| 1 | //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for Objective C declarations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "TypeLocBuilder.h" |
| 14 | #include "clang/AST/ASTConsumer.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/ASTMutationListener.h" |
| 17 | #include "clang/AST/DeclObjC.h" |
| 18 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 19 | #include "clang/AST/Expr.h" |
| 20 | #include "clang/AST/ExprObjC.h" |
| 21 | #include "clang/Basic/SourceManager.h" |
| 22 | #include "clang/Basic/TargetInfo.h" |
| 23 | #include "clang/Sema/DeclSpec.h" |
| 24 | #include "clang/Sema/DelayedDiagnostic.h" |
| 25 | #include "clang/Sema/Initialization.h" |
| 26 | #include "clang/Sema/Lookup.h" |
| 27 | #include "clang/Sema/Scope.h" |
| 28 | #include "clang/Sema/ScopeInfo.h" |
| 29 | #include "clang/Sema/SemaObjC.h" |
| 30 | #include "llvm/ADT/DenseMap.h" |
| 31 | #include "llvm/ADT/DenseSet.h" |
| 32 | |
| 33 | using namespace clang; |
| 34 | |
| 35 | /// Check whether the given method, which must be in the 'init' |
| 36 | /// family, is a valid member of that family. |
| 37 | /// |
| 38 | /// \param receiverTypeIfCall - if null, check this as if declaring it; |
| 39 | /// if non-null, check this as if making a call to it with the given |
| 40 | /// receiver type |
| 41 | /// |
| 42 | /// \return true to indicate that there was an error and appropriate |
| 43 | /// actions were taken |
| 44 | bool SemaObjC::checkInitMethod(ObjCMethodDecl *method, |
| 45 | QualType receiverTypeIfCall) { |
| 46 | ASTContext &Context = getASTContext(); |
| 47 | if (method->isInvalidDecl()) return true; |
| 48 | |
| 49 | // This castAs is safe: methods that don't return an object |
| 50 | // pointer won't be inferred as inits and will reject an explicit |
| 51 | // objc_method_family(init). |
| 52 | |
| 53 | // We ignore protocols here. Should we? What about Class? |
| 54 | |
| 55 | const ObjCObjectType *result = |
| 56 | method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); |
| 57 | |
| 58 | if (result->isObjCId()) { |
| 59 | return false; |
| 60 | } else if (result->isObjCClass()) { |
| 61 | // fall through: always an error |
| 62 | } else { |
| 63 | ObjCInterfaceDecl *resultClass = result->getInterface(); |
| 64 | assert(resultClass && "unexpected object type!" ); |
| 65 | |
| 66 | // It's okay for the result type to still be a forward declaration |
| 67 | // if we're checking an interface declaration. |
| 68 | if (!resultClass->hasDefinition()) { |
| 69 | if (receiverTypeIfCall.isNull() && |
| 70 | !isa<ObjCImplementationDecl>(Val: method->getDeclContext())) |
| 71 | return false; |
| 72 | |
| 73 | // Otherwise, we try to compare class types. |
| 74 | } else { |
| 75 | // If this method was declared in a protocol, we can't check |
| 76 | // anything unless we have a receiver type that's an interface. |
| 77 | const ObjCInterfaceDecl *receiverClass = nullptr; |
| 78 | if (isa<ObjCProtocolDecl>(Val: method->getDeclContext())) { |
| 79 | if (receiverTypeIfCall.isNull()) |
| 80 | return false; |
| 81 | |
| 82 | receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() |
| 83 | ->getInterfaceDecl(); |
| 84 | |
| 85 | // This can be null for calls to e.g. id<Foo>. |
| 86 | if (!receiverClass) return false; |
| 87 | } else { |
| 88 | receiverClass = method->getClassInterface(); |
| 89 | assert(receiverClass && "method not associated with a class!" ); |
| 90 | } |
| 91 | |
| 92 | // If either class is a subclass of the other, it's fine. |
| 93 | if (receiverClass->isSuperClassOf(I: resultClass) || |
| 94 | resultClass->isSuperClassOf(I: receiverClass)) |
| 95 | return false; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | SourceLocation loc = method->getLocation(); |
| 100 | |
| 101 | // If we're in a system header, and this is not a call, just make |
| 102 | // the method unusable. |
| 103 | if (receiverTypeIfCall.isNull() && |
| 104 | SemaRef.getSourceManager().isInSystemHeader(Loc: loc)) { |
| 105 | method->addAttr(A: UnavailableAttr::CreateImplicit(Ctx&: Context, Message: "" , |
| 106 | ImplicitReason: UnavailableAttr::IR_ARCInitReturnsUnrelated, Range: loc)); |
| 107 | return true; |
| 108 | } |
| 109 | |
| 110 | // Otherwise, it's an error. |
| 111 | Diag(Loc: loc, DiagID: diag::err_arc_init_method_unrelated_result_type); |
| 112 | method->setInvalidDecl(); |
| 113 | return true; |
| 114 | } |
| 115 | |
| 116 | /// Issue a warning if the parameter of the overridden method is non-escaping |
| 117 | /// but the parameter of the overriding method is not. |
| 118 | static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
| 119 | Sema &S) { |
| 120 | if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { |
| 121 | S.Diag(Loc: NewD->getLocation(), DiagID: diag::warn_overriding_method_missing_noescape); |
| 122 | S.Diag(Loc: OldD->getLocation(), DiagID: diag::note_overridden_marked_noescape); |
| 123 | return false; |
| 124 | } |
| 125 | |
| 126 | return true; |
| 127 | } |
| 128 | |
| 129 | /// Produce additional diagnostics if a category conforms to a protocol that |
| 130 | /// defines a method taking a non-escaping parameter. |
| 131 | static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
| 132 | const ObjCCategoryDecl *CD, |
| 133 | const ObjCProtocolDecl *PD, Sema &S) { |
| 134 | if (!diagnoseNoescape(NewD, OldD, S)) |
| 135 | S.Diag(Loc: CD->getLocation(), DiagID: diag::note_cat_conform_to_noescape_prot) |
| 136 | << CD->IsClassExtension() << PD |
| 137 | << cast<ObjCMethodDecl>(Val: NewD->getDeclContext()); |
| 138 | } |
| 139 | |
| 140 | void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, |
| 141 | const ObjCMethodDecl *Overridden) { |
| 142 | ASTContext &Context = getASTContext(); |
| 143 | if (Overridden->hasRelatedResultType() && |
| 144 | !NewMethod->hasRelatedResultType()) { |
| 145 | // This can only happen when the method follows a naming convention that |
| 146 | // implies a related result type, and the original (overridden) method has |
| 147 | // a suitable return type, but the new (overriding) method does not have |
| 148 | // a suitable return type. |
| 149 | QualType ResultType = NewMethod->getReturnType(); |
| 150 | SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); |
| 151 | |
| 152 | // Figure out which class this method is part of, if any. |
| 153 | ObjCInterfaceDecl *CurrentClass |
| 154 | = dyn_cast<ObjCInterfaceDecl>(Val: NewMethod->getDeclContext()); |
| 155 | if (!CurrentClass) { |
| 156 | DeclContext *DC = NewMethod->getDeclContext(); |
| 157 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC)) |
| 158 | CurrentClass = Cat->getClassInterface(); |
| 159 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC)) |
| 160 | CurrentClass = Impl->getClassInterface(); |
| 161 | else if (ObjCCategoryImplDecl *CatImpl |
| 162 | = dyn_cast<ObjCCategoryImplDecl>(Val: DC)) |
| 163 | CurrentClass = CatImpl->getClassInterface(); |
| 164 | } |
| 165 | |
| 166 | if (CurrentClass) { |
| 167 | Diag(Loc: NewMethod->getLocation(), |
| 168 | DiagID: diag::warn_related_result_type_compatibility_class) |
| 169 | << Context.getObjCInterfaceType(Decl: CurrentClass) |
| 170 | << ResultType |
| 171 | << ResultTypeRange; |
| 172 | } else { |
| 173 | Diag(Loc: NewMethod->getLocation(), |
| 174 | DiagID: diag::warn_related_result_type_compatibility_protocol) |
| 175 | << ResultType |
| 176 | << ResultTypeRange; |
| 177 | } |
| 178 | |
| 179 | if (ObjCMethodFamily Family = Overridden->getMethodFamily()) |
| 180 | Diag(Loc: Overridden->getLocation(), |
| 181 | DiagID: diag::note_related_result_type_family) |
| 182 | << /*overridden method*/ 0 |
| 183 | << Family; |
| 184 | else |
| 185 | Diag(Loc: Overridden->getLocation(), |
| 186 | DiagID: diag::note_related_result_type_overridden); |
| 187 | } |
| 188 | |
| 189 | if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != |
| 190 | Overridden->hasAttr<NSReturnsRetainedAttr>())) { |
| 191 | Diag(Loc: NewMethod->getLocation(), |
| 192 | DiagID: getLangOpts().ObjCAutoRefCount |
| 193 | ? diag::err_nsreturns_retained_attribute_mismatch |
| 194 | : diag::warn_nsreturns_retained_attribute_mismatch) |
| 195 | << 1; |
| 196 | Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_decl) << "method" ; |
| 197 | } |
| 198 | if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != |
| 199 | Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { |
| 200 | Diag(Loc: NewMethod->getLocation(), |
| 201 | DiagID: getLangOpts().ObjCAutoRefCount |
| 202 | ? diag::err_nsreturns_retained_attribute_mismatch |
| 203 | : diag::warn_nsreturns_retained_attribute_mismatch) |
| 204 | << 0; |
| 205 | Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_decl) << "method" ; |
| 206 | } |
| 207 | |
| 208 | ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), |
| 209 | oe = Overridden->param_end(); |
| 210 | for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), |
| 211 | ne = NewMethod->param_end(); |
| 212 | ni != ne && oi != oe; ++ni, ++oi) { |
| 213 | const ParmVarDecl *oldDecl = (*oi); |
| 214 | ParmVarDecl *newDecl = (*ni); |
| 215 | if (newDecl->hasAttr<NSConsumedAttr>() != |
| 216 | oldDecl->hasAttr<NSConsumedAttr>()) { |
| 217 | Diag(Loc: newDecl->getLocation(), |
| 218 | DiagID: getLangOpts().ObjCAutoRefCount |
| 219 | ? diag::err_nsconsumed_attribute_mismatch |
| 220 | : diag::warn_nsconsumed_attribute_mismatch); |
| 221 | Diag(Loc: oldDecl->getLocation(), DiagID: diag::note_previous_decl) << "parameter" ; |
| 222 | } |
| 223 | |
| 224 | diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: SemaRef); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | /// Check a method declaration for compatibility with the Objective-C |
| 229 | /// ARC conventions. |
| 230 | bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) { |
| 231 | ASTContext &Context = getASTContext(); |
| 232 | ObjCMethodFamily family = method->getMethodFamily(); |
| 233 | switch (family) { |
| 234 | case OMF_None: |
| 235 | case OMF_finalize: |
| 236 | case OMF_retain: |
| 237 | case OMF_release: |
| 238 | case OMF_autorelease: |
| 239 | case OMF_retainCount: |
| 240 | case OMF_self: |
| 241 | case OMF_initialize: |
| 242 | case OMF_performSelector: |
| 243 | return false; |
| 244 | |
| 245 | case OMF_dealloc: |
| 246 | if (!Context.hasSameType(T1: method->getReturnType(), T2: Context.VoidTy)) { |
| 247 | SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); |
| 248 | if (ResultTypeRange.isInvalid()) |
| 249 | Diag(Loc: method->getLocation(), DiagID: diag::err_dealloc_bad_result_type) |
| 250 | << method->getReturnType() |
| 251 | << FixItHint::CreateInsertion(InsertionLoc: method->getSelectorLoc(Index: 0), Code: "(void)" ); |
| 252 | else |
| 253 | Diag(Loc: method->getLocation(), DiagID: diag::err_dealloc_bad_result_type) |
| 254 | << method->getReturnType() |
| 255 | << FixItHint::CreateReplacement(RemoveRange: ResultTypeRange, Code: "void" ); |
| 256 | return true; |
| 257 | } |
| 258 | return false; |
| 259 | |
| 260 | case OMF_init: |
| 261 | // If the method doesn't obey the init rules, don't bother annotating it. |
| 262 | if (checkInitMethod(method, receiverTypeIfCall: QualType())) |
| 263 | return true; |
| 264 | |
| 265 | method->addAttr(A: NSConsumesSelfAttr::CreateImplicit(Ctx&: Context)); |
| 266 | |
| 267 | // Don't add a second copy of this attribute, but otherwise don't |
| 268 | // let it be suppressed. |
| 269 | if (method->hasAttr<NSReturnsRetainedAttr>()) |
| 270 | return false; |
| 271 | break; |
| 272 | |
| 273 | case OMF_alloc: |
| 274 | case OMF_copy: |
| 275 | case OMF_mutableCopy: |
| 276 | case OMF_new: |
| 277 | if (method->hasAttr<NSReturnsRetainedAttr>() || |
| 278 | method->hasAttr<NSReturnsNotRetainedAttr>() || |
| 279 | method->hasAttr<NSReturnsAutoreleasedAttr>()) |
| 280 | return false; |
| 281 | break; |
| 282 | } |
| 283 | |
| 284 | method->addAttr(A: NSReturnsRetainedAttr::CreateImplicit(Ctx&: Context)); |
| 285 | return false; |
| 286 | } |
| 287 | |
| 288 | static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, |
| 289 | SourceLocation ImplLoc) { |
| 290 | if (!ND) |
| 291 | return; |
| 292 | bool IsCategory = false; |
| 293 | StringRef RealizedPlatform; |
| 294 | AvailabilityResult Availability = ND->getAvailability( |
| 295 | /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), |
| 296 | RealizedPlatform: &RealizedPlatform); |
| 297 | if (Availability != AR_Deprecated) { |
| 298 | if (isa<ObjCMethodDecl>(Val: ND)) { |
| 299 | if (Availability != AR_Unavailable) |
| 300 | return; |
| 301 | if (RealizedPlatform.empty()) |
| 302 | RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); |
| 303 | // Warn about implementing unavailable methods, unless the unavailable |
| 304 | // is for an app extension. |
| 305 | if (RealizedPlatform.ends_with(Suffix: "_app_extension" )) |
| 306 | return; |
| 307 | S.Diag(Loc: ImplLoc, DiagID: diag::warn_unavailable_def); |
| 308 | S.Diag(Loc: ND->getLocation(), DiagID: diag::note_method_declared_at) |
| 309 | << ND->getDeclName(); |
| 310 | return; |
| 311 | } |
| 312 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) { |
| 313 | if (!CD->getClassInterface()->isDeprecated()) |
| 314 | return; |
| 315 | ND = CD->getClassInterface(); |
| 316 | IsCategory = true; |
| 317 | } else |
| 318 | return; |
| 319 | } |
| 320 | S.Diag(Loc: ImplLoc, DiagID: diag::warn_deprecated_def) |
| 321 | << (isa<ObjCMethodDecl>(Val: ND) |
| 322 | ? /*Method*/ 0 |
| 323 | : isa<ObjCCategoryDecl>(Val: ND) || IsCategory ? /*Category*/ 2 |
| 324 | : /*Class*/ 1); |
| 325 | if (isa<ObjCMethodDecl>(Val: ND)) |
| 326 | S.Diag(Loc: ND->getLocation(), DiagID: diag::note_method_declared_at) |
| 327 | << ND->getDeclName(); |
| 328 | else |
| 329 | S.Diag(Loc: ND->getLocation(), DiagID: diag::note_previous_decl) |
| 330 | << (isa<ObjCCategoryDecl>(Val: ND) ? "category" : "class" ); |
| 331 | } |
| 332 | |
| 333 | /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global |
| 334 | /// pool. |
| 335 | void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) { |
| 336 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
| 337 | |
| 338 | // If we don't have a valid method decl, simply return. |
| 339 | if (!MDecl) |
| 340 | return; |
| 341 | if (MDecl->isInstanceMethod()) |
| 342 | AddInstanceMethodToGlobalPool(Method: MDecl, impl: true); |
| 343 | else |
| 344 | AddFactoryMethodToGlobalPool(Method: MDecl, impl: true); |
| 345 | } |
| 346 | |
| 347 | /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer |
| 348 | /// has explicit ownership attribute; false otherwise. |
| 349 | static bool |
| 350 | HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { |
| 351 | QualType T = Param->getType(); |
| 352 | |
| 353 | if (const PointerType *PT = T->getAs<PointerType>()) { |
| 354 | T = PT->getPointeeType(); |
| 355 | } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { |
| 356 | T = RT->getPointeeType(); |
| 357 | } else { |
| 358 | return true; |
| 359 | } |
| 360 | |
| 361 | // If we have a lifetime qualifier, but it's local, we must have |
| 362 | // inferred it. So, it is implicit. |
| 363 | return !T.getLocalQualifiers().hasObjCLifetime(); |
| 364 | } |
| 365 | |
| 366 | /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible |
| 367 | /// and user declared, in the method definition's AST. |
| 368 | void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { |
| 369 | ASTContext &Context = getASTContext(); |
| 370 | SemaRef.ImplicitlyRetainedSelfLocs.clear(); |
| 371 | assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused" ); |
| 372 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
| 373 | |
| 374 | SemaRef.PushExpressionEvaluationContext( |
| 375 | NewContext: SemaRef.ExprEvalContexts.back().Context); |
| 376 | |
| 377 | // If we don't have a valid method decl, simply return. |
| 378 | if (!MDecl) |
| 379 | return; |
| 380 | |
| 381 | QualType ResultType = MDecl->getReturnType(); |
| 382 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
| 383 | !MDecl->isInvalidDecl() && |
| 384 | SemaRef.RequireCompleteType(Loc: MDecl->getLocation(), T: ResultType, |
| 385 | DiagID: diag::err_func_def_incomplete_result)) |
| 386 | MDecl->setInvalidDecl(); |
| 387 | |
| 388 | // Allow all of Sema to see that we are entering a method definition. |
| 389 | SemaRef.PushDeclContext(S: FnBodyScope, DC: MDecl); |
| 390 | SemaRef.PushFunctionScope(); |
| 391 | |
| 392 | // Create Decl objects for each parameter, entrring them in the scope for |
| 393 | // binding to their use. |
| 394 | |
| 395 | // Insert the invisible arguments, self and _cmd! |
| 396 | MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface()); |
| 397 | |
| 398 | SemaRef.PushOnScopeChains(D: MDecl->getSelfDecl(), S: FnBodyScope); |
| 399 | SemaRef.PushOnScopeChains(D: MDecl->getCmdDecl(), S: FnBodyScope); |
| 400 | |
| 401 | // The ObjC parser requires parameter names so there's no need to check. |
| 402 | SemaRef.CheckParmsForFunctionDef(Parameters: MDecl->parameters(), |
| 403 | /*CheckParameterNames=*/false); |
| 404 | |
| 405 | // Introduce all of the other parameters into this scope. |
| 406 | for (auto *Param : MDecl->parameters()) { |
| 407 | if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount && |
| 408 | !HasExplicitOwnershipAttr(S&: SemaRef, Param)) |
| 409 | Diag(Loc: Param->getLocation(), DiagID: diag::warn_arc_strong_pointer_objc_pointer) << |
| 410 | Param->getType(); |
| 411 | |
| 412 | if (Param->getIdentifier()) |
| 413 | SemaRef.PushOnScopeChains(D: Param, S: FnBodyScope); |
| 414 | } |
| 415 | |
| 416 | // In ARC, disallow definition of retain/release/autorelease/retainCount |
| 417 | if (getLangOpts().ObjCAutoRefCount) { |
| 418 | switch (MDecl->getMethodFamily()) { |
| 419 | case OMF_retain: |
| 420 | case OMF_retainCount: |
| 421 | case OMF_release: |
| 422 | case OMF_autorelease: |
| 423 | Diag(Loc: MDecl->getLocation(), DiagID: diag::err_arc_illegal_method_def) |
| 424 | << 0 << MDecl->getSelector(); |
| 425 | break; |
| 426 | |
| 427 | case OMF_None: |
| 428 | case OMF_dealloc: |
| 429 | case OMF_finalize: |
| 430 | case OMF_alloc: |
| 431 | case OMF_init: |
| 432 | case OMF_mutableCopy: |
| 433 | case OMF_copy: |
| 434 | case OMF_new: |
| 435 | case OMF_self: |
| 436 | case OMF_initialize: |
| 437 | case OMF_performSelector: |
| 438 | break; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | // Warn on deprecated methods under -Wdeprecated-implementations, |
| 443 | // and prepare for warning on missing super calls. |
| 444 | if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { |
| 445 | ObjCMethodDecl *IMD = |
| 446 | IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod()); |
| 447 | |
| 448 | if (IMD) { |
| 449 | ObjCImplDecl *ImplDeclOfMethodDef = |
| 450 | dyn_cast<ObjCImplDecl>(Val: MDecl->getDeclContext()); |
| 451 | ObjCContainerDecl *ContDeclOfMethodDecl = |
| 452 | dyn_cast<ObjCContainerDecl>(Val: IMD->getDeclContext()); |
| 453 | ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; |
| 454 | if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl)) |
| 455 | ImplDeclOfMethodDecl = OID->getImplementation(); |
| 456 | else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) { |
| 457 | if (CD->IsClassExtension()) { |
| 458 | if (ObjCInterfaceDecl *OID = CD->getClassInterface()) |
| 459 | ImplDeclOfMethodDecl = OID->getImplementation(); |
| 460 | } else |
| 461 | ImplDeclOfMethodDecl = CD->getImplementation(); |
| 462 | } |
| 463 | // No need to issue deprecated warning if deprecated mehod in class/category |
| 464 | // is being implemented in its own implementation (no overriding is involved). |
| 465 | if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) |
| 466 | DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: IMD, ImplLoc: MDecl->getLocation()); |
| 467 | } |
| 468 | |
| 469 | if (MDecl->getMethodFamily() == OMF_init) { |
| 470 | if (MDecl->isDesignatedInitializerForTheInterface()) { |
| 471 | SemaRef.getCurFunction()->ObjCIsDesignatedInit = true; |
| 472 | SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain = |
| 473 | IC->getSuperClass() != nullptr; |
| 474 | } else if (IC->hasDesignatedInitializers()) { |
| 475 | SemaRef.getCurFunction()->ObjCIsSecondaryInit = true; |
| 476 | SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true; |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | // If this is "dealloc" or "finalize", set some bit here. |
| 481 | // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. |
| 482 | // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. |
| 483 | // Only do this if the current class actually has a superclass. |
| 484 | if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { |
| 485 | ObjCMethodFamily Family = MDecl->getMethodFamily(); |
| 486 | if (Family == OMF_dealloc) { |
| 487 | if (!(getLangOpts().ObjCAutoRefCount || |
| 488 | getLangOpts().getGC() == LangOptions::GCOnly)) |
| 489 | SemaRef.getCurFunction()->ObjCShouldCallSuper = true; |
| 490 | |
| 491 | } else if (Family == OMF_finalize) { |
| 492 | if (Context.getLangOpts().getGC() != LangOptions::NonGC) |
| 493 | SemaRef.getCurFunction()->ObjCShouldCallSuper = true; |
| 494 | |
| 495 | } else { |
| 496 | const ObjCMethodDecl *SuperMethod = |
| 497 | SuperClass->lookupMethod(Sel: MDecl->getSelector(), |
| 498 | isInstance: MDecl->isInstanceMethod()); |
| 499 | SemaRef.getCurFunction()->ObjCShouldCallSuper = |
| 500 | (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); |
| 501 | } |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | // Some function attributes (like OptimizeNoneAttr) need actions before |
| 506 | // parsing body started. |
| 507 | SemaRef.applyFunctionAttributesBeforeParsingBody(FD: D); |
| 508 | } |
| 509 | |
| 510 | namespace { |
| 511 | |
| 512 | // Callback to only accept typo corrections that are Objective-C classes. |
| 513 | // If an ObjCInterfaceDecl* is given to the constructor, then the validation |
| 514 | // function will reject corrections to that class. |
| 515 | class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { |
| 516 | public: |
| 517 | ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} |
| 518 | explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) |
| 519 | : CurrentIDecl(IDecl) {} |
| 520 | |
| 521 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 522 | ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
| 523 | return ID && !declaresSameEntity(D1: ID, D2: CurrentIDecl); |
| 524 | } |
| 525 | |
| 526 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 527 | return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this); |
| 528 | } |
| 529 | |
| 530 | private: |
| 531 | ObjCInterfaceDecl *CurrentIDecl; |
| 532 | }; |
| 533 | |
| 534 | } // end anonymous namespace |
| 535 | |
| 536 | static void diagnoseUseOfProtocols(Sema &TheSema, |
| 537 | ObjCContainerDecl *CD, |
| 538 | ObjCProtocolDecl *const *ProtoRefs, |
| 539 | unsigned NumProtoRefs, |
| 540 | const SourceLocation *ProtoLocs) { |
| 541 | assert(ProtoRefs); |
| 542 | // Diagnose availability in the context of the ObjC container. |
| 543 | Sema::ContextRAII SavedContext(TheSema, CD); |
| 544 | for (unsigned i = 0; i < NumProtoRefs; ++i) { |
| 545 | (void)TheSema.DiagnoseUseOfDecl(D: ProtoRefs[i], Locs: ProtoLocs[i], |
| 546 | /*UnknownObjCClass=*/nullptr, |
| 547 | /*ObjCPropertyAccess=*/false, |
| 548 | /*AvoidPartialAvailabilityChecks=*/true); |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | void SemaObjC::ActOnSuperClassOfClassInterface( |
| 553 | Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, |
| 554 | IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| 555 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
| 556 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) { |
| 557 | ASTContext &Context = getASTContext(); |
| 558 | // Check if a different kind of symbol declared in this scope. |
| 559 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
| 560 | S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName); |
| 561 | |
| 562 | if (!PrevDecl) { |
| 563 | // Try to correct for a typo in the superclass name without correcting |
| 564 | // to the class we're defining. |
| 565 | ObjCInterfaceValidatorCCC CCC(IDecl); |
| 566 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
| 567 | Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: Sema::LookupOrdinaryName, |
| 568 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) { |
| 569 | SemaRef.diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_undef_superclass_suggest) |
| 570 | << SuperName << ClassName); |
| 571 | PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | if (declaresSameEntity(D1: PrevDecl, D2: IDecl)) { |
| 576 | Diag(Loc: SuperLoc, DiagID: diag::err_recursive_superclass) |
| 577 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
| 578 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
| 579 | } else { |
| 580 | ObjCInterfaceDecl *SuperClassDecl = |
| 581 | dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
| 582 | QualType SuperClassType; |
| 583 | |
| 584 | // Diagnose classes that inherit from deprecated classes. |
| 585 | if (SuperClassDecl) { |
| 586 | (void)SemaRef.DiagnoseUseOfDecl(D: SuperClassDecl, Locs: SuperLoc); |
| 587 | SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl); |
| 588 | } |
| 589 | |
| 590 | if (PrevDecl && !SuperClassDecl) { |
| 591 | // The previous declaration was not a class decl. Check if we have a |
| 592 | // typedef. If we do, get the underlying class type. |
| 593 | if (const TypedefNameDecl *TDecl = |
| 594 | dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) { |
| 595 | QualType T = TDecl->getUnderlyingType(); |
| 596 | if (T->isObjCObjectType()) { |
| 597 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
| 598 | SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl); |
| 599 | SuperClassType = Context.getTypeDeclType(Decl: TDecl); |
| 600 | |
| 601 | // This handles the following case: |
| 602 | // @interface NewI @end |
| 603 | // typedef NewI DeprI __attribute__((deprecated("blah"))) |
| 604 | // @interface SI : DeprI /* warn here */ @end |
| 605 | (void)SemaRef.DiagnoseUseOfDecl( |
| 606 | D: const_cast<TypedefNameDecl *>(TDecl), Locs: SuperLoc); |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | // This handles the following case: |
| 612 | // |
| 613 | // typedef int SuperClass; |
| 614 | // @interface MyClass : SuperClass {} @end |
| 615 | // |
| 616 | if (!SuperClassDecl) { |
| 617 | Diag(Loc: SuperLoc, DiagID: diag::err_redefinition_different_kind) << SuperName; |
| 618 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) { |
| 623 | if (!SuperClassDecl) |
| 624 | Diag(Loc: SuperLoc, DiagID: diag::err_undef_superclass) |
| 625 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
| 626 | else if (SemaRef.RequireCompleteType( |
| 627 | Loc: SuperLoc, T: SuperClassType, DiagID: diag::err_forward_superclass, |
| 628 | Args: SuperClassDecl->getDeclName(), Args: ClassName, |
| 629 | Args: SourceRange(AtInterfaceLoc, ClassLoc))) { |
| 630 | SuperClassDecl = nullptr; |
| 631 | SuperClassType = QualType(); |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | if (SuperClassType.isNull()) { |
| 636 | assert(!SuperClassDecl && "Failed to set SuperClassType?" ); |
| 637 | return; |
| 638 | } |
| 639 | |
| 640 | // Handle type arguments on the superclass. |
| 641 | TypeSourceInfo *SuperClassTInfo = nullptr; |
| 642 | if (!SuperTypeArgs.empty()) { |
| 643 | TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( |
| 644 | S, Loc: SuperLoc, BaseType: SemaRef.CreateParsedType(T: SuperClassType, TInfo: nullptr), |
| 645 | TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(), TypeArgs: SuperTypeArgs, |
| 646 | TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(), ProtocolLAngleLoc: SourceLocation(), Protocols: {}, ProtocolLocs: {}, |
| 647 | ProtocolRAngleLoc: SourceLocation()); |
| 648 | if (!fullSuperClassType.isUsable()) |
| 649 | return; |
| 650 | |
| 651 | SuperClassType = |
| 652 | SemaRef.GetTypeFromParser(Ty: fullSuperClassType.get(), TInfo: &SuperClassTInfo); |
| 653 | } |
| 654 | |
| 655 | if (!SuperClassTInfo) { |
| 656 | SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType, |
| 657 | Loc: SuperLoc); |
| 658 | } |
| 659 | |
| 660 | IDecl->setSuperClass(SuperClassTInfo); |
| 661 | IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); |
| 662 | getASTContext().addObjCSubClass(D: IDecl->getSuperClass(), SubClass: IDecl); |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | DeclResult SemaObjC::actOnObjCTypeParam( |
| 667 | Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, |
| 668 | unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, |
| 669 | SourceLocation colonLoc, ParsedType parsedTypeBound) { |
| 670 | ASTContext &Context = getASTContext(); |
| 671 | // If there was an explicitly-provided type bound, check it. |
| 672 | TypeSourceInfo *typeBoundInfo = nullptr; |
| 673 | if (parsedTypeBound) { |
| 674 | // The type bound can be any Objective-C pointer type. |
| 675 | QualType typeBound = |
| 676 | SemaRef.GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo); |
| 677 | if (typeBound->isObjCObjectPointerType()) { |
| 678 | // okay |
| 679 | } else if (typeBound->isObjCObjectType()) { |
| 680 | // The user forgot the * on an Objective-C pointer type, e.g., |
| 681 | // "T : NSView". |
| 682 | SourceLocation starLoc = |
| 683 | SemaRef.getLocForEndOfToken(Loc: typeBoundInfo->getTypeLoc().getEndLoc()); |
| 684 | Diag(Loc: typeBoundInfo->getTypeLoc().getBeginLoc(), |
| 685 | DiagID: diag::err_objc_type_param_bound_missing_pointer) |
| 686 | << typeBound << paramName |
| 687 | << FixItHint::CreateInsertion(InsertionLoc: starLoc, Code: " *" ); |
| 688 | |
| 689 | // Create a new type location builder so we can update the type |
| 690 | // location information we have. |
| 691 | TypeLocBuilder builder; |
| 692 | builder.pushFullCopy(L: typeBoundInfo->getTypeLoc()); |
| 693 | |
| 694 | // Create the Objective-C pointer type. |
| 695 | typeBound = Context.getObjCObjectPointerType(OIT: typeBound); |
| 696 | ObjCObjectPointerTypeLoc newT |
| 697 | = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound); |
| 698 | newT.setStarLoc(starLoc); |
| 699 | |
| 700 | // Form the new type source information. |
| 701 | typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound); |
| 702 | } else { |
| 703 | // Not a valid type bound. |
| 704 | Diag(Loc: typeBoundInfo->getTypeLoc().getBeginLoc(), |
| 705 | DiagID: diag::err_objc_type_param_bound_nonobject) |
| 706 | << typeBound << paramName; |
| 707 | |
| 708 | // Forget the bound; we'll default to id later. |
| 709 | typeBoundInfo = nullptr; |
| 710 | } |
| 711 | |
| 712 | // Type bounds cannot have qualifiers (even indirectly) or explicit |
| 713 | // nullability. |
| 714 | if (typeBoundInfo) { |
| 715 | QualType typeBound = typeBoundInfo->getType(); |
| 716 | TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); |
| 717 | if (qual || typeBound.hasQualifiers()) { |
| 718 | bool diagnosed = false; |
| 719 | SourceRange rangeToRemove; |
| 720 | if (qual) { |
| 721 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { |
| 722 | rangeToRemove = attr.getLocalSourceRange(); |
| 723 | if (attr.getTypePtr()->getImmediateNullability()) { |
| 724 | Diag(Loc: attr.getBeginLoc(), |
| 725 | DiagID: diag::err_objc_type_param_bound_explicit_nullability) |
| 726 | << paramName << typeBound |
| 727 | << FixItHint::CreateRemoval(RemoveRange: rangeToRemove); |
| 728 | diagnosed = true; |
| 729 | } |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | if (!diagnosed) { |
| 734 | Diag(Loc: qual ? qual.getBeginLoc() |
| 735 | : typeBoundInfo->getTypeLoc().getBeginLoc(), |
| 736 | DiagID: diag::err_objc_type_param_bound_qualified) |
| 737 | << paramName << typeBound |
| 738 | << typeBound.getQualifiers().getAsString() |
| 739 | << FixItHint::CreateRemoval(RemoveRange: rangeToRemove); |
| 740 | } |
| 741 | |
| 742 | // If the type bound has qualifiers other than CVR, we need to strip |
| 743 | // them or we'll probably assert later when trying to apply new |
| 744 | // qualifiers. |
| 745 | Qualifiers quals = typeBound.getQualifiers(); |
| 746 | quals.removeCVRQualifiers(); |
| 747 | if (!quals.empty()) { |
| 748 | typeBoundInfo = |
| 749 | Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType()); |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | // If there was no explicit type bound (or we removed it due to an error), |
| 756 | // use 'id' instead. |
| 757 | if (!typeBoundInfo) { |
| 758 | colonLoc = SourceLocation(); |
| 759 | typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType()); |
| 760 | } |
| 761 | |
| 762 | // Create the type parameter. |
| 763 | return ObjCTypeParamDecl::Create(ctx&: Context, dc: SemaRef.CurContext, variance, |
| 764 | varianceLoc, index, nameLoc: paramLoc, name: paramName, |
| 765 | colonLoc, boundInfo: typeBoundInfo); |
| 766 | } |
| 767 | |
| 768 | ObjCTypeParamList * |
| 769 | SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, |
| 770 | ArrayRef<Decl *> typeParamsIn, |
| 771 | SourceLocation rAngleLoc) { |
| 772 | ASTContext &Context = getASTContext(); |
| 773 | // We know that the array only contains Objective-C type parameters. |
| 774 | ArrayRef<ObjCTypeParamDecl *> |
| 775 | typeParams( |
| 776 | reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), |
| 777 | typeParamsIn.size()); |
| 778 | |
| 779 | // Diagnose redeclarations of type parameters. |
| 780 | // We do this now because Objective-C type parameters aren't pushed into |
| 781 | // scope until later (after the instance variable block), but we want the |
| 782 | // diagnostics to occur right after we parse the type parameter list. |
| 783 | llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; |
| 784 | for (auto *typeParam : typeParams) { |
| 785 | auto known = knownParams.find(Val: typeParam->getIdentifier()); |
| 786 | if (known != knownParams.end()) { |
| 787 | Diag(Loc: typeParam->getLocation(), DiagID: diag::err_objc_type_param_redecl) |
| 788 | << typeParam->getIdentifier() |
| 789 | << SourceRange(known->second->getLocation()); |
| 790 | |
| 791 | typeParam->setInvalidDecl(); |
| 792 | } else { |
| 793 | knownParams.insert(KV: std::make_pair(x: typeParam->getIdentifier(), y&: typeParam)); |
| 794 | |
| 795 | // Push the type parameter into scope. |
| 796 | SemaRef.PushOnScopeChains(D: typeParam, S, /*AddToContext=*/false); |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | // Create the parameter list. |
| 801 | return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc); |
| 802 | } |
| 803 | |
| 804 | void SemaObjC::popObjCTypeParamList(Scope *S, |
| 805 | ObjCTypeParamList *typeParamList) { |
| 806 | for (auto *typeParam : *typeParamList) { |
| 807 | if (!typeParam->isInvalidDecl()) { |
| 808 | S->RemoveDecl(D: typeParam); |
| 809 | SemaRef.IdResolver.RemoveDecl(D: typeParam); |
| 810 | } |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | namespace { |
| 815 | /// The context in which an Objective-C type parameter list occurs, for use |
| 816 | /// in diagnostics. |
| 817 | enum class TypeParamListContext { |
| 818 | ForwardDeclaration, |
| 819 | Definition, |
| 820 | Category, |
| 821 | Extension |
| 822 | }; |
| 823 | } // end anonymous namespace |
| 824 | |
| 825 | /// Check consistency between two Objective-C type parameter lists, e.g., |
| 826 | /// between a category/extension and an \@interface or between an \@class and an |
| 827 | /// \@interface. |
| 828 | static bool checkTypeParamListConsistency(Sema &S, |
| 829 | ObjCTypeParamList *prevTypeParams, |
| 830 | ObjCTypeParamList *newTypeParams, |
| 831 | TypeParamListContext newContext) { |
| 832 | // If the sizes don't match, complain about that. |
| 833 | if (prevTypeParams->size() != newTypeParams->size()) { |
| 834 | SourceLocation diagLoc; |
| 835 | if (newTypeParams->size() > prevTypeParams->size()) { |
| 836 | diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); |
| 837 | } else { |
| 838 | diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc()); |
| 839 | } |
| 840 | |
| 841 | S.Diag(Loc: diagLoc, DiagID: diag::err_objc_type_param_arity_mismatch) |
| 842 | << static_cast<unsigned>(newContext) |
| 843 | << (newTypeParams->size() > prevTypeParams->size()) |
| 844 | << prevTypeParams->size() |
| 845 | << newTypeParams->size(); |
| 846 | |
| 847 | return true; |
| 848 | } |
| 849 | |
| 850 | // Match up the type parameters. |
| 851 | for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { |
| 852 | ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; |
| 853 | ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; |
| 854 | |
| 855 | // Check for consistency of the variance. |
| 856 | if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { |
| 857 | if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && |
| 858 | newContext != TypeParamListContext::Definition) { |
| 859 | // When the new type parameter is invariant and is not part |
| 860 | // of the definition, just propagate the variance. |
| 861 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
| 862 | } else if (prevTypeParam->getVariance() |
| 863 | == ObjCTypeParamVariance::Invariant && |
| 864 | !(isa<ObjCInterfaceDecl>(Val: prevTypeParam->getDeclContext()) && |
| 865 | cast<ObjCInterfaceDecl>(Val: prevTypeParam->getDeclContext()) |
| 866 | ->getDefinition() == prevTypeParam->getDeclContext())) { |
| 867 | // When the old parameter is invariant and was not part of the |
| 868 | // definition, just ignore the difference because it doesn't |
| 869 | // matter. |
| 870 | } else { |
| 871 | { |
| 872 | // Diagnose the conflict and update the second declaration. |
| 873 | SourceLocation diagLoc = newTypeParam->getVarianceLoc(); |
| 874 | if (diagLoc.isInvalid()) |
| 875 | diagLoc = newTypeParam->getBeginLoc(); |
| 876 | |
| 877 | auto diag = S.Diag(Loc: diagLoc, |
| 878 | DiagID: diag::err_objc_type_param_variance_conflict) |
| 879 | << static_cast<unsigned>(newTypeParam->getVariance()) |
| 880 | << newTypeParam->getDeclName() |
| 881 | << static_cast<unsigned>(prevTypeParam->getVariance()) |
| 882 | << prevTypeParam->getDeclName(); |
| 883 | switch (prevTypeParam->getVariance()) { |
| 884 | case ObjCTypeParamVariance::Invariant: |
| 885 | diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc()); |
| 886 | break; |
| 887 | |
| 888 | case ObjCTypeParamVariance::Covariant: |
| 889 | case ObjCTypeParamVariance::Contravariant: { |
| 890 | StringRef newVarianceStr |
| 891 | = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant |
| 892 | ? "__covariant" |
| 893 | : "__contravariant" ; |
| 894 | if (newTypeParam->getVariance() |
| 895 | == ObjCTypeParamVariance::Invariant) { |
| 896 | diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(), |
| 897 | Code: (newVarianceStr + " " ).str()); |
| 898 | } else { |
| 899 | diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(), |
| 900 | Code: newVarianceStr); |
| 901 | } |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here) |
| 907 | << prevTypeParam->getDeclName(); |
| 908 | |
| 909 | // Override the variance. |
| 910 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | // If the bound types match, there's nothing to do. |
| 915 | if (S.Context.hasSameType(T1: prevTypeParam->getUnderlyingType(), |
| 916 | T2: newTypeParam->getUnderlyingType())) |
| 917 | continue; |
| 918 | |
| 919 | // If the new type parameter's bound was explicit, complain about it being |
| 920 | // different from the original. |
| 921 | if (newTypeParam->hasExplicitBound()) { |
| 922 | SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() |
| 923 | ->getTypeLoc().getSourceRange(); |
| 924 | S.Diag(Loc: newBoundRange.getBegin(), DiagID: diag::err_objc_type_param_bound_conflict) |
| 925 | << newTypeParam->getUnderlyingType() |
| 926 | << newTypeParam->getDeclName() |
| 927 | << prevTypeParam->hasExplicitBound() |
| 928 | << prevTypeParam->getUnderlyingType() |
| 929 | << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) |
| 930 | << prevTypeParam->getDeclName() |
| 931 | << FixItHint::CreateReplacement( |
| 932 | RemoveRange: newBoundRange, |
| 933 | Code: prevTypeParam->getUnderlyingType().getAsString( |
| 934 | Policy: S.Context.getPrintingPolicy())); |
| 935 | |
| 936 | S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here) |
| 937 | << prevTypeParam->getDeclName(); |
| 938 | |
| 939 | // Override the new type parameter's bound type with the previous type, |
| 940 | // so that it's consistent. |
| 941 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
| 942 | continue; |
| 943 | } |
| 944 | |
| 945 | // The new type parameter got the implicit bound of 'id'. That's okay for |
| 946 | // categories and extensions (overwrite it later), but not for forward |
| 947 | // declarations and @interfaces, because those must be standalone. |
| 948 | if (newContext == TypeParamListContext::ForwardDeclaration || |
| 949 | newContext == TypeParamListContext::Definition) { |
| 950 | // Diagnose this problem for forward declarations and definitions. |
| 951 | SourceLocation insertionLoc |
| 952 | = S.getLocForEndOfToken(Loc: newTypeParam->getLocation()); |
| 953 | std::string newCode |
| 954 | = " : " + prevTypeParam->getUnderlyingType().getAsString( |
| 955 | Policy: S.Context.getPrintingPolicy()); |
| 956 | S.Diag(Loc: newTypeParam->getLocation(), |
| 957 | DiagID: diag::err_objc_type_param_bound_missing) |
| 958 | << prevTypeParam->getUnderlyingType() |
| 959 | << newTypeParam->getDeclName() |
| 960 | << (newContext == TypeParamListContext::ForwardDeclaration) |
| 961 | << FixItHint::CreateInsertion(InsertionLoc: insertionLoc, Code: newCode); |
| 962 | |
| 963 | S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here) |
| 964 | << prevTypeParam->getDeclName(); |
| 965 | } |
| 966 | |
| 967 | // Update the new type parameter's bound to match the previous one. |
| 968 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
| 969 | } |
| 970 | |
| 971 | return false; |
| 972 | } |
| 973 | |
| 974 | ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface( |
| 975 | Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, |
| 976 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
| 977 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
| 978 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, |
| 979 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
| 980 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
| 981 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
| 982 | assert(ClassName && "Missing class identifier" ); |
| 983 | |
| 984 | ASTContext &Context = getASTContext(); |
| 985 | // Check for another declaration kind with the same name. |
| 986 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
| 987 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName, |
| 988 | Redecl: SemaRef.forRedeclarationInCurContext()); |
| 989 | |
| 990 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
| 991 | Diag(Loc: ClassLoc, DiagID: diag::err_redefinition_different_kind) << ClassName; |
| 992 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 993 | } |
| 994 | |
| 995 | // Create a declaration to describe this @interface. |
| 996 | ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
| 997 | |
| 998 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
| 999 | // A previous decl with a different name is because of |
| 1000 | // @compatibility_alias, for example: |
| 1001 | // \code |
| 1002 | // @class NewImage; |
| 1003 | // @compatibility_alias OldImage NewImage; |
| 1004 | // \endcode |
| 1005 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
| 1006 | // |
| 1007 | // In such a case use the real declaration name, instead of the alias one, |
| 1008 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
| 1009 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
| 1010 | // has been aliased. |
| 1011 | ClassName = PrevIDecl->getIdentifier(); |
| 1012 | } |
| 1013 | |
| 1014 | // If there was a forward declaration with type parameters, check |
| 1015 | // for consistency. |
| 1016 | if (PrevIDecl) { |
| 1017 | if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { |
| 1018 | if (typeParamList) { |
| 1019 | // Both have type parameter lists; check for consistency. |
| 1020 | if (checkTypeParamListConsistency(S&: SemaRef, prevTypeParams: prevTypeParamList, |
| 1021 | newTypeParams: typeParamList, |
| 1022 | newContext: TypeParamListContext::Definition)) { |
| 1023 | typeParamList = nullptr; |
| 1024 | } |
| 1025 | } else { |
| 1026 | Diag(Loc: ClassLoc, DiagID: diag::err_objc_parameterized_forward_class_first) |
| 1027 | << ClassName; |
| 1028 | Diag(Loc: prevTypeParamList->getLAngleLoc(), DiagID: diag::note_previous_decl) |
| 1029 | << ClassName; |
| 1030 | |
| 1031 | // Clone the type parameter list. |
| 1032 | SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; |
| 1033 | for (auto *typeParam : *prevTypeParamList) { |
| 1034 | clonedTypeParams.push_back(Elt: ObjCTypeParamDecl::Create( |
| 1035 | ctx&: Context, dc: SemaRef.CurContext, variance: typeParam->getVariance(), |
| 1036 | varianceLoc: SourceLocation(), index: typeParam->getIndex(), nameLoc: SourceLocation(), |
| 1037 | name: typeParam->getIdentifier(), colonLoc: SourceLocation(), |
| 1038 | boundInfo: Context.getTrivialTypeSourceInfo( |
| 1039 | T: typeParam->getUnderlyingType()))); |
| 1040 | } |
| 1041 | |
| 1042 | typeParamList = ObjCTypeParamList::create(ctx&: Context, |
| 1043 | lAngleLoc: SourceLocation(), |
| 1044 | typeParams: clonedTypeParams, |
| 1045 | rAngleLoc: SourceLocation()); |
| 1046 | } |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | ObjCInterfaceDecl *IDecl = |
| 1051 | ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtInterfaceLoc, |
| 1052 | Id: ClassName, typeParamList, PrevDecl: PrevIDecl, ClassLoc); |
| 1053 | if (PrevIDecl) { |
| 1054 | // Class already seen. Was it a definition? |
| 1055 | if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
| 1056 | if (SkipBody && !SemaRef.hasVisibleDefinition(D: Def)) { |
| 1057 | SkipBody->CheckSameAsPrevious = true; |
| 1058 | SkipBody->New = IDecl; |
| 1059 | SkipBody->Previous = Def; |
| 1060 | } else { |
| 1061 | Diag(Loc: AtInterfaceLoc, DiagID: diag::err_duplicate_class_def) |
| 1062 | << PrevIDecl->getDeclName(); |
| 1063 | Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition); |
| 1064 | IDecl->setInvalidDecl(); |
| 1065 | } |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: IDecl, AttrList); |
| 1070 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IDecl); |
| 1071 | SemaRef.ProcessAPINotes(D: IDecl); |
| 1072 | |
| 1073 | // Merge attributes from previous declarations. |
| 1074 | if (PrevIDecl) |
| 1075 | SemaRef.mergeDeclAttributes(New: IDecl, Old: PrevIDecl); |
| 1076 | |
| 1077 | SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope); |
| 1078 | |
| 1079 | // Start the definition of this class. If we're in a redefinition case, there |
| 1080 | // may already be a definition, so we'll end up adding to it. |
| 1081 | if (SkipBody && SkipBody->CheckSameAsPrevious) |
| 1082 | IDecl->startDuplicateDefinitionForComparison(); |
| 1083 | else if (!IDecl->hasDefinition()) |
| 1084 | IDecl->startDefinition(); |
| 1085 | |
| 1086 | if (SuperName) { |
| 1087 | // Diagnose availability in the context of the @interface. |
| 1088 | Sema::ContextRAII SavedContext(SemaRef, IDecl); |
| 1089 | |
| 1090 | ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, |
| 1091 | ClassName, ClassLoc, |
| 1092 | SuperName, SuperLoc, SuperTypeArgs, |
| 1093 | SuperTypeArgsRange); |
| 1094 | } else { // we have a root class. |
| 1095 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
| 1096 | } |
| 1097 | |
| 1098 | // Check then save referenced protocols. |
| 1099 | if (NumProtoRefs) { |
| 1100 | diagnoseUseOfProtocols(TheSema&: SemaRef, CD: IDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs, |
| 1101 | NumProtoRefs, ProtoLocs); |
| 1102 | IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
| 1103 | Locs: ProtoLocs, C&: Context); |
| 1104 | IDecl->setEndOfDefinitionLoc(EndProtoLoc); |
| 1105 | } |
| 1106 | |
| 1107 | CheckObjCDeclScope(D: IDecl); |
| 1108 | ActOnObjCContainerStartDefinition(IDecl); |
| 1109 | return IDecl; |
| 1110 | } |
| 1111 | |
| 1112 | /// ActOnTypedefedProtocols - this action finds protocol list as part of the |
| 1113 | /// typedef'ed use for a qualified super class and adds them to the list |
| 1114 | /// of the protocols. |
| 1115 | void SemaObjC::ActOnTypedefedProtocols( |
| 1116 | SmallVectorImpl<Decl *> &ProtocolRefs, |
| 1117 | SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName, |
| 1118 | SourceLocation SuperLoc) { |
| 1119 | if (!SuperName) |
| 1120 | return; |
| 1121 | NamedDecl *IDecl = SemaRef.LookupSingleName( |
| 1122 | S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName); |
| 1123 | if (!IDecl) |
| 1124 | return; |
| 1125 | |
| 1126 | if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) { |
| 1127 | QualType T = TDecl->getUnderlyingType(); |
| 1128 | if (T->isObjCObjectType()) |
| 1129 | if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { |
| 1130 | ProtocolRefs.append(in_start: OPT->qual_begin(), in_end: OPT->qual_end()); |
| 1131 | // FIXME: Consider whether this should be an invalid loc since the loc |
| 1132 | // is not actually pointing to a protocol name reference but to the |
| 1133 | // typedef reference. Note that the base class name loc is also pointing |
| 1134 | // at the typedef. |
| 1135 | ProtocolLocs.append(NumInputs: OPT->getNumProtocols(), Elt: SuperLoc); |
| 1136 | } |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | /// ActOnCompatibilityAlias - this action is called after complete parsing of |
| 1141 | /// a \@compatibility_alias declaration. It sets up the alias relationships. |
| 1142 | Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc, |
| 1143 | IdentifierInfo *AliasName, |
| 1144 | SourceLocation AliasLocation, |
| 1145 | IdentifierInfo *ClassName, |
| 1146 | SourceLocation ClassLocation) { |
| 1147 | ASTContext &Context = getASTContext(); |
| 1148 | // Look for previous declaration of alias name |
| 1149 | NamedDecl *ADecl = SemaRef.LookupSingleName( |
| 1150 | S: SemaRef.TUScope, Name: AliasName, Loc: AliasLocation, NameKind: Sema::LookupOrdinaryName, |
| 1151 | Redecl: SemaRef.forRedeclarationInCurContext()); |
| 1152 | if (ADecl) { |
| 1153 | Diag(Loc: AliasLocation, DiagID: diag::err_conflicting_aliasing_type) << AliasName; |
| 1154 | Diag(Loc: ADecl->getLocation(), DiagID: diag::note_previous_declaration); |
| 1155 | return nullptr; |
| 1156 | } |
| 1157 | // Check for class declaration |
| 1158 | NamedDecl *CDeclU = SemaRef.LookupSingleName( |
| 1159 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName, |
| 1160 | Redecl: SemaRef.forRedeclarationInCurContext()); |
| 1161 | if (const TypedefNameDecl *TDecl = |
| 1162 | dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) { |
| 1163 | QualType T = TDecl->getUnderlyingType(); |
| 1164 | if (T->isObjCObjectType()) { |
| 1165 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
| 1166 | ClassName = IDecl->getIdentifier(); |
| 1167 | CDeclU = SemaRef.LookupSingleName( |
| 1168 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName, |
| 1169 | Redecl: SemaRef.forRedeclarationInCurContext()); |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU); |
| 1174 | if (!CDecl) { |
| 1175 | Diag(Loc: ClassLocation, DiagID: diag::warn_undef_interface) << ClassName; |
| 1176 | if (CDeclU) |
| 1177 | Diag(Loc: CDeclU->getLocation(), DiagID: diag::note_previous_declaration); |
| 1178 | return nullptr; |
| 1179 | } |
| 1180 | |
| 1181 | // Everything checked out, instantiate a new alias declaration AST. |
| 1182 | ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create( |
| 1183 | C&: Context, DC: SemaRef.CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl); |
| 1184 | |
| 1185 | if (!CheckObjCDeclScope(D: AliasDecl)) |
| 1186 | SemaRef.PushOnScopeChains(D: AliasDecl, S: SemaRef.TUScope); |
| 1187 | |
| 1188 | return AliasDecl; |
| 1189 | } |
| 1190 | |
| 1191 | bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency( |
| 1192 | IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc, |
| 1193 | const ObjCList<ObjCProtocolDecl> &PList) { |
| 1194 | |
| 1195 | bool res = false; |
| 1196 | for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), |
| 1197 | E = PList.end(); I != E; ++I) { |
| 1198 | if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(), IdLoc: Ploc)) { |
| 1199 | if (PDecl->getIdentifier() == PName) { |
| 1200 | Diag(Loc: Ploc, DiagID: diag::err_protocol_has_circular_dependency); |
| 1201 | Diag(Loc: PrevLoc, DiagID: diag::note_previous_definition); |
| 1202 | res = true; |
| 1203 | } |
| 1204 | |
| 1205 | if (!PDecl->hasDefinition()) |
| 1206 | continue; |
| 1207 | |
| 1208 | if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, |
| 1209 | PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols())) |
| 1210 | res = true; |
| 1211 | } |
| 1212 | } |
| 1213 | return res; |
| 1214 | } |
| 1215 | |
| 1216 | ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface( |
| 1217 | SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, |
| 1218 | SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, |
| 1219 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
| 1220 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
| 1221 | ASTContext &Context = getASTContext(); |
| 1222 | bool err = false; |
| 1223 | // FIXME: Deal with AttrList. |
| 1224 | assert(ProtocolName && "Missing protocol identifier" ); |
| 1225 | ObjCProtocolDecl *PrevDecl = LookupProtocol( |
| 1226 | II: ProtocolName, IdLoc: ProtocolLoc, Redecl: SemaRef.forRedeclarationInCurContext()); |
| 1227 | ObjCProtocolDecl *PDecl = nullptr; |
| 1228 | if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { |
| 1229 | // Create a new protocol that is completely distinct from previous |
| 1230 | // declarations, and do not make this protocol available for name lookup. |
| 1231 | // That way, we'll end up completely ignoring the duplicate. |
| 1232 | // FIXME: Can we turn this into an error? |
| 1233 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName, |
| 1234 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
| 1235 | /*PrevDecl=*/Def); |
| 1236 | |
| 1237 | if (SkipBody && !SemaRef.hasVisibleDefinition(D: Def)) { |
| 1238 | SkipBody->CheckSameAsPrevious = true; |
| 1239 | SkipBody->New = PDecl; |
| 1240 | SkipBody->Previous = Def; |
| 1241 | } else { |
| 1242 | // If we already have a definition, complain. |
| 1243 | Diag(Loc: ProtocolLoc, DiagID: diag::warn_duplicate_protocol_def) << ProtocolName; |
| 1244 | Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition); |
| 1245 | } |
| 1246 | |
| 1247 | // If we are using modules, add the decl to the context in order to |
| 1248 | // serialize something meaningful. |
| 1249 | if (getLangOpts().Modules) |
| 1250 | SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope); |
| 1251 | PDecl->startDuplicateDefinitionForComparison(); |
| 1252 | } else { |
| 1253 | if (PrevDecl) { |
| 1254 | // Check for circular dependencies among protocol declarations. This can |
| 1255 | // only happen if this protocol was forward-declared. |
| 1256 | ObjCList<ObjCProtocolDecl> PList; |
| 1257 | PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context); |
| 1258 | err = CheckForwardProtocolDeclarationForCircularDependency( |
| 1259 | PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList); |
| 1260 | } |
| 1261 | |
| 1262 | // Create the new declaration. |
| 1263 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName, |
| 1264 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
| 1265 | /*PrevDecl=*/PrevDecl); |
| 1266 | |
| 1267 | SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope); |
| 1268 | PDecl->startDefinition(); |
| 1269 | } |
| 1270 | |
| 1271 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: PDecl, AttrList); |
| 1272 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: PDecl); |
| 1273 | SemaRef.ProcessAPINotes(D: PDecl); |
| 1274 | |
| 1275 | // Merge attributes from previous declarations. |
| 1276 | if (PrevDecl) |
| 1277 | SemaRef.mergeDeclAttributes(New: PDecl, Old: PrevDecl); |
| 1278 | |
| 1279 | if (!err && NumProtoRefs ) { |
| 1280 | /// Check then save referenced protocols. |
| 1281 | diagnoseUseOfProtocols(TheSema&: SemaRef, CD: PDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs, |
| 1282 | NumProtoRefs, ProtoLocs); |
| 1283 | PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
| 1284 | Locs: ProtoLocs, C&: Context); |
| 1285 | } |
| 1286 | |
| 1287 | CheckObjCDeclScope(D: PDecl); |
| 1288 | ActOnObjCContainerStartDefinition(IDecl: PDecl); |
| 1289 | return PDecl; |
| 1290 | } |
| 1291 | |
| 1292 | static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, |
| 1293 | ObjCProtocolDecl *&UndefinedProtocol) { |
| 1294 | if (!PDecl->hasDefinition() || |
| 1295 | !PDecl->getDefinition()->isUnconditionallyVisible()) { |
| 1296 | UndefinedProtocol = PDecl; |
| 1297 | return true; |
| 1298 | } |
| 1299 | |
| 1300 | for (auto *PI : PDecl->protocols()) |
| 1301 | if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) { |
| 1302 | UndefinedProtocol = PI; |
| 1303 | return true; |
| 1304 | } |
| 1305 | return false; |
| 1306 | } |
| 1307 | |
| 1308 | /// FindProtocolDeclaration - This routine looks up protocols and |
| 1309 | /// issues an error if they are not declared. It returns list of |
| 1310 | /// protocol declarations in its 'Protocols' argument. |
| 1311 | void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations, |
| 1312 | bool ForObjCContainer, |
| 1313 | ArrayRef<IdentifierLoc> ProtocolId, |
| 1314 | SmallVectorImpl<Decl *> &Protocols) { |
| 1315 | for (const IdentifierLoc &Pair : ProtocolId) { |
| 1316 | ObjCProtocolDecl *PDecl = |
| 1317 | LookupProtocol(II: Pair.getIdentifierInfo(), IdLoc: Pair.getLoc()); |
| 1318 | if (!PDecl) { |
| 1319 | DeclFilterCCC<ObjCProtocolDecl> CCC{}; |
| 1320 | TypoCorrection Corrected = SemaRef.CorrectTypo( |
| 1321 | Typo: DeclarationNameInfo(Pair.getIdentifierInfo(), Pair.getLoc()), |
| 1322 | LookupKind: Sema::LookupObjCProtocolName, S: SemaRef.TUScope, SS: nullptr, CCC, |
| 1323 | Mode: CorrectTypoKind::ErrorRecovery); |
| 1324 | if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) |
| 1325 | SemaRef.diagnoseTypo(Correction: Corrected, |
| 1326 | TypoDiag: PDiag(DiagID: diag::err_undeclared_protocol_suggest) |
| 1327 | << Pair.getIdentifierInfo()); |
| 1328 | } |
| 1329 | |
| 1330 | if (!PDecl) { |
| 1331 | Diag(Loc: Pair.getLoc(), DiagID: diag::err_undeclared_protocol) |
| 1332 | << Pair.getIdentifierInfo(); |
| 1333 | continue; |
| 1334 | } |
| 1335 | // If this is a forward protocol declaration, get its definition. |
| 1336 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
| 1337 | PDecl = PDecl->getDefinition(); |
| 1338 | |
| 1339 | // For an objc container, delay protocol reference checking until after we |
| 1340 | // can set the objc decl as the availability context, otherwise check now. |
| 1341 | if (!ForObjCContainer) { |
| 1342 | (void)SemaRef.DiagnoseUseOfDecl(D: PDecl, Locs: Pair.getLoc()); |
| 1343 | } |
| 1344 | |
| 1345 | // If this is a forward declaration and we are supposed to warn in this |
| 1346 | // case, do it. |
| 1347 | // FIXME: Recover nicely in the hidden case. |
| 1348 | ObjCProtocolDecl *UndefinedProtocol; |
| 1349 | |
| 1350 | if (WarnOnDeclarations && |
| 1351 | NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { |
| 1352 | Diag(Loc: Pair.getLoc(), DiagID: diag::warn_undef_protocolref) |
| 1353 | << Pair.getIdentifierInfo(); |
| 1354 | Diag(Loc: UndefinedProtocol->getLocation(), DiagID: diag::note_protocol_decl_undefined) |
| 1355 | << UndefinedProtocol; |
| 1356 | } |
| 1357 | Protocols.push_back(Elt: PDecl); |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | namespace { |
| 1362 | // Callback to only accept typo corrections that are either |
| 1363 | // Objective-C protocols or valid Objective-C type arguments. |
| 1364 | class ObjCTypeArgOrProtocolValidatorCCC final |
| 1365 | : public CorrectionCandidateCallback { |
| 1366 | ASTContext &Context; |
| 1367 | Sema::LookupNameKind LookupKind; |
| 1368 | public: |
| 1369 | ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, |
| 1370 | Sema::LookupNameKind lookupKind) |
| 1371 | : Context(context), LookupKind(lookupKind) { } |
| 1372 | |
| 1373 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 1374 | // If we're allowed to find protocols and we have a protocol, accept it. |
| 1375 | if (LookupKind != Sema::LookupOrdinaryName) { |
| 1376 | if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) |
| 1377 | return true; |
| 1378 | } |
| 1379 | |
| 1380 | // If we're allowed to find type names and we have one, accept it. |
| 1381 | if (LookupKind != Sema::LookupObjCProtocolName) { |
| 1382 | // If we have a type declaration, we might accept this result. |
| 1383 | if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { |
| 1384 | // If we found a tag declaration outside of C++, skip it. This |
| 1385 | // can happy because we look for any name when there is no |
| 1386 | // bias to protocol or type names. |
| 1387 | if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus) |
| 1388 | return false; |
| 1389 | |
| 1390 | // Make sure the type is something we would accept as a type |
| 1391 | // argument. |
| 1392 | auto type = Context.getTypeDeclType(Decl: typeDecl); |
| 1393 | if (type->isObjCObjectPointerType() || |
| 1394 | type->isBlockPointerType() || |
| 1395 | type->isDependentType() || |
| 1396 | type->isObjCObjectType()) |
| 1397 | return true; |
| 1398 | |
| 1399 | return false; |
| 1400 | } |
| 1401 | |
| 1402 | // If we have an Objective-C class type, accept it; there will |
| 1403 | // be another fix to add the '*'. |
| 1404 | if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) |
| 1405 | return true; |
| 1406 | |
| 1407 | return false; |
| 1408 | } |
| 1409 | |
| 1410 | return false; |
| 1411 | } |
| 1412 | |
| 1413 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 1414 | return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this); |
| 1415 | } |
| 1416 | }; |
| 1417 | } // end anonymous namespace |
| 1418 | |
| 1419 | void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, |
| 1420 | SourceLocation ProtocolLoc, |
| 1421 | IdentifierInfo *TypeArgId, |
| 1422 | SourceLocation TypeArgLoc, |
| 1423 | bool SelectProtocolFirst) { |
| 1424 | Diag(Loc: TypeArgLoc, DiagID: diag::err_objc_type_args_and_protocols) |
| 1425 | << SelectProtocolFirst << TypeArgId << ProtocolId |
| 1426 | << SourceRange(ProtocolLoc); |
| 1427 | } |
| 1428 | |
| 1429 | void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers( |
| 1430 | Scope *S, ParsedType baseType, SourceLocation lAngleLoc, |
| 1431 | ArrayRef<IdentifierInfo *> identifiers, |
| 1432 | ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc, |
| 1433 | SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs, |
| 1434 | SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, |
| 1435 | SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc, |
| 1436 | bool warnOnIncompleteProtocols) { |
| 1437 | ASTContext &Context = getASTContext(); |
| 1438 | // Local function that updates the declaration specifiers with |
| 1439 | // protocol information. |
| 1440 | unsigned numProtocolsResolved = 0; |
| 1441 | auto resolvedAsProtocols = [&] { |
| 1442 | assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols" ); |
| 1443 | |
| 1444 | // Determine whether the base type is a parameterized class, in |
| 1445 | // which case we want to warn about typos such as |
| 1446 | // "NSArray<NSObject>" (that should be NSArray<NSObject *>). |
| 1447 | ObjCInterfaceDecl *baseClass = nullptr; |
| 1448 | QualType base = SemaRef.GetTypeFromParser(Ty: baseType, TInfo: nullptr); |
| 1449 | bool allAreTypeNames = false; |
| 1450 | SourceLocation firstClassNameLoc; |
| 1451 | if (!base.isNull()) { |
| 1452 | if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { |
| 1453 | baseClass = objcObjectType->getInterface(); |
| 1454 | if (baseClass) { |
| 1455 | if (auto typeParams = baseClass->getTypeParamList()) { |
| 1456 | if (typeParams->size() == numProtocolsResolved) { |
| 1457 | // Note that we should be looking for type names, too. |
| 1458 | allAreTypeNames = true; |
| 1459 | } |
| 1460 | } |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) { |
| 1466 | ObjCProtocolDecl *&proto |
| 1467 | = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); |
| 1468 | // For an objc container, delay protocol reference checking until after we |
| 1469 | // can set the objc decl as the availability context, otherwise check now. |
| 1470 | if (!warnOnIncompleteProtocols) { |
| 1471 | (void)SemaRef.DiagnoseUseOfDecl(D: proto, Locs: identifierLocs[i]); |
| 1472 | } |
| 1473 | |
| 1474 | // If this is a forward protocol declaration, get its definition. |
| 1475 | if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) |
| 1476 | proto = proto->getDefinition(); |
| 1477 | |
| 1478 | // If this is a forward declaration and we are supposed to warn in this |
| 1479 | // case, do it. |
| 1480 | // FIXME: Recover nicely in the hidden case. |
| 1481 | ObjCProtocolDecl *forwardDecl = nullptr; |
| 1482 | if (warnOnIncompleteProtocols && |
| 1483 | NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) { |
| 1484 | Diag(Loc: identifierLocs[i], DiagID: diag::warn_undef_protocolref) |
| 1485 | << proto->getDeclName(); |
| 1486 | Diag(Loc: forwardDecl->getLocation(), DiagID: diag::note_protocol_decl_undefined) |
| 1487 | << forwardDecl; |
| 1488 | } |
| 1489 | |
| 1490 | // If everything this far has been a type name (and we care |
| 1491 | // about such things), check whether this name refers to a type |
| 1492 | // as well. |
| 1493 | if (allAreTypeNames) { |
| 1494 | if (auto *decl = |
| 1495 | SemaRef.LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i], |
| 1496 | NameKind: Sema::LookupOrdinaryName)) { |
| 1497 | if (isa<ObjCInterfaceDecl>(Val: decl)) { |
| 1498 | if (firstClassNameLoc.isInvalid()) |
| 1499 | firstClassNameLoc = identifierLocs[i]; |
| 1500 | } else if (!isa<TypeDecl>(Val: decl)) { |
| 1501 | // Not a type. |
| 1502 | allAreTypeNames = false; |
| 1503 | } |
| 1504 | } else { |
| 1505 | allAreTypeNames = false; |
| 1506 | } |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | // All of the protocols listed also have type names, and at least |
| 1511 | // one is an Objective-C class name. Check whether all of the |
| 1512 | // protocol conformances are declared by the base class itself, in |
| 1513 | // which case we warn. |
| 1514 | if (allAreTypeNames && firstClassNameLoc.isValid()) { |
| 1515 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; |
| 1516 | Context.CollectInheritedProtocols(CDecl: baseClass, Protocols&: knownProtocols); |
| 1517 | bool allProtocolsDeclared = true; |
| 1518 | for (auto *proto : protocols) { |
| 1519 | if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) { |
| 1520 | allProtocolsDeclared = false; |
| 1521 | break; |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | if (allProtocolsDeclared) { |
| 1526 | Diag(Loc: firstClassNameLoc, DiagID: diag::warn_objc_redundant_qualified_class_type) |
| 1527 | << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) |
| 1528 | << FixItHint::CreateInsertion( |
| 1529 | InsertionLoc: SemaRef.getLocForEndOfToken(Loc: firstClassNameLoc), Code: " *" ); |
| 1530 | } |
| 1531 | } |
| 1532 | |
| 1533 | protocolLAngleLoc = lAngleLoc; |
| 1534 | protocolRAngleLoc = rAngleLoc; |
| 1535 | assert(protocols.size() == identifierLocs.size()); |
| 1536 | }; |
| 1537 | |
| 1538 | // Attempt to resolve all of the identifiers as protocols. |
| 1539 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| 1540 | ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]); |
| 1541 | protocols.push_back(Elt: proto); |
| 1542 | if (proto) |
| 1543 | ++numProtocolsResolved; |
| 1544 | } |
| 1545 | |
| 1546 | // If all of the names were protocols, these were protocol qualifiers. |
| 1547 | if (numProtocolsResolved == identifiers.size()) |
| 1548 | return resolvedAsProtocols(); |
| 1549 | |
| 1550 | // Attempt to resolve all of the identifiers as type names or |
| 1551 | // Objective-C class names. The latter is technically ill-formed, |
| 1552 | // but is probably something like \c NSArray<NSView *> missing the |
| 1553 | // \c*. |
| 1554 | typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; |
| 1555 | SmallVector<TypeOrClassDecl, 4> typeDecls; |
| 1556 | unsigned numTypeDeclsResolved = 0; |
| 1557 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| 1558 | NamedDecl *decl = SemaRef.LookupSingleName( |
| 1559 | S, Name: identifiers[i], Loc: identifierLocs[i], NameKind: Sema::LookupOrdinaryName); |
| 1560 | if (!decl) { |
| 1561 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
| 1562 | continue; |
| 1563 | } |
| 1564 | |
| 1565 | if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) { |
| 1566 | typeDecls.push_back(Elt: typeDecl); |
| 1567 | ++numTypeDeclsResolved; |
| 1568 | continue; |
| 1569 | } |
| 1570 | |
| 1571 | if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) { |
| 1572 | typeDecls.push_back(Elt: objcClass); |
| 1573 | ++numTypeDeclsResolved; |
| 1574 | continue; |
| 1575 | } |
| 1576 | |
| 1577 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
| 1578 | } |
| 1579 | |
| 1580 | AttributeFactory attrFactory; |
| 1581 | |
| 1582 | // Local function that forms a reference to the given type or |
| 1583 | // Objective-C class declaration. |
| 1584 | auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) |
| 1585 | -> TypeResult { |
| 1586 | // Form declaration specifiers. They simply refer to the type. |
| 1587 | DeclSpec DS(attrFactory); |
| 1588 | const char* prevSpec; // unused |
| 1589 | unsigned diagID; // unused |
| 1590 | QualType type; |
| 1591 | if (auto *actualTypeDecl = dyn_cast<TypeDecl *>(Val&: typeDecl)) |
| 1592 | type = Context.getTypeDeclType(Decl: actualTypeDecl); |
| 1593 | else |
| 1594 | type = Context.getObjCInterfaceType(Decl: cast<ObjCInterfaceDecl *>(Val&: typeDecl)); |
| 1595 | TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc); |
| 1596 | ParsedType parsedType = SemaRef.CreateParsedType(T: type, TInfo: parsedTSInfo); |
| 1597 | DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID, |
| 1598 | Rep: parsedType, Policy: Context.getPrintingPolicy()); |
| 1599 | // Use the identifier location for the type source range. |
| 1600 | DS.SetRangeStart(loc); |
| 1601 | DS.SetRangeEnd(loc); |
| 1602 | |
| 1603 | // Form the declarator. |
| 1604 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
| 1605 | |
| 1606 | // If we have a typedef of an Objective-C class type that is missing a '*', |
| 1607 | // add the '*'. |
| 1608 | if (type->getAs<ObjCInterfaceType>()) { |
| 1609 | SourceLocation starLoc = SemaRef.getLocForEndOfToken(Loc: loc); |
| 1610 | D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc, |
| 1611 | ConstQualLoc: SourceLocation(), |
| 1612 | VolatileQualLoc: SourceLocation(), |
| 1613 | RestrictQualLoc: SourceLocation(), |
| 1614 | AtomicQualLoc: SourceLocation(), |
| 1615 | UnalignedQualLoc: SourceLocation()), |
| 1616 | EndLoc: starLoc); |
| 1617 | |
| 1618 | // Diagnose the missing '*'. |
| 1619 | Diag(Loc: loc, DiagID: diag::err_objc_type_arg_missing_star) |
| 1620 | << type |
| 1621 | << FixItHint::CreateInsertion(InsertionLoc: starLoc, Code: " *" ); |
| 1622 | } |
| 1623 | |
| 1624 | // Convert this to a type. |
| 1625 | return SemaRef.ActOnTypeName(D); |
| 1626 | }; |
| 1627 | |
| 1628 | // Local function that updates the declaration specifiers with |
| 1629 | // type argument information. |
| 1630 | auto resolvedAsTypeDecls = [&] { |
| 1631 | // We did not resolve these as protocols. |
| 1632 | protocols.clear(); |
| 1633 | |
| 1634 | assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl" ); |
| 1635 | // Map type declarations to type arguments. |
| 1636 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| 1637 | // Map type reference to a type. |
| 1638 | TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); |
| 1639 | if (!type.isUsable()) { |
| 1640 | typeArgs.clear(); |
| 1641 | return; |
| 1642 | } |
| 1643 | |
| 1644 | typeArgs.push_back(Elt: type.get()); |
| 1645 | } |
| 1646 | |
| 1647 | typeArgsLAngleLoc = lAngleLoc; |
| 1648 | typeArgsRAngleLoc = rAngleLoc; |
| 1649 | }; |
| 1650 | |
| 1651 | // If all of the identifiers can be resolved as type names or |
| 1652 | // Objective-C class names, we have type arguments. |
| 1653 | if (numTypeDeclsResolved == identifiers.size()) |
| 1654 | return resolvedAsTypeDecls(); |
| 1655 | |
| 1656 | // Error recovery: some names weren't found, or we have a mix of |
| 1657 | // type and protocol names. Go resolve all of the unresolved names |
| 1658 | // and complain if we can't find a consistent answer. |
| 1659 | Sema::LookupNameKind lookupKind = Sema::LookupAnyName; |
| 1660 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| 1661 | // If we already have a protocol or type. Check whether it is the |
| 1662 | // right thing. |
| 1663 | if (protocols[i] || typeDecls[i]) { |
| 1664 | // If we haven't figured out whether we want types or protocols |
| 1665 | // yet, try to figure it out from this name. |
| 1666 | if (lookupKind == Sema::LookupAnyName) { |
| 1667 | // If this name refers to both a protocol and a type (e.g., \c |
| 1668 | // NSObject), don't conclude anything yet. |
| 1669 | if (protocols[i] && typeDecls[i]) |
| 1670 | continue; |
| 1671 | |
| 1672 | // Otherwise, let this name decide whether we'll be correcting |
| 1673 | // toward types or protocols. |
| 1674 | lookupKind = protocols[i] ? Sema::LookupObjCProtocolName |
| 1675 | : Sema::LookupOrdinaryName; |
| 1676 | continue; |
| 1677 | } |
| 1678 | |
| 1679 | // If we want protocols and we have a protocol, there's nothing |
| 1680 | // more to do. |
| 1681 | if (lookupKind == Sema::LookupObjCProtocolName && protocols[i]) |
| 1682 | continue; |
| 1683 | |
| 1684 | // If we want types and we have a type declaration, there's |
| 1685 | // nothing more to do. |
| 1686 | if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i]) |
| 1687 | continue; |
| 1688 | |
| 1689 | // We have a conflict: some names refer to protocols and others |
| 1690 | // refer to types. |
| 1691 | DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0], |
| 1692 | TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i], |
| 1693 | SelectProtocolFirst: protocols[i] != nullptr); |
| 1694 | |
| 1695 | protocols.clear(); |
| 1696 | typeArgs.clear(); |
| 1697 | return; |
| 1698 | } |
| 1699 | |
| 1700 | // Perform typo correction on the name. |
| 1701 | ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); |
| 1702 | TypoCorrection corrected = SemaRef.CorrectTypo( |
| 1703 | Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]), LookupKind: lookupKind, S, |
| 1704 | SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery); |
| 1705 | if (corrected) { |
| 1706 | // Did we find a protocol? |
| 1707 | if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { |
| 1708 | SemaRef.diagnoseTypo(Correction: corrected, |
| 1709 | TypoDiag: PDiag(DiagID: diag::err_undeclared_protocol_suggest) |
| 1710 | << identifiers[i]); |
| 1711 | lookupKind = Sema::LookupObjCProtocolName; |
| 1712 | protocols[i] = proto; |
| 1713 | ++numProtocolsResolved; |
| 1714 | continue; |
| 1715 | } |
| 1716 | |
| 1717 | // Did we find a type? |
| 1718 | if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { |
| 1719 | SemaRef.diagnoseTypo(Correction: corrected, |
| 1720 | TypoDiag: PDiag(DiagID: diag::err_unknown_typename_suggest) |
| 1721 | << identifiers[i]); |
| 1722 | lookupKind = Sema::LookupOrdinaryName; |
| 1723 | typeDecls[i] = typeDecl; |
| 1724 | ++numTypeDeclsResolved; |
| 1725 | continue; |
| 1726 | } |
| 1727 | |
| 1728 | // Did we find an Objective-C class? |
| 1729 | if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
| 1730 | SemaRef.diagnoseTypo(Correction: corrected, |
| 1731 | TypoDiag: PDiag(DiagID: diag::err_unknown_type_or_class_name_suggest) |
| 1732 | << identifiers[i] << true); |
| 1733 | lookupKind = Sema::LookupOrdinaryName; |
| 1734 | typeDecls[i] = objcClass; |
| 1735 | ++numTypeDeclsResolved; |
| 1736 | continue; |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | // We couldn't find anything. |
| 1741 | Diag(Loc: identifierLocs[i], |
| 1742 | DiagID: (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing |
| 1743 | : lookupKind == Sema::LookupObjCProtocolName |
| 1744 | ? diag::err_undeclared_protocol |
| 1745 | : diag::err_unknown_typename)) |
| 1746 | << identifiers[i]; |
| 1747 | protocols.clear(); |
| 1748 | typeArgs.clear(); |
| 1749 | return; |
| 1750 | } |
| 1751 | |
| 1752 | // If all of the names were (corrected to) protocols, these were |
| 1753 | // protocol qualifiers. |
| 1754 | if (numProtocolsResolved == identifiers.size()) |
| 1755 | return resolvedAsProtocols(); |
| 1756 | |
| 1757 | // Otherwise, all of the names were (corrected to) types. |
| 1758 | assert(numTypeDeclsResolved == identifiers.size() && "Not all types?" ); |
| 1759 | return resolvedAsTypeDecls(); |
| 1760 | } |
| 1761 | |
| 1762 | /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of |
| 1763 | /// a class method in its extension. |
| 1764 | /// |
| 1765 | void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, |
| 1766 | ObjCInterfaceDecl *ID) { |
| 1767 | if (!ID) |
| 1768 | return; // Possibly due to previous error |
| 1769 | |
| 1770 | llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; |
| 1771 | for (auto *MD : ID->methods()) |
| 1772 | MethodMap[MD->getSelector()] = MD; |
| 1773 | |
| 1774 | if (MethodMap.empty()) |
| 1775 | return; |
| 1776 | for (const auto *Method : CAT->methods()) { |
| 1777 | const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; |
| 1778 | if (PrevMethod && |
| 1779 | (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && |
| 1780 | !MatchTwoMethodDeclarations(Method, PrevMethod)) { |
| 1781 | Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl) |
| 1782 | << Method->getDeclName(); |
| 1783 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 1784 | } |
| 1785 | } |
| 1786 | } |
| 1787 | |
| 1788 | /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; |
| 1789 | SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration( |
| 1790 | SourceLocation AtProtocolLoc, ArrayRef<IdentifierLoc> IdentList, |
| 1791 | const ParsedAttributesView &attrList) { |
| 1792 | ASTContext &Context = getASTContext(); |
| 1793 | SmallVector<Decl *, 8> DeclsInGroup; |
| 1794 | for (const IdentifierLoc &IdentPair : IdentList) { |
| 1795 | IdentifierInfo *Ident = IdentPair.getIdentifierInfo(); |
| 1796 | ObjCProtocolDecl *PrevDecl = LookupProtocol( |
| 1797 | II: Ident, IdLoc: IdentPair.getLoc(), Redecl: SemaRef.forRedeclarationInCurContext()); |
| 1798 | ObjCProtocolDecl *PDecl = |
| 1799 | ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: Ident, |
| 1800 | nameLoc: IdentPair.getLoc(), atStartLoc: AtProtocolLoc, PrevDecl); |
| 1801 | |
| 1802 | SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope); |
| 1803 | CheckObjCDeclScope(D: PDecl); |
| 1804 | |
| 1805 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: PDecl, AttrList: attrList); |
| 1806 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: PDecl); |
| 1807 | |
| 1808 | if (PrevDecl) |
| 1809 | SemaRef.mergeDeclAttributes(New: PDecl, Old: PrevDecl); |
| 1810 | |
| 1811 | DeclsInGroup.push_back(Elt: PDecl); |
| 1812 | } |
| 1813 | |
| 1814 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
| 1815 | } |
| 1816 | |
| 1817 | ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface( |
| 1818 | SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName, |
| 1819 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
| 1820 | const IdentifierInfo *CategoryName, SourceLocation CategoryLoc, |
| 1821 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
| 1822 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
| 1823 | const ParsedAttributesView &AttrList) { |
| 1824 | ASTContext &Context = getASTContext(); |
| 1825 | ObjCCategoryDecl *CDecl; |
| 1826 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
| 1827 | |
| 1828 | /// Check that class of this category is already completely declared. |
| 1829 | |
| 1830 | if (!IDecl || |
| 1831 | SemaRef.RequireCompleteType(Loc: ClassLoc, T: Context.getObjCInterfaceType(Decl: IDecl), |
| 1832 | DiagID: diag::err_category_forward_interface, |
| 1833 | Args: CategoryName == nullptr)) { |
| 1834 | // Create an invalid ObjCCategoryDecl to serve as context for |
| 1835 | // the enclosing method declarations. We mark the decl invalid |
| 1836 | // to make it clear that this isn't a valid AST. |
| 1837 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, |
| 1838 | AtLoc: AtInterfaceLoc, ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, |
| 1839 | Id: CategoryName, IDecl, typeParamList); |
| 1840 | CDecl->setInvalidDecl(); |
| 1841 | SemaRef.CurContext->addDecl(D: CDecl); |
| 1842 | |
| 1843 | if (!IDecl) |
| 1844 | Diag(Loc: ClassLoc, DiagID: diag::err_undef_interface) << ClassName; |
| 1845 | ActOnObjCContainerStartDefinition(IDecl: CDecl); |
| 1846 | return CDecl; |
| 1847 | } |
| 1848 | |
| 1849 | if (!CategoryName && IDecl->getImplementation()) { |
| 1850 | Diag(Loc: ClassLoc, DiagID: diag::err_class_extension_after_impl) << ClassName; |
| 1851 | Diag(Loc: IDecl->getImplementation()->getLocation(), |
| 1852 | DiagID: diag::note_implementation_declared); |
| 1853 | } |
| 1854 | |
| 1855 | if (CategoryName) { |
| 1856 | /// Check for duplicate interface declaration for this category |
| 1857 | if (ObjCCategoryDecl *Previous |
| 1858 | = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) { |
| 1859 | // Class extensions can be declared multiple times, categories cannot. |
| 1860 | Diag(Loc: CategoryLoc, DiagID: diag::warn_dup_category_def) |
| 1861 | << ClassName << CategoryName; |
| 1862 | Diag(Loc: Previous->getLocation(), DiagID: diag::note_previous_definition); |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | // If we have a type parameter list, check it. |
| 1867 | if (typeParamList) { |
| 1868 | if (auto prevTypeParamList = IDecl->getTypeParamList()) { |
| 1869 | if (checkTypeParamListConsistency( |
| 1870 | S&: SemaRef, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList, |
| 1871 | newContext: CategoryName ? TypeParamListContext::Category |
| 1872 | : TypeParamListContext::Extension)) |
| 1873 | typeParamList = nullptr; |
| 1874 | } else { |
| 1875 | Diag(Loc: typeParamList->getLAngleLoc(), |
| 1876 | DiagID: diag::err_objc_parameterized_category_nonclass) |
| 1877 | << (CategoryName != nullptr) |
| 1878 | << ClassName |
| 1879 | << typeParamList->getSourceRange(); |
| 1880 | |
| 1881 | typeParamList = nullptr; |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtInterfaceLoc, |
| 1886 | ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl, |
| 1887 | typeParamList); |
| 1888 | // FIXME: PushOnScopeChains? |
| 1889 | SemaRef.CurContext->addDecl(D: CDecl); |
| 1890 | |
| 1891 | // Process the attributes before looking at protocols to ensure that the |
| 1892 | // availability attribute is attached to the category to provide availability |
| 1893 | // checking for protocol uses. |
| 1894 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: CDecl, AttrList); |
| 1895 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: CDecl); |
| 1896 | |
| 1897 | if (NumProtoRefs) { |
| 1898 | diagnoseUseOfProtocols(TheSema&: SemaRef, CD: CDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs, |
| 1899 | NumProtoRefs, ProtoLocs); |
| 1900 | CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
| 1901 | Locs: ProtoLocs, C&: Context); |
| 1902 | // Protocols in the class extension belong to the class. |
| 1903 | if (CDecl->IsClassExtension()) |
| 1904 | IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, |
| 1905 | Num: NumProtoRefs, C&: Context); |
| 1906 | } |
| 1907 | |
| 1908 | CheckObjCDeclScope(D: CDecl); |
| 1909 | ActOnObjCContainerStartDefinition(IDecl: CDecl); |
| 1910 | return CDecl; |
| 1911 | } |
| 1912 | |
| 1913 | /// ActOnStartCategoryImplementation - Perform semantic checks on the |
| 1914 | /// category implementation declaration and build an ObjCCategoryImplDecl |
| 1915 | /// object. |
| 1916 | ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation( |
| 1917 | SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName, |
| 1918 | SourceLocation ClassLoc, const IdentifierInfo *CatName, |
| 1919 | SourceLocation CatLoc, const ParsedAttributesView &Attrs) { |
| 1920 | ASTContext &Context = getASTContext(); |
| 1921 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
| 1922 | ObjCCategoryDecl *CatIDecl = nullptr; |
| 1923 | if (IDecl && IDecl->hasDefinition()) { |
| 1924 | CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName); |
| 1925 | if (!CatIDecl) { |
| 1926 | // Category @implementation with no corresponding @interface. |
| 1927 | // Create and install one. |
| 1928 | CatIDecl = |
| 1929 | ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtCatImplLoc, |
| 1930 | ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc, Id: CatName, IDecl, |
| 1931 | /*typeParamList=*/nullptr); |
| 1932 | CatIDecl->setImplicit(); |
| 1933 | } |
| 1934 | } |
| 1935 | |
| 1936 | ObjCCategoryImplDecl *CDecl = |
| 1937 | ObjCCategoryImplDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: CatName, classInterface: IDecl, |
| 1938 | nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc); |
| 1939 | /// Check that class of this category is already completely declared. |
| 1940 | if (!IDecl) { |
| 1941 | Diag(Loc: ClassLoc, DiagID: diag::err_undef_interface) << ClassName; |
| 1942 | CDecl->setInvalidDecl(); |
| 1943 | } else if (SemaRef.RequireCompleteType(Loc: ClassLoc, |
| 1944 | T: Context.getObjCInterfaceType(Decl: IDecl), |
| 1945 | DiagID: diag::err_undef_interface)) { |
| 1946 | CDecl->setInvalidDecl(); |
| 1947 | } |
| 1948 | |
| 1949 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: CDecl, AttrList: Attrs); |
| 1950 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: CDecl); |
| 1951 | |
| 1952 | // FIXME: PushOnScopeChains? |
| 1953 | SemaRef.CurContext->addDecl(D: CDecl); |
| 1954 | |
| 1955 | // If the interface has the objc_runtime_visible attribute, we |
| 1956 | // cannot implement a category for it. |
| 1957 | if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { |
| 1958 | Diag(Loc: ClassLoc, DiagID: diag::err_objc_runtime_visible_category) |
| 1959 | << IDecl->getDeclName(); |
| 1960 | } |
| 1961 | |
| 1962 | /// Check that CatName, category name, is not used in another implementation. |
| 1963 | if (CatIDecl) { |
| 1964 | if (CatIDecl->getImplementation()) { |
| 1965 | Diag(Loc: ClassLoc, DiagID: diag::err_dup_implementation_category) << ClassName |
| 1966 | << CatName; |
| 1967 | Diag(Loc: CatIDecl->getImplementation()->getLocation(), |
| 1968 | DiagID: diag::note_previous_definition); |
| 1969 | CDecl->setInvalidDecl(); |
| 1970 | } else { |
| 1971 | CatIDecl->setImplementation(CDecl); |
| 1972 | // Warn on implementating category of deprecated class under |
| 1973 | // -Wdeprecated-implementations flag. |
| 1974 | DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: CatIDecl, |
| 1975 | ImplLoc: CDecl->getLocation()); |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | CheckObjCDeclScope(D: CDecl); |
| 1980 | ActOnObjCContainerStartDefinition(IDecl: CDecl); |
| 1981 | return CDecl; |
| 1982 | } |
| 1983 | |
| 1984 | ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation( |
| 1985 | SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName, |
| 1986 | SourceLocation ClassLoc, const IdentifierInfo *SuperClassname, |
| 1987 | SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) { |
| 1988 | ASTContext &Context = getASTContext(); |
| 1989 | ObjCInterfaceDecl *IDecl = nullptr; |
| 1990 | // Check for another declaration kind with the same name. |
| 1991 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
| 1992 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName, |
| 1993 | Redecl: SemaRef.forRedeclarationInCurContext()); |
| 1994 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
| 1995 | Diag(Loc: ClassLoc, DiagID: diag::err_redefinition_different_kind) << ClassName; |
| 1996 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 1997 | } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) { |
| 1998 | // FIXME: This will produce an error if the definition of the interface has |
| 1999 | // been imported from a module but is not visible. |
| 2000 | SemaRef.RequireCompleteType(Loc: ClassLoc, T: Context.getObjCInterfaceType(Decl: IDecl), |
| 2001 | DiagID: diag::warn_undef_interface); |
| 2002 | } else { |
| 2003 | // We did not find anything with the name ClassName; try to correct for |
| 2004 | // typos in the class name. |
| 2005 | ObjCInterfaceValidatorCCC CCC{}; |
| 2006 | TypoCorrection Corrected = SemaRef.CorrectTypo( |
| 2007 | Typo: DeclarationNameInfo(ClassName, ClassLoc), LookupKind: Sema::LookupOrdinaryName, |
| 2008 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::NonError); |
| 2009 | if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
| 2010 | // Suggest the (potentially) correct interface name. Don't provide a |
| 2011 | // code-modification hint or use the typo name for recovery, because |
| 2012 | // this is just a warning. The program may actually be correct. |
| 2013 | SemaRef.diagnoseTypo( |
| 2014 | Correction: Corrected, TypoDiag: PDiag(DiagID: diag::warn_undef_interface_suggest) << ClassName, |
| 2015 | /*ErrorRecovery*/ false); |
| 2016 | } else { |
| 2017 | Diag(Loc: ClassLoc, DiagID: diag::warn_undef_interface) << ClassName; |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | // Check that super class name is valid class name |
| 2022 | ObjCInterfaceDecl *SDecl = nullptr; |
| 2023 | if (SuperClassname) { |
| 2024 | // Check if a different kind of symbol declared in this scope. |
| 2025 | PrevDecl = |
| 2026 | SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: SuperClassname, Loc: SuperClassLoc, |
| 2027 | NameKind: Sema::LookupOrdinaryName); |
| 2028 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
| 2029 | Diag(Loc: SuperClassLoc, DiagID: diag::err_redefinition_different_kind) |
| 2030 | << SuperClassname; |
| 2031 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 2032 | } else { |
| 2033 | SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
| 2034 | if (SDecl && !SDecl->hasDefinition()) |
| 2035 | SDecl = nullptr; |
| 2036 | if (!SDecl) |
| 2037 | Diag(Loc: SuperClassLoc, DiagID: diag::err_undef_superclass) |
| 2038 | << SuperClassname << ClassName; |
| 2039 | else if (IDecl && !declaresSameEntity(D1: IDecl->getSuperClass(), D2: SDecl)) { |
| 2040 | // This implementation and its interface do not have the same |
| 2041 | // super class. |
| 2042 | Diag(Loc: SuperClassLoc, DiagID: diag::err_conflicting_super_class) |
| 2043 | << SDecl->getDeclName(); |
| 2044 | Diag(Loc: SDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 2045 | } |
| 2046 | } |
| 2047 | } |
| 2048 | |
| 2049 | if (!IDecl) { |
| 2050 | // Legacy case of @implementation with no corresponding @interface. |
| 2051 | // Build, chain & install the interface decl into the identifier. |
| 2052 | |
| 2053 | // FIXME: Do we support attributes on the @implementation? If so we should |
| 2054 | // copy them over. |
| 2055 | IDecl = |
| 2056 | ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtClassImplLoc, |
| 2057 | Id: ClassName, /*typeParamList=*/nullptr, |
| 2058 | /*PrevDecl=*/nullptr, ClassLoc, isInternal: true); |
| 2059 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IDecl); |
| 2060 | IDecl->startDefinition(); |
| 2061 | if (SDecl) { |
| 2062 | IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( |
| 2063 | T: Context.getObjCInterfaceType(Decl: SDecl), |
| 2064 | Loc: SuperClassLoc)); |
| 2065 | IDecl->setEndOfDefinitionLoc(SuperClassLoc); |
| 2066 | } else { |
| 2067 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
| 2068 | } |
| 2069 | |
| 2070 | SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope); |
| 2071 | } else { |
| 2072 | // Mark the interface as being completed, even if it was just as |
| 2073 | // @class ....; |
| 2074 | // declaration; the user cannot reopen it. |
| 2075 | if (!IDecl->hasDefinition()) |
| 2076 | IDecl->startDefinition(); |
| 2077 | } |
| 2078 | |
| 2079 | ObjCImplementationDecl *IMPDecl = |
| 2080 | ObjCImplementationDecl::Create(C&: Context, DC: SemaRef.CurContext, classInterface: IDecl, superDecl: SDecl, |
| 2081 | nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc); |
| 2082 | |
| 2083 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: IMPDecl, AttrList: Attrs); |
| 2084 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IMPDecl); |
| 2085 | |
| 2086 | if (CheckObjCDeclScope(D: IMPDecl)) { |
| 2087 | ActOnObjCContainerStartDefinition(IDecl: IMPDecl); |
| 2088 | return IMPDecl; |
| 2089 | } |
| 2090 | |
| 2091 | // Check that there is no duplicate implementation of this class. |
| 2092 | if (IDecl->getImplementation()) { |
| 2093 | // FIXME: Don't leak everything! |
| 2094 | Diag(Loc: ClassLoc, DiagID: diag::err_dup_implementation_class) << ClassName; |
| 2095 | Diag(Loc: IDecl->getImplementation()->getLocation(), |
| 2096 | DiagID: diag::note_previous_definition); |
| 2097 | IMPDecl->setInvalidDecl(); |
| 2098 | } else { // add it to the list. |
| 2099 | IDecl->setImplementation(IMPDecl); |
| 2100 | SemaRef.PushOnScopeChains(D: IMPDecl, S: SemaRef.TUScope); |
| 2101 | // Warn on implementating deprecated class under |
| 2102 | // -Wdeprecated-implementations flag. |
| 2103 | DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: IDecl, ImplLoc: IMPDecl->getLocation()); |
| 2104 | } |
| 2105 | |
| 2106 | // If the superclass has the objc_runtime_visible attribute, we |
| 2107 | // cannot implement a subclass of it. |
| 2108 | if (IDecl->getSuperClass() && |
| 2109 | IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { |
| 2110 | Diag(Loc: ClassLoc, DiagID: diag::err_objc_runtime_visible_subclass) |
| 2111 | << IDecl->getDeclName() |
| 2112 | << IDecl->getSuperClass()->getDeclName(); |
| 2113 | } |
| 2114 | |
| 2115 | ActOnObjCContainerStartDefinition(IDecl: IMPDecl); |
| 2116 | return IMPDecl; |
| 2117 | } |
| 2118 | |
| 2119 | SemaObjC::DeclGroupPtrTy |
| 2120 | SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, |
| 2121 | ArrayRef<Decl *> Decls) { |
| 2122 | SmallVector<Decl *, 64> DeclsInGroup; |
| 2123 | DeclsInGroup.reserve(N: Decls.size() + 1); |
| 2124 | |
| 2125 | for (unsigned i = 0, e = Decls.size(); i != e; ++i) { |
| 2126 | Decl *Dcl = Decls[i]; |
| 2127 | if (!Dcl) |
| 2128 | continue; |
| 2129 | if (Dcl->getDeclContext()->isFileContext()) |
| 2130 | Dcl->setTopLevelDeclInObjCContainer(); |
| 2131 | DeclsInGroup.push_back(Elt: Dcl); |
| 2132 | } |
| 2133 | |
| 2134 | DeclsInGroup.push_back(Elt: ObjCImpDecl); |
| 2135 | |
| 2136 | // Reset the cached layout if there are any ivars added to |
| 2137 | // the implementation. |
| 2138 | if (auto *ImplD = dyn_cast<ObjCImplementationDecl>(Val: ObjCImpDecl)) |
| 2139 | if (!ImplD->ivar_empty()) |
| 2140 | getASTContext().ResetObjCLayout(D: ImplD->getClassInterface()); |
| 2141 | |
| 2142 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
| 2143 | } |
| 2144 | |
| 2145 | void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, |
| 2146 | ObjCIvarDecl **ivars, unsigned numIvars, |
| 2147 | SourceLocation RBrace) { |
| 2148 | assert(ImpDecl && "missing implementation decl" ); |
| 2149 | ASTContext &Context = getASTContext(); |
| 2150 | ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); |
| 2151 | if (!IDecl) |
| 2152 | return; |
| 2153 | /// Check case of non-existing \@interface decl. |
| 2154 | /// (legacy objective-c \@implementation decl without an \@interface decl). |
| 2155 | /// Add implementations's ivar to the synthesize class's ivar list. |
| 2156 | if (IDecl->isImplicitInterfaceDecl()) { |
| 2157 | IDecl->setEndOfDefinitionLoc(RBrace); |
| 2158 | // Add ivar's to class's DeclContext. |
| 2159 | for (unsigned i = 0, e = numIvars; i != e; ++i) { |
| 2160 | ivars[i]->setLexicalDeclContext(ImpDecl); |
| 2161 | // In a 'fragile' runtime the ivar was added to the implicit |
| 2162 | // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is |
| 2163 | // only in the ObjCImplementationDecl. In the non-fragile case the ivar |
| 2164 | // therefore also needs to be propagated to the ObjCInterfaceDecl. |
| 2165 | if (!getLangOpts().ObjCRuntime.isFragile()) |
| 2166 | IDecl->makeDeclVisibleInContext(D: ivars[i]); |
| 2167 | ImpDecl->addDecl(D: ivars[i]); |
| 2168 | } |
| 2169 | |
| 2170 | return; |
| 2171 | } |
| 2172 | // If implementation has empty ivar list, just return. |
| 2173 | if (numIvars == 0) |
| 2174 | return; |
| 2175 | |
| 2176 | assert(ivars && "missing @implementation ivars" ); |
| 2177 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
| 2178 | if (ImpDecl->getSuperClass()) |
| 2179 | Diag(Loc: ImpDecl->getLocation(), DiagID: diag::warn_on_superclass_use); |
| 2180 | for (unsigned i = 0; i < numIvars; i++) { |
| 2181 | ObjCIvarDecl* ImplIvar = ivars[i]; |
| 2182 | if (const ObjCIvarDecl *ClsIvar = |
| 2183 | IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) { |
| 2184 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_duplicate_ivar_declaration); |
| 2185 | Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition); |
| 2186 | continue; |
| 2187 | } |
| 2188 | // Check class extensions (unnamed categories) for duplicate ivars. |
| 2189 | for (const auto *CDecl : IDecl->visible_extensions()) { |
| 2190 | if (const ObjCIvarDecl *ClsExtIvar = |
| 2191 | CDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) { |
| 2192 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_duplicate_ivar_declaration); |
| 2193 | Diag(Loc: ClsExtIvar->getLocation(), DiagID: diag::note_previous_definition); |
| 2194 | continue; |
| 2195 | } |
| 2196 | } |
| 2197 | // Instance ivar to Implementation's DeclContext. |
| 2198 | ImplIvar->setLexicalDeclContext(ImpDecl); |
| 2199 | IDecl->makeDeclVisibleInContext(D: ImplIvar); |
| 2200 | ImpDecl->addDecl(D: ImplIvar); |
| 2201 | } |
| 2202 | return; |
| 2203 | } |
| 2204 | // Check interface's Ivar list against those in the implementation. |
| 2205 | // names and types must match. |
| 2206 | // |
| 2207 | unsigned j = 0; |
| 2208 | ObjCInterfaceDecl::ivar_iterator |
| 2209 | IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); |
| 2210 | for (; numIvars > 0 && IVI != IVE; ++IVI) { |
| 2211 | ObjCIvarDecl* ImplIvar = ivars[j++]; |
| 2212 | ObjCIvarDecl* ClsIvar = *IVI; |
| 2213 | assert (ImplIvar && "missing implementation ivar" ); |
| 2214 | assert (ClsIvar && "missing class ivar" ); |
| 2215 | |
| 2216 | // First, make sure the types match. |
| 2217 | if (!Context.hasSameType(T1: ImplIvar->getType(), T2: ClsIvar->getType())) { |
| 2218 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_conflicting_ivar_type) |
| 2219 | << ImplIvar->getIdentifier() |
| 2220 | << ImplIvar->getType() << ClsIvar->getType(); |
| 2221 | Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition); |
| 2222 | } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && |
| 2223 | ImplIvar->getBitWidthValue() != ClsIvar->getBitWidthValue()) { |
| 2224 | Diag(Loc: ImplIvar->getBitWidth()->getBeginLoc(), |
| 2225 | DiagID: diag::err_conflicting_ivar_bitwidth) |
| 2226 | << ImplIvar->getIdentifier(); |
| 2227 | Diag(Loc: ClsIvar->getBitWidth()->getBeginLoc(), |
| 2228 | DiagID: diag::note_previous_definition); |
| 2229 | } |
| 2230 | // Make sure the names are identical. |
| 2231 | if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
| 2232 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_conflicting_ivar_name) |
| 2233 | << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); |
| 2234 | Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition); |
| 2235 | } |
| 2236 | --numIvars; |
| 2237 | } |
| 2238 | |
| 2239 | if (numIvars > 0) |
| 2240 | Diag(Loc: ivars[j]->getLocation(), DiagID: diag::err_inconsistent_ivar_count); |
| 2241 | else if (IVI != IVE) |
| 2242 | Diag(Loc: IVI->getLocation(), DiagID: diag::err_inconsistent_ivar_count); |
| 2243 | } |
| 2244 | |
| 2245 | static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) { |
| 2246 | // No point warning no definition of method which is 'unavailable'. |
| 2247 | return M->getAvailability() != AR_Unavailable; |
| 2248 | } |
| 2249 | |
| 2250 | static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl, |
| 2251 | ObjCMethodDecl *method, bool &IncompleteImpl, |
| 2252 | unsigned DiagID, |
| 2253 | NamedDecl *NeededFor = nullptr) { |
| 2254 | if (!shouldWarnUndefinedMethod(M: method)) |
| 2255 | return; |
| 2256 | |
| 2257 | // FIXME: For now ignore 'IncompleteImpl'. |
| 2258 | // Previously we grouped all unimplemented methods under a single |
| 2259 | // warning, but some users strongly voiced that they would prefer |
| 2260 | // separate warnings. We will give that approach a try, as that |
| 2261 | // matches what we do with protocols. |
| 2262 | { |
| 2263 | const SemaBase::SemaDiagnosticBuilder &B = |
| 2264 | S.Diag(Loc: Impl->getLocation(), DiagID); |
| 2265 | B << method; |
| 2266 | if (NeededFor) |
| 2267 | B << NeededFor; |
| 2268 | |
| 2269 | // Add an empty definition at the end of the @implementation. |
| 2270 | std::string FixItStr; |
| 2271 | llvm::raw_string_ostream Out(FixItStr); |
| 2272 | method->print(Out, Policy: Impl->getASTContext().getPrintingPolicy()); |
| 2273 | Out << " {\n}\n\n" ; |
| 2274 | |
| 2275 | SourceLocation Loc = Impl->getAtEndRange().getBegin(); |
| 2276 | B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr); |
| 2277 | } |
| 2278 | |
| 2279 | // Issue a note to the original declaration. |
| 2280 | SourceLocation MethodLoc = method->getBeginLoc(); |
| 2281 | if (MethodLoc.isValid()) |
| 2282 | S.Diag(Loc: MethodLoc, DiagID: diag::note_method_declared_at) << method; |
| 2283 | } |
| 2284 | |
| 2285 | /// Determines if type B can be substituted for type A. Returns true if we can |
| 2286 | /// guarantee that anything that the user will do to an object of type A can |
| 2287 | /// also be done to an object of type B. This is trivially true if the two |
| 2288 | /// types are the same, or if B is a subclass of A. It becomes more complex |
| 2289 | /// in cases where protocols are involved. |
| 2290 | /// |
| 2291 | /// Object types in Objective-C describe the minimum requirements for an |
| 2292 | /// object, rather than providing a complete description of a type. For |
| 2293 | /// example, if A is a subclass of B, then B* may refer to an instance of A. |
| 2294 | /// The principle of substitutability means that we may use an instance of A |
| 2295 | /// anywhere that we may use an instance of B - it will implement all of the |
| 2296 | /// ivars of B and all of the methods of B. |
| 2297 | /// |
| 2298 | /// This substitutability is important when type checking methods, because |
| 2299 | /// the implementation may have stricter type definitions than the interface. |
| 2300 | /// The interface specifies minimum requirements, but the implementation may |
| 2301 | /// have more accurate ones. For example, a method may privately accept |
| 2302 | /// instances of B, but only publish that it accepts instances of A. Any |
| 2303 | /// object passed to it will be type checked against B, and so will implicitly |
| 2304 | /// by a valid A*. Similarly, a method may return a subclass of the class that |
| 2305 | /// it is declared as returning. |
| 2306 | /// |
| 2307 | /// This is most important when considering subclassing. A method in a |
| 2308 | /// subclass must accept any object as an argument that its superclass's |
| 2309 | /// implementation accepts. It may, however, accept a more general type |
| 2310 | /// without breaking substitutability (i.e. you can still use the subclass |
| 2311 | /// anywhere that you can use the superclass, but not vice versa). The |
| 2312 | /// converse requirement applies to return types: the return type for a |
| 2313 | /// subclass method must be a valid object of the kind that the superclass |
| 2314 | /// advertises, but it may be specified more accurately. This avoids the need |
| 2315 | /// for explicit down-casting by callers. |
| 2316 | /// |
| 2317 | /// Note: This is a stricter requirement than for assignment. |
| 2318 | static bool isObjCTypeSubstitutable(ASTContext &Context, |
| 2319 | const ObjCObjectPointerType *A, |
| 2320 | const ObjCObjectPointerType *B, |
| 2321 | bool rejectId) { |
| 2322 | // Reject a protocol-unqualified id. |
| 2323 | if (rejectId && B->isObjCIdType()) return false; |
| 2324 | |
| 2325 | // If B is a qualified id, then A must also be a qualified id and it must |
| 2326 | // implement all of the protocols in B. It may not be a qualified class. |
| 2327 | // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a |
| 2328 | // stricter definition so it is not substitutable for id<A>. |
| 2329 | if (B->isObjCQualifiedIdType()) { |
| 2330 | return A->isObjCQualifiedIdType() && |
| 2331 | Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false); |
| 2332 | } |
| 2333 | |
| 2334 | /* |
| 2335 | // id is a special type that bypasses type checking completely. We want a |
| 2336 | // warning when it is used in one place but not another. |
| 2337 | if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; |
| 2338 | |
| 2339 | |
| 2340 | // If B is a qualified id, then A must also be a qualified id (which it isn't |
| 2341 | // if we've got this far) |
| 2342 | if (B->isObjCQualifiedIdType()) return false; |
| 2343 | */ |
| 2344 | |
| 2345 | // Now we know that A and B are (potentially-qualified) class types. The |
| 2346 | // normal rules for assignment apply. |
| 2347 | return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B); |
| 2348 | } |
| 2349 | |
| 2350 | static SourceRange getTypeRange(TypeSourceInfo *TSI) { |
| 2351 | return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); |
| 2352 | } |
| 2353 | |
| 2354 | /// Determine whether two set of Objective-C declaration qualifiers conflict. |
| 2355 | static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, |
| 2356 | Decl::ObjCDeclQualifier y) { |
| 2357 | return (x & ~Decl::OBJC_TQ_CSNullability) != |
| 2358 | (y & ~Decl::OBJC_TQ_CSNullability); |
| 2359 | } |
| 2360 | |
| 2361 | static bool CheckMethodOverrideReturn(Sema &S, |
| 2362 | ObjCMethodDecl *MethodImpl, |
| 2363 | ObjCMethodDecl *MethodDecl, |
| 2364 | bool IsProtocolMethodDecl, |
| 2365 | bool IsOverridingMode, |
| 2366 | bool Warn) { |
| 2367 | if (IsProtocolMethodDecl && |
| 2368 | objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(), |
| 2369 | y: MethodImpl->getObjCDeclQualifier())) { |
| 2370 | if (Warn) { |
| 2371 | S.Diag(Loc: MethodImpl->getLocation(), |
| 2372 | DiagID: (IsOverridingMode |
| 2373 | ? diag::warn_conflicting_overriding_ret_type_modifiers |
| 2374 | : diag::warn_conflicting_ret_type_modifiers)) |
| 2375 | << MethodImpl->getDeclName() |
| 2376 | << MethodImpl->getReturnTypeSourceRange(); |
| 2377 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration) |
| 2378 | << MethodDecl->getReturnTypeSourceRange(); |
| 2379 | } |
| 2380 | else |
| 2381 | return false; |
| 2382 | } |
| 2383 | if (Warn && IsOverridingMode && |
| 2384 | !isa<ObjCImplementationDecl>(Val: MethodImpl->getDeclContext()) && |
| 2385 | !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(), |
| 2386 | SuperT: MethodDecl->getReturnType(), |
| 2387 | IsParam: false)) { |
| 2388 | auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability(); |
| 2389 | auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability(); |
| 2390 | S.Diag(Loc: MethodImpl->getLocation(), |
| 2391 | DiagID: diag::warn_conflicting_nullability_attr_overriding_ret_types) |
| 2392 | << DiagNullabilityKind(nullabilityMethodImpl, |
| 2393 | ((MethodImpl->getObjCDeclQualifier() & |
| 2394 | Decl::OBJC_TQ_CSNullability) != 0)) |
| 2395 | << DiagNullabilityKind(nullabilityMethodDecl, |
| 2396 | ((MethodDecl->getObjCDeclQualifier() & |
| 2397 | Decl::OBJC_TQ_CSNullability) != 0)); |
| 2398 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration); |
| 2399 | } |
| 2400 | |
| 2401 | if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(), |
| 2402 | T2: MethodDecl->getReturnType())) |
| 2403 | return true; |
| 2404 | if (!Warn) |
| 2405 | return false; |
| 2406 | |
| 2407 | unsigned DiagID = |
| 2408 | IsOverridingMode ? diag::warn_conflicting_overriding_ret_types |
| 2409 | : diag::warn_conflicting_ret_types; |
| 2410 | |
| 2411 | // Mismatches between ObjC pointers go into a different warning |
| 2412 | // category, and sometimes they're even completely explicitly allowed. |
| 2413 | if (const ObjCObjectPointerType *ImplPtrTy = |
| 2414 | MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
| 2415 | if (const ObjCObjectPointerType *IfacePtrTy = |
| 2416 | MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
| 2417 | // Allow non-matching return types as long as they don't violate |
| 2418 | // the principle of substitutability. Specifically, we permit |
| 2419 | // return types that are subclasses of the declared return type, |
| 2420 | // or that are more-qualified versions of the declared type. |
| 2421 | if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false)) |
| 2422 | return false; |
| 2423 | |
| 2424 | DiagID = |
| 2425 | IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types |
| 2426 | : diag::warn_non_covariant_ret_types; |
| 2427 | } |
| 2428 | } |
| 2429 | |
| 2430 | S.Diag(Loc: MethodImpl->getLocation(), DiagID) |
| 2431 | << MethodImpl->getDeclName() << MethodDecl->getReturnType() |
| 2432 | << MethodImpl->getReturnType() |
| 2433 | << MethodImpl->getReturnTypeSourceRange(); |
| 2434 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: IsOverridingMode |
| 2435 | ? diag::note_previous_declaration |
| 2436 | : diag::note_previous_definition) |
| 2437 | << MethodDecl->getReturnTypeSourceRange(); |
| 2438 | return false; |
| 2439 | } |
| 2440 | |
| 2441 | static bool CheckMethodOverrideParam(Sema &S, |
| 2442 | ObjCMethodDecl *MethodImpl, |
| 2443 | ObjCMethodDecl *MethodDecl, |
| 2444 | ParmVarDecl *ImplVar, |
| 2445 | ParmVarDecl *IfaceVar, |
| 2446 | bool IsProtocolMethodDecl, |
| 2447 | bool IsOverridingMode, |
| 2448 | bool Warn) { |
| 2449 | if (IsProtocolMethodDecl && |
| 2450 | objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(), |
| 2451 | y: IfaceVar->getObjCDeclQualifier())) { |
| 2452 | if (Warn) { |
| 2453 | if (IsOverridingMode) |
| 2454 | S.Diag(Loc: ImplVar->getLocation(), |
| 2455 | DiagID: diag::warn_conflicting_overriding_param_modifiers) |
| 2456 | << getTypeRange(TSI: ImplVar->getTypeSourceInfo()) |
| 2457 | << MethodImpl->getDeclName(); |
| 2458 | else S.Diag(Loc: ImplVar->getLocation(), |
| 2459 | DiagID: diag::warn_conflicting_param_modifiers) |
| 2460 | << getTypeRange(TSI: ImplVar->getTypeSourceInfo()) |
| 2461 | << MethodImpl->getDeclName(); |
| 2462 | S.Diag(Loc: IfaceVar->getLocation(), DiagID: diag::note_previous_declaration) |
| 2463 | << getTypeRange(TSI: IfaceVar->getTypeSourceInfo()); |
| 2464 | } |
| 2465 | else |
| 2466 | return false; |
| 2467 | } |
| 2468 | |
| 2469 | QualType ImplTy = ImplVar->getType(); |
| 2470 | QualType IfaceTy = IfaceVar->getType(); |
| 2471 | if (Warn && IsOverridingMode && |
| 2472 | !isa<ObjCImplementationDecl>(Val: MethodImpl->getDeclContext()) && |
| 2473 | !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) { |
| 2474 | S.Diag(Loc: ImplVar->getLocation(), |
| 2475 | DiagID: diag::warn_conflicting_nullability_attr_overriding_param_types) |
| 2476 | << DiagNullabilityKind(*ImplTy->getNullability(), |
| 2477 | ((ImplVar->getObjCDeclQualifier() & |
| 2478 | Decl::OBJC_TQ_CSNullability) != 0)) |
| 2479 | << DiagNullabilityKind(*IfaceTy->getNullability(), |
| 2480 | ((IfaceVar->getObjCDeclQualifier() & |
| 2481 | Decl::OBJC_TQ_CSNullability) != 0)); |
| 2482 | S.Diag(Loc: IfaceVar->getLocation(), DiagID: diag::note_previous_declaration); |
| 2483 | } |
| 2484 | if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy)) |
| 2485 | return true; |
| 2486 | |
| 2487 | if (!Warn) |
| 2488 | return false; |
| 2489 | unsigned DiagID = |
| 2490 | IsOverridingMode ? diag::warn_conflicting_overriding_param_types |
| 2491 | : diag::warn_conflicting_param_types; |
| 2492 | |
| 2493 | // Mismatches between ObjC pointers go into a different warning |
| 2494 | // category, and sometimes they're even completely explicitly allowed.. |
| 2495 | if (const ObjCObjectPointerType *ImplPtrTy = |
| 2496 | ImplTy->getAs<ObjCObjectPointerType>()) { |
| 2497 | if (const ObjCObjectPointerType *IfacePtrTy = |
| 2498 | IfaceTy->getAs<ObjCObjectPointerType>()) { |
| 2499 | // Allow non-matching argument types as long as they don't |
| 2500 | // violate the principle of substitutability. Specifically, the |
| 2501 | // implementation must accept any objects that the superclass |
| 2502 | // accepts, however it may also accept others. |
| 2503 | if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true)) |
| 2504 | return false; |
| 2505 | |
| 2506 | DiagID = |
| 2507 | IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types |
| 2508 | : diag::warn_non_contravariant_param_types; |
| 2509 | } |
| 2510 | } |
| 2511 | |
| 2512 | S.Diag(Loc: ImplVar->getLocation(), DiagID) |
| 2513 | << getTypeRange(TSI: ImplVar->getTypeSourceInfo()) |
| 2514 | << MethodImpl->getDeclName() << IfaceTy << ImplTy; |
| 2515 | S.Diag(Loc: IfaceVar->getLocation(), |
| 2516 | DiagID: (IsOverridingMode ? diag::note_previous_declaration |
| 2517 | : diag::note_previous_definition)) |
| 2518 | << getTypeRange(TSI: IfaceVar->getTypeSourceInfo()); |
| 2519 | return false; |
| 2520 | } |
| 2521 | |
| 2522 | /// In ARC, check whether the conventional meanings of the two methods |
| 2523 | /// match. If they don't, it's a hard error. |
| 2524 | static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, |
| 2525 | ObjCMethodDecl *decl) { |
| 2526 | ObjCMethodFamily implFamily = impl->getMethodFamily(); |
| 2527 | ObjCMethodFamily declFamily = decl->getMethodFamily(); |
| 2528 | if (implFamily == declFamily) return false; |
| 2529 | |
| 2530 | // Since conventions are sorted by selector, the only possibility is |
| 2531 | // that the types differ enough to cause one selector or the other |
| 2532 | // to fall out of the family. |
| 2533 | assert(implFamily == OMF_None || declFamily == OMF_None); |
| 2534 | |
| 2535 | // No further diagnostics required on invalid declarations. |
| 2536 | if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; |
| 2537 | |
| 2538 | const ObjCMethodDecl *unmatched = impl; |
| 2539 | ObjCMethodFamily family = declFamily; |
| 2540 | unsigned errorID = diag::err_arc_lost_method_convention; |
| 2541 | unsigned noteID = diag::note_arc_lost_method_convention; |
| 2542 | if (declFamily == OMF_None) { |
| 2543 | unmatched = decl; |
| 2544 | family = implFamily; |
| 2545 | errorID = diag::err_arc_gained_method_convention; |
| 2546 | noteID = diag::note_arc_gained_method_convention; |
| 2547 | } |
| 2548 | |
| 2549 | // Indexes into a %select clause in the diagnostic. |
| 2550 | enum FamilySelector { |
| 2551 | F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new |
| 2552 | }; |
| 2553 | FamilySelector familySelector = FamilySelector(); |
| 2554 | |
| 2555 | switch (family) { |
| 2556 | case OMF_None: llvm_unreachable("logic error, no method convention" ); |
| 2557 | case OMF_retain: |
| 2558 | case OMF_release: |
| 2559 | case OMF_autorelease: |
| 2560 | case OMF_dealloc: |
| 2561 | case OMF_finalize: |
| 2562 | case OMF_retainCount: |
| 2563 | case OMF_self: |
| 2564 | case OMF_initialize: |
| 2565 | case OMF_performSelector: |
| 2566 | // Mismatches for these methods don't change ownership |
| 2567 | // conventions, so we don't care. |
| 2568 | return false; |
| 2569 | |
| 2570 | case OMF_init: familySelector = F_init; break; |
| 2571 | case OMF_alloc: familySelector = F_alloc; break; |
| 2572 | case OMF_copy: familySelector = F_copy; break; |
| 2573 | case OMF_mutableCopy: familySelector = F_mutableCopy; break; |
| 2574 | case OMF_new: familySelector = F_new; break; |
| 2575 | } |
| 2576 | |
| 2577 | enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; |
| 2578 | ReasonSelector reasonSelector; |
| 2579 | |
| 2580 | // The only reason these methods don't fall within their families is |
| 2581 | // due to unusual result types. |
| 2582 | if (unmatched->getReturnType()->isObjCObjectPointerType()) { |
| 2583 | reasonSelector = R_UnrelatedReturn; |
| 2584 | } else { |
| 2585 | reasonSelector = R_NonObjectReturn; |
| 2586 | } |
| 2587 | |
| 2588 | S.Diag(Loc: impl->getLocation(), DiagID: errorID) << int(familySelector) << int(reasonSelector); |
| 2589 | S.Diag(Loc: decl->getLocation(), DiagID: noteID) << int(familySelector) << int(reasonSelector); |
| 2590 | |
| 2591 | return true; |
| 2592 | } |
| 2593 | |
| 2594 | void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
| 2595 | ObjCMethodDecl *MethodDecl, |
| 2596 | bool IsProtocolMethodDecl) { |
| 2597 | if (getLangOpts().ObjCAutoRefCount && |
| 2598 | checkMethodFamilyMismatch(S&: SemaRef, impl: ImpMethodDecl, decl: MethodDecl)) |
| 2599 | return; |
| 2600 | |
| 2601 | CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, |
| 2602 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
| 2603 | |
| 2604 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
| 2605 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
| 2606 | EF = MethodDecl->param_end(); |
| 2607 | IM != EM && IF != EF; ++IM, ++IF) { |
| 2608 | CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF, |
| 2609 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
| 2610 | } |
| 2611 | |
| 2612 | if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { |
| 2613 | Diag(Loc: ImpMethodDecl->getLocation(), |
| 2614 | DiagID: diag::warn_conflicting_variadic); |
| 2615 | Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration); |
| 2616 | } |
| 2617 | } |
| 2618 | |
| 2619 | void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, |
| 2620 | ObjCMethodDecl *Overridden, |
| 2621 | bool IsProtocolMethodDecl) { |
| 2622 | |
| 2623 | CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, IsProtocolMethodDecl, |
| 2624 | IsOverridingMode: true, Warn: true); |
| 2625 | |
| 2626 | for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), |
| 2627 | IF = Overridden->param_begin(), EM = Method->param_end(), |
| 2628 | EF = Overridden->param_end(); |
| 2629 | IM != EM && IF != EF; ++IM, ++IF) { |
| 2630 | CheckMethodOverrideParam(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF, |
| 2631 | IsProtocolMethodDecl, IsOverridingMode: true, Warn: true); |
| 2632 | } |
| 2633 | |
| 2634 | if (Method->isVariadic() != Overridden->isVariadic()) { |
| 2635 | Diag(Loc: Method->getLocation(), |
| 2636 | DiagID: diag::warn_conflicting_overriding_variadic); |
| 2637 | Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_declaration); |
| 2638 | } |
| 2639 | } |
| 2640 | |
| 2641 | /// WarnExactTypedMethods - This routine issues a warning if method |
| 2642 | /// implementation declaration matches exactly that of its declaration. |
| 2643 | void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
| 2644 | ObjCMethodDecl *MethodDecl, |
| 2645 | bool IsProtocolMethodDecl) { |
| 2646 | ASTContext &Context = getASTContext(); |
| 2647 | // don't issue warning when protocol method is optional because primary |
| 2648 | // class is not required to implement it and it is safe for protocol |
| 2649 | // to implement it. |
| 2650 | if (MethodDecl->getImplementationControl() == |
| 2651 | ObjCImplementationControl::Optional) |
| 2652 | return; |
| 2653 | // don't issue warning when primary class's method is |
| 2654 | // deprecated/unavailable. |
| 2655 | if (MethodDecl->hasAttr<UnavailableAttr>() || |
| 2656 | MethodDecl->hasAttr<DeprecatedAttr>()) |
| 2657 | return; |
| 2658 | |
| 2659 | bool match = CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, |
| 2660 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
| 2661 | if (match) |
| 2662 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
| 2663 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
| 2664 | EF = MethodDecl->param_end(); |
| 2665 | IM != EM && IF != EF; ++IM, ++IF) { |
| 2666 | match = CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, |
| 2667 | IfaceVar: *IF, IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
| 2668 | if (!match) |
| 2669 | break; |
| 2670 | } |
| 2671 | if (match) |
| 2672 | match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); |
| 2673 | if (match) |
| 2674 | match = !(MethodDecl->isClassMethod() && |
| 2675 | MethodDecl->getSelector() == GetNullarySelector(name: "load" , Ctx&: Context)); |
| 2676 | |
| 2677 | if (match) { |
| 2678 | Diag(Loc: ImpMethodDecl->getLocation(), |
| 2679 | DiagID: diag::warn_category_method_impl_match); |
| 2680 | Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_method_declared_at) |
| 2681 | << MethodDecl->getDeclName(); |
| 2682 | } |
| 2683 | } |
| 2684 | |
| 2685 | /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely |
| 2686 | /// improve the efficiency of selector lookups and type checking by associating |
| 2687 | /// with each protocol / interface / category the flattened instance tables. If |
| 2688 | /// we used an immutable set to keep the table then it wouldn't add significant |
| 2689 | /// memory cost and it would be handy for lookups. |
| 2690 | |
| 2691 | typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; |
| 2692 | typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; |
| 2693 | |
| 2694 | static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, |
| 2695 | ProtocolNameSet &PNS) { |
| 2696 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) |
| 2697 | PNS.insert(V: PDecl->getIdentifier()); |
| 2698 | for (const auto *PI : PDecl->protocols()) |
| 2699 | findProtocolsWithExplicitImpls(PDecl: PI, PNS); |
| 2700 | } |
| 2701 | |
| 2702 | /// Recursively populates a set with all conformed protocols in a class |
| 2703 | /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' |
| 2704 | /// attribute. |
| 2705 | static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, |
| 2706 | ProtocolNameSet &PNS) { |
| 2707 | if (!Super) |
| 2708 | return; |
| 2709 | |
| 2710 | for (const auto *I : Super->all_referenced_protocols()) |
| 2711 | findProtocolsWithExplicitImpls(PDecl: I, PNS); |
| 2712 | |
| 2713 | findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS); |
| 2714 | } |
| 2715 | |
| 2716 | /// CheckProtocolMethodDefs - This routine checks unimplemented methods |
| 2717 | /// Declared in protocol, and those referenced by it. |
| 2718 | static void CheckProtocolMethodDefs( |
| 2719 | Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl, |
| 2720 | const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap, |
| 2721 | ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) { |
| 2722 | ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl); |
| 2723 | ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() |
| 2724 | : dyn_cast<ObjCInterfaceDecl>(Val: CDecl); |
| 2725 | assert (IDecl && "CheckProtocolMethodDefs - IDecl is null" ); |
| 2726 | |
| 2727 | ObjCInterfaceDecl *Super = IDecl->getSuperClass(); |
| 2728 | ObjCInterfaceDecl *NSIDecl = nullptr; |
| 2729 | |
| 2730 | // If this protocol is marked 'objc_protocol_requires_explicit_implementation' |
| 2731 | // then we should check if any class in the super class hierarchy also |
| 2732 | // conforms to this protocol, either directly or via protocol inheritance. |
| 2733 | // If so, we can skip checking this protocol completely because we |
| 2734 | // know that a parent class already satisfies this protocol. |
| 2735 | // |
| 2736 | // Note: we could generalize this logic for all protocols, and merely |
| 2737 | // add the limit on looking at the super class chain for just |
| 2738 | // specially marked protocols. This may be a good optimization. This |
| 2739 | // change is restricted to 'objc_protocol_requires_explicit_implementation' |
| 2740 | // protocols for now for controlled evaluation. |
| 2741 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { |
| 2742 | if (!ProtocolsExplictImpl) { |
| 2743 | ProtocolsExplictImpl.reset(p: new ProtocolNameSet); |
| 2744 | findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl); |
| 2745 | } |
| 2746 | if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier())) |
| 2747 | return; |
| 2748 | |
| 2749 | // If no super class conforms to the protocol, we should not search |
| 2750 | // for methods in the super class to implicitly satisfy the protocol. |
| 2751 | Super = nullptr; |
| 2752 | } |
| 2753 | |
| 2754 | if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { |
| 2755 | // check to see if class implements forwardInvocation method and objects |
| 2756 | // of this class are derived from 'NSProxy' so that to forward requests |
| 2757 | // from one object to another. |
| 2758 | // Under such conditions, which means that every method possible is |
| 2759 | // implemented in the class, we should not issue "Method definition not |
| 2760 | // found" warnings. |
| 2761 | // FIXME: Use a general GetUnarySelector method for this. |
| 2762 | const IdentifierInfo *II = &S.Context.Idents.get(Name: "forwardInvocation" ); |
| 2763 | Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II); |
| 2764 | if (InsMap.count(Ptr: fISelector)) |
| 2765 | // Is IDecl derived from 'NSProxy'? If so, no instance methods |
| 2766 | // need be implemented in the implementation. |
| 2767 | NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy" )); |
| 2768 | } |
| 2769 | |
| 2770 | // If this is a forward protocol declaration, get its definition. |
| 2771 | if (!PDecl->isThisDeclarationADefinition() && |
| 2772 | PDecl->getDefinition()) |
| 2773 | PDecl = PDecl->getDefinition(); |
| 2774 | |
| 2775 | // If a method lookup fails locally we still need to look and see if |
| 2776 | // the method was implemented by a base class or an inherited |
| 2777 | // protocol. This lookup is slow, but occurs rarely in correct code |
| 2778 | // and otherwise would terminate in a warning. |
| 2779 | |
| 2780 | // check unimplemented instance methods. |
| 2781 | if (!NSIDecl) |
| 2782 | for (auto *method : PDecl->instance_methods()) { |
| 2783 | if (method->getImplementationControl() != |
| 2784 | ObjCImplementationControl::Optional && |
| 2785 | !method->isPropertyAccessor() && |
| 2786 | !InsMap.count(Ptr: method->getSelector()) && |
| 2787 | (!Super || !Super->lookupMethod( |
| 2788 | Sel: method->getSelector(), isInstance: true /* instance */, |
| 2789 | shallowCategoryLookup: false /* shallowCategory */, followSuper: true /* followsSuper */, |
| 2790 | C: nullptr /* category */))) { |
| 2791 | // If a method is not implemented in the category implementation but |
| 2792 | // has been declared in its primary class, superclass, |
| 2793 | // or in one of their protocols, no need to issue the warning. |
| 2794 | // This is because method will be implemented in the primary class |
| 2795 | // or one of its super class implementation. |
| 2796 | |
| 2797 | // Ugly, but necessary. Method declared in protocol might have |
| 2798 | // have been synthesized due to a property declared in the class which |
| 2799 | // uses the protocol. |
| 2800 | if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod( |
| 2801 | Sel: method->getSelector(), isInstance: true /* instance */, |
| 2802 | shallowCategoryLookup: true /* shallowCategoryLookup */, followSuper: false /* followSuper */)) |
| 2803 | if (C || MethodInClass->isPropertyAccessor()) |
| 2804 | continue; |
| 2805 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
| 2806 | if (!S.Diags.isIgnored(DiagID: DIAG, Loc: Impl->getLocation())) { |
| 2807 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DiagID: DIAG, NeededFor: PDecl); |
| 2808 | } |
| 2809 | } |
| 2810 | } |
| 2811 | // check unimplemented class methods |
| 2812 | for (auto *method : PDecl->class_methods()) { |
| 2813 | if (method->getImplementationControl() != |
| 2814 | ObjCImplementationControl::Optional && |
| 2815 | !ClsMap.count(Ptr: method->getSelector()) && |
| 2816 | (!Super || !Super->lookupMethod( |
| 2817 | Sel: method->getSelector(), isInstance: false /* class method */, |
| 2818 | shallowCategoryLookup: false /* shallowCategoryLookup */, |
| 2819 | followSuper: true /* followSuper */, C: nullptr /* category */))) { |
| 2820 | // See above comment for instance method lookups. |
| 2821 | if (C && IDecl->lookupMethod(Sel: method->getSelector(), |
| 2822 | isInstance: false /* class */, |
| 2823 | shallowCategoryLookup: true /* shallowCategoryLookup */, |
| 2824 | followSuper: false /* followSuper */)) |
| 2825 | continue; |
| 2826 | |
| 2827 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
| 2828 | if (!S.Diags.isIgnored(DiagID: DIAG, Loc: Impl->getLocation())) { |
| 2829 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DiagID: DIAG, NeededFor: PDecl); |
| 2830 | } |
| 2831 | } |
| 2832 | } |
| 2833 | // Check on this protocols's referenced protocols, recursively. |
| 2834 | for (auto *PI : PDecl->protocols()) |
| 2835 | CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl, |
| 2836 | ProtocolsExplictImpl); |
| 2837 | } |
| 2838 | |
| 2839 | /// MatchAllMethodDeclarations - Check methods declared in interface |
| 2840 | /// or protocol against those declared in their implementations. |
| 2841 | /// |
| 2842 | void SemaObjC::MatchAllMethodDeclarations( |
| 2843 | const SelectorSet &InsMap, const SelectorSet &ClsMap, |
| 2844 | SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, |
| 2845 | ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass, |
| 2846 | bool WarnCategoryMethodImpl) { |
| 2847 | // Check and see if instance methods in class interface have been |
| 2848 | // implemented in the implementation class. If so, their types match. |
| 2849 | for (auto *I : CDecl->instance_methods()) { |
| 2850 | if (!InsMapSeen.insert(Ptr: I->getSelector()).second) |
| 2851 | continue; |
| 2852 | if (!I->isPropertyAccessor() && |
| 2853 | !InsMap.count(Ptr: I->getSelector())) { |
| 2854 | if (ImmediateClass) |
| 2855 | WarnUndefinedMethod(S&: SemaRef, Impl: IMPDecl, method: I, IncompleteImpl, |
| 2856 | DiagID: diag::warn_undef_method_impl); |
| 2857 | continue; |
| 2858 | } else { |
| 2859 | ObjCMethodDecl *ImpMethodDecl = |
| 2860 | IMPDecl->getInstanceMethod(Sel: I->getSelector()); |
| 2861 | assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && |
| 2862 | "Expected to find the method through lookup as well" ); |
| 2863 | // ImpMethodDecl may be null as in a @dynamic property. |
| 2864 | if (ImpMethodDecl) { |
| 2865 | // Skip property accessor function stubs. |
| 2866 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
| 2867 | continue; |
| 2868 | if (!WarnCategoryMethodImpl) |
| 2869 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
| 2870 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
| 2871 | else if (!I->isPropertyAccessor()) |
| 2872 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
| 2873 | } |
| 2874 | } |
| 2875 | } |
| 2876 | |
| 2877 | // Check and see if class methods in class interface have been |
| 2878 | // implemented in the implementation class. If so, their types match. |
| 2879 | for (auto *I : CDecl->class_methods()) { |
| 2880 | if (!ClsMapSeen.insert(Ptr: I->getSelector()).second) |
| 2881 | continue; |
| 2882 | if (!I->isPropertyAccessor() && |
| 2883 | !ClsMap.count(Ptr: I->getSelector())) { |
| 2884 | if (ImmediateClass) |
| 2885 | WarnUndefinedMethod(S&: SemaRef, Impl: IMPDecl, method: I, IncompleteImpl, |
| 2886 | DiagID: diag::warn_undef_method_impl); |
| 2887 | } else { |
| 2888 | ObjCMethodDecl *ImpMethodDecl = |
| 2889 | IMPDecl->getClassMethod(Sel: I->getSelector()); |
| 2890 | assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && |
| 2891 | "Expected to find the method through lookup as well" ); |
| 2892 | // ImpMethodDecl may be null as in a @dynamic property. |
| 2893 | if (ImpMethodDecl) { |
| 2894 | // Skip property accessor function stubs. |
| 2895 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
| 2896 | continue; |
| 2897 | if (!WarnCategoryMethodImpl) |
| 2898 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
| 2899 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
| 2900 | else if (!I->isPropertyAccessor()) |
| 2901 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
| 2902 | } |
| 2903 | } |
| 2904 | } |
| 2905 | |
| 2906 | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) { |
| 2907 | // Also, check for methods declared in protocols inherited by |
| 2908 | // this protocol. |
| 2909 | for (auto *PI : PD->protocols()) |
| 2910 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 2911 | IMPDecl, CDecl: PI, IncompleteImpl, ImmediateClass: false, |
| 2912 | WarnCategoryMethodImpl); |
| 2913 | } |
| 2914 | |
| 2915 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
| 2916 | // when checking that methods in implementation match their declaration, |
| 2917 | // i.e. when WarnCategoryMethodImpl is false, check declarations in class |
| 2918 | // extension; as well as those in categories. |
| 2919 | if (!WarnCategoryMethodImpl) { |
| 2920 | for (auto *Cat : I->visible_categories()) |
| 2921 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 2922 | IMPDecl, CDecl: Cat, IncompleteImpl, |
| 2923 | ImmediateClass: ImmediateClass && Cat->IsClassExtension(), |
| 2924 | WarnCategoryMethodImpl); |
| 2925 | } else { |
| 2926 | // Also methods in class extensions need be looked at next. |
| 2927 | for (auto *Ext : I->visible_extensions()) |
| 2928 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 2929 | IMPDecl, CDecl: Ext, IncompleteImpl, ImmediateClass: false, |
| 2930 | WarnCategoryMethodImpl); |
| 2931 | } |
| 2932 | |
| 2933 | // Check for any implementation of a methods declared in protocol. |
| 2934 | for (auto *PI : I->all_referenced_protocols()) |
| 2935 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 2936 | IMPDecl, CDecl: PI, IncompleteImpl, ImmediateClass: false, |
| 2937 | WarnCategoryMethodImpl); |
| 2938 | |
| 2939 | // FIXME. For now, we are not checking for exact match of methods |
| 2940 | // in category implementation and its primary class's super class. |
| 2941 | if (!WarnCategoryMethodImpl && I->getSuperClass()) |
| 2942 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 2943 | IMPDecl, |
| 2944 | CDecl: I->getSuperClass(), IncompleteImpl, ImmediateClass: false); |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in |
| 2949 | /// category matches with those implemented in its primary class and |
| 2950 | /// warns each time an exact match is found. |
| 2951 | void SemaObjC::CheckCategoryVsClassMethodMatches( |
| 2952 | ObjCCategoryImplDecl *CatIMPDecl) { |
| 2953 | // Get category's primary class. |
| 2954 | ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); |
| 2955 | if (!CatDecl) |
| 2956 | return; |
| 2957 | ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); |
| 2958 | if (!IDecl) |
| 2959 | return; |
| 2960 | ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); |
| 2961 | SelectorSet InsMap, ClsMap; |
| 2962 | |
| 2963 | for (const auto *I : CatIMPDecl->instance_methods()) { |
| 2964 | Selector Sel = I->getSelector(); |
| 2965 | // When checking for methods implemented in the category, skip over |
| 2966 | // those declared in category class's super class. This is because |
| 2967 | // the super class must implement the method. |
| 2968 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, isInstance: true)) |
| 2969 | continue; |
| 2970 | InsMap.insert(Ptr: Sel); |
| 2971 | } |
| 2972 | |
| 2973 | for (const auto *I : CatIMPDecl->class_methods()) { |
| 2974 | Selector Sel = I->getSelector(); |
| 2975 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, isInstance: false)) |
| 2976 | continue; |
| 2977 | ClsMap.insert(Ptr: Sel); |
| 2978 | } |
| 2979 | if (InsMap.empty() && ClsMap.empty()) |
| 2980 | return; |
| 2981 | |
| 2982 | SelectorSet InsMapSeen, ClsMapSeen; |
| 2983 | bool IncompleteImpl = false; |
| 2984 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 2985 | IMPDecl: CatIMPDecl, CDecl: IDecl, |
| 2986 | IncompleteImpl, ImmediateClass: false, |
| 2987 | WarnCategoryMethodImpl: true /*WarnCategoryMethodImpl*/); |
| 2988 | } |
| 2989 | |
| 2990 | void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl, |
| 2991 | ObjCContainerDecl *CDecl, |
| 2992 | bool IncompleteImpl) { |
| 2993 | SelectorSet InsMap; |
| 2994 | // Check and see if instance methods in class interface have been |
| 2995 | // implemented in the implementation class. |
| 2996 | for (const auto *I : IMPDecl->instance_methods()) |
| 2997 | InsMap.insert(Ptr: I->getSelector()); |
| 2998 | |
| 2999 | // Add the selectors for getters/setters of @dynamic properties. |
| 3000 | for (const auto *PImpl : IMPDecl->property_impls()) { |
| 3001 | // We only care about @dynamic implementations. |
| 3002 | if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) |
| 3003 | continue; |
| 3004 | |
| 3005 | const auto *P = PImpl->getPropertyDecl(); |
| 3006 | if (!P) continue; |
| 3007 | |
| 3008 | InsMap.insert(Ptr: P->getGetterName()); |
| 3009 | if (!P->getSetterName().isNull()) |
| 3010 | InsMap.insert(Ptr: P->getSetterName()); |
| 3011 | } |
| 3012 | |
| 3013 | // Check and see if properties declared in the interface have either 1) |
| 3014 | // an implementation or 2) there is a @synthesize/@dynamic implementation |
| 3015 | // of the property in the @implementation. |
| 3016 | if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
| 3017 | bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties && |
| 3018 | getLangOpts().ObjCRuntime.isNonFragile() && |
| 3019 | !IDecl->isObjCRequiresPropertyDefs(); |
| 3020 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); |
| 3021 | } |
| 3022 | |
| 3023 | // Diagnose null-resettable synthesized setters. |
| 3024 | diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl); |
| 3025 | |
| 3026 | SelectorSet ClsMap; |
| 3027 | for (const auto *I : IMPDecl->class_methods()) |
| 3028 | ClsMap.insert(Ptr: I->getSelector()); |
| 3029 | |
| 3030 | // Check for type conflict of methods declared in a class/protocol and |
| 3031 | // its implementation; if any. |
| 3032 | SelectorSet InsMapSeen, ClsMapSeen; |
| 3033 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| 3034 | IMPDecl, CDecl, |
| 3035 | IncompleteImpl, ImmediateClass: true); |
| 3036 | |
| 3037 | // check all methods implemented in category against those declared |
| 3038 | // in its primary class. |
| 3039 | if (ObjCCategoryImplDecl *CatDecl = |
| 3040 | dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl)) |
| 3041 | CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl); |
| 3042 | |
| 3043 | // Check the protocol list for unimplemented methods in the @implementation |
| 3044 | // class. |
| 3045 | // Check and see if class methods in class interface have been |
| 3046 | // implemented in the implementation class. |
| 3047 | |
| 3048 | LazyProtocolNameSet ExplicitImplProtocols; |
| 3049 | |
| 3050 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
| 3051 | for (auto *PI : I->all_referenced_protocols()) |
| 3052 | CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: PI, IncompleteImpl, InsMap, |
| 3053 | ClsMap, CDecl: I, ProtocolsExplictImpl&: ExplicitImplProtocols); |
| 3054 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
| 3055 | // For extended class, unimplemented methods in its protocols will |
| 3056 | // be reported in the primary class. |
| 3057 | if (!C->IsClassExtension()) { |
| 3058 | for (auto *P : C->protocols()) |
| 3059 | CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap, |
| 3060 | ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols); |
| 3061 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, |
| 3062 | /*SynthesizeProperties=*/false); |
| 3063 | } |
| 3064 | } else |
| 3065 | llvm_unreachable("invalid ObjCContainerDecl type." ); |
| 3066 | } |
| 3067 | |
| 3068 | SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration( |
| 3069 | SourceLocation AtClassLoc, IdentifierInfo **IdentList, |
| 3070 | SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists, |
| 3071 | unsigned NumElts) { |
| 3072 | ASTContext &Context = getASTContext(); |
| 3073 | SmallVector<Decl *, 8> DeclsInGroup; |
| 3074 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3075 | // Check for another declaration kind with the same name. |
| 3076 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
| 3077 | S: SemaRef.TUScope, Name: IdentList[i], Loc: IdentLocs[i], NameKind: Sema::LookupOrdinaryName, |
| 3078 | Redecl: SemaRef.forRedeclarationInCurContext()); |
| 3079 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
| 3080 | // GCC apparently allows the following idiom: |
| 3081 | // |
| 3082 | // typedef NSObject < XCElementTogglerP > XCElementToggler; |
| 3083 | // @class XCElementToggler; |
| 3084 | // |
| 3085 | // Here we have chosen to ignore the forward class declaration |
| 3086 | // with a warning. Since this is the implied behavior. |
| 3087 | TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl); |
| 3088 | if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { |
| 3089 | Diag(Loc: AtClassLoc, DiagID: diag::err_redefinition_different_kind) << IdentList[i]; |
| 3090 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 3091 | } else { |
| 3092 | // a forward class declaration matching a typedef name of a class refers |
| 3093 | // to the underlying class. Just ignore the forward class with a warning |
| 3094 | // as this will force the intended behavior which is to lookup the |
| 3095 | // typedef name. |
| 3096 | if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) { |
| 3097 | Diag(Loc: AtClassLoc, DiagID: diag::warn_forward_class_redefinition) |
| 3098 | << IdentList[i]; |
| 3099 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 3100 | continue; |
| 3101 | } |
| 3102 | } |
| 3103 | } |
| 3104 | |
| 3105 | // Create a declaration to describe this forward declaration. |
| 3106 | ObjCInterfaceDecl *PrevIDecl |
| 3107 | = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
| 3108 | |
| 3109 | IdentifierInfo *ClassName = IdentList[i]; |
| 3110 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
| 3111 | // A previous decl with a different name is because of |
| 3112 | // @compatibility_alias, for example: |
| 3113 | // \code |
| 3114 | // @class NewImage; |
| 3115 | // @compatibility_alias OldImage NewImage; |
| 3116 | // \endcode |
| 3117 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
| 3118 | // |
| 3119 | // In such a case use the real declaration name, instead of the alias one, |
| 3120 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
| 3121 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
| 3122 | // has been aliased. |
| 3123 | ClassName = PrevIDecl->getIdentifier(); |
| 3124 | } |
| 3125 | |
| 3126 | // If this forward declaration has type parameters, compare them with the |
| 3127 | // type parameters of the previous declaration. |
| 3128 | ObjCTypeParamList *TypeParams = TypeParamLists[i]; |
| 3129 | if (PrevIDecl && TypeParams) { |
| 3130 | if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { |
| 3131 | // Check for consistency with the previous declaration. |
| 3132 | if (checkTypeParamListConsistency( |
| 3133 | S&: SemaRef, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams, |
| 3134 | newContext: TypeParamListContext::ForwardDeclaration)) { |
| 3135 | TypeParams = nullptr; |
| 3136 | } |
| 3137 | } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
| 3138 | // The @interface does not have type parameters. Complain. |
| 3139 | Diag(Loc: IdentLocs[i], DiagID: diag::err_objc_parameterized_forward_class) |
| 3140 | << ClassName |
| 3141 | << TypeParams->getSourceRange(); |
| 3142 | Diag(Loc: Def->getLocation(), DiagID: diag::note_defined_here) |
| 3143 | << ClassName; |
| 3144 | |
| 3145 | TypeParams = nullptr; |
| 3146 | } |
| 3147 | } |
| 3148 | |
| 3149 | ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create( |
| 3150 | C: Context, DC: SemaRef.CurContext, atLoc: AtClassLoc, Id: ClassName, typeParamList: TypeParams, |
| 3151 | PrevDecl: PrevIDecl, ClassLoc: IdentLocs[i]); |
| 3152 | IDecl->setAtEndRange(IdentLocs[i]); |
| 3153 | |
| 3154 | if (PrevIDecl) |
| 3155 | SemaRef.mergeDeclAttributes(New: IDecl, Old: PrevIDecl); |
| 3156 | |
| 3157 | SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope); |
| 3158 | CheckObjCDeclScope(D: IDecl); |
| 3159 | DeclsInGroup.push_back(Elt: IDecl); |
| 3160 | } |
| 3161 | |
| 3162 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
| 3163 | } |
| 3164 | |
| 3165 | static bool tryMatchRecordTypes(ASTContext &Context, |
| 3166 | SemaObjC::MethodMatchStrategy strategy, |
| 3167 | const Type *left, const Type *right); |
| 3168 | |
| 3169 | static bool matchTypes(ASTContext &Context, |
| 3170 | SemaObjC::MethodMatchStrategy strategy, QualType leftQT, |
| 3171 | QualType rightQT) { |
| 3172 | const Type *left = |
| 3173 | Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr(); |
| 3174 | const Type *right = |
| 3175 | Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr(); |
| 3176 | |
| 3177 | if (left == right) return true; |
| 3178 | |
| 3179 | // If we're doing a strict match, the types have to match exactly. |
| 3180 | if (strategy == SemaObjC::MMS_strict) |
| 3181 | return false; |
| 3182 | |
| 3183 | if (left->isIncompleteType() || right->isIncompleteType()) return false; |
| 3184 | |
| 3185 | // Otherwise, use this absurdly complicated algorithm to try to |
| 3186 | // validate the basic, low-level compatibility of the two types. |
| 3187 | |
| 3188 | // As a minimum, require the sizes and alignments to match. |
| 3189 | TypeInfo LeftTI = Context.getTypeInfo(T: left); |
| 3190 | TypeInfo RightTI = Context.getTypeInfo(T: right); |
| 3191 | if (LeftTI.Width != RightTI.Width) |
| 3192 | return false; |
| 3193 | |
| 3194 | if (LeftTI.Align != RightTI.Align) |
| 3195 | return false; |
| 3196 | |
| 3197 | // Consider all the kinds of non-dependent canonical types: |
| 3198 | // - functions and arrays aren't possible as return and parameter types |
| 3199 | |
| 3200 | // - vector types of equal size can be arbitrarily mixed |
| 3201 | if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right); |
| 3202 | if (isa<VectorType>(Val: right)) return false; |
| 3203 | |
| 3204 | // - references should only match references of identical type |
| 3205 | // - structs, unions, and Objective-C objects must match more-or-less |
| 3206 | // exactly |
| 3207 | // - everything else should be a scalar |
| 3208 | if (!left->isScalarType() || !right->isScalarType()) |
| 3209 | return tryMatchRecordTypes(Context, strategy, left, right); |
| 3210 | |
| 3211 | // Make scalars agree in kind, except count bools as chars, and group |
| 3212 | // all non-member pointers together. |
| 3213 | Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); |
| 3214 | Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); |
| 3215 | if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; |
| 3216 | if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; |
| 3217 | if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) |
| 3218 | leftSK = Type::STK_ObjCObjectPointer; |
| 3219 | if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) |
| 3220 | rightSK = Type::STK_ObjCObjectPointer; |
| 3221 | |
| 3222 | // Note that data member pointers and function member pointers don't |
| 3223 | // intermix because of the size differences. |
| 3224 | |
| 3225 | return (leftSK == rightSK); |
| 3226 | } |
| 3227 | |
| 3228 | static bool tryMatchRecordTypes(ASTContext &Context, |
| 3229 | SemaObjC::MethodMatchStrategy strategy, |
| 3230 | const Type *lt, const Type *rt) { |
| 3231 | assert(lt && rt && lt != rt); |
| 3232 | |
| 3233 | if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false; |
| 3234 | RecordDecl *left = cast<RecordType>(Val: lt)->getDecl(); |
| 3235 | RecordDecl *right = cast<RecordType>(Val: rt)->getDecl(); |
| 3236 | |
| 3237 | // Require union-hood to match. |
| 3238 | if (left->isUnion() != right->isUnion()) return false; |
| 3239 | |
| 3240 | // Require an exact match if either is non-POD. |
| 3241 | if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) || |
| 3242 | (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD())) |
| 3243 | return false; |
| 3244 | |
| 3245 | // Require size and alignment to match. |
| 3246 | TypeInfo LeftTI = Context.getTypeInfo(T: lt); |
| 3247 | TypeInfo RightTI = Context.getTypeInfo(T: rt); |
| 3248 | if (LeftTI.Width != RightTI.Width) |
| 3249 | return false; |
| 3250 | |
| 3251 | if (LeftTI.Align != RightTI.Align) |
| 3252 | return false; |
| 3253 | |
| 3254 | // Require fields to match. |
| 3255 | RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); |
| 3256 | RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); |
| 3257 | for (; li != le && ri != re; ++li, ++ri) { |
| 3258 | if (!matchTypes(Context, strategy, leftQT: li->getType(), rightQT: ri->getType())) |
| 3259 | return false; |
| 3260 | } |
| 3261 | return (li == le && ri == re); |
| 3262 | } |
| 3263 | |
| 3264 | /// MatchTwoMethodDeclarations - Checks that two methods have matching type and |
| 3265 | /// returns true, or false, accordingly. |
| 3266 | /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons |
| 3267 | bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, |
| 3268 | const ObjCMethodDecl *right, |
| 3269 | MethodMatchStrategy strategy) { |
| 3270 | ASTContext &Context = getASTContext(); |
| 3271 | if (!matchTypes(Context, strategy, leftQT: left->getReturnType(), |
| 3272 | rightQT: right->getReturnType())) |
| 3273 | return false; |
| 3274 | |
| 3275 | // If either is hidden, it is not considered to match. |
| 3276 | if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) |
| 3277 | return false; |
| 3278 | |
| 3279 | if (left->isDirectMethod() != right->isDirectMethod()) |
| 3280 | return false; |
| 3281 | |
| 3282 | if (getLangOpts().ObjCAutoRefCount && |
| 3283 | (left->hasAttr<NSReturnsRetainedAttr>() |
| 3284 | != right->hasAttr<NSReturnsRetainedAttr>() || |
| 3285 | left->hasAttr<NSConsumesSelfAttr>() |
| 3286 | != right->hasAttr<NSConsumesSelfAttr>())) |
| 3287 | return false; |
| 3288 | |
| 3289 | ObjCMethodDecl::param_const_iterator |
| 3290 | li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), |
| 3291 | re = right->param_end(); |
| 3292 | |
| 3293 | for (; li != le && ri != re; ++li, ++ri) { |
| 3294 | assert(ri != right->param_end() && "Param mismatch" ); |
| 3295 | const ParmVarDecl *lparm = *li, *rparm = *ri; |
| 3296 | |
| 3297 | if (!matchTypes(Context, strategy, leftQT: lparm->getType(), rightQT: rparm->getType())) |
| 3298 | return false; |
| 3299 | |
| 3300 | if (getLangOpts().ObjCAutoRefCount && |
| 3301 | lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) |
| 3302 | return false; |
| 3303 | } |
| 3304 | return true; |
| 3305 | } |
| 3306 | |
| 3307 | static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, |
| 3308 | ObjCMethodDecl *MethodInList) { |
| 3309 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Val: Method->getDeclContext()); |
| 3310 | auto *MethodInListProtocol = |
| 3311 | dyn_cast<ObjCProtocolDecl>(Val: MethodInList->getDeclContext()); |
| 3312 | // If this method belongs to a protocol but the method in list does not, or |
| 3313 | // vice versa, we say the context is not the same. |
| 3314 | if ((MethodProtocol && !MethodInListProtocol) || |
| 3315 | (!MethodProtocol && MethodInListProtocol)) |
| 3316 | return false; |
| 3317 | |
| 3318 | if (MethodProtocol && MethodInListProtocol) |
| 3319 | return true; |
| 3320 | |
| 3321 | ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); |
| 3322 | ObjCInterfaceDecl *MethodInListInterface = |
| 3323 | MethodInList->getClassInterface(); |
| 3324 | return MethodInterface == MethodInListInterface; |
| 3325 | } |
| 3326 | |
| 3327 | void SemaObjC::addMethodToGlobalList(ObjCMethodList *List, |
| 3328 | ObjCMethodDecl *Method) { |
| 3329 | // Record at the head of the list whether there were 0, 1, or >= 2 methods |
| 3330 | // inside categories. |
| 3331 | if (ObjCCategoryDecl *CD = |
| 3332 | dyn_cast<ObjCCategoryDecl>(Val: Method->getDeclContext())) |
| 3333 | if (!CD->IsClassExtension() && List->getBits() < 2) |
| 3334 | List->setBits(List->getBits() + 1); |
| 3335 | |
| 3336 | // If the list is empty, make it a singleton list. |
| 3337 | if (List->getMethod() == nullptr) { |
| 3338 | List->setMethod(Method); |
| 3339 | List->setNext(nullptr); |
| 3340 | return; |
| 3341 | } |
| 3342 | |
| 3343 | // We've seen a method with this name, see if we have already seen this type |
| 3344 | // signature. |
| 3345 | ObjCMethodList *Previous = List; |
| 3346 | ObjCMethodList *ListWithSameDeclaration = nullptr; |
| 3347 | for (; List; Previous = List, List = List->getNext()) { |
| 3348 | // If we are building a module, keep all of the methods. |
| 3349 | if (getLangOpts().isCompilingModule()) |
| 3350 | continue; |
| 3351 | |
| 3352 | bool SameDeclaration = MatchTwoMethodDeclarations(left: Method, |
| 3353 | right: List->getMethod()); |
| 3354 | // Looking for method with a type bound requires the correct context exists. |
| 3355 | // We need to insert a method into the list if the context is different. |
| 3356 | // If the method's declaration matches the list |
| 3357 | // a> the method belongs to a different context: we need to insert it, in |
| 3358 | // order to emit the availability message, we need to prioritize over |
| 3359 | // availability among the methods with the same declaration. |
| 3360 | // b> the method belongs to the same context: there is no need to insert a |
| 3361 | // new entry. |
| 3362 | // If the method's declaration does not match the list, we insert it to the |
| 3363 | // end. |
| 3364 | if (!SameDeclaration || |
| 3365 | !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) { |
| 3366 | // Even if two method types do not match, we would like to say |
| 3367 | // there is more than one declaration so unavailability/deprecated |
| 3368 | // warning is not too noisy. |
| 3369 | if (!Method->isDefined()) |
| 3370 | List->setHasMoreThanOneDecl(true); |
| 3371 | |
| 3372 | // For methods with the same declaration, the one that is deprecated |
| 3373 | // should be put in the front for better diagnostics. |
| 3374 | if (Method->isDeprecated() && SameDeclaration && |
| 3375 | !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) |
| 3376 | ListWithSameDeclaration = List; |
| 3377 | |
| 3378 | if (Method->isUnavailable() && SameDeclaration && |
| 3379 | !ListWithSameDeclaration && |
| 3380 | List->getMethod()->getAvailability() < AR_Deprecated) |
| 3381 | ListWithSameDeclaration = List; |
| 3382 | continue; |
| 3383 | } |
| 3384 | |
| 3385 | ObjCMethodDecl *PrevObjCMethod = List->getMethod(); |
| 3386 | |
| 3387 | // Propagate the 'defined' bit. |
| 3388 | if (Method->isDefined()) |
| 3389 | PrevObjCMethod->setDefined(true); |
| 3390 | else { |
| 3391 | // Objective-C doesn't allow an @interface for a class after its |
| 3392 | // @implementation. So if Method is not defined and there already is |
| 3393 | // an entry for this type signature, Method has to be for a different |
| 3394 | // class than PrevObjCMethod. |
| 3395 | List->setHasMoreThanOneDecl(true); |
| 3396 | } |
| 3397 | |
| 3398 | // If a method is deprecated, push it in the global pool. |
| 3399 | // This is used for better diagnostics. |
| 3400 | if (Method->isDeprecated()) { |
| 3401 | if (!PrevObjCMethod->isDeprecated()) |
| 3402 | List->setMethod(Method); |
| 3403 | } |
| 3404 | // If the new method is unavailable, push it into global pool |
| 3405 | // unless previous one is deprecated. |
| 3406 | if (Method->isUnavailable()) { |
| 3407 | if (PrevObjCMethod->getAvailability() < AR_Deprecated) |
| 3408 | List->setMethod(Method); |
| 3409 | } |
| 3410 | |
| 3411 | return; |
| 3412 | } |
| 3413 | |
| 3414 | // We have a new signature for an existing method - add it. |
| 3415 | // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". |
| 3416 | ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>(); |
| 3417 | |
| 3418 | // We insert it right before ListWithSameDeclaration. |
| 3419 | if (ListWithSameDeclaration) { |
| 3420 | auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); |
| 3421 | // FIXME: should we clear the other bits in ListWithSameDeclaration? |
| 3422 | ListWithSameDeclaration->setMethod(Method); |
| 3423 | ListWithSameDeclaration->setNext(List); |
| 3424 | return; |
| 3425 | } |
| 3426 | |
| 3427 | Previous->setNext(new (Mem) ObjCMethodList(Method)); |
| 3428 | } |
| 3429 | |
| 3430 | /// Read the contents of the method pool for a given selector from |
| 3431 | /// external storage. |
| 3432 | void SemaObjC::ReadMethodPool(Selector Sel) { |
| 3433 | assert(SemaRef.ExternalSource && "We need an external AST source" ); |
| 3434 | SemaRef.ExternalSource->ReadMethodPool(Sel); |
| 3435 | } |
| 3436 | |
| 3437 | void SemaObjC::updateOutOfDateSelector(Selector Sel) { |
| 3438 | if (!SemaRef.ExternalSource) |
| 3439 | return; |
| 3440 | SemaRef.ExternalSource->updateOutOfDateSelector(Sel); |
| 3441 | } |
| 3442 | |
| 3443 | void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, |
| 3444 | bool instance) { |
| 3445 | // Ignore methods of invalid containers. |
| 3446 | if (cast<Decl>(Val: Method->getDeclContext())->isInvalidDecl()) |
| 3447 | return; |
| 3448 | |
| 3449 | if (SemaRef.ExternalSource) |
| 3450 | ReadMethodPool(Sel: Method->getSelector()); |
| 3451 | |
| 3452 | auto &Lists = MethodPool[Method->getSelector()]; |
| 3453 | |
| 3454 | Method->setDefined(impl); |
| 3455 | |
| 3456 | ObjCMethodList &Entry = instance ? Lists.first : Lists.second; |
| 3457 | addMethodToGlobalList(List: &Entry, Method); |
| 3458 | } |
| 3459 | |
| 3460 | /// Determines if this is an "acceptable" loose mismatch in the global |
| 3461 | /// method pool. This exists mostly as a hack to get around certain |
| 3462 | /// global mismatches which we can't afford to make warnings / errors. |
| 3463 | /// Really, what we want is a way to take a method out of the global |
| 3464 | /// method pool. |
| 3465 | static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, |
| 3466 | ObjCMethodDecl *other) { |
| 3467 | if (!chosen->isInstanceMethod()) |
| 3468 | return false; |
| 3469 | |
| 3470 | if (chosen->isDirectMethod() != other->isDirectMethod()) |
| 3471 | return false; |
| 3472 | |
| 3473 | Selector sel = chosen->getSelector(); |
| 3474 | if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length" ) |
| 3475 | return false; |
| 3476 | |
| 3477 | // Don't complain about mismatches for -length if the method we |
| 3478 | // chose has an integral result type. |
| 3479 | return (chosen->getReturnType()->isIntegerType()); |
| 3480 | } |
| 3481 | |
| 3482 | /// Return true if the given method is wthin the type bound. |
| 3483 | static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, |
| 3484 | const ObjCObjectType *TypeBound) { |
| 3485 | if (!TypeBound) |
| 3486 | return true; |
| 3487 | |
| 3488 | if (TypeBound->isObjCId()) |
| 3489 | // FIXME: should we handle the case of bounding to id<A, B> differently? |
| 3490 | return true; |
| 3491 | |
| 3492 | auto *BoundInterface = TypeBound->getInterface(); |
| 3493 | assert(BoundInterface && "unexpected object type!" ); |
| 3494 | |
| 3495 | // Check if the Method belongs to a protocol. We should allow any method |
| 3496 | // defined in any protocol, because any subclass could adopt the protocol. |
| 3497 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Val: Method->getDeclContext()); |
| 3498 | if (MethodProtocol) { |
| 3499 | return true; |
| 3500 | } |
| 3501 | |
| 3502 | // If the Method belongs to a class, check if it belongs to the class |
| 3503 | // hierarchy of the class bound. |
| 3504 | if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { |
| 3505 | // We allow methods declared within classes that are part of the hierarchy |
| 3506 | // of the class bound (superclass of, subclass of, or the same as the class |
| 3507 | // bound). |
| 3508 | return MethodInterface == BoundInterface || |
| 3509 | MethodInterface->isSuperClassOf(I: BoundInterface) || |
| 3510 | BoundInterface->isSuperClassOf(I: MethodInterface); |
| 3511 | } |
| 3512 | llvm_unreachable("unknown method context" ); |
| 3513 | } |
| 3514 | |
| 3515 | /// We first select the type of the method: Instance or Factory, then collect |
| 3516 | /// all methods with that type. |
| 3517 | bool SemaObjC::CollectMultipleMethodsInGlobalPool( |
| 3518 | Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, |
| 3519 | bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) { |
| 3520 | if (SemaRef.ExternalSource) |
| 3521 | ReadMethodPool(Sel); |
| 3522 | |
| 3523 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
| 3524 | if (Pos == MethodPool.end()) |
| 3525 | return false; |
| 3526 | |
| 3527 | // Gather the non-hidden methods. |
| 3528 | ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : |
| 3529 | Pos->second.second; |
| 3530 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) |
| 3531 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
| 3532 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
| 3533 | Methods.push_back(Elt: M->getMethod()); |
| 3534 | } |
| 3535 | |
| 3536 | // Return if we find any method with the desired kind. |
| 3537 | if (!Methods.empty()) |
| 3538 | return Methods.size() > 1; |
| 3539 | |
| 3540 | if (!CheckTheOther) |
| 3541 | return false; |
| 3542 | |
| 3543 | // Gather the other kind. |
| 3544 | ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : |
| 3545 | Pos->second.first; |
| 3546 | for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) |
| 3547 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
| 3548 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
| 3549 | Methods.push_back(Elt: M->getMethod()); |
| 3550 | } |
| 3551 | |
| 3552 | return Methods.size() > 1; |
| 3553 | } |
| 3554 | |
| 3555 | bool SemaObjC::AreMultipleMethodsInGlobalPool( |
| 3556 | Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, |
| 3557 | bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
| 3558 | // Diagnose finding more than one method in global pool. |
| 3559 | SmallVector<ObjCMethodDecl *, 4> FilteredMethods; |
| 3560 | FilteredMethods.push_back(Elt: BestMethod); |
| 3561 | |
| 3562 | for (auto *M : Methods) |
| 3563 | if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) |
| 3564 | FilteredMethods.push_back(Elt: M); |
| 3565 | |
| 3566 | if (FilteredMethods.size() > 1) |
| 3567 | DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R, |
| 3568 | receiverIdOrClass); |
| 3569 | |
| 3570 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
| 3571 | // Test for no method in the pool which should not trigger any warning by |
| 3572 | // caller. |
| 3573 | if (Pos == MethodPool.end()) |
| 3574 | return true; |
| 3575 | ObjCMethodList &MethList = |
| 3576 | BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; |
| 3577 | return MethList.hasMoreThanOneDecl(); |
| 3578 | } |
| 3579 | |
| 3580 | ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R, |
| 3581 | bool receiverIdOrClass, |
| 3582 | bool instance) { |
| 3583 | if (SemaRef.ExternalSource) |
| 3584 | ReadMethodPool(Sel); |
| 3585 | |
| 3586 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
| 3587 | if (Pos == MethodPool.end()) |
| 3588 | return nullptr; |
| 3589 | |
| 3590 | // Gather the non-hidden methods. |
| 3591 | ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; |
| 3592 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { |
| 3593 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) |
| 3594 | return M->getMethod(); |
| 3595 | } |
| 3596 | return nullptr; |
| 3597 | } |
| 3598 | |
| 3599 | void SemaObjC::DiagnoseMultipleMethodInGlobalPool( |
| 3600 | SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R, |
| 3601 | bool receiverIdOrClass) { |
| 3602 | // We found multiple methods, so we may have to complain. |
| 3603 | bool issueDiagnostic = false, issueError = false; |
| 3604 | |
| 3605 | // We support a warning which complains about *any* difference in |
| 3606 | // method signature. |
| 3607 | bool strictSelectorMatch = |
| 3608 | receiverIdOrClass && |
| 3609 | !getDiagnostics().isIgnored(DiagID: diag::warn_strict_multiple_method_decl, |
| 3610 | Loc: R.getBegin()); |
| 3611 | if (strictSelectorMatch) { |
| 3612 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
| 3613 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) { |
| 3614 | issueDiagnostic = true; |
| 3615 | break; |
| 3616 | } |
| 3617 | } |
| 3618 | } |
| 3619 | |
| 3620 | // If we didn't see any strict differences, we won't see any loose |
| 3621 | // differences. In ARC, however, we also need to check for loose |
| 3622 | // mismatches, because most of them are errors. |
| 3623 | if (!strictSelectorMatch || |
| 3624 | (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) |
| 3625 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
| 3626 | // This checks if the methods differ in type mismatch. |
| 3627 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) && |
| 3628 | !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) { |
| 3629 | issueDiagnostic = true; |
| 3630 | if (getLangOpts().ObjCAutoRefCount) |
| 3631 | issueError = true; |
| 3632 | break; |
| 3633 | } |
| 3634 | } |
| 3635 | |
| 3636 | if (issueDiagnostic) { |
| 3637 | if (issueError) |
| 3638 | Diag(Loc: R.getBegin(), DiagID: diag::err_arc_multiple_method_decl) << Sel << R; |
| 3639 | else if (strictSelectorMatch) |
| 3640 | Diag(Loc: R.getBegin(), DiagID: diag::warn_strict_multiple_method_decl) << Sel << R; |
| 3641 | else |
| 3642 | Diag(Loc: R.getBegin(), DiagID: diag::warn_multiple_method_decl) << Sel << R; |
| 3643 | |
| 3644 | Diag(Loc: Methods[0]->getBeginLoc(), |
| 3645 | DiagID: issueError ? diag::note_possibility : diag::note_using) |
| 3646 | << Methods[0]->getSourceRange(); |
| 3647 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
| 3648 | Diag(Loc: Methods[I]->getBeginLoc(), DiagID: diag::note_also_found) |
| 3649 | << Methods[I]->getSourceRange(); |
| 3650 | } |
| 3651 | } |
| 3652 | } |
| 3653 | |
| 3654 | ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) { |
| 3655 | GlobalMethodPool::iterator Pos = MethodPool.find(Val: Sel); |
| 3656 | if (Pos == MethodPool.end()) |
| 3657 | return nullptr; |
| 3658 | |
| 3659 | auto &Methods = Pos->second; |
| 3660 | for (const ObjCMethodList *Method = &Methods.first; Method; |
| 3661 | Method = Method->getNext()) |
| 3662 | if (Method->getMethod() && |
| 3663 | (Method->getMethod()->isDefined() || |
| 3664 | Method->getMethod()->isPropertyAccessor())) |
| 3665 | return Method->getMethod(); |
| 3666 | |
| 3667 | for (const ObjCMethodList *Method = &Methods.second; Method; |
| 3668 | Method = Method->getNext()) |
| 3669 | if (Method->getMethod() && |
| 3670 | (Method->getMethod()->isDefined() || |
| 3671 | Method->getMethod()->isPropertyAccessor())) |
| 3672 | return Method->getMethod(); |
| 3673 | return nullptr; |
| 3674 | } |
| 3675 | |
| 3676 | static void |
| 3677 | HelperSelectorsForTypoCorrection( |
| 3678 | SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, |
| 3679 | StringRef Typo, const ObjCMethodDecl * Method) { |
| 3680 | const unsigned MaxEditDistance = 1; |
| 3681 | unsigned BestEditDistance = MaxEditDistance + 1; |
| 3682 | std::string MethodName = Method->getSelector().getAsString(); |
| 3683 | |
| 3684 | unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size()); |
| 3685 | if (MinPossibleEditDistance > 0 && |
| 3686 | Typo.size() / MinPossibleEditDistance < 1) |
| 3687 | return; |
| 3688 | unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance); |
| 3689 | if (EditDistance > MaxEditDistance) |
| 3690 | return; |
| 3691 | if (EditDistance == BestEditDistance) |
| 3692 | BestMethod.push_back(Elt: Method); |
| 3693 | else if (EditDistance < BestEditDistance) { |
| 3694 | BestMethod.clear(); |
| 3695 | BestMethod.push_back(Elt: Method); |
| 3696 | } |
| 3697 | } |
| 3698 | |
| 3699 | static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, |
| 3700 | QualType ObjectType) { |
| 3701 | if (ObjectType.isNull()) |
| 3702 | return true; |
| 3703 | if (S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType, |
| 3704 | IsInstance: true /*Instance method*/)) |
| 3705 | return true; |
| 3706 | return S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType, |
| 3707 | IsInstance: false /*Class method*/) != nullptr; |
| 3708 | } |
| 3709 | |
| 3710 | const ObjCMethodDecl * |
| 3711 | SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) { |
| 3712 | unsigned NumArgs = Sel.getNumArgs(); |
| 3713 | SmallVector<const ObjCMethodDecl *, 8> Methods; |
| 3714 | bool ObjectIsId = true, ObjectIsClass = true; |
| 3715 | if (ObjectType.isNull()) |
| 3716 | ObjectIsId = ObjectIsClass = false; |
| 3717 | else if (!ObjectType->isObjCObjectPointerType()) |
| 3718 | return nullptr; |
| 3719 | else if (const ObjCObjectPointerType *ObjCPtr = |
| 3720 | ObjectType->getAsObjCInterfacePointerType()) { |
| 3721 | ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); |
| 3722 | ObjectIsId = ObjectIsClass = false; |
| 3723 | } |
| 3724 | else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) |
| 3725 | ObjectIsClass = false; |
| 3726 | else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) |
| 3727 | ObjectIsId = false; |
| 3728 | else |
| 3729 | return nullptr; |
| 3730 | |
| 3731 | for (GlobalMethodPool::iterator b = MethodPool.begin(), |
| 3732 | e = MethodPool.end(); b != e; b++) { |
| 3733 | // instance methods |
| 3734 | for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) |
| 3735 | if (M->getMethod() && |
| 3736 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
| 3737 | (M->getMethod()->getSelector() != Sel)) { |
| 3738 | if (ObjectIsId) |
| 3739 | Methods.push_back(Elt: M->getMethod()); |
| 3740 | else if (!ObjectIsClass && |
| 3741 | HelperIsMethodInObjCType( |
| 3742 | S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType)) |
| 3743 | Methods.push_back(Elt: M->getMethod()); |
| 3744 | } |
| 3745 | // class methods |
| 3746 | for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) |
| 3747 | if (M->getMethod() && |
| 3748 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
| 3749 | (M->getMethod()->getSelector() != Sel)) { |
| 3750 | if (ObjectIsClass) |
| 3751 | Methods.push_back(Elt: M->getMethod()); |
| 3752 | else if (!ObjectIsId && |
| 3753 | HelperIsMethodInObjCType( |
| 3754 | S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType)) |
| 3755 | Methods.push_back(Elt: M->getMethod()); |
| 3756 | } |
| 3757 | } |
| 3758 | |
| 3759 | SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; |
| 3760 | for (unsigned i = 0, e = Methods.size(); i < e; i++) { |
| 3761 | HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods, |
| 3762 | Typo: Sel.getAsString(), Method: Methods[i]); |
| 3763 | } |
| 3764 | return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; |
| 3765 | } |
| 3766 | |
| 3767 | /// DiagnoseDuplicateIvars - |
| 3768 | /// Check for duplicate ivars in the entire class at the start of |
| 3769 | /// \@implementation. This becomes necessary because class extension can |
| 3770 | /// add ivars to a class in random order which will not be known until |
| 3771 | /// class's \@implementation is seen. |
| 3772 | void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, |
| 3773 | ObjCInterfaceDecl *SID) { |
| 3774 | for (auto *Ivar : ID->ivars()) { |
| 3775 | if (Ivar->isInvalidDecl()) |
| 3776 | continue; |
| 3777 | if (IdentifierInfo *II = Ivar->getIdentifier()) { |
| 3778 | ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II); |
| 3779 | if (prevIvar) { |
| 3780 | Diag(Loc: Ivar->getLocation(), DiagID: diag::err_duplicate_member) << II; |
| 3781 | Diag(Loc: prevIvar->getLocation(), DiagID: diag::note_previous_declaration); |
| 3782 | Ivar->setInvalidDecl(); |
| 3783 | } |
| 3784 | } |
| 3785 | } |
| 3786 | } |
| 3787 | |
| 3788 | /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. |
| 3789 | static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { |
| 3790 | if (S.getLangOpts().ObjCWeak) return; |
| 3791 | |
| 3792 | for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); |
| 3793 | ivar; ivar = ivar->getNextIvar()) { |
| 3794 | if (ivar->isInvalidDecl()) continue; |
| 3795 | if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| 3796 | if (S.getLangOpts().ObjCWeakRuntime) { |
| 3797 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_arc_weak_disabled); |
| 3798 | } else { |
| 3799 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_arc_weak_no_runtime); |
| 3800 | } |
| 3801 | } |
| 3802 | } |
| 3803 | } |
| 3804 | |
| 3805 | /// Diagnose attempts to use flexible array member with retainable object type. |
| 3806 | static void DiagnoseRetainableFlexibleArrayMember(Sema &S, |
| 3807 | ObjCInterfaceDecl *ID) { |
| 3808 | if (!S.getLangOpts().ObjCAutoRefCount) |
| 3809 | return; |
| 3810 | |
| 3811 | for (auto ivar = ID->all_declared_ivar_begin(); ivar; |
| 3812 | ivar = ivar->getNextIvar()) { |
| 3813 | if (ivar->isInvalidDecl()) |
| 3814 | continue; |
| 3815 | QualType IvarTy = ivar->getType(); |
| 3816 | if (IvarTy->isIncompleteArrayType() && |
| 3817 | (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && |
| 3818 | IvarTy->isObjCLifetimeType()) { |
| 3819 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_flexible_array_arc_retainable); |
| 3820 | ivar->setInvalidDecl(); |
| 3821 | } |
| 3822 | } |
| 3823 | } |
| 3824 | |
| 3825 | SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const { |
| 3826 | switch (SemaRef.CurContext->getDeclKind()) { |
| 3827 | case Decl::ObjCInterface: |
| 3828 | return SemaObjC::OCK_Interface; |
| 3829 | case Decl::ObjCProtocol: |
| 3830 | return SemaObjC::OCK_Protocol; |
| 3831 | case Decl::ObjCCategory: |
| 3832 | if (cast<ObjCCategoryDecl>(Val: SemaRef.CurContext)->IsClassExtension()) |
| 3833 | return SemaObjC::OCK_ClassExtension; |
| 3834 | return SemaObjC::OCK_Category; |
| 3835 | case Decl::ObjCImplementation: |
| 3836 | return SemaObjC::OCK_Implementation; |
| 3837 | case Decl::ObjCCategoryImpl: |
| 3838 | return SemaObjC::OCK_CategoryImplementation; |
| 3839 | |
| 3840 | default: |
| 3841 | return SemaObjC::OCK_None; |
| 3842 | } |
| 3843 | } |
| 3844 | |
| 3845 | static bool IsVariableSizedType(QualType T) { |
| 3846 | if (T->isIncompleteArrayType()) |
| 3847 | return true; |
| 3848 | const auto *RecordTy = T->getAs<RecordType>(); |
| 3849 | return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); |
| 3850 | } |
| 3851 | |
| 3852 | static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { |
| 3853 | ObjCInterfaceDecl *IntfDecl = nullptr; |
| 3854 | ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( |
| 3855 | x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator()); |
| 3856 | if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) { |
| 3857 | Ivars = IntfDecl->ivars(); |
| 3858 | } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) { |
| 3859 | IntfDecl = ImplDecl->getClassInterface(); |
| 3860 | Ivars = ImplDecl->ivars(); |
| 3861 | } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) { |
| 3862 | if (CategoryDecl->IsClassExtension()) { |
| 3863 | IntfDecl = CategoryDecl->getClassInterface(); |
| 3864 | Ivars = CategoryDecl->ivars(); |
| 3865 | } |
| 3866 | } |
| 3867 | |
| 3868 | // Check if variable sized ivar is in interface and visible to subclasses. |
| 3869 | if (!isa<ObjCInterfaceDecl>(Val: OCD)) { |
| 3870 | for (auto *ivar : Ivars) { |
| 3871 | if (!ivar->isInvalidDecl() && IsVariableSizedType(T: ivar->getType())) { |
| 3872 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::warn_variable_sized_ivar_visibility) |
| 3873 | << ivar->getDeclName() << ivar->getType(); |
| 3874 | } |
| 3875 | } |
| 3876 | } |
| 3877 | |
| 3878 | // Subsequent checks require interface decl. |
| 3879 | if (!IntfDecl) |
| 3880 | return; |
| 3881 | |
| 3882 | // Check if variable sized ivar is followed by another ivar. |
| 3883 | for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; |
| 3884 | ivar = ivar->getNextIvar()) { |
| 3885 | if (ivar->isInvalidDecl() || !ivar->getNextIvar()) |
| 3886 | continue; |
| 3887 | QualType IvarTy = ivar->getType(); |
| 3888 | bool IsInvalidIvar = false; |
| 3889 | if (IvarTy->isIncompleteArrayType()) { |
| 3890 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_flexible_array_not_at_end) |
| 3891 | << ivar->getDeclName() << IvarTy |
| 3892 | << TagTypeKind::Class; // Use "class" for Obj-C. |
| 3893 | IsInvalidIvar = true; |
| 3894 | } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { |
| 3895 | if (RecordTy->getDecl()->hasFlexibleArrayMember()) { |
| 3896 | S.Diag(Loc: ivar->getLocation(), |
| 3897 | DiagID: diag::err_objc_variable_sized_type_not_at_end) |
| 3898 | << ivar->getDeclName() << IvarTy; |
| 3899 | IsInvalidIvar = true; |
| 3900 | } |
| 3901 | } |
| 3902 | if (IsInvalidIvar) { |
| 3903 | S.Diag(Loc: ivar->getNextIvar()->getLocation(), |
| 3904 | DiagID: diag::note_next_ivar_declaration) |
| 3905 | << ivar->getNextIvar()->getSynthesize(); |
| 3906 | ivar->setInvalidDecl(); |
| 3907 | } |
| 3908 | } |
| 3909 | |
| 3910 | // Check if ObjC container adds ivars after variable sized ivar in superclass. |
| 3911 | // Perform the check only if OCD is the first container to declare ivars to |
| 3912 | // avoid multiple warnings for the same ivar. |
| 3913 | ObjCIvarDecl *FirstIvar = |
| 3914 | (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); |
| 3915 | if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { |
| 3916 | const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); |
| 3917 | while (SuperClass && SuperClass->ivar_empty()) |
| 3918 | SuperClass = SuperClass->getSuperClass(); |
| 3919 | if (SuperClass) { |
| 3920 | auto IvarIter = SuperClass->ivar_begin(); |
| 3921 | std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1); |
| 3922 | const ObjCIvarDecl *LastIvar = *IvarIter; |
| 3923 | if (IsVariableSizedType(T: LastIvar->getType())) { |
| 3924 | S.Diag(Loc: FirstIvar->getLocation(), |
| 3925 | DiagID: diag::warn_superclass_variable_sized_type_not_at_end) |
| 3926 | << FirstIvar->getDeclName() << LastIvar->getDeclName() |
| 3927 | << LastIvar->getType() << SuperClass->getDeclName(); |
| 3928 | S.Diag(Loc: LastIvar->getLocation(), DiagID: diag::note_entity_declared_at) |
| 3929 | << LastIvar->getDeclName(); |
| 3930 | } |
| 3931 | } |
| 3932 | } |
| 3933 | } |
| 3934 | |
| 3935 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
| 3936 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); |
| 3937 | |
| 3938 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
| 3939 | Sema &S, ObjCCategoryDecl *CDecl, |
| 3940 | const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { |
| 3941 | for (auto *PI : Protocols) |
| 3942 | DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl); |
| 3943 | } |
| 3944 | |
| 3945 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
| 3946 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { |
| 3947 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
| 3948 | PDecl = PDecl->getDefinition(); |
| 3949 | |
| 3950 | llvm::SmallVector<const Decl *, 4> DirectMembers; |
| 3951 | const auto *IDecl = CDecl->getClassInterface(); |
| 3952 | for (auto *MD : PDecl->methods()) { |
| 3953 | if (!MD->isPropertyAccessor()) { |
| 3954 | if (const auto *CMD = |
| 3955 | IDecl->getMethod(Sel: MD->getSelector(), isInstance: MD->isInstanceMethod())) { |
| 3956 | if (CMD->isDirectMethod()) |
| 3957 | DirectMembers.push_back(Elt: CMD); |
| 3958 | } |
| 3959 | } |
| 3960 | } |
| 3961 | for (auto *PD : PDecl->properties()) { |
| 3962 | if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( |
| 3963 | PropertyId: PD->getIdentifier(), |
| 3964 | QueryKind: PD->isClassProperty() |
| 3965 | ? ObjCPropertyQueryKind::OBJC_PR_query_class |
| 3966 | : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
| 3967 | if (CPD->isDirectProperty()) |
| 3968 | DirectMembers.push_back(Elt: CPD); |
| 3969 | } |
| 3970 | } |
| 3971 | if (!DirectMembers.empty()) { |
| 3972 | S.Diag(Loc: CDecl->getLocation(), DiagID: diag::err_objc_direct_protocol_conformance) |
| 3973 | << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; |
| 3974 | for (const auto *MD : DirectMembers) |
| 3975 | S.Diag(Loc: MD->getLocation(), DiagID: diag::note_direct_member_here); |
| 3976 | return; |
| 3977 | } |
| 3978 | |
| 3979 | // Check on this protocols's referenced protocols, recursively. |
| 3980 | DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, |
| 3981 | Protocols: PDecl->protocols()); |
| 3982 | } |
| 3983 | |
| 3984 | // Note: For class/category implementations, allMethods is always null. |
| 3985 | Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd, |
| 3986 | ArrayRef<Decl *> allMethods, |
| 3987 | ArrayRef<DeclGroupPtrTy> allTUVars) { |
| 3988 | ASTContext &Context = getASTContext(); |
| 3989 | if (getObjCContainerKind() == SemaObjC::OCK_None) |
| 3990 | return nullptr; |
| 3991 | |
| 3992 | assert(AtEnd.isValid() && "Invalid location for '@end'" ); |
| 3993 | |
| 3994 | auto *OCD = cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
| 3995 | Decl *ClassDecl = OCD; |
| 3996 | |
| 3997 | bool isInterfaceDeclKind = |
| 3998 | isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl) |
| 3999 | || isa<ObjCProtocolDecl>(Val: ClassDecl); |
| 4000 | bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl); |
| 4001 | |
| 4002 | // Make synthesized accessor stub functions visible. |
| 4003 | // ActOnPropertyImplDecl() creates them as not visible in case |
| 4004 | // they are overridden by an explicit method that is encountered |
| 4005 | // later. |
| 4006 | if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: SemaRef.CurContext)) { |
| 4007 | for (auto *PropImpl : OID->property_impls()) { |
| 4008 | if (auto *Getter = PropImpl->getGetterMethodDecl()) |
| 4009 | if (Getter->isSynthesizedAccessorStub()) |
| 4010 | OID->addDecl(D: Getter); |
| 4011 | if (auto *Setter = PropImpl->getSetterMethodDecl()) |
| 4012 | if (Setter->isSynthesizedAccessorStub()) |
| 4013 | OID->addDecl(D: Setter); |
| 4014 | } |
| 4015 | } |
| 4016 | |
| 4017 | // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. |
| 4018 | llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; |
| 4019 | llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; |
| 4020 | |
| 4021 | for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { |
| 4022 | ObjCMethodDecl *Method = |
| 4023 | cast_or_null<ObjCMethodDecl>(Val: allMethods[i]); |
| 4024 | |
| 4025 | if (!Method) continue; // Already issued a diagnostic. |
| 4026 | if (Method->isInstanceMethod()) { |
| 4027 | /// Check for instance method of the same name with incompatible types |
| 4028 | const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; |
| 4029 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
| 4030 | : false; |
| 4031 | if ((isInterfaceDeclKind && PrevMethod && !match) |
| 4032 | || (checkIdenticalMethods && match)) { |
| 4033 | Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl) |
| 4034 | << Method->getDeclName(); |
| 4035 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 4036 | Method->setInvalidDecl(); |
| 4037 | } else { |
| 4038 | if (PrevMethod) { |
| 4039 | Method->setAsRedeclaration(PrevMethod); |
| 4040 | if (!Context.getSourceManager().isInSystemHeader( |
| 4041 | Loc: Method->getLocation())) |
| 4042 | Diag(Loc: Method->getLocation(), DiagID: diag::warn_duplicate_method_decl) |
| 4043 | << Method->getDeclName(); |
| 4044 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 4045 | } |
| 4046 | InsMap[Method->getSelector()] = Method; |
| 4047 | /// The following allows us to typecheck messages to "id". |
| 4048 | AddInstanceMethodToGlobalPool(Method); |
| 4049 | } |
| 4050 | } else { |
| 4051 | /// Check for class method of the same name with incompatible types |
| 4052 | const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; |
| 4053 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
| 4054 | : false; |
| 4055 | if ((isInterfaceDeclKind && PrevMethod && !match) |
| 4056 | || (checkIdenticalMethods && match)) { |
| 4057 | Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl) |
| 4058 | << Method->getDeclName(); |
| 4059 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 4060 | Method->setInvalidDecl(); |
| 4061 | } else { |
| 4062 | if (PrevMethod) { |
| 4063 | Method->setAsRedeclaration(PrevMethod); |
| 4064 | if (!Context.getSourceManager().isInSystemHeader( |
| 4065 | Loc: Method->getLocation())) |
| 4066 | Diag(Loc: Method->getLocation(), DiagID: diag::warn_duplicate_method_decl) |
| 4067 | << Method->getDeclName(); |
| 4068 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 4069 | } |
| 4070 | ClsMap[Method->getSelector()] = Method; |
| 4071 | AddFactoryMethodToGlobalPool(Method); |
| 4072 | } |
| 4073 | } |
| 4074 | } |
| 4075 | if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) { |
| 4076 | // Nothing to do here. |
| 4077 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) { |
| 4078 | // Categories are used to extend the class by declaring new methods. |
| 4079 | // By the same token, they are also used to add new properties. No |
| 4080 | // need to compare the added property to those in the class. |
| 4081 | |
| 4082 | if (C->IsClassExtension()) { |
| 4083 | ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); |
| 4084 | DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary); |
| 4085 | } |
| 4086 | |
| 4087 | DiagnoseCategoryDirectMembersProtocolConformance(S&: SemaRef, CDecl: C, |
| 4088 | Protocols: C->protocols()); |
| 4089 | } |
| 4090 | if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) { |
| 4091 | if (CDecl->getIdentifier()) |
| 4092 | // ProcessPropertyDecl is responsible for diagnosing conflicts with any |
| 4093 | // user-defined setter/getter. It also synthesizes setter/getter methods |
| 4094 | // and adds them to the DeclContext and global method pools. |
| 4095 | for (auto *I : CDecl->properties()) |
| 4096 | ProcessPropertyDecl(property: I); |
| 4097 | CDecl->setAtEndRange(AtEnd); |
| 4098 | } |
| 4099 | if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) { |
| 4100 | IC->setAtEndRange(AtEnd); |
| 4101 | if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { |
| 4102 | // Any property declared in a class extension might have user |
| 4103 | // declared setter or getter in current class extension or one |
| 4104 | // of the other class extensions. Mark them as synthesized as |
| 4105 | // property will be synthesized when property with same name is |
| 4106 | // seen in the @implementation. |
| 4107 | for (const auto *Ext : IDecl->visible_extensions()) { |
| 4108 | for (const auto *Property : Ext->instance_properties()) { |
| 4109 | // Skip over properties declared @dynamic |
| 4110 | if (const ObjCPropertyImplDecl *PIDecl |
| 4111 | = IC->FindPropertyImplDecl(propertyId: Property->getIdentifier(), |
| 4112 | queryKind: Property->getQueryKind())) |
| 4113 | if (PIDecl->getPropertyImplementation() |
| 4114 | == ObjCPropertyImplDecl::Dynamic) |
| 4115 | continue; |
| 4116 | |
| 4117 | for (const auto *Ext : IDecl->visible_extensions()) { |
| 4118 | if (ObjCMethodDecl *GetterMethod = |
| 4119 | Ext->getInstanceMethod(Sel: Property->getGetterName())) |
| 4120 | GetterMethod->setPropertyAccessor(true); |
| 4121 | if (!Property->isReadOnly()) |
| 4122 | if (ObjCMethodDecl *SetterMethod |
| 4123 | = Ext->getInstanceMethod(Sel: Property->getSetterName())) |
| 4124 | SetterMethod->setPropertyAccessor(true); |
| 4125 | } |
| 4126 | } |
| 4127 | } |
| 4128 | ImplMethodsVsClassMethods(S, IMPDecl: IC, CDecl: IDecl); |
| 4129 | AtomicPropertySetterGetterRules(IMPDecl: IC, IDecl); |
| 4130 | DiagnoseOwningPropertyGetterSynthesis(D: IC); |
| 4131 | DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC); |
| 4132 | if (IDecl->hasDesignatedInitializers()) |
| 4133 | DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl); |
| 4134 | DiagnoseWeakIvars(S&: SemaRef, ID: IC); |
| 4135 | DiagnoseRetainableFlexibleArrayMember(S&: SemaRef, ID: IDecl); |
| 4136 | |
| 4137 | bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); |
| 4138 | if (IDecl->getSuperClass() == nullptr) { |
| 4139 | // This class has no superclass, so check that it has been marked with |
| 4140 | // __attribute((objc_root_class)). |
| 4141 | if (!HasRootClassAttr) { |
| 4142 | SourceLocation DeclLoc(IDecl->getLocation()); |
| 4143 | SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(Loc: DeclLoc)); |
| 4144 | Diag(Loc: DeclLoc, DiagID: diag::warn_objc_root_class_missing) |
| 4145 | << IDecl->getIdentifier(); |
| 4146 | // See if NSObject is in the current scope, and if it is, suggest |
| 4147 | // adding " : NSObject " to the class declaration. |
| 4148 | NamedDecl *IF = SemaRef.LookupSingleName( |
| 4149 | S: SemaRef.TUScope, Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject), |
| 4150 | Loc: DeclLoc, NameKind: Sema::LookupOrdinaryName); |
| 4151 | ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF); |
| 4152 | if (NSObjectDecl && NSObjectDecl->getDefinition()) { |
| 4153 | Diag(Loc: SuperClassLoc, DiagID: diag::note_objc_needs_superclass) |
| 4154 | << FixItHint::CreateInsertion(InsertionLoc: SuperClassLoc, Code: " : NSObject " ); |
| 4155 | } else { |
| 4156 | Diag(Loc: SuperClassLoc, DiagID: diag::note_objc_needs_superclass); |
| 4157 | } |
| 4158 | } |
| 4159 | } else if (HasRootClassAttr) { |
| 4160 | // Complain that only root classes may have this attribute. |
| 4161 | Diag(Loc: IDecl->getLocation(), DiagID: diag::err_objc_root_class_subclass); |
| 4162 | } |
| 4163 | |
| 4164 | if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { |
| 4165 | // An interface can subclass another interface with a |
| 4166 | // objc_subclassing_restricted attribute when it has that attribute as |
| 4167 | // well (because of interfaces imported from Swift). Therefore we have |
| 4168 | // to check if we can subclass in the implementation as well. |
| 4169 | if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
| 4170 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
| 4171 | Diag(Loc: IC->getLocation(), DiagID: diag::err_restricted_superclass_mismatch); |
| 4172 | Diag(Loc: Super->getLocation(), DiagID: diag::note_class_declared); |
| 4173 | } |
| 4174 | } |
| 4175 | |
| 4176 | if (IDecl->hasAttr<ObjCClassStubAttr>()) |
| 4177 | Diag(Loc: IC->getLocation(), DiagID: diag::err_implementation_of_class_stub); |
| 4178 | |
| 4179 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
| 4180 | while (IDecl->getSuperClass()) { |
| 4181 | DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass()); |
| 4182 | IDecl = IDecl->getSuperClass(); |
| 4183 | } |
| 4184 | } |
| 4185 | } |
| 4186 | SetIvarInitializers(IC); |
| 4187 | } else if (ObjCCategoryImplDecl* CatImplClass = |
| 4188 | dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) { |
| 4189 | CatImplClass->setAtEndRange(AtEnd); |
| 4190 | |
| 4191 | // Find category interface decl and then check that all methods declared |
| 4192 | // in this interface are implemented in the category @implementation. |
| 4193 | if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { |
| 4194 | if (ObjCCategoryDecl *Cat |
| 4195 | = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) { |
| 4196 | ImplMethodsVsClassMethods(S, IMPDecl: CatImplClass, CDecl: Cat); |
| 4197 | } |
| 4198 | } |
| 4199 | } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl)) { |
| 4200 | if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { |
| 4201 | if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
| 4202 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
| 4203 | Diag(Loc: IntfDecl->getLocation(), DiagID: diag::err_restricted_superclass_mismatch); |
| 4204 | Diag(Loc: Super->getLocation(), DiagID: diag::note_class_declared); |
| 4205 | } |
| 4206 | } |
| 4207 | |
| 4208 | if (IntfDecl->hasAttr<ObjCClassStubAttr>() && |
| 4209 | !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) |
| 4210 | Diag(Loc: IntfDecl->getLocation(), DiagID: diag::err_class_stub_subclassing_mismatch); |
| 4211 | } |
| 4212 | DiagnoseVariableSizedIvars(S&: SemaRef, OCD); |
| 4213 | if (isInterfaceDeclKind) { |
| 4214 | // Reject invalid vardecls. |
| 4215 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
| 4216 | DeclGroupRef DG = allTUVars[i].get(); |
| 4217 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
| 4218 | if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) { |
| 4219 | if (!VDecl->hasExternalStorage()) |
| 4220 | Diag(Loc: VDecl->getLocation(), DiagID: diag::err_objc_var_decl_inclass); |
| 4221 | } |
| 4222 | } |
| 4223 | } |
| 4224 | ActOnObjCContainerFinishDefinition(); |
| 4225 | |
| 4226 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
| 4227 | DeclGroupRef DG = allTUVars[i].get(); |
| 4228 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
| 4229 | (*I)->setTopLevelDeclInObjCContainer(); |
| 4230 | SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(D: DG); |
| 4231 | } |
| 4232 | |
| 4233 | SemaRef.ActOnDocumentableDecl(D: ClassDecl); |
| 4234 | return ClassDecl; |
| 4235 | } |
| 4236 | |
| 4237 | /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for |
| 4238 | /// objective-c's type qualifier from the parser version of the same info. |
| 4239 | static Decl::ObjCDeclQualifier |
| 4240 | CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { |
| 4241 | return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; |
| 4242 | } |
| 4243 | |
| 4244 | /// Check whether the declared result type of the given Objective-C |
| 4245 | /// method declaration is compatible with the method's class. |
| 4246 | /// |
| 4247 | static SemaObjC::ResultTypeCompatibilityKind |
| 4248 | CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, |
| 4249 | ObjCInterfaceDecl *CurrentClass) { |
| 4250 | QualType ResultType = Method->getReturnType(); |
| 4251 | |
| 4252 | // If an Objective-C method inherits its related result type, then its |
| 4253 | // declared result type must be compatible with its own class type. The |
| 4254 | // declared result type is compatible if: |
| 4255 | if (const ObjCObjectPointerType *ResultObjectType |
| 4256 | = ResultType->getAs<ObjCObjectPointerType>()) { |
| 4257 | // - it is id or qualified id, or |
| 4258 | if (ResultObjectType->isObjCIdType() || |
| 4259 | ResultObjectType->isObjCQualifiedIdType()) |
| 4260 | return SemaObjC::RTC_Compatible; |
| 4261 | |
| 4262 | if (CurrentClass) { |
| 4263 | if (ObjCInterfaceDecl *ResultClass |
| 4264 | = ResultObjectType->getInterfaceDecl()) { |
| 4265 | // - it is the same as the method's class type, or |
| 4266 | if (declaresSameEntity(D1: CurrentClass, D2: ResultClass)) |
| 4267 | return SemaObjC::RTC_Compatible; |
| 4268 | |
| 4269 | // - it is a superclass of the method's class type |
| 4270 | if (ResultClass->isSuperClassOf(I: CurrentClass)) |
| 4271 | return SemaObjC::RTC_Compatible; |
| 4272 | } |
| 4273 | } else { |
| 4274 | // Any Objective-C pointer type might be acceptable for a protocol |
| 4275 | // method; we just don't know. |
| 4276 | return SemaObjC::RTC_Unknown; |
| 4277 | } |
| 4278 | } |
| 4279 | |
| 4280 | return SemaObjC::RTC_Incompatible; |
| 4281 | } |
| 4282 | |
| 4283 | namespace { |
| 4284 | /// A helper class for searching for methods which a particular method |
| 4285 | /// overrides. |
| 4286 | class OverrideSearch { |
| 4287 | public: |
| 4288 | const ObjCMethodDecl *Method; |
| 4289 | llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; |
| 4290 | bool Recursive; |
| 4291 | |
| 4292 | public: |
| 4293 | OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { |
| 4294 | Selector selector = method->getSelector(); |
| 4295 | |
| 4296 | // Bypass this search if we've never seen an instance/class method |
| 4297 | // with this selector before. |
| 4298 | SemaObjC::GlobalMethodPool::iterator it = |
| 4299 | S.ObjC().MethodPool.find(Val: selector); |
| 4300 | if (it == S.ObjC().MethodPool.end()) { |
| 4301 | if (!S.getExternalSource()) return; |
| 4302 | S.ObjC().ReadMethodPool(Sel: selector); |
| 4303 | |
| 4304 | it = S.ObjC().MethodPool.find(Val: selector); |
| 4305 | if (it == S.ObjC().MethodPool.end()) |
| 4306 | return; |
| 4307 | } |
| 4308 | const ObjCMethodList &list = |
| 4309 | method->isInstanceMethod() ? it->second.first : it->second.second; |
| 4310 | if (!list.getMethod()) return; |
| 4311 | |
| 4312 | const ObjCContainerDecl *container |
| 4313 | = cast<ObjCContainerDecl>(Val: method->getDeclContext()); |
| 4314 | |
| 4315 | // Prevent the search from reaching this container again. This is |
| 4316 | // important with categories, which override methods from the |
| 4317 | // interface and each other. |
| 4318 | if (const ObjCCategoryDecl *Category = |
| 4319 | dyn_cast<ObjCCategoryDecl>(Val: container)) { |
| 4320 | searchFromContainer(container); |
| 4321 | if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) |
| 4322 | searchFromContainer(container: Interface); |
| 4323 | } else { |
| 4324 | searchFromContainer(container); |
| 4325 | } |
| 4326 | } |
| 4327 | |
| 4328 | typedef decltype(Overridden)::iterator iterator; |
| 4329 | iterator begin() const { return Overridden.begin(); } |
| 4330 | iterator end() const { return Overridden.end(); } |
| 4331 | |
| 4332 | private: |
| 4333 | void searchFromContainer(const ObjCContainerDecl *container) { |
| 4334 | if (container->isInvalidDecl()) return; |
| 4335 | |
| 4336 | switch (container->getDeclKind()) { |
| 4337 | #define OBJCCONTAINER(type, base) \ |
| 4338 | case Decl::type: \ |
| 4339 | searchFrom(cast<type##Decl>(container)); \ |
| 4340 | break; |
| 4341 | #define ABSTRACT_DECL(expansion) |
| 4342 | #define DECL(type, base) \ |
| 4343 | case Decl::type: |
| 4344 | #include "clang/AST/DeclNodes.inc" |
| 4345 | llvm_unreachable("not an ObjC container!" ); |
| 4346 | } |
| 4347 | } |
| 4348 | |
| 4349 | void searchFrom(const ObjCProtocolDecl *protocol) { |
| 4350 | if (!protocol->hasDefinition()) |
| 4351 | return; |
| 4352 | |
| 4353 | // A method in a protocol declaration overrides declarations from |
| 4354 | // referenced ("parent") protocols. |
| 4355 | search(protocols: protocol->getReferencedProtocols()); |
| 4356 | } |
| 4357 | |
| 4358 | void searchFrom(const ObjCCategoryDecl *category) { |
| 4359 | // A method in a category declaration overrides declarations from |
| 4360 | // the main class and from protocols the category references. |
| 4361 | // The main class is handled in the constructor. |
| 4362 | search(protocols: category->getReferencedProtocols()); |
| 4363 | } |
| 4364 | |
| 4365 | void searchFrom(const ObjCCategoryImplDecl *impl) { |
| 4366 | // A method in a category definition that has a category |
| 4367 | // declaration overrides declarations from the category |
| 4368 | // declaration. |
| 4369 | if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { |
| 4370 | search(container: category); |
| 4371 | if (ObjCInterfaceDecl *Interface = category->getClassInterface()) |
| 4372 | search(container: Interface); |
| 4373 | |
| 4374 | // Otherwise it overrides declarations from the class. |
| 4375 | } else if (const auto *Interface = impl->getClassInterface()) { |
| 4376 | search(container: Interface); |
| 4377 | } |
| 4378 | } |
| 4379 | |
| 4380 | void searchFrom(const ObjCInterfaceDecl *iface) { |
| 4381 | // A method in a class declaration overrides declarations from |
| 4382 | if (!iface->hasDefinition()) |
| 4383 | return; |
| 4384 | |
| 4385 | // - categories, |
| 4386 | for (auto *Cat : iface->known_categories()) |
| 4387 | search(container: Cat); |
| 4388 | |
| 4389 | // - the super class, and |
| 4390 | if (ObjCInterfaceDecl *super = iface->getSuperClass()) |
| 4391 | search(container: super); |
| 4392 | |
| 4393 | // - any referenced protocols. |
| 4394 | search(protocols: iface->getReferencedProtocols()); |
| 4395 | } |
| 4396 | |
| 4397 | void searchFrom(const ObjCImplementationDecl *impl) { |
| 4398 | // A method in a class implementation overrides declarations from |
| 4399 | // the class interface. |
| 4400 | if (const auto *Interface = impl->getClassInterface()) |
| 4401 | search(container: Interface); |
| 4402 | } |
| 4403 | |
| 4404 | void search(const ObjCProtocolList &protocols) { |
| 4405 | for (const auto *Proto : protocols) |
| 4406 | search(container: Proto); |
| 4407 | } |
| 4408 | |
| 4409 | void search(const ObjCContainerDecl *container) { |
| 4410 | // Check for a method in this container which matches this selector. |
| 4411 | ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(), |
| 4412 | isInstance: Method->isInstanceMethod(), |
| 4413 | /*AllowHidden=*/true); |
| 4414 | |
| 4415 | // If we find one, record it and bail out. |
| 4416 | if (meth) { |
| 4417 | Overridden.insert(X: meth); |
| 4418 | return; |
| 4419 | } |
| 4420 | |
| 4421 | // Otherwise, search for methods that a hypothetical method here |
| 4422 | // would have overridden. |
| 4423 | |
| 4424 | // Note that we're now in a recursive case. |
| 4425 | Recursive = true; |
| 4426 | |
| 4427 | searchFromContainer(container); |
| 4428 | } |
| 4429 | }; |
| 4430 | } // end anonymous namespace |
| 4431 | |
| 4432 | void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, |
| 4433 | ObjCMethodDecl *overridden) { |
| 4434 | if (overridden->isDirectMethod()) { |
| 4435 | const auto *attr = overridden->getAttr<ObjCDirectAttr>(); |
| 4436 | Diag(Loc: method->getLocation(), DiagID: diag::err_objc_override_direct_method); |
| 4437 | Diag(Loc: attr->getLocation(), DiagID: diag::note_previous_declaration); |
| 4438 | } else if (method->isDirectMethod()) { |
| 4439 | const auto *attr = method->getAttr<ObjCDirectAttr>(); |
| 4440 | Diag(Loc: attr->getLocation(), DiagID: diag::err_objc_direct_on_override) |
| 4441 | << isa<ObjCProtocolDecl>(Val: overridden->getDeclContext()); |
| 4442 | Diag(Loc: overridden->getLocation(), DiagID: diag::note_previous_declaration); |
| 4443 | } |
| 4444 | } |
| 4445 | |
| 4446 | void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, |
| 4447 | ObjCInterfaceDecl *CurrentClass, |
| 4448 | ResultTypeCompatibilityKind RTC) { |
| 4449 | ASTContext &Context = getASTContext(); |
| 4450 | if (!ObjCMethod) |
| 4451 | return; |
| 4452 | auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) { |
| 4453 | // Checking canonical decl works across modules. |
| 4454 | return M->getClassInterface()->getCanonicalDecl() == |
| 4455 | CurrentClass->getCanonicalDecl(); |
| 4456 | }; |
| 4457 | // Search for overridden methods and merge information down from them. |
| 4458 | OverrideSearch overrides(SemaRef, ObjCMethod); |
| 4459 | // Keep track if the method overrides any method in the class's base classes, |
| 4460 | // its protocols, or its categories' protocols; we will keep that info |
| 4461 | // in the ObjCMethodDecl. |
| 4462 | // For this info, a method in an implementation is not considered as |
| 4463 | // overriding the same method in the interface or its categories. |
| 4464 | bool hasOverriddenMethodsInBaseOrProtocol = false; |
| 4465 | for (ObjCMethodDecl *overridden : overrides) { |
| 4466 | if (!hasOverriddenMethodsInBaseOrProtocol) { |
| 4467 | if (isa<ObjCProtocolDecl>(Val: overridden->getDeclContext()) || |
| 4468 | !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) { |
| 4469 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden); |
| 4470 | hasOverriddenMethodsInBaseOrProtocol = true; |
| 4471 | } else if (isa<ObjCImplDecl>(Val: ObjCMethod->getDeclContext())) { |
| 4472 | // OverrideSearch will return as "overridden" the same method in the |
| 4473 | // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to |
| 4474 | // check whether a category of a base class introduced a method with the |
| 4475 | // same selector, after the interface method declaration. |
| 4476 | // To avoid unnecessary lookups in the majority of cases, we use the |
| 4477 | // extra info bits in GlobalMethodPool to check whether there were any |
| 4478 | // category methods with this selector. |
| 4479 | GlobalMethodPool::iterator It = |
| 4480 | MethodPool.find(Val: ObjCMethod->getSelector()); |
| 4481 | if (It != MethodPool.end()) { |
| 4482 | ObjCMethodList &List = |
| 4483 | ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; |
| 4484 | unsigned CategCount = List.getBits(); |
| 4485 | if (CategCount > 0) { |
| 4486 | // If the method is in a category we'll do lookup if there were at |
| 4487 | // least 2 category methods recorded, otherwise only one will do. |
| 4488 | if (CategCount > 1 || |
| 4489 | !isa<ObjCCategoryImplDecl>(Val: overridden->getDeclContext())) { |
| 4490 | OverrideSearch overrides(SemaRef, overridden); |
| 4491 | for (ObjCMethodDecl *SuperOverridden : overrides) { |
| 4492 | if (isa<ObjCProtocolDecl>(Val: SuperOverridden->getDeclContext()) || |
| 4493 | !IsMethodInCurrentClass(SuperOverridden)) { |
| 4494 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden); |
| 4495 | hasOverriddenMethodsInBaseOrProtocol = true; |
| 4496 | overridden->setOverriding(true); |
| 4497 | break; |
| 4498 | } |
| 4499 | } |
| 4500 | } |
| 4501 | } |
| 4502 | } |
| 4503 | } |
| 4504 | } |
| 4505 | |
| 4506 | // Propagate down the 'related result type' bit from overridden methods. |
| 4507 | if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType()) |
| 4508 | ObjCMethod->setRelatedResultType(); |
| 4509 | |
| 4510 | // Then merge the declarations. |
| 4511 | SemaRef.mergeObjCMethodDecls(New: ObjCMethod, Old: overridden); |
| 4512 | |
| 4513 | if (ObjCMethod->isImplicit() && overridden->isImplicit()) |
| 4514 | continue; // Conflicting properties are detected elsewhere. |
| 4515 | |
| 4516 | // Check for overriding methods |
| 4517 | if (isa<ObjCInterfaceDecl>(Val: ObjCMethod->getDeclContext()) || |
| 4518 | isa<ObjCImplementationDecl>(Val: ObjCMethod->getDeclContext())) |
| 4519 | CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden, |
| 4520 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: overridden->getDeclContext())); |
| 4521 | |
| 4522 | if (CurrentClass && overridden->getDeclContext() != CurrentClass && |
| 4523 | isa<ObjCInterfaceDecl>(Val: overridden->getDeclContext()) && |
| 4524 | !overridden->isImplicit() /* not meant for properties */) { |
| 4525 | ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), |
| 4526 | E = ObjCMethod->param_end(); |
| 4527 | ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), |
| 4528 | PrevE = overridden->param_end(); |
| 4529 | for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { |
| 4530 | assert(PrevI != overridden->param_end() && "Param mismatch" ); |
| 4531 | QualType T1 = Context.getCanonicalType(T: (*ParamI)->getType()); |
| 4532 | QualType T2 = Context.getCanonicalType(T: (*PrevI)->getType()); |
| 4533 | // If type of argument of method in this class does not match its |
| 4534 | // respective argument type in the super class method, issue warning; |
| 4535 | if (!Context.typesAreCompatible(T1, T2)) { |
| 4536 | Diag(Loc: (*ParamI)->getLocation(), DiagID: diag::ext_typecheck_base_super) |
| 4537 | << T1 << T2; |
| 4538 | Diag(Loc: overridden->getLocation(), DiagID: diag::note_previous_declaration); |
| 4539 | break; |
| 4540 | } |
| 4541 | } |
| 4542 | } |
| 4543 | } |
| 4544 | |
| 4545 | ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); |
| 4546 | } |
| 4547 | |
| 4548 | /// Merge type nullability from for a redeclaration of the same entity, |
| 4549 | /// producing the updated type of the redeclared entity. |
| 4550 | static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, |
| 4551 | QualType type, |
| 4552 | bool usesCSKeyword, |
| 4553 | SourceLocation prevLoc, |
| 4554 | QualType prevType, |
| 4555 | bool prevUsesCSKeyword) { |
| 4556 | // Determine the nullability of both types. |
| 4557 | auto nullability = type->getNullability(); |
| 4558 | auto prevNullability = prevType->getNullability(); |
| 4559 | |
| 4560 | // Easy case: both have nullability. |
| 4561 | if (nullability.has_value() == prevNullability.has_value()) { |
| 4562 | // Neither has nullability; continue. |
| 4563 | if (!nullability) |
| 4564 | return type; |
| 4565 | |
| 4566 | // The nullabilities are equivalent; do nothing. |
| 4567 | if (*nullability == *prevNullability) |
| 4568 | return type; |
| 4569 | |
| 4570 | // Complain about mismatched nullability. |
| 4571 | S.Diag(Loc: loc, DiagID: diag::err_nullability_conflicting) |
| 4572 | << DiagNullabilityKind(*nullability, usesCSKeyword) |
| 4573 | << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); |
| 4574 | return type; |
| 4575 | } |
| 4576 | |
| 4577 | // If it's the redeclaration that has nullability, don't change anything. |
| 4578 | if (nullability) |
| 4579 | return type; |
| 4580 | |
| 4581 | // Otherwise, provide the result with the same nullability. |
| 4582 | return S.Context.getAttributedType(nullability: *prevNullability, modifiedType: type, equivalentType: type); |
| 4583 | } |
| 4584 | |
| 4585 | /// Merge information from the declaration of a method in the \@interface |
| 4586 | /// (or a category/extension) into the corresponding method in the |
| 4587 | /// @implementation (for a class or category). |
| 4588 | static void mergeInterfaceMethodToImpl(Sema &S, |
| 4589 | ObjCMethodDecl *method, |
| 4590 | ObjCMethodDecl *prevMethod) { |
| 4591 | // Merge the objc_requires_super attribute. |
| 4592 | if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && |
| 4593 | !method->hasAttr<ObjCRequiresSuperAttr>()) { |
| 4594 | // merge the attribute into implementation. |
| 4595 | method->addAttr( |
| 4596 | A: ObjCRequiresSuperAttr::CreateImplicit(Ctx&: S.Context, |
| 4597 | Range: method->getLocation())); |
| 4598 | } |
| 4599 | |
| 4600 | // Merge nullability of the result type. |
| 4601 | QualType newReturnType |
| 4602 | = mergeTypeNullabilityForRedecl( |
| 4603 | S, loc: method->getReturnTypeSourceRange().getBegin(), |
| 4604 | type: method->getReturnType(), |
| 4605 | usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
| 4606 | prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(), |
| 4607 | prevType: prevMethod->getReturnType(), |
| 4608 | prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
| 4609 | method->setReturnType(newReturnType); |
| 4610 | |
| 4611 | // Handle each of the parameters. |
| 4612 | unsigned numParams = method->param_size(); |
| 4613 | unsigned numPrevParams = prevMethod->param_size(); |
| 4614 | for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) { |
| 4615 | ParmVarDecl *param = method->param_begin()[i]; |
| 4616 | ParmVarDecl *prevParam = prevMethod->param_begin()[i]; |
| 4617 | |
| 4618 | // Merge nullability. |
| 4619 | QualType newParamType |
| 4620 | = mergeTypeNullabilityForRedecl( |
| 4621 | S, loc: param->getLocation(), type: param->getType(), |
| 4622 | usesCSKeyword: param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
| 4623 | prevLoc: prevParam->getLocation(), prevType: prevParam->getType(), |
| 4624 | prevUsesCSKeyword: prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
| 4625 | param->setType(newParamType); |
| 4626 | } |
| 4627 | } |
| 4628 | |
| 4629 | /// Verify that the method parameters/return value have types that are supported |
| 4630 | /// by the x86 target. |
| 4631 | static void checkObjCMethodX86VectorTypes(Sema &SemaRef, |
| 4632 | const ObjCMethodDecl *Method) { |
| 4633 | assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == |
| 4634 | llvm::Triple::x86 && |
| 4635 | "x86-specific check invoked for a different target" ); |
| 4636 | SourceLocation Loc; |
| 4637 | QualType T; |
| 4638 | for (const ParmVarDecl *P : Method->parameters()) { |
| 4639 | if (P->getType()->isVectorType()) { |
| 4640 | Loc = P->getBeginLoc(); |
| 4641 | T = P->getType(); |
| 4642 | break; |
| 4643 | } |
| 4644 | } |
| 4645 | if (Loc.isInvalid()) { |
| 4646 | if (Method->getReturnType()->isVectorType()) { |
| 4647 | Loc = Method->getReturnTypeSourceRange().getBegin(); |
| 4648 | T = Method->getReturnType(); |
| 4649 | } else |
| 4650 | return; |
| 4651 | } |
| 4652 | |
| 4653 | // Vector parameters/return values are not supported by objc_msgSend on x86 in |
| 4654 | // iOS < 9 and macOS < 10.11. |
| 4655 | const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); |
| 4656 | VersionTuple AcceptedInVersion; |
| 4657 | if (Triple.getOS() == llvm::Triple::IOS) |
| 4658 | AcceptedInVersion = VersionTuple(/*Major=*/9); |
| 4659 | else if (Triple.isMacOSX()) |
| 4660 | AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); |
| 4661 | else |
| 4662 | return; |
| 4663 | if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= |
| 4664 | AcceptedInVersion) |
| 4665 | return; |
| 4666 | SemaRef.Diag(Loc, DiagID: diag::err_objc_method_unsupported_param_ret_type) |
| 4667 | << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 |
| 4668 | : /*parameter*/ 0) |
| 4669 | << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9" ); |
| 4670 | } |
| 4671 | |
| 4672 | static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { |
| 4673 | if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && |
| 4674 | CD->hasAttr<ObjCDirectMembersAttr>()) { |
| 4675 | Method->addAttr( |
| 4676 | A: ObjCDirectAttr::CreateImplicit(Ctx&: S.Context, Range: Method->getLocation())); |
| 4677 | } |
| 4678 | } |
| 4679 | |
| 4680 | static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, |
| 4681 | ObjCMethodDecl *Method, |
| 4682 | ObjCImplDecl *ImpDecl = nullptr) { |
| 4683 | auto Sel = Method->getSelector(); |
| 4684 | bool isInstance = Method->isInstanceMethod(); |
| 4685 | bool diagnosed = false; |
| 4686 | |
| 4687 | auto diagClash = [&](const ObjCMethodDecl *IMD) { |
| 4688 | if (diagnosed || IMD->isImplicit()) |
| 4689 | return; |
| 4690 | if (Method->isDirectMethod() || IMD->isDirectMethod()) { |
| 4691 | S.Diag(Loc: Method->getLocation(), DiagID: diag::err_objc_direct_duplicate_decl) |
| 4692 | << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() |
| 4693 | << Method->getDeclName(); |
| 4694 | S.Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration); |
| 4695 | diagnosed = true; |
| 4696 | } |
| 4697 | }; |
| 4698 | |
| 4699 | // Look for any other declaration of this method anywhere we can see in this |
| 4700 | // compilation unit. |
| 4701 | // |
| 4702 | // We do not use IDecl->lookupMethod() because we have specific needs: |
| 4703 | // |
| 4704 | // - we absolutely do not need to walk protocols, because |
| 4705 | // diag::err_objc_direct_on_protocol has already been emitted |
| 4706 | // during parsing if there's a conflict, |
| 4707 | // |
| 4708 | // - when we do not find a match in a given @interface container, |
| 4709 | // we need to attempt looking it up in the @implementation block if the |
| 4710 | // translation unit sees it to find more clashes. |
| 4711 | |
| 4712 | if (auto *IMD = IDecl->getMethod(Sel, isInstance)) |
| 4713 | diagClash(IMD); |
| 4714 | else if (auto *Impl = IDecl->getImplementation()) |
| 4715 | if (Impl != ImpDecl) |
| 4716 | if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) |
| 4717 | diagClash(IMD); |
| 4718 | |
| 4719 | for (const auto *Cat : IDecl->visible_categories()) |
| 4720 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
| 4721 | diagClash(IMD); |
| 4722 | else if (auto CatImpl = Cat->getImplementation()) |
| 4723 | if (CatImpl != ImpDecl) |
| 4724 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
| 4725 | diagClash(IMD); |
| 4726 | } |
| 4727 | |
| 4728 | ParmVarDecl *SemaObjC::ActOnMethodParmDeclaration(Scope *S, |
| 4729 | ObjCArgInfo &ArgInfo, |
| 4730 | int ParamIndex, |
| 4731 | bool MethodDefinition) { |
| 4732 | ASTContext &Context = getASTContext(); |
| 4733 | QualType ArgType; |
| 4734 | TypeSourceInfo *DI; |
| 4735 | |
| 4736 | if (!ArgInfo.Type) { |
| 4737 | ArgType = Context.getObjCIdType(); |
| 4738 | DI = nullptr; |
| 4739 | } else { |
| 4740 | ArgType = SemaRef.GetTypeFromParser(Ty: ArgInfo.Type, TInfo: &DI); |
| 4741 | } |
| 4742 | LookupResult R(SemaRef, ArgInfo.Name, ArgInfo.NameLoc, |
| 4743 | Sema::LookupOrdinaryName, |
| 4744 | SemaRef.forRedeclarationInCurContext()); |
| 4745 | SemaRef.LookupName(R, S); |
| 4746 | if (R.isSingleResult()) { |
| 4747 | NamedDecl *PrevDecl = R.getFoundDecl(); |
| 4748 | if (S->isDeclScope(D: PrevDecl)) { |
| 4749 | Diag(Loc: ArgInfo.NameLoc, |
| 4750 | DiagID: (MethodDefinition ? diag::warn_method_param_redefinition |
| 4751 | : diag::warn_method_param_declaration)) |
| 4752 | << ArgInfo.Name; |
| 4753 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_declaration); |
| 4754 | } |
| 4755 | } |
| 4756 | SourceLocation StartLoc = |
| 4757 | DI ? DI->getTypeLoc().getBeginLoc() : ArgInfo.NameLoc; |
| 4758 | |
| 4759 | // Temporarily put parameter variables in the translation unit. This is what |
| 4760 | // ActOnParamDeclarator does in the case of C arguments to the Objective-C |
| 4761 | // method too. |
| 4762 | ParmVarDecl *Param = SemaRef.CheckParameter( |
| 4763 | DC: Context.getTranslationUnitDecl(), StartLoc, NameLoc: ArgInfo.NameLoc, Name: ArgInfo.Name, |
| 4764 | T: ArgType, TSInfo: DI, SC: SC_None); |
| 4765 | Param->setObjCMethodScopeInfo(ParamIndex); |
| 4766 | Param->setObjCDeclQualifier( |
| 4767 | CvtQTToAstBitMask(PQTVal: ArgInfo.DeclSpec.getObjCDeclQualifier())); |
| 4768 | |
| 4769 | // Apply the attributes to the parameter. |
| 4770 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: Param, AttrList: ArgInfo.ArgAttrs); |
| 4771 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: Param); |
| 4772 | if (Param->hasAttr<BlocksAttr>()) { |
| 4773 | Diag(Loc: Param->getLocation(), DiagID: diag::err_block_on_nonlocal); |
| 4774 | Param->setInvalidDecl(); |
| 4775 | } |
| 4776 | |
| 4777 | S->AddDecl(D: Param); |
| 4778 | SemaRef.IdResolver.AddDecl(D: Param); |
| 4779 | return Param; |
| 4780 | } |
| 4781 | |
| 4782 | Decl *SemaObjC::ActOnMethodDeclaration( |
| 4783 | Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, |
| 4784 | tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, |
| 4785 | ArrayRef<SourceLocation> SelectorLocs, Selector Sel, |
| 4786 | // optional arguments. The number of types/arguments is obtained |
| 4787 | // from the Sel.getNumArgs(). |
| 4788 | ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, |
| 4789 | unsigned CNumArgs, // c-style args |
| 4790 | const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, |
| 4791 | bool isVariadic, bool MethodDefinition) { |
| 4792 | ASTContext &Context = getASTContext(); |
| 4793 | // Make sure we can establish a context for the method. |
| 4794 | if (!SemaRef.CurContext->isObjCContainer()) { |
| 4795 | Diag(Loc: MethodLoc, DiagID: diag::err_missing_method_context); |
| 4796 | return nullptr; |
| 4797 | } |
| 4798 | |
| 4799 | Decl *ClassDecl = cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
| 4800 | QualType resultDeclType; |
| 4801 | |
| 4802 | bool HasRelatedResultType = false; |
| 4803 | TypeSourceInfo *ReturnTInfo = nullptr; |
| 4804 | if (ReturnType) { |
| 4805 | resultDeclType = SemaRef.GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo); |
| 4806 | |
| 4807 | if (SemaRef.CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc)) |
| 4808 | return nullptr; |
| 4809 | |
| 4810 | QualType bareResultType = resultDeclType; |
| 4811 | (void)AttributedType::stripOuterNullability(T&: bareResultType); |
| 4812 | HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); |
| 4813 | } else { // get the type for "id". |
| 4814 | resultDeclType = Context.getObjCIdType(); |
| 4815 | Diag(Loc: MethodLoc, DiagID: diag::warn_missing_method_return_type) |
| 4816 | << FixItHint::CreateInsertion(InsertionLoc: SelectorLocs.front(), Code: "(id)" ); |
| 4817 | } |
| 4818 | |
| 4819 | ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( |
| 4820 | C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo, |
| 4821 | contextDecl: SemaRef.CurContext, isInstance: MethodType == tok::minus, isVariadic, |
| 4822 | /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, |
| 4823 | /*isImplicitlyDeclared=*/false, /*isDefined=*/false, |
| 4824 | impControl: MethodDeclKind == tok::objc_optional |
| 4825 | ? ObjCImplementationControl::Optional |
| 4826 | : ObjCImplementationControl::Required, |
| 4827 | HasRelatedResultType); |
| 4828 | |
| 4829 | SmallVector<ParmVarDecl*, 16> Params; |
| 4830 | for (unsigned I = 0; I < Sel.getNumArgs(); ++I) { |
| 4831 | ParmVarDecl *Param = ArgInfo[I]; |
| 4832 | Param->setDeclContext(ObjCMethod); |
| 4833 | SemaRef.ProcessAPINotes(D: Param); |
| 4834 | Params.push_back(Elt: Param); |
| 4835 | } |
| 4836 | |
| 4837 | for (unsigned i = 0, e = CNumArgs; i != e; ++i) { |
| 4838 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param); |
| 4839 | QualType ArgType = Param->getType(); |
| 4840 | if (ArgType.isNull()) |
| 4841 | ArgType = Context.getObjCIdType(); |
| 4842 | else |
| 4843 | // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
| 4844 | ArgType = Context.getAdjustedParameterType(T: ArgType); |
| 4845 | |
| 4846 | Param->setDeclContext(ObjCMethod); |
| 4847 | Params.push_back(Elt: Param); |
| 4848 | } |
| 4849 | |
| 4850 | ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs); |
| 4851 | ObjCMethod->setObjCDeclQualifier( |
| 4852 | CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier())); |
| 4853 | |
| 4854 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: ObjCMethod, AttrList); |
| 4855 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: ObjCMethod); |
| 4856 | SemaRef.ProcessAPINotes(D: ObjCMethod); |
| 4857 | |
| 4858 | // Add the method now. |
| 4859 | const ObjCMethodDecl *PrevMethod = nullptr; |
| 4860 | if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) { |
| 4861 | if (MethodType == tok::minus) { |
| 4862 | PrevMethod = ImpDecl->getInstanceMethod(Sel); |
| 4863 | ImpDecl->addInstanceMethod(method: ObjCMethod); |
| 4864 | } else { |
| 4865 | PrevMethod = ImpDecl->getClassMethod(Sel); |
| 4866 | ImpDecl->addClassMethod(method: ObjCMethod); |
| 4867 | } |
| 4868 | |
| 4869 | // If this method overrides a previous @synthesize declaration, |
| 4870 | // register it with the property. Linear search through all |
| 4871 | // properties here, because the autosynthesized stub hasn't been |
| 4872 | // made visible yet, so it can be overridden by a later |
| 4873 | // user-specified implementation. |
| 4874 | for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { |
| 4875 | if (auto *Setter = PropertyImpl->getSetterMethodDecl()) |
| 4876 | if (Setter->getSelector() == Sel && |
| 4877 | Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
| 4878 | assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected" ); |
| 4879 | PropertyImpl->setSetterMethodDecl(ObjCMethod); |
| 4880 | } |
| 4881 | if (auto *Getter = PropertyImpl->getGetterMethodDecl()) |
| 4882 | if (Getter->getSelector() == Sel && |
| 4883 | Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
| 4884 | assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected" ); |
| 4885 | PropertyImpl->setGetterMethodDecl(ObjCMethod); |
| 4886 | break; |
| 4887 | } |
| 4888 | } |
| 4889 | |
| 4890 | // A method is either tagged direct explicitly, or inherits it from its |
| 4891 | // canonical declaration. |
| 4892 | // |
| 4893 | // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() |
| 4894 | // because IDecl->lookupMethod() returns more possible matches than just |
| 4895 | // the canonical declaration. |
| 4896 | if (!ObjCMethod->isDirectMethod()) { |
| 4897 | const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); |
| 4898 | if (CanonicalMD->isDirectMethod()) { |
| 4899 | const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>(); |
| 4900 | ObjCMethod->addAttr( |
| 4901 | A: ObjCDirectAttr::CreateImplicit(Ctx&: Context, Range: attr->getLocation())); |
| 4902 | } |
| 4903 | } |
| 4904 | |
| 4905 | // Merge information from the @interface declaration into the |
| 4906 | // @implementation. |
| 4907 | if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { |
| 4908 | if (auto *IMD = IDecl->lookupMethod(Sel: ObjCMethod->getSelector(), |
| 4909 | isInstance: ObjCMethod->isInstanceMethod())) { |
| 4910 | mergeInterfaceMethodToImpl(S&: SemaRef, method: ObjCMethod, prevMethod: IMD); |
| 4911 | |
| 4912 | // The Idecl->lookupMethod() above will find declarations for ObjCMethod |
| 4913 | // in one of these places: |
| 4914 | // |
| 4915 | // (1) the canonical declaration in an @interface container paired |
| 4916 | // with the ImplDecl, |
| 4917 | // (2) non canonical declarations in @interface not paired with the |
| 4918 | // ImplDecl for the same Class, |
| 4919 | // (3) any superclass container. |
| 4920 | // |
| 4921 | // Direct methods only allow for canonical declarations in the matching |
| 4922 | // container (case 1). |
| 4923 | // |
| 4924 | // Direct methods overriding a superclass declaration (case 3) is |
| 4925 | // handled during overrides checks in CheckObjCMethodOverrides(). |
| 4926 | // |
| 4927 | // We deal with same-class container mismatches (Case 2) here. |
| 4928 | if (IDecl == IMD->getClassInterface()) { |
| 4929 | auto diagContainerMismatch = [&] { |
| 4930 | int decl = 0, impl = 0; |
| 4931 | |
| 4932 | if (auto *Cat = dyn_cast<ObjCCategoryDecl>(Val: IMD->getDeclContext())) |
| 4933 | decl = Cat->IsClassExtension() ? 1 : 2; |
| 4934 | |
| 4935 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl)) |
| 4936 | impl = 1 + (decl != 0); |
| 4937 | |
| 4938 | Diag(Loc: ObjCMethod->getLocation(), |
| 4939 | DiagID: diag::err_objc_direct_impl_decl_mismatch) |
| 4940 | << decl << impl; |
| 4941 | Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration); |
| 4942 | }; |
| 4943 | |
| 4944 | if (ObjCMethod->isDirectMethod()) { |
| 4945 | const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>(); |
| 4946 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
| 4947 | diagContainerMismatch(); |
| 4948 | } else if (!IMD->isDirectMethod()) { |
| 4949 | Diag(Loc: attr->getLocation(), DiagID: diag::err_objc_direct_missing_on_decl); |
| 4950 | Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration); |
| 4951 | } |
| 4952 | } else if (IMD->isDirectMethod()) { |
| 4953 | const auto *attr = IMD->getAttr<ObjCDirectAttr>(); |
| 4954 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
| 4955 | diagContainerMismatch(); |
| 4956 | } else { |
| 4957 | ObjCMethod->addAttr( |
| 4958 | A: ObjCDirectAttr::CreateImplicit(Ctx&: Context, Range: attr->getLocation())); |
| 4959 | } |
| 4960 | } |
| 4961 | } |
| 4962 | |
| 4963 | // Warn about defining -dealloc in a category. |
| 4964 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() && |
| 4965 | ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { |
| 4966 | Diag(Loc: ObjCMethod->getLocation(), DiagID: diag::warn_dealloc_in_category) |
| 4967 | << ObjCMethod->getDeclName(); |
| 4968 | } |
| 4969 | } else { |
| 4970 | mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod); |
| 4971 | checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod, ImpDecl); |
| 4972 | } |
| 4973 | |
| 4974 | // Warn if a method declared in a protocol to which a category or |
| 4975 | // extension conforms is non-escaping and the implementation's method is |
| 4976 | // escaping. |
| 4977 | for (auto *C : IDecl->visible_categories()) |
| 4978 | for (auto &P : C->protocols()) |
| 4979 | if (auto *IMD = P->lookupMethod(Sel: ObjCMethod->getSelector(), |
| 4980 | isInstance: ObjCMethod->isInstanceMethod())) { |
| 4981 | assert(ObjCMethod->parameters().size() == |
| 4982 | IMD->parameters().size() && |
| 4983 | "Methods have different number of parameters" ); |
| 4984 | auto OI = IMD->param_begin(), OE = IMD->param_end(); |
| 4985 | auto NI = ObjCMethod->param_begin(); |
| 4986 | for (; OI != OE; ++OI, ++NI) |
| 4987 | diagnoseNoescape(NewD: *NI, OldD: *OI, CD: C, PD: P, S&: SemaRef); |
| 4988 | } |
| 4989 | } |
| 4990 | } else { |
| 4991 | if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) { |
| 4992 | mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod); |
| 4993 | |
| 4994 | ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
| 4995 | if (!IDecl) |
| 4996 | IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface(); |
| 4997 | // For valid code, we should always know the primary interface |
| 4998 | // declaration by now, however for invalid code we'll keep parsing |
| 4999 | // but we won't find the primary interface and IDecl will be nil. |
| 5000 | if (IDecl) |
| 5001 | checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod); |
| 5002 | } |
| 5003 | |
| 5004 | cast<DeclContext>(Val: ClassDecl)->addDecl(D: ObjCMethod); |
| 5005 | } |
| 5006 | |
| 5007 | if (PrevMethod) { |
| 5008 | // You can never have two method definitions with the same name. |
| 5009 | Diag(Loc: ObjCMethod->getLocation(), DiagID: diag::err_duplicate_method_decl) |
| 5010 | << ObjCMethod->getDeclName(); |
| 5011 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 5012 | ObjCMethod->setInvalidDecl(); |
| 5013 | return ObjCMethod; |
| 5014 | } |
| 5015 | |
| 5016 | // If this Objective-C method does not have a related result type, but we |
| 5017 | // are allowed to infer related result types, try to do so based on the |
| 5018 | // method family. |
| 5019 | ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
| 5020 | if (!CurrentClass) { |
| 5021 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) |
| 5022 | CurrentClass = Cat->getClassInterface(); |
| 5023 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) |
| 5024 | CurrentClass = Impl->getClassInterface(); |
| 5025 | else if (ObjCCategoryImplDecl *CatImpl |
| 5026 | = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) |
| 5027 | CurrentClass = CatImpl->getClassInterface(); |
| 5028 | } |
| 5029 | |
| 5030 | ResultTypeCompatibilityKind RTC = |
| 5031 | CheckRelatedResultTypeCompatibility(S&: SemaRef, Method: ObjCMethod, CurrentClass); |
| 5032 | |
| 5033 | CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); |
| 5034 | |
| 5035 | bool ARCError = false; |
| 5036 | if (getLangOpts().ObjCAutoRefCount) |
| 5037 | ARCError = CheckARCMethodDecl(method: ObjCMethod); |
| 5038 | |
| 5039 | // Infer the related result type when possible. |
| 5040 | if (!ARCError && RTC == SemaObjC::RTC_Compatible && |
| 5041 | !ObjCMethod->hasRelatedResultType() && |
| 5042 | getLangOpts().ObjCInferRelatedResultType) { |
| 5043 | bool InferRelatedResultType = false; |
| 5044 | switch (ObjCMethod->getMethodFamily()) { |
| 5045 | case OMF_None: |
| 5046 | case OMF_copy: |
| 5047 | case OMF_dealloc: |
| 5048 | case OMF_finalize: |
| 5049 | case OMF_mutableCopy: |
| 5050 | case OMF_release: |
| 5051 | case OMF_retainCount: |
| 5052 | case OMF_initialize: |
| 5053 | case OMF_performSelector: |
| 5054 | break; |
| 5055 | |
| 5056 | case OMF_alloc: |
| 5057 | case OMF_new: |
| 5058 | InferRelatedResultType = ObjCMethod->isClassMethod(); |
| 5059 | break; |
| 5060 | |
| 5061 | case OMF_init: |
| 5062 | case OMF_autorelease: |
| 5063 | case OMF_retain: |
| 5064 | case OMF_self: |
| 5065 | InferRelatedResultType = ObjCMethod->isInstanceMethod(); |
| 5066 | break; |
| 5067 | } |
| 5068 | |
| 5069 | if (InferRelatedResultType && |
| 5070 | !ObjCMethod->getReturnType()->isObjCIndependentClassType()) |
| 5071 | ObjCMethod->setRelatedResultType(); |
| 5072 | } |
| 5073 | |
| 5074 | if (MethodDefinition && |
| 5075 | Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
| 5076 | checkObjCMethodX86VectorTypes(SemaRef, Method: ObjCMethod); |
| 5077 | |
| 5078 | // + load method cannot have availability attributes. It get called on |
| 5079 | // startup, so it has to have the availability of the deployment target. |
| 5080 | if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { |
| 5081 | if (ObjCMethod->isClassMethod() && |
| 5082 | ObjCMethod->getSelector().getAsString() == "load" ) { |
| 5083 | Diag(Loc: attr->getLocation(), DiagID: diag::warn_availability_on_static_initializer) |
| 5084 | << 0; |
| 5085 | ObjCMethod->dropAttr<AvailabilityAttr>(); |
| 5086 | } |
| 5087 | } |
| 5088 | |
| 5089 | // Insert the invisible arguments, self and _cmd! |
| 5090 | ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface()); |
| 5091 | |
| 5092 | SemaRef.ActOnDocumentableDecl(D: ObjCMethod); |
| 5093 | |
| 5094 | return ObjCMethod; |
| 5095 | } |
| 5096 | |
| 5097 | bool SemaObjC::CheckObjCDeclScope(Decl *D) { |
| 5098 | // Following is also an error. But it is caused by a missing @end |
| 5099 | // and diagnostic is issued elsewhere. |
| 5100 | if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext->getRedeclContext())) |
| 5101 | return false; |
| 5102 | |
| 5103 | // If we switched context to translation unit while we are still lexically in |
| 5104 | // an objc container, it means the parser missed emitting an error. |
| 5105 | if (isa<TranslationUnitDecl>( |
| 5106 | Val: SemaRef.getCurLexicalContext()->getRedeclContext())) |
| 5107 | return false; |
| 5108 | |
| 5109 | Diag(Loc: D->getLocation(), DiagID: diag::err_objc_decls_may_only_appear_in_global_scope); |
| 5110 | D->setInvalidDecl(); |
| 5111 | |
| 5112 | return true; |
| 5113 | } |
| 5114 | |
| 5115 | /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the |
| 5116 | /// instance variables of ClassName into Decls. |
| 5117 | void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, |
| 5118 | const IdentifierInfo *ClassName, |
| 5119 | SmallVectorImpl<Decl *> &Decls) { |
| 5120 | ASTContext &Context = getASTContext(); |
| 5121 | // Check that ClassName is a valid class |
| 5122 | ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart); |
| 5123 | if (!Class) { |
| 5124 | Diag(Loc: DeclStart, DiagID: diag::err_undef_interface) << ClassName; |
| 5125 | return; |
| 5126 | } |
| 5127 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
| 5128 | Diag(Loc: DeclStart, DiagID: diag::err_atdef_nonfragile_interface); |
| 5129 | return; |
| 5130 | } |
| 5131 | |
| 5132 | // Collect the instance variables |
| 5133 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| 5134 | Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars); |
| 5135 | // For each ivar, create a fresh ObjCAtDefsFieldDecl. |
| 5136 | for (unsigned i = 0; i < Ivars.size(); i++) { |
| 5137 | const FieldDecl* ID = Ivars[i]; |
| 5138 | RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD); |
| 5139 | Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record, |
| 5140 | /*FIXME: StartL=*/StartLoc: ID->getLocation(), |
| 5141 | IdLoc: ID->getLocation(), |
| 5142 | Id: ID->getIdentifier(), T: ID->getType(), |
| 5143 | BW: ID->getBitWidth()); |
| 5144 | Decls.push_back(Elt: FD); |
| 5145 | } |
| 5146 | |
| 5147 | // Introduce all of these fields into the appropriate scope. |
| 5148 | for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); |
| 5149 | D != Decls.end(); ++D) { |
| 5150 | FieldDecl *FD = cast<FieldDecl>(Val: *D); |
| 5151 | if (getLangOpts().CPlusPlus) |
| 5152 | SemaRef.PushOnScopeChains(D: FD, S); |
| 5153 | else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD)) |
| 5154 | Record->addDecl(D: FD); |
| 5155 | } |
| 5156 | } |
| 5157 | |
| 5158 | /// Build a type-check a new Objective-C exception variable declaration. |
| 5159 | VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, |
| 5160 | SourceLocation StartLoc, |
| 5161 | SourceLocation IdLoc, |
| 5162 | const IdentifierInfo *Id, |
| 5163 | bool Invalid) { |
| 5164 | ASTContext &Context = getASTContext(); |
| 5165 | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
| 5166 | // duration shall not be qualified by an address-space qualifier." |
| 5167 | // Since all parameters have automatic store duration, they can not have |
| 5168 | // an address space. |
| 5169 | if (T.getAddressSpace() != LangAS::Default) { |
| 5170 | Diag(Loc: IdLoc, DiagID: diag::err_arg_with_address_space); |
| 5171 | Invalid = true; |
| 5172 | } |
| 5173 | |
| 5174 | // An @catch parameter must be an unqualified object pointer type; |
| 5175 | // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? |
| 5176 | if (Invalid) { |
| 5177 | // Don't do any further checking. |
| 5178 | } else if (T->isDependentType()) { |
| 5179 | // Okay: we don't know what this type will instantiate to. |
| 5180 | } else if (T->isObjCQualifiedIdType()) { |
| 5181 | Invalid = true; |
| 5182 | Diag(Loc: IdLoc, DiagID: diag::err_illegal_qualifiers_on_catch_parm); |
| 5183 | } else if (T->isObjCIdType()) { |
| 5184 | // Okay: we don't know what this type will instantiate to. |
| 5185 | } else if (!T->isObjCObjectPointerType()) { |
| 5186 | Invalid = true; |
| 5187 | Diag(Loc: IdLoc, DiagID: diag::err_catch_param_not_objc_type); |
| 5188 | } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { |
| 5189 | Invalid = true; |
| 5190 | Diag(Loc: IdLoc, DiagID: diag::err_catch_param_not_objc_type); |
| 5191 | } |
| 5192 | |
| 5193 | VarDecl *New = VarDecl::Create(C&: Context, DC: SemaRef.CurContext, StartLoc, IdLoc, |
| 5194 | Id, T, TInfo, S: SC_None); |
| 5195 | New->setExceptionVariable(true); |
| 5196 | |
| 5197 | // In ARC, infer 'retaining' for variables of retainable type. |
| 5198 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(decl: New)) |
| 5199 | Invalid = true; |
| 5200 | |
| 5201 | if (Invalid) |
| 5202 | New->setInvalidDecl(); |
| 5203 | return New; |
| 5204 | } |
| 5205 | |
| 5206 | Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { |
| 5207 | const DeclSpec &DS = D.getDeclSpec(); |
| 5208 | |
| 5209 | // We allow the "register" storage class on exception variables because |
| 5210 | // GCC did, but we drop it completely. Any other storage class is an error. |
| 5211 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| 5212 | Diag(Loc: DS.getStorageClassSpecLoc(), DiagID: diag::warn_register_objc_catch_parm) |
| 5213 | << FixItHint::CreateRemoval(RemoveRange: SourceRange(DS.getStorageClassSpecLoc())); |
| 5214 | } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
| 5215 | Diag(Loc: DS.getStorageClassSpecLoc(), DiagID: diag::err_storage_spec_on_catch_parm) |
| 5216 | << DeclSpec::getSpecifierName(S: SCS); |
| 5217 | } |
| 5218 | if (DS.isInlineSpecified()) |
| 5219 | Diag(Loc: DS.getInlineSpecLoc(), DiagID: diag::err_inline_non_function) |
| 5220 | << getLangOpts().CPlusPlus17; |
| 5221 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| 5222 | Diag(Loc: D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 5223 | DiagID: diag::err_invalid_thread) |
| 5224 | << DeclSpec::getSpecifierName(S: TSCS); |
| 5225 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| 5226 | |
| 5227 | SemaRef.DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
| 5228 | |
| 5229 | // Check that there are no default arguments inside the type of this |
| 5230 | // exception object (C++ only). |
| 5231 | if (getLangOpts().CPlusPlus) |
| 5232 | SemaRef.CheckExtraCXXDefaultArguments(D); |
| 5233 | |
| 5234 | TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D); |
| 5235 | QualType ExceptionType = TInfo->getType(); |
| 5236 | |
| 5237 | VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType, |
| 5238 | StartLoc: D.getSourceRange().getBegin(), |
| 5239 | IdLoc: D.getIdentifierLoc(), |
| 5240 | Id: D.getIdentifier(), |
| 5241 | Invalid: D.isInvalidType()); |
| 5242 | |
| 5243 | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| 5244 | if (D.getCXXScopeSpec().isSet()) { |
| 5245 | Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_qualified_objc_catch_parm) |
| 5246 | << D.getCXXScopeSpec().getRange(); |
| 5247 | New->setInvalidDecl(); |
| 5248 | } |
| 5249 | |
| 5250 | // Add the parameter declaration into this scope. |
| 5251 | S->AddDecl(D: New); |
| 5252 | if (D.getIdentifier()) |
| 5253 | SemaRef.IdResolver.AddDecl(D: New); |
| 5254 | |
| 5255 | SemaRef.ProcessDeclAttributes(S, D: New, PD: D); |
| 5256 | |
| 5257 | if (New->hasAttr<BlocksAttr>()) |
| 5258 | Diag(Loc: New->getLocation(), DiagID: diag::err_block_on_nonlocal); |
| 5259 | return New; |
| 5260 | } |
| 5261 | |
| 5262 | /// CollectIvarsToConstructOrDestruct - Collect those ivars which require |
| 5263 | /// initialization. |
| 5264 | void SemaObjC::CollectIvarsToConstructOrDestruct( |
| 5265 | ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) { |
| 5266 | ASTContext &Context = getASTContext(); |
| 5267 | for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; |
| 5268 | Iv= Iv->getNextIvar()) { |
| 5269 | QualType QT = Context.getBaseElementType(QT: Iv->getType()); |
| 5270 | if (QT->isRecordType()) |
| 5271 | Ivars.push_back(Elt: Iv); |
| 5272 | } |
| 5273 | } |
| 5274 | |
| 5275 | void SemaObjC::DiagnoseUseOfUnimplementedSelectors() { |
| 5276 | ASTContext &Context = getASTContext(); |
| 5277 | // Load referenced selectors from the external source. |
| 5278 | if (SemaRef.ExternalSource) { |
| 5279 | SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; |
| 5280 | SemaRef.ExternalSource->ReadReferencedSelectors(Sels); |
| 5281 | for (unsigned I = 0, N = Sels.size(); I != N; ++I) |
| 5282 | ReferencedSelectors[Sels[I].first] = Sels[I].second; |
| 5283 | } |
| 5284 | |
| 5285 | // Warning will be issued only when selector table is |
| 5286 | // generated (which means there is at lease one implementation |
| 5287 | // in the TU). This is to match gcc's behavior. |
| 5288 | if (ReferencedSelectors.empty() || |
| 5289 | !Context.AnyObjCImplementation()) |
| 5290 | return; |
| 5291 | for (auto &SelectorAndLocation : ReferencedSelectors) { |
| 5292 | Selector Sel = SelectorAndLocation.first; |
| 5293 | SourceLocation Loc = SelectorAndLocation.second; |
| 5294 | if (!LookupImplementedMethodInGlobalPool(Sel)) |
| 5295 | Diag(Loc, DiagID: diag::warn_unimplemented_selector) << Sel; |
| 5296 | } |
| 5297 | } |
| 5298 | |
| 5299 | ObjCIvarDecl * |
| 5300 | SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, |
| 5301 | const ObjCPropertyDecl *&PDecl) const { |
| 5302 | if (Method->isClassMethod()) |
| 5303 | return nullptr; |
| 5304 | const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); |
| 5305 | if (!IDecl) |
| 5306 | return nullptr; |
| 5307 | Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true, |
| 5308 | /*shallowCategoryLookup=*/false, |
| 5309 | /*followSuper=*/false); |
| 5310 | if (!Method || !Method->isPropertyAccessor()) |
| 5311 | return nullptr; |
| 5312 | if ((PDecl = Method->findPropertyDecl())) |
| 5313 | if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { |
| 5314 | // property backing ivar must belong to property's class |
| 5315 | // or be a private ivar in class's implementation. |
| 5316 | // FIXME. fix the const-ness issue. |
| 5317 | IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( |
| 5318 | IVarName: IV->getIdentifier()); |
| 5319 | return IV; |
| 5320 | } |
| 5321 | return nullptr; |
| 5322 | } |
| 5323 | |
| 5324 | namespace { |
| 5325 | /// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property |
| 5326 | /// accessor references the backing ivar. |
| 5327 | class UnusedBackingIvarChecker : public DynamicRecursiveASTVisitor { |
| 5328 | public: |
| 5329 | Sema &S; |
| 5330 | const ObjCMethodDecl *Method; |
| 5331 | const ObjCIvarDecl *IvarD; |
| 5332 | bool AccessedIvar; |
| 5333 | bool InvokedSelfMethod; |
| 5334 | |
| 5335 | UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, |
| 5336 | const ObjCIvarDecl *IvarD) |
| 5337 | : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false), |
| 5338 | InvokedSelfMethod(false) { |
| 5339 | assert(IvarD); |
| 5340 | } |
| 5341 | |
| 5342 | bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) override { |
| 5343 | if (E->getDecl() == IvarD) { |
| 5344 | AccessedIvar = true; |
| 5345 | return false; |
| 5346 | } |
| 5347 | return true; |
| 5348 | } |
| 5349 | |
| 5350 | bool VisitObjCMessageExpr(ObjCMessageExpr *E) override { |
| 5351 | if (E->getReceiverKind() == ObjCMessageExpr::Instance && |
| 5352 | S.ObjC().isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) { |
| 5353 | InvokedSelfMethod = true; |
| 5354 | } |
| 5355 | return true; |
| 5356 | } |
| 5357 | }; |
| 5358 | } // end anonymous namespace |
| 5359 | |
| 5360 | void SemaObjC::DiagnoseUnusedBackingIvarInAccessor( |
| 5361 | Scope *S, const ObjCImplementationDecl *ImplD) { |
| 5362 | if (S->hasUnrecoverableErrorOccurred()) |
| 5363 | return; |
| 5364 | |
| 5365 | for (const auto *CurMethod : ImplD->instance_methods()) { |
| 5366 | unsigned DIAG = diag::warn_unused_property_backing_ivar; |
| 5367 | SourceLocation Loc = CurMethod->getLocation(); |
| 5368 | if (getDiagnostics().isIgnored(DiagID: DIAG, Loc)) |
| 5369 | continue; |
| 5370 | |
| 5371 | const ObjCPropertyDecl *PDecl; |
| 5372 | const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(Method: CurMethod, PDecl); |
| 5373 | if (!IV) |
| 5374 | continue; |
| 5375 | |
| 5376 | if (CurMethod->isSynthesizedAccessorStub()) |
| 5377 | continue; |
| 5378 | |
| 5379 | UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV); |
| 5380 | Checker.TraverseStmt(S: CurMethod->getBody()); |
| 5381 | if (Checker.AccessedIvar) |
| 5382 | continue; |
| 5383 | |
| 5384 | // Do not issue this warning if backing ivar is used somewhere and accessor |
| 5385 | // implementation makes a self call. This is to prevent false positive in |
| 5386 | // cases where the ivar is accessed by another method that the accessor |
| 5387 | // delegates to. |
| 5388 | if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { |
| 5389 | Diag(Loc, DiagID: DIAG) << IV; |
| 5390 | Diag(Loc: PDecl->getLocation(), DiagID: diag::note_property_declare); |
| 5391 | } |
| 5392 | } |
| 5393 | } |
| 5394 | |
| 5395 | QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount( |
| 5396 | QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) { |
| 5397 | ASTContext &Context = getASTContext(); |
| 5398 | // In ARC, infer a lifetime qualifier for appropriate parameter types. |
| 5399 | if (!getLangOpts().ObjCAutoRefCount || |
| 5400 | T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType()) |
| 5401 | return T; |
| 5402 | |
| 5403 | Qualifiers::ObjCLifetime Lifetime; |
| 5404 | |
| 5405 | // Special cases for arrays: |
| 5406 | // - if it's const, use __unsafe_unretained |
| 5407 | // - otherwise, it's an error |
| 5408 | if (T->isArrayType()) { |
| 5409 | if (!T.isConstQualified()) { |
| 5410 | if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics()) |
| 5411 | SemaRef.DelayedDiagnostics.add( |
| 5412 | diag: sema::DelayedDiagnostic::makeForbiddenType( |
| 5413 | loc: NameLoc, diagnostic: diag::err_arc_array_param_no_ownership, type: T, argument: false)); |
| 5414 | else |
| 5415 | Diag(Loc: NameLoc, DiagID: diag::err_arc_array_param_no_ownership) |
| 5416 | << TSInfo->getTypeLoc().getSourceRange(); |
| 5417 | } |
| 5418 | Lifetime = Qualifiers::OCL_ExplicitNone; |
| 5419 | } else { |
| 5420 | Lifetime = T->getObjCARCImplicitLifetime(); |
| 5421 | } |
| 5422 | T = Context.getLifetimeQualifiedType(type: T, lifetime: Lifetime); |
| 5423 | |
| 5424 | return T; |
| 5425 | } |
| 5426 | |
| 5427 | ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id, |
| 5428 | SourceLocation IdLoc, |
| 5429 | bool DoTypoCorrection) { |
| 5430 | // The third "scope" argument is 0 since we aren't enabling lazy built-in |
| 5431 | // creation from this context. |
| 5432 | NamedDecl *IDecl = SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: Id, Loc: IdLoc, |
| 5433 | NameKind: Sema::LookupOrdinaryName); |
| 5434 | |
| 5435 | if (!IDecl && DoTypoCorrection) { |
| 5436 | // Perform typo correction at the given location, but only if we |
| 5437 | // find an Objective-C class name. |
| 5438 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; |
| 5439 | if (TypoCorrection C = SemaRef.CorrectTypo( |
| 5440 | Typo: DeclarationNameInfo(Id, IdLoc), LookupKind: Sema::LookupOrdinaryName, |
| 5441 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: CorrectTypoKind::ErrorRecovery)) { |
| 5442 | SemaRef.diagnoseTypo(Correction: C, TypoDiag: PDiag(DiagID: diag::err_undef_interface_suggest) << Id); |
| 5443 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
| 5444 | Id = IDecl->getIdentifier(); |
| 5445 | } |
| 5446 | } |
| 5447 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IDecl); |
| 5448 | // This routine must always return a class definition, if any. |
| 5449 | if (Def && Def->getDefinition()) |
| 5450 | Def = Def->getDefinition(); |
| 5451 | return Def; |
| 5452 | } |
| 5453 | |
| 5454 | bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) { |
| 5455 | ASTContext &Context = getASTContext(); |
| 5456 | QualType type = decl->getType(); |
| 5457 | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); |
| 5458 | if (lifetime == Qualifiers::OCL_Autoreleasing) { |
| 5459 | // Various kinds of declaration aren't allowed to be __autoreleasing. |
| 5460 | unsigned kind = -1U; |
| 5461 | if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) { |
| 5462 | if (var->hasAttr<BlocksAttr>()) |
| 5463 | kind = 0; // __block |
| 5464 | else if (!var->hasLocalStorage()) |
| 5465 | kind = 1; // global |
| 5466 | } else if (isa<ObjCIvarDecl>(Val: decl)) { |
| 5467 | kind = 3; // ivar |
| 5468 | } else if (isa<FieldDecl>(Val: decl)) { |
| 5469 | kind = 2; // field |
| 5470 | } |
| 5471 | |
| 5472 | if (kind != -1U) { |
| 5473 | Diag(Loc: decl->getLocation(), DiagID: diag::err_arc_autoreleasing_var) << kind; |
| 5474 | } |
| 5475 | } else if (lifetime == Qualifiers::OCL_None) { |
| 5476 | // Try to infer lifetime. |
| 5477 | if (!type->isObjCLifetimeType()) |
| 5478 | return false; |
| 5479 | |
| 5480 | lifetime = type->getObjCARCImplicitLifetime(); |
| 5481 | type = Context.getLifetimeQualifiedType(type, lifetime); |
| 5482 | decl->setType(type); |
| 5483 | } |
| 5484 | |
| 5485 | if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) { |
| 5486 | // Thread-local variables cannot have lifetime. |
| 5487 | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && |
| 5488 | var->getTLSKind()) { |
| 5489 | Diag(Loc: var->getLocation(), DiagID: diag::err_arc_thread_ownership) |
| 5490 | << var->getType(); |
| 5491 | return true; |
| 5492 | } |
| 5493 | } |
| 5494 | |
| 5495 | return false; |
| 5496 | } |
| 5497 | |
| 5498 | ObjCContainerDecl *SemaObjC::getObjCDeclContext() const { |
| 5499 | return (dyn_cast_or_null<ObjCContainerDecl>(Val: SemaRef.CurContext)); |
| 5500 | } |
| 5501 | |
| 5502 | void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { |
| 5503 | if (!getLangOpts().CPlusPlus) |
| 5504 | return; |
| 5505 | if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { |
| 5506 | ASTContext &Context = getASTContext(); |
| 5507 | SmallVector<ObjCIvarDecl *, 8> ivars; |
| 5508 | CollectIvarsToConstructOrDestruct(OI: OID, Ivars&: ivars); |
| 5509 | if (ivars.empty()) |
| 5510 | return; |
| 5511 | SmallVector<CXXCtorInitializer *, 32> AllToInit; |
| 5512 | for (unsigned i = 0; i < ivars.size(); i++) { |
| 5513 | FieldDecl *Field = ivars[i]; |
| 5514 | if (Field->isInvalidDecl()) |
| 5515 | continue; |
| 5516 | |
| 5517 | CXXCtorInitializer *Member; |
| 5518 | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Member: Field); |
| 5519 | InitializationKind InitKind = |
| 5520 | InitializationKind::CreateDefault(InitLoc: ObjCImplementation->getLocation()); |
| 5521 | |
| 5522 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); |
| 5523 | ExprResult MemberInit = |
| 5524 | InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {}); |
| 5525 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
| 5526 | // Note, MemberInit could actually come back empty if no initialization |
| 5527 | // is required (e.g., because it would call a trivial default constructor) |
| 5528 | if (!MemberInit.get() || MemberInit.isInvalid()) |
| 5529 | continue; |
| 5530 | |
| 5531 | Member = new (Context) |
| 5532 | CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(), |
| 5533 | MemberInit.getAs<Expr>(), SourceLocation()); |
| 5534 | AllToInit.push_back(Elt: Member); |
| 5535 | |
| 5536 | // Be sure that the destructor is accessible and is marked as referenced. |
| 5537 | if (const RecordType *RecordTy = |
| 5538 | Context.getBaseElementType(QT: Field->getType()) |
| 5539 | ->getAs<RecordType>()) { |
| 5540 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
| 5541 | if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: RD)) { |
| 5542 | SemaRef.MarkFunctionReferenced(Loc: Field->getLocation(), Func: Destructor); |
| 5543 | SemaRef.CheckDestructorAccess( |
| 5544 | Loc: Field->getLocation(), Dtor: Destructor, |
| 5545 | PDiag: PDiag(DiagID: diag::err_access_dtor_ivar) |
| 5546 | << Context.getBaseElementType(QT: Field->getType())); |
| 5547 | } |
| 5548 | } |
| 5549 | } |
| 5550 | ObjCImplementation->setIvarInitializers(C&: Context, initializers: AllToInit.data(), |
| 5551 | numInitializers: AllToInit.size()); |
| 5552 | } |
| 5553 | } |
| 5554 | |
| 5555 | /// TranslateIvarVisibility - Translate visibility from a token ID to an |
| 5556 | /// AST enum value. |
| 5557 | static ObjCIvarDecl::AccessControl |
| 5558 | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
| 5559 | switch (ivarVisibility) { |
| 5560 | default: |
| 5561 | llvm_unreachable("Unknown visitibility kind" ); |
| 5562 | case tok::objc_private: |
| 5563 | return ObjCIvarDecl::Private; |
| 5564 | case tok::objc_public: |
| 5565 | return ObjCIvarDecl::Public; |
| 5566 | case tok::objc_protected: |
| 5567 | return ObjCIvarDecl::Protected; |
| 5568 | case tok::objc_package: |
| 5569 | return ObjCIvarDecl::Package; |
| 5570 | } |
| 5571 | } |
| 5572 | |
| 5573 | /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
| 5574 | /// in order to create an IvarDecl object for it. |
| 5575 | Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, |
| 5576 | Expr *BitWidth, tok::ObjCKeywordKind Visibility) { |
| 5577 | |
| 5578 | const IdentifierInfo *II = D.getIdentifier(); |
| 5579 | SourceLocation Loc = DeclStart; |
| 5580 | if (II) |
| 5581 | Loc = D.getIdentifierLoc(); |
| 5582 | |
| 5583 | // FIXME: Unnamed fields can be handled in various different ways, for |
| 5584 | // example, unnamed unions inject all members into the struct namespace! |
| 5585 | |
| 5586 | TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D); |
| 5587 | QualType T = TInfo->getType(); |
| 5588 | |
| 5589 | if (BitWidth) { |
| 5590 | // 6.7.2.1p3, 6.7.2.1p4 |
| 5591 | BitWidth = |
| 5592 | SemaRef.VerifyBitField(FieldLoc: Loc, FieldName: II, FieldTy: T, /*IsMsStruct*/ false, BitWidth) |
| 5593 | .get(); |
| 5594 | if (!BitWidth) |
| 5595 | D.setInvalidType(); |
| 5596 | } else { |
| 5597 | // Not a bitfield. |
| 5598 | |
| 5599 | // validate II. |
| 5600 | } |
| 5601 | if (T->isReferenceType()) { |
| 5602 | Diag(Loc, DiagID: diag::err_ivar_reference_type); |
| 5603 | D.setInvalidType(); |
| 5604 | } |
| 5605 | // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| 5606 | // than a variably modified type. |
| 5607 | else if (T->isVariablyModifiedType()) { |
| 5608 | if (!SemaRef.tryToFixVariablyModifiedVarType( |
| 5609 | TInfo, T, Loc, FailedFoldDiagID: diag::err_typecheck_ivar_variable_size)) |
| 5610 | D.setInvalidType(); |
| 5611 | } |
| 5612 | |
| 5613 | // Get the visibility (access control) for this ivar. |
| 5614 | ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword |
| 5615 | ? TranslateIvarVisibility(ivarVisibility: Visibility) |
| 5616 | : ObjCIvarDecl::None; |
| 5617 | // Must set ivar's DeclContext to its enclosing interface. |
| 5618 | ObjCContainerDecl *EnclosingDecl = |
| 5619 | cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
| 5620 | if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) |
| 5621 | return nullptr; |
| 5622 | ObjCContainerDecl *EnclosingContext; |
| 5623 | if (ObjCImplementationDecl *IMPDecl = |
| 5624 | dyn_cast<ObjCImplementationDecl>(Val: EnclosingDecl)) { |
| 5625 | if (getLangOpts().ObjCRuntime.isFragile()) { |
| 5626 | // Case of ivar declared in an implementation. Context is that of its |
| 5627 | // class. |
| 5628 | EnclosingContext = IMPDecl->getClassInterface(); |
| 5629 | assert(EnclosingContext && "Implementation has no class interface!" ); |
| 5630 | } else |
| 5631 | EnclosingContext = EnclosingDecl; |
| 5632 | } else { |
| 5633 | if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(Val: EnclosingDecl)) { |
| 5634 | if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { |
| 5635 | Diag(Loc, DiagID: diag::err_misplaced_ivar) << CDecl->IsClassExtension(); |
| 5636 | return nullptr; |
| 5637 | } |
| 5638 | } |
| 5639 | EnclosingContext = EnclosingDecl; |
| 5640 | } |
| 5641 | |
| 5642 | // Construct the decl. |
| 5643 | ObjCIvarDecl *NewID = |
| 5644 | ObjCIvarDecl::Create(C&: getASTContext(), DC: EnclosingContext, StartLoc: DeclStart, IdLoc: Loc, |
| 5645 | Id: II, T, TInfo, ac, BW: BitWidth); |
| 5646 | |
| 5647 | if (T->containsErrors()) |
| 5648 | NewID->setInvalidDecl(); |
| 5649 | |
| 5650 | if (II) { |
| 5651 | NamedDecl *PrevDecl = |
| 5652 | SemaRef.LookupSingleName(S, Name: II, Loc, NameKind: Sema::LookupMemberName, |
| 5653 | Redecl: RedeclarationKind::ForVisibleRedeclaration); |
| 5654 | if (PrevDecl && SemaRef.isDeclInScope(D: PrevDecl, Ctx: EnclosingContext, S) && |
| 5655 | !isa<TagDecl>(Val: PrevDecl)) { |
| 5656 | Diag(Loc, DiagID: diag::err_duplicate_member) << II; |
| 5657 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_declaration); |
| 5658 | NewID->setInvalidDecl(); |
| 5659 | } |
| 5660 | } |
| 5661 | |
| 5662 | // Process attributes attached to the ivar. |
| 5663 | SemaRef.ProcessDeclAttributes(S, D: NewID, PD: D); |
| 5664 | |
| 5665 | if (D.isInvalidType()) |
| 5666 | NewID->setInvalidDecl(); |
| 5667 | |
| 5668 | // In ARC, infer 'retaining' for ivars of retainable type. |
| 5669 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(decl: NewID)) |
| 5670 | NewID->setInvalidDecl(); |
| 5671 | |
| 5672 | if (D.getDeclSpec().isModulePrivateSpecified()) |
| 5673 | NewID->setModulePrivate(); |
| 5674 | |
| 5675 | if (II) { |
| 5676 | // FIXME: When interfaces are DeclContexts, we'll need to add |
| 5677 | // these to the interface. |
| 5678 | S->AddDecl(D: NewID); |
| 5679 | SemaRef.IdResolver.AddDecl(D: NewID); |
| 5680 | } |
| 5681 | |
| 5682 | if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() && |
| 5683 | isa<ObjCInterfaceDecl>(Val: EnclosingDecl)) |
| 5684 | Diag(Loc, DiagID: diag::warn_ivars_in_interface); |
| 5685 | |
| 5686 | return NewID; |
| 5687 | } |
| 5688 | |