| 1 | //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the NumericLiteralParser, CharLiteralParser, and |
| 10 | // StringLiteralParser interfaces. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/Lex/LiteralSupport.h" |
| 15 | #include "clang/Basic/CharInfo.h" |
| 16 | #include "clang/Basic/LangOptions.h" |
| 17 | #include "clang/Basic/SourceLocation.h" |
| 18 | #include "clang/Basic/TargetInfo.h" |
| 19 | #include "clang/Lex/LexDiagnostic.h" |
| 20 | #include "clang/Lex/Lexer.h" |
| 21 | #include "clang/Lex/Preprocessor.h" |
| 22 | #include "clang/Lex/Token.h" |
| 23 | #include "llvm/ADT/APInt.h" |
| 24 | #include "llvm/ADT/ScopeExit.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/ADT/StringExtras.h" |
| 27 | #include "llvm/ADT/StringSwitch.h" |
| 28 | #include "llvm/Support/ConvertUTF.h" |
| 29 | #include "llvm/Support/Error.h" |
| 30 | #include "llvm/Support/ErrorHandling.h" |
| 31 | #include "llvm/Support/Unicode.h" |
| 32 | #include <algorithm> |
| 33 | #include <cassert> |
| 34 | #include <cstddef> |
| 35 | #include <cstdint> |
| 36 | #include <cstring> |
| 37 | #include <string> |
| 38 | |
| 39 | using namespace clang; |
| 40 | |
| 41 | static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { |
| 42 | switch (kind) { |
| 43 | default: llvm_unreachable("Unknown token type!" ); |
| 44 | case tok::char_constant: |
| 45 | case tok::string_literal: |
| 46 | case tok::utf8_char_constant: |
| 47 | case tok::utf8_string_literal: |
| 48 | return Target.getCharWidth(); |
| 49 | case tok::wide_char_constant: |
| 50 | case tok::wide_string_literal: |
| 51 | return Target.getWCharWidth(); |
| 52 | case tok::utf16_char_constant: |
| 53 | case tok::utf16_string_literal: |
| 54 | return Target.getChar16Width(); |
| 55 | case tok::utf32_char_constant: |
| 56 | case tok::utf32_string_literal: |
| 57 | return Target.getChar32Width(); |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | static unsigned getEncodingPrefixLen(tok::TokenKind kind) { |
| 62 | switch (kind) { |
| 63 | default: |
| 64 | llvm_unreachable("Unknown token type!" ); |
| 65 | case tok::char_constant: |
| 66 | case tok::string_literal: |
| 67 | return 0; |
| 68 | case tok::utf8_char_constant: |
| 69 | case tok::utf8_string_literal: |
| 70 | return 2; |
| 71 | case tok::wide_char_constant: |
| 72 | case tok::wide_string_literal: |
| 73 | case tok::utf16_char_constant: |
| 74 | case tok::utf16_string_literal: |
| 75 | case tok::utf32_char_constant: |
| 76 | case tok::utf32_string_literal: |
| 77 | return 1; |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | static CharSourceRange MakeCharSourceRange(const LangOptions &Features, |
| 82 | FullSourceLoc TokLoc, |
| 83 | const char *TokBegin, |
| 84 | const char *TokRangeBegin, |
| 85 | const char *TokRangeEnd) { |
| 86 | SourceLocation Begin = |
| 87 | Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: TokRangeBegin - TokBegin, |
| 88 | SM: TokLoc.getManager(), LangOpts: Features); |
| 89 | SourceLocation End = |
| 90 | Lexer::AdvanceToTokenCharacter(TokStart: Begin, Characters: TokRangeEnd - TokRangeBegin, |
| 91 | SM: TokLoc.getManager(), LangOpts: Features); |
| 92 | return CharSourceRange::getCharRange(B: Begin, E: End); |
| 93 | } |
| 94 | |
| 95 | /// Produce a diagnostic highlighting some portion of a literal. |
| 96 | /// |
| 97 | /// Emits the diagnostic \p DiagID, highlighting the range of characters from |
| 98 | /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be |
| 99 | /// a substring of a spelling buffer for the token beginning at \p TokBegin. |
| 100 | static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, |
| 101 | const LangOptions &Features, FullSourceLoc TokLoc, |
| 102 | const char *TokBegin, const char *TokRangeBegin, |
| 103 | const char *TokRangeEnd, unsigned DiagID) { |
| 104 | SourceLocation Begin = |
| 105 | Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: TokRangeBegin - TokBegin, |
| 106 | SM: TokLoc.getManager(), LangOpts: Features); |
| 107 | return Diags->Report(Loc: Begin, DiagID) << |
| 108 | MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); |
| 109 | } |
| 110 | |
| 111 | static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) { |
| 112 | switch (Escape) { |
| 113 | case '\'': |
| 114 | case '"': |
| 115 | case '?': |
| 116 | case '\\': |
| 117 | case 'a': |
| 118 | case 'b': |
| 119 | case 'f': |
| 120 | case 'n': |
| 121 | case 'r': |
| 122 | case 't': |
| 123 | case 'v': |
| 124 | return true; |
| 125 | } |
| 126 | return false; |
| 127 | } |
| 128 | |
| 129 | /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in |
| 130 | /// either a character or a string literal. |
| 131 | static unsigned ProcessCharEscape(const char *ThisTokBegin, |
| 132 | const char *&ThisTokBuf, |
| 133 | const char *ThisTokEnd, bool &HadError, |
| 134 | FullSourceLoc Loc, unsigned CharWidth, |
| 135 | DiagnosticsEngine *Diags, |
| 136 | const LangOptions &Features, |
| 137 | StringLiteralEvalMethod EvalMethod) { |
| 138 | const char *EscapeBegin = ThisTokBuf; |
| 139 | bool Delimited = false; |
| 140 | bool EndDelimiterFound = false; |
| 141 | |
| 142 | // Skip the '\' char. |
| 143 | ++ThisTokBuf; |
| 144 | |
| 145 | // We know that this character can't be off the end of the buffer, because |
| 146 | // that would have been \", which would not have been the end of string. |
| 147 | unsigned ResultChar = *ThisTokBuf++; |
| 148 | char Escape = ResultChar; |
| 149 | switch (ResultChar) { |
| 150 | // These map to themselves. |
| 151 | case '\\': case '\'': case '"': case '?': break; |
| 152 | |
| 153 | // These have fixed mappings. |
| 154 | case 'a': |
| 155 | // TODO: K&R: the meaning of '\\a' is different in traditional C |
| 156 | ResultChar = 7; |
| 157 | break; |
| 158 | case 'b': |
| 159 | ResultChar = 8; |
| 160 | break; |
| 161 | case 'e': |
| 162 | if (Diags) |
| 163 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 164 | DiagID: diag::ext_nonstandard_escape) << "e" ; |
| 165 | ResultChar = 27; |
| 166 | break; |
| 167 | case 'E': |
| 168 | if (Diags) |
| 169 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 170 | DiagID: diag::ext_nonstandard_escape) << "E" ; |
| 171 | ResultChar = 27; |
| 172 | break; |
| 173 | case 'f': |
| 174 | ResultChar = 12; |
| 175 | break; |
| 176 | case 'n': |
| 177 | ResultChar = 10; |
| 178 | break; |
| 179 | case 'r': |
| 180 | ResultChar = 13; |
| 181 | break; |
| 182 | case 't': |
| 183 | ResultChar = 9; |
| 184 | break; |
| 185 | case 'v': |
| 186 | ResultChar = 11; |
| 187 | break; |
| 188 | case 'x': { // Hex escape. |
| 189 | ResultChar = 0; |
| 190 | if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { |
| 191 | Delimited = true; |
| 192 | ThisTokBuf++; |
| 193 | if (*ThisTokBuf == '}') { |
| 194 | HadError = true; |
| 195 | if (Diags) |
| 196 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 197 | DiagID: diag::err_delimited_escape_empty); |
| 198 | } |
| 199 | } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(c: *ThisTokBuf)) { |
| 200 | if (Diags) |
| 201 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 202 | DiagID: diag::err_hex_escape_no_digits) << "x" ; |
| 203 | return ResultChar; |
| 204 | } |
| 205 | |
| 206 | // Hex escapes are a maximal series of hex digits. |
| 207 | bool Overflow = false; |
| 208 | for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { |
| 209 | if (Delimited && *ThisTokBuf == '}') { |
| 210 | ThisTokBuf++; |
| 211 | EndDelimiterFound = true; |
| 212 | break; |
| 213 | } |
| 214 | int CharVal = llvm::hexDigitValue(C: *ThisTokBuf); |
| 215 | if (CharVal == -1) { |
| 216 | // Non delimited hex escape sequences stop at the first non-hex digit. |
| 217 | if (!Delimited) |
| 218 | break; |
| 219 | HadError = true; |
| 220 | if (Diags) |
| 221 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 222 | DiagID: diag::err_delimited_escape_invalid) |
| 223 | << StringRef(ThisTokBuf, 1); |
| 224 | continue; |
| 225 | } |
| 226 | // About to shift out a digit? |
| 227 | if (ResultChar & 0xF0000000) |
| 228 | Overflow = true; |
| 229 | ResultChar <<= 4; |
| 230 | ResultChar |= CharVal; |
| 231 | } |
| 232 | // See if any bits will be truncated when evaluated as a character. |
| 233 | if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { |
| 234 | Overflow = true; |
| 235 | ResultChar &= ~0U >> (32-CharWidth); |
| 236 | } |
| 237 | |
| 238 | // Check for overflow. |
| 239 | if (!HadError && Overflow) { // Too many digits to fit in |
| 240 | HadError = true; |
| 241 | if (Diags) |
| 242 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 243 | DiagID: diag::err_escape_too_large) |
| 244 | << 0; |
| 245 | } |
| 246 | break; |
| 247 | } |
| 248 | case '0': case '1': case '2': case '3': |
| 249 | case '4': case '5': case '6': case '7': { |
| 250 | // Octal escapes. |
| 251 | --ThisTokBuf; |
| 252 | ResultChar = 0; |
| 253 | |
| 254 | // Octal escapes are a series of octal digits with maximum length 3. |
| 255 | // "\0123" is a two digit sequence equal to "\012" "3". |
| 256 | unsigned NumDigits = 0; |
| 257 | do { |
| 258 | ResultChar <<= 3; |
| 259 | ResultChar |= *ThisTokBuf++ - '0'; |
| 260 | ++NumDigits; |
| 261 | } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && |
| 262 | ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); |
| 263 | |
| 264 | // Check for overflow. Reject '\777', but not L'\777'. |
| 265 | if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { |
| 266 | if (Diags) |
| 267 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 268 | DiagID: diag::err_escape_too_large) << 1; |
| 269 | ResultChar &= ~0U >> (32-CharWidth); |
| 270 | } |
| 271 | break; |
| 272 | } |
| 273 | case 'o': { |
| 274 | bool Overflow = false; |
| 275 | if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { |
| 276 | HadError = true; |
| 277 | if (Diags) |
| 278 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 279 | DiagID: diag::err_delimited_escape_missing_brace) |
| 280 | << "o" ; |
| 281 | |
| 282 | break; |
| 283 | } |
| 284 | ResultChar = 0; |
| 285 | Delimited = true; |
| 286 | ++ThisTokBuf; |
| 287 | if (*ThisTokBuf == '}') { |
| 288 | HadError = true; |
| 289 | if (Diags) |
| 290 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 291 | DiagID: diag::err_delimited_escape_empty); |
| 292 | } |
| 293 | |
| 294 | while (ThisTokBuf != ThisTokEnd) { |
| 295 | if (*ThisTokBuf == '}') { |
| 296 | EndDelimiterFound = true; |
| 297 | ThisTokBuf++; |
| 298 | break; |
| 299 | } |
| 300 | if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { |
| 301 | HadError = true; |
| 302 | if (Diags) |
| 303 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 304 | DiagID: diag::err_delimited_escape_invalid) |
| 305 | << StringRef(ThisTokBuf, 1); |
| 306 | ThisTokBuf++; |
| 307 | continue; |
| 308 | } |
| 309 | // Check if one of the top three bits is set before shifting them out. |
| 310 | if (ResultChar & 0xE0000000) |
| 311 | Overflow = true; |
| 312 | |
| 313 | ResultChar <<= 3; |
| 314 | ResultChar |= *ThisTokBuf++ - '0'; |
| 315 | } |
| 316 | // Check for overflow. Reject '\777', but not L'\777'. |
| 317 | if (!HadError && |
| 318 | (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { |
| 319 | HadError = true; |
| 320 | if (Diags) |
| 321 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 322 | DiagID: diag::err_escape_too_large) |
| 323 | << 1; |
| 324 | ResultChar &= ~0U >> (32 - CharWidth); |
| 325 | } |
| 326 | break; |
| 327 | } |
| 328 | // Otherwise, these are not valid escapes. |
| 329 | case '(': case '{': case '[': case '%': |
| 330 | // GCC accepts these as extensions. We warn about them as such though. |
| 331 | if (Diags) |
| 332 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 333 | DiagID: diag::ext_nonstandard_escape) |
| 334 | << std::string(1, ResultChar); |
| 335 | break; |
| 336 | default: |
| 337 | if (!Diags) |
| 338 | break; |
| 339 | |
| 340 | if (isPrintable(c: ResultChar)) |
| 341 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 342 | DiagID: diag::ext_unknown_escape) |
| 343 | << std::string(1, ResultChar); |
| 344 | else |
| 345 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 346 | DiagID: diag::ext_unknown_escape) |
| 347 | << "x" + llvm::utohexstr(X: ResultChar); |
| 348 | break; |
| 349 | } |
| 350 | |
| 351 | if (Delimited && Diags) { |
| 352 | if (!EndDelimiterFound) |
| 353 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 354 | DiagID: diag::err_expected) |
| 355 | << tok::r_brace; |
| 356 | else if (!HadError) { |
| 357 | Lexer::DiagnoseDelimitedOrNamedEscapeSequence(Loc, Named: false, Opts: Features, |
| 358 | Diags&: *Diags); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | if (EvalMethod == StringLiteralEvalMethod::Unevaluated && |
| 363 | !IsEscapeValidInUnevaluatedStringLiteral(Escape)) { |
| 364 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: EscapeBegin, TokRangeEnd: ThisTokBuf, |
| 365 | DiagID: diag::err_unevaluated_string_invalid_escape_sequence) |
| 366 | << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin); |
| 367 | HadError = true; |
| 368 | } |
| 369 | |
| 370 | return ResultChar; |
| 371 | } |
| 372 | |
| 373 | static void appendCodePoint(unsigned Codepoint, |
| 374 | llvm::SmallVectorImpl<char> &Str) { |
| 375 | char ResultBuf[4]; |
| 376 | char *ResultPtr = ResultBuf; |
| 377 | if (llvm::ConvertCodePointToUTF8(Source: Codepoint, ResultPtr)) |
| 378 | Str.append(in_start: ResultBuf, in_end: ResultPtr); |
| 379 | } |
| 380 | |
| 381 | void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { |
| 382 | for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { |
| 383 | if (*I != '\\') { |
| 384 | Buf.push_back(Elt: *I); |
| 385 | continue; |
| 386 | } |
| 387 | |
| 388 | ++I; |
| 389 | char Kind = *I; |
| 390 | ++I; |
| 391 | |
| 392 | assert(Kind == 'u' || Kind == 'U' || Kind == 'N'); |
| 393 | uint32_t CodePoint = 0; |
| 394 | |
| 395 | if (Kind == 'u' && *I == '{') { |
| 396 | for (++I; *I != '}'; ++I) { |
| 397 | unsigned Value = llvm::hexDigitValue(C: *I); |
| 398 | assert(Value != -1U); |
| 399 | CodePoint <<= 4; |
| 400 | CodePoint += Value; |
| 401 | } |
| 402 | appendCodePoint(Codepoint: CodePoint, Str&: Buf); |
| 403 | continue; |
| 404 | } |
| 405 | |
| 406 | if (Kind == 'N') { |
| 407 | assert(*I == '{'); |
| 408 | ++I; |
| 409 | auto Delim = std::find(first: I, last: Input.end(), val: '}'); |
| 410 | assert(Delim != Input.end()); |
| 411 | StringRef Name(I, std::distance(first: I, last: Delim)); |
| 412 | std::optional<llvm::sys::unicode::LooseMatchingResult> Res = |
| 413 | llvm::sys::unicode::nameToCodepointLooseMatching(Name); |
| 414 | assert(Res && "could not find a codepoint that was previously found" ); |
| 415 | CodePoint = Res->CodePoint; |
| 416 | assert(CodePoint != 0xFFFFFFFF); |
| 417 | appendCodePoint(Codepoint: CodePoint, Str&: Buf); |
| 418 | I = Delim; |
| 419 | continue; |
| 420 | } |
| 421 | |
| 422 | unsigned NumHexDigits; |
| 423 | if (Kind == 'u') |
| 424 | NumHexDigits = 4; |
| 425 | else |
| 426 | NumHexDigits = 8; |
| 427 | |
| 428 | assert(I + NumHexDigits <= E); |
| 429 | |
| 430 | for (; NumHexDigits != 0; ++I, --NumHexDigits) { |
| 431 | unsigned Value = llvm::hexDigitValue(C: *I); |
| 432 | assert(Value != -1U); |
| 433 | |
| 434 | CodePoint <<= 4; |
| 435 | CodePoint += Value; |
| 436 | } |
| 437 | |
| 438 | appendCodePoint(Codepoint: CodePoint, Str&: Buf); |
| 439 | --I; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K, |
| 444 | const LangOptions &LO) { |
| 445 | return LO.MicrosoftExt && |
| 446 | (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ || |
| 447 | K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ || |
| 448 | K == tok::kw___FUNCDNAME__); |
| 449 | } |
| 450 | |
| 451 | bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) { |
| 452 | return tok::isStringLiteral(K: Tok.getKind()) || |
| 453 | isFunctionLocalStringLiteralMacro(K: Tok.getKind(), LO); |
| 454 | } |
| 455 | |
| 456 | static bool ProcessNumericUCNEscape(const char *ThisTokBegin, |
| 457 | const char *&ThisTokBuf, |
| 458 | const char *ThisTokEnd, uint32_t &UcnVal, |
| 459 | unsigned short &UcnLen, bool &Delimited, |
| 460 | FullSourceLoc Loc, DiagnosticsEngine *Diags, |
| 461 | const LangOptions &Features, |
| 462 | bool in_char_string_literal = false) { |
| 463 | const char *UcnBegin = ThisTokBuf; |
| 464 | bool HasError = false; |
| 465 | bool EndDelimiterFound = false; |
| 466 | |
| 467 | // Skip the '\u' char's. |
| 468 | ThisTokBuf += 2; |
| 469 | Delimited = false; |
| 470 | if (UcnBegin[1] == 'u' && in_char_string_literal && |
| 471 | ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { |
| 472 | Delimited = true; |
| 473 | ThisTokBuf++; |
| 474 | } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(c: *ThisTokBuf)) { |
| 475 | if (Diags) |
| 476 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 477 | DiagID: diag::err_hex_escape_no_digits) |
| 478 | << StringRef(&ThisTokBuf[-1], 1); |
| 479 | return false; |
| 480 | } |
| 481 | UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); |
| 482 | |
| 483 | bool Overflow = false; |
| 484 | unsigned short Count = 0; |
| 485 | for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); |
| 486 | ++ThisTokBuf) { |
| 487 | if (Delimited && *ThisTokBuf == '}') { |
| 488 | ++ThisTokBuf; |
| 489 | EndDelimiterFound = true; |
| 490 | break; |
| 491 | } |
| 492 | int CharVal = llvm::hexDigitValue(C: *ThisTokBuf); |
| 493 | if (CharVal == -1) { |
| 494 | HasError = true; |
| 495 | if (!Delimited) |
| 496 | break; |
| 497 | if (Diags) { |
| 498 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 499 | DiagID: diag::err_delimited_escape_invalid) |
| 500 | << StringRef(ThisTokBuf, 1); |
| 501 | } |
| 502 | Count++; |
| 503 | continue; |
| 504 | } |
| 505 | if (UcnVal & 0xF0000000) { |
| 506 | Overflow = true; |
| 507 | continue; |
| 508 | } |
| 509 | UcnVal <<= 4; |
| 510 | UcnVal |= CharVal; |
| 511 | Count++; |
| 512 | } |
| 513 | |
| 514 | if (Overflow) { |
| 515 | if (Diags) |
| 516 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 517 | DiagID: diag::err_escape_too_large) |
| 518 | << 0; |
| 519 | return false; |
| 520 | } |
| 521 | |
| 522 | if (Delimited && !EndDelimiterFound) { |
| 523 | if (Diags) { |
| 524 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 525 | DiagID: diag::err_expected) |
| 526 | << tok::r_brace; |
| 527 | } |
| 528 | return false; |
| 529 | } |
| 530 | |
| 531 | // If we didn't consume the proper number of digits, there is a problem. |
| 532 | if (Count == 0 || (!Delimited && Count != UcnLen)) { |
| 533 | if (Diags) |
| 534 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 535 | DiagID: Delimited ? diag::err_delimited_escape_empty |
| 536 | : diag::err_ucn_escape_incomplete); |
| 537 | return false; |
| 538 | } |
| 539 | return !HasError; |
| 540 | } |
| 541 | |
| 542 | static void DiagnoseInvalidUnicodeCharacterName( |
| 543 | DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, |
| 544 | const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, |
| 545 | llvm::StringRef Name) { |
| 546 | |
| 547 | Diag(Diags, Features, TokLoc: Loc, TokBegin, TokRangeBegin, TokRangeEnd, |
| 548 | DiagID: diag::err_invalid_ucn_name) |
| 549 | << Name; |
| 550 | |
| 551 | namespace u = llvm::sys::unicode; |
| 552 | |
| 553 | std::optional<u::LooseMatchingResult> Res = |
| 554 | u::nameToCodepointLooseMatching(Name); |
| 555 | if (Res) { |
| 556 | Diag(Diags, Features, TokLoc: Loc, TokBegin, TokRangeBegin, TokRangeEnd, |
| 557 | DiagID: diag::note_invalid_ucn_name_loose_matching) |
| 558 | << FixItHint::CreateReplacement( |
| 559 | RemoveRange: MakeCharSourceRange(Features, TokLoc: Loc, TokBegin, TokRangeBegin, |
| 560 | TokRangeEnd), |
| 561 | Code: Res->Name); |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | unsigned Distance = 0; |
| 566 | SmallVector<u::MatchForCodepointName> Matches = |
| 567 | u::nearestMatchesForCodepointName(Pattern: Name, MaxMatchesCount: 5); |
| 568 | assert(!Matches.empty() && "No unicode characters found" ); |
| 569 | |
| 570 | for (const auto &Match : Matches) { |
| 571 | if (Distance == 0) |
| 572 | Distance = Match.Distance; |
| 573 | if (std::max(a: Distance, b: Match.Distance) - |
| 574 | std::min(a: Distance, b: Match.Distance) > |
| 575 | 3) |
| 576 | break; |
| 577 | Distance = Match.Distance; |
| 578 | |
| 579 | std::string Str; |
| 580 | llvm::UTF32 V = Match.Value; |
| 581 | bool Converted = |
| 582 | llvm::convertUTF32ToUTF8String(Src: llvm::ArrayRef<llvm::UTF32>(&V, 1), Out&: Str); |
| 583 | (void)Converted; |
| 584 | assert(Converted && "Found a match wich is not a unicode character" ); |
| 585 | |
| 586 | Diag(Diags, Features, TokLoc: Loc, TokBegin, TokRangeBegin, TokRangeEnd, |
| 587 | DiagID: diag::note_invalid_ucn_name_candidate) |
| 588 | << Match.Name << llvm::utohexstr(X: Match.Value) |
| 589 | << Str // FIXME: Fix the rendering of non printable characters |
| 590 | << FixItHint::CreateReplacement( |
| 591 | RemoveRange: MakeCharSourceRange(Features, TokLoc: Loc, TokBegin, TokRangeBegin, |
| 592 | TokRangeEnd), |
| 593 | Code: Match.Name); |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | static bool ProcessNamedUCNEscape(const char *ThisTokBegin, |
| 598 | const char *&ThisTokBuf, |
| 599 | const char *ThisTokEnd, uint32_t &UcnVal, |
| 600 | unsigned short &UcnLen, FullSourceLoc Loc, |
| 601 | DiagnosticsEngine *Diags, |
| 602 | const LangOptions &Features) { |
| 603 | const char *UcnBegin = ThisTokBuf; |
| 604 | assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N'); |
| 605 | ThisTokBuf += 2; |
| 606 | if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { |
| 607 | if (Diags) { |
| 608 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 609 | DiagID: diag::err_delimited_escape_missing_brace) |
| 610 | << StringRef(&ThisTokBuf[-1], 1); |
| 611 | } |
| 612 | return false; |
| 613 | } |
| 614 | ThisTokBuf++; |
| 615 | const char *ClosingBrace = std::find_if(first: ThisTokBuf, last: ThisTokEnd, pred: [](char C) { |
| 616 | return C == '}' || isVerticalWhitespace(c: C); |
| 617 | }); |
| 618 | bool Incomplete = ClosingBrace == ThisTokEnd; |
| 619 | bool Empty = ClosingBrace == ThisTokBuf; |
| 620 | if (Incomplete || Empty) { |
| 621 | if (Diags) { |
| 622 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 623 | DiagID: Incomplete ? diag::err_ucn_escape_incomplete |
| 624 | : diag::err_delimited_escape_empty) |
| 625 | << StringRef(&UcnBegin[1], 1); |
| 626 | } |
| 627 | ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1; |
| 628 | return false; |
| 629 | } |
| 630 | StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf); |
| 631 | ThisTokBuf = ClosingBrace + 1; |
| 632 | std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name); |
| 633 | if (!Res) { |
| 634 | if (Diags) |
| 635 | DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, TokBegin: ThisTokBegin, |
| 636 | TokRangeBegin: &UcnBegin[3], TokRangeEnd: ClosingBrace, Name); |
| 637 | return false; |
| 638 | } |
| 639 | UcnVal = *Res; |
| 640 | UcnLen = UcnVal > 0xFFFF ? 8 : 4; |
| 641 | return true; |
| 642 | } |
| 643 | |
| 644 | /// ProcessUCNEscape - Read the Universal Character Name, check constraints and |
| 645 | /// return the UTF32. |
| 646 | static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
| 647 | const char *ThisTokEnd, uint32_t &UcnVal, |
| 648 | unsigned short &UcnLen, FullSourceLoc Loc, |
| 649 | DiagnosticsEngine *Diags, |
| 650 | const LangOptions &Features, |
| 651 | bool in_char_string_literal = false) { |
| 652 | |
| 653 | bool HasError; |
| 654 | const char *UcnBegin = ThisTokBuf; |
| 655 | bool IsDelimitedEscapeSequence = false; |
| 656 | bool IsNamedEscapeSequence = false; |
| 657 | if (ThisTokBuf[1] == 'N') { |
| 658 | IsNamedEscapeSequence = true; |
| 659 | HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, |
| 660 | UcnVal, UcnLen, Loc, Diags, Features); |
| 661 | } else { |
| 662 | HasError = |
| 663 | !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, |
| 664 | UcnLen, Delimited&: IsDelimitedEscapeSequence, Loc, Diags, |
| 665 | Features, in_char_string_literal); |
| 666 | } |
| 667 | if (HasError) |
| 668 | return false; |
| 669 | |
| 670 | // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] |
| 671 | if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints |
| 672 | UcnVal > 0x10FFFF) { // maximum legal UTF32 value |
| 673 | if (Diags) |
| 674 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 675 | DiagID: diag::err_ucn_escape_invalid); |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | // C23 and C++11 allow UCNs that refer to control characters |
| 680 | // and basic source characters inside character and string literals |
| 681 | if (UcnVal < 0xa0 && |
| 682 | // $, @, ` are allowed in all language modes |
| 683 | (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { |
| 684 | bool IsError = |
| 685 | (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal); |
| 686 | if (Diags) { |
| 687 | char BasicSCSChar = UcnVal; |
| 688 | if (UcnVal >= 0x20 && UcnVal < 0x7f) |
| 689 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 690 | DiagID: IsError ? diag::err_ucn_escape_basic_scs |
| 691 | : Features.CPlusPlus |
| 692 | ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs |
| 693 | : diag::warn_c23_compat_literal_ucn_escape_basic_scs) |
| 694 | << StringRef(&BasicSCSChar, 1); |
| 695 | else |
| 696 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 697 | DiagID: IsError ? diag::err_ucn_control_character |
| 698 | : Features.CPlusPlus |
| 699 | ? diag::warn_cxx98_compat_literal_ucn_control_character |
| 700 | : diag::warn_c23_compat_literal_ucn_control_character); |
| 701 | } |
| 702 | if (IsError) |
| 703 | return false; |
| 704 | } |
| 705 | |
| 706 | if (!Features.CPlusPlus && !Features.C99 && Diags) |
| 707 | Diag(Diags, Features, TokLoc: Loc, TokBegin: ThisTokBegin, TokRangeBegin: UcnBegin, TokRangeEnd: ThisTokBuf, |
| 708 | DiagID: diag::warn_ucn_not_valid_in_c89_literal); |
| 709 | |
| 710 | if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags) |
| 711 | Lexer::DiagnoseDelimitedOrNamedEscapeSequence(Loc, Named: IsNamedEscapeSequence, |
| 712 | Opts: Features, Diags&: *Diags); |
| 713 | return true; |
| 714 | } |
| 715 | |
| 716 | /// MeasureUCNEscape - Determine the number of bytes within the resulting string |
| 717 | /// which this UCN will occupy. |
| 718 | static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
| 719 | const char *ThisTokEnd, unsigned CharByteWidth, |
| 720 | const LangOptions &Features, bool &HadError) { |
| 721 | // UTF-32: 4 bytes per escape. |
| 722 | if (CharByteWidth == 4) |
| 723 | return 4; |
| 724 | |
| 725 | uint32_t UcnVal = 0; |
| 726 | unsigned short UcnLen = 0; |
| 727 | FullSourceLoc Loc; |
| 728 | |
| 729 | if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, |
| 730 | UcnLen, Loc, Diags: nullptr, Features, in_char_string_literal: true)) { |
| 731 | HadError = true; |
| 732 | return 0; |
| 733 | } |
| 734 | |
| 735 | // UTF-16: 2 bytes for BMP, 4 bytes otherwise. |
| 736 | if (CharByteWidth == 2) |
| 737 | return UcnVal <= 0xFFFF ? 2 : 4; |
| 738 | |
| 739 | // UTF-8. |
| 740 | if (UcnVal < 0x80) |
| 741 | return 1; |
| 742 | if (UcnVal < 0x800) |
| 743 | return 2; |
| 744 | if (UcnVal < 0x10000) |
| 745 | return 3; |
| 746 | return 4; |
| 747 | } |
| 748 | |
| 749 | /// EncodeUCNEscape - Read the Universal Character Name, check constraints and |
| 750 | /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of |
| 751 | /// StringLiteralParser. When we decide to implement UCN's for identifiers, |
| 752 | /// we will likely rework our support for UCN's. |
| 753 | static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
| 754 | const char *ThisTokEnd, |
| 755 | char *&ResultBuf, bool &HadError, |
| 756 | FullSourceLoc Loc, unsigned CharByteWidth, |
| 757 | DiagnosticsEngine *Diags, |
| 758 | const LangOptions &Features) { |
| 759 | typedef uint32_t UTF32; |
| 760 | UTF32 UcnVal = 0; |
| 761 | unsigned short UcnLen = 0; |
| 762 | if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, |
| 763 | Loc, Diags, Features, in_char_string_literal: true)) { |
| 764 | HadError = true; |
| 765 | return; |
| 766 | } |
| 767 | |
| 768 | assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && |
| 769 | "only character widths of 1, 2, or 4 bytes supported" ); |
| 770 | |
| 771 | (void)UcnLen; |
| 772 | assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported" ); |
| 773 | |
| 774 | if (CharByteWidth == 4) { |
| 775 | // FIXME: Make the type of the result buffer correct instead of |
| 776 | // using reinterpret_cast. |
| 777 | llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); |
| 778 | *ResultPtr = UcnVal; |
| 779 | ResultBuf += 4; |
| 780 | return; |
| 781 | } |
| 782 | |
| 783 | if (CharByteWidth == 2) { |
| 784 | // FIXME: Make the type of the result buffer correct instead of |
| 785 | // using reinterpret_cast. |
| 786 | llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); |
| 787 | |
| 788 | if (UcnVal <= (UTF32)0xFFFF) { |
| 789 | *ResultPtr = UcnVal; |
| 790 | ResultBuf += 2; |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | // Convert to UTF16. |
| 795 | UcnVal -= 0x10000; |
| 796 | *ResultPtr = 0xD800 + (UcnVal >> 10); |
| 797 | *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); |
| 798 | ResultBuf += 4; |
| 799 | return; |
| 800 | } |
| 801 | |
| 802 | assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters" ); |
| 803 | |
| 804 | // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. |
| 805 | // The conversion below was inspired by: |
| 806 | // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c |
| 807 | // First, we determine how many bytes the result will require. |
| 808 | typedef uint8_t UTF8; |
| 809 | |
| 810 | unsigned short bytesToWrite = 0; |
| 811 | if (UcnVal < (UTF32)0x80) |
| 812 | bytesToWrite = 1; |
| 813 | else if (UcnVal < (UTF32)0x800) |
| 814 | bytesToWrite = 2; |
| 815 | else if (UcnVal < (UTF32)0x10000) |
| 816 | bytesToWrite = 3; |
| 817 | else |
| 818 | bytesToWrite = 4; |
| 819 | |
| 820 | const unsigned byteMask = 0xBF; |
| 821 | const unsigned byteMark = 0x80; |
| 822 | |
| 823 | // Once the bits are split out into bytes of UTF8, this is a mask OR-ed |
| 824 | // into the first byte, depending on how many bytes follow. |
| 825 | static const UTF8 firstByteMark[5] = { |
| 826 | 0x00, 0x00, 0xC0, 0xE0, 0xF0 |
| 827 | }; |
| 828 | // Finally, we write the bytes into ResultBuf. |
| 829 | ResultBuf += bytesToWrite; |
| 830 | switch (bytesToWrite) { // note: everything falls through. |
| 831 | case 4: |
| 832 | *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
| 833 | [[fallthrough]]; |
| 834 | case 3: |
| 835 | *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
| 836 | [[fallthrough]]; |
| 837 | case 2: |
| 838 | *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
| 839 | [[fallthrough]]; |
| 840 | case 1: |
| 841 | *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); |
| 842 | } |
| 843 | // Update the buffer. |
| 844 | ResultBuf += bytesToWrite; |
| 845 | } |
| 846 | |
| 847 | /// integer-constant: [C99 6.4.4.1] |
| 848 | /// decimal-constant integer-suffix |
| 849 | /// octal-constant integer-suffix |
| 850 | /// hexadecimal-constant integer-suffix |
| 851 | /// binary-literal integer-suffix [GNU, C++1y] |
| 852 | /// user-defined-integer-literal: [C++11 lex.ext] |
| 853 | /// decimal-literal ud-suffix |
| 854 | /// octal-literal ud-suffix |
| 855 | /// hexadecimal-literal ud-suffix |
| 856 | /// binary-literal ud-suffix [GNU, C++1y] |
| 857 | /// decimal-constant: |
| 858 | /// nonzero-digit |
| 859 | /// decimal-constant digit |
| 860 | /// octal-constant: |
| 861 | /// 0 |
| 862 | /// octal-constant octal-digit |
| 863 | /// hexadecimal-constant: |
| 864 | /// hexadecimal-prefix hexadecimal-digit |
| 865 | /// hexadecimal-constant hexadecimal-digit |
| 866 | /// hexadecimal-prefix: one of |
| 867 | /// 0x 0X |
| 868 | /// binary-literal: |
| 869 | /// 0b binary-digit |
| 870 | /// 0B binary-digit |
| 871 | /// binary-literal binary-digit |
| 872 | /// integer-suffix: |
| 873 | /// unsigned-suffix [long-suffix] |
| 874 | /// unsigned-suffix [long-long-suffix] |
| 875 | /// long-suffix [unsigned-suffix] |
| 876 | /// long-long-suffix [unsigned-sufix] |
| 877 | /// nonzero-digit: |
| 878 | /// 1 2 3 4 5 6 7 8 9 |
| 879 | /// octal-digit: |
| 880 | /// 0 1 2 3 4 5 6 7 |
| 881 | /// hexadecimal-digit: |
| 882 | /// 0 1 2 3 4 5 6 7 8 9 |
| 883 | /// a b c d e f |
| 884 | /// A B C D E F |
| 885 | /// binary-digit: |
| 886 | /// 0 |
| 887 | /// 1 |
| 888 | /// unsigned-suffix: one of |
| 889 | /// u U |
| 890 | /// long-suffix: one of |
| 891 | /// l L |
| 892 | /// long-long-suffix: one of |
| 893 | /// ll LL |
| 894 | /// |
| 895 | /// floating-constant: [C99 6.4.4.2] |
| 896 | /// TODO: add rules... |
| 897 | /// |
| 898 | NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, |
| 899 | SourceLocation TokLoc, |
| 900 | const SourceManager &SM, |
| 901 | const LangOptions &LangOpts, |
| 902 | const TargetInfo &Target, |
| 903 | DiagnosticsEngine &Diags) |
| 904 | : SM(SM), LangOpts(LangOpts), Diags(Diags), |
| 905 | ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { |
| 906 | |
| 907 | s = DigitsBegin = ThisTokBegin; |
| 908 | saw_exponent = false; |
| 909 | saw_period = false; |
| 910 | saw_ud_suffix = false; |
| 911 | saw_fixed_point_suffix = false; |
| 912 | isLong = false; |
| 913 | isUnsigned = false; |
| 914 | isLongLong = false; |
| 915 | isSizeT = false; |
| 916 | isHalf = false; |
| 917 | isFloat = false; |
| 918 | isImaginary = false; |
| 919 | isFloat16 = false; |
| 920 | isFloat128 = false; |
| 921 | MicrosoftInteger = 0; |
| 922 | isFract = false; |
| 923 | isAccum = false; |
| 924 | hadError = false; |
| 925 | isBitInt = false; |
| 926 | |
| 927 | // This routine assumes that the range begin/end matches the regex for integer |
| 928 | // and FP constants (specifically, the 'pp-number' regex), and assumes that |
| 929 | // the byte at "*end" is both valid and not part of the regex. Because of |
| 930 | // this, it doesn't have to check for 'overscan' in various places. |
| 931 | // Note: For HLSL, the end token is allowed to be '.' which would be in the |
| 932 | // 'pp-number' regex. This is required to support vector swizzles on numeric |
| 933 | // constants (i.e. 1.xx or 1.5f.rrr). |
| 934 | if (isPreprocessingNumberBody(c: *ThisTokEnd) && |
| 935 | !(LangOpts.HLSL && *ThisTokEnd == '.')) { |
| 936 | Diags.Report(Loc: TokLoc, DiagID: diag::err_lexing_numeric); |
| 937 | hadError = true; |
| 938 | return; |
| 939 | } |
| 940 | |
| 941 | if (*s == '0') { // parse radix |
| 942 | ParseNumberStartingWithZero(TokLoc); |
| 943 | if (hadError) |
| 944 | return; |
| 945 | } else { // the first digit is non-zero |
| 946 | radix = 10; |
| 947 | s = SkipDigits(ptr: s); |
| 948 | if (s == ThisTokEnd) { |
| 949 | // Done. |
| 950 | } else { |
| 951 | ParseDecimalOrOctalCommon(TokLoc); |
| 952 | if (hadError) |
| 953 | return; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | SuffixBegin = s; |
| 958 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
| 959 | |
| 960 | // Initial scan to lookahead for fixed point suffix. |
| 961 | if (LangOpts.FixedPoint) { |
| 962 | for (const char *c = s; c != ThisTokEnd; ++c) { |
| 963 | if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { |
| 964 | saw_fixed_point_suffix = true; |
| 965 | break; |
| 966 | } |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | // Parse the suffix. At this point we can classify whether we have an FP or |
| 971 | // integer constant. |
| 972 | bool isFixedPointConstant = isFixedPointLiteral(); |
| 973 | bool isFPConstant = isFloatingLiteral(); |
| 974 | bool HasSize = false; |
| 975 | bool DoubleUnderscore = false; |
| 976 | |
| 977 | // Loop over all of the characters of the suffix. If we see something bad, |
| 978 | // we break out of the loop. |
| 979 | for (; s != ThisTokEnd; ++s) { |
| 980 | switch (*s) { |
| 981 | case 'R': |
| 982 | case 'r': |
| 983 | if (!LangOpts.FixedPoint) |
| 984 | break; |
| 985 | if (isFract || isAccum) break; |
| 986 | if (!(saw_period || saw_exponent)) break; |
| 987 | isFract = true; |
| 988 | continue; |
| 989 | case 'K': |
| 990 | case 'k': |
| 991 | if (!LangOpts.FixedPoint) |
| 992 | break; |
| 993 | if (isFract || isAccum) break; |
| 994 | if (!(saw_period || saw_exponent)) break; |
| 995 | isAccum = true; |
| 996 | continue; |
| 997 | case 'h': // FP Suffix for "half". |
| 998 | case 'H': |
| 999 | // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. |
| 1000 | if (!(LangOpts.Half || LangOpts.FixedPoint)) |
| 1001 | break; |
| 1002 | if (isIntegerLiteral()) break; // Error for integer constant. |
| 1003 | if (HasSize) |
| 1004 | break; |
| 1005 | HasSize = true; |
| 1006 | isHalf = true; |
| 1007 | continue; // Success. |
| 1008 | case 'f': // FP Suffix for "float" |
| 1009 | case 'F': |
| 1010 | if (!isFPConstant) break; // Error for integer constant. |
| 1011 | if (HasSize) |
| 1012 | break; |
| 1013 | HasSize = true; |
| 1014 | |
| 1015 | // CUDA host and device may have different _Float16 support, therefore |
| 1016 | // allows f16 literals to avoid false alarm. |
| 1017 | // When we compile for OpenMP target offloading on NVPTX, f16 suffix |
| 1018 | // should also be supported. |
| 1019 | // ToDo: more precise check for CUDA. |
| 1020 | // TODO: AMDGPU might also support it in the future. |
| 1021 | if ((Target.hasFloat16Type() || LangOpts.CUDA || |
| 1022 | (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) && |
| 1023 | s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') { |
| 1024 | s += 2; // success, eat up 2 characters. |
| 1025 | isFloat16 = true; |
| 1026 | continue; |
| 1027 | } |
| 1028 | |
| 1029 | isFloat = true; |
| 1030 | continue; // Success. |
| 1031 | case 'q': // FP Suffix for "__float128" |
| 1032 | case 'Q': |
| 1033 | if (!isFPConstant) break; // Error for integer constant. |
| 1034 | if (HasSize) |
| 1035 | break; |
| 1036 | HasSize = true; |
| 1037 | isFloat128 = true; |
| 1038 | continue; // Success. |
| 1039 | case 'u': |
| 1040 | case 'U': |
| 1041 | if (isFPConstant) break; // Error for floating constant. |
| 1042 | if (isUnsigned) break; // Cannot be repeated. |
| 1043 | isUnsigned = true; |
| 1044 | continue; // Success. |
| 1045 | case 'l': |
| 1046 | case 'L': |
| 1047 | if (HasSize) |
| 1048 | break; |
| 1049 | HasSize = true; |
| 1050 | |
| 1051 | // Check for long long. The L's need to be adjacent and the same case. |
| 1052 | if (s[1] == s[0]) { |
| 1053 | assert(s + 1 < ThisTokEnd && "didn't maximally munch?" ); |
| 1054 | if (isFPConstant) break; // long long invalid for floats. |
| 1055 | isLongLong = true; |
| 1056 | ++s; // Eat both of them. |
| 1057 | } else { |
| 1058 | isLong = true; |
| 1059 | } |
| 1060 | continue; // Success. |
| 1061 | case 'z': |
| 1062 | case 'Z': |
| 1063 | if (isFPConstant) |
| 1064 | break; // Invalid for floats. |
| 1065 | if (HasSize) |
| 1066 | break; |
| 1067 | HasSize = true; |
| 1068 | isSizeT = true; |
| 1069 | continue; |
| 1070 | case 'i': |
| 1071 | case 'I': |
| 1072 | if (LangOpts.MicrosoftExt && s + 1 < ThisTokEnd && !isFPConstant) { |
| 1073 | // Allow i8, i16, i32, i64, and i128. First, look ahead and check if |
| 1074 | // suffixes are Microsoft integers and not the imaginary unit. |
| 1075 | uint8_t Bits = 0; |
| 1076 | size_t ToSkip = 0; |
| 1077 | switch (s[1]) { |
| 1078 | case '8': // i8 suffix |
| 1079 | Bits = 8; |
| 1080 | ToSkip = 2; |
| 1081 | break; |
| 1082 | case '1': |
| 1083 | if (s + 2 < ThisTokEnd && s[2] == '6') { // i16 suffix |
| 1084 | Bits = 16; |
| 1085 | ToSkip = 3; |
| 1086 | } else if (s + 3 < ThisTokEnd && s[2] == '2' && |
| 1087 | s[3] == '8') { // i128 suffix |
| 1088 | Bits = 128; |
| 1089 | ToSkip = 4; |
| 1090 | } |
| 1091 | break; |
| 1092 | case '3': |
| 1093 | if (s + 2 < ThisTokEnd && s[2] == '2') { // i32 suffix |
| 1094 | Bits = 32; |
| 1095 | ToSkip = 3; |
| 1096 | } |
| 1097 | break; |
| 1098 | case '6': |
| 1099 | if (s + 2 < ThisTokEnd && s[2] == '4') { // i64 suffix |
| 1100 | Bits = 64; |
| 1101 | ToSkip = 3; |
| 1102 | } |
| 1103 | break; |
| 1104 | default: |
| 1105 | break; |
| 1106 | } |
| 1107 | if (Bits) { |
| 1108 | if (HasSize) |
| 1109 | break; |
| 1110 | HasSize = true; |
| 1111 | MicrosoftInteger = Bits; |
| 1112 | s += ToSkip; |
| 1113 | assert(s <= ThisTokEnd && "didn't maximally munch?" ); |
| 1114 | break; |
| 1115 | } |
| 1116 | } |
| 1117 | [[fallthrough]]; |
| 1118 | case 'j': |
| 1119 | case 'J': |
| 1120 | if (isImaginary) break; // Cannot be repeated. |
| 1121 | isImaginary = true; |
| 1122 | continue; // Success. |
| 1123 | case '_': |
| 1124 | if (isFPConstant) |
| 1125 | break; // Invalid for floats |
| 1126 | if (HasSize) |
| 1127 | break; |
| 1128 | // There is currently no way to reach this with DoubleUnderscore set. |
| 1129 | // If new double underscope literals are added handle it here as above. |
| 1130 | assert(!DoubleUnderscore && "unhandled double underscore case" ); |
| 1131 | if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd && |
| 1132 | s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists |
| 1133 | // after __ |
| 1134 | DoubleUnderscore = true; |
| 1135 | s += 2; // Skip both '_' |
| 1136 | if (s + 1 < ThisTokEnd && |
| 1137 | (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U' |
| 1138 | isUnsigned = true; |
| 1139 | ++s; |
| 1140 | } |
| 1141 | if (s + 1 < ThisTokEnd && |
| 1142 | ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) { |
| 1143 | isBitInt = true; |
| 1144 | HasSize = true; |
| 1145 | continue; |
| 1146 | } |
| 1147 | } |
| 1148 | break; |
| 1149 | case 'w': |
| 1150 | case 'W': |
| 1151 | if (isFPConstant) |
| 1152 | break; // Invalid for floats. |
| 1153 | if (HasSize) |
| 1154 | break; // Invalid if we already have a size for the literal. |
| 1155 | |
| 1156 | // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We |
| 1157 | // explicitly do not support the suffix in C++ as an extension because a |
| 1158 | // library-based UDL that resolves to a library type may be more |
| 1159 | // appropriate there. The same rules apply for __wb/__WB. |
| 1160 | if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd && |
| 1161 | ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) { |
| 1162 | isBitInt = true; |
| 1163 | HasSize = true; |
| 1164 | ++s; // Skip both characters (2nd char skipped on continue). |
| 1165 | continue; // Success. |
| 1166 | } |
| 1167 | } |
| 1168 | // If we reached here, there was an error or a ud-suffix. |
| 1169 | break; |
| 1170 | } |
| 1171 | |
| 1172 | // "i", "if", and "il" are user-defined suffixes in C++1y. |
| 1173 | if (s != ThisTokEnd || isImaginary) { |
| 1174 | // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). |
| 1175 | expandUCNs(Buf&: UDSuffixBuf, Input: StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); |
| 1176 | if (isValidUDSuffix(LangOpts, Suffix: UDSuffixBuf)) { |
| 1177 | if (!isImaginary) { |
| 1178 | // Any suffix pieces we might have parsed are actually part of the |
| 1179 | // ud-suffix. |
| 1180 | isLong = false; |
| 1181 | isUnsigned = false; |
| 1182 | isLongLong = false; |
| 1183 | isSizeT = false; |
| 1184 | isFloat = false; |
| 1185 | isFloat16 = false; |
| 1186 | isHalf = false; |
| 1187 | isImaginary = false; |
| 1188 | isBitInt = false; |
| 1189 | MicrosoftInteger = 0; |
| 1190 | saw_fixed_point_suffix = false; |
| 1191 | isFract = false; |
| 1192 | isAccum = false; |
| 1193 | } |
| 1194 | |
| 1195 | saw_ud_suffix = true; |
| 1196 | return; |
| 1197 | } |
| 1198 | |
| 1199 | if (s != ThisTokEnd) { |
| 1200 | // Report an error if there are any. |
| 1201 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter( |
| 1202 | TokStart: TokLoc, Characters: SuffixBegin - ThisTokBegin, SM, LangOpts), |
| 1203 | DiagID: diag::err_invalid_suffix_constant) |
| 1204 | << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) |
| 1205 | << (isFixedPointConstant ? 2 : isFPConstant); |
| 1206 | hadError = true; |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | if (!hadError && saw_fixed_point_suffix) { |
| 1211 | assert(isFract || isAccum); |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | /// ParseDecimalOrOctalCommon - This method is called for decimal or octal |
| 1216 | /// numbers. It issues an error for illegal digits, and handles floating point |
| 1217 | /// parsing. If it detects a floating point number, the radix is set to 10. |
| 1218 | void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ |
| 1219 | assert((radix == 8 || radix == 10) && "Unexpected radix" ); |
| 1220 | |
| 1221 | // If we have a hex digit other than 'e' (which denotes a FP exponent) then |
| 1222 | // the code is using an incorrect base. |
| 1223 | if (isHexDigit(c: *s) && *s != 'e' && *s != 'E' && |
| 1224 | !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) { |
| 1225 | Diags.Report( |
| 1226 | Loc: Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, LangOpts), |
| 1227 | DiagID: diag::err_invalid_digit) |
| 1228 | << StringRef(s, 1) << (radix == 8 ? 1 : 0); |
| 1229 | hadError = true; |
| 1230 | return; |
| 1231 | } |
| 1232 | |
| 1233 | if (*s == '.') { |
| 1234 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
| 1235 | s++; |
| 1236 | radix = 10; |
| 1237 | saw_period = true; |
| 1238 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits); |
| 1239 | s = SkipDigits(ptr: s); // Skip suffix. |
| 1240 | } |
| 1241 | if (*s == 'e' || *s == 'E') { // exponent |
| 1242 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
| 1243 | const char *Exponent = s; |
| 1244 | s++; |
| 1245 | radix = 10; |
| 1246 | saw_exponent = true; |
| 1247 | if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign |
| 1248 | const char *first_non_digit = SkipDigits(ptr: s); |
| 1249 | if (containsDigits(Start: s, End: first_non_digit)) { |
| 1250 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits); |
| 1251 | s = first_non_digit; |
| 1252 | } else { |
| 1253 | if (!hadError) { |
| 1254 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter( |
| 1255 | TokStart: TokLoc, Characters: Exponent - ThisTokBegin, SM, LangOpts), |
| 1256 | DiagID: diag::err_exponent_has_no_digits); |
| 1257 | hadError = true; |
| 1258 | } |
| 1259 | return; |
| 1260 | } |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved |
| 1265 | /// suffixes as ud-suffixes, because the diagnostic experience is better if we |
| 1266 | /// treat it as an invalid suffix. |
| 1267 | bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, |
| 1268 | StringRef Suffix) { |
| 1269 | if (!LangOpts.CPlusPlus11 || Suffix.empty()) |
| 1270 | return false; |
| 1271 | |
| 1272 | // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. |
| 1273 | // Suffixes starting with '__' (double underscore) are for use by |
| 1274 | // the implementation. |
| 1275 | if (Suffix.starts_with(Prefix: "_" ) && !Suffix.starts_with(Prefix: "__" )) |
| 1276 | return true; |
| 1277 | |
| 1278 | // In C++11, there are no library suffixes. |
| 1279 | if (!LangOpts.CPlusPlus14) |
| 1280 | return false; |
| 1281 | |
| 1282 | // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. |
| 1283 | // Per tweaked N3660, "il", "i", and "if" are also used in the library. |
| 1284 | // In C++2a "d" and "y" are used in the library. |
| 1285 | return llvm::StringSwitch<bool>(Suffix) |
| 1286 | .Cases(S0: "h" , S1: "min" , S2: "s" , Value: true) |
| 1287 | .Cases(S0: "ms" , S1: "us" , S2: "ns" , Value: true) |
| 1288 | .Cases(S0: "il" , S1: "i" , S2: "if" , Value: true) |
| 1289 | .Cases(S0: "d" , S1: "y" , Value: LangOpts.CPlusPlus20) |
| 1290 | .Default(Value: false); |
| 1291 | } |
| 1292 | |
| 1293 | void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, |
| 1294 | const char *Pos, |
| 1295 | CheckSeparatorKind IsAfterDigits) { |
| 1296 | if (IsAfterDigits == CSK_AfterDigits) { |
| 1297 | if (Pos == ThisTokBegin) |
| 1298 | return; |
| 1299 | --Pos; |
| 1300 | } else if (Pos == ThisTokEnd) |
| 1301 | return; |
| 1302 | |
| 1303 | if (isDigitSeparator(C: *Pos)) { |
| 1304 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: Pos - ThisTokBegin, SM, |
| 1305 | LangOpts), |
| 1306 | DiagID: diag::err_digit_separator_not_between_digits) |
| 1307 | << IsAfterDigits; |
| 1308 | hadError = true; |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | /// ParseNumberStartingWithZero - This method is called when the first character |
| 1313 | /// of the number is found to be a zero. This means it is either an octal |
| 1314 | /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or |
| 1315 | /// a floating point number (01239.123e4). Eat the prefix, determining the |
| 1316 | /// radix etc. |
| 1317 | void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { |
| 1318 | assert(s[0] == '0' && "Invalid method call" ); |
| 1319 | s++; |
| 1320 | |
| 1321 | int c1 = s[0]; |
| 1322 | |
| 1323 | // Handle a hex number like 0x1234. |
| 1324 | if ((c1 == 'x' || c1 == 'X') && (isHexDigit(c: s[1]) || s[1] == '.')) { |
| 1325 | s++; |
| 1326 | assert(s < ThisTokEnd && "didn't maximally munch?" ); |
| 1327 | radix = 16; |
| 1328 | DigitsBegin = s; |
| 1329 | s = SkipHexDigits(ptr: s); |
| 1330 | bool HasSignificandDigits = containsDigits(Start: DigitsBegin, End: s); |
| 1331 | if (s == ThisTokEnd) { |
| 1332 | // Done. |
| 1333 | } else if (*s == '.') { |
| 1334 | s++; |
| 1335 | saw_period = true; |
| 1336 | const char *floatDigitsBegin = s; |
| 1337 | s = SkipHexDigits(ptr: s); |
| 1338 | if (containsDigits(Start: floatDigitsBegin, End: s)) |
| 1339 | HasSignificandDigits = true; |
| 1340 | if (HasSignificandDigits) |
| 1341 | checkSeparator(TokLoc, Pos: floatDigitsBegin, IsAfterDigits: CSK_BeforeDigits); |
| 1342 | } |
| 1343 | |
| 1344 | if (!HasSignificandDigits) { |
| 1345 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, |
| 1346 | LangOpts), |
| 1347 | DiagID: diag::err_hex_constant_requires) |
| 1348 | << LangOpts.CPlusPlus << 1; |
| 1349 | hadError = true; |
| 1350 | return; |
| 1351 | } |
| 1352 | |
| 1353 | // A binary exponent can appear with or with a '.'. If dotted, the |
| 1354 | // binary exponent is required. |
| 1355 | if (*s == 'p' || *s == 'P') { |
| 1356 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_AfterDigits); |
| 1357 | const char *Exponent = s; |
| 1358 | s++; |
| 1359 | saw_exponent = true; |
| 1360 | if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign |
| 1361 | const char *first_non_digit = SkipDigits(ptr: s); |
| 1362 | if (!containsDigits(Start: s, End: first_non_digit)) { |
| 1363 | if (!hadError) { |
| 1364 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter( |
| 1365 | TokStart: TokLoc, Characters: Exponent - ThisTokBegin, SM, LangOpts), |
| 1366 | DiagID: diag::err_exponent_has_no_digits); |
| 1367 | hadError = true; |
| 1368 | } |
| 1369 | return; |
| 1370 | } |
| 1371 | checkSeparator(TokLoc, Pos: s, IsAfterDigits: CSK_BeforeDigits); |
| 1372 | s = first_non_digit; |
| 1373 | |
| 1374 | if (!LangOpts.HexFloats) |
| 1375 | Diags.Report(Loc: TokLoc, DiagID: LangOpts.CPlusPlus |
| 1376 | ? diag::ext_hex_literal_invalid |
| 1377 | : diag::ext_hex_constant_invalid); |
| 1378 | else if (LangOpts.CPlusPlus17) |
| 1379 | Diags.Report(Loc: TokLoc, DiagID: diag::warn_cxx17_hex_literal); |
| 1380 | } else if (saw_period) { |
| 1381 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, |
| 1382 | LangOpts), |
| 1383 | DiagID: diag::err_hex_constant_requires) |
| 1384 | << LangOpts.CPlusPlus << 0; |
| 1385 | hadError = true; |
| 1386 | } |
| 1387 | return; |
| 1388 | } |
| 1389 | |
| 1390 | // Handle simple binary numbers 0b01010 |
| 1391 | if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { |
| 1392 | // 0b101010 is a C++14 and C23 extension. |
| 1393 | unsigned DiagId; |
| 1394 | if (LangOpts.CPlusPlus14) |
| 1395 | DiagId = diag::warn_cxx11_compat_binary_literal; |
| 1396 | else if (LangOpts.C23) |
| 1397 | DiagId = diag::warn_c23_compat_binary_literal; |
| 1398 | else if (LangOpts.CPlusPlus) |
| 1399 | DiagId = diag::ext_binary_literal_cxx14; |
| 1400 | else |
| 1401 | DiagId = diag::ext_binary_literal; |
| 1402 | Diags.Report(Loc: TokLoc, DiagID: DiagId); |
| 1403 | ++s; |
| 1404 | assert(s < ThisTokEnd && "didn't maximally munch?" ); |
| 1405 | radix = 2; |
| 1406 | DigitsBegin = s; |
| 1407 | s = SkipBinaryDigits(ptr: s); |
| 1408 | if (s == ThisTokEnd) { |
| 1409 | // Done. |
| 1410 | } else if (isHexDigit(c: *s) && |
| 1411 | !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) { |
| 1412 | Diags.Report(Loc: Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: s - ThisTokBegin, SM, |
| 1413 | LangOpts), |
| 1414 | DiagID: diag::err_invalid_digit) |
| 1415 | << StringRef(s, 1) << 2; |
| 1416 | hadError = true; |
| 1417 | } |
| 1418 | // Other suffixes will be diagnosed by the caller. |
| 1419 | return; |
| 1420 | } |
| 1421 | |
| 1422 | // Parse a potential octal literal prefix. |
| 1423 | bool IsSingleZero = false; |
| 1424 | if ((c1 == 'O' || c1 == 'o') && (s[1] >= '0' && s[1] <= '7')) { |
| 1425 | unsigned DiagId; |
| 1426 | if (LangOpts.C2y) |
| 1427 | DiagId = diag::warn_c2y_compat_octal_literal; |
| 1428 | else if (LangOpts.CPlusPlus) |
| 1429 | DiagId = diag::ext_cpp_octal_literal; |
| 1430 | else |
| 1431 | DiagId = diag::ext_octal_literal; |
| 1432 | Diags.Report(Loc: TokLoc, DiagID: DiagId); |
| 1433 | ++s; |
| 1434 | DigitsBegin = s; |
| 1435 | radix = 8; |
| 1436 | s = SkipOctalDigits(ptr: s); |
| 1437 | if (s == ThisTokEnd) { |
| 1438 | // Done |
| 1439 | } else if ((isHexDigit(c: *s) && *s != 'e' && *s != 'E' && *s != '.') && |
| 1440 | !isValidUDSuffix(LangOpts, Suffix: StringRef(s, ThisTokEnd - s))) { |
| 1441 | auto InvalidDigitLoc = Lexer::AdvanceToTokenCharacter( |
| 1442 | TokStart: TokLoc, Characters: s - ThisTokBegin, SM, LangOpts); |
| 1443 | Diags.Report(Loc: InvalidDigitLoc, DiagID: diag::err_invalid_digit) |
| 1444 | << StringRef(s, 1) << 1; |
| 1445 | hadError = true; |
| 1446 | } |
| 1447 | // Other suffixes will be diagnosed by the caller. |
| 1448 | return; |
| 1449 | } |
| 1450 | |
| 1451 | auto _ = llvm::make_scope_exit(F: [&] { |
| 1452 | // If we still have an octal value but we did not see an octal prefix, |
| 1453 | // diagnose as being an obsolescent feature starting in C2y. |
| 1454 | if (radix == 8 && LangOpts.C2y && !hadError && !IsSingleZero) |
| 1455 | Diags.Report(Loc: TokLoc, DiagID: diag::warn_unprefixed_octal_deprecated); |
| 1456 | }); |
| 1457 | |
| 1458 | // For now, the radix is set to 8. If we discover that we have a |
| 1459 | // floating point constant, the radix will change to 10. Octal floating |
| 1460 | // point constants are not permitted (only decimal and hexadecimal). |
| 1461 | radix = 8; |
| 1462 | const char *PossibleNewDigitStart = s; |
| 1463 | s = SkipOctalDigits(ptr: s); |
| 1464 | // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 |
| 1465 | // as the start of the digits. So if skipping octal digits does not skip |
| 1466 | // anything, we leave the digit start where it was. |
| 1467 | if (s != PossibleNewDigitStart) |
| 1468 | DigitsBegin = PossibleNewDigitStart; |
| 1469 | else |
| 1470 | IsSingleZero = (s == ThisTokEnd); // Is the only thing we've seen a 0? |
| 1471 | |
| 1472 | if (s == ThisTokEnd) |
| 1473 | return; // Done, simple octal number like 01234 |
| 1474 | |
| 1475 | // If we have some other non-octal digit that *is* a decimal digit, see if |
| 1476 | // this is part of a floating point number like 094.123 or 09e1. |
| 1477 | if (isDigit(c: *s)) { |
| 1478 | const char *EndDecimal = SkipDigits(ptr: s); |
| 1479 | if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { |
| 1480 | s = EndDecimal; |
| 1481 | radix = 10; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | ParseDecimalOrOctalCommon(TokLoc); |
| 1486 | } |
| 1487 | |
| 1488 | static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { |
| 1489 | switch (Radix) { |
| 1490 | case 2: |
| 1491 | return NumDigits <= 64; |
| 1492 | case 8: |
| 1493 | return NumDigits <= 64 / 3; // Digits are groups of 3 bits. |
| 1494 | case 10: |
| 1495 | return NumDigits <= 19; // floor(log10(2^64)) |
| 1496 | case 16: |
| 1497 | return NumDigits <= 64 / 4; // Digits are groups of 4 bits. |
| 1498 | default: |
| 1499 | llvm_unreachable("impossible Radix" ); |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | /// GetIntegerValue - Convert this numeric literal value to an APInt that |
| 1504 | /// matches Val's input width. If there is an overflow, set Val to the low bits |
| 1505 | /// of the result and return true. Otherwise, return false. |
| 1506 | bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { |
| 1507 | // Fast path: Compute a conservative bound on the maximum number of |
| 1508 | // bits per digit in this radix. If we can't possibly overflow a |
| 1509 | // uint64 based on that bound then do the simple conversion to |
| 1510 | // integer. This avoids the expensive overflow checking below, and |
| 1511 | // handles the common cases that matter (small decimal integers and |
| 1512 | // hex/octal values which don't overflow). |
| 1513 | const unsigned NumDigits = SuffixBegin - DigitsBegin; |
| 1514 | if (alwaysFitsInto64Bits(Radix: radix, NumDigits)) { |
| 1515 | uint64_t N = 0; |
| 1516 | for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) |
| 1517 | if (!isDigitSeparator(C: *Ptr)) |
| 1518 | N = N * radix + llvm::hexDigitValue(C: *Ptr); |
| 1519 | |
| 1520 | // This will truncate the value to Val's input width. Simply check |
| 1521 | // for overflow by comparing. |
| 1522 | Val = N; |
| 1523 | return Val.getZExtValue() != N; |
| 1524 | } |
| 1525 | |
| 1526 | Val = 0; |
| 1527 | const char *Ptr = DigitsBegin; |
| 1528 | |
| 1529 | llvm::APInt RadixVal(Val.getBitWidth(), radix); |
| 1530 | llvm::APInt CharVal(Val.getBitWidth(), 0); |
| 1531 | llvm::APInt OldVal = Val; |
| 1532 | |
| 1533 | bool OverflowOccurred = false; |
| 1534 | while (Ptr < SuffixBegin) { |
| 1535 | if (isDigitSeparator(C: *Ptr)) { |
| 1536 | ++Ptr; |
| 1537 | continue; |
| 1538 | } |
| 1539 | |
| 1540 | unsigned C = llvm::hexDigitValue(C: *Ptr++); |
| 1541 | |
| 1542 | // If this letter is out of bound for this radix, reject it. |
| 1543 | assert(C < radix && "NumericLiteralParser ctor should have rejected this" ); |
| 1544 | |
| 1545 | CharVal = C; |
| 1546 | |
| 1547 | // Add the digit to the value in the appropriate radix. If adding in digits |
| 1548 | // made the value smaller, then this overflowed. |
| 1549 | OldVal = Val; |
| 1550 | |
| 1551 | // Multiply by radix, did overflow occur on the multiply? |
| 1552 | Val *= RadixVal; |
| 1553 | OverflowOccurred |= Val.udiv(RHS: RadixVal) != OldVal; |
| 1554 | |
| 1555 | // Add value, did overflow occur on the value? |
| 1556 | // (a + b) ult b <=> overflow |
| 1557 | Val += CharVal; |
| 1558 | OverflowOccurred |= Val.ult(RHS: CharVal); |
| 1559 | } |
| 1560 | return OverflowOccurred; |
| 1561 | } |
| 1562 | |
| 1563 | llvm::APFloat::opStatus |
| 1564 | NumericLiteralParser::GetFloatValue(llvm::APFloat &Result, |
| 1565 | llvm::RoundingMode RM) { |
| 1566 | using llvm::APFloat; |
| 1567 | |
| 1568 | unsigned n = std::min(a: SuffixBegin - ThisTokBegin, b: ThisTokEnd - ThisTokBegin); |
| 1569 | |
| 1570 | llvm::SmallString<16> Buffer; |
| 1571 | StringRef Str(ThisTokBegin, n); |
| 1572 | if (Str.contains(C: '\'')) { |
| 1573 | Buffer.reserve(N: n); |
| 1574 | std::remove_copy_if(first: Str.begin(), last: Str.end(), result: std::back_inserter(x&: Buffer), |
| 1575 | pred: &isDigitSeparator); |
| 1576 | Str = Buffer; |
| 1577 | } |
| 1578 | |
| 1579 | auto StatusOrErr = Result.convertFromString(Str, RM); |
| 1580 | assert(StatusOrErr && "Invalid floating point representation" ); |
| 1581 | return !errorToBool(Err: StatusOrErr.takeError()) ? *StatusOrErr |
| 1582 | : APFloat::opInvalidOp; |
| 1583 | } |
| 1584 | |
| 1585 | static inline bool IsExponentPart(char c, bool isHex) { |
| 1586 | if (isHex) |
| 1587 | return c == 'p' || c == 'P'; |
| 1588 | return c == 'e' || c == 'E'; |
| 1589 | } |
| 1590 | |
| 1591 | bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { |
| 1592 | assert(radix == 16 || radix == 10); |
| 1593 | |
| 1594 | // Find how many digits are needed to store the whole literal. |
| 1595 | unsigned NumDigits = SuffixBegin - DigitsBegin; |
| 1596 | if (saw_period) --NumDigits; |
| 1597 | |
| 1598 | // Initial scan of the exponent if it exists |
| 1599 | bool ExpOverflowOccurred = false; |
| 1600 | bool NegativeExponent = false; |
| 1601 | const char *ExponentBegin; |
| 1602 | uint64_t Exponent = 0; |
| 1603 | int64_t BaseShift = 0; |
| 1604 | if (saw_exponent) { |
| 1605 | const char *Ptr = DigitsBegin; |
| 1606 | |
| 1607 | while (!IsExponentPart(c: *Ptr, isHex: radix == 16)) |
| 1608 | ++Ptr; |
| 1609 | ExponentBegin = Ptr; |
| 1610 | ++Ptr; |
| 1611 | NegativeExponent = *Ptr == '-'; |
| 1612 | if (NegativeExponent) ++Ptr; |
| 1613 | |
| 1614 | unsigned NumExpDigits = SuffixBegin - Ptr; |
| 1615 | if (alwaysFitsInto64Bits(Radix: radix, NumDigits: NumExpDigits)) { |
| 1616 | llvm::StringRef ExpStr(Ptr, NumExpDigits); |
| 1617 | llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); |
| 1618 | Exponent = ExpInt.getZExtValue(); |
| 1619 | } else { |
| 1620 | ExpOverflowOccurred = true; |
| 1621 | } |
| 1622 | |
| 1623 | if (NegativeExponent) BaseShift -= Exponent; |
| 1624 | else BaseShift += Exponent; |
| 1625 | } |
| 1626 | |
| 1627 | // Number of bits needed for decimal literal is |
| 1628 | // ceil(NumDigits * log2(10)) Integral part |
| 1629 | // + Scale Fractional part |
| 1630 | // + ceil(Exponent * log2(10)) Exponent |
| 1631 | // -------------------------------------------------- |
| 1632 | // ceil((NumDigits + Exponent) * log2(10)) + Scale |
| 1633 | // |
| 1634 | // But for simplicity in handling integers, we can round up log2(10) to 4, |
| 1635 | // making: |
| 1636 | // 4 * (NumDigits + Exponent) + Scale |
| 1637 | // |
| 1638 | // Number of digits needed for hexadecimal literal is |
| 1639 | // 4 * NumDigits Integral part |
| 1640 | // + Scale Fractional part |
| 1641 | // + Exponent Exponent |
| 1642 | // -------------------------------------------------- |
| 1643 | // (4 * NumDigits) + Scale + Exponent |
| 1644 | uint64_t NumBitsNeeded; |
| 1645 | if (radix == 10) |
| 1646 | NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; |
| 1647 | else |
| 1648 | NumBitsNeeded = 4 * NumDigits + Exponent + Scale; |
| 1649 | |
| 1650 | if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) |
| 1651 | ExpOverflowOccurred = true; |
| 1652 | llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); |
| 1653 | |
| 1654 | bool FoundDecimal = false; |
| 1655 | |
| 1656 | int64_t FractBaseShift = 0; |
| 1657 | const char *End = saw_exponent ? ExponentBegin : SuffixBegin; |
| 1658 | for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { |
| 1659 | if (*Ptr == '.') { |
| 1660 | FoundDecimal = true; |
| 1661 | continue; |
| 1662 | } |
| 1663 | |
| 1664 | // Normal reading of an integer |
| 1665 | unsigned C = llvm::hexDigitValue(C: *Ptr); |
| 1666 | assert(C < radix && "NumericLiteralParser ctor should have rejected this" ); |
| 1667 | |
| 1668 | Val *= radix; |
| 1669 | Val += C; |
| 1670 | |
| 1671 | if (FoundDecimal) |
| 1672 | // Keep track of how much we will need to adjust this value by from the |
| 1673 | // number of digits past the radix point. |
| 1674 | --FractBaseShift; |
| 1675 | } |
| 1676 | |
| 1677 | // For a radix of 16, we will be multiplying by 2 instead of 16. |
| 1678 | if (radix == 16) FractBaseShift *= 4; |
| 1679 | BaseShift += FractBaseShift; |
| 1680 | |
| 1681 | Val <<= Scale; |
| 1682 | |
| 1683 | uint64_t Base = (radix == 16) ? 2 : 10; |
| 1684 | if (BaseShift > 0) { |
| 1685 | for (int64_t i = 0; i < BaseShift; ++i) { |
| 1686 | Val *= Base; |
| 1687 | } |
| 1688 | } else if (BaseShift < 0) { |
| 1689 | for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) |
| 1690 | Val = Val.udiv(RHS: Base); |
| 1691 | } |
| 1692 | |
| 1693 | bool IntOverflowOccurred = false; |
| 1694 | auto MaxVal = llvm::APInt::getMaxValue(numBits: StoreVal.getBitWidth()); |
| 1695 | if (Val.getBitWidth() > StoreVal.getBitWidth()) { |
| 1696 | IntOverflowOccurred |= Val.ugt(RHS: MaxVal.zext(width: Val.getBitWidth())); |
| 1697 | StoreVal = Val.trunc(width: StoreVal.getBitWidth()); |
| 1698 | } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { |
| 1699 | IntOverflowOccurred |= Val.zext(width: MaxVal.getBitWidth()).ugt(RHS: MaxVal); |
| 1700 | StoreVal = Val.zext(width: StoreVal.getBitWidth()); |
| 1701 | } else { |
| 1702 | StoreVal = Val; |
| 1703 | } |
| 1704 | |
| 1705 | return IntOverflowOccurred || ExpOverflowOccurred; |
| 1706 | } |
| 1707 | |
| 1708 | /// \verbatim |
| 1709 | /// user-defined-character-literal: [C++11 lex.ext] |
| 1710 | /// character-literal ud-suffix |
| 1711 | /// ud-suffix: |
| 1712 | /// identifier |
| 1713 | /// character-literal: [C++11 lex.ccon] |
| 1714 | /// ' c-char-sequence ' |
| 1715 | /// u' c-char-sequence ' |
| 1716 | /// U' c-char-sequence ' |
| 1717 | /// L' c-char-sequence ' |
| 1718 | /// u8' c-char-sequence ' [C++1z lex.ccon] |
| 1719 | /// c-char-sequence: |
| 1720 | /// c-char |
| 1721 | /// c-char-sequence c-char |
| 1722 | /// c-char: |
| 1723 | /// any member of the source character set except the single-quote ', |
| 1724 | /// backslash \, or new-line character |
| 1725 | /// escape-sequence |
| 1726 | /// universal-character-name |
| 1727 | /// escape-sequence: |
| 1728 | /// simple-escape-sequence |
| 1729 | /// octal-escape-sequence |
| 1730 | /// hexadecimal-escape-sequence |
| 1731 | /// simple-escape-sequence: |
| 1732 | /// one of \' \" \? \\ \a \b \f \n \r \t \v |
| 1733 | /// octal-escape-sequence: |
| 1734 | /// \ octal-digit |
| 1735 | /// \ octal-digit octal-digit |
| 1736 | /// \ octal-digit octal-digit octal-digit |
| 1737 | /// hexadecimal-escape-sequence: |
| 1738 | /// \x hexadecimal-digit |
| 1739 | /// hexadecimal-escape-sequence hexadecimal-digit |
| 1740 | /// universal-character-name: [C++11 lex.charset] |
| 1741 | /// \u hex-quad |
| 1742 | /// \U hex-quad hex-quad |
| 1743 | /// hex-quad: |
| 1744 | /// hex-digit hex-digit hex-digit hex-digit |
| 1745 | /// \endverbatim |
| 1746 | /// |
| 1747 | CharLiteralParser::CharLiteralParser(const char *begin, const char *end, |
| 1748 | SourceLocation Loc, Preprocessor &PP, |
| 1749 | tok::TokenKind kind) { |
| 1750 | // At this point we know that the character matches the regex "(L|u|U)?'.*'". |
| 1751 | HadError = false; |
| 1752 | |
| 1753 | Kind = kind; |
| 1754 | |
| 1755 | const char *TokBegin = begin; |
| 1756 | |
| 1757 | // Skip over wide character determinant. |
| 1758 | if (Kind != tok::char_constant) |
| 1759 | ++begin; |
| 1760 | if (Kind == tok::utf8_char_constant) |
| 1761 | ++begin; |
| 1762 | |
| 1763 | // Skip over the entry quote. |
| 1764 | if (begin[0] != '\'') { |
| 1765 | PP.Diag(Loc, DiagID: diag::err_lexing_char); |
| 1766 | HadError = true; |
| 1767 | return; |
| 1768 | } |
| 1769 | |
| 1770 | ++begin; |
| 1771 | |
| 1772 | // Remove an optional ud-suffix. |
| 1773 | if (end[-1] != '\'') { |
| 1774 | const char *UDSuffixEnd = end; |
| 1775 | do { |
| 1776 | --end; |
| 1777 | } while (end[-1] != '\''); |
| 1778 | // FIXME: Don't bother with this if !tok.hasUCN(). |
| 1779 | expandUCNs(Buf&: UDSuffixBuf, Input: StringRef(end, UDSuffixEnd - end)); |
| 1780 | UDSuffixOffset = end - TokBegin; |
| 1781 | } |
| 1782 | |
| 1783 | // Trim the ending quote. |
| 1784 | assert(end != begin && "Invalid token lexed" ); |
| 1785 | --end; |
| 1786 | |
| 1787 | // FIXME: The "Value" is an uint64_t so we can handle char literals of |
| 1788 | // up to 64-bits. |
| 1789 | // FIXME: This extensively assumes that 'char' is 8-bits. |
| 1790 | assert(PP.getTargetInfo().getCharWidth() == 8 && |
| 1791 | "Assumes char is 8 bits" ); |
| 1792 | assert(PP.getTargetInfo().getIntWidth() <= 64 && |
| 1793 | (PP.getTargetInfo().getIntWidth() & 7) == 0 && |
| 1794 | "Assumes sizeof(int) on target is <= 64 and a multiple of char" ); |
| 1795 | assert(PP.getTargetInfo().getWCharWidth() <= 64 && |
| 1796 | "Assumes sizeof(wchar) on target is <= 64" ); |
| 1797 | |
| 1798 | SmallVector<uint32_t, 4> codepoint_buffer; |
| 1799 | codepoint_buffer.resize(N: end - begin); |
| 1800 | uint32_t *buffer_begin = &codepoint_buffer.front(); |
| 1801 | uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); |
| 1802 | |
| 1803 | // Unicode escapes representing characters that cannot be correctly |
| 1804 | // represented in a single code unit are disallowed in character literals |
| 1805 | // by this implementation. |
| 1806 | uint32_t largest_character_for_kind; |
| 1807 | if (tok::wide_char_constant == Kind) { |
| 1808 | largest_character_for_kind = |
| 1809 | 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); |
| 1810 | } else if (tok::utf8_char_constant == Kind) { |
| 1811 | largest_character_for_kind = 0x7F; |
| 1812 | } else if (tok::utf16_char_constant == Kind) { |
| 1813 | largest_character_for_kind = 0xFFFF; |
| 1814 | } else if (tok::utf32_char_constant == Kind) { |
| 1815 | largest_character_for_kind = 0x10FFFF; |
| 1816 | } else { |
| 1817 | largest_character_for_kind = 0x7Fu; |
| 1818 | } |
| 1819 | |
| 1820 | while (begin != end) { |
| 1821 | // Is this a span of non-escape characters? |
| 1822 | if (begin[0] != '\\') { |
| 1823 | char const *start = begin; |
| 1824 | do { |
| 1825 | ++begin; |
| 1826 | } while (begin != end && *begin != '\\'); |
| 1827 | |
| 1828 | char const *tmp_in_start = start; |
| 1829 | uint32_t *tmp_out_start = buffer_begin; |
| 1830 | llvm::ConversionResult res = |
| 1831 | llvm::ConvertUTF8toUTF32(sourceStart: reinterpret_cast<llvm::UTF8 const **>(&start), |
| 1832 | sourceEnd: reinterpret_cast<llvm::UTF8 const *>(begin), |
| 1833 | targetStart: &buffer_begin, targetEnd: buffer_end, flags: llvm::strictConversion); |
| 1834 | if (res != llvm::conversionOK) { |
| 1835 | // If we see bad encoding for unprefixed character literals, warn and |
| 1836 | // simply copy the byte values, for compatibility with gcc and |
| 1837 | // older versions of clang. |
| 1838 | bool NoErrorOnBadEncoding = isOrdinary(); |
| 1839 | unsigned Msg = diag::err_bad_character_encoding; |
| 1840 | if (NoErrorOnBadEncoding) |
| 1841 | Msg = diag::warn_bad_character_encoding; |
| 1842 | PP.Diag(Loc, DiagID: Msg); |
| 1843 | if (NoErrorOnBadEncoding) { |
| 1844 | start = tmp_in_start; |
| 1845 | buffer_begin = tmp_out_start; |
| 1846 | for (; start != begin; ++start, ++buffer_begin) |
| 1847 | *buffer_begin = static_cast<uint8_t>(*start); |
| 1848 | } else { |
| 1849 | HadError = true; |
| 1850 | } |
| 1851 | } else { |
| 1852 | for (; tmp_out_start < buffer_begin; ++tmp_out_start) { |
| 1853 | if (*tmp_out_start > largest_character_for_kind) { |
| 1854 | HadError = true; |
| 1855 | PP.Diag(Loc, DiagID: diag::err_character_too_large); |
| 1856 | } |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | continue; |
| 1861 | } |
| 1862 | // Is this a Universal Character Name escape? |
| 1863 | if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') { |
| 1864 | unsigned short UcnLen = 0; |
| 1865 | if (!ProcessUCNEscape(ThisTokBegin: TokBegin, ThisTokBuf&: begin, ThisTokEnd: end, UcnVal&: *buffer_begin, UcnLen, |
| 1866 | Loc: FullSourceLoc(Loc, PP.getSourceManager()), |
| 1867 | Diags: &PP.getDiagnostics(), Features: PP.getLangOpts(), in_char_string_literal: true)) { |
| 1868 | HadError = true; |
| 1869 | } else if (*buffer_begin > largest_character_for_kind) { |
| 1870 | HadError = true; |
| 1871 | PP.Diag(Loc, DiagID: diag::err_character_too_large); |
| 1872 | } |
| 1873 | |
| 1874 | ++buffer_begin; |
| 1875 | continue; |
| 1876 | } |
| 1877 | unsigned CharWidth = getCharWidth(kind: Kind, Target: PP.getTargetInfo()); |
| 1878 | uint64_t result = |
| 1879 | ProcessCharEscape(ThisTokBegin: TokBegin, ThisTokBuf&: begin, ThisTokEnd: end, HadError, |
| 1880 | Loc: FullSourceLoc(Loc, PP.getSourceManager()), CharWidth, |
| 1881 | Diags: &PP.getDiagnostics(), Features: PP.getLangOpts(), |
| 1882 | EvalMethod: StringLiteralEvalMethod::Evaluated); |
| 1883 | *buffer_begin++ = result; |
| 1884 | } |
| 1885 | |
| 1886 | unsigned = buffer_begin - &codepoint_buffer.front(); |
| 1887 | |
| 1888 | if (NumCharsSoFar > 1) { |
| 1889 | if (isOrdinary() && NumCharsSoFar == 4) |
| 1890 | PP.Diag(Loc, DiagID: diag::warn_four_char_character_literal); |
| 1891 | else if (isOrdinary()) |
| 1892 | PP.Diag(Loc, DiagID: diag::warn_multichar_character_literal); |
| 1893 | else { |
| 1894 | PP.Diag(Loc, DiagID: diag::err_multichar_character_literal) << (isWide() ? 0 : 1); |
| 1895 | HadError = true; |
| 1896 | } |
| 1897 | IsMultiChar = true; |
| 1898 | } else { |
| 1899 | IsMultiChar = false; |
| 1900 | } |
| 1901 | |
| 1902 | llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); |
| 1903 | |
| 1904 | // Narrow character literals act as though their value is concatenated |
| 1905 | // in this implementation, but warn on overflow. |
| 1906 | bool multi_char_too_long = false; |
| 1907 | if (isOrdinary() && isMultiChar()) { |
| 1908 | LitVal = 0; |
| 1909 | for (size_t i = 0; i < NumCharsSoFar; ++i) { |
| 1910 | // check for enough leading zeros to shift into |
| 1911 | multi_char_too_long |= (LitVal.countl_zero() < 8); |
| 1912 | LitVal <<= 8; |
| 1913 | LitVal = LitVal + (codepoint_buffer[i] & 0xFF); |
| 1914 | } |
| 1915 | } else if (NumCharsSoFar > 0) { |
| 1916 | // otherwise just take the last character |
| 1917 | LitVal = buffer_begin[-1]; |
| 1918 | } |
| 1919 | |
| 1920 | if (!HadError && multi_char_too_long) { |
| 1921 | PP.Diag(Loc, DiagID: diag::warn_char_constant_too_large); |
| 1922 | } |
| 1923 | |
| 1924 | // Transfer the value from APInt to uint64_t |
| 1925 | Value = LitVal.getZExtValue(); |
| 1926 | |
| 1927 | // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") |
| 1928 | // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple |
| 1929 | // character constants are not sign extended in the this implementation: |
| 1930 | // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. |
| 1931 | if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) && |
| 1932 | PP.getLangOpts().CharIsSigned) |
| 1933 | Value = (signed char)Value; |
| 1934 | } |
| 1935 | |
| 1936 | /// \verbatim |
| 1937 | /// string-literal: [C++0x lex.string] |
| 1938 | /// encoding-prefix " [s-char-sequence] " |
| 1939 | /// encoding-prefix R raw-string |
| 1940 | /// encoding-prefix: |
| 1941 | /// u8 |
| 1942 | /// u |
| 1943 | /// U |
| 1944 | /// L |
| 1945 | /// s-char-sequence: |
| 1946 | /// s-char |
| 1947 | /// s-char-sequence s-char |
| 1948 | /// s-char: |
| 1949 | /// any member of the source character set except the double-quote ", |
| 1950 | /// backslash \, or new-line character |
| 1951 | /// escape-sequence |
| 1952 | /// universal-character-name |
| 1953 | /// raw-string: |
| 1954 | /// " d-char-sequence ( r-char-sequence ) d-char-sequence " |
| 1955 | /// r-char-sequence: |
| 1956 | /// r-char |
| 1957 | /// r-char-sequence r-char |
| 1958 | /// r-char: |
| 1959 | /// any member of the source character set, except a right parenthesis ) |
| 1960 | /// followed by the initial d-char-sequence (which may be empty) |
| 1961 | /// followed by a double quote ". |
| 1962 | /// d-char-sequence: |
| 1963 | /// d-char |
| 1964 | /// d-char-sequence d-char |
| 1965 | /// d-char: |
| 1966 | /// any member of the basic source character set except: |
| 1967 | /// space, the left parenthesis (, the right parenthesis ), |
| 1968 | /// the backslash \, and the control characters representing horizontal |
| 1969 | /// tab, vertical tab, form feed, and newline. |
| 1970 | /// escape-sequence: [C++0x lex.ccon] |
| 1971 | /// simple-escape-sequence |
| 1972 | /// octal-escape-sequence |
| 1973 | /// hexadecimal-escape-sequence |
| 1974 | /// simple-escape-sequence: |
| 1975 | /// one of \' \" \? \\ \a \b \f \n \r \t \v |
| 1976 | /// octal-escape-sequence: |
| 1977 | /// \ octal-digit |
| 1978 | /// \ octal-digit octal-digit |
| 1979 | /// \ octal-digit octal-digit octal-digit |
| 1980 | /// hexadecimal-escape-sequence: |
| 1981 | /// \x hexadecimal-digit |
| 1982 | /// hexadecimal-escape-sequence hexadecimal-digit |
| 1983 | /// universal-character-name: |
| 1984 | /// \u hex-quad |
| 1985 | /// \U hex-quad hex-quad |
| 1986 | /// hex-quad: |
| 1987 | /// hex-digit hex-digit hex-digit hex-digit |
| 1988 | /// \endverbatim |
| 1989 | /// |
| 1990 | StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks, |
| 1991 | Preprocessor &PP, |
| 1992 | StringLiteralEvalMethod EvalMethod) |
| 1993 | : SM(PP.getSourceManager()), Features(PP.getLangOpts()), |
| 1994 | Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), |
| 1995 | MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), |
| 1996 | ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false), |
| 1997 | Pascal(false) { |
| 1998 | init(StringToks); |
| 1999 | } |
| 2000 | |
| 2001 | void StringLiteralParser::init(ArrayRef<Token> StringToks){ |
| 2002 | // The literal token may have come from an invalid source location (e.g. due |
| 2003 | // to a PCH error), in which case the token length will be 0. |
| 2004 | if (StringToks.empty() || StringToks[0].getLength() < 2) |
| 2005 | return DiagnoseLexingError(Loc: SourceLocation()); |
| 2006 | |
| 2007 | // Scan all of the string portions, remember the max individual token length, |
| 2008 | // computing a bound on the concatenated string length, and see whether any |
| 2009 | // piece is a wide-string. If any of the string portions is a wide-string |
| 2010 | // literal, the result is a wide-string literal [C99 6.4.5p4]. |
| 2011 | assert(!StringToks.empty() && "expected at least one token" ); |
| 2012 | MaxTokenLength = StringToks[0].getLength(); |
| 2013 | assert(StringToks[0].getLength() >= 2 && "literal token is invalid!" ); |
| 2014 | SizeBound = StringToks[0].getLength() - 2; // -2 for "". |
| 2015 | hadError = false; |
| 2016 | |
| 2017 | // Determines the kind of string from the prefix |
| 2018 | Kind = tok::string_literal; |
| 2019 | |
| 2020 | /// (C99 5.1.1.2p1). The common case is only one string fragment. |
| 2021 | for (const Token &Tok : StringToks) { |
| 2022 | if (Tok.getLength() < 2) |
| 2023 | return DiagnoseLexingError(Loc: Tok.getLocation()); |
| 2024 | |
| 2025 | // The string could be shorter than this if it needs cleaning, but this is a |
| 2026 | // reasonable bound, which is all we need. |
| 2027 | assert(Tok.getLength() >= 2 && "literal token is invalid!" ); |
| 2028 | SizeBound += Tok.getLength() - 2; // -2 for "". |
| 2029 | |
| 2030 | // Remember maximum string piece length. |
| 2031 | if (Tok.getLength() > MaxTokenLength) |
| 2032 | MaxTokenLength = Tok.getLength(); |
| 2033 | |
| 2034 | // Remember if we see any wide or utf-8/16/32 strings. |
| 2035 | // Also check for illegal concatenations. |
| 2036 | if (isUnevaluated() && Tok.getKind() != tok::string_literal) { |
| 2037 | if (Diags) { |
| 2038 | SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter( |
| 2039 | TokStart: Tok.getLocation(), Characters: getEncodingPrefixLen(kind: Tok.getKind()), SM, |
| 2040 | LangOpts: Features); |
| 2041 | CharSourceRange Range = |
| 2042 | CharSourceRange::getCharRange(R: {Tok.getLocation(), PrefixEndLoc}); |
| 2043 | StringRef Prefix(SM.getCharacterData(SL: Tok.getLocation()), |
| 2044 | getEncodingPrefixLen(kind: Tok.getKind())); |
| 2045 | Diags->Report(Loc: Tok.getLocation(), |
| 2046 | DiagID: Features.CPlusPlus26 |
| 2047 | ? diag::err_unevaluated_string_prefix |
| 2048 | : diag::warn_unevaluated_string_prefix) |
| 2049 | << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(RemoveRange: Range); |
| 2050 | } |
| 2051 | if (Features.CPlusPlus26) |
| 2052 | hadError = true; |
| 2053 | } else if (Tok.isNot(K: Kind) && Tok.isNot(K: tok::string_literal)) { |
| 2054 | if (isOrdinary()) { |
| 2055 | Kind = Tok.getKind(); |
| 2056 | } else { |
| 2057 | if (Diags) |
| 2058 | Diags->Report(Loc: Tok.getLocation(), DiagID: diag::err_unsupported_string_concat); |
| 2059 | hadError = true; |
| 2060 | } |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | // Include space for the null terminator. |
| 2065 | ++SizeBound; |
| 2066 | |
| 2067 | // TODO: K&R warning: "traditional C rejects string constant concatenation" |
| 2068 | |
| 2069 | // Get the width in bytes of char/wchar_t/char16_t/char32_t |
| 2070 | CharByteWidth = getCharWidth(kind: Kind, Target); |
| 2071 | assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple" ); |
| 2072 | CharByteWidth /= 8; |
| 2073 | |
| 2074 | // The output buffer size needs to be large enough to hold wide characters. |
| 2075 | // This is a worst-case assumption which basically corresponds to L"" "long". |
| 2076 | SizeBound *= CharByteWidth; |
| 2077 | |
| 2078 | // Size the temporary buffer to hold the result string data. |
| 2079 | ResultBuf.resize(N: SizeBound); |
| 2080 | |
| 2081 | // Likewise, but for each string piece. |
| 2082 | SmallString<512> TokenBuf; |
| 2083 | TokenBuf.resize(N: MaxTokenLength); |
| 2084 | |
| 2085 | // Loop over all the strings, getting their spelling, and expanding them to |
| 2086 | // wide strings as appropriate. |
| 2087 | ResultPtr = &ResultBuf[0]; // Next byte to fill in. |
| 2088 | |
| 2089 | Pascal = false; |
| 2090 | |
| 2091 | SourceLocation UDSuffixTokLoc; |
| 2092 | |
| 2093 | for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { |
| 2094 | const char *ThisTokBuf = &TokenBuf[0]; |
| 2095 | // Get the spelling of the token, which eliminates trigraphs, etc. We know |
| 2096 | // that ThisTokBuf points to a buffer that is big enough for the whole token |
| 2097 | // and 'spelled' tokens can only shrink. |
| 2098 | bool StringInvalid = false; |
| 2099 | unsigned ThisTokLen = |
| 2100 | Lexer::getSpelling(Tok: StringToks[i], Buffer&: ThisTokBuf, SourceMgr: SM, LangOpts: Features, |
| 2101 | Invalid: &StringInvalid); |
| 2102 | if (StringInvalid) |
| 2103 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
| 2104 | |
| 2105 | const char *ThisTokBegin = ThisTokBuf; |
| 2106 | const char *ThisTokEnd = ThisTokBuf+ThisTokLen; |
| 2107 | |
| 2108 | // Remove an optional ud-suffix. |
| 2109 | if (ThisTokEnd[-1] != '"') { |
| 2110 | const char *UDSuffixEnd = ThisTokEnd; |
| 2111 | do { |
| 2112 | --ThisTokEnd; |
| 2113 | } while (ThisTokEnd[-1] != '"'); |
| 2114 | |
| 2115 | StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); |
| 2116 | |
| 2117 | if (UDSuffixBuf.empty()) { |
| 2118 | if (StringToks[i].hasUCN()) |
| 2119 | expandUCNs(Buf&: UDSuffixBuf, Input: UDSuffix); |
| 2120 | else |
| 2121 | UDSuffixBuf.assign(RHS: UDSuffix); |
| 2122 | UDSuffixToken = i; |
| 2123 | UDSuffixOffset = ThisTokEnd - ThisTokBuf; |
| 2124 | UDSuffixTokLoc = StringToks[i].getLocation(); |
| 2125 | } else { |
| 2126 | SmallString<32> ExpandedUDSuffix; |
| 2127 | if (StringToks[i].hasUCN()) { |
| 2128 | expandUCNs(Buf&: ExpandedUDSuffix, Input: UDSuffix); |
| 2129 | UDSuffix = ExpandedUDSuffix; |
| 2130 | } |
| 2131 | |
| 2132 | // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the |
| 2133 | // result of a concatenation involving at least one user-defined-string- |
| 2134 | // literal, all the participating user-defined-string-literals shall |
| 2135 | // have the same ud-suffix. |
| 2136 | bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty(); |
| 2137 | if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) { |
| 2138 | if (Diags) { |
| 2139 | SourceLocation TokLoc = StringToks[i].getLocation(); |
| 2140 | if (UnevaluatedStringHasUDL) { |
| 2141 | Diags->Report(Loc: TokLoc, DiagID: diag::err_unevaluated_string_udl) |
| 2142 | << SourceRange(TokLoc, TokLoc); |
| 2143 | } else { |
| 2144 | Diags->Report(Loc: TokLoc, DiagID: diag::err_string_concat_mixed_suffix) |
| 2145 | << UDSuffixBuf << UDSuffix |
| 2146 | << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc); |
| 2147 | } |
| 2148 | } |
| 2149 | hadError = true; |
| 2150 | } |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | // Strip the end quote. |
| 2155 | --ThisTokEnd; |
| 2156 | |
| 2157 | // TODO: Input character set mapping support. |
| 2158 | |
| 2159 | // Skip marker for wide or unicode strings. |
| 2160 | if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { |
| 2161 | ++ThisTokBuf; |
| 2162 | // Skip 8 of u8 marker for utf8 strings. |
| 2163 | if (ThisTokBuf[0] == '8') |
| 2164 | ++ThisTokBuf; |
| 2165 | } |
| 2166 | |
| 2167 | // Check for raw string |
| 2168 | if (ThisTokBuf[0] == 'R') { |
| 2169 | if (ThisTokBuf[1] != '"') { |
| 2170 | // The file may have come from PCH and then changed after loading the |
| 2171 | // PCH; Fail gracefully. |
| 2172 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
| 2173 | } |
| 2174 | ThisTokBuf += 2; // skip R" |
| 2175 | |
| 2176 | // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 |
| 2177 | // characters. |
| 2178 | constexpr unsigned MaxRawStrDelimLen = 16; |
| 2179 | |
| 2180 | const char *Prefix = ThisTokBuf; |
| 2181 | while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && |
| 2182 | ThisTokBuf[0] != '(') |
| 2183 | ++ThisTokBuf; |
| 2184 | if (ThisTokBuf[0] != '(') |
| 2185 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
| 2186 | ++ThisTokBuf; // skip '(' |
| 2187 | |
| 2188 | // Remove same number of characters from the end |
| 2189 | ThisTokEnd -= ThisTokBuf - Prefix; |
| 2190 | if (ThisTokEnd < ThisTokBuf) |
| 2191 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
| 2192 | |
| 2193 | // C++14 [lex.string]p4: A source-file new-line in a raw string literal |
| 2194 | // results in a new-line in the resulting execution string-literal. |
| 2195 | StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); |
| 2196 | while (!RemainingTokenSpan.empty()) { |
| 2197 | // Split the string literal on \r\n boundaries. |
| 2198 | size_t CRLFPos = RemainingTokenSpan.find(Str: "\r\n" ); |
| 2199 | StringRef BeforeCRLF = RemainingTokenSpan.substr(Start: 0, N: CRLFPos); |
| 2200 | StringRef AfterCRLF = RemainingTokenSpan.substr(Start: CRLFPos); |
| 2201 | |
| 2202 | // Copy everything before the \r\n sequence into the string literal. |
| 2203 | if (CopyStringFragment(Tok: StringToks[i], TokBegin: ThisTokBegin, Fragment: BeforeCRLF)) |
| 2204 | hadError = true; |
| 2205 | |
| 2206 | // Point into the \n inside the \r\n sequence and operate on the |
| 2207 | // remaining portion of the literal. |
| 2208 | RemainingTokenSpan = AfterCRLF.substr(Start: 1); |
| 2209 | } |
| 2210 | } else { |
| 2211 | if (ThisTokBuf[0] != '"') { |
| 2212 | // The file may have come from PCH and then changed after loading the |
| 2213 | // PCH; Fail gracefully. |
| 2214 | return DiagnoseLexingError(Loc: StringToks[i].getLocation()); |
| 2215 | } |
| 2216 | ++ThisTokBuf; // skip " |
| 2217 | |
| 2218 | // Check if this is a pascal string |
| 2219 | if (!isUnevaluated() && Features.PascalStrings && |
| 2220 | ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' && |
| 2221 | ThisTokBuf[1] == 'p') { |
| 2222 | |
| 2223 | // If the \p sequence is found in the first token, we have a pascal string |
| 2224 | // Otherwise, if we already have a pascal string, ignore the first \p |
| 2225 | if (i == 0) { |
| 2226 | ++ThisTokBuf; |
| 2227 | Pascal = true; |
| 2228 | } else if (Pascal) |
| 2229 | ThisTokBuf += 2; |
| 2230 | } |
| 2231 | |
| 2232 | while (ThisTokBuf != ThisTokEnd) { |
| 2233 | // Is this a span of non-escape characters? |
| 2234 | if (ThisTokBuf[0] != '\\') { |
| 2235 | const char *InStart = ThisTokBuf; |
| 2236 | do { |
| 2237 | ++ThisTokBuf; |
| 2238 | } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); |
| 2239 | |
| 2240 | // Copy the character span over. |
| 2241 | if (CopyStringFragment(Tok: StringToks[i], TokBegin: ThisTokBegin, |
| 2242 | Fragment: StringRef(InStart, ThisTokBuf - InStart))) |
| 2243 | hadError = true; |
| 2244 | continue; |
| 2245 | } |
| 2246 | // Is this a Universal Character Name escape? |
| 2247 | if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' || |
| 2248 | ThisTokBuf[1] == 'N') { |
| 2249 | EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, |
| 2250 | ResultBuf&: ResultPtr, HadError&: hadError, |
| 2251 | Loc: FullSourceLoc(StringToks[i].getLocation(), SM), |
| 2252 | CharByteWidth, Diags, Features); |
| 2253 | continue; |
| 2254 | } |
| 2255 | // Otherwise, this is a non-UCN escape character. Process it. |
| 2256 | unsigned ResultChar = |
| 2257 | ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, HadError&: hadError, |
| 2258 | Loc: FullSourceLoc(StringToks[i].getLocation(), SM), |
| 2259 | CharWidth: CharByteWidth * 8, Diags, Features, EvalMethod); |
| 2260 | |
| 2261 | if (CharByteWidth == 4) { |
| 2262 | // FIXME: Make the type of the result buffer correct instead of |
| 2263 | // using reinterpret_cast. |
| 2264 | llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); |
| 2265 | *ResultWidePtr = ResultChar; |
| 2266 | ResultPtr += 4; |
| 2267 | } else if (CharByteWidth == 2) { |
| 2268 | // FIXME: Make the type of the result buffer correct instead of |
| 2269 | // using reinterpret_cast. |
| 2270 | llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); |
| 2271 | *ResultWidePtr = ResultChar & 0xFFFF; |
| 2272 | ResultPtr += 2; |
| 2273 | } else { |
| 2274 | assert(CharByteWidth == 1 && "Unexpected char width" ); |
| 2275 | *ResultPtr++ = ResultChar & 0xFF; |
| 2276 | } |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | assert((!Pascal || !isUnevaluated()) && |
| 2282 | "Pascal string in unevaluated context" ); |
| 2283 | if (Pascal) { |
| 2284 | if (CharByteWidth == 4) { |
| 2285 | // FIXME: Make the type of the result buffer correct instead of |
| 2286 | // using reinterpret_cast. |
| 2287 | llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); |
| 2288 | ResultWidePtr[0] = GetNumStringChars() - 1; |
| 2289 | } else if (CharByteWidth == 2) { |
| 2290 | // FIXME: Make the type of the result buffer correct instead of |
| 2291 | // using reinterpret_cast. |
| 2292 | llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); |
| 2293 | ResultWidePtr[0] = GetNumStringChars() - 1; |
| 2294 | } else { |
| 2295 | assert(CharByteWidth == 1 && "Unexpected char width" ); |
| 2296 | ResultBuf[0] = GetNumStringChars() - 1; |
| 2297 | } |
| 2298 | |
| 2299 | // Verify that pascal strings aren't too large. |
| 2300 | if (GetStringLength() > 256) { |
| 2301 | if (Diags) |
| 2302 | Diags->Report(Loc: StringToks.front().getLocation(), |
| 2303 | DiagID: diag::err_pascal_string_too_long) |
| 2304 | << SourceRange(StringToks.front().getLocation(), |
| 2305 | StringToks.back().getLocation()); |
| 2306 | hadError = true; |
| 2307 | return; |
| 2308 | } |
| 2309 | } else if (Diags) { |
| 2310 | // Complain if this string literal has too many characters. |
| 2311 | unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; |
| 2312 | |
| 2313 | if (GetNumStringChars() > MaxChars) |
| 2314 | Diags->Report(Loc: StringToks.front().getLocation(), |
| 2315 | DiagID: diag::ext_string_too_long) |
| 2316 | << GetNumStringChars() << MaxChars |
| 2317 | << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) |
| 2318 | << SourceRange(StringToks.front().getLocation(), |
| 2319 | StringToks.back().getLocation()); |
| 2320 | } |
| 2321 | } |
| 2322 | |
| 2323 | static const char *resyncUTF8(const char *Err, const char *End) { |
| 2324 | if (Err == End) |
| 2325 | return End; |
| 2326 | End = Err + std::min<unsigned>(a: llvm::getNumBytesForUTF8(firstByte: *Err), b: End-Err); |
| 2327 | while (++Err != End && (*Err & 0xC0) == 0x80) |
| 2328 | ; |
| 2329 | return Err; |
| 2330 | } |
| 2331 | |
| 2332 | /// This function copies from Fragment, which is a sequence of bytes |
| 2333 | /// within Tok's contents (which begin at TokBegin) into ResultPtr. |
| 2334 | /// Performs widening for multi-byte characters. |
| 2335 | bool StringLiteralParser::CopyStringFragment(const Token &Tok, |
| 2336 | const char *TokBegin, |
| 2337 | StringRef Fragment) { |
| 2338 | const llvm::UTF8 *ErrorPtrTmp; |
| 2339 | if (ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source: Fragment, ResultPtr, ErrorPtr&: ErrorPtrTmp)) |
| 2340 | return false; |
| 2341 | |
| 2342 | // If we see bad encoding for unprefixed string literals, warn and |
| 2343 | // simply copy the byte values, for compatibility with gcc and older |
| 2344 | // versions of clang. |
| 2345 | bool NoErrorOnBadEncoding = isOrdinary(); |
| 2346 | if (NoErrorOnBadEncoding) { |
| 2347 | memcpy(dest: ResultPtr, src: Fragment.data(), n: Fragment.size()); |
| 2348 | ResultPtr += Fragment.size(); |
| 2349 | } |
| 2350 | |
| 2351 | if (Diags) { |
| 2352 | const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); |
| 2353 | |
| 2354 | FullSourceLoc SourceLoc(Tok.getLocation(), SM); |
| 2355 | const DiagnosticBuilder &Builder = |
| 2356 | Diag(Diags, Features, TokLoc: SourceLoc, TokBegin, |
| 2357 | TokRangeBegin: ErrorPtr, TokRangeEnd: resyncUTF8(Err: ErrorPtr, End: Fragment.end()), |
| 2358 | DiagID: NoErrorOnBadEncoding ? diag::warn_bad_string_encoding |
| 2359 | : diag::err_bad_string_encoding); |
| 2360 | |
| 2361 | const char *NextStart = resyncUTF8(Err: ErrorPtr, End: Fragment.end()); |
| 2362 | StringRef NextFragment(NextStart, Fragment.end()-NextStart); |
| 2363 | |
| 2364 | // Decode into a dummy buffer. |
| 2365 | SmallString<512> Dummy; |
| 2366 | Dummy.reserve(N: Fragment.size() * CharByteWidth); |
| 2367 | char *Ptr = Dummy.data(); |
| 2368 | |
| 2369 | while (!ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source: NextFragment, ResultPtr&: Ptr, ErrorPtr&: ErrorPtrTmp)) { |
| 2370 | const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); |
| 2371 | NextStart = resyncUTF8(Err: ErrorPtr, End: Fragment.end()); |
| 2372 | Builder << MakeCharSourceRange(Features, TokLoc: SourceLoc, TokBegin, |
| 2373 | TokRangeBegin: ErrorPtr, TokRangeEnd: NextStart); |
| 2374 | NextFragment = StringRef(NextStart, Fragment.end()-NextStart); |
| 2375 | } |
| 2376 | } |
| 2377 | return !NoErrorOnBadEncoding; |
| 2378 | } |
| 2379 | |
| 2380 | void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { |
| 2381 | hadError = true; |
| 2382 | if (Diags) |
| 2383 | Diags->Report(Loc, DiagID: diag::err_lexing_string); |
| 2384 | } |
| 2385 | |
| 2386 | /// getOffsetOfStringByte - This function returns the offset of the |
| 2387 | /// specified byte of the string data represented by Token. This handles |
| 2388 | /// advancing over escape sequences in the string. |
| 2389 | unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, |
| 2390 | unsigned ByteNo) const { |
| 2391 | // Get the spelling of the token. |
| 2392 | SmallString<32> SpellingBuffer; |
| 2393 | SpellingBuffer.resize(N: Tok.getLength()); |
| 2394 | |
| 2395 | bool StringInvalid = false; |
| 2396 | const char *SpellingPtr = &SpellingBuffer[0]; |
| 2397 | unsigned TokLen = Lexer::getSpelling(Tok, Buffer&: SpellingPtr, SourceMgr: SM, LangOpts: Features, |
| 2398 | Invalid: &StringInvalid); |
| 2399 | if (StringInvalid) |
| 2400 | return 0; |
| 2401 | |
| 2402 | const char *SpellingStart = SpellingPtr; |
| 2403 | const char *SpellingEnd = SpellingPtr+TokLen; |
| 2404 | |
| 2405 | // Handle UTF-8 strings just like narrow strings. |
| 2406 | if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') |
| 2407 | SpellingPtr += 2; |
| 2408 | |
| 2409 | assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && |
| 2410 | SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet" ); |
| 2411 | |
| 2412 | // For raw string literals, this is easy. |
| 2413 | if (SpellingPtr[0] == 'R') { |
| 2414 | assert(SpellingPtr[1] == '"' && "Should be a raw string literal!" ); |
| 2415 | // Skip 'R"'. |
| 2416 | SpellingPtr += 2; |
| 2417 | while (*SpellingPtr != '(') { |
| 2418 | ++SpellingPtr; |
| 2419 | assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal" ); |
| 2420 | } |
| 2421 | // Skip '('. |
| 2422 | ++SpellingPtr; |
| 2423 | return SpellingPtr - SpellingStart + ByteNo; |
| 2424 | } |
| 2425 | |
| 2426 | // Skip over the leading quote |
| 2427 | assert(SpellingPtr[0] == '"' && "Should be a string literal!" ); |
| 2428 | ++SpellingPtr; |
| 2429 | |
| 2430 | // Skip over bytes until we find the offset we're looking for. |
| 2431 | while (ByteNo) { |
| 2432 | assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!" ); |
| 2433 | |
| 2434 | // Step over non-escapes simply. |
| 2435 | if (*SpellingPtr != '\\') { |
| 2436 | ++SpellingPtr; |
| 2437 | --ByteNo; |
| 2438 | continue; |
| 2439 | } |
| 2440 | |
| 2441 | // Otherwise, this is an escape character. Advance over it. |
| 2442 | bool HadError = false; |
| 2443 | if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' || |
| 2444 | SpellingPtr[1] == 'N') { |
| 2445 | const char *EscapePtr = SpellingPtr; |
| 2446 | unsigned Len = MeasureUCNEscape(ThisTokBegin: SpellingStart, ThisTokBuf&: SpellingPtr, ThisTokEnd: SpellingEnd, |
| 2447 | CharByteWidth: 1, Features, HadError); |
| 2448 | if (Len > ByteNo) { |
| 2449 | // ByteNo is somewhere within the escape sequence. |
| 2450 | SpellingPtr = EscapePtr; |
| 2451 | break; |
| 2452 | } |
| 2453 | ByteNo -= Len; |
| 2454 | } else { |
| 2455 | ProcessCharEscape(ThisTokBegin: SpellingStart, ThisTokBuf&: SpellingPtr, ThisTokEnd: SpellingEnd, HadError, |
| 2456 | Loc: FullSourceLoc(Tok.getLocation(), SM), CharWidth: CharByteWidth * 8, |
| 2457 | Diags, Features, EvalMethod: StringLiteralEvalMethod::Evaluated); |
| 2458 | --ByteNo; |
| 2459 | } |
| 2460 | assert(!HadError && "This method isn't valid on erroneous strings" ); |
| 2461 | } |
| 2462 | |
| 2463 | return SpellingPtr-SpellingStart; |
| 2464 | } |
| 2465 | |
| 2466 | /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved |
| 2467 | /// suffixes as ud-suffixes, because the diagnostic experience is better if we |
| 2468 | /// treat it as an invalid suffix. |
| 2469 | bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, |
| 2470 | StringRef Suffix) { |
| 2471 | return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || |
| 2472 | Suffix == "sv" ; |
| 2473 | } |
| 2474 | |