> P((PrefixDir + Name).str());
6588 if (llvm::sys::fs::can_execute(Path: Twine(P)))
6589 return std::string(P);
6590 }
6591 }
6592
6593 const ToolChain::path_list &List = TC.getProgramPaths();
6594 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6595 // For each possible name of the tool look for it in
6596 // program paths first, then the path.
6597 // Higher priority names will be first, meaning that
6598 // a higher priority name in the path will be found
6599 // instead of a lower priority name in the program path.
6600 // E.g. <triple>-gcc on the path will be found instead
6601 // of gcc in the program path
6602 for (const auto &Path : List) {
6603 SmallString<128> P(Path);
6604 if (ScanDirForExecutable(Dir&: P, Name: TargetSpecificExecutable))
6605 return std::string(P);
6606 }
6607
6608 // Fall back to the path
6609 if (llvm::ErrorOr<std::string> P =
6610 llvm::sys::findProgramByName(Name: TargetSpecificExecutable))
6611 return *P;
6612 }
6613
6614 return std::string(Name);
6615}
6616
6617std::string Driver::GetStdModuleManifestPath(const Compilation &C,
6618 const ToolChain &TC) const {
6619 std::string error = "<NOT PRESENT>";
6620
6621 switch (TC.GetCXXStdlibType(Args: C.getArgs())) {
6622 case ToolChain::CST_Libcxx: {
6623 auto evaluate = [&](const char *library) -> std::optional<std::string> {
6624 std::string lib = GetFilePath(Name: library, TC);
6625
6626 // Note when there are multiple flavours of libc++ the module json needs
6627 // to look at the command-line arguments for the proper json. These
6628 // flavours do not exist at the moment, but there are plans to provide a
6629 // variant that is built with sanitizer instrumentation enabled.
6630
6631 // For example
6632 // StringRef modules = [&] {
6633 // const SanitizerArgs &Sanitize = TC.getSanitizerArgs(C.getArgs());
6634 // if (Sanitize.needsAsanRt())
6635 // return "libc++.modules-asan.json";
6636 // return "libc++.modules.json";
6637 // }();
6638
6639 SmallString<128> path(lib.begin(), lib.end());
6640 llvm::sys::path::remove_filename(path);
6641 llvm::sys::path::append(path, a: "libc++.modules.json");
6642 if (TC.getVFS().exists(Path: path))
6643 return static_cast<std::string>(path);
6644
6645 return {};
6646 };
6647
6648 if (std::optional<std::string> result = evaluate("libc++.so"); result)
6649 return *result;
6650
6651 return evaluate("libc++.a").value_or(u&: error);
6652 }
6653
6654 case ToolChain::CST_Libstdcxx: {
6655 auto evaluate = [&](const char *library) -> std::optional<std::string> {
6656 std::string lib = GetFilePath(Name: library, TC);
6657
6658 SmallString<128> path(lib.begin(), lib.end());
6659 llvm::sys::path::remove_filename(path);
6660 llvm::sys::path::append(path, a: "libstdc++.modules.json");
6661 if (TC.getVFS().exists(Path: path))
6662 return static_cast<std::string>(path);
6663
6664 return {};
6665 };
6666
6667 if (std::optional<std::string> result = evaluate("libstdc++.so"); result)
6668 return *result;
6669
6670 return evaluate("libstdc++.a").value_or(u&: error);
6671 }
6672 }
6673
6674 return error;
6675}
6676
6677std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6678 SmallString<128> Path;
6679 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, ResultPath&: Path);
6680 if (EC) {
6681 Diag(DiagID: clang::diag::err_unable_to_make_temp) << EC.message();
6682 return "";
6683 }
6684
6685 return std::string(Path);
6686}
6687
6688std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6689 SmallString<128> Path;
6690 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, ResultPath&: Path);
6691 if (EC) {
6692 Diag(DiagID: clang::diag::err_unable_to_make_temp) << EC.message();
6693 return "";
6694 }
6695
6696 return std::string(Path);
6697}
6698
6699std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6700 SmallString<128> Output;
6701 if (Arg *FpArg = C.getArgs().getLastArg(Ids: options::OPT__SLASH_Fp)) {
6702 // FIXME: If anybody needs it, implement this obscure rule:
6703 // "If you specify a directory without a file name, the default file name
6704 // is VCx0.pch., where x is the major version of Visual C++ in use."
6705 Output = FpArg->getValue();
6706
6707 // "If you do not specify an extension as part of the path name, an
6708 // extension of .pch is assumed. "
6709 if (!llvm::sys::path::has_extension(path: Output))
6710 Output += ".pch";
6711 } else {
6712 if (Arg *YcArg = C.getArgs().getLastArg(Ids: options::OPT__SLASH_Yc))
6713 Output = YcArg->getValue();
6714 if (Output.empty())
6715 Output = BaseName;
6716 llvm::sys::path::replace_extension(path&: Output, extension: ".pch");
6717 }
6718 return std::string(Output);
6719}
6720
6721const ToolChain &Driver::getOffloadToolChain(
6722 const llvm::opt::ArgList &Args, const Action::OffloadKind Kind,
6723 const llvm::Triple &Target, const llvm::Triple &AuxTarget) const {
6724 std::unique_ptr<ToolChain> &TC =
6725 ToolChains[Target.str() + "/" + AuxTarget.str()];
6726 std::unique_ptr<ToolChain> &HostTC = ToolChains[AuxTarget.str()];
6727
6728 assert(HostTC && "Host toolchain for offloading doesn't exit?");
6729 if (!TC) {
6730 // Detect the toolchain based off of the target operating system.
6731 switch (Target.getOS()) {
6732 case llvm::Triple::CUDA:
6733 TC = std::make_unique<toolchains::CudaToolChain>(args: *this, args: Target, args&: *HostTC,
6734 args: Args);
6735 break;
6736 case llvm::Triple::AMDHSA:
6737 if (Kind == Action::OFK_HIP)
6738 TC = std::make_unique<toolchains::HIPAMDToolChain>(args: *this, args: Target,
6739 args&: *HostTC, args: Args);
6740 else if (Kind == Action::OFK_OpenMP)
6741 TC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(args: *this, args: Target,
6742 args&: *HostTC, args: Args);
6743 break;
6744 default:
6745 break;
6746 }
6747 }
6748 if (!TC) {
6749 // Detect the toolchain based off of the target architecture if that failed.
6750 switch (Target.getArch()) {
6751 case llvm::Triple::spir:
6752 case llvm::Triple::spir64:
6753 case llvm::Triple::spirv:
6754 case llvm::Triple::spirv32:
6755 case llvm::Triple::spirv64:
6756 switch (Kind) {
6757 case Action::OFK_SYCL:
6758 TC = std::make_unique<toolchains::SYCLToolChain>(args: *this, args: Target, args&: *HostTC,
6759 args: Args);
6760 break;
6761 case Action::OFK_HIP:
6762 TC = std::make_unique<toolchains::HIPSPVToolChain>(args: *this, args: Target,
6763 args&: *HostTC, args: Args);
6764 break;
6765 case Action::OFK_OpenMP:
6766 TC = std::make_unique<toolchains::SPIRVOpenMPToolChain>(args: *this, args: Target,
6767 args&: *HostTC, args: Args);
6768 break;
6769 case Action::OFK_Cuda:
6770 TC = std::make_unique<toolchains::CudaToolChain>(args: *this, args: Target, args&: *HostTC,
6771 args: Args);
6772 break;
6773 default:
6774 break;
6775 }
6776 break;
6777 default:
6778 break;
6779 }
6780 }
6781
6782 // If all else fails, just look up the normal toolchain for the target.
6783 if (!TC)
6784 return getToolChain(Args, Target);
6785 return *TC;
6786}
6787
6788const ToolChain &Driver::getToolChain(const ArgList &Args,
6789 const llvm::Triple &Target) const {
6790
6791 auto &TC = ToolChains[Target.str()];
6792 if (!TC) {
6793 switch (Target.getOS()) {
6794 case llvm::Triple::AIX:
6795 TC = std::make_unique<toolchains::AIX>(args: *this, args: Target, args: Args);
6796 break;
6797 case llvm::Triple::Haiku:
6798 TC = std::make_unique<toolchains::Haiku>(args: *this, args: Target, args: Args);
6799 break;
6800 case llvm::Triple::Darwin:
6801 case llvm::Triple::MacOSX:
6802 case llvm::Triple::IOS:
6803 case llvm::Triple::TvOS:
6804 case llvm::Triple::WatchOS:
6805 case llvm::Triple::XROS:
6806 case llvm::Triple::DriverKit:
6807 TC = std::make_unique<toolchains::DarwinClang>(args: *this, args: Target, args: Args);
6808 break;
6809 case llvm::Triple::DragonFly:
6810 TC = std::make_unique<toolchains::DragonFly>(args: *this, args: Target, args: Args);
6811 break;
6812 case llvm::Triple::OpenBSD:
6813 TC = std::make_unique<toolchains::OpenBSD>(args: *this, args: Target, args: Args);
6814 break;
6815 case llvm::Triple::NetBSD:
6816 TC = std::make_unique<toolchains::NetBSD>(args: *this, args: Target, args: Args);
6817 break;
6818 case llvm::Triple::FreeBSD:
6819 if (Target.isPPC())
6820 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(args: *this, args: Target,
6821 args: Args);
6822 else
6823 TC = std::make_unique<toolchains::FreeBSD>(args: *this, args: Target, args: Args);
6824 break;
6825 case llvm::Triple::Linux:
6826 case llvm::Triple::ELFIAMCU:
6827 if (Target.getArch() == llvm::Triple::hexagon)
6828 TC = std::make_unique<toolchains::HexagonToolChain>(args: *this, args: Target,
6829 args: Args);
6830 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6831 !Target.hasEnvironment())
6832 TC = std::make_unique<toolchains::MipsLLVMToolChain>(args: *this, args: Target,
6833 args: Args);
6834 else if (Target.isPPC())
6835 TC = std::make_unique<toolchains::PPCLinuxToolChain>(args: *this, args: Target,
6836 args: Args);
6837 else if (Target.getArch() == llvm::Triple::ve)
6838 TC = std::make_unique<toolchains::VEToolChain>(args: *this, args: Target, args: Args);
6839 else if (Target.isOHOSFamily())
6840 TC = std::make_unique<toolchains::OHOS>(args: *this, args: Target, args: Args);
6841 else
6842 TC = std::make_unique<toolchains::Linux>(args: *this, args: Target, args: Args);
6843 break;
6844 case llvm::Triple::NaCl:
6845 TC = std::make_unique<toolchains::NaClToolChain>(args: *this, args: Target, args: Args);
6846 break;
6847 case llvm::Triple::Fuchsia:
6848 TC = std::make_unique<toolchains::Fuchsia>(args: *this, args: Target, args: Args);
6849 break;
6850 case llvm::Triple::Managarm:
6851 TC = std::make_unique<toolchains::Managarm>(args: *this, args: Target, args: Args);
6852 break;
6853 case llvm::Triple::Solaris:
6854 TC = std::make_unique<toolchains::Solaris>(args: *this, args: Target, args: Args);
6855 break;
6856 case llvm::Triple::CUDA:
6857 TC = std::make_unique<toolchains::NVPTXToolChain>(args: *this, args: Target, args: Args);
6858 break;
6859 case llvm::Triple::AMDHSA: {
6860 if (Target.getArch() == llvm::Triple::spirv64) {
6861 TC = std::make_unique<toolchains::SPIRVAMDToolChain>(args: *this, args: Target,
6862 args: Args);
6863 } else {
6864 bool DL = usesInput(Args, Fn&: types::isOpenCL) ||
6865 usesInput(Args, Fn&: types::isLLVMIR);
6866 TC = DL ? std::make_unique<toolchains::ROCMToolChain>(args: *this, args: Target,
6867 args: Args)
6868 : std::make_unique<toolchains::AMDGPUToolChain>(args: *this, args: Target,
6869 args: Args);
6870 }
6871 break;
6872 }
6873 case llvm::Triple::AMDPAL:
6874 case llvm::Triple::Mesa3D:
6875 TC = std::make_unique<toolchains::AMDGPUToolChain>(args: *this, args: Target, args: Args);
6876 break;
6877 case llvm::Triple::UEFI:
6878 TC = std::make_unique<toolchains::UEFI>(args: *this, args: Target, args: Args);
6879 break;
6880 case llvm::Triple::Win32:
6881 switch (Target.getEnvironment()) {
6882 default:
6883 if (Target.isOSBinFormatELF())
6884 TC = std::make_unique<toolchains::Generic_ELF>(args: *this, args: Target, args: Args);
6885 else if (Target.isOSBinFormatMachO())
6886 TC = std::make_unique<toolchains::MachO>(args: *this, args: Target, args: Args);
6887 else
6888 TC = std::make_unique<toolchains::Generic_GCC>(args: *this, args: Target, args: Args);
6889 break;
6890 case llvm::Triple::GNU:
6891 TC = std::make_unique<toolchains::MinGW>(args: *this, args: Target, args: Args);
6892 break;
6893 case llvm::Triple::Cygnus:
6894 TC = std::make_unique<toolchains::Cygwin>(args: *this, args: Target, args: Args);
6895 break;
6896 case llvm::Triple::Itanium:
6897 TC = std::make_unique<toolchains::CrossWindowsToolChain>(args: *this, args: Target,
6898 args: Args);
6899 break;
6900 case llvm::Triple::MSVC:
6901 case llvm::Triple::UnknownEnvironment:
6902 if (Args.getLastArgValue(Id: options::OPT_fuse_ld_EQ)
6903 .starts_with_insensitive(Prefix: "bfd"))
6904 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6905 args: *this, args: Target, args: Args);
6906 else
6907 TC =
6908 std::make_unique<toolchains::MSVCToolChain>(args: *this, args: Target, args: Args);
6909 break;
6910 }
6911 break;
6912 case llvm::Triple::PS4:
6913 TC = std::make_unique<toolchains::PS4CPU>(args: *this, args: Target, args: Args);
6914 break;
6915 case llvm::Triple::PS5:
6916 TC = std::make_unique<toolchains::PS5CPU>(args: *this, args: Target, args: Args);
6917 break;
6918 case llvm::Triple::Hurd:
6919 TC = std::make_unique<toolchains::Hurd>(args: *this, args: Target, args: Args);
6920 break;
6921 case llvm::Triple::LiteOS:
6922 TC = std::make_unique<toolchains::OHOS>(args: *this, args: Target, args: Args);
6923 break;
6924 case llvm::Triple::ZOS:
6925 TC = std::make_unique<toolchains::ZOS>(args: *this, args: Target, args: Args);
6926 break;
6927 case llvm::Triple::Vulkan:
6928 case llvm::Triple::ShaderModel:
6929 TC = std::make_unique<toolchains::HLSLToolChain>(args: *this, args: Target, args: Args);
6930 break;
6931 default:
6932 // Of these targets, Hexagon is the only one that might have
6933 // an OS of Linux, in which case it got handled above already.
6934 switch (Target.getArch()) {
6935 case llvm::Triple::tce:
6936 TC = std::make_unique<toolchains::TCEToolChain>(args: *this, args: Target, args: Args);
6937 break;
6938 case llvm::Triple::tcele:
6939 TC = std::make_unique<toolchains::TCELEToolChain>(args: *this, args: Target, args: Args);
6940 break;
6941 case llvm::Triple::hexagon:
6942 TC = std::make_unique<toolchains::HexagonToolChain>(args: *this, args: Target,
6943 args: Args);
6944 break;
6945 case llvm::Triple::lanai:
6946 TC = std::make_unique<toolchains::LanaiToolChain>(args: *this, args: Target, args: Args);
6947 break;
6948 case llvm::Triple::xcore:
6949 TC = std::make_unique<toolchains::XCoreToolChain>(args: *this, args: Target, args: Args);
6950 break;
6951 case llvm::Triple::wasm32:
6952 case llvm::Triple::wasm64:
6953 TC = std::make_unique<toolchains::WebAssembly>(args: *this, args: Target, args: Args);
6954 break;
6955 case llvm::Triple::avr:
6956 TC = std::make_unique<toolchains::AVRToolChain>(args: *this, args: Target, args: Args);
6957 break;
6958 case llvm::Triple::msp430:
6959 TC = std::make_unique<toolchains::MSP430ToolChain>(args: *this, args: Target, args: Args);
6960 break;
6961 case llvm::Triple::riscv32:
6962 case llvm::Triple::riscv64:
6963 TC = std::make_unique<toolchains::BareMetal>(args: *this, args: Target, args: Args);
6964 break;
6965 case llvm::Triple::ve:
6966 TC = std::make_unique<toolchains::VEToolChain>(args: *this, args: Target, args: Args);
6967 break;
6968 case llvm::Triple::spirv32:
6969 case llvm::Triple::spirv64:
6970 TC = std::make_unique<toolchains::SPIRVToolChain>(args: *this, args: Target, args: Args);
6971 break;
6972 case llvm::Triple::csky:
6973 TC = std::make_unique<toolchains::CSKYToolChain>(args: *this, args: Target, args: Args);
6974 break;
6975 default:
6976 if (toolchains::BareMetal::handlesTarget(Triple: Target))
6977 TC = std::make_unique<toolchains::BareMetal>(args: *this, args: Target, args: Args);
6978 else if (Target.isOSBinFormatELF())
6979 TC = std::make_unique<toolchains::Generic_ELF>(args: *this, args: Target, args: Args);
6980 else if (Target.isAppleMachO())
6981 TC = std::make_unique<toolchains::AppleMachO>(args: *this, args: Target, args: Args);
6982 else if (Target.isOSBinFormatMachO())
6983 TC = std::make_unique<toolchains::MachO>(args: *this, args: Target, args: Args);
6984 else
6985 TC = std::make_unique<toolchains::Generic_GCC>(args: *this, args: Target, args: Args);
6986 }
6987 }
6988 }
6989
6990 return *TC;
6991}
6992
6993bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6994 // Say "no" if there is not exactly one input of a type clang understands.
6995 if (JA.size() != 1 ||
6996 !types::isAcceptedByClang(Id: (*JA.input_begin())->getType()))
6997 return false;
6998
6999 // And say "no" if this is not a kind of action clang understands.
7000 if (!isa<PreprocessJobAction>(Val: JA) && !isa<PrecompileJobAction>(Val: JA) &&
7001 !isa<CompileJobAction>(Val: JA) && !isa<BackendJobAction>(Val: JA) &&
7002 !isa<ExtractAPIJobAction>(Val: JA))
7003 return false;
7004
7005 return true;
7006}
7007
7008bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
7009 // Say "no" if there is not exactly one input of a type flang understands.
7010 if (JA.size() != 1 ||
7011 !types::isAcceptedByFlang(Id: (*JA.input_begin())->getType()))
7012 return false;
7013
7014 // And say "no" if this is not a kind of action flang understands.
7015 if (!isa<PreprocessJobAction>(Val: JA) && !isa<PrecompileJobAction>(Val: JA) &&
7016 !isa<CompileJobAction>(Val: JA) && !isa<BackendJobAction>(Val: JA))
7017 return false;
7018
7019 return true;
7020}
7021
7022bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
7023 // Only emit static library if the flag is set explicitly.
7024 if (Args.hasArg(Ids: options::OPT_emit_static_lib))
7025 return true;
7026 return false;
7027}
7028
7029/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
7030/// grouped values as integers. Numbers which are not provided are set to 0.
7031///
7032/// \return True if the entire string was parsed (9.2), or all groups were
7033/// parsed (10.3.5extrastuff).
7034bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
7035 unsigned &Micro, bool &HadExtra) {
7036 HadExtra = false;
7037
7038 Major = Minor = Micro = 0;
7039 if (Str.empty())
7040 return false;
7041
7042 if (Str.consumeInteger(Radix: 10, Result&: Major))
7043 return false;
7044 if (Str.empty())
7045 return true;
7046 if (!Str.consume_front(Prefix: "."))
7047 return false;
7048
7049 if (Str.consumeInteger(Radix: 10, Result&: Minor))
7050 return false;
7051 if (Str.empty())
7052 return true;
7053 if (!Str.consume_front(Prefix: "."))
7054 return false;
7055
7056 if (Str.consumeInteger(Radix: 10, Result&: Micro))
7057 return false;
7058 if (!Str.empty())
7059 HadExtra = true;
7060 return true;
7061}
7062
7063/// Parse digits from a string \p Str and fulfill \p Digits with
7064/// the parsed numbers. This method assumes that the max number of
7065/// digits to look for is equal to Digits.size().
7066///
7067/// \return True if the entire string was parsed and there are
7068/// no extra characters remaining at the end.
7069bool Driver::GetReleaseVersion(StringRef Str,
7070 MutableArrayRef<unsigned> Digits) {
7071 if (Str.empty())
7072 return false;
7073
7074 unsigned CurDigit = 0;
7075 while (CurDigit < Digits.size()) {
7076 unsigned Digit;
7077 if (Str.consumeInteger(Radix: 10, Result&: Digit))
7078 return false;
7079 Digits[CurDigit] = Digit;
7080 if (Str.empty())
7081 return true;
7082 if (!Str.consume_front(Prefix: "."))
7083 return false;
7084 CurDigit++;
7085 }
7086
7087 // More digits than requested, bail out...
7088 return false;
7089}
7090
7091llvm::opt::Visibility
7092Driver::getOptionVisibilityMask(bool UseDriverMode) const {
7093 if (!UseDriverMode)
7094 return llvm::opt::Visibility(options::ClangOption);
7095 if (IsCLMode())
7096 return llvm::opt::Visibility(options::CLOption);
7097 if (IsDXCMode())
7098 return llvm::opt::Visibility(options::DXCOption);
7099 if (IsFlangMode()) {
7100 return llvm::opt::Visibility(options::FlangOption);
7101 }
7102 return llvm::opt::Visibility(options::ClangOption);
7103}
7104
7105const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
7106 switch (Mode) {
7107 case GCCMode:
7108 return "clang";
7109 case GXXMode:
7110 return "clang++";
7111 case CPPMode:
7112 return "clang-cpp";
7113 case CLMode:
7114 return "clang-cl";
7115 case FlangMode:
7116 return "flang";
7117 case DXCMode:
7118 return "clang-dxc";
7119 }
7120
7121 llvm_unreachable("Unhandled Mode");
7122}
7123
7124bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
7125 return Args.hasFlag(Pos: options::OPT_Ofast, Neg: options::OPT_O_Group, Default: false);
7126}
7127
7128bool clang::driver::willEmitRemarks(const ArgList &Args) {
7129 // -fsave-optimization-record enables it.
7130 if (Args.hasFlag(Pos: options::OPT_fsave_optimization_record,
7131 Neg: options::OPT_fno_save_optimization_record, Default: false))
7132 return true;
7133
7134 // -fsave-optimization-record=<format> enables it as well.
7135 if (Args.hasFlag(Pos: options::OPT_fsave_optimization_record_EQ,
7136 Neg: options::OPT_fno_save_optimization_record, Default: false))
7137 return true;
7138
7139 // -foptimization-record-file alone enables it too.
7140 if (Args.hasFlag(Pos: options::OPT_foptimization_record_file_EQ,
7141 Neg: options::OPT_fno_save_optimization_record, Default: false))
7142 return true;
7143
7144 // -foptimization-record-passes alone enables it too.
7145 if (Args.hasFlag(Pos: options::OPT_foptimization_record_passes_EQ,
7146 Neg: options::OPT_fno_save_optimization_record, Default: false))
7147 return true;
7148 return false;
7149}
7150
7151llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
7152 ArrayRef<const char *> Args) {
7153 static StringRef OptName =
7154 getDriverOptTable().getOption(Opt: options::OPT_driver_mode).getPrefixedName();
7155 llvm::StringRef Opt;
7156 for (StringRef Arg : Args) {
7157 if (!Arg.starts_with(Prefix: OptName))
7158 continue;
7159 Opt = Arg;
7160 }
7161 if (Opt.empty())
7162 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
7163 return Opt.consume_front(Prefix: OptName) ? Opt : "";
7164}
7165
7166bool driver::IsClangCL(StringRef DriverMode) { return DriverMode == "cl"; }
7167
7168llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
7169 bool ClangCLMode,
7170 llvm::BumpPtrAllocator &Alloc,
7171 llvm::vfs::FileSystem *FS) {
7172 // Parse response files using the GNU syntax, unless we're in CL mode. There
7173 // are two ways to put clang in CL compatibility mode: ProgName is either
7174 // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
7175 // command line parsing can't happen until after response file parsing, so we
7176 // have to manually search for a --driver-mode=cl argument the hard way.
7177 // Finally, our -cc1 tools don't care which tokenization mode we use because
7178 // response files written by clang will tokenize the same way in either mode.
7179 enum { Default, POSIX, Windows } RSPQuoting = Default;
7180 for (const char *F : Args) {
7181 if (strcmp(s1: F, s2: "--rsp-quoting=posix") == 0)
7182 RSPQuoting = POSIX;
7183 else if (strcmp(s1: F, s2: "--rsp-quoting=windows") == 0)
7184 RSPQuoting = Windows;
7185 }
7186
7187 // Determines whether we want nullptr markers in Args to indicate response
7188 // files end-of-lines. We only use this for the /LINK driver argument with
7189 // clang-cl.exe on Windows.
7190 bool MarkEOLs = ClangCLMode;
7191
7192 llvm::cl::TokenizerCallback Tokenizer;
7193 if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
7194 Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
7195 else
7196 Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
7197
7198 if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with(Prefix: "-cc1"))
7199 MarkEOLs = false;
7200
7201 llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
7202 ECtx.setMarkEOLs(MarkEOLs);
7203 if (FS)
7204 ECtx.setVFS(FS);
7205
7206 if (llvm::Error Err = ECtx.expandResponseFiles(Argv&: Args))
7207 return Err;
7208
7209 // If -cc1 came from a response file, remove the EOL sentinels.
7210 auto FirstArg = llvm::find_if(Range: llvm::drop_begin(RangeOrContainer&: Args),
7211 P: [](const char *A) { return A != nullptr; });
7212 if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with(Prefix: "-cc1")) {
7213 // If -cc1 came from a response file, remove the EOL sentinels.
7214 if (MarkEOLs) {
7215 auto newEnd = std::remove(first: Args.begin(), last: Args.end(), value: nullptr);
7216 Args.resize(N: newEnd - Args.begin());
7217 }
7218 }
7219
7220 return llvm::Error::success();
7221}
7222
7223static const char *GetStableCStr(llvm::StringSet<> &SavedStrings, StringRef S) {
7224 return SavedStrings.insert(key: S).first->getKeyData();
7225}
7226
7227/// Apply a list of edits to the input argument lists.
7228///
7229/// The input string is a space separated list of edits to perform,
7230/// they are applied in order to the input argument lists. Edits
7231/// should be one of the following forms:
7232///
7233/// '#': Silence information about the changes to the command line arguments.
7234///
7235/// '^FOO': Add FOO as a new argument at the beginning of the command line
7236/// right after the name of the compiler executable.
7237///
7238/// '+FOO': Add FOO as a new argument at the end of the command line.
7239///
7240/// 's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command
7241/// line.
7242///
7243/// 'xOPTION': Removes all instances of the literal argument OPTION.
7244///
7245/// 'XOPTION': Removes all instances of the literal argument OPTION,
7246/// and the following argument.
7247///
7248/// 'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox'
7249/// at the end of the command line.
7250///
7251/// \param OS - The stream to write edit information to.
7252/// \param Args - The vector of command line arguments.
7253/// \param Edit - The override command to perform.
7254/// \param SavedStrings - Set to use for storing string representations.
7255static void applyOneOverrideOption(raw_ostream &OS,
7256 SmallVectorImpl<const char *> &Args,
7257 StringRef Edit,
7258 llvm::StringSet<> &SavedStrings) {
7259 // This does not need to be efficient.
7260
7261 if (Edit[0] == '^') {
7262 const char *Str = GetStableCStr(SavedStrings, S: Edit.substr(Start: 1));
7263 OS << "### Adding argument " << Str << " at beginning\n";
7264 Args.insert(I: Args.begin() + 1, Elt: Str);
7265 } else if (Edit[0] == '+') {
7266 const char *Str = GetStableCStr(SavedStrings, S: Edit.substr(Start: 1));
7267 OS << "### Adding argument " << Str << " at end\n";
7268 Args.push_back(Elt: Str);
7269 } else if (Edit[0] == 's' && Edit[1] == '/' && Edit.ends_with(Suffix: "/") &&
7270 Edit.slice(Start: 2, End: Edit.size() - 1).contains(C: '/')) {
7271 StringRef MatchPattern = Edit.substr(Start: 2).split(Separator: '/').first;
7272 StringRef ReplPattern = Edit.substr(Start: 2).split(Separator: '/').second;
7273 ReplPattern = ReplPattern.slice(Start: 0, End: ReplPattern.size() - 1);
7274
7275 for (unsigned i = 1, e = Args.size(); i != e; ++i) {
7276 // Ignore end-of-line response file markers
7277 if (Args[i] == nullptr)
7278 continue;
7279 std::string Repl = llvm::Regex(MatchPattern).sub(Repl: ReplPattern, String: Args[i]);
7280
7281 if (Repl != Args[i]) {
7282 OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n";
7283 Args[i] = GetStableCStr(SavedStrings, S: Repl);
7284 }
7285 }
7286 } else if (Edit[0] == 'x' || Edit[0] == 'X') {
7287 auto Option = Edit.substr(Start: 1);
7288 for (unsigned i = 1; i < Args.size();) {
7289 if (Option == Args[i]) {
7290 OS << "### Deleting argument " << Args[i] << '\n';
7291 Args.erase(CI: Args.begin() + i);
7292 if (Edit[0] == 'X') {
7293 if (i < Args.size()) {
7294 OS << "### Deleting argument " << Args[i] << '\n';
7295 Args.erase(CI: Args.begin() + i);
7296 } else
7297 OS << "### Invalid X edit, end of command line!\n";
7298 }
7299 } else
7300 ++i;
7301 }
7302 } else if (Edit[0] == 'O') {
7303 for (unsigned i = 1; i < Args.size();) {
7304 const char *A = Args[i];
7305 // Ignore end-of-line response file markers
7306 if (A == nullptr)
7307 continue;
7308 if (A[0] == '-' && A[1] == 'O' &&
7309 (A[2] == '\0' || (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' ||
7310 ('0' <= A[2] && A[2] <= '9'))))) {
7311 OS << "### Deleting argument " << Args[i] << '\n';
7312 Args.erase(CI: Args.begin() + i);
7313 } else
7314 ++i;
7315 }
7316 OS << "### Adding argument " << Edit << " at end\n";
7317 Args.push_back(Elt: GetStableCStr(SavedStrings, S: '-' + Edit.str()));
7318 } else {
7319 OS << "### Unrecognized edit: " << Edit << "\n";
7320 }
7321}
7322
7323void driver::applyOverrideOptions(SmallVectorImpl<const char *> &Args,
7324 const char *OverrideStr,
7325 llvm::StringSet<> &SavedStrings,
7326 StringRef EnvVar, raw_ostream *OS) {
7327 if (!OS)
7328 OS = &llvm::nulls();
7329
7330 if (OverrideStr[0] == '#') {
7331 ++OverrideStr;
7332 OS = &llvm::nulls();
7333 }
7334
7335 *OS << "### " << EnvVar << ": " << OverrideStr << "\n";
7336
7337 // This does not need to be efficient.
7338
7339 const char *S = OverrideStr;
7340 while (*S) {
7341 const char *End = ::strchr(s: S, c: ' ');
7342 if (!End)
7343 End = S + strlen(s: S);
7344 if (End != S)
7345 applyOneOverrideOption(OS&: *OS, Args, Edit: std::string(S, End), SavedStrings);
7346 S = End;
7347 if (*S != '\0')
7348 ++S;
7349 }
7350}
7351