1 | //===--- InterpreterValuePrinter.cpp - Value printing utils -----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements routines for in-process value printing in clang-repl. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "IncrementalParser.h" |
14 | #include "InterpreterUtils.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/PrettyPrinter.h" |
17 | #include "clang/AST/Type.h" |
18 | #include "clang/Frontend/CompilerInstance.h" |
19 | #include "clang/Interpreter/Interpreter.h" |
20 | #include "clang/Interpreter/Value.h" |
21 | #include "clang/Sema/Lookup.h" |
22 | #include "clang/Sema/Sema.h" |
23 | |
24 | #include "llvm/Support/Error.h" |
25 | #include "llvm/Support/raw_ostream.h" |
26 | |
27 | #include <cassert> |
28 | |
29 | #include <cstdarg> |
30 | |
31 | namespace clang { |
32 | |
33 | llvm::Expected<llvm::orc::ExecutorAddr> |
34 | Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) { |
35 | assert(CXXRD && "Cannot compile a destructor for a nullptr" ); |
36 | if (auto Dtor = Dtors.find(Val: CXXRD); Dtor != Dtors.end()) |
37 | return Dtor->getSecond(); |
38 | |
39 | if (CXXRD->hasIrrelevantDestructor()) |
40 | return llvm::orc::ExecutorAddr{}; |
41 | |
42 | CXXDestructorDecl *DtorRD = |
43 | getCompilerInstance()->getSema().LookupDestructor(Class: CXXRD); |
44 | |
45 | llvm::StringRef Name = |
46 | getCodeGen()->GetMangledName(GD: GlobalDecl(DtorRD, Dtor_Base)); |
47 | auto AddrOrErr = getSymbolAddress(IRName: Name); |
48 | if (!AddrOrErr) |
49 | return AddrOrErr.takeError(); |
50 | |
51 | Dtors[CXXRD] = *AddrOrErr; |
52 | return AddrOrErr; |
53 | } |
54 | |
55 | enum InterfaceKind { NoAlloc, WithAlloc, CopyArray, NewTag }; |
56 | |
57 | class InterfaceKindVisitor |
58 | : public TypeVisitor<InterfaceKindVisitor, InterfaceKind> { |
59 | |
60 | Sema &S; |
61 | Expr *E; |
62 | llvm::SmallVectorImpl<Expr *> &Args; |
63 | |
64 | public: |
65 | InterfaceKindVisitor(Sema &S, Expr *E, llvm::SmallVectorImpl<Expr *> &Args) |
66 | : S(S), E(E), Args(Args) {} |
67 | |
68 | InterfaceKind computeInterfaceKind(QualType Ty) { |
69 | return Visit(T: Ty.getTypePtr()); |
70 | } |
71 | |
72 | InterfaceKind VisitRecordType(const RecordType *Ty) { |
73 | return InterfaceKind::WithAlloc; |
74 | } |
75 | |
76 | InterfaceKind VisitMemberPointerType(const MemberPointerType *Ty) { |
77 | return InterfaceKind::WithAlloc; |
78 | } |
79 | |
80 | InterfaceKind VisitConstantArrayType(const ConstantArrayType *Ty) { |
81 | return InterfaceKind::CopyArray; |
82 | } |
83 | |
84 | InterfaceKind VisitFunctionProtoType(const FunctionProtoType *Ty) { |
85 | HandlePtrType(Ty); |
86 | return InterfaceKind::NoAlloc; |
87 | } |
88 | |
89 | InterfaceKind VisitPointerType(const PointerType *Ty) { |
90 | HandlePtrType(Ty); |
91 | return InterfaceKind::NoAlloc; |
92 | } |
93 | |
94 | InterfaceKind VisitReferenceType(const ReferenceType *Ty) { |
95 | ExprResult AddrOfE = S.CreateBuiltinUnaryOp(OpLoc: SourceLocation(), Opc: UO_AddrOf, InputExpr: E); |
96 | assert(!AddrOfE.isInvalid() && "Can not create unary expression" ); |
97 | Args.push_back(Elt: AddrOfE.get()); |
98 | return InterfaceKind::NoAlloc; |
99 | } |
100 | |
101 | InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { |
102 | if (Ty->isNullPtrType()) |
103 | Args.push_back(Elt: E); |
104 | else if (Ty->isFloatingType()) |
105 | Args.push_back(Elt: E); |
106 | else if (Ty->isIntegralOrEnumerationType()) |
107 | HandleIntegralOrEnumType(Ty); |
108 | else if (Ty->isVoidType()) { |
109 | // Do we need to still run `E`? |
110 | } |
111 | |
112 | return InterfaceKind::NoAlloc; |
113 | } |
114 | |
115 | InterfaceKind VisitEnumType(const EnumType *Ty) { |
116 | HandleIntegralOrEnumType(Ty); |
117 | return InterfaceKind::NoAlloc; |
118 | } |
119 | |
120 | private: |
121 | // Force cast these types to the uint that fits the register size. That way we |
122 | // reduce the number of overloads of `__clang_Interpreter_SetValueNoAlloc`. |
123 | void HandleIntegralOrEnumType(const Type *Ty) { |
124 | ASTContext &Ctx = S.getASTContext(); |
125 | uint64_t PtrBits = Ctx.getTypeSize(T: Ctx.VoidPtrTy); |
126 | QualType UIntTy = Ctx.getBitIntType(/*Unsigned=*/true, NumBits: PtrBits); |
127 | TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(T: UIntTy); |
128 | ExprResult CastedExpr = |
129 | S.BuildCStyleCastExpr(LParenLoc: SourceLocation(), Ty: TSI, RParenLoc: SourceLocation(), Op: E); |
130 | assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr" ); |
131 | Args.push_back(Elt: CastedExpr.get()); |
132 | } |
133 | |
134 | void HandlePtrType(const Type *Ty) { |
135 | ASTContext &Ctx = S.getASTContext(); |
136 | TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(T: Ctx.VoidPtrTy); |
137 | ExprResult CastedExpr = |
138 | S.BuildCStyleCastExpr(LParenLoc: SourceLocation(), Ty: TSI, RParenLoc: SourceLocation(), Op: E); |
139 | assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression" ); |
140 | Args.push_back(Elt: CastedExpr.get()); |
141 | } |
142 | }; |
143 | |
144 | // This synthesizes a call expression to a speciall |
145 | // function that is responsible for generating the Value. |
146 | // In general, we transform: |
147 | // clang-repl> x |
148 | // To: |
149 | // // 1. If x is a built-in type like int, float. |
150 | // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); |
151 | // // 2. If x is a struct, and a lvalue. |
152 | // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, |
153 | // &x); |
154 | // // 3. If x is a struct, but a rvalue. |
155 | // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, |
156 | // xQualType)) (x); |
157 | llvm::Expected<Expr *> Interpreter::(Expr *E) { |
158 | Sema &S = getCompilerInstance()->getSema(); |
159 | ASTContext &Ctx = S.getASTContext(); |
160 | |
161 | // Find the value printing builtins. |
162 | if (!ValuePrintingInfo[0]) { |
163 | assert(llvm::all_of(ValuePrintingInfo, [](Expr *E) { return !E; })); |
164 | |
165 | auto LookupInterface = [&](Expr *&Interface, |
166 | llvm::StringRef Name) -> llvm::Error { |
167 | LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), |
168 | Sema::LookupOrdinaryName, |
169 | RedeclarationKind::ForVisibleRedeclaration); |
170 | S.LookupQualifiedName(R, LookupCtx: Ctx.getTranslationUnitDecl()); |
171 | if (R.empty()) |
172 | return llvm::make_error<llvm::StringError>( |
173 | Args: Name + " not found!" , Args: llvm::inconvertibleErrorCode()); |
174 | |
175 | CXXScopeSpec CSS; |
176 | Interface = S.BuildDeclarationNameExpr(SS: CSS, R, /*ADL=*/NeedsADL: false).get(); |
177 | return llvm::Error::success(); |
178 | }; |
179 | static constexpr llvm::StringRef Builtin[] = { |
180 | "__clang_Interpreter_SetValueNoAlloc" , |
181 | "__clang_Interpreter_SetValueWithAlloc" , |
182 | "__clang_Interpreter_SetValueCopyArr" , "__ci_newtag" }; |
183 | if (llvm::Error Err = |
184 | LookupInterface(ValuePrintingInfo[NoAlloc], Builtin[NoAlloc])) |
185 | return std::move(Err); |
186 | |
187 | if (Ctx.getLangOpts().CPlusPlus) { |
188 | if (llvm::Error Err = |
189 | LookupInterface(ValuePrintingInfo[WithAlloc], Builtin[WithAlloc])) |
190 | return std::move(Err); |
191 | if (llvm::Error Err = |
192 | LookupInterface(ValuePrintingInfo[CopyArray], Builtin[CopyArray])) |
193 | return std::move(Err); |
194 | if (llvm::Error Err = |
195 | LookupInterface(ValuePrintingInfo[NewTag], Builtin[NewTag])) |
196 | return std::move(Err); |
197 | } |
198 | } |
199 | |
200 | llvm::SmallVector<Expr *, 4> AdjustedArgs; |
201 | // Create parameter `ThisInterp`. |
202 | AdjustedArgs.push_back(Elt: CStyleCastPtrExpr(S, Ty: Ctx.VoidPtrTy, Ptr: (uintptr_t)this)); |
203 | |
204 | // Create parameter `OutVal`. |
205 | AdjustedArgs.push_back( |
206 | Elt: CStyleCastPtrExpr(S, Ty: Ctx.VoidPtrTy, Ptr: (uintptr_t)&LastValue)); |
207 | |
208 | // Build `__clang_Interpreter_SetValue*` call. |
209 | |
210 | // Get rid of ExprWithCleanups. |
211 | if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(Val: E)) |
212 | E = EWC->getSubExpr(); |
213 | |
214 | QualType Ty = E->getType(); |
215 | QualType DesugaredTy = Ty.getDesugaredType(Context: Ctx); |
216 | |
217 | // For lvalue struct, we treat it as a reference. |
218 | if (DesugaredTy->isRecordType() && E->isLValue()) { |
219 | DesugaredTy = Ctx.getLValueReferenceType(T: DesugaredTy); |
220 | Ty = Ctx.getLValueReferenceType(T: Ty); |
221 | } |
222 | |
223 | Expr *TypeArg = |
224 | CStyleCastPtrExpr(S, Ty: Ctx.VoidPtrTy, Ptr: (uintptr_t)Ty.getAsOpaquePtr()); |
225 | // The QualType parameter `OpaqueType`, represented as `void*`. |
226 | AdjustedArgs.push_back(Elt: TypeArg); |
227 | |
228 | // We push the last parameter based on the type of the Expr. Note we need |
229 | // special care for rvalue struct. |
230 | InterfaceKindVisitor V(S, E, AdjustedArgs); |
231 | Scope *Scope = nullptr; |
232 | ExprResult SetValueE; |
233 | InterfaceKind Kind = V.computeInterfaceKind(Ty: DesugaredTy); |
234 | switch (Kind) { |
235 | case InterfaceKind::WithAlloc: |
236 | LLVM_FALLTHROUGH; |
237 | case InterfaceKind::CopyArray: { |
238 | // __clang_Interpreter_SetValueWithAlloc. |
239 | ExprResult AllocCall = |
240 | S.ActOnCallExpr(S: Scope, Fn: ValuePrintingInfo[InterfaceKind::WithAlloc], |
241 | LParenLoc: E->getBeginLoc(), ArgExprs: AdjustedArgs, RParenLoc: E->getEndLoc()); |
242 | assert(!AllocCall.isInvalid() && "Can't create runtime interface call!" ); |
243 | |
244 | TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(T: Ty, Loc: SourceLocation()); |
245 | |
246 | // Force CodeGen to emit destructor. |
247 | if (auto *RD = Ty->getAsCXXRecordDecl()) { |
248 | auto *Dtor = S.LookupDestructor(Class: RD); |
249 | Dtor->addAttr(A: UsedAttr::CreateImplicit(Ctx)); |
250 | getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( |
251 | D: DeclGroupRef(Dtor)); |
252 | } |
253 | |
254 | // __clang_Interpreter_SetValueCopyArr. |
255 | if (Kind == InterfaceKind::CopyArray) { |
256 | const auto *ConstantArrTy = |
257 | cast<ConstantArrayType>(Val: DesugaredTy.getTypePtr()); |
258 | size_t ArrSize = Ctx.getConstantArrayElementCount(CA: ConstantArrTy); |
259 | Expr *ArrSizeExpr = IntegerLiteralExpr(C&: Ctx, Val: ArrSize); |
260 | Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; |
261 | SetValueE = |
262 | S.ActOnCallExpr(S: Scope, Fn: ValuePrintingInfo[InterfaceKind::CopyArray], |
263 | LParenLoc: SourceLocation(), ArgExprs: Args, RParenLoc: SourceLocation()); |
264 | } |
265 | Expr *Args[] = {AllocCall.get(), ValuePrintingInfo[InterfaceKind::NewTag]}; |
266 | ExprResult CXXNewCall = S.BuildCXXNew( |
267 | Range: E->getSourceRange(), |
268 | /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), PlacementArgs: Args, |
269 | /*PlacementRParen=*/SourceLocation(), |
270 | /*TypeIdParens=*/SourceRange(), AllocType: TSI->getType(), AllocTypeInfo: TSI, ArraySize: std::nullopt, |
271 | DirectInitRange: E->getSourceRange(), Initializer: E); |
272 | |
273 | assert(!CXXNewCall.isInvalid() && |
274 | "Can't create runtime placement new call!" ); |
275 | |
276 | SetValueE = S.ActOnFinishFullExpr(Expr: CXXNewCall.get(), |
277 | /*DiscardedValue=*/false); |
278 | break; |
279 | } |
280 | // __clang_Interpreter_SetValueNoAlloc. |
281 | case InterfaceKind::NoAlloc: { |
282 | SetValueE = |
283 | S.ActOnCallExpr(S: Scope, Fn: ValuePrintingInfo[InterfaceKind::NoAlloc], |
284 | LParenLoc: E->getBeginLoc(), ArgExprs: AdjustedArgs, RParenLoc: E->getEndLoc()); |
285 | break; |
286 | } |
287 | default: |
288 | llvm_unreachable("Unhandled InterfaceKind" ); |
289 | } |
290 | |
291 | // It could fail, like printing an array type in C. (not supported) |
292 | if (SetValueE.isInvalid()) |
293 | return E; |
294 | |
295 | return SetValueE.get(); |
296 | } |
297 | |
298 | } // namespace clang |
299 | |
300 | using namespace clang; |
301 | |
302 | // Temporary rvalue struct that need special care. |
303 | REPL_EXTERNAL_VISIBILITY void * |
304 | __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, |
305 | void *OpaqueType) { |
306 | Value &VRef = *(Value *)OutVal; |
307 | VRef = Value(static_cast<Interpreter *>(This), OpaqueType); |
308 | return VRef.getPtr(); |
309 | } |
310 | |
311 | extern "C" void REPL_EXTERNAL_VISIBILITY __clang_Interpreter_SetValueNoAlloc( |
312 | void *This, void *OutVal, void *OpaqueType, ...) { |
313 | Value &VRef = *(Value *)OutVal; |
314 | Interpreter *I = static_cast<Interpreter *>(This); |
315 | VRef = Value(I, OpaqueType); |
316 | if (VRef.isVoid()) |
317 | return; |
318 | |
319 | va_list args; |
320 | va_start(args, /*last named param*/ OpaqueType); |
321 | |
322 | QualType QT = VRef.getType(); |
323 | if (VRef.getKind() == Value::K_PtrOrObj) { |
324 | VRef.setPtr(va_arg(args, void *)); |
325 | } else { |
326 | if (const auto *ET = QT->getAs<EnumType>()) |
327 | QT = ET->getDecl()->getIntegerType(); |
328 | switch (QT->castAs<BuiltinType>()->getKind()) { |
329 | default: |
330 | llvm_unreachable("unknown type kind!" ); |
331 | break; |
332 | // Types shorter than int are resolved as int, else va_arg has UB. |
333 | case BuiltinType::Bool: |
334 | VRef.setBool(va_arg(args, int)); |
335 | break; |
336 | case BuiltinType::Char_S: |
337 | VRef.setChar_S(va_arg(args, int)); |
338 | break; |
339 | case BuiltinType::SChar: |
340 | VRef.setSChar(va_arg(args, int)); |
341 | break; |
342 | case BuiltinType::Char_U: |
343 | VRef.setChar_U(va_arg(args, unsigned)); |
344 | break; |
345 | case BuiltinType::UChar: |
346 | VRef.setUChar(va_arg(args, unsigned)); |
347 | break; |
348 | case BuiltinType::Short: |
349 | VRef.setShort(va_arg(args, int)); |
350 | break; |
351 | case BuiltinType::UShort: |
352 | VRef.setUShort(va_arg(args, unsigned)); |
353 | break; |
354 | case BuiltinType::Int: |
355 | VRef.setInt(va_arg(args, int)); |
356 | break; |
357 | case BuiltinType::UInt: |
358 | VRef.setUInt(va_arg(args, unsigned)); |
359 | break; |
360 | case BuiltinType::Long: |
361 | VRef.setLong(va_arg(args, long)); |
362 | break; |
363 | case BuiltinType::ULong: |
364 | VRef.setULong(va_arg(args, unsigned long)); |
365 | break; |
366 | case BuiltinType::LongLong: |
367 | VRef.setLongLong(va_arg(args, long long)); |
368 | break; |
369 | case BuiltinType::ULongLong: |
370 | VRef.setULongLong(va_arg(args, unsigned long long)); |
371 | break; |
372 | // Types shorter than double are resolved as double, else va_arg has UB. |
373 | case BuiltinType::Float: |
374 | VRef.setFloat(va_arg(args, double)); |
375 | break; |
376 | case BuiltinType::Double: |
377 | VRef.setDouble(va_arg(args, double)); |
378 | break; |
379 | case BuiltinType::LongDouble: |
380 | VRef.setLongDouble(va_arg(args, long double)); |
381 | break; |
382 | // See REPL_BUILTIN_TYPES. |
383 | } |
384 | } |
385 | va_end(args); |
386 | } |
387 | |
388 | // A trampoline to work around the fact that operator placement new cannot |
389 | // really be forward declared due to libc++ and libstdc++ declaration mismatch. |
390 | // FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same |
391 | // definition in the interpreter runtime. We should move it in a runtime header |
392 | // which gets included by the interpreter and here. |
393 | struct __clang_Interpreter_NewTag {}; |
394 | REPL_EXTERNAL_VISIBILITY void * |
395 | operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept { |
396 | // Just forward to the standard operator placement new. |
397 | return operator new(__sz, __p); |
398 | } |
399 | |