| 1 | //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for C++ Coroutines. |
| 10 | // |
| 11 | // This file contains references to sections of the Coroutines TS, which |
| 12 | // can be found at http://wg21.link/coroutines. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "CoroutineStmtBuilder.h" |
| 17 | #include "clang/AST/ASTLambda.h" |
| 18 | #include "clang/AST/Decl.h" |
| 19 | #include "clang/AST/Expr.h" |
| 20 | #include "clang/AST/ExprCXX.h" |
| 21 | #include "clang/AST/StmtCXX.h" |
| 22 | #include "clang/Basic/Builtins.h" |
| 23 | #include "clang/Lex/Preprocessor.h" |
| 24 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 25 | #include "clang/Sema/Initialization.h" |
| 26 | #include "clang/Sema/Overload.h" |
| 27 | #include "clang/Sema/ScopeInfo.h" |
| 28 | |
| 29 | using namespace clang; |
| 30 | using namespace sema; |
| 31 | |
| 32 | static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, |
| 33 | SourceLocation Loc, bool &Res) { |
| 34 | DeclarationName DN = S.PP.getIdentifierInfo(Name); |
| 35 | LookupResult LR(S, DN, Loc, Sema::LookupMemberName); |
| 36 | // Suppress diagnostics when a private member is selected. The same warnings |
| 37 | // will be produced again when building the call. |
| 38 | LR.suppressDiagnostics(); |
| 39 | Res = S.LookupQualifiedName(R&: LR, LookupCtx: RD); |
| 40 | return LR; |
| 41 | } |
| 42 | |
| 43 | static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, |
| 44 | SourceLocation Loc) { |
| 45 | bool Res; |
| 46 | lookupMember(S, Name, RD, Loc, Res); |
| 47 | return Res; |
| 48 | } |
| 49 | |
| 50 | /// Look up the std::coroutine_traits<...>::promise_type for the given |
| 51 | /// function type. |
| 52 | static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, |
| 53 | SourceLocation KwLoc) { |
| 54 | const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); |
| 55 | const SourceLocation FuncLoc = FD->getLocation(); |
| 56 | |
| 57 | ClassTemplateDecl *CoroTraits = |
| 58 | S.lookupCoroutineTraits(KwLoc, FuncLoc); |
| 59 | if (!CoroTraits) |
| 60 | return QualType(); |
| 61 | |
| 62 | // Form template argument list for coroutine_traits<R, P1, P2, ...> according |
| 63 | // to [dcl.fct.def.coroutine]3 |
| 64 | TemplateArgumentListInfo Args(KwLoc, KwLoc); |
| 65 | auto AddArg = [&](QualType T) { |
| 66 | Args.addArgument(Loc: TemplateArgumentLoc( |
| 67 | TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, Loc: KwLoc))); |
| 68 | }; |
| 69 | AddArg(FnType->getReturnType()); |
| 70 | // If the function is a non-static member function, add the type |
| 71 | // of the implicit object parameter before the formal parameters. |
| 72 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 73 | if (MD->isImplicitObjectMemberFunction()) { |
| 74 | // [over.match.funcs]4 |
| 75 | // For non-static member functions, the type of the implicit object |
| 76 | // parameter is |
| 77 | // -- "lvalue reference to cv X" for functions declared without a |
| 78 | // ref-qualifier or with the & ref-qualifier |
| 79 | // -- "rvalue reference to cv X" for functions declared with the && |
| 80 | // ref-qualifier |
| 81 | QualType T = MD->getFunctionObjectParameterType(); |
| 82 | T = FnType->getRefQualifier() == RQ_RValue |
| 83 | ? S.Context.getRValueReferenceType(T) |
| 84 | : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); |
| 85 | AddArg(T); |
| 86 | } |
| 87 | } |
| 88 | for (QualType T : FnType->getParamTypes()) |
| 89 | AddArg(T); |
| 90 | |
| 91 | // Build the template-id. |
| 92 | QualType CoroTrait = |
| 93 | S.CheckTemplateIdType(Template: TemplateName(CoroTraits), TemplateLoc: KwLoc, TemplateArgs&: Args); |
| 94 | if (CoroTrait.isNull()) |
| 95 | return QualType(); |
| 96 | if (S.RequireCompleteType(Loc: KwLoc, T: CoroTrait, |
| 97 | DiagID: diag::err_coroutine_type_missing_specialization)) |
| 98 | return QualType(); |
| 99 | |
| 100 | auto *RD = CoroTrait->getAsCXXRecordDecl(); |
| 101 | assert(RD && "specialization of class template is not a class?" ); |
| 102 | |
| 103 | // Look up the ::promise_type member. |
| 104 | LookupResult R(S, &S.PP.getIdentifierTable().get(Name: "promise_type" ), KwLoc, |
| 105 | Sema::LookupOrdinaryName); |
| 106 | S.LookupQualifiedName(R, LookupCtx: RD); |
| 107 | auto *Promise = R.getAsSingle<TypeDecl>(); |
| 108 | if (!Promise) { |
| 109 | S.Diag(Loc: FuncLoc, |
| 110 | DiagID: diag::err_implied_std_coroutine_traits_promise_type_not_found) |
| 111 | << RD; |
| 112 | return QualType(); |
| 113 | } |
| 114 | // The promise type is required to be a class type. |
| 115 | QualType PromiseType = S.Context.getTypeDeclType(Decl: Promise); |
| 116 | |
| 117 | auto buildElaboratedType = [&]() { |
| 118 | auto *NNS = NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, NS: S.getStdNamespace()); |
| 119 | NNS = NestedNameSpecifier::Create(Context: S.Context, Prefix: NNS, T: CoroTrait.getTypePtr()); |
| 120 | return S.Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS, |
| 121 | NamedType: PromiseType); |
| 122 | }; |
| 123 | |
| 124 | if (!PromiseType->getAsCXXRecordDecl()) { |
| 125 | S.Diag(Loc: FuncLoc, |
| 126 | DiagID: diag::err_implied_std_coroutine_traits_promise_type_not_class) |
| 127 | << buildElaboratedType(); |
| 128 | return QualType(); |
| 129 | } |
| 130 | if (S.RequireCompleteType(Loc: FuncLoc, T: buildElaboratedType(), |
| 131 | DiagID: diag::err_coroutine_promise_type_incomplete)) |
| 132 | return QualType(); |
| 133 | |
| 134 | return PromiseType; |
| 135 | } |
| 136 | |
| 137 | /// Look up the std::coroutine_handle<PromiseType>. |
| 138 | static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, |
| 139 | SourceLocation Loc) { |
| 140 | if (PromiseType.isNull()) |
| 141 | return QualType(); |
| 142 | |
| 143 | NamespaceDecl *CoroNamespace = S.getStdNamespace(); |
| 144 | assert(CoroNamespace && "Should already be diagnosed" ); |
| 145 | |
| 146 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "coroutine_handle" ), |
| 147 | Loc, Sema::LookupOrdinaryName); |
| 148 | if (!S.LookupQualifiedName(R&: Result, LookupCtx: CoroNamespace)) { |
| 149 | S.Diag(Loc, DiagID: diag::err_implied_coroutine_type_not_found) |
| 150 | << "std::coroutine_handle" ; |
| 151 | return QualType(); |
| 152 | } |
| 153 | |
| 154 | ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); |
| 155 | if (!CoroHandle) { |
| 156 | Result.suppressDiagnostics(); |
| 157 | // We found something weird. Complain about the first thing we found. |
| 158 | NamedDecl *Found = *Result.begin(); |
| 159 | S.Diag(Loc: Found->getLocation(), DiagID: diag::err_malformed_std_coroutine_handle); |
| 160 | return QualType(); |
| 161 | } |
| 162 | |
| 163 | // Form template argument list for coroutine_handle<Promise>. |
| 164 | TemplateArgumentListInfo Args(Loc, Loc); |
| 165 | Args.addArgument(Loc: TemplateArgumentLoc( |
| 166 | TemplateArgument(PromiseType), |
| 167 | S.Context.getTrivialTypeSourceInfo(T: PromiseType, Loc))); |
| 168 | |
| 169 | // Build the template-id. |
| 170 | QualType CoroHandleType = |
| 171 | S.CheckTemplateIdType(Template: TemplateName(CoroHandle), TemplateLoc: Loc, TemplateArgs&: Args); |
| 172 | if (CoroHandleType.isNull()) |
| 173 | return QualType(); |
| 174 | if (S.RequireCompleteType(Loc, T: CoroHandleType, |
| 175 | DiagID: diag::err_coroutine_type_missing_specialization)) |
| 176 | return QualType(); |
| 177 | |
| 178 | return CoroHandleType; |
| 179 | } |
| 180 | |
| 181 | static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, |
| 182 | StringRef Keyword) { |
| 183 | // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within |
| 184 | // a function body. |
| 185 | // FIXME: This also covers [expr.await]p2: "An await-expression shall not |
| 186 | // appear in a default argument." But the diagnostic QoI here could be |
| 187 | // improved to inform the user that default arguments specifically are not |
| 188 | // allowed. |
| 189 | auto *FD = dyn_cast<FunctionDecl>(Val: S.CurContext); |
| 190 | if (!FD) { |
| 191 | S.Diag(Loc, DiagID: isa<ObjCMethodDecl>(Val: S.CurContext) |
| 192 | ? diag::err_coroutine_objc_method |
| 193 | : diag::err_coroutine_outside_function) << Keyword; |
| 194 | return false; |
| 195 | } |
| 196 | |
| 197 | // An enumeration for mapping the diagnostic type to the correct diagnostic |
| 198 | // selection index. |
| 199 | enum InvalidFuncDiag { |
| 200 | DiagCtor = 0, |
| 201 | DiagDtor, |
| 202 | DiagMain, |
| 203 | DiagConstexpr, |
| 204 | DiagAutoRet, |
| 205 | DiagVarargs, |
| 206 | DiagConsteval, |
| 207 | }; |
| 208 | bool Diagnosed = false; |
| 209 | auto DiagInvalid = [&](InvalidFuncDiag ID) { |
| 210 | S.Diag(Loc, DiagID: diag::err_coroutine_invalid_func_context) << ID << Keyword; |
| 211 | Diagnosed = true; |
| 212 | return false; |
| 213 | }; |
| 214 | |
| 215 | // Diagnose when a constructor, destructor |
| 216 | // or the function 'main' are declared as a coroutine. |
| 217 | auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
| 218 | // [class.ctor]p11: "A constructor shall not be a coroutine." |
| 219 | if (MD && isa<CXXConstructorDecl>(Val: MD)) |
| 220 | return DiagInvalid(DiagCtor); |
| 221 | // [class.dtor]p17: "A destructor shall not be a coroutine." |
| 222 | else if (MD && isa<CXXDestructorDecl>(Val: MD)) |
| 223 | return DiagInvalid(DiagDtor); |
| 224 | // [basic.start.main]p3: "The function main shall not be a coroutine." |
| 225 | else if (FD->isMain()) |
| 226 | return DiagInvalid(DiagMain); |
| 227 | |
| 228 | // Emit a diagnostics for each of the following conditions which is not met. |
| 229 | // [expr.const]p2: "An expression e is a core constant expression unless the |
| 230 | // evaluation of e [...] would evaluate one of the following expressions: |
| 231 | // [...] an await-expression [...] a yield-expression." |
| 232 | if (FD->isConstexpr()) |
| 233 | DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); |
| 234 | // [dcl.spec.auto]p15: "A function declared with a return type that uses a |
| 235 | // placeholder type shall not be a coroutine." |
| 236 | if (FD->getReturnType()->isUndeducedType()) |
| 237 | DiagInvalid(DiagAutoRet); |
| 238 | // [dcl.fct.def.coroutine]p1 |
| 239 | // The parameter-declaration-clause of the coroutine shall not terminate with |
| 240 | // an ellipsis that is not part of a parameter-declaration. |
| 241 | if (FD->isVariadic()) |
| 242 | DiagInvalid(DiagVarargs); |
| 243 | |
| 244 | return !Diagnosed; |
| 245 | } |
| 246 | |
| 247 | /// Build a call to 'operator co_await' if there is a suitable operator for |
| 248 | /// the given expression. |
| 249 | ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, |
| 250 | UnresolvedLookupExpr *Lookup) { |
| 251 | UnresolvedSet<16> Functions; |
| 252 | Functions.append(I: Lookup->decls_begin(), E: Lookup->decls_end()); |
| 253 | return CreateOverloadedUnaryOp(OpLoc: Loc, Opc: UO_Coawait, Fns: Functions, input: E); |
| 254 | } |
| 255 | |
| 256 | static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, |
| 257 | SourceLocation Loc, Expr *E) { |
| 258 | ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); |
| 259 | if (R.isInvalid()) |
| 260 | return ExprError(); |
| 261 | return SemaRef.BuildOperatorCoawaitCall(Loc, E, |
| 262 | Lookup: cast<UnresolvedLookupExpr>(Val: R.get())); |
| 263 | } |
| 264 | |
| 265 | static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, |
| 266 | SourceLocation Loc) { |
| 267 | QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); |
| 268 | if (CoroHandleType.isNull()) |
| 269 | return ExprError(); |
| 270 | |
| 271 | DeclContext *LookupCtx = S.computeDeclContext(T: CoroHandleType); |
| 272 | LookupResult Found(S, &S.PP.getIdentifierTable().get(Name: "from_address" ), Loc, |
| 273 | Sema::LookupOrdinaryName); |
| 274 | if (!S.LookupQualifiedName(R&: Found, LookupCtx)) { |
| 275 | S.Diag(Loc, DiagID: diag::err_coroutine_handle_missing_member) |
| 276 | << "from_address" ; |
| 277 | return ExprError(); |
| 278 | } |
| 279 | |
| 280 | Expr *FramePtr = |
| 281 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_frame, CallArgs: {}); |
| 282 | |
| 283 | CXXScopeSpec SS; |
| 284 | ExprResult FromAddr = |
| 285 | S.BuildDeclarationNameExpr(SS, R&: Found, /*NeedsADL=*/false); |
| 286 | if (FromAddr.isInvalid()) |
| 287 | return ExprError(); |
| 288 | |
| 289 | return S.BuildCallExpr(S: nullptr, Fn: FromAddr.get(), LParenLoc: Loc, ArgExprs: FramePtr, RParenLoc: Loc); |
| 290 | } |
| 291 | |
| 292 | struct ReadySuspendResumeResult { |
| 293 | enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; |
| 294 | Expr *Results[3]; |
| 295 | OpaqueValueExpr *OpaqueValue; |
| 296 | bool IsInvalid; |
| 297 | }; |
| 298 | |
| 299 | static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, |
| 300 | StringRef Name, MultiExprArg Args) { |
| 301 | DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); |
| 302 | |
| 303 | // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. |
| 304 | CXXScopeSpec SS; |
| 305 | ExprResult Result = S.BuildMemberReferenceExpr( |
| 306 | Base, BaseType: Base->getType(), OpLoc: Loc, /*IsPtr=*/IsArrow: false, SS, |
| 307 | TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, NameInfo, /*TemplateArgs=*/nullptr, |
| 308 | /*Scope=*/S: nullptr); |
| 309 | if (Result.isInvalid()) |
| 310 | return ExprError(); |
| 311 | |
| 312 | auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); |
| 313 | return S.BuildCallExpr(S: nullptr, Fn: Result.get(), LParenLoc: Loc, ArgExprs: Args, RParenLoc: EndLoc, ExecConfig: nullptr); |
| 314 | } |
| 315 | |
| 316 | // See if return type is coroutine-handle and if so, invoke builtin coro-resume |
| 317 | // on its address. This is to enable the support for coroutine-handle |
| 318 | // returning await_suspend that results in a guaranteed tail call to the target |
| 319 | // coroutine. |
| 320 | static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, |
| 321 | SourceLocation Loc) { |
| 322 | if (RetType->isReferenceType()) |
| 323 | return nullptr; |
| 324 | Type const *T = RetType.getTypePtr(); |
| 325 | if (!T->isClassType() && !T->isStructureType()) |
| 326 | return nullptr; |
| 327 | |
| 328 | // FIXME: Add convertability check to coroutine_handle<>. Possibly via |
| 329 | // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment |
| 330 | // a private function in SemaExprCXX.cpp |
| 331 | |
| 332 | ExprResult AddressExpr = buildMemberCall(S, Base: E, Loc, Name: "address" , Args: {}); |
| 333 | if (AddressExpr.isInvalid()) |
| 334 | return nullptr; |
| 335 | |
| 336 | Expr *JustAddress = AddressExpr.get(); |
| 337 | |
| 338 | // Check that the type of AddressExpr is void* |
| 339 | if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) |
| 340 | S.Diag(Loc: cast<CallExpr>(Val: JustAddress)->getCalleeDecl()->getLocation(), |
| 341 | DiagID: diag::warn_coroutine_handle_address_invalid_return_type) |
| 342 | << JustAddress->getType(); |
| 343 | |
| 344 | // Clean up temporary objects, because the resulting expression |
| 345 | // will become the body of await_suspend wrapper. |
| 346 | return S.MaybeCreateExprWithCleanups(SubExpr: JustAddress); |
| 347 | } |
| 348 | |
| 349 | /// Build calls to await_ready, await_suspend, and await_resume for a co_await |
| 350 | /// expression. |
| 351 | /// The generated AST tries to clean up temporary objects as early as |
| 352 | /// possible so that they don't live across suspension points if possible. |
| 353 | /// Having temporary objects living across suspension points unnecessarily can |
| 354 | /// lead to large frame size, and also lead to memory corruptions if the |
| 355 | /// coroutine frame is destroyed after coming back from suspension. This is done |
| 356 | /// by wrapping both the await_ready call and the await_suspend call with |
| 357 | /// ExprWithCleanups. In the end of this function, we also need to explicitly |
| 358 | /// set cleanup state so that the CoawaitExpr is also wrapped with an |
| 359 | /// ExprWithCleanups to clean up the awaiter associated with the co_await |
| 360 | /// expression. |
| 361 | static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, |
| 362 | SourceLocation Loc, Expr *E) { |
| 363 | OpaqueValueExpr *Operand = new (S.Context) |
| 364 | OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); |
| 365 | |
| 366 | // Assume valid until we see otherwise. |
| 367 | // Further operations are responsible for setting IsInalid to true. |
| 368 | ReadySuspendResumeResult Calls = {.Results: {}, .OpaqueValue: Operand, /*IsInvalid=*/false}; |
| 369 | |
| 370 | using ACT = ReadySuspendResumeResult::AwaitCallType; |
| 371 | |
| 372 | auto BuildSubExpr = [&](ACT CallType, StringRef Func, |
| 373 | MultiExprArg Arg) -> Expr * { |
| 374 | ExprResult Result = buildMemberCall(S, Base: Operand, Loc, Name: Func, Args: Arg); |
| 375 | if (Result.isInvalid()) { |
| 376 | Calls.IsInvalid = true; |
| 377 | return nullptr; |
| 378 | } |
| 379 | Calls.Results[CallType] = Result.get(); |
| 380 | return Result.get(); |
| 381 | }; |
| 382 | |
| 383 | CallExpr *AwaitReady = |
| 384 | cast_or_null<CallExpr>(Val: BuildSubExpr(ACT::ACT_Ready, "await_ready" , {})); |
| 385 | if (!AwaitReady) |
| 386 | return Calls; |
| 387 | if (!AwaitReady->getType()->isDependentType()) { |
| 388 | // [expr.await]p3 [...] |
| 389 | // — await-ready is the expression e.await_ready(), contextually converted |
| 390 | // to bool. |
| 391 | ExprResult Conv = S.PerformContextuallyConvertToBool(From: AwaitReady); |
| 392 | if (Conv.isInvalid()) { |
| 393 | S.Diag(Loc: AwaitReady->getDirectCallee()->getBeginLoc(), |
| 394 | DiagID: diag::note_await_ready_no_bool_conversion); |
| 395 | S.Diag(Loc, DiagID: diag::note_coroutine_promise_call_implicitly_required) |
| 396 | << AwaitReady->getDirectCallee() << E->getSourceRange(); |
| 397 | Calls.IsInvalid = true; |
| 398 | } else |
| 399 | Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(SubExpr: Conv.get()); |
| 400 | } |
| 401 | |
| 402 | ExprResult CoroHandleRes = |
| 403 | buildCoroutineHandle(S, PromiseType: CoroPromise->getType(), Loc); |
| 404 | if (CoroHandleRes.isInvalid()) { |
| 405 | Calls.IsInvalid = true; |
| 406 | return Calls; |
| 407 | } |
| 408 | Expr *CoroHandle = CoroHandleRes.get(); |
| 409 | CallExpr *AwaitSuspend = cast_or_null<CallExpr>( |
| 410 | Val: BuildSubExpr(ACT::ACT_Suspend, "await_suspend" , CoroHandle)); |
| 411 | if (!AwaitSuspend) |
| 412 | return Calls; |
| 413 | if (!AwaitSuspend->getType()->isDependentType()) { |
| 414 | // [expr.await]p3 [...] |
| 415 | // - await-suspend is the expression e.await_suspend(h), which shall be |
| 416 | // a prvalue of type void, bool, or std::coroutine_handle<Z> for some |
| 417 | // type Z. |
| 418 | QualType RetType = AwaitSuspend->getCallReturnType(Ctx: S.Context); |
| 419 | |
| 420 | // Support for coroutine_handle returning await_suspend. |
| 421 | if (Expr *TailCallSuspend = |
| 422 | maybeTailCall(S, RetType, E: AwaitSuspend, Loc)) |
| 423 | // Note that we don't wrap the expression with ExprWithCleanups here |
| 424 | // because that might interfere with tailcall contract (e.g. inserting |
| 425 | // clean up instructions in-between tailcall and return). Instead |
| 426 | // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume |
| 427 | // call. |
| 428 | Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; |
| 429 | else { |
| 430 | // non-class prvalues always have cv-unqualified types |
| 431 | if (RetType->isReferenceType() || |
| 432 | (!RetType->isBooleanType() && !RetType->isVoidType())) { |
| 433 | S.Diag(Loc: AwaitSuspend->getCalleeDecl()->getLocation(), |
| 434 | DiagID: diag::err_await_suspend_invalid_return_type) |
| 435 | << RetType; |
| 436 | S.Diag(Loc, DiagID: diag::note_coroutine_promise_call_implicitly_required) |
| 437 | << AwaitSuspend->getDirectCallee(); |
| 438 | Calls.IsInvalid = true; |
| 439 | } else |
| 440 | Calls.Results[ACT::ACT_Suspend] = |
| 441 | S.MaybeCreateExprWithCleanups(SubExpr: AwaitSuspend); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | BuildSubExpr(ACT::ACT_Resume, "await_resume" , {}); |
| 446 | |
| 447 | // Make sure the awaiter object gets a chance to be cleaned up. |
| 448 | S.Cleanup.setExprNeedsCleanups(true); |
| 449 | |
| 450 | return Calls; |
| 451 | } |
| 452 | |
| 453 | static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, |
| 454 | SourceLocation Loc, StringRef Name, |
| 455 | MultiExprArg Args) { |
| 456 | |
| 457 | // Form a reference to the promise. |
| 458 | ExprResult PromiseRef = S.BuildDeclRefExpr( |
| 459 | D: Promise, Ty: Promise->getType().getNonReferenceType(), VK: VK_LValue, Loc); |
| 460 | if (PromiseRef.isInvalid()) |
| 461 | return ExprError(); |
| 462 | |
| 463 | return buildMemberCall(S, Base: PromiseRef.get(), Loc, Name, Args); |
| 464 | } |
| 465 | |
| 466 | VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { |
| 467 | assert(isa<FunctionDecl>(CurContext) && "not in a function scope" ); |
| 468 | auto *FD = cast<FunctionDecl>(Val: CurContext); |
| 469 | bool IsThisDependentType = [&] { |
| 470 | if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(Val: FD)) |
| 471 | return MD->isImplicitObjectMemberFunction() && |
| 472 | MD->getThisType()->isDependentType(); |
| 473 | return false; |
| 474 | }(); |
| 475 | |
| 476 | QualType T = FD->getType()->isDependentType() || IsThisDependentType |
| 477 | ? Context.DependentTy |
| 478 | : lookupPromiseType(S&: *this, FD, KwLoc: Loc); |
| 479 | if (T.isNull()) |
| 480 | return nullptr; |
| 481 | |
| 482 | auto *VD = VarDecl::Create(C&: Context, DC: FD, StartLoc: FD->getLocation(), IdLoc: FD->getLocation(), |
| 483 | Id: &PP.getIdentifierTable().get(Name: "__promise" ), T, |
| 484 | TInfo: Context.getTrivialTypeSourceInfo(T, Loc), S: SC_None); |
| 485 | VD->setImplicit(); |
| 486 | CheckVariableDeclarationType(NewVD: VD); |
| 487 | if (VD->isInvalidDecl()) |
| 488 | return nullptr; |
| 489 | |
| 490 | auto *ScopeInfo = getCurFunction(); |
| 491 | |
| 492 | // Build a list of arguments, based on the coroutine function's arguments, |
| 493 | // that if present will be passed to the promise type's constructor. |
| 494 | llvm::SmallVector<Expr *, 4> CtorArgExprs; |
| 495 | |
| 496 | // Add implicit object parameter. |
| 497 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 498 | if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { |
| 499 | ExprResult ThisExpr = ActOnCXXThis(Loc); |
| 500 | if (ThisExpr.isInvalid()) |
| 501 | return nullptr; |
| 502 | ThisExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: ThisExpr.get()); |
| 503 | if (ThisExpr.isInvalid()) |
| 504 | return nullptr; |
| 505 | CtorArgExprs.push_back(Elt: ThisExpr.get()); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | // Add the coroutine function's parameters. |
| 510 | auto &Moves = ScopeInfo->CoroutineParameterMoves; |
| 511 | for (auto *PD : FD->parameters()) { |
| 512 | if (PD->getType()->isDependentType()) |
| 513 | continue; |
| 514 | |
| 515 | auto RefExpr = ExprEmpty(); |
| 516 | auto Move = Moves.find(Key: PD); |
| 517 | assert(Move != Moves.end() && |
| 518 | "Coroutine function parameter not inserted into move map" ); |
| 519 | // If a reference to the function parameter exists in the coroutine |
| 520 | // frame, use that reference. |
| 521 | auto *MoveDecl = |
| 522 | cast<VarDecl>(Val: cast<DeclStmt>(Val: Move->second)->getSingleDecl()); |
| 523 | RefExpr = |
| 524 | BuildDeclRefExpr(D: MoveDecl, Ty: MoveDecl->getType().getNonReferenceType(), |
| 525 | VK: ExprValueKind::VK_LValue, Loc: FD->getLocation()); |
| 526 | if (RefExpr.isInvalid()) |
| 527 | return nullptr; |
| 528 | CtorArgExprs.push_back(Elt: RefExpr.get()); |
| 529 | } |
| 530 | |
| 531 | // If we have a non-zero number of constructor arguments, try to use them. |
| 532 | // Otherwise, fall back to the promise type's default constructor. |
| 533 | if (!CtorArgExprs.empty()) { |
| 534 | // Create an initialization sequence for the promise type using the |
| 535 | // constructor arguments, wrapped in a parenthesized list expression. |
| 536 | Expr *PLE = ParenListExpr::Create(Ctx: Context, LParenLoc: FD->getLocation(), |
| 537 | Exprs: CtorArgExprs, RParenLoc: FD->getLocation()); |
| 538 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VD); |
| 539 | InitializationKind Kind = InitializationKind::CreateForInit( |
| 540 | Loc: VD->getLocation(), /*DirectInit=*/true, Init: PLE); |
| 541 | InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, |
| 542 | /*TopLevelOfInitList=*/false, |
| 543 | /*TreatUnavailableAsInvalid=*/false); |
| 544 | |
| 545 | // [dcl.fct.def.coroutine]5.7 |
| 546 | // promise-constructor-arguments is determined as follows: overload |
| 547 | // resolution is performed on a promise constructor call created by |
| 548 | // assembling an argument list q_1 ... q_n . If a viable constructor is |
| 549 | // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 |
| 550 | // , ..., q_n ), otherwise promise-constructor-arguments is empty. |
| 551 | if (InitSeq) { |
| 552 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: CtorArgExprs); |
| 553 | if (Result.isInvalid()) { |
| 554 | VD->setInvalidDecl(); |
| 555 | } else if (Result.get()) { |
| 556 | VD->setInit(MaybeCreateExprWithCleanups(SubExpr: Result.get())); |
| 557 | VD->setInitStyle(VarDecl::CallInit); |
| 558 | CheckCompleteVariableDeclaration(VD); |
| 559 | } |
| 560 | } else |
| 561 | ActOnUninitializedDecl(dcl: VD); |
| 562 | } else |
| 563 | ActOnUninitializedDecl(dcl: VD); |
| 564 | |
| 565 | FD->addDecl(D: VD); |
| 566 | return VD; |
| 567 | } |
| 568 | |
| 569 | /// Check that this is a context in which a coroutine suspension can appear. |
| 570 | static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, |
| 571 | StringRef Keyword, |
| 572 | bool IsImplicit = false) { |
| 573 | if (!isValidCoroutineContext(S, Loc, Keyword)) |
| 574 | return nullptr; |
| 575 | |
| 576 | assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope" ); |
| 577 | |
| 578 | auto *ScopeInfo = S.getCurFunction(); |
| 579 | assert(ScopeInfo && "missing function scope for function" ); |
| 580 | |
| 581 | if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) |
| 582 | ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); |
| 583 | |
| 584 | if (ScopeInfo->CoroutinePromise) |
| 585 | return ScopeInfo; |
| 586 | |
| 587 | if (!S.buildCoroutineParameterMoves(Loc)) |
| 588 | return nullptr; |
| 589 | |
| 590 | ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); |
| 591 | if (!ScopeInfo->CoroutinePromise) |
| 592 | return nullptr; |
| 593 | |
| 594 | return ScopeInfo; |
| 595 | } |
| 596 | |
| 597 | /// Recursively check \p E and all its children to see if any call target |
| 598 | /// (including constructor call) is declared noexcept. Also any value returned |
| 599 | /// from the call has a noexcept destructor. |
| 600 | static void checkNoThrow(Sema &S, const Stmt *E, |
| 601 | llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { |
| 602 | auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { |
| 603 | // In the case of dtor, the call to dtor is implicit and hence we should |
| 604 | // pass nullptr to canCalleeThrow. |
| 605 | if (Sema::canCalleeThrow(S, E: IsDtor ? nullptr : cast<Expr>(Val: E), D)) { |
| 606 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 607 | // co_await promise.final_suspend() could end up calling |
| 608 | // __builtin_coro_resume for symmetric transfer if await_suspend() |
| 609 | // returns a handle. In that case, even __builtin_coro_resume is not |
| 610 | // declared as noexcept and may throw, it does not throw _into_ the |
| 611 | // coroutine that just suspended, but rather throws back out from |
| 612 | // whoever called coroutine_handle::resume(), hence we claim that |
| 613 | // logically it does not throw. |
| 614 | if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) |
| 615 | return; |
| 616 | } |
| 617 | if (ThrowingDecls.empty()) { |
| 618 | // [dcl.fct.def.coroutine]p15 |
| 619 | // The expression co_await promise.final_suspend() shall not be |
| 620 | // potentially-throwing ([except.spec]). |
| 621 | // |
| 622 | // First time seeing an error, emit the error message. |
| 623 | S.Diag(Loc: cast<FunctionDecl>(Val: S.CurContext)->getLocation(), |
| 624 | DiagID: diag::err_coroutine_promise_final_suspend_requires_nothrow); |
| 625 | } |
| 626 | ThrowingDecls.insert(Ptr: D); |
| 627 | } |
| 628 | }; |
| 629 | |
| 630 | if (auto *CE = dyn_cast<CXXConstructExpr>(Val: E)) { |
| 631 | CXXConstructorDecl *Ctor = CE->getConstructor(); |
| 632 | checkDeclNoexcept(Ctor); |
| 633 | // Check the corresponding destructor of the constructor. |
| 634 | checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); |
| 635 | } else if (auto *CE = dyn_cast<CallExpr>(Val: E)) { |
| 636 | if (CE->isTypeDependent()) |
| 637 | return; |
| 638 | |
| 639 | checkDeclNoexcept(CE->getCalleeDecl()); |
| 640 | QualType ReturnType = CE->getCallReturnType(Ctx: S.getASTContext()); |
| 641 | // Check the destructor of the call return type, if any. |
| 642 | if (ReturnType.isDestructedType() == |
| 643 | QualType::DestructionKind::DK_cxx_destructor) { |
| 644 | const auto *T = |
| 645 | cast<RecordType>(Val: ReturnType.getCanonicalType().getTypePtr()); |
| 646 | checkDeclNoexcept(cast<CXXRecordDecl>(Val: T->getDecl())->getDestructor(), |
| 647 | /*IsDtor=*/true); |
| 648 | } |
| 649 | } else |
| 650 | for (const auto *Child : E->children()) { |
| 651 | if (!Child) |
| 652 | continue; |
| 653 | checkNoThrow(S, E: Child, ThrowingDecls); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { |
| 658 | llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; |
| 659 | // We first collect all declarations that should not throw but not declared |
| 660 | // with noexcept. We then sort them based on the location before printing. |
| 661 | // This is to avoid emitting the same note multiple times on the same |
| 662 | // declaration, and also provide a deterministic order for the messages. |
| 663 | checkNoThrow(S&: *this, E: FinalSuspend, ThrowingDecls); |
| 664 | auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), |
| 665 | ThrowingDecls.end()}; |
| 666 | sort(C&: SortedDecls, Comp: [](const Decl *A, const Decl *B) { |
| 667 | return A->getEndLoc() < B->getEndLoc(); |
| 668 | }); |
| 669 | for (const auto *D : SortedDecls) { |
| 670 | Diag(Loc: D->getEndLoc(), DiagID: diag::note_coroutine_function_declare_noexcept); |
| 671 | } |
| 672 | return ThrowingDecls.empty(); |
| 673 | } |
| 674 | |
| 675 | // [stmt.return.coroutine]p1: |
| 676 | // A coroutine shall not enclose a return statement ([stmt.return]). |
| 677 | static void checkReturnStmtInCoroutine(Sema &S, FunctionScopeInfo *FSI) { |
| 678 | assert(FSI && "FunctionScopeInfo is null" ); |
| 679 | assert(FSI->FirstCoroutineStmtLoc.isValid() && |
| 680 | "first coroutine location not set" ); |
| 681 | if (FSI->FirstReturnLoc.isInvalid()) |
| 682 | return; |
| 683 | S.Diag(Loc: FSI->FirstReturnLoc, DiagID: diag::err_return_in_coroutine); |
| 684 | S.Diag(Loc: FSI->FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
| 685 | << FSI->getFirstCoroutineStmtKeyword(); |
| 686 | } |
| 687 | |
| 688 | bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, |
| 689 | StringRef Keyword) { |
| 690 | // Ignore previous expr evaluation contexts. |
| 691 | EnterExpressionEvaluationContextForFunction PotentiallyEvaluated( |
| 692 | *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, |
| 693 | dyn_cast_or_null<FunctionDecl>(Val: CurContext)); |
| 694 | |
| 695 | if (!checkCoroutineContext(S&: *this, Loc: KWLoc, Keyword)) |
| 696 | return false; |
| 697 | auto *ScopeInfo = getCurFunction(); |
| 698 | assert(ScopeInfo->CoroutinePromise); |
| 699 | |
| 700 | // Avoid duplicate errors, report only on first keyword. |
| 701 | if (ScopeInfo->FirstCoroutineStmtLoc == KWLoc) |
| 702 | checkReturnStmtInCoroutine(S&: *this, FSI: ScopeInfo); |
| 703 | |
| 704 | // If we have existing coroutine statements then we have already built |
| 705 | // the initial and final suspend points. |
| 706 | if (!ScopeInfo->NeedsCoroutineSuspends) |
| 707 | return true; |
| 708 | |
| 709 | ScopeInfo->setNeedsCoroutineSuspends(false); |
| 710 | |
| 711 | auto *Fn = cast<FunctionDecl>(Val: CurContext); |
| 712 | SourceLocation Loc = Fn->getLocation(); |
| 713 | // Build the initial suspend point |
| 714 | auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { |
| 715 | ExprResult Operand = |
| 716 | buildPromiseCall(S&: *this, Promise: ScopeInfo->CoroutinePromise, Loc, Name, Args: {}); |
| 717 | if (Operand.isInvalid()) |
| 718 | return StmtError(); |
| 719 | ExprResult Suspend = |
| 720 | buildOperatorCoawaitCall(SemaRef&: *this, S: SC, Loc, E: Operand.get()); |
| 721 | if (Suspend.isInvalid()) |
| 722 | return StmtError(); |
| 723 | Suspend = BuildResolvedCoawaitExpr(KwLoc: Loc, Operand: Operand.get(), Awaiter: Suspend.get(), |
| 724 | /*IsImplicit*/ true); |
| 725 | Suspend = ActOnFinishFullExpr(Expr: Suspend.get(), /*DiscardedValue*/ false); |
| 726 | if (Suspend.isInvalid()) { |
| 727 | Diag(Loc, DiagID: diag::note_coroutine_promise_suspend_implicitly_required) |
| 728 | << ((Name == "initial_suspend" ) ? 0 : 1); |
| 729 | Diag(Loc: KWLoc, DiagID: diag::note_declared_coroutine_here) << Keyword; |
| 730 | return StmtError(); |
| 731 | } |
| 732 | return cast<Stmt>(Val: Suspend.get()); |
| 733 | }; |
| 734 | |
| 735 | StmtResult InitSuspend = buildSuspends("initial_suspend" ); |
| 736 | if (InitSuspend.isInvalid()) |
| 737 | return true; |
| 738 | |
| 739 | StmtResult FinalSuspend = buildSuspends("final_suspend" ); |
| 740 | if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend: FinalSuspend.get())) |
| 741 | return true; |
| 742 | |
| 743 | ScopeInfo->setCoroutineSuspends(Initial: InitSuspend.get(), Final: FinalSuspend.get()); |
| 744 | |
| 745 | return true; |
| 746 | } |
| 747 | |
| 748 | // Recursively walks up the scope hierarchy until either a 'catch' or a function |
| 749 | // scope is found, whichever comes first. |
| 750 | static bool isWithinCatchScope(Scope *S) { |
| 751 | // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but |
| 752 | // lambdas that use 'co_await' are allowed. The loop below ends when a |
| 753 | // function scope is found in order to ensure the following behavior: |
| 754 | // |
| 755 | // void foo() { // <- function scope |
| 756 | // try { // |
| 757 | // co_await x; // <- 'co_await' is OK within a function scope |
| 758 | // } catch { // <- catch scope |
| 759 | // co_await x; // <- 'co_await' is not OK within a catch scope |
| 760 | // []() { // <- function scope |
| 761 | // co_await x; // <- 'co_await' is OK within a function scope |
| 762 | // }(); |
| 763 | // } |
| 764 | // } |
| 765 | while (S && !S->isFunctionScope()) { |
| 766 | if (S->isCatchScope()) |
| 767 | return true; |
| 768 | S = S->getParent(); |
| 769 | } |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | // [expr.await]p2, emphasis added: "An await-expression shall appear only in |
| 774 | // a *potentially evaluated* expression within the compound-statement of a |
| 775 | // function-body *outside of a handler* [...] A context within a function |
| 776 | // where an await-expression can appear is called a suspension context of the |
| 777 | // function." |
| 778 | static bool checkSuspensionContext(Sema &S, SourceLocation Loc, |
| 779 | StringRef Keyword) { |
| 780 | // First emphasis of [expr.await]p2: must be a potentially evaluated context. |
| 781 | // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of |
| 782 | // \c sizeof. |
| 783 | const auto ExprContext = S.currentEvaluationContext().ExprContext; |
| 784 | const bool BadContext = |
| 785 | S.isUnevaluatedContext() || |
| 786 | ExprContext != Sema::ExpressionEvaluationContextRecord::EK_Other; |
| 787 | if (BadContext) { |
| 788 | S.Diag(Loc, DiagID: diag::err_coroutine_unevaluated_context) << Keyword; |
| 789 | return false; |
| 790 | } |
| 791 | |
| 792 | // Second emphasis of [expr.await]p2: must be outside of an exception handler. |
| 793 | if (isWithinCatchScope(S: S.getCurScope())) { |
| 794 | S.Diag(Loc, DiagID: diag::err_coroutine_within_handler) << Keyword; |
| 795 | return false; |
| 796 | } |
| 797 | return true; |
| 798 | } |
| 799 | |
| 800 | ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { |
| 801 | if (!checkSuspensionContext(S&: *this, Loc, Keyword: "co_await" )) |
| 802 | return ExprError(); |
| 803 | |
| 804 | if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_await" )) { |
| 805 | return ExprError(); |
| 806 | } |
| 807 | |
| 808 | if (E->hasPlaceholderType()) { |
| 809 | ExprResult R = CheckPlaceholderExpr(E); |
| 810 | if (R.isInvalid()) return ExprError(); |
| 811 | E = R.get(); |
| 812 | } |
| 813 | |
| 814 | ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); |
| 815 | if (Lookup.isInvalid()) |
| 816 | return ExprError(); |
| 817 | return BuildUnresolvedCoawaitExpr(KwLoc: Loc, Operand: E, |
| 818 | Lookup: cast<UnresolvedLookupExpr>(Val: Lookup.get())); |
| 819 | } |
| 820 | |
| 821 | ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { |
| 822 | DeclarationName OpName = |
| 823 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Coawait); |
| 824 | LookupResult Operators(*this, OpName, SourceLocation(), |
| 825 | Sema::LookupOperatorName); |
| 826 | LookupName(R&: Operators, S); |
| 827 | |
| 828 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous" ); |
| 829 | const auto &Functions = Operators.asUnresolvedSet(); |
| 830 | Expr *CoawaitOp = UnresolvedLookupExpr::Create( |
| 831 | Context, /*NamingClass*/ nullptr, QualifierLoc: NestedNameSpecifierLoc(), |
| 832 | NameInfo: DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Begin: Functions.begin(), |
| 833 | End: Functions.end(), /*KnownDependent=*/false, |
| 834 | /*KnownInstantiationDependent=*/false); |
| 835 | assert(CoawaitOp); |
| 836 | return CoawaitOp; |
| 837 | } |
| 838 | |
| 839 | static bool isAttributedCoroAwaitElidable(const QualType &QT) { |
| 840 | auto *Record = QT->getAsCXXRecordDecl(); |
| 841 | return Record && Record->hasAttr<CoroAwaitElidableAttr>(); |
| 842 | } |
| 843 | |
| 844 | static void applySafeElideContext(Expr *Operand) { |
| 845 | auto *Call = dyn_cast<CallExpr>(Val: Operand->IgnoreImplicit()); |
| 846 | if (!Call || !Call->isPRValue()) |
| 847 | return; |
| 848 | |
| 849 | if (!isAttributedCoroAwaitElidable(QT: Call->getType())) |
| 850 | return; |
| 851 | |
| 852 | Call->setCoroElideSafe(); |
| 853 | |
| 854 | // Check parameter |
| 855 | auto *Fn = llvm::dyn_cast_if_present<FunctionDecl>(Val: Call->getCalleeDecl()); |
| 856 | if (!Fn) |
| 857 | return; |
| 858 | |
| 859 | size_t ParmIdx = 0; |
| 860 | for (ParmVarDecl *PD : Fn->parameters()) { |
| 861 | if (PD->hasAttr<CoroAwaitElidableArgumentAttr>()) |
| 862 | applySafeElideContext(Operand: Call->getArg(Arg: ParmIdx)); |
| 863 | |
| 864 | ParmIdx++; |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to |
| 869 | // DependentCoawaitExpr if needed. |
| 870 | ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, |
| 871 | UnresolvedLookupExpr *Lookup) { |
| 872 | auto *FSI = checkCoroutineContext(S&: *this, Loc, Keyword: "co_await" ); |
| 873 | if (!FSI) |
| 874 | return ExprError(); |
| 875 | |
| 876 | if (Operand->hasPlaceholderType()) { |
| 877 | ExprResult R = CheckPlaceholderExpr(E: Operand); |
| 878 | if (R.isInvalid()) |
| 879 | return ExprError(); |
| 880 | Operand = R.get(); |
| 881 | } |
| 882 | |
| 883 | auto *Promise = FSI->CoroutinePromise; |
| 884 | if (Promise->getType()->isDependentType()) { |
| 885 | Expr *Res = new (Context) |
| 886 | DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); |
| 887 | return Res; |
| 888 | } |
| 889 | |
| 890 | auto *RD = Promise->getType()->getAsCXXRecordDecl(); |
| 891 | |
| 892 | bool CurFnAwaitElidable = isAttributedCoroAwaitElidable( |
| 893 | QT: getCurFunctionDecl(/*AllowLambda=*/true)->getReturnType()); |
| 894 | |
| 895 | if (CurFnAwaitElidable) |
| 896 | applySafeElideContext(Operand); |
| 897 | |
| 898 | Expr *Transformed = Operand; |
| 899 | if (lookupMember(S&: *this, Name: "await_transform" , RD, Loc)) { |
| 900 | ExprResult R = |
| 901 | buildPromiseCall(S&: *this, Promise, Loc, Name: "await_transform" , Args: Operand); |
| 902 | if (R.isInvalid()) { |
| 903 | Diag(Loc, |
| 904 | DiagID: diag::note_coroutine_promise_implicit_await_transform_required_here) |
| 905 | << Operand->getSourceRange(); |
| 906 | return ExprError(); |
| 907 | } |
| 908 | Transformed = R.get(); |
| 909 | } |
| 910 | ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, E: Transformed, Lookup); |
| 911 | if (Awaiter.isInvalid()) |
| 912 | return ExprError(); |
| 913 | |
| 914 | return BuildResolvedCoawaitExpr(KwLoc: Loc, Operand, Awaiter: Awaiter.get()); |
| 915 | } |
| 916 | |
| 917 | ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, |
| 918 | Expr *Awaiter, bool IsImplicit) { |
| 919 | auto *Coroutine = checkCoroutineContext(S&: *this, Loc, Keyword: "co_await" , IsImplicit); |
| 920 | if (!Coroutine) |
| 921 | return ExprError(); |
| 922 | |
| 923 | if (Awaiter->hasPlaceholderType()) { |
| 924 | ExprResult R = CheckPlaceholderExpr(E: Awaiter); |
| 925 | if (R.isInvalid()) return ExprError(); |
| 926 | Awaiter = R.get(); |
| 927 | } |
| 928 | |
| 929 | if (Awaiter->getType()->isDependentType()) { |
| 930 | Expr *Res = new (Context) |
| 931 | CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); |
| 932 | return Res; |
| 933 | } |
| 934 | |
| 935 | // If the expression is a temporary, materialize it as an lvalue so that we |
| 936 | // can use it multiple times. |
| 937 | if (Awaiter->isPRValue()) |
| 938 | Awaiter = CreateMaterializeTemporaryExpr(T: Awaiter->getType(), Temporary: Awaiter, BoundToLvalueReference: true); |
| 939 | |
| 940 | // The location of the `co_await` token cannot be used when constructing |
| 941 | // the member call expressions since it's before the location of `Expr`, which |
| 942 | // is used as the start of the member call expression. |
| 943 | SourceLocation CallLoc = Awaiter->getExprLoc(); |
| 944 | |
| 945 | // Build the await_ready, await_suspend, await_resume calls. |
| 946 | ReadySuspendResumeResult = |
| 947 | buildCoawaitCalls(S&: *this, CoroPromise: Coroutine->CoroutinePromise, Loc: CallLoc, E: Awaiter); |
| 948 | if (RSS.IsInvalid) |
| 949 | return ExprError(); |
| 950 | |
| 951 | Expr *Res = new (Context) |
| 952 | CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], |
| 953 | RSS.Results[2], RSS.OpaqueValue, IsImplicit); |
| 954 | |
| 955 | return Res; |
| 956 | } |
| 957 | |
| 958 | ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { |
| 959 | if (!checkSuspensionContext(S&: *this, Loc, Keyword: "co_yield" )) |
| 960 | return ExprError(); |
| 961 | |
| 962 | if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_yield" )) { |
| 963 | return ExprError(); |
| 964 | } |
| 965 | |
| 966 | // Build yield_value call. |
| 967 | ExprResult Awaitable = buildPromiseCall( |
| 968 | S&: *this, Promise: getCurFunction()->CoroutinePromise, Loc, Name: "yield_value" , Args: E); |
| 969 | if (Awaitable.isInvalid()) |
| 970 | return ExprError(); |
| 971 | |
| 972 | // Build 'operator co_await' call. |
| 973 | Awaitable = buildOperatorCoawaitCall(SemaRef&: *this, S, Loc, E: Awaitable.get()); |
| 974 | if (Awaitable.isInvalid()) |
| 975 | return ExprError(); |
| 976 | |
| 977 | return BuildCoyieldExpr(KwLoc: Loc, E: Awaitable.get()); |
| 978 | } |
| 979 | ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { |
| 980 | auto *Coroutine = checkCoroutineContext(S&: *this, Loc, Keyword: "co_yield" ); |
| 981 | if (!Coroutine) |
| 982 | return ExprError(); |
| 983 | |
| 984 | if (E->hasPlaceholderType()) { |
| 985 | ExprResult R = CheckPlaceholderExpr(E); |
| 986 | if (R.isInvalid()) return ExprError(); |
| 987 | E = R.get(); |
| 988 | } |
| 989 | |
| 990 | Expr *Operand = E; |
| 991 | |
| 992 | if (E->getType()->isDependentType()) { |
| 993 | Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); |
| 994 | return Res; |
| 995 | } |
| 996 | |
| 997 | // If the expression is a temporary, materialize it as an lvalue so that we |
| 998 | // can use it multiple times. |
| 999 | if (E->isPRValue()) |
| 1000 | E = CreateMaterializeTemporaryExpr(T: E->getType(), Temporary: E, BoundToLvalueReference: true); |
| 1001 | |
| 1002 | // Build the await_ready, await_suspend, await_resume calls. |
| 1003 | ReadySuspendResumeResult = buildCoawaitCalls( |
| 1004 | S&: *this, CoroPromise: Coroutine->CoroutinePromise, Loc, E); |
| 1005 | if (RSS.IsInvalid) |
| 1006 | return ExprError(); |
| 1007 | |
| 1008 | Expr *Res = |
| 1009 | new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], |
| 1010 | RSS.Results[2], RSS.OpaqueValue); |
| 1011 | |
| 1012 | return Res; |
| 1013 | } |
| 1014 | |
| 1015 | StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { |
| 1016 | if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_return" )) { |
| 1017 | return StmtError(); |
| 1018 | } |
| 1019 | return BuildCoreturnStmt(KwLoc: Loc, E); |
| 1020 | } |
| 1021 | |
| 1022 | StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, |
| 1023 | bool IsImplicit) { |
| 1024 | auto *FSI = checkCoroutineContext(S&: *this, Loc, Keyword: "co_return" , IsImplicit); |
| 1025 | if (!FSI) |
| 1026 | return StmtError(); |
| 1027 | |
| 1028 | if (E && E->hasPlaceholderType() && |
| 1029 | !E->hasPlaceholderType(K: BuiltinType::Overload)) { |
| 1030 | ExprResult R = CheckPlaceholderExpr(E); |
| 1031 | if (R.isInvalid()) return StmtError(); |
| 1032 | E = R.get(); |
| 1033 | } |
| 1034 | |
| 1035 | VarDecl *Promise = FSI->CoroutinePromise; |
| 1036 | ExprResult PC; |
| 1037 | if (E && (isa<InitListExpr>(Val: E) || !E->getType()->isVoidType())) { |
| 1038 | getNamedReturnInfo(E, Mode: SimplerImplicitMoveMode::ForceOn); |
| 1039 | PC = buildPromiseCall(S&: *this, Promise, Loc, Name: "return_value" , Args: E); |
| 1040 | } else { |
| 1041 | E = MakeFullDiscardedValueExpr(Arg: E).get(); |
| 1042 | PC = buildPromiseCall(S&: *this, Promise, Loc, Name: "return_void" , Args: {}); |
| 1043 | } |
| 1044 | if (PC.isInvalid()) |
| 1045 | return StmtError(); |
| 1046 | |
| 1047 | Expr *PCE = ActOnFinishFullExpr(Expr: PC.get(), /*DiscardedValue*/ false).get(); |
| 1048 | |
| 1049 | Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); |
| 1050 | return Res; |
| 1051 | } |
| 1052 | |
| 1053 | /// Look up the std::nothrow object. |
| 1054 | static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { |
| 1055 | NamespaceDecl *Std = S.getStdNamespace(); |
| 1056 | assert(Std && "Should already be diagnosed" ); |
| 1057 | |
| 1058 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "nothrow" ), Loc, |
| 1059 | Sema::LookupOrdinaryName); |
| 1060 | if (!S.LookupQualifiedName(R&: Result, LookupCtx: Std)) { |
| 1061 | // <coroutine> is not requred to include <new>, so we couldn't omit |
| 1062 | // the check here. |
| 1063 | S.Diag(Loc, DiagID: diag::err_implicit_coroutine_std_nothrow_type_not_found); |
| 1064 | return nullptr; |
| 1065 | } |
| 1066 | |
| 1067 | auto *VD = Result.getAsSingle<VarDecl>(); |
| 1068 | if (!VD) { |
| 1069 | Result.suppressDiagnostics(); |
| 1070 | // We found something weird. Complain about the first thing we found. |
| 1071 | NamedDecl *Found = *Result.begin(); |
| 1072 | S.Diag(Loc: Found->getLocation(), DiagID: diag::err_malformed_std_nothrow); |
| 1073 | return nullptr; |
| 1074 | } |
| 1075 | |
| 1076 | ExprResult DR = S.BuildDeclRefExpr(D: VD, Ty: VD->getType(), VK: VK_LValue, Loc); |
| 1077 | if (DR.isInvalid()) |
| 1078 | return nullptr; |
| 1079 | |
| 1080 | return DR.get(); |
| 1081 | } |
| 1082 | |
| 1083 | static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, |
| 1084 | SourceLocation Loc) { |
| 1085 | EnumDecl *StdAlignValT = S.getStdAlignValT(); |
| 1086 | QualType StdAlignValDecl = S.Context.getTypeDeclType(Decl: StdAlignValT); |
| 1087 | return S.Context.getTrivialTypeSourceInfo(T: StdAlignValDecl); |
| 1088 | } |
| 1089 | |
| 1090 | // When searching for custom allocators on the PromiseType we want to |
| 1091 | // warn that we will ignore type aware allocators. |
| 1092 | static bool DiagnoseTypeAwareAllocators(Sema &S, SourceLocation Loc, |
| 1093 | unsigned DiagnosticID, |
| 1094 | DeclarationName Name, |
| 1095 | QualType PromiseType) { |
| 1096 | assert(PromiseType->isRecordType()); |
| 1097 | |
| 1098 | LookupResult R(S, Name, Loc, Sema::LookupOrdinaryName); |
| 1099 | S.LookupQualifiedName(R, LookupCtx: PromiseType->getAsCXXRecordDecl()); |
| 1100 | bool HaveIssuedWarning = false; |
| 1101 | for (auto Decl : R) { |
| 1102 | if (!Decl->getAsFunction()->isTypeAwareOperatorNewOrDelete()) |
| 1103 | continue; |
| 1104 | if (!HaveIssuedWarning) { |
| 1105 | S.Diag(Loc, DiagID: DiagnosticID) << Name; |
| 1106 | HaveIssuedWarning = true; |
| 1107 | } |
| 1108 | S.Diag(Loc: Decl->getLocation(), DiagID: diag::note_type_aware_operator_declared) |
| 1109 | << /* isTypeAware=*/1 << Decl << Decl->getDeclContext(); |
| 1110 | } |
| 1111 | R.suppressDiagnostics(); |
| 1112 | return HaveIssuedWarning; |
| 1113 | } |
| 1114 | |
| 1115 | // Find an appropriate delete for the promise. |
| 1116 | static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, |
| 1117 | FunctionDecl *&OperatorDelete) { |
| 1118 | DeclarationName DeleteName = |
| 1119 | S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete); |
| 1120 | DiagnoseTypeAwareAllocators(S, Loc, |
| 1121 | DiagnosticID: diag::warn_coroutine_type_aware_allocator_ignored, |
| 1122 | Name: DeleteName, PromiseType); |
| 1123 | auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); |
| 1124 | assert(PointeeRD && "PromiseType must be a CxxRecordDecl type" ); |
| 1125 | |
| 1126 | const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; |
| 1127 | |
| 1128 | // [dcl.fct.def.coroutine]p12 |
| 1129 | // The deallocation function's name is looked up by searching for it in the |
| 1130 | // scope of the promise type. If nothing is found, a search is performed in |
| 1131 | // the global scope. |
| 1132 | ImplicitDeallocationParameters IDP = { |
| 1133 | alignedAllocationModeFromBool(IsAligned: Overaligned), SizedDeallocationMode::Yes}; |
| 1134 | if (S.FindDeallocationFunction(StartLoc: Loc, RD: PointeeRD, Name: DeleteName, Operator&: OperatorDelete, |
| 1135 | IDP, /*Diagnose=*/true)) |
| 1136 | return false; |
| 1137 | |
| 1138 | // [dcl.fct.def.coroutine]p12 |
| 1139 | // If both a usual deallocation function with only a pointer parameter and a |
| 1140 | // usual deallocation function with both a pointer parameter and a size |
| 1141 | // parameter are found, then the selected deallocation function shall be the |
| 1142 | // one with two parameters. Otherwise, the selected deallocation function |
| 1143 | // shall be the function with one parameter. |
| 1144 | if (!OperatorDelete) { |
| 1145 | // Look for a global declaration. |
| 1146 | // Sema::FindUsualDeallocationFunction will try to find the one with two |
| 1147 | // parameters first. It will return the deallocation function with one |
| 1148 | // parameter if failed. |
| 1149 | // Coroutines can always provide their required size. |
| 1150 | IDP.PassSize = SizedDeallocationMode::Yes; |
| 1151 | OperatorDelete = S.FindUsualDeallocationFunction(StartLoc: Loc, IDP, Name: DeleteName); |
| 1152 | |
| 1153 | if (!OperatorDelete) |
| 1154 | return false; |
| 1155 | } |
| 1156 | |
| 1157 | assert(!OperatorDelete->isTypeAwareOperatorNewOrDelete()); |
| 1158 | S.MarkFunctionReferenced(Loc, Func: OperatorDelete); |
| 1159 | return true; |
| 1160 | } |
| 1161 | |
| 1162 | |
| 1163 | void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { |
| 1164 | FunctionScopeInfo *Fn = getCurFunction(); |
| 1165 | assert(Fn && Fn->isCoroutine() && "not a coroutine" ); |
| 1166 | if (!Body) { |
| 1167 | assert(FD->isInvalidDecl() && |
| 1168 | "a null body is only allowed for invalid declarations" ); |
| 1169 | return; |
| 1170 | } |
| 1171 | // We have a function that uses coroutine keywords, but we failed to build |
| 1172 | // the promise type. |
| 1173 | if (!Fn->CoroutinePromise) |
| 1174 | return FD->setInvalidDecl(); |
| 1175 | |
| 1176 | if (isa<CoroutineBodyStmt>(Val: Body)) { |
| 1177 | // Nothing todo. the body is already a transformed coroutine body statement. |
| 1178 | return; |
| 1179 | } |
| 1180 | |
| 1181 | // The always_inline attribute doesn't reliably apply to a coroutine, |
| 1182 | // because the coroutine will be split into pieces and some pieces |
| 1183 | // might be called indirectly, as in a virtual call. Even the ramp |
| 1184 | // function cannot be inlined at -O0, due to pipeline ordering |
| 1185 | // problems (see https://llvm.org/PR53413). Tell the user about it. |
| 1186 | if (FD->hasAttr<AlwaysInlineAttr>()) |
| 1187 | Diag(Loc: FD->getLocation(), DiagID: diag::warn_always_inline_coroutine); |
| 1188 | |
| 1189 | // The design of coroutines means we cannot allow use of VLAs within one, so |
| 1190 | // diagnose if we've seen a VLA in the body of this function. |
| 1191 | if (Fn->FirstVLALoc.isValid()) |
| 1192 | Diag(Loc: Fn->FirstVLALoc, DiagID: diag::err_vla_in_coroutine_unsupported); |
| 1193 | |
| 1194 | // Coroutines will get splitted into pieces. The GNU address of label |
| 1195 | // extension wouldn't be meaningful in coroutines. |
| 1196 | for (AddrLabelExpr *ALE : Fn->AddrLabels) |
| 1197 | Diag(Loc: ALE->getBeginLoc(), DiagID: diag::err_coro_invalid_addr_of_label); |
| 1198 | |
| 1199 | // Coroutines always return a handle, so they can't be [[noreturn]]. |
| 1200 | if (FD->isNoReturn()) |
| 1201 | Diag(Loc: FD->getLocation(), DiagID: diag::warn_noreturn_coroutine) << FD; |
| 1202 | |
| 1203 | CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); |
| 1204 | if (Builder.isInvalid() || !Builder.buildStatements()) |
| 1205 | return FD->setInvalidDecl(); |
| 1206 | |
| 1207 | // Build body for the coroutine wrapper statement. |
| 1208 | Body = CoroutineBodyStmt::Create(C: Context, Args: Builder); |
| 1209 | } |
| 1210 | |
| 1211 | static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { |
| 1212 | if (auto *CS = dyn_cast<CompoundStmt>(Val: Body)) |
| 1213 | return CS; |
| 1214 | |
| 1215 | // The body of the coroutine may be a try statement if it is in |
| 1216 | // 'function-try-block' syntax. Here we wrap it into a compound |
| 1217 | // statement for consistency. |
| 1218 | assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type" ); |
| 1219 | return CompoundStmt::Create(C: Context, Stmts: {Body}, FPFeatures: FPOptionsOverride(), |
| 1220 | LB: SourceLocation(), RB: SourceLocation()); |
| 1221 | } |
| 1222 | |
| 1223 | CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, |
| 1224 | sema::FunctionScopeInfo &Fn, |
| 1225 | Stmt *Body) |
| 1226 | : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), |
| 1227 | IsPromiseDependentType( |
| 1228 | !Fn.CoroutinePromise || |
| 1229 | Fn.CoroutinePromise->getType()->isDependentType()) { |
| 1230 | this->Body = buildCoroutineBody(Body, Context&: S.getASTContext()); |
| 1231 | |
| 1232 | for (auto KV : Fn.CoroutineParameterMoves) |
| 1233 | this->ParamMovesVector.push_back(Elt: KV.second); |
| 1234 | this->ParamMoves = this->ParamMovesVector; |
| 1235 | |
| 1236 | if (!IsPromiseDependentType) { |
| 1237 | PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); |
| 1238 | assert(PromiseRecordDecl && "Type should have already been checked" ); |
| 1239 | } |
| 1240 | this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); |
| 1241 | } |
| 1242 | |
| 1243 | bool CoroutineStmtBuilder::buildStatements() { |
| 1244 | assert(this->IsValid && "coroutine already invalid" ); |
| 1245 | this->IsValid = makeReturnObject(); |
| 1246 | if (this->IsValid && !IsPromiseDependentType) |
| 1247 | buildDependentStatements(); |
| 1248 | return this->IsValid; |
| 1249 | } |
| 1250 | |
| 1251 | bool CoroutineStmtBuilder::buildDependentStatements() { |
| 1252 | assert(this->IsValid && "coroutine already invalid" ); |
| 1253 | assert(!this->IsPromiseDependentType && |
| 1254 | "coroutine cannot have a dependent promise type" ); |
| 1255 | this->IsValid = makeOnException() && makeOnFallthrough() && |
| 1256 | makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && |
| 1257 | makeNewAndDeleteExpr(); |
| 1258 | return this->IsValid; |
| 1259 | } |
| 1260 | |
| 1261 | bool CoroutineStmtBuilder::makePromiseStmt() { |
| 1262 | // Form a declaration statement for the promise declaration, so that AST |
| 1263 | // visitors can more easily find it. |
| 1264 | StmtResult PromiseStmt = |
| 1265 | S.ActOnDeclStmt(Decl: S.ConvertDeclToDeclGroup(Ptr: Fn.CoroutinePromise), StartLoc: Loc, EndLoc: Loc); |
| 1266 | if (PromiseStmt.isInvalid()) |
| 1267 | return false; |
| 1268 | |
| 1269 | this->Promise = PromiseStmt.get(); |
| 1270 | return true; |
| 1271 | } |
| 1272 | |
| 1273 | bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { |
| 1274 | if (Fn.hasInvalidCoroutineSuspends()) |
| 1275 | return false; |
| 1276 | this->InitialSuspend = cast<Expr>(Val: Fn.CoroutineSuspends.first); |
| 1277 | this->FinalSuspend = cast<Expr>(Val: Fn.CoroutineSuspends.second); |
| 1278 | return true; |
| 1279 | } |
| 1280 | |
| 1281 | static bool diagReturnOnAllocFailure(Sema &S, Expr *E, |
| 1282 | CXXRecordDecl *PromiseRecordDecl, |
| 1283 | FunctionScopeInfo &Fn) { |
| 1284 | auto Loc = E->getExprLoc(); |
| 1285 | if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(Val: E)) { |
| 1286 | auto *Decl = DeclRef->getDecl(); |
| 1287 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: Decl)) { |
| 1288 | if (Method->isStatic()) |
| 1289 | return true; |
| 1290 | else |
| 1291 | Loc = Decl->getLocation(); |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | S.Diag( |
| 1296 | Loc, |
| 1297 | DiagID: diag::err_coroutine_promise_get_return_object_on_allocation_failure) |
| 1298 | << PromiseRecordDecl; |
| 1299 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
| 1300 | << Fn.getFirstCoroutineStmtKeyword(); |
| 1301 | return false; |
| 1302 | } |
| 1303 | |
| 1304 | bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { |
| 1305 | assert(!IsPromiseDependentType && |
| 1306 | "cannot make statement while the promise type is dependent" ); |
| 1307 | |
| 1308 | // [dcl.fct.def.coroutine]p10 |
| 1309 | // If a search for the name get_return_object_on_allocation_failure in |
| 1310 | // the scope of the promise type ([class.member.lookup]) finds any |
| 1311 | // declarations, then the result of a call to an allocation function used to |
| 1312 | // obtain storage for the coroutine state is assumed to return nullptr if it |
| 1313 | // fails to obtain storage, ... If the allocation function returns nullptr, |
| 1314 | // ... and the return value is obtained by a call to |
| 1315 | // T::get_return_object_on_allocation_failure(), where T is the |
| 1316 | // promise type. |
| 1317 | DeclarationName DN = |
| 1318 | S.PP.getIdentifierInfo(Name: "get_return_object_on_allocation_failure" ); |
| 1319 | LookupResult Found(S, DN, Loc, Sema::LookupMemberName); |
| 1320 | if (!S.LookupQualifiedName(R&: Found, LookupCtx: PromiseRecordDecl)) |
| 1321 | return true; |
| 1322 | |
| 1323 | CXXScopeSpec SS; |
| 1324 | ExprResult DeclNameExpr = |
| 1325 | S.BuildDeclarationNameExpr(SS, R&: Found, /*NeedsADL=*/false); |
| 1326 | if (DeclNameExpr.isInvalid()) |
| 1327 | return false; |
| 1328 | |
| 1329 | if (!diagReturnOnAllocFailure(S, E: DeclNameExpr.get(), PromiseRecordDecl, Fn)) |
| 1330 | return false; |
| 1331 | |
| 1332 | ExprResult ReturnObjectOnAllocationFailure = |
| 1333 | S.BuildCallExpr(S: nullptr, Fn: DeclNameExpr.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc); |
| 1334 | if (ReturnObjectOnAllocationFailure.isInvalid()) |
| 1335 | return false; |
| 1336 | |
| 1337 | StmtResult ReturnStmt = |
| 1338 | S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: ReturnObjectOnAllocationFailure.get()); |
| 1339 | if (ReturnStmt.isInvalid()) { |
| 1340 | S.Diag(Loc: Found.getFoundDecl()->getLocation(), DiagID: diag::note_member_declared_here) |
| 1341 | << DN; |
| 1342 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
| 1343 | << Fn.getFirstCoroutineStmtKeyword(); |
| 1344 | return false; |
| 1345 | } |
| 1346 | |
| 1347 | this->ReturnStmtOnAllocFailure = ReturnStmt.get(); |
| 1348 | return true; |
| 1349 | } |
| 1350 | |
| 1351 | // Collect placement arguments for allocation function of coroutine FD. |
| 1352 | // Return true if we collect placement arguments succesfully. Return false, |
| 1353 | // otherwise. |
| 1354 | static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, |
| 1355 | SmallVectorImpl<Expr *> &PlacementArgs) { |
| 1356 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: &FD)) { |
| 1357 | if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { |
| 1358 | ExprResult ThisExpr = S.ActOnCXXThis(Loc); |
| 1359 | if (ThisExpr.isInvalid()) |
| 1360 | return false; |
| 1361 | ThisExpr = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: ThisExpr.get()); |
| 1362 | if (ThisExpr.isInvalid()) |
| 1363 | return false; |
| 1364 | PlacementArgs.push_back(Elt: ThisExpr.get()); |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | for (auto *PD : FD.parameters()) { |
| 1369 | if (PD->getType()->isDependentType()) |
| 1370 | continue; |
| 1371 | |
| 1372 | // Build a reference to the parameter. |
| 1373 | auto PDLoc = PD->getLocation(); |
| 1374 | ExprResult PDRefExpr = |
| 1375 | S.BuildDeclRefExpr(D: PD, Ty: PD->getOriginalType().getNonReferenceType(), |
| 1376 | VK: ExprValueKind::VK_LValue, Loc: PDLoc); |
| 1377 | if (PDRefExpr.isInvalid()) |
| 1378 | return false; |
| 1379 | |
| 1380 | PlacementArgs.push_back(Elt: PDRefExpr.get()); |
| 1381 | } |
| 1382 | |
| 1383 | return true; |
| 1384 | } |
| 1385 | |
| 1386 | bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { |
| 1387 | // Form and check allocation and deallocation calls. |
| 1388 | assert(!IsPromiseDependentType && |
| 1389 | "cannot make statement while the promise type is dependent" ); |
| 1390 | QualType PromiseType = Fn.CoroutinePromise->getType(); |
| 1391 | |
| 1392 | if (S.RequireCompleteType(Loc, T: PromiseType, DiagID: diag::err_incomplete_type)) |
| 1393 | return false; |
| 1394 | |
| 1395 | const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; |
| 1396 | |
| 1397 | // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a |
| 1398 | // parameter list composed of the requested size of the coroutine state being |
| 1399 | // allocated, followed by the coroutine function's arguments. If a matching |
| 1400 | // allocation function exists, use it. Otherwise, use an allocation function |
| 1401 | // that just takes the requested size. |
| 1402 | // |
| 1403 | // [dcl.fct.def.coroutine]p9 |
| 1404 | // An implementation may need to allocate additional storage for a |
| 1405 | // coroutine. |
| 1406 | // This storage is known as the coroutine state and is obtained by calling a |
| 1407 | // non-array allocation function ([basic.stc.dynamic.allocation]). The |
| 1408 | // allocation function's name is looked up by searching for it in the scope of |
| 1409 | // the promise type. |
| 1410 | // - If any declarations are found, overload resolution is performed on a |
| 1411 | // function call created by assembling an argument list. The first argument is |
| 1412 | // the amount of space requested, and has type std::size_t. The |
| 1413 | // lvalues p1 ... pn are the succeeding arguments. |
| 1414 | // |
| 1415 | // ...where "p1 ... pn" are defined earlier as: |
| 1416 | // |
| 1417 | // [dcl.fct.def.coroutine]p3 |
| 1418 | // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., |
| 1419 | // Pn>` |
| 1420 | // , where R is the return type of the function, and `P1, ..., Pn` are the |
| 1421 | // sequence of types of the non-object function parameters, preceded by the |
| 1422 | // type of the object parameter ([dcl.fct]) if the coroutine is a non-static |
| 1423 | // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an |
| 1424 | // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes |
| 1425 | // the i-th non-object function parameter for a non-static member function, |
| 1426 | // and p_i denotes the i-th function parameter otherwise. For a non-static |
| 1427 | // member function, q_1 is an lvalue that denotes *this; any other q_i is an |
| 1428 | // lvalue that denotes the parameter copy corresponding to p_i. |
| 1429 | |
| 1430 | FunctionDecl *OperatorNew = nullptr; |
| 1431 | SmallVector<Expr *, 1> PlacementArgs; |
| 1432 | DeclarationName NewName = |
| 1433 | S.getASTContext().DeclarationNames.getCXXOperatorName(Op: OO_New); |
| 1434 | |
| 1435 | const bool PromiseContainsNew = [this, &PromiseType, NewName]() -> bool { |
| 1436 | LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); |
| 1437 | |
| 1438 | if (PromiseType->isRecordType()) |
| 1439 | S.LookupQualifiedName(R, LookupCtx: PromiseType->getAsCXXRecordDecl()); |
| 1440 | |
| 1441 | return !R.empty() && !R.isAmbiguous(); |
| 1442 | }(); |
| 1443 | |
| 1444 | // Helper function to indicate whether the last lookup found the aligned |
| 1445 | // allocation function. |
| 1446 | ImplicitAllocationParameters IAP( |
| 1447 | alignedAllocationModeFromBool(IsAligned: S.getLangOpts().CoroAlignedAllocation)); |
| 1448 | auto LookupAllocationFunction = [&](AllocationFunctionScope NewScope = |
| 1449 | AllocationFunctionScope::Both, |
| 1450 | bool WithoutPlacementArgs = false, |
| 1451 | bool ForceNonAligned = false) { |
| 1452 | // [dcl.fct.def.coroutine]p9 |
| 1453 | // The allocation function's name is looked up by searching for it in the |
| 1454 | // scope of the promise type. |
| 1455 | // - If any declarations are found, ... |
| 1456 | // - If no declarations are found in the scope of the promise type, a search |
| 1457 | // is performed in the global scope. |
| 1458 | if (NewScope == AllocationFunctionScope::Both) |
| 1459 | NewScope = PromiseContainsNew ? AllocationFunctionScope::Class |
| 1460 | : AllocationFunctionScope::Global; |
| 1461 | |
| 1462 | bool ShouldUseAlignedAlloc = |
| 1463 | !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; |
| 1464 | IAP = ImplicitAllocationParameters( |
| 1465 | alignedAllocationModeFromBool(IsAligned: ShouldUseAlignedAlloc)); |
| 1466 | |
| 1467 | FunctionDecl *UnusedResult = nullptr; |
| 1468 | S.FindAllocationFunctions( |
| 1469 | StartLoc: Loc, Range: SourceRange(), NewScope, |
| 1470 | /*DeleteScope=*/AllocationFunctionScope::Both, AllocType: PromiseType, |
| 1471 | /*isArray=*/IsArray: false, IAP, |
| 1472 | PlaceArgs: WithoutPlacementArgs ? MultiExprArg{} : PlacementArgs, OperatorNew, |
| 1473 | OperatorDelete&: UnusedResult, /*Diagnose=*/false); |
| 1474 | assert(!OperatorNew || !OperatorNew->isTypeAwareOperatorNewOrDelete()); |
| 1475 | }; |
| 1476 | |
| 1477 | // We don't expect to call to global operator new with (size, p0, …, pn). |
| 1478 | // So if we choose to lookup the allocation function in global scope, we |
| 1479 | // shouldn't lookup placement arguments. |
| 1480 | if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) |
| 1481 | return false; |
| 1482 | |
| 1483 | LookupAllocationFunction(); |
| 1484 | |
| 1485 | if (PromiseContainsNew && !PlacementArgs.empty()) { |
| 1486 | // [dcl.fct.def.coroutine]p9 |
| 1487 | // If no viable function is found ([over.match.viable]), overload |
| 1488 | // resolution |
| 1489 | // is performed again on a function call created by passing just the amount |
| 1490 | // of space required as an argument of type std::size_t. |
| 1491 | // |
| 1492 | // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: |
| 1493 | // Otherwise, overload resolution is performed again on a function call |
| 1494 | // created |
| 1495 | // by passing the amount of space requested as an argument of type |
| 1496 | // std::size_t as the first argument, and the requested alignment as |
| 1497 | // an argument of type std:align_val_t as the second argument. |
| 1498 | if (!OperatorNew || (S.getLangOpts().CoroAlignedAllocation && |
| 1499 | !isAlignedAllocation(Mode: IAP.PassAlignment))) |
| 1500 | LookupAllocationFunction(/*NewScope*/ AllocationFunctionScope::Class, |
| 1501 | /*WithoutPlacementArgs*/ true); |
| 1502 | } |
| 1503 | |
| 1504 | // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: |
| 1505 | // Otherwise, overload resolution is performed again on a function call |
| 1506 | // created |
| 1507 | // by passing the amount of space requested as an argument of type |
| 1508 | // std::size_t as the first argument, and the lvalues p1 ... pn as the |
| 1509 | // succeeding arguments. Otherwise, overload resolution is performed again |
| 1510 | // on a function call created by passing just the amount of space required as |
| 1511 | // an argument of type std::size_t. |
| 1512 | // |
| 1513 | // So within the proposed change in P2014RO, the priority order of aligned |
| 1514 | // allocation functions wiht promise_type is: |
| 1515 | // |
| 1516 | // void* operator new( std::size_t, std::align_val_t, placement_args... ); |
| 1517 | // void* operator new( std::size_t, std::align_val_t); |
| 1518 | // void* operator new( std::size_t, placement_args... ); |
| 1519 | // void* operator new( std::size_t); |
| 1520 | |
| 1521 | // Helper variable to emit warnings. |
| 1522 | bool FoundNonAlignedInPromise = false; |
| 1523 | if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) |
| 1524 | if (!OperatorNew || !isAlignedAllocation(Mode: IAP.PassAlignment)) { |
| 1525 | FoundNonAlignedInPromise = OperatorNew; |
| 1526 | |
| 1527 | LookupAllocationFunction(/*NewScope*/ AllocationFunctionScope::Class, |
| 1528 | /*WithoutPlacementArgs*/ false, |
| 1529 | /*ForceNonAligned*/ true); |
| 1530 | |
| 1531 | if (!OperatorNew && !PlacementArgs.empty()) |
| 1532 | LookupAllocationFunction(/*NewScope*/ AllocationFunctionScope::Class, |
| 1533 | /*WithoutPlacementArgs*/ true, |
| 1534 | /*ForceNonAligned*/ true); |
| 1535 | } |
| 1536 | |
| 1537 | bool IsGlobalOverload = |
| 1538 | OperatorNew && !isa<CXXRecordDecl>(Val: OperatorNew->getDeclContext()); |
| 1539 | // If we didn't find a class-local new declaration and non-throwing new |
| 1540 | // was is required then we need to lookup the non-throwing global operator |
| 1541 | // instead. |
| 1542 | if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { |
| 1543 | auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); |
| 1544 | if (!StdNoThrow) |
| 1545 | return false; |
| 1546 | PlacementArgs = {StdNoThrow}; |
| 1547 | OperatorNew = nullptr; |
| 1548 | LookupAllocationFunction(AllocationFunctionScope::Global); |
| 1549 | } |
| 1550 | |
| 1551 | // If we found a non-aligned allocation function in the promise_type, |
| 1552 | // it indicates the user forgot to update the allocation function. Let's emit |
| 1553 | // a warning here. |
| 1554 | if (FoundNonAlignedInPromise) { |
| 1555 | S.Diag(Loc: OperatorNew->getLocation(), |
| 1556 | DiagID: diag::warn_non_aligned_allocation_function) |
| 1557 | << &FD; |
| 1558 | } |
| 1559 | |
| 1560 | if (!OperatorNew) { |
| 1561 | if (PromiseContainsNew) { |
| 1562 | S.Diag(Loc, DiagID: diag::err_coroutine_unusable_new) << PromiseType << &FD; |
| 1563 | DiagnoseTypeAwareAllocators( |
| 1564 | S, Loc, DiagnosticID: diag::note_coroutine_unusable_type_aware_allocators, Name: NewName, |
| 1565 | PromiseType); |
| 1566 | } else if (RequiresNoThrowAlloc) |
| 1567 | S.Diag(Loc, DiagID: diag::err_coroutine_unfound_nothrow_new) |
| 1568 | << &FD << S.getLangOpts().CoroAlignedAllocation; |
| 1569 | |
| 1570 | return false; |
| 1571 | } |
| 1572 | assert(!OperatorNew->isTypeAwareOperatorNewOrDelete()); |
| 1573 | |
| 1574 | DiagnoseTypeAwareAllocators(S, Loc, |
| 1575 | DiagnosticID: diag::warn_coroutine_type_aware_allocator_ignored, |
| 1576 | Name: NewName, PromiseType); |
| 1577 | |
| 1578 | if (RequiresNoThrowAlloc) { |
| 1579 | const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); |
| 1580 | if (!FT->isNothrow(/*ResultIfDependent*/ false)) { |
| 1581 | S.Diag(Loc: OperatorNew->getLocation(), |
| 1582 | DiagID: diag::err_coroutine_promise_new_requires_nothrow) |
| 1583 | << OperatorNew; |
| 1584 | S.Diag(Loc, DiagID: diag::note_coroutine_promise_call_implicitly_required) |
| 1585 | << OperatorNew; |
| 1586 | return false; |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | FunctionDecl *OperatorDelete = nullptr; |
| 1591 | if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { |
| 1592 | // FIXME: We should add an error here. According to: |
| 1593 | // [dcl.fct.def.coroutine]p12 |
| 1594 | // If no usual deallocation function is found, the program is ill-formed. |
| 1595 | return false; |
| 1596 | } |
| 1597 | |
| 1598 | assert(!OperatorDelete->isTypeAwareOperatorNewOrDelete()); |
| 1599 | |
| 1600 | Expr *FramePtr = |
| 1601 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_frame, CallArgs: {}); |
| 1602 | |
| 1603 | Expr *FrameSize = |
| 1604 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_size, CallArgs: {}); |
| 1605 | |
| 1606 | Expr *FrameAlignment = nullptr; |
| 1607 | |
| 1608 | if (S.getLangOpts().CoroAlignedAllocation) { |
| 1609 | FrameAlignment = |
| 1610 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_align, CallArgs: {}); |
| 1611 | |
| 1612 | TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); |
| 1613 | if (!AlignValTy) |
| 1614 | return false; |
| 1615 | |
| 1616 | FrameAlignment = S.BuildCXXNamedCast(OpLoc: Loc, Kind: tok::kw_static_cast, Ty: AlignValTy, |
| 1617 | E: FrameAlignment, AngleBrackets: SourceRange(Loc, Loc), |
| 1618 | Parens: SourceRange(Loc, Loc)) |
| 1619 | .get(); |
| 1620 | } |
| 1621 | |
| 1622 | // Make new call. |
| 1623 | ExprResult NewRef = |
| 1624 | S.BuildDeclRefExpr(D: OperatorNew, Ty: OperatorNew->getType(), VK: VK_LValue, Loc); |
| 1625 | if (NewRef.isInvalid()) |
| 1626 | return false; |
| 1627 | |
| 1628 | SmallVector<Expr *, 2> NewArgs(1, FrameSize); |
| 1629 | if (S.getLangOpts().CoroAlignedAllocation && |
| 1630 | isAlignedAllocation(Mode: IAP.PassAlignment)) |
| 1631 | NewArgs.push_back(Elt: FrameAlignment); |
| 1632 | |
| 1633 | if (OperatorNew->getNumParams() > NewArgs.size()) |
| 1634 | llvm::append_range(C&: NewArgs, R&: PlacementArgs); |
| 1635 | |
| 1636 | ExprResult NewExpr = |
| 1637 | S.BuildCallExpr(S: S.getCurScope(), Fn: NewRef.get(), LParenLoc: Loc, ArgExprs: NewArgs, RParenLoc: Loc); |
| 1638 | NewExpr = S.ActOnFinishFullExpr(Expr: NewExpr.get(), /*DiscardedValue*/ false); |
| 1639 | if (NewExpr.isInvalid()) |
| 1640 | return false; |
| 1641 | |
| 1642 | // Make delete call. |
| 1643 | |
| 1644 | QualType OpDeleteQualType = OperatorDelete->getType(); |
| 1645 | |
| 1646 | ExprResult DeleteRef = |
| 1647 | S.BuildDeclRefExpr(D: OperatorDelete, Ty: OpDeleteQualType, VK: VK_LValue, Loc); |
| 1648 | if (DeleteRef.isInvalid()) |
| 1649 | return false; |
| 1650 | |
| 1651 | Expr *CoroFree = |
| 1652 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_free, CallArgs: {FramePtr}); |
| 1653 | |
| 1654 | SmallVector<Expr *, 2> DeleteArgs{CoroFree}; |
| 1655 | |
| 1656 | // [dcl.fct.def.coroutine]p12 |
| 1657 | // The selected deallocation function shall be called with the address of |
| 1658 | // the block of storage to be reclaimed as its first argument. If a |
| 1659 | // deallocation function with a parameter of type std::size_t is |
| 1660 | // used, the size of the block is passed as the corresponding argument. |
| 1661 | const auto *OpDeleteType = |
| 1662 | OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); |
| 1663 | if (OpDeleteType->getNumParams() > DeleteArgs.size() && |
| 1664 | S.getASTContext().hasSameUnqualifiedType( |
| 1665 | T1: OpDeleteType->getParamType(i: DeleteArgs.size()), T2: FrameSize->getType())) |
| 1666 | DeleteArgs.push_back(Elt: FrameSize); |
| 1667 | |
| 1668 | // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: |
| 1669 | // If deallocation function lookup finds a usual deallocation function with |
| 1670 | // a pointer parameter, size parameter and alignment parameter then this |
| 1671 | // will be the selected deallocation function, otherwise if lookup finds a |
| 1672 | // usual deallocation function with both a pointer parameter and a size |
| 1673 | // parameter, then this will be the selected deallocation function. |
| 1674 | // Otherwise, if lookup finds a usual deallocation function with only a |
| 1675 | // pointer parameter, then this will be the selected deallocation |
| 1676 | // function. |
| 1677 | // |
| 1678 | // So we are not forced to pass alignment to the deallocation function. |
| 1679 | if (S.getLangOpts().CoroAlignedAllocation && |
| 1680 | OpDeleteType->getNumParams() > DeleteArgs.size() && |
| 1681 | S.getASTContext().hasSameUnqualifiedType( |
| 1682 | T1: OpDeleteType->getParamType(i: DeleteArgs.size()), |
| 1683 | T2: FrameAlignment->getType())) |
| 1684 | DeleteArgs.push_back(Elt: FrameAlignment); |
| 1685 | |
| 1686 | ExprResult DeleteExpr = |
| 1687 | S.BuildCallExpr(S: S.getCurScope(), Fn: DeleteRef.get(), LParenLoc: Loc, ArgExprs: DeleteArgs, RParenLoc: Loc); |
| 1688 | DeleteExpr = |
| 1689 | S.ActOnFinishFullExpr(Expr: DeleteExpr.get(), /*DiscardedValue*/ false); |
| 1690 | if (DeleteExpr.isInvalid()) |
| 1691 | return false; |
| 1692 | |
| 1693 | this->Allocate = NewExpr.get(); |
| 1694 | this->Deallocate = DeleteExpr.get(); |
| 1695 | |
| 1696 | return true; |
| 1697 | } |
| 1698 | |
| 1699 | bool CoroutineStmtBuilder::makeOnFallthrough() { |
| 1700 | assert(!IsPromiseDependentType && |
| 1701 | "cannot make statement while the promise type is dependent" ); |
| 1702 | |
| 1703 | // [dcl.fct.def.coroutine]/p6 |
| 1704 | // If searches for the names return_void and return_value in the scope of |
| 1705 | // the promise type each find any declarations, the program is ill-formed. |
| 1706 | // [Note 1: If return_void is found, flowing off the end of a coroutine is |
| 1707 | // equivalent to a co_return with no operand. Otherwise, flowing off the end |
| 1708 | // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — |
| 1709 | // end note] |
| 1710 | bool HasRVoid, HasRValue; |
| 1711 | LookupResult LRVoid = |
| 1712 | lookupMember(S, Name: "return_void" , RD: PromiseRecordDecl, Loc, Res&: HasRVoid); |
| 1713 | LookupResult LRValue = |
| 1714 | lookupMember(S, Name: "return_value" , RD: PromiseRecordDecl, Loc, Res&: HasRValue); |
| 1715 | |
| 1716 | StmtResult Fallthrough; |
| 1717 | if (HasRVoid && HasRValue) { |
| 1718 | // FIXME Improve this diagnostic |
| 1719 | S.Diag(Loc: FD.getLocation(), |
| 1720 | DiagID: diag::err_coroutine_promise_incompatible_return_functions) |
| 1721 | << PromiseRecordDecl; |
| 1722 | S.Diag(Loc: LRVoid.getRepresentativeDecl()->getLocation(), |
| 1723 | DiagID: diag::note_member_first_declared_here) |
| 1724 | << LRVoid.getLookupName(); |
| 1725 | S.Diag(Loc: LRValue.getRepresentativeDecl()->getLocation(), |
| 1726 | DiagID: diag::note_member_first_declared_here) |
| 1727 | << LRValue.getLookupName(); |
| 1728 | return false; |
| 1729 | } else if (!HasRVoid && !HasRValue) { |
| 1730 | // We need to set 'Fallthrough'. Otherwise the other analysis part might |
| 1731 | // think the coroutine has defined a return_value method. So it might emit |
| 1732 | // **false** positive warning. e.g., |
| 1733 | // |
| 1734 | // promise_without_return_func foo() { |
| 1735 | // co_await something(); |
| 1736 | // } |
| 1737 | // |
| 1738 | // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a |
| 1739 | // co_return statements, which isn't correct. |
| 1740 | Fallthrough = S.ActOnNullStmt(SemiLoc: PromiseRecordDecl->getLocation()); |
| 1741 | if (Fallthrough.isInvalid()) |
| 1742 | return false; |
| 1743 | } else if (HasRVoid) { |
| 1744 | Fallthrough = S.BuildCoreturnStmt(Loc: FD.getLocation(), E: nullptr, |
| 1745 | /*IsImplicit=*/true); |
| 1746 | Fallthrough = S.ActOnFinishFullStmt(Stmt: Fallthrough.get()); |
| 1747 | if (Fallthrough.isInvalid()) |
| 1748 | return false; |
| 1749 | } |
| 1750 | |
| 1751 | this->OnFallthrough = Fallthrough.get(); |
| 1752 | return true; |
| 1753 | } |
| 1754 | |
| 1755 | bool CoroutineStmtBuilder::makeOnException() { |
| 1756 | // Try to form 'p.unhandled_exception();' |
| 1757 | assert(!IsPromiseDependentType && |
| 1758 | "cannot make statement while the promise type is dependent" ); |
| 1759 | |
| 1760 | const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; |
| 1761 | |
| 1762 | if (!lookupMember(S, Name: "unhandled_exception" , RD: PromiseRecordDecl, Loc)) { |
| 1763 | auto DiagID = |
| 1764 | RequireUnhandledException |
| 1765 | ? diag::err_coroutine_promise_unhandled_exception_required |
| 1766 | : diag:: |
| 1767 | warn_coroutine_promise_unhandled_exception_required_with_exceptions; |
| 1768 | S.Diag(Loc, DiagID) << PromiseRecordDecl; |
| 1769 | S.Diag(Loc: PromiseRecordDecl->getLocation(), DiagID: diag::note_defined_here) |
| 1770 | << PromiseRecordDecl; |
| 1771 | return !RequireUnhandledException; |
| 1772 | } |
| 1773 | |
| 1774 | // If exceptions are disabled, don't try to build OnException. |
| 1775 | if (!S.getLangOpts().CXXExceptions) |
| 1776 | return true; |
| 1777 | |
| 1778 | ExprResult UnhandledException = |
| 1779 | buildPromiseCall(S, Promise: Fn.CoroutinePromise, Loc, Name: "unhandled_exception" , Args: {}); |
| 1780 | UnhandledException = S.ActOnFinishFullExpr(Expr: UnhandledException.get(), CC: Loc, |
| 1781 | /*DiscardedValue*/ false); |
| 1782 | if (UnhandledException.isInvalid()) |
| 1783 | return false; |
| 1784 | |
| 1785 | // Since the body of the coroutine will be wrapped in try-catch, it will |
| 1786 | // be incompatible with SEH __try if present in a function. |
| 1787 | if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { |
| 1788 | S.Diag(Loc: Fn.FirstSEHTryLoc, DiagID: diag::err_seh_in_a_coroutine_with_cxx_exceptions); |
| 1789 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
| 1790 | << Fn.getFirstCoroutineStmtKeyword(); |
| 1791 | return false; |
| 1792 | } |
| 1793 | |
| 1794 | this->OnException = UnhandledException.get(); |
| 1795 | return true; |
| 1796 | } |
| 1797 | |
| 1798 | bool CoroutineStmtBuilder::makeReturnObject() { |
| 1799 | // [dcl.fct.def.coroutine]p7 |
| 1800 | // The expression promise.get_return_object() is used to initialize the |
| 1801 | // returned reference or prvalue result object of a call to a coroutine. |
| 1802 | ExprResult ReturnObject = |
| 1803 | buildPromiseCall(S, Promise: Fn.CoroutinePromise, Loc, Name: "get_return_object" , Args: {}); |
| 1804 | if (ReturnObject.isInvalid()) |
| 1805 | return false; |
| 1806 | |
| 1807 | this->ReturnValue = ReturnObject.get(); |
| 1808 | return true; |
| 1809 | } |
| 1810 | |
| 1811 | static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { |
| 1812 | if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
| 1813 | auto *MethodDecl = MbrRef->getMethodDecl(); |
| 1814 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_member_declared_here) |
| 1815 | << MethodDecl; |
| 1816 | } |
| 1817 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
| 1818 | << Fn.getFirstCoroutineStmtKeyword(); |
| 1819 | } |
| 1820 | |
| 1821 | bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { |
| 1822 | assert(!IsPromiseDependentType && |
| 1823 | "cannot make statement while the promise type is dependent" ); |
| 1824 | assert(this->ReturnValue && "ReturnValue must be already formed" ); |
| 1825 | |
| 1826 | QualType const GroType = this->ReturnValue->getType(); |
| 1827 | assert(!GroType->isDependentType() && |
| 1828 | "get_return_object type must no longer be dependent" ); |
| 1829 | |
| 1830 | QualType const FnRetType = FD.getReturnType(); |
| 1831 | assert(!FnRetType->isDependentType() && |
| 1832 | "get_return_object type must no longer be dependent" ); |
| 1833 | |
| 1834 | // The call to get_Âreturn_Âobject is sequenced before the call to |
| 1835 | // initial_Âsuspend and is invoked at most once, but there are caveats |
| 1836 | // regarding on whether the prvalue result object may be initialized |
| 1837 | // directly/eager or delayed, depending on the types involved. |
| 1838 | // |
| 1839 | // More info at https://github.com/cplusplus/papers/issues/1414 |
| 1840 | bool GroMatchesRetType = S.getASTContext().hasSameType(T1: GroType, T2: FnRetType); |
| 1841 | |
| 1842 | if (FnRetType->isVoidType()) { |
| 1843 | ExprResult Res = |
| 1844 | S.ActOnFinishFullExpr(Expr: this->ReturnValue, CC: Loc, /*DiscardedValue*/ false); |
| 1845 | if (Res.isInvalid()) |
| 1846 | return false; |
| 1847 | |
| 1848 | if (!GroMatchesRetType) |
| 1849 | this->ResultDecl = Res.get(); |
| 1850 | return true; |
| 1851 | } |
| 1852 | |
| 1853 | if (GroType->isVoidType()) { |
| 1854 | // Trigger a nice error message. |
| 1855 | InitializedEntity Entity = |
| 1856 | InitializedEntity::InitializeResult(ReturnLoc: Loc, Type: FnRetType); |
| 1857 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ReturnValue); |
| 1858 | noteMemberDeclaredHere(S, E: ReturnValue, Fn); |
| 1859 | return false; |
| 1860 | } |
| 1861 | |
| 1862 | StmtResult ReturnStmt; |
| 1863 | clang::VarDecl *GroDecl = nullptr; |
| 1864 | if (GroMatchesRetType) { |
| 1865 | ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: ReturnValue); |
| 1866 | } else { |
| 1867 | GroDecl = VarDecl::Create( |
| 1868 | C&: S.Context, DC: &FD, StartLoc: FD.getLocation(), IdLoc: FD.getLocation(), |
| 1869 | Id: &S.PP.getIdentifierTable().get(Name: "__coro_gro" ), T: GroType, |
| 1870 | TInfo: S.Context.getTrivialTypeSourceInfo(T: GroType, Loc), S: SC_None); |
| 1871 | GroDecl->setImplicit(); |
| 1872 | |
| 1873 | S.CheckVariableDeclarationType(NewVD: GroDecl); |
| 1874 | if (GroDecl->isInvalidDecl()) |
| 1875 | return false; |
| 1876 | |
| 1877 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: GroDecl); |
| 1878 | ExprResult Res = |
| 1879 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ReturnValue); |
| 1880 | if (Res.isInvalid()) |
| 1881 | return false; |
| 1882 | |
| 1883 | Res = S.ActOnFinishFullExpr(Expr: Res.get(), /*DiscardedValue*/ false); |
| 1884 | if (Res.isInvalid()) |
| 1885 | return false; |
| 1886 | |
| 1887 | S.AddInitializerToDecl(dcl: GroDecl, init: Res.get(), |
| 1888 | /*DirectInit=*/false); |
| 1889 | |
| 1890 | S.FinalizeDeclaration(D: GroDecl); |
| 1891 | |
| 1892 | // Form a declaration statement for the return declaration, so that AST |
| 1893 | // visitors can more easily find it. |
| 1894 | StmtResult GroDeclStmt = |
| 1895 | S.ActOnDeclStmt(Decl: S.ConvertDeclToDeclGroup(Ptr: GroDecl), StartLoc: Loc, EndLoc: Loc); |
| 1896 | if (GroDeclStmt.isInvalid()) |
| 1897 | return false; |
| 1898 | |
| 1899 | this->ResultDecl = GroDeclStmt.get(); |
| 1900 | |
| 1901 | ExprResult declRef = S.BuildDeclRefExpr(D: GroDecl, Ty: GroType, VK: VK_LValue, Loc); |
| 1902 | if (declRef.isInvalid()) |
| 1903 | return false; |
| 1904 | |
| 1905 | ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: declRef.get()); |
| 1906 | } |
| 1907 | |
| 1908 | if (ReturnStmt.isInvalid()) { |
| 1909 | noteMemberDeclaredHere(S, E: ReturnValue, Fn); |
| 1910 | return false; |
| 1911 | } |
| 1912 | |
| 1913 | if (!GroMatchesRetType && |
| 1914 | cast<clang::ReturnStmt>(Val: ReturnStmt.get())->getNRVOCandidate() == GroDecl) |
| 1915 | GroDecl->setNRVOVariable(true); |
| 1916 | |
| 1917 | this->ReturnStmt = ReturnStmt.get(); |
| 1918 | return true; |
| 1919 | } |
| 1920 | |
| 1921 | // Create a static_cast\<T&&>(expr). |
| 1922 | static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { |
| 1923 | if (T.isNull()) |
| 1924 | T = E->getType(); |
| 1925 | QualType TargetType = S.BuildReferenceType( |
| 1926 | T, /*SpelledAsLValue*/ LValueRef: false, Loc: SourceLocation(), Entity: DeclarationName()); |
| 1927 | SourceLocation ExprLoc = E->getBeginLoc(); |
| 1928 | TypeSourceInfo *TargetLoc = |
| 1929 | S.Context.getTrivialTypeSourceInfo(T: TargetType, Loc: ExprLoc); |
| 1930 | |
| 1931 | return S |
| 1932 | .BuildCXXNamedCast(OpLoc: ExprLoc, Kind: tok::kw_static_cast, Ty: TargetLoc, E, |
| 1933 | AngleBrackets: SourceRange(ExprLoc, ExprLoc), Parens: E->getSourceRange()) |
| 1934 | .get(); |
| 1935 | } |
| 1936 | |
| 1937 | /// Build a variable declaration for move parameter. |
| 1938 | static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, |
| 1939 | IdentifierInfo *II) { |
| 1940 | TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(T: Type, Loc); |
| 1941 | VarDecl *Decl = VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: II, T: Type, |
| 1942 | TInfo, S: SC_None); |
| 1943 | Decl->setImplicit(); |
| 1944 | return Decl; |
| 1945 | } |
| 1946 | |
| 1947 | // Build statements that move coroutine function parameters to the coroutine |
| 1948 | // frame, and store them on the function scope info. |
| 1949 | bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { |
| 1950 | assert(isa<FunctionDecl>(CurContext) && "not in a function scope" ); |
| 1951 | auto *FD = cast<FunctionDecl>(Val: CurContext); |
| 1952 | |
| 1953 | auto *ScopeInfo = getCurFunction(); |
| 1954 | if (!ScopeInfo->CoroutineParameterMoves.empty()) |
| 1955 | return false; |
| 1956 | |
| 1957 | // [dcl.fct.def.coroutine]p13 |
| 1958 | // When a coroutine is invoked, after initializing its parameters |
| 1959 | // ([expr.call]), a copy is created for each coroutine parameter. For a |
| 1960 | // parameter of type cv T, the copy is a variable of type cv T with |
| 1961 | // automatic storage duration that is direct-initialized from an xvalue of |
| 1962 | // type T referring to the parameter. |
| 1963 | for (auto *PD : FD->parameters()) { |
| 1964 | if (PD->getType()->isDependentType()) |
| 1965 | continue; |
| 1966 | |
| 1967 | // Preserve the referenced state for unused parameter diagnostics. |
| 1968 | bool DeclReferenced = PD->isReferenced(); |
| 1969 | |
| 1970 | ExprResult PDRefExpr = |
| 1971 | BuildDeclRefExpr(D: PD, Ty: PD->getType().getNonReferenceType(), |
| 1972 | VK: ExprValueKind::VK_LValue, Loc); // FIXME: scope? |
| 1973 | |
| 1974 | PD->setReferenced(DeclReferenced); |
| 1975 | |
| 1976 | if (PDRefExpr.isInvalid()) |
| 1977 | return false; |
| 1978 | |
| 1979 | Expr *CExpr = nullptr; |
| 1980 | if (PD->getType()->getAsCXXRecordDecl() || |
| 1981 | PD->getType()->isRValueReferenceType()) |
| 1982 | CExpr = castForMoving(S&: *this, E: PDRefExpr.get()); |
| 1983 | else |
| 1984 | CExpr = PDRefExpr.get(); |
| 1985 | // [dcl.fct.def.coroutine]p13 |
| 1986 | // The initialization and destruction of each parameter copy occurs in the |
| 1987 | // context of the called coroutine. |
| 1988 | auto *D = buildVarDecl(S&: *this, Loc, Type: PD->getType(), II: PD->getIdentifier()); |
| 1989 | AddInitializerToDecl(dcl: D, init: CExpr, /*DirectInit=*/true); |
| 1990 | |
| 1991 | // Convert decl to a statement. |
| 1992 | StmtResult Stmt = ActOnDeclStmt(Decl: ConvertDeclToDeclGroup(Ptr: D), StartLoc: Loc, EndLoc: Loc); |
| 1993 | if (Stmt.isInvalid()) |
| 1994 | return false; |
| 1995 | |
| 1996 | ScopeInfo->CoroutineParameterMoves.insert(KV: std::make_pair(x&: PD, y: Stmt.get())); |
| 1997 | } |
| 1998 | return true; |
| 1999 | } |
| 2000 | |
| 2001 | StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { |
| 2002 | CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(C: Context, Args); |
| 2003 | if (!Res) |
| 2004 | return StmtError(); |
| 2005 | return Res; |
| 2006 | } |
| 2007 | |
| 2008 | ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, |
| 2009 | SourceLocation FuncLoc) { |
| 2010 | if (StdCoroutineTraitsCache) |
| 2011 | return StdCoroutineTraitsCache; |
| 2012 | |
| 2013 | IdentifierInfo const &TraitIdent = |
| 2014 | PP.getIdentifierTable().get(Name: "coroutine_traits" ); |
| 2015 | |
| 2016 | NamespaceDecl *StdSpace = getStdNamespace(); |
| 2017 | LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); |
| 2018 | bool Found = StdSpace && LookupQualifiedName(R&: Result, LookupCtx: StdSpace); |
| 2019 | |
| 2020 | if (!Found) { |
| 2021 | // The goggles, we found nothing! |
| 2022 | Diag(Loc: KwLoc, DiagID: diag::err_implied_coroutine_type_not_found) |
| 2023 | << "std::coroutine_traits" ; |
| 2024 | return nullptr; |
| 2025 | } |
| 2026 | |
| 2027 | // coroutine_traits is required to be a class template. |
| 2028 | StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); |
| 2029 | if (!StdCoroutineTraitsCache) { |
| 2030 | Result.suppressDiagnostics(); |
| 2031 | NamedDecl *Found = *Result.begin(); |
| 2032 | Diag(Loc: Found->getLocation(), DiagID: diag::err_malformed_std_coroutine_traits); |
| 2033 | return nullptr; |
| 2034 | } |
| 2035 | |
| 2036 | return StdCoroutineTraitsCache; |
| 2037 | } |
| 2038 | |