| 1 | //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for C++ lambda expressions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | #include "clang/Sema/SemaLambda.h" |
| 13 | #include "TypeLocBuilder.h" |
| 14 | #include "clang/AST/ASTLambda.h" |
| 15 | #include "clang/AST/CXXInheritance.h" |
| 16 | #include "clang/AST/ExprCXX.h" |
| 17 | #include "clang/AST/MangleNumberingContext.h" |
| 18 | #include "clang/Basic/TargetInfo.h" |
| 19 | #include "clang/Sema/DeclSpec.h" |
| 20 | #include "clang/Sema/Initialization.h" |
| 21 | #include "clang/Sema/Lookup.h" |
| 22 | #include "clang/Sema/Scope.h" |
| 23 | #include "clang/Sema/ScopeInfo.h" |
| 24 | #include "clang/Sema/SemaARM.h" |
| 25 | #include "clang/Sema/SemaCUDA.h" |
| 26 | #include "clang/Sema/SemaInternal.h" |
| 27 | #include "clang/Sema/SemaOpenMP.h" |
| 28 | #include "clang/Sema/SemaSYCL.h" |
| 29 | #include "clang/Sema/Template.h" |
| 30 | #include "llvm/ADT/STLExtras.h" |
| 31 | #include <optional> |
| 32 | using namespace clang; |
| 33 | using namespace sema; |
| 34 | |
| 35 | /// Examines the FunctionScopeInfo stack to determine the nearest |
| 36 | /// enclosing lambda (to the current lambda) that is 'capture-ready' for |
| 37 | /// the variable referenced in the current lambda (i.e. \p VarToCapture). |
| 38 | /// If successful, returns the index into Sema's FunctionScopeInfo stack |
| 39 | /// of the capture-ready lambda's LambdaScopeInfo. |
| 40 | /// |
| 41 | /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current |
| 42 | /// lambda - is on top) to determine the index of the nearest enclosing/outer |
| 43 | /// lambda that is ready to capture the \p VarToCapture being referenced in |
| 44 | /// the current lambda. |
| 45 | /// As we climb down the stack, we want the index of the first such lambda - |
| 46 | /// that is the lambda with the highest index that is 'capture-ready'. |
| 47 | /// |
| 48 | /// A lambda 'L' is capture-ready for 'V' (var or this) if: |
| 49 | /// - its enclosing context is non-dependent |
| 50 | /// - and if the chain of lambdas between L and the lambda in which |
| 51 | /// V is potentially used (i.e. the lambda at the top of the scope info |
| 52 | /// stack), can all capture or have already captured V. |
| 53 | /// If \p VarToCapture is 'null' then we are trying to capture 'this'. |
| 54 | /// |
| 55 | /// Note that a lambda that is deemed 'capture-ready' still needs to be checked |
| 56 | /// for whether it is 'capture-capable' (see |
| 57 | /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly |
| 58 | /// capture. |
| 59 | /// |
| 60 | /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a |
| 61 | /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda |
| 62 | /// is at the top of the stack and has the highest index. |
| 63 | /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. |
| 64 | /// |
| 65 | /// \returns An UnsignedOrNone Index that if evaluates to 'true' |
| 66 | /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost |
| 67 | /// lambda which is capture-ready. If the return value evaluates to 'false' |
| 68 | /// then no lambda is capture-ready for \p VarToCapture. |
| 69 | |
| 70 | static inline UnsignedOrNone getStackIndexOfNearestEnclosingCaptureReadyLambda( |
| 71 | ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, |
| 72 | ValueDecl *VarToCapture) { |
| 73 | // Label failure to capture. |
| 74 | const UnsignedOrNone NoLambdaIsCaptureReady = std::nullopt; |
| 75 | |
| 76 | // Ignore all inner captured regions. |
| 77 | unsigned CurScopeIndex = FunctionScopes.size() - 1; |
| 78 | while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( |
| 79 | Val: FunctionScopes[CurScopeIndex])) |
| 80 | --CurScopeIndex; |
| 81 | assert( |
| 82 | isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && |
| 83 | "The function on the top of sema's function-info stack must be a lambda" ); |
| 84 | |
| 85 | // If VarToCapture is null, we are attempting to capture 'this'. |
| 86 | const bool IsCapturingThis = !VarToCapture; |
| 87 | const bool IsCapturingVariable = !IsCapturingThis; |
| 88 | |
| 89 | // Start with the current lambda at the top of the stack (highest index). |
| 90 | DeclContext *EnclosingDC = |
| 91 | cast<sema::LambdaScopeInfo>(Val: FunctionScopes[CurScopeIndex])->CallOperator; |
| 92 | |
| 93 | do { |
| 94 | const clang::sema::LambdaScopeInfo *LSI = |
| 95 | cast<sema::LambdaScopeInfo>(Val: FunctionScopes[CurScopeIndex]); |
| 96 | // IF we have climbed down to an intervening enclosing lambda that contains |
| 97 | // the variable declaration - it obviously can/must not capture the |
| 98 | // variable. |
| 99 | // Since its enclosing DC is dependent, all the lambdas between it and the |
| 100 | // innermost nested lambda are dependent (otherwise we wouldn't have |
| 101 | // arrived here) - so we don't yet have a lambda that can capture the |
| 102 | // variable. |
| 103 | if (IsCapturingVariable && |
| 104 | VarToCapture->getDeclContext()->Equals(DC: EnclosingDC)) |
| 105 | return NoLambdaIsCaptureReady; |
| 106 | |
| 107 | // For an enclosing lambda to be capture ready for an entity, all |
| 108 | // intervening lambda's have to be able to capture that entity. If even |
| 109 | // one of the intervening lambda's is not capable of capturing the entity |
| 110 | // then no enclosing lambda can ever capture that entity. |
| 111 | // For e.g. |
| 112 | // const int x = 10; |
| 113 | // [=](auto a) { #1 |
| 114 | // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' |
| 115 | // [=](auto c) { #3 |
| 116 | // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 |
| 117 | // }; }; }; |
| 118 | // If they do not have a default implicit capture, check to see |
| 119 | // if the entity has already been explicitly captured. |
| 120 | // If even a single dependent enclosing lambda lacks the capability |
| 121 | // to ever capture this variable, there is no further enclosing |
| 122 | // non-dependent lambda that can capture this variable. |
| 123 | if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { |
| 124 | if (IsCapturingVariable && !LSI->isCaptured(Var: VarToCapture)) |
| 125 | return NoLambdaIsCaptureReady; |
| 126 | if (IsCapturingThis && !LSI->isCXXThisCaptured()) |
| 127 | return NoLambdaIsCaptureReady; |
| 128 | } |
| 129 | EnclosingDC = getLambdaAwareParentOfDeclContext(DC: EnclosingDC); |
| 130 | |
| 131 | assert(CurScopeIndex); |
| 132 | --CurScopeIndex; |
| 133 | } while (!EnclosingDC->isTranslationUnit() && |
| 134 | EnclosingDC->isDependentContext() && |
| 135 | isLambdaCallOperator(DC: EnclosingDC)); |
| 136 | |
| 137 | assert(CurScopeIndex < (FunctionScopes.size() - 1)); |
| 138 | // If the enclosingDC is not dependent, then the immediately nested lambda |
| 139 | // (one index above) is capture-ready. |
| 140 | if (!EnclosingDC->isDependentContext()) |
| 141 | return CurScopeIndex + 1; |
| 142 | return NoLambdaIsCaptureReady; |
| 143 | } |
| 144 | |
| 145 | /// Examines the FunctionScopeInfo stack to determine the nearest |
| 146 | /// enclosing lambda (to the current lambda) that is 'capture-capable' for |
| 147 | /// the variable referenced in the current lambda (i.e. \p VarToCapture). |
| 148 | /// If successful, returns the index into Sema's FunctionScopeInfo stack |
| 149 | /// of the capture-capable lambda's LambdaScopeInfo. |
| 150 | /// |
| 151 | /// Given the current stack of lambdas being processed by Sema and |
| 152 | /// the variable of interest, to identify the nearest enclosing lambda (to the |
| 153 | /// current lambda at the top of the stack) that can truly capture |
| 154 | /// a variable, it has to have the following two properties: |
| 155 | /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': |
| 156 | /// - climb down the stack (i.e. starting from the innermost and examining |
| 157 | /// each outer lambda step by step) checking if each enclosing |
| 158 | /// lambda can either implicitly or explicitly capture the variable. |
| 159 | /// Record the first such lambda that is enclosed in a non-dependent |
| 160 | /// context. If no such lambda currently exists return failure. |
| 161 | /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly |
| 162 | /// capture the variable by checking all its enclosing lambdas: |
| 163 | /// - check if all outer lambdas enclosing the 'capture-ready' lambda |
| 164 | /// identified above in 'a' can also capture the variable (this is done |
| 165 | /// via tryCaptureVariable for variables and CheckCXXThisCapture for |
| 166 | /// 'this' by passing in the index of the Lambda identified in step 'a') |
| 167 | /// |
| 168 | /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a |
| 169 | /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda |
| 170 | /// is at the top of the stack. |
| 171 | /// |
| 172 | /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. |
| 173 | /// |
| 174 | /// |
| 175 | /// \returns An UnsignedOrNone Index that if evaluates to 'true' |
| 176 | /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost |
| 177 | /// lambda which is capture-capable. If the return value evaluates to 'false' |
| 178 | /// then no lambda is capture-capable for \p VarToCapture. |
| 179 | |
| 180 | UnsignedOrNone clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( |
| 181 | ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, |
| 182 | ValueDecl *VarToCapture, Sema &S) { |
| 183 | |
| 184 | const UnsignedOrNone NoLambdaIsCaptureCapable = std::nullopt; |
| 185 | |
| 186 | const UnsignedOrNone OptionalStackIndex = |
| 187 | getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, |
| 188 | VarToCapture); |
| 189 | if (!OptionalStackIndex) |
| 190 | return NoLambdaIsCaptureCapable; |
| 191 | |
| 192 | const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex; |
| 193 | assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || |
| 194 | S.getCurGenericLambda()) && |
| 195 | "The capture ready lambda for a potential capture can only be the " |
| 196 | "current lambda if it is a generic lambda" ); |
| 197 | |
| 198 | const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = |
| 199 | cast<sema::LambdaScopeInfo>(Val: FunctionScopes[IndexOfCaptureReadyLambda]); |
| 200 | |
| 201 | // If VarToCapture is null, we are attempting to capture 'this' |
| 202 | const bool IsCapturingThis = !VarToCapture; |
| 203 | const bool IsCapturingVariable = !IsCapturingThis; |
| 204 | |
| 205 | if (IsCapturingVariable) { |
| 206 | // Check if the capture-ready lambda can truly capture the variable, by |
| 207 | // checking whether all enclosing lambdas of the capture-ready lambda allow |
| 208 | // the capture - i.e. make sure it is capture-capable. |
| 209 | QualType CaptureType, DeclRefType; |
| 210 | const bool CanCaptureVariable = !S.tryCaptureVariable( |
| 211 | Var: VarToCapture, |
| 212 | /*ExprVarIsUsedInLoc*/ Loc: SourceLocation(), Kind: TryCaptureKind::Implicit, |
| 213 | /*EllipsisLoc*/ SourceLocation(), |
| 214 | /*BuildAndDiagnose*/ false, CaptureType, DeclRefType, |
| 215 | FunctionScopeIndexToStopAt: &IndexOfCaptureReadyLambda); |
| 216 | if (!CanCaptureVariable) |
| 217 | return NoLambdaIsCaptureCapable; |
| 218 | } else { |
| 219 | // Check if the capture-ready lambda can truly capture 'this' by checking |
| 220 | // whether all enclosing lambdas of the capture-ready lambda can capture |
| 221 | // 'this'. |
| 222 | const bool CanCaptureThis = |
| 223 | !S.CheckCXXThisCapture( |
| 224 | Loc: CaptureReadyLambdaLSI->PotentialThisCaptureLocation, |
| 225 | /*Explicit*/ false, /*BuildAndDiagnose*/ false, |
| 226 | FunctionScopeIndexToStopAt: &IndexOfCaptureReadyLambda); |
| 227 | if (!CanCaptureThis) |
| 228 | return NoLambdaIsCaptureCapable; |
| 229 | } |
| 230 | return IndexOfCaptureReadyLambda; |
| 231 | } |
| 232 | |
| 233 | static inline TemplateParameterList * |
| 234 | getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { |
| 235 | if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { |
| 236 | LSI->GLTemplateParameterList = TemplateParameterList::Create( |
| 237 | C: SemaRef.Context, |
| 238 | /*Template kw loc*/ TemplateLoc: SourceLocation(), |
| 239 | /*L angle loc*/ LAngleLoc: LSI->ExplicitTemplateParamsRange.getBegin(), |
| 240 | Params: LSI->TemplateParams, |
| 241 | /*R angle loc*/RAngleLoc: LSI->ExplicitTemplateParamsRange.getEnd(), |
| 242 | RequiresClause: LSI->RequiresClause.get()); |
| 243 | } |
| 244 | return LSI->GLTemplateParameterList; |
| 245 | } |
| 246 | |
| 247 | CXXRecordDecl * |
| 248 | Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, |
| 249 | unsigned LambdaDependencyKind, |
| 250 | LambdaCaptureDefault CaptureDefault) { |
| 251 | DeclContext *DC = CurContext; |
| 252 | while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) |
| 253 | DC = DC->getParent(); |
| 254 | |
| 255 | bool IsGenericLambda = |
| 256 | Info && getGenericLambdaTemplateParameterList(LSI: getCurLambda(), SemaRef&: *this); |
| 257 | // Start constructing the lambda class. |
| 258 | CXXRecordDecl *Class = CXXRecordDecl::CreateLambda( |
| 259 | C: Context, DC, Info, Loc: IntroducerRange.getBegin(), DependencyKind: LambdaDependencyKind, |
| 260 | IsGeneric: IsGenericLambda, CaptureDefault); |
| 261 | DC->addDecl(D: Class); |
| 262 | |
| 263 | return Class; |
| 264 | } |
| 265 | |
| 266 | /// Determine whether the given context is or is enclosed in an inline |
| 267 | /// function. |
| 268 | static bool isInInlineFunction(const DeclContext *DC) { |
| 269 | while (!DC->isFileContext()) { |
| 270 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: DC)) |
| 271 | if (FD->isInlined()) |
| 272 | return true; |
| 273 | |
| 274 | DC = DC->getLexicalParent(); |
| 275 | } |
| 276 | |
| 277 | return false; |
| 278 | } |
| 279 | |
| 280 | std::tuple<MangleNumberingContext *, Decl *> |
| 281 | Sema::getCurrentMangleNumberContext(const DeclContext *DC) { |
| 282 | // Compute the context for allocating mangling numbers in the current |
| 283 | // expression, if the ABI requires them. |
| 284 | Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; |
| 285 | |
| 286 | enum ContextKind { |
| 287 | Normal, |
| 288 | DefaultArgument, |
| 289 | DataMember, |
| 290 | InlineVariable, |
| 291 | TemplatedVariable, |
| 292 | Concept, |
| 293 | NonInlineInModulePurview |
| 294 | } Kind = Normal; |
| 295 | |
| 296 | bool IsInNonspecializedTemplate = |
| 297 | inTemplateInstantiation() || CurContext->isDependentContext(); |
| 298 | |
| 299 | // Default arguments of member function parameters that appear in a class |
| 300 | // definition, as well as the initializers of data members, receive special |
| 301 | // treatment. Identify them. |
| 302 | Kind = [&]() { |
| 303 | if (!ManglingContextDecl) |
| 304 | return Normal; |
| 305 | |
| 306 | if (auto *ND = dyn_cast<NamedDecl>(Val: ManglingContextDecl)) { |
| 307 | // See discussion in https://github.com/itanium-cxx-abi/cxx-abi/issues/186 |
| 308 | // |
| 309 | // zygoloid: |
| 310 | // Yeah, I think the only cases left where lambdas don't need a |
| 311 | // mangling are when they have (effectively) internal linkage or appear |
| 312 | // in a non-inline function in a non-module translation unit. |
| 313 | Module *M = ManglingContextDecl->getOwningModule(); |
| 314 | if (M && M->getTopLevelModule()->isNamedModuleUnit() && |
| 315 | ND->isExternallyVisible()) |
| 316 | return NonInlineInModulePurview; |
| 317 | } |
| 318 | |
| 319 | if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Val: ManglingContextDecl)) { |
| 320 | if (const DeclContext *LexicalDC |
| 321 | = Param->getDeclContext()->getLexicalParent()) |
| 322 | if (LexicalDC->isRecord()) |
| 323 | return DefaultArgument; |
| 324 | } else if (VarDecl *Var = dyn_cast<VarDecl>(Val: ManglingContextDecl)) { |
| 325 | if (Var->getMostRecentDecl()->isInline()) |
| 326 | return InlineVariable; |
| 327 | |
| 328 | if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate) |
| 329 | return TemplatedVariable; |
| 330 | |
| 331 | if (Var->getDescribedVarTemplate()) |
| 332 | return TemplatedVariable; |
| 333 | |
| 334 | if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Val: Var)) { |
| 335 | if (!VTS->isExplicitSpecialization()) |
| 336 | return TemplatedVariable; |
| 337 | } |
| 338 | } else if (isa<FieldDecl>(Val: ManglingContextDecl)) { |
| 339 | return DataMember; |
| 340 | } else if (isa<ImplicitConceptSpecializationDecl>(Val: ManglingContextDecl)) { |
| 341 | return Concept; |
| 342 | } |
| 343 | |
| 344 | return Normal; |
| 345 | }(); |
| 346 | |
| 347 | // Itanium ABI [5.1.7]: |
| 348 | // In the following contexts [...] the one-definition rule requires closure |
| 349 | // types in different translation units to "correspond": |
| 350 | switch (Kind) { |
| 351 | case Normal: { |
| 352 | // -- the bodies of inline or templated functions |
| 353 | if ((IsInNonspecializedTemplate && |
| 354 | !(ManglingContextDecl && isa<ParmVarDecl>(Val: ManglingContextDecl))) || |
| 355 | isInInlineFunction(DC: CurContext)) { |
| 356 | while (auto *CD = dyn_cast<CapturedDecl>(Val: DC)) |
| 357 | DC = CD->getParent(); |
| 358 | return std::make_tuple(args: &Context.getManglingNumberContext(DC), args: nullptr); |
| 359 | } |
| 360 | |
| 361 | return std::make_tuple(args: nullptr, args: nullptr); |
| 362 | } |
| 363 | |
| 364 | case NonInlineInModulePurview: |
| 365 | case Concept: |
| 366 | // Concept definitions aren't code generated and thus aren't mangled, |
| 367 | // however the ManglingContextDecl is important for the purposes of |
| 368 | // re-forming the template argument list of the lambda for constraint |
| 369 | // evaluation. |
| 370 | case DataMember: |
| 371 | // -- default member initializers |
| 372 | case DefaultArgument: |
| 373 | // -- default arguments appearing in class definitions |
| 374 | case InlineVariable: |
| 375 | case TemplatedVariable: |
| 376 | // -- the initializers of inline or templated variables |
| 377 | return std::make_tuple( |
| 378 | args: &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, |
| 379 | D: ManglingContextDecl), |
| 380 | args&: ManglingContextDecl); |
| 381 | } |
| 382 | |
| 383 | llvm_unreachable("unexpected context" ); |
| 384 | } |
| 385 | |
| 386 | static QualType |
| 387 | buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class, |
| 388 | TemplateParameterList *TemplateParams, |
| 389 | TypeSourceInfo *MethodTypeInfo) { |
| 390 | assert(MethodTypeInfo && "expected a non null type" ); |
| 391 | |
| 392 | QualType MethodType = MethodTypeInfo->getType(); |
| 393 | // If a lambda appears in a dependent context or is a generic lambda (has |
| 394 | // template parameters) and has an 'auto' return type, deduce it to a |
| 395 | // dependent type. |
| 396 | if (Class->isDependentContext() || TemplateParams) { |
| 397 | const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); |
| 398 | QualType Result = FPT->getReturnType(); |
| 399 | if (Result->isUndeducedType()) { |
| 400 | Result = S.SubstAutoTypeDependent(TypeWithAuto: Result); |
| 401 | MethodType = S.Context.getFunctionType(ResultTy: Result, Args: FPT->getParamTypes(), |
| 402 | EPI: FPT->getExtProtoInfo()); |
| 403 | } |
| 404 | } |
| 405 | return MethodType; |
| 406 | } |
| 407 | |
| 408 | // [C++2b] [expr.prim.lambda.closure] p4 |
| 409 | // Given a lambda with a lambda-capture, the type of the explicit object |
| 410 | // parameter, if any, of the lambda's function call operator (possibly |
| 411 | // instantiated from a function call operator template) shall be either: |
| 412 | // - the closure type, |
| 413 | // - class type publicly and unambiguously derived from the closure type, or |
| 414 | // - a reference to a possibly cv-qualified such type. |
| 415 | bool Sema::DiagnoseInvalidExplicitObjectParameterInLambda( |
| 416 | CXXMethodDecl *Method, SourceLocation CallLoc) { |
| 417 | if (!isLambdaCallWithExplicitObjectParameter(DC: Method)) |
| 418 | return false; |
| 419 | CXXRecordDecl *RD = Method->getParent(); |
| 420 | if (Method->getType()->isDependentType()) |
| 421 | return false; |
| 422 | if (RD->isCapturelessLambda()) |
| 423 | return false; |
| 424 | |
| 425 | ParmVarDecl *Param = Method->getParamDecl(i: 0); |
| 426 | QualType ExplicitObjectParameterType = Param->getType() |
| 427 | .getNonReferenceType() |
| 428 | .getUnqualifiedType() |
| 429 | .getDesugaredType(Context: getASTContext()); |
| 430 | QualType LambdaType = getASTContext().getRecordType(Decl: RD); |
| 431 | if (LambdaType == ExplicitObjectParameterType) |
| 432 | return false; |
| 433 | |
| 434 | // Don't check the same instantiation twice. |
| 435 | // |
| 436 | // If this call operator is ill-formed, there is no point in issuing |
| 437 | // a diagnostic every time it is called because the problem is in the |
| 438 | // definition of the derived type, not at the call site. |
| 439 | // |
| 440 | // FIXME: Move this check to where we instantiate the method? This should |
| 441 | // be possible, but the naive approach of just marking the method as invalid |
| 442 | // leads to us emitting more diagnostics than we should have to for this case |
| 443 | // (1 error here *and* 1 error about there being no matching overload at the |
| 444 | // call site). It might be possible to avoid that by also checking if there |
| 445 | // is an empty cast path for the method stored in the context (signalling that |
| 446 | // we've already diagnosed it) and then just not building the call, but that |
| 447 | // doesn't really seem any simpler than diagnosing it at the call site... |
| 448 | auto [It, Inserted] = Context.LambdaCastPaths.try_emplace(Key: Method); |
| 449 | if (!Inserted) |
| 450 | return It->second.empty(); |
| 451 | |
| 452 | CXXCastPath &Path = It->second; |
| 453 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 454 | /*DetectVirtual=*/false); |
| 455 | if (!IsDerivedFrom(Loc: RD->getLocation(), Derived: ExplicitObjectParameterType, Base: LambdaType, |
| 456 | Paths)) { |
| 457 | Diag(Loc: Param->getLocation(), DiagID: diag::err_invalid_explicit_object_type_in_lambda) |
| 458 | << ExplicitObjectParameterType; |
| 459 | return true; |
| 460 | } |
| 461 | |
| 462 | if (Paths.isAmbiguous(BaseType: LambdaType->getCanonicalTypeUnqualified())) { |
| 463 | std::string PathsDisplay = getAmbiguousPathsDisplayString(Paths); |
| 464 | Diag(Loc: CallLoc, DiagID: diag::err_explicit_object_lambda_ambiguous_base) |
| 465 | << LambdaType << PathsDisplay; |
| 466 | return true; |
| 467 | } |
| 468 | |
| 469 | if (CheckBaseClassAccess(AccessLoc: CallLoc, Base: LambdaType, Derived: ExplicitObjectParameterType, |
| 470 | Path: Paths.front(), |
| 471 | DiagID: diag::err_explicit_object_lambda_inaccessible_base)) |
| 472 | return true; |
| 473 | |
| 474 | BuildBasePathArray(Paths, BasePath&: Path); |
| 475 | return false; |
| 476 | } |
| 477 | |
| 478 | void Sema::handleLambdaNumbering( |
| 479 | CXXRecordDecl *Class, CXXMethodDecl *Method, |
| 480 | std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) { |
| 481 | if (NumberingOverride) { |
| 482 | Class->setLambdaNumbering(*NumberingOverride); |
| 483 | return; |
| 484 | } |
| 485 | |
| 486 | ContextRAII ManglingContext(*this, Class->getDeclContext()); |
| 487 | |
| 488 | auto getMangleNumberingContext = |
| 489 | [this](CXXRecordDecl *Class, |
| 490 | Decl *ManglingContextDecl) -> MangleNumberingContext * { |
| 491 | // Get mangle numbering context if there's any extra decl context. |
| 492 | if (ManglingContextDecl) |
| 493 | return &Context.getManglingNumberContext( |
| 494 | ASTContext::NeedExtraManglingDecl, D: ManglingContextDecl); |
| 495 | // Otherwise, from that lambda's decl context. |
| 496 | auto DC = Class->getDeclContext(); |
| 497 | while (auto *CD = dyn_cast<CapturedDecl>(Val: DC)) |
| 498 | DC = CD->getParent(); |
| 499 | return &Context.getManglingNumberContext(DC); |
| 500 | }; |
| 501 | |
| 502 | CXXRecordDecl::LambdaNumbering Numbering; |
| 503 | MangleNumberingContext *MCtx; |
| 504 | std::tie(args&: MCtx, args&: Numbering.ContextDecl) = |
| 505 | getCurrentMangleNumberContext(DC: Class->getDeclContext()); |
| 506 | if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || |
| 507 | getLangOpts().SYCLIsHost)) { |
| 508 | // Force lambda numbering in CUDA/HIP as we need to name lambdas following |
| 509 | // ODR. Both device- and host-compilation need to have a consistent naming |
| 510 | // on kernel functions. As lambdas are potential part of these `__global__` |
| 511 | // function names, they needs numbering following ODR. |
| 512 | // Also force for SYCL, since we need this for the |
| 513 | // __builtin_sycl_unique_stable_name implementation, which depends on lambda |
| 514 | // mangling. |
| 515 | MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl); |
| 516 | assert(MCtx && "Retrieving mangle numbering context failed!" ); |
| 517 | Numbering.HasKnownInternalLinkage = true; |
| 518 | } |
| 519 | if (MCtx) { |
| 520 | Numbering.IndexInContext = MCtx->getNextLambdaIndex(); |
| 521 | Numbering.ManglingNumber = MCtx->getManglingNumber(CallOperator: Method); |
| 522 | Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method); |
| 523 | Class->setLambdaNumbering(Numbering); |
| 524 | |
| 525 | if (auto *Source = |
| 526 | dyn_cast_or_null<ExternalSemaSource>(Val: Context.getExternalSource())) |
| 527 | Source->AssignedLambdaNumbering(Lambda: Class); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI, |
| 532 | CXXMethodDecl *CallOperator, |
| 533 | bool ExplicitResultType) { |
| 534 | if (ExplicitResultType) { |
| 535 | LSI->HasImplicitReturnType = false; |
| 536 | LSI->ReturnType = CallOperator->getReturnType(); |
| 537 | if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType()) |
| 538 | S.RequireCompleteType(Loc: CallOperator->getBeginLoc(), T: LSI->ReturnType, |
| 539 | DiagID: diag::err_lambda_incomplete_result); |
| 540 | } else { |
| 541 | LSI->HasImplicitReturnType = true; |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, |
| 546 | SourceRange IntroducerRange, |
| 547 | LambdaCaptureDefault CaptureDefault, |
| 548 | SourceLocation CaptureDefaultLoc, |
| 549 | bool ExplicitParams, bool Mutable) { |
| 550 | LSI->CallOperator = CallOperator; |
| 551 | CXXRecordDecl *LambdaClass = CallOperator->getParent(); |
| 552 | LSI->Lambda = LambdaClass; |
| 553 | if (CaptureDefault == LCD_ByCopy) |
| 554 | LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; |
| 555 | else if (CaptureDefault == LCD_ByRef) |
| 556 | LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; |
| 557 | LSI->CaptureDefaultLoc = CaptureDefaultLoc; |
| 558 | LSI->IntroducerRange = IntroducerRange; |
| 559 | LSI->ExplicitParams = ExplicitParams; |
| 560 | LSI->Mutable = Mutable; |
| 561 | } |
| 562 | |
| 563 | void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { |
| 564 | LSI->finishedExplicitCaptures(); |
| 565 | } |
| 566 | |
| 567 | void Sema::ActOnLambdaExplicitTemplateParameterList( |
| 568 | LambdaIntroducer &Intro, SourceLocation LAngleLoc, |
| 569 | ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc, |
| 570 | ExprResult RequiresClause) { |
| 571 | LambdaScopeInfo *LSI = getCurLambda(); |
| 572 | assert(LSI && "Expected a lambda scope" ); |
| 573 | assert(LSI->NumExplicitTemplateParams == 0 && |
| 574 | "Already acted on explicit template parameters" ); |
| 575 | assert(LSI->TemplateParams.empty() && |
| 576 | "Explicit template parameters should come " |
| 577 | "before invented (auto) ones" ); |
| 578 | assert(!TParams.empty() && |
| 579 | "No template parameters to act on" ); |
| 580 | LSI->TemplateParams.append(in_start: TParams.begin(), in_end: TParams.end()); |
| 581 | LSI->NumExplicitTemplateParams = TParams.size(); |
| 582 | LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; |
| 583 | LSI->RequiresClause = RequiresClause; |
| 584 | } |
| 585 | |
| 586 | /// If this expression is an enumerator-like expression of some type |
| 587 | /// T, return the type T; otherwise, return null. |
| 588 | /// |
| 589 | /// Pointer comparisons on the result here should always work because |
| 590 | /// it's derived from either the parent of an EnumConstantDecl |
| 591 | /// (i.e. the definition) or the declaration returned by |
| 592 | /// EnumType::getDecl() (i.e. the definition). |
| 593 | static EnumDecl *findEnumForBlockReturn(Expr *E) { |
| 594 | // An expression is an enumerator-like expression of type T if, |
| 595 | // ignoring parens and parens-like expressions: |
| 596 | E = E->IgnoreParens(); |
| 597 | |
| 598 | // - it is an enumerator whose enum type is T or |
| 599 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
| 600 | if (EnumConstantDecl *D |
| 601 | = dyn_cast<EnumConstantDecl>(Val: DRE->getDecl())) { |
| 602 | return cast<EnumDecl>(Val: D->getDeclContext()); |
| 603 | } |
| 604 | return nullptr; |
| 605 | } |
| 606 | |
| 607 | // - it is a comma expression whose RHS is an enumerator-like |
| 608 | // expression of type T or |
| 609 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 610 | if (BO->getOpcode() == BO_Comma) |
| 611 | return findEnumForBlockReturn(E: BO->getRHS()); |
| 612 | return nullptr; |
| 613 | } |
| 614 | |
| 615 | // - it is a statement-expression whose value expression is an |
| 616 | // enumerator-like expression of type T or |
| 617 | if (StmtExpr *SE = dyn_cast<StmtExpr>(Val: E)) { |
| 618 | if (Expr *last = dyn_cast_or_null<Expr>(Val: SE->getSubStmt()->body_back())) |
| 619 | return findEnumForBlockReturn(E: last); |
| 620 | return nullptr; |
| 621 | } |
| 622 | |
| 623 | // - it is a ternary conditional operator (not the GNU ?: |
| 624 | // extension) whose second and third operands are |
| 625 | // enumerator-like expressions of type T or |
| 626 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 627 | if (EnumDecl *ED = findEnumForBlockReturn(E: CO->getTrueExpr())) |
| 628 | if (ED == findEnumForBlockReturn(E: CO->getFalseExpr())) |
| 629 | return ED; |
| 630 | return nullptr; |
| 631 | } |
| 632 | |
| 633 | // (implicitly:) |
| 634 | // - it is an implicit integral conversion applied to an |
| 635 | // enumerator-like expression of type T or |
| 636 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 637 | // We can sometimes see integral conversions in valid |
| 638 | // enumerator-like expressions. |
| 639 | if (ICE->getCastKind() == CK_IntegralCast) |
| 640 | return findEnumForBlockReturn(E: ICE->getSubExpr()); |
| 641 | |
| 642 | // Otherwise, just rely on the type. |
| 643 | } |
| 644 | |
| 645 | // - it is an expression of that formal enum type. |
| 646 | if (const EnumType *ET = E->getType()->getAs<EnumType>()) { |
| 647 | return ET->getDecl(); |
| 648 | } |
| 649 | |
| 650 | // Otherwise, nope. |
| 651 | return nullptr; |
| 652 | } |
| 653 | |
| 654 | /// Attempt to find a type T for which the returned expression of the |
| 655 | /// given statement is an enumerator-like expression of that type. |
| 656 | static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { |
| 657 | if (Expr *retValue = ret->getRetValue()) |
| 658 | return findEnumForBlockReturn(E: retValue); |
| 659 | return nullptr; |
| 660 | } |
| 661 | |
| 662 | /// Attempt to find a common type T for which all of the returned |
| 663 | /// expressions in a block are enumerator-like expressions of that |
| 664 | /// type. |
| 665 | static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { |
| 666 | ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); |
| 667 | |
| 668 | // Try to find one for the first return. |
| 669 | EnumDecl *ED = findEnumForBlockReturn(ret: *i); |
| 670 | if (!ED) return nullptr; |
| 671 | |
| 672 | // Check that the rest of the returns have the same enum. |
| 673 | for (++i; i != e; ++i) { |
| 674 | if (findEnumForBlockReturn(ret: *i) != ED) |
| 675 | return nullptr; |
| 676 | } |
| 677 | |
| 678 | // Never infer an anonymous enum type. |
| 679 | if (!ED->hasNameForLinkage()) return nullptr; |
| 680 | |
| 681 | return ED; |
| 682 | } |
| 683 | |
| 684 | /// Adjust the given return statements so that they formally return |
| 685 | /// the given type. It should require, at most, an IntegralCast. |
| 686 | static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, |
| 687 | QualType returnType) { |
| 688 | for (ArrayRef<ReturnStmt*>::iterator |
| 689 | i = returns.begin(), e = returns.end(); i != e; ++i) { |
| 690 | ReturnStmt *ret = *i; |
| 691 | Expr *retValue = ret->getRetValue(); |
| 692 | if (S.Context.hasSameType(T1: retValue->getType(), T2: returnType)) |
| 693 | continue; |
| 694 | |
| 695 | // Right now we only support integral fixup casts. |
| 696 | assert(returnType->isIntegralOrUnscopedEnumerationType()); |
| 697 | assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); |
| 698 | |
| 699 | ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: retValue); |
| 700 | |
| 701 | Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); |
| 702 | E = ImplicitCastExpr::Create(Context: S.Context, T: returnType, Kind: CK_IntegralCast, Operand: E, |
| 703 | /*base path*/ BasePath: nullptr, Cat: VK_PRValue, |
| 704 | FPO: FPOptionsOverride()); |
| 705 | if (cleanups) { |
| 706 | cleanups->setSubExpr(E); |
| 707 | } else { |
| 708 | ret->setRetValue(E); |
| 709 | } |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { |
| 714 | assert(CSI.HasImplicitReturnType); |
| 715 | // If it was ever a placeholder, it had to been deduced to DependentTy. |
| 716 | assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); |
| 717 | assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && |
| 718 | "lambda expressions use auto deduction in C++14 onwards" ); |
| 719 | |
| 720 | // C++ core issue 975: |
| 721 | // If a lambda-expression does not include a trailing-return-type, |
| 722 | // it is as if the trailing-return-type denotes the following type: |
| 723 | // - if there are no return statements in the compound-statement, |
| 724 | // or all return statements return either an expression of type |
| 725 | // void or no expression or braced-init-list, the type void; |
| 726 | // - otherwise, if all return statements return an expression |
| 727 | // and the types of the returned expressions after |
| 728 | // lvalue-to-rvalue conversion (4.1 [conv.lval]), |
| 729 | // array-to-pointer conversion (4.2 [conv.array]), and |
| 730 | // function-to-pointer conversion (4.3 [conv.func]) are the |
| 731 | // same, that common type; |
| 732 | // - otherwise, the program is ill-formed. |
| 733 | // |
| 734 | // C++ core issue 1048 additionally removes top-level cv-qualifiers |
| 735 | // from the types of returned expressions to match the C++14 auto |
| 736 | // deduction rules. |
| 737 | // |
| 738 | // In addition, in blocks in non-C++ modes, if all of the return |
| 739 | // statements are enumerator-like expressions of some type T, where |
| 740 | // T has a name for linkage, then we infer the return type of the |
| 741 | // block to be that type. |
| 742 | |
| 743 | // First case: no return statements, implicit void return type. |
| 744 | ASTContext &Ctx = getASTContext(); |
| 745 | if (CSI.Returns.empty()) { |
| 746 | // It's possible there were simply no /valid/ return statements. |
| 747 | // In this case, the first one we found may have at least given us a type. |
| 748 | if (CSI.ReturnType.isNull()) |
| 749 | CSI.ReturnType = Ctx.VoidTy; |
| 750 | return; |
| 751 | } |
| 752 | |
| 753 | // Second case: at least one return statement has dependent type. |
| 754 | // Delay type checking until instantiation. |
| 755 | assert(!CSI.ReturnType.isNull() && "We should have a tentative return type." ); |
| 756 | if (CSI.ReturnType->isDependentType()) |
| 757 | return; |
| 758 | |
| 759 | // Try to apply the enum-fuzz rule. |
| 760 | if (!getLangOpts().CPlusPlus) { |
| 761 | assert(isa<BlockScopeInfo>(CSI)); |
| 762 | const EnumDecl *ED = findCommonEnumForBlockReturns(returns: CSI.Returns); |
| 763 | if (ED) { |
| 764 | CSI.ReturnType = Context.getTypeDeclType(Decl: ED); |
| 765 | adjustBlockReturnsToEnum(S&: *this, returns: CSI.Returns, returnType: CSI.ReturnType); |
| 766 | return; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | // Third case: only one return statement. Don't bother doing extra work! |
| 771 | if (CSI.Returns.size() == 1) |
| 772 | return; |
| 773 | |
| 774 | // General case: many return statements. |
| 775 | // Check that they all have compatible return types. |
| 776 | |
| 777 | // We require the return types to strictly match here. |
| 778 | // Note that we've already done the required promotions as part of |
| 779 | // processing the return statement. |
| 780 | for (const ReturnStmt *RS : CSI.Returns) { |
| 781 | const Expr *RetE = RS->getRetValue(); |
| 782 | |
| 783 | QualType ReturnType = |
| 784 | (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); |
| 785 | if (Context.getCanonicalFunctionResultType(ResultType: ReturnType) == |
| 786 | Context.getCanonicalFunctionResultType(ResultType: CSI.ReturnType)) { |
| 787 | // Use the return type with the strictest possible nullability annotation. |
| 788 | auto RetTyNullability = ReturnType->getNullability(); |
| 789 | auto BlockNullability = CSI.ReturnType->getNullability(); |
| 790 | if (BlockNullability && |
| 791 | (!RetTyNullability || |
| 792 | hasWeakerNullability(L: *RetTyNullability, R: *BlockNullability))) |
| 793 | CSI.ReturnType = ReturnType; |
| 794 | continue; |
| 795 | } |
| 796 | |
| 797 | // FIXME: This is a poor diagnostic for ReturnStmts without expressions. |
| 798 | // TODO: It's possible that the *first* return is the divergent one. |
| 799 | Diag(Loc: RS->getBeginLoc(), |
| 800 | DiagID: diag::err_typecheck_missing_return_type_incompatible) |
| 801 | << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(Val: CSI); |
| 802 | // Continue iterating so that we keep emitting diagnostics. |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | QualType Sema::buildLambdaInitCaptureInitialization( |
| 807 | SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, |
| 808 | UnsignedOrNone NumExpansions, IdentifierInfo *Id, bool IsDirectInit, |
| 809 | Expr *&Init) { |
| 810 | // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to |
| 811 | // deduce against. |
| 812 | QualType DeductType = Context.getAutoDeductType(); |
| 813 | TypeLocBuilder TLB; |
| 814 | AutoTypeLoc TL = TLB.push<AutoTypeLoc>(T: DeductType); |
| 815 | TL.setNameLoc(Loc); |
| 816 | if (ByRef) { |
| 817 | DeductType = BuildReferenceType(T: DeductType, LValueRef: true, Loc, Entity: Id); |
| 818 | assert(!DeductType.isNull() && "can't build reference to auto" ); |
| 819 | TLB.push<ReferenceTypeLoc>(T: DeductType).setSigilLoc(Loc); |
| 820 | } |
| 821 | if (EllipsisLoc.isValid()) { |
| 822 | if (Init->containsUnexpandedParameterPack()) { |
| 823 | Diag(Loc: EllipsisLoc, DiagID: getLangOpts().CPlusPlus20 |
| 824 | ? diag::warn_cxx17_compat_init_capture_pack |
| 825 | : diag::ext_init_capture_pack); |
| 826 | DeductType = Context.getPackExpansionType(Pattern: DeductType, NumExpansions, |
| 827 | /*ExpectPackInType=*/false); |
| 828 | TLB.push<PackExpansionTypeLoc>(T: DeductType).setEllipsisLoc(EllipsisLoc); |
| 829 | } else { |
| 830 | // Just ignore the ellipsis for now and form a non-pack variable. We'll |
| 831 | // diagnose this later when we try to capture it. |
| 832 | } |
| 833 | } |
| 834 | TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, T: DeductType); |
| 835 | |
| 836 | // Deduce the type of the init capture. |
| 837 | QualType DeducedType = deduceVarTypeFromInitializer( |
| 838 | /*VarDecl*/VDecl: nullptr, Name: DeclarationName(Id), Type: DeductType, TSI, |
| 839 | Range: SourceRange(Loc, Loc), DirectInit: IsDirectInit, Init); |
| 840 | if (DeducedType.isNull()) |
| 841 | return QualType(); |
| 842 | |
| 843 | // Are we a non-list direct initialization? |
| 844 | ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Val: Init); |
| 845 | |
| 846 | // Perform initialization analysis and ensure any implicit conversions |
| 847 | // (such as lvalue-to-rvalue) are enforced. |
| 848 | InitializedEntity Entity = |
| 849 | InitializedEntity::InitializeLambdaCapture(VarID: Id, FieldType: DeducedType, Loc); |
| 850 | InitializationKind Kind = |
| 851 | IsDirectInit |
| 852 | ? (CXXDirectInit ? InitializationKind::CreateDirect( |
| 853 | InitLoc: Loc, LParenLoc: Init->getBeginLoc(), RParenLoc: Init->getEndLoc()) |
| 854 | : InitializationKind::CreateDirectList(InitLoc: Loc)) |
| 855 | : InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Init->getBeginLoc()); |
| 856 | |
| 857 | MultiExprArg Args = Init; |
| 858 | if (CXXDirectInit) |
| 859 | Args = |
| 860 | MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); |
| 861 | QualType DclT; |
| 862 | InitializationSequence InitSeq(*this, Entity, Kind, Args); |
| 863 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args, ResultType: &DclT); |
| 864 | |
| 865 | if (Result.isInvalid()) |
| 866 | return QualType(); |
| 867 | |
| 868 | Init = Result.getAs<Expr>(); |
| 869 | return DeducedType; |
| 870 | } |
| 871 | |
| 872 | VarDecl *Sema::createLambdaInitCaptureVarDecl( |
| 873 | SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, |
| 874 | IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) { |
| 875 | // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization |
| 876 | // rather than reconstructing it here. |
| 877 | TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(T: InitCaptureType, Loc); |
| 878 | if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) |
| 879 | PETL.setEllipsisLoc(EllipsisLoc); |
| 880 | |
| 881 | // Create a dummy variable representing the init-capture. This is not actually |
| 882 | // used as a variable, and only exists as a way to name and refer to the |
| 883 | // init-capture. |
| 884 | // FIXME: Pass in separate source locations for '&' and identifier. |
| 885 | VarDecl *NewVD = VarDecl::Create(C&: Context, DC: DeclCtx, StartLoc: Loc, IdLoc: Loc, Id, |
| 886 | T: InitCaptureType, TInfo: TSI, S: SC_Auto); |
| 887 | NewVD->setInitCapture(true); |
| 888 | NewVD->setReferenced(true); |
| 889 | // FIXME: Pass in a VarDecl::InitializationStyle. |
| 890 | NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); |
| 891 | NewVD->markUsed(C&: Context); |
| 892 | NewVD->setInit(Init); |
| 893 | if (NewVD->isParameterPack()) |
| 894 | getCurLambda()->LocalPacks.push_back(Elt: NewVD); |
| 895 | return NewVD; |
| 896 | } |
| 897 | |
| 898 | void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) { |
| 899 | assert(Var->isInitCapture() && "init capture flag should be set" ); |
| 900 | LSI->addCapture(Var, /*isBlock=*/false, isByref: ByRef, |
| 901 | /*isNested=*/false, Loc: Var->getLocation(), EllipsisLoc: SourceLocation(), |
| 902 | CaptureType: Var->getType(), /*Invalid=*/false); |
| 903 | } |
| 904 | |
| 905 | // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't |
| 906 | // check that the current lambda is in a consistent or fully constructed state. |
| 907 | static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) { |
| 908 | assert(!S.FunctionScopes.empty()); |
| 909 | return cast<LambdaScopeInfo>(Val: S.FunctionScopes[S.FunctionScopes.size() - 1]); |
| 910 | } |
| 911 | |
| 912 | static TypeSourceInfo * |
| 913 | getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) { |
| 914 | // C++11 [expr.prim.lambda]p4: |
| 915 | // If a lambda-expression does not include a lambda-declarator, it is as |
| 916 | // if the lambda-declarator were (). |
| 917 | FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention( |
| 918 | /*IsVariadic=*/false, /*IsCXXMethod=*/true)); |
| 919 | EPI.HasTrailingReturn = true; |
| 920 | EPI.TypeQuals.addConst(); |
| 921 | LangAS AS = S.getDefaultCXXMethodAddrSpace(); |
| 922 | if (AS != LangAS::Default) |
| 923 | EPI.TypeQuals.addAddressSpace(space: AS); |
| 924 | |
| 925 | // C++1y [expr.prim.lambda]: |
| 926 | // The lambda return type is 'auto', which is replaced by the |
| 927 | // trailing-return type if provided and/or deduced from 'return' |
| 928 | // statements |
| 929 | // We don't do this before C++1y, because we don't support deduced return |
| 930 | // types there. |
| 931 | QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14 |
| 932 | ? S.Context.getAutoDeductType() |
| 933 | : S.Context.DependentTy; |
| 934 | QualType MethodTy = |
| 935 | S.Context.getFunctionType(ResultTy: DefaultTypeForNoTrailingReturn, Args: {}, EPI); |
| 936 | return S.Context.getTrivialTypeSourceInfo(T: MethodTy, Loc); |
| 937 | } |
| 938 | |
| 939 | static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro, |
| 940 | Declarator &ParamInfo, Scope *CurScope, |
| 941 | SourceLocation Loc, |
| 942 | bool &ExplicitResultType) { |
| 943 | |
| 944 | ExplicitResultType = false; |
| 945 | |
| 946 | assert( |
| 947 | (ParamInfo.getDeclSpec().getStorageClassSpec() == |
| 948 | DeclSpec::SCS_unspecified || |
| 949 | ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) && |
| 950 | "Unexpected storage specifier" ); |
| 951 | bool IsLambdaStatic = |
| 952 | ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; |
| 953 | |
| 954 | TypeSourceInfo *MethodTyInfo; |
| 955 | |
| 956 | if (ParamInfo.getNumTypeObjects() == 0) { |
| 957 | MethodTyInfo = getDummyLambdaType(S, Loc); |
| 958 | } else { |
| 959 | // Check explicit parameters |
| 960 | S.CheckExplicitObjectLambda(D&: ParamInfo); |
| 961 | |
| 962 | DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); |
| 963 | |
| 964 | bool HasExplicitObjectParameter = |
| 965 | ParamInfo.isExplicitObjectMemberFunction(); |
| 966 | |
| 967 | ExplicitResultType = FTI.hasTrailingReturnType(); |
| 968 | if (!FTI.hasMutableQualifier() && !IsLambdaStatic && |
| 969 | !HasExplicitObjectParameter) |
| 970 | FTI.getOrCreateMethodQualifiers().SetTypeQual(T: DeclSpec::TQ_const, Loc); |
| 971 | |
| 972 | if (ExplicitResultType && S.getLangOpts().HLSL) { |
| 973 | QualType RetTy = FTI.getTrailingReturnType().get(); |
| 974 | if (!RetTy.isNull()) { |
| 975 | // HLSL does not support specifying an address space on a lambda return |
| 976 | // type. |
| 977 | LangAS AddressSpace = RetTy.getAddressSpace(); |
| 978 | if (AddressSpace != LangAS::Default) |
| 979 | S.Diag(Loc: FTI.getTrailingReturnTypeLoc(), |
| 980 | DiagID: diag::err_return_value_with_address_space); |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | MethodTyInfo = S.GetTypeForDeclarator(D&: ParamInfo); |
| 985 | assert(MethodTyInfo && "no type from lambda-declarator" ); |
| 986 | |
| 987 | // Check for unexpanded parameter packs in the method type. |
| 988 | if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) |
| 989 | S.DiagnoseUnexpandedParameterPack(Loc: Intro.Range.getBegin(), T: MethodTyInfo, |
| 990 | UPPC: S.UPPC_DeclarationType); |
| 991 | } |
| 992 | return MethodTyInfo; |
| 993 | } |
| 994 | |
| 995 | CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange, |
| 996 | CXXRecordDecl *Class) { |
| 997 | |
| 998 | // C++20 [expr.prim.lambda.closure]p3: |
| 999 | // The closure type for a lambda-expression has a public inline function |
| 1000 | // call operator (for a non-generic lambda) or function call operator |
| 1001 | // template (for a generic lambda) whose parameters and return type are |
| 1002 | // described by the lambda-expression's parameter-declaration-clause |
| 1003 | // and trailing-return-type respectively. |
| 1004 | DeclarationName MethodName = |
| 1005 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Call); |
| 1006 | DeclarationNameLoc MethodNameLoc = |
| 1007 | DeclarationNameLoc::makeCXXOperatorNameLoc(Range: IntroducerRange.getBegin()); |
| 1008 | CXXMethodDecl *Method = CXXMethodDecl::Create( |
| 1009 | C&: Context, RD: Class, StartLoc: SourceLocation(), |
| 1010 | NameInfo: DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), |
| 1011 | MethodNameLoc), |
| 1012 | T: QualType(), /*Tinfo=*/TInfo: nullptr, SC: SC_None, |
| 1013 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 1014 | /*isInline=*/true, ConstexprKind: ConstexprSpecKind::Unspecified, EndLocation: SourceLocation(), |
| 1015 | /*TrailingRequiresClause=*/{}); |
| 1016 | Method->setAccess(AS_public); |
| 1017 | return Method; |
| 1018 | } |
| 1019 | |
| 1020 | void Sema::AddTemplateParametersToLambdaCallOperator( |
| 1021 | CXXMethodDecl *CallOperator, CXXRecordDecl *Class, |
| 1022 | TemplateParameterList *TemplateParams) { |
| 1023 | assert(TemplateParams && "no template parameters" ); |
| 1024 | FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create( |
| 1025 | C&: Context, DC: Class, L: CallOperator->getLocation(), Name: CallOperator->getDeclName(), |
| 1026 | Params: TemplateParams, Decl: CallOperator); |
| 1027 | TemplateMethod->setAccess(AS_public); |
| 1028 | CallOperator->setDescribedFunctionTemplate(TemplateMethod); |
| 1029 | } |
| 1030 | |
| 1031 | void Sema::CompleteLambdaCallOperator( |
| 1032 | CXXMethodDecl *Method, SourceLocation LambdaLoc, |
| 1033 | SourceLocation CallOperatorLoc, |
| 1034 | const AssociatedConstraint &TrailingRequiresClause, |
| 1035 | TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind, |
| 1036 | StorageClass SC, ArrayRef<ParmVarDecl *> Params, |
| 1037 | bool HasExplicitResultType) { |
| 1038 | |
| 1039 | LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this); |
| 1040 | |
| 1041 | if (TrailingRequiresClause) |
| 1042 | Method->setTrailingRequiresClause(TrailingRequiresClause); |
| 1043 | |
| 1044 | TemplateParameterList *TemplateParams = |
| 1045 | getGenericLambdaTemplateParameterList(LSI, SemaRef&: *this); |
| 1046 | |
| 1047 | DeclContext *DC = Method->getLexicalDeclContext(); |
| 1048 | // DeclContext::addDecl() assumes that the DeclContext we're adding to is the |
| 1049 | // lexical context of the Method. Do so. |
| 1050 | Method->setLexicalDeclContext(LSI->Lambda); |
| 1051 | if (TemplateParams) { |
| 1052 | FunctionTemplateDecl *TemplateMethod = |
| 1053 | Method->getDescribedFunctionTemplate(); |
| 1054 | assert(TemplateMethod && |
| 1055 | "AddTemplateParametersToLambdaCallOperator should have been called" ); |
| 1056 | |
| 1057 | LSI->Lambda->addDecl(D: TemplateMethod); |
| 1058 | TemplateMethod->setLexicalDeclContext(DC); |
| 1059 | } else { |
| 1060 | LSI->Lambda->addDecl(D: Method); |
| 1061 | } |
| 1062 | LSI->Lambda->setLambdaIsGeneric(TemplateParams); |
| 1063 | LSI->Lambda->setLambdaTypeInfo(MethodTyInfo); |
| 1064 | |
| 1065 | Method->setLexicalDeclContext(DC); |
| 1066 | Method->setLocation(LambdaLoc); |
| 1067 | Method->setInnerLocStart(CallOperatorLoc); |
| 1068 | Method->setTypeSourceInfo(MethodTyInfo); |
| 1069 | Method->setType(buildTypeForLambdaCallOperator(S&: *this, Class: LSI->Lambda, |
| 1070 | TemplateParams, MethodTypeInfo: MethodTyInfo)); |
| 1071 | Method->setConstexprKind(ConstexprKind); |
| 1072 | Method->setStorageClass(SC); |
| 1073 | if (!Params.empty()) { |
| 1074 | CheckParmsForFunctionDef(Parameters: Params, /*CheckParameterNames=*/false); |
| 1075 | Method->setParams(Params); |
| 1076 | for (auto P : Method->parameters()) { |
| 1077 | assert(P && "null in a parameter list" ); |
| 1078 | P->setOwningFunction(Method); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | buildLambdaScopeReturnType(S&: *this, LSI, CallOperator: Method, ExplicitResultType: HasExplicitResultType); |
| 1083 | } |
| 1084 | |
| 1085 | void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro, |
| 1086 | Scope *CurrentScope) { |
| 1087 | |
| 1088 | LambdaScopeInfo *LSI = getCurLambda(); |
| 1089 | assert(LSI && "LambdaScopeInfo should be on stack!" ); |
| 1090 | |
| 1091 | if (Intro.Default == LCD_ByCopy) |
| 1092 | LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; |
| 1093 | else if (Intro.Default == LCD_ByRef) |
| 1094 | LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; |
| 1095 | LSI->CaptureDefaultLoc = Intro.DefaultLoc; |
| 1096 | LSI->IntroducerRange = Intro.Range; |
| 1097 | LSI->AfterParameterList = false; |
| 1098 | |
| 1099 | assert(LSI->NumExplicitTemplateParams == 0); |
| 1100 | |
| 1101 | // Determine if we're within a context where we know that the lambda will |
| 1102 | // be dependent, because there are template parameters in scope. |
| 1103 | CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind = |
| 1104 | CXXRecordDecl::LDK_Unknown; |
| 1105 | if (CurScope->getTemplateParamParent() != nullptr) { |
| 1106 | LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; |
| 1107 | } else if (Scope *P = CurScope->getParent()) { |
| 1108 | // Given a lambda defined inside a requires expression, |
| 1109 | // |
| 1110 | // struct S { |
| 1111 | // S(auto var) requires requires { [&] -> decltype(var) { }; } |
| 1112 | // {} |
| 1113 | // }; |
| 1114 | // |
| 1115 | // The parameter var is not injected into the function Decl at the point of |
| 1116 | // parsing lambda. In such scenarios, perceiving it as dependent could |
| 1117 | // result in the constraint being evaluated, which matches what GCC does. |
| 1118 | while (P->getEntity() && P->getEntity()->isRequiresExprBody()) |
| 1119 | P = P->getParent(); |
| 1120 | if (P->isFunctionDeclarationScope() && |
| 1121 | llvm::any_of(Range: P->decls(), P: [](Decl *D) { |
| 1122 | return isa<ParmVarDecl>(Val: D) && |
| 1123 | cast<ParmVarDecl>(Val: D)->getType()->isTemplateTypeParmType(); |
| 1124 | })) |
| 1125 | LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; |
| 1126 | } |
| 1127 | |
| 1128 | CXXRecordDecl *Class = createLambdaClosureType( |
| 1129 | IntroducerRange: Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, CaptureDefault: Intro.Default); |
| 1130 | LSI->Lambda = Class; |
| 1131 | |
| 1132 | CXXMethodDecl *Method = CreateLambdaCallOperator(IntroducerRange: Intro.Range, Class); |
| 1133 | LSI->CallOperator = Method; |
| 1134 | // Temporarily set the lexical declaration context to the current |
| 1135 | // context, so that the Scope stack matches the lexical nesting. |
| 1136 | Method->setLexicalDeclContext(CurContext); |
| 1137 | |
| 1138 | PushDeclContext(S: CurScope, DC: Method); |
| 1139 | |
| 1140 | bool ContainsUnexpandedParameterPack = false; |
| 1141 | |
| 1142 | // Distinct capture names, for diagnostics. |
| 1143 | llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames; |
| 1144 | |
| 1145 | // Handle explicit captures. |
| 1146 | SourceLocation PrevCaptureLoc = |
| 1147 | Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc; |
| 1148 | for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; |
| 1149 | PrevCaptureLoc = C->Loc, ++C) { |
| 1150 | if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { |
| 1151 | if (C->Kind == LCK_StarThis) |
| 1152 | Diag(Loc: C->Loc, DiagID: !getLangOpts().CPlusPlus17 |
| 1153 | ? diag::ext_star_this_lambda_capture_cxx17 |
| 1154 | : diag::warn_cxx14_compat_star_this_lambda_capture); |
| 1155 | |
| 1156 | // C++11 [expr.prim.lambda]p8: |
| 1157 | // An identifier or this shall not appear more than once in a |
| 1158 | // lambda-capture. |
| 1159 | if (LSI->isCXXThisCaptured()) { |
| 1160 | Diag(Loc: C->Loc, DiagID: diag::err_capture_more_than_once) |
| 1161 | << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) |
| 1162 | << FixItHint::CreateRemoval( |
| 1163 | RemoveRange: SourceRange(getLocForEndOfToken(Loc: PrevCaptureLoc), C->Loc)); |
| 1164 | continue; |
| 1165 | } |
| 1166 | |
| 1167 | // C++20 [expr.prim.lambda]p8: |
| 1168 | // If a lambda-capture includes a capture-default that is =, |
| 1169 | // each simple-capture of that lambda-capture shall be of the form |
| 1170 | // "&identifier", "this", or "* this". [ Note: The form [&,this] is |
| 1171 | // redundant but accepted for compatibility with ISO C++14. --end note ] |
| 1172 | if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) |
| 1173 | Diag(Loc: C->Loc, DiagID: !getLangOpts().CPlusPlus20 |
| 1174 | ? diag::ext_equals_this_lambda_capture_cxx20 |
| 1175 | : diag::warn_cxx17_compat_equals_this_lambda_capture); |
| 1176 | |
| 1177 | // C++11 [expr.prim.lambda]p12: |
| 1178 | // If this is captured by a local lambda expression, its nearest |
| 1179 | // enclosing function shall be a non-static member function. |
| 1180 | QualType ThisCaptureType = getCurrentThisType(); |
| 1181 | if (ThisCaptureType.isNull()) { |
| 1182 | Diag(Loc: C->Loc, DiagID: diag::err_this_capture) << true; |
| 1183 | continue; |
| 1184 | } |
| 1185 | |
| 1186 | CheckCXXThisCapture(Loc: C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, |
| 1187 | /*FunctionScopeIndexToStopAtPtr*/ FunctionScopeIndexToStopAt: nullptr, |
| 1188 | ByCopy: C->Kind == LCK_StarThis); |
| 1189 | if (!LSI->Captures.empty()) |
| 1190 | LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; |
| 1191 | continue; |
| 1192 | } |
| 1193 | |
| 1194 | assert(C->Id && "missing identifier for capture" ); |
| 1195 | |
| 1196 | if (C->Init.isInvalid()) |
| 1197 | continue; |
| 1198 | |
| 1199 | ValueDecl *Var = nullptr; |
| 1200 | if (C->Init.isUsable()) { |
| 1201 | Diag(Loc: C->Loc, DiagID: getLangOpts().CPlusPlus14 |
| 1202 | ? diag::warn_cxx11_compat_init_capture |
| 1203 | : diag::ext_init_capture); |
| 1204 | |
| 1205 | // If the initializer expression is usable, but the InitCaptureType |
| 1206 | // is not, then an error has occurred - so ignore the capture for now. |
| 1207 | // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. |
| 1208 | // FIXME: we should create the init capture variable and mark it invalid |
| 1209 | // in this case. |
| 1210 | if (C->InitCaptureType.get().isNull()) |
| 1211 | continue; |
| 1212 | |
| 1213 | if (C->Init.get()->containsUnexpandedParameterPack() && |
| 1214 | !C->InitCaptureType.get()->getAs<PackExpansionType>()) |
| 1215 | DiagnoseUnexpandedParameterPack(E: C->Init.get(), UPPC: UPPC_Initializer); |
| 1216 | |
| 1217 | unsigned InitStyle; |
| 1218 | switch (C->InitKind) { |
| 1219 | case LambdaCaptureInitKind::NoInit: |
| 1220 | llvm_unreachable("not an init-capture?" ); |
| 1221 | case LambdaCaptureInitKind::CopyInit: |
| 1222 | InitStyle = VarDecl::CInit; |
| 1223 | break; |
| 1224 | case LambdaCaptureInitKind::DirectInit: |
| 1225 | InitStyle = VarDecl::CallInit; |
| 1226 | break; |
| 1227 | case LambdaCaptureInitKind::ListInit: |
| 1228 | InitStyle = VarDecl::ListInit; |
| 1229 | break; |
| 1230 | } |
| 1231 | Var = createLambdaInitCaptureVarDecl(Loc: C->Loc, InitCaptureType: C->InitCaptureType.get(), |
| 1232 | EllipsisLoc: C->EllipsisLoc, Id: C->Id, InitStyle, |
| 1233 | Init: C->Init.get(), DeclCtx: Method); |
| 1234 | assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?" ); |
| 1235 | if (auto *V = dyn_cast<VarDecl>(Val: Var)) |
| 1236 | CheckShadow(S: CurrentScope, D: V); |
| 1237 | PushOnScopeChains(D: Var, S: CurrentScope, AddToContext: false); |
| 1238 | } else { |
| 1239 | assert(C->InitKind == LambdaCaptureInitKind::NoInit && |
| 1240 | "init capture has valid but null init?" ); |
| 1241 | |
| 1242 | // C++11 [expr.prim.lambda]p8: |
| 1243 | // If a lambda-capture includes a capture-default that is &, the |
| 1244 | // identifiers in the lambda-capture shall not be preceded by &. |
| 1245 | // If a lambda-capture includes a capture-default that is =, [...] |
| 1246 | // each identifier it contains shall be preceded by &. |
| 1247 | if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { |
| 1248 | Diag(Loc: C->Loc, DiagID: diag::err_reference_capture_with_reference_default) |
| 1249 | << FixItHint::CreateRemoval( |
| 1250 | RemoveRange: SourceRange(getLocForEndOfToken(Loc: PrevCaptureLoc), C->Loc)); |
| 1251 | continue; |
| 1252 | } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { |
| 1253 | Diag(Loc: C->Loc, DiagID: diag::err_copy_capture_with_copy_default) |
| 1254 | << FixItHint::CreateRemoval( |
| 1255 | RemoveRange: SourceRange(getLocForEndOfToken(Loc: PrevCaptureLoc), C->Loc)); |
| 1256 | continue; |
| 1257 | } |
| 1258 | |
| 1259 | // C++11 [expr.prim.lambda]p10: |
| 1260 | // The identifiers in a capture-list are looked up using the usual |
| 1261 | // rules for unqualified name lookup (3.4.1) |
| 1262 | DeclarationNameInfo Name(C->Id, C->Loc); |
| 1263 | LookupResult R(*this, Name, LookupOrdinaryName); |
| 1264 | LookupName(R, S: CurScope); |
| 1265 | if (R.isAmbiguous()) |
| 1266 | continue; |
| 1267 | if (R.empty()) { |
| 1268 | // FIXME: Disable corrections that would add qualification? |
| 1269 | CXXScopeSpec ScopeSpec; |
| 1270 | DeclFilterCCC<VarDecl> Validator{}; |
| 1271 | if (DiagnoseEmptyLookup(S: CurScope, SS&: ScopeSpec, R, CCC&: Validator)) |
| 1272 | continue; |
| 1273 | } |
| 1274 | |
| 1275 | if (auto *BD = R.getAsSingle<BindingDecl>()) |
| 1276 | Var = BD; |
| 1277 | else if (R.getAsSingle<FieldDecl>()) { |
| 1278 | Diag(Loc: C->Loc, DiagID: diag::err_capture_class_member_does_not_name_variable) |
| 1279 | << C->Id; |
| 1280 | continue; |
| 1281 | } else |
| 1282 | Var = R.getAsSingle<VarDecl>(); |
| 1283 | if (Var && DiagnoseUseOfDecl(D: Var, Locs: C->Loc)) |
| 1284 | continue; |
| 1285 | } |
| 1286 | |
| 1287 | // C++11 [expr.prim.lambda]p10: |
| 1288 | // [...] each such lookup shall find a variable with automatic storage |
| 1289 | // duration declared in the reaching scope of the local lambda expression. |
| 1290 | // Note that the 'reaching scope' check happens in tryCaptureVariable(). |
| 1291 | if (!Var) { |
| 1292 | Diag(Loc: C->Loc, DiagID: diag::err_capture_does_not_name_variable) << C->Id; |
| 1293 | continue; |
| 1294 | } |
| 1295 | |
| 1296 | // C++11 [expr.prim.lambda]p8: |
| 1297 | // An identifier or this shall not appear more than once in a |
| 1298 | // lambda-capture. |
| 1299 | if (auto [It, Inserted] = CaptureNames.insert(KV: std::pair{C->Id, Var}); |
| 1300 | !Inserted) { |
| 1301 | if (C->InitKind == LambdaCaptureInitKind::NoInit && |
| 1302 | !Var->isInitCapture()) { |
| 1303 | Diag(Loc: C->Loc, DiagID: diag::err_capture_more_than_once) |
| 1304 | << C->Id << It->second->getBeginLoc() |
| 1305 | << FixItHint::CreateRemoval( |
| 1306 | RemoveRange: SourceRange(getLocForEndOfToken(Loc: PrevCaptureLoc), C->Loc)); |
| 1307 | Var->setInvalidDecl(); |
| 1308 | } else if (Var && Var->isPlaceholderVar(LangOpts: getLangOpts())) { |
| 1309 | DiagPlaceholderVariableDefinition(Loc: C->Loc); |
| 1310 | } else { |
| 1311 | // Previous capture captured something different (one or both was |
| 1312 | // an init-capture): no fixit. |
| 1313 | Diag(Loc: C->Loc, DiagID: diag::err_capture_more_than_once) << C->Id; |
| 1314 | continue; |
| 1315 | } |
| 1316 | } |
| 1317 | |
| 1318 | // Ignore invalid decls; they'll just confuse the code later. |
| 1319 | if (Var->isInvalidDecl()) |
| 1320 | continue; |
| 1321 | |
| 1322 | VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); |
| 1323 | |
| 1324 | if (!Underlying->hasLocalStorage()) { |
| 1325 | Diag(Loc: C->Loc, DiagID: diag::err_capture_non_automatic_variable) << C->Id; |
| 1326 | Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << C->Id; |
| 1327 | continue; |
| 1328 | } |
| 1329 | |
| 1330 | // C++11 [expr.prim.lambda]p23: |
| 1331 | // A capture followed by an ellipsis is a pack expansion (14.5.3). |
| 1332 | SourceLocation EllipsisLoc; |
| 1333 | if (C->EllipsisLoc.isValid()) { |
| 1334 | if (Var->isParameterPack()) { |
| 1335 | EllipsisLoc = C->EllipsisLoc; |
| 1336 | } else { |
| 1337 | Diag(Loc: C->EllipsisLoc, DiagID: diag::err_pack_expansion_without_parameter_packs) |
| 1338 | << (C->Init.isUsable() ? C->Init.get()->getSourceRange() |
| 1339 | : SourceRange(C->Loc)); |
| 1340 | |
| 1341 | // Just ignore the ellipsis. |
| 1342 | } |
| 1343 | } else if (Var->isParameterPack()) { |
| 1344 | ContainsUnexpandedParameterPack = true; |
| 1345 | } |
| 1346 | |
| 1347 | if (C->Init.isUsable()) { |
| 1348 | addInitCapture(LSI, Var: cast<VarDecl>(Val: Var), ByRef: C->Kind == LCK_ByRef); |
| 1349 | } else { |
| 1350 | TryCaptureKind Kind = C->Kind == LCK_ByRef |
| 1351 | ? TryCaptureKind::ExplicitByRef |
| 1352 | : TryCaptureKind::ExplicitByVal; |
| 1353 | tryCaptureVariable(Var, Loc: C->Loc, Kind, EllipsisLoc); |
| 1354 | } |
| 1355 | if (!LSI->Captures.empty()) |
| 1356 | LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; |
| 1357 | } |
| 1358 | finishLambdaExplicitCaptures(LSI); |
| 1359 | LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; |
| 1360 | PopDeclContext(); |
| 1361 | } |
| 1362 | |
| 1363 | void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro, |
| 1364 | SourceLocation MutableLoc) { |
| 1365 | |
| 1366 | LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this); |
| 1367 | LSI->Mutable = MutableLoc.isValid(); |
| 1368 | ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false); |
| 1369 | |
| 1370 | // C++11 [expr.prim.lambda]p9: |
| 1371 | // A lambda-expression whose smallest enclosing scope is a block scope is a |
| 1372 | // local lambda expression; any other lambda expression shall not have a |
| 1373 | // capture-default or simple-capture in its lambda-introducer. |
| 1374 | // |
| 1375 | // For simple-captures, this is covered by the check below that any named |
| 1376 | // entity is a variable that can be captured. |
| 1377 | // |
| 1378 | // For DR1632, we also allow a capture-default in any context where we can |
| 1379 | // odr-use 'this' (in particular, in a default initializer for a non-static |
| 1380 | // data member). |
| 1381 | if (Intro.Default != LCD_None && |
| 1382 | !LSI->Lambda->getParent()->isFunctionOrMethod() && |
| 1383 | (getCurrentThisType().isNull() || |
| 1384 | CheckCXXThisCapture(Loc: SourceLocation(), /*Explicit=*/true, |
| 1385 | /*BuildAndDiagnose=*/false))) |
| 1386 | Diag(Loc: Intro.DefaultLoc, DiagID: diag::err_capture_default_non_local); |
| 1387 | } |
| 1388 | |
| 1389 | void Sema::ActOnLambdaClosureParameters( |
| 1390 | Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) { |
| 1391 | LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this); |
| 1392 | PushDeclContext(S: LambdaScope, DC: LSI->CallOperator); |
| 1393 | |
| 1394 | for (const DeclaratorChunk::ParamInfo &P : Params) { |
| 1395 | auto *Param = cast<ParmVarDecl>(Val: P.Param); |
| 1396 | Param->setOwningFunction(LSI->CallOperator); |
| 1397 | if (Param->getIdentifier()) |
| 1398 | PushOnScopeChains(D: Param, S: LambdaScope, AddToContext: false); |
| 1399 | } |
| 1400 | |
| 1401 | // After the parameter list, we may parse a noexcept/requires/trailing return |
| 1402 | // type which need to know whether the call operator constiture a dependent |
| 1403 | // context, so we need to setup the FunctionTemplateDecl of generic lambdas |
| 1404 | // now. |
| 1405 | TemplateParameterList *TemplateParams = |
| 1406 | getGenericLambdaTemplateParameterList(LSI, SemaRef&: *this); |
| 1407 | if (TemplateParams) { |
| 1408 | AddTemplateParametersToLambdaCallOperator(CallOperator: LSI->CallOperator, Class: LSI->Lambda, |
| 1409 | TemplateParams); |
| 1410 | LSI->Lambda->setLambdaIsGeneric(true); |
| 1411 | LSI->ContainsUnexpandedParameterPack |= |
| 1412 | TemplateParams->containsUnexpandedParameterPack(); |
| 1413 | } |
| 1414 | LSI->AfterParameterList = true; |
| 1415 | } |
| 1416 | |
| 1417 | void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, |
| 1418 | Declarator &ParamInfo, |
| 1419 | const DeclSpec &DS) { |
| 1420 | |
| 1421 | LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(S&: *this); |
| 1422 | LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier()); |
| 1423 | |
| 1424 | SmallVector<ParmVarDecl *, 8> Params; |
| 1425 | bool ExplicitResultType; |
| 1426 | |
| 1427 | SourceLocation TypeLoc, CallOperatorLoc; |
| 1428 | if (ParamInfo.getNumTypeObjects() == 0) { |
| 1429 | CallOperatorLoc = TypeLoc = Intro.Range.getEnd(); |
| 1430 | } else { |
| 1431 | unsigned Index; |
| 1432 | ParamInfo.isFunctionDeclarator(idx&: Index); |
| 1433 | const auto &Object = ParamInfo.getTypeObject(i: Index); |
| 1434 | TypeLoc = |
| 1435 | Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd(); |
| 1436 | CallOperatorLoc = ParamInfo.getSourceRange().getEnd(); |
| 1437 | } |
| 1438 | |
| 1439 | CXXRecordDecl *Class = LSI->Lambda; |
| 1440 | CXXMethodDecl *Method = LSI->CallOperator; |
| 1441 | |
| 1442 | TypeSourceInfo *MethodTyInfo = getLambdaType( |
| 1443 | S&: *this, Intro, ParamInfo, CurScope: getCurScope(), Loc: TypeLoc, ExplicitResultType); |
| 1444 | |
| 1445 | LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0; |
| 1446 | |
| 1447 | if (ParamInfo.isFunctionDeclarator() != 0 && |
| 1448 | !FTIHasSingleVoidParameter(FTI: ParamInfo.getFunctionTypeInfo())) { |
| 1449 | const auto &FTI = ParamInfo.getFunctionTypeInfo(); |
| 1450 | Params.reserve(N: Params.size()); |
| 1451 | for (unsigned I = 0; I < FTI.NumParams; ++I) { |
| 1452 | auto *Param = cast<ParmVarDecl>(Val: FTI.Params[I].Param); |
| 1453 | Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size()); |
| 1454 | Params.push_back(Elt: Param); |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | bool IsLambdaStatic = |
| 1459 | ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; |
| 1460 | |
| 1461 | CompleteLambdaCallOperator( |
| 1462 | Method, LambdaLoc: Intro.Range.getBegin(), CallOperatorLoc, |
| 1463 | TrailingRequiresClause: AssociatedConstraint(ParamInfo.getTrailingRequiresClause()), MethodTyInfo, |
| 1464 | ConstexprKind: ParamInfo.getDeclSpec().getConstexprSpecifier(), |
| 1465 | SC: IsLambdaStatic ? SC_Static : SC_None, Params, HasExplicitResultType: ExplicitResultType); |
| 1466 | |
| 1467 | CheckCXXDefaultArguments(FD: Method); |
| 1468 | |
| 1469 | // This represents the function body for the lambda function, check if we |
| 1470 | // have to apply optnone due to a pragma. |
| 1471 | AddRangeBasedOptnone(FD: Method); |
| 1472 | |
| 1473 | // code_seg attribute on lambda apply to the method. |
| 1474 | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction( |
| 1475 | FD: Method, /*IsDefinition=*/true)) |
| 1476 | Method->addAttr(A); |
| 1477 | |
| 1478 | // Attributes on the lambda apply to the method. |
| 1479 | ProcessDeclAttributes(S: CurScope, D: Method, PD: ParamInfo); |
| 1480 | |
| 1481 | if (Context.getTargetInfo().getTriple().isAArch64()) |
| 1482 | ARM().CheckSMEFunctionDefAttributes(FD: Method); |
| 1483 | |
| 1484 | // CUDA lambdas get implicit host and device attributes. |
| 1485 | if (getLangOpts().CUDA) |
| 1486 | CUDA().SetLambdaAttrs(Method); |
| 1487 | |
| 1488 | // OpenMP lambdas might get assumumption attributes. |
| 1489 | if (LangOpts.OpenMP) |
| 1490 | OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(D: Method); |
| 1491 | |
| 1492 | handleLambdaNumbering(Class, Method); |
| 1493 | |
| 1494 | for (auto &&C : LSI->Captures) { |
| 1495 | if (!C.isVariableCapture()) |
| 1496 | continue; |
| 1497 | ValueDecl *Var = C.getVariable(); |
| 1498 | if (Var && Var->isInitCapture()) { |
| 1499 | PushOnScopeChains(D: Var, S: CurScope, AddToContext: false); |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | auto CheckRedefinition = [&](ParmVarDecl *Param) { |
| 1504 | for (const auto &Capture : Intro.Captures) { |
| 1505 | if (Capture.Id == Param->getIdentifier()) { |
| 1506 | Diag(Loc: Param->getLocation(), DiagID: diag::err_parameter_shadow_capture); |
| 1507 | Diag(Loc: Capture.Loc, DiagID: diag::note_var_explicitly_captured_here) |
| 1508 | << Capture.Id << true; |
| 1509 | return false; |
| 1510 | } |
| 1511 | } |
| 1512 | return true; |
| 1513 | }; |
| 1514 | |
| 1515 | for (ParmVarDecl *P : Params) { |
| 1516 | if (!P->getIdentifier()) |
| 1517 | continue; |
| 1518 | if (CheckRedefinition(P)) |
| 1519 | CheckShadow(S: CurScope, D: P); |
| 1520 | PushOnScopeChains(D: P, S: CurScope); |
| 1521 | } |
| 1522 | |
| 1523 | // C++23 [expr.prim.lambda.capture]p5: |
| 1524 | // If an identifier in a capture appears as the declarator-id of a parameter |
| 1525 | // of the lambda-declarator's parameter-declaration-clause or as the name of a |
| 1526 | // template parameter of the lambda-expression's template-parameter-list, the |
| 1527 | // program is ill-formed. |
| 1528 | TemplateParameterList *TemplateParams = |
| 1529 | getGenericLambdaTemplateParameterList(LSI, SemaRef&: *this); |
| 1530 | if (TemplateParams) { |
| 1531 | for (const auto *TP : TemplateParams->asArray()) { |
| 1532 | if (!TP->getIdentifier()) |
| 1533 | continue; |
| 1534 | for (const auto &Capture : Intro.Captures) { |
| 1535 | if (Capture.Id == TP->getIdentifier()) { |
| 1536 | Diag(Loc: Capture.Loc, DiagID: diag::err_template_param_shadow) << Capture.Id; |
| 1537 | NoteTemplateParameterLocation(Decl: *TP); |
| 1538 | } |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | |
| 1543 | // C++20: dcl.decl.general p4: |
| 1544 | // The optional requires-clause ([temp.pre]) in an init-declarator or |
| 1545 | // member-declarator shall be present only if the declarator declares a |
| 1546 | // templated function ([dcl.fct]). |
| 1547 | if (const AssociatedConstraint &TRC = Method->getTrailingRequiresClause()) { |
| 1548 | // [temp.pre]/8: |
| 1549 | // An entity is templated if it is |
| 1550 | // - a template, |
| 1551 | // - an entity defined ([basic.def]) or created ([class.temporary]) in a |
| 1552 | // templated entity, |
| 1553 | // - a member of a templated entity, |
| 1554 | // - an enumerator for an enumeration that is a templated entity, or |
| 1555 | // - the closure type of a lambda-expression ([expr.prim.lambda.closure]) |
| 1556 | // appearing in the declaration of a templated entity. [Note 6: A local |
| 1557 | // class, a local or block variable, or a friend function defined in a |
| 1558 | // templated entity is a templated entity. — end note] |
| 1559 | // |
| 1560 | // A templated function is a function template or a function that is |
| 1561 | // templated. A templated class is a class template or a class that is |
| 1562 | // templated. A templated variable is a variable template or a variable |
| 1563 | // that is templated. |
| 1564 | |
| 1565 | // Note: we only have to check if this is defined in a template entity, OR |
| 1566 | // if we are a template, since the rest don't apply. The requires clause |
| 1567 | // applies to the call operator, which we already know is a member function, |
| 1568 | // AND defined. |
| 1569 | if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) { |
| 1570 | Diag(Loc: TRC.ConstraintExpr->getBeginLoc(), |
| 1571 | DiagID: diag::err_constrained_non_templated_function); |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | // Enter a new evaluation context to insulate the lambda from any |
| 1576 | // cleanups from the enclosing full-expression. |
| 1577 | PushExpressionEvaluationContextForFunction( |
| 1578 | NewContext: ExpressionEvaluationContext::PotentiallyEvaluated, FD: LSI->CallOperator); |
| 1579 | } |
| 1580 | |
| 1581 | void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, |
| 1582 | bool IsInstantiation) { |
| 1583 | LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: FunctionScopes.back()); |
| 1584 | |
| 1585 | // Leave the expression-evaluation context. |
| 1586 | DiscardCleanupsInEvaluationContext(); |
| 1587 | PopExpressionEvaluationContext(); |
| 1588 | |
| 1589 | // Leave the context of the lambda. |
| 1590 | if (!IsInstantiation) |
| 1591 | PopDeclContext(); |
| 1592 | |
| 1593 | // Finalize the lambda. |
| 1594 | CXXRecordDecl *Class = LSI->Lambda; |
| 1595 | Class->setInvalidDecl(); |
| 1596 | SmallVector<Decl*, 4> Fields(Class->fields()); |
| 1597 | ActOnFields(S: nullptr, RecLoc: Class->getLocation(), TagDecl: Class, Fields, LBrac: SourceLocation(), |
| 1598 | RBrac: SourceLocation(), AttrList: ParsedAttributesView()); |
| 1599 | CheckCompletedCXXClass(S: nullptr, Record: Class); |
| 1600 | |
| 1601 | PopFunctionScopeInfo(); |
| 1602 | } |
| 1603 | |
| 1604 | template <typename Func> |
| 1605 | static void repeatForLambdaConversionFunctionCallingConvs( |
| 1606 | Sema &S, const FunctionProtoType &CallOpProto, Func F) { |
| 1607 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( |
| 1608 | IsVariadic: CallOpProto.isVariadic(), /*IsCXXMethod=*/false); |
| 1609 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( |
| 1610 | IsVariadic: CallOpProto.isVariadic(), /*IsCXXMethod=*/true); |
| 1611 | CallingConv CallOpCC = CallOpProto.getCallConv(); |
| 1612 | |
| 1613 | /// Implement emitting a version of the operator for many of the calling |
| 1614 | /// conventions for MSVC, as described here: |
| 1615 | /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. |
| 1616 | /// Experimentally, we determined that cdecl, stdcall, fastcall, and |
| 1617 | /// vectorcall are generated by MSVC when it is supported by the target. |
| 1618 | /// Additionally, we are ensuring that the default-free/default-member and |
| 1619 | /// call-operator calling convention are generated as well. |
| 1620 | /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the |
| 1621 | /// 'member default', despite MSVC not doing so. We do this in order to ensure |
| 1622 | /// that someone who intentionally places 'thiscall' on the lambda call |
| 1623 | /// operator will still get that overload, since we don't have the a way of |
| 1624 | /// detecting the attribute by the time we get here. |
| 1625 | if (S.getLangOpts().MSVCCompat) { |
| 1626 | CallingConv Convs[] = { |
| 1627 | CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, |
| 1628 | DefaultFree, DefaultMember, CallOpCC}; |
| 1629 | llvm::sort(C&: Convs); |
| 1630 | llvm::iterator_range<CallingConv *> Range(std::begin(arr&: Convs), |
| 1631 | llvm::unique(R&: Convs)); |
| 1632 | const TargetInfo &TI = S.getASTContext().getTargetInfo(); |
| 1633 | |
| 1634 | for (CallingConv C : Range) { |
| 1635 | if (TI.checkCallingConvention(CC: C) == TargetInfo::CCCR_OK) |
| 1636 | F(C); |
| 1637 | } |
| 1638 | return; |
| 1639 | } |
| 1640 | |
| 1641 | if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { |
| 1642 | F(DefaultFree); |
| 1643 | F(DefaultMember); |
| 1644 | } else { |
| 1645 | F(CallOpCC); |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | // Returns the 'standard' calling convention to be used for the lambda |
| 1650 | // conversion function, that is, the 'free' function calling convention unless |
| 1651 | // it is overridden by a non-default calling convention attribute. |
| 1652 | static CallingConv |
| 1653 | getLambdaConversionFunctionCallConv(Sema &S, |
| 1654 | const FunctionProtoType *CallOpProto) { |
| 1655 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( |
| 1656 | IsVariadic: CallOpProto->isVariadic(), /*IsCXXMethod=*/false); |
| 1657 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( |
| 1658 | IsVariadic: CallOpProto->isVariadic(), /*IsCXXMethod=*/true); |
| 1659 | CallingConv CallOpCC = CallOpProto->getCallConv(); |
| 1660 | |
| 1661 | // If the call-operator hasn't been changed, return both the 'free' and |
| 1662 | // 'member' function calling convention. |
| 1663 | if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) |
| 1664 | return DefaultFree; |
| 1665 | return CallOpCC; |
| 1666 | } |
| 1667 | |
| 1668 | QualType Sema::getLambdaConversionFunctionResultType( |
| 1669 | const FunctionProtoType *CallOpProto, CallingConv CC) { |
| 1670 | const FunctionProtoType::ExtProtoInfo CallOpExtInfo = |
| 1671 | CallOpProto->getExtProtoInfo(); |
| 1672 | FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; |
| 1673 | InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(cc: CC); |
| 1674 | InvokerExtInfo.TypeQuals = Qualifiers(); |
| 1675 | assert(InvokerExtInfo.RefQualifier == RQ_None && |
| 1676 | "Lambda's call operator should not have a reference qualifier" ); |
| 1677 | return Context.getFunctionType(ResultTy: CallOpProto->getReturnType(), |
| 1678 | Args: CallOpProto->getParamTypes(), EPI: InvokerExtInfo); |
| 1679 | } |
| 1680 | |
| 1681 | /// Add a lambda's conversion to function pointer, as described in |
| 1682 | /// C++11 [expr.prim.lambda]p6. |
| 1683 | static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, |
| 1684 | CXXRecordDecl *Class, |
| 1685 | CXXMethodDecl *CallOperator, |
| 1686 | QualType InvokerFunctionTy) { |
| 1687 | // This conversion is explicitly disabled if the lambda's function has |
| 1688 | // pass_object_size attributes on any of its parameters. |
| 1689 | auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { |
| 1690 | return P->hasAttr<PassObjectSizeAttr>(); |
| 1691 | }; |
| 1692 | if (llvm::any_of(Range: CallOperator->parameters(), P: HasPassObjectSizeAttr)) |
| 1693 | return; |
| 1694 | |
| 1695 | // Add the conversion to function pointer. |
| 1696 | QualType PtrToFunctionTy = S.Context.getPointerType(T: InvokerFunctionTy); |
| 1697 | |
| 1698 | // Create the type of the conversion function. |
| 1699 | FunctionProtoType::ExtProtoInfo ConvExtInfo( |
| 1700 | S.Context.getDefaultCallingConvention( |
| 1701 | /*IsVariadic=*/false, /*IsCXXMethod=*/true)); |
| 1702 | // The conversion function is always const and noexcept. |
| 1703 | ConvExtInfo.TypeQuals = Qualifiers(); |
| 1704 | ConvExtInfo.TypeQuals.addConst(); |
| 1705 | ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; |
| 1706 | QualType ConvTy = S.Context.getFunctionType(ResultTy: PtrToFunctionTy, Args: {}, EPI: ConvExtInfo); |
| 1707 | |
| 1708 | SourceLocation Loc = IntroducerRange.getBegin(); |
| 1709 | DeclarationName ConversionName |
| 1710 | = S.Context.DeclarationNames.getCXXConversionFunctionName( |
| 1711 | Ty: S.Context.getCanonicalType(T: PtrToFunctionTy)); |
| 1712 | // Construct a TypeSourceInfo for the conversion function, and wire |
| 1713 | // all the parameters appropriately for the FunctionProtoTypeLoc |
| 1714 | // so that everything works during transformation/instantiation of |
| 1715 | // generic lambdas. |
| 1716 | // The main reason for wiring up the parameters of the conversion |
| 1717 | // function with that of the call operator is so that constructs |
| 1718 | // like the following work: |
| 1719 | // auto L = [](auto b) { <-- 1 |
| 1720 | // return [](auto a) -> decltype(a) { <-- 2 |
| 1721 | // return a; |
| 1722 | // }; |
| 1723 | // }; |
| 1724 | // int (*fp)(int) = L(5); |
| 1725 | // Because the trailing return type can contain DeclRefExprs that refer |
| 1726 | // to the original call operator's variables, we hijack the call |
| 1727 | // operators ParmVarDecls below. |
| 1728 | TypeSourceInfo *ConvNamePtrToFunctionTSI = |
| 1729 | S.Context.getTrivialTypeSourceInfo(T: PtrToFunctionTy, Loc); |
| 1730 | DeclarationNameLoc ConvNameLoc = |
| 1731 | DeclarationNameLoc::makeNamedTypeLoc(TInfo: ConvNamePtrToFunctionTSI); |
| 1732 | |
| 1733 | // The conversion function is a conversion to a pointer-to-function. |
| 1734 | TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(T: ConvTy, Loc); |
| 1735 | FunctionProtoTypeLoc ConvTL = |
| 1736 | ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); |
| 1737 | // Get the result of the conversion function which is a pointer-to-function. |
| 1738 | PointerTypeLoc PtrToFunctionTL = |
| 1739 | ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); |
| 1740 | // Do the same for the TypeSourceInfo that is used to name the conversion |
| 1741 | // operator. |
| 1742 | PointerTypeLoc ConvNamePtrToFunctionTL = |
| 1743 | ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); |
| 1744 | |
| 1745 | // Get the underlying function types that the conversion function will |
| 1746 | // be converting to (should match the type of the call operator). |
| 1747 | FunctionProtoTypeLoc CallOpConvTL = |
| 1748 | PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); |
| 1749 | FunctionProtoTypeLoc CallOpConvNameTL = |
| 1750 | ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); |
| 1751 | |
| 1752 | // Wire up the FunctionProtoTypeLocs with the call operator's parameters. |
| 1753 | // These parameter's are essentially used to transform the name and |
| 1754 | // the type of the conversion operator. By using the same parameters |
| 1755 | // as the call operator's we don't have to fix any back references that |
| 1756 | // the trailing return type of the call operator's uses (such as |
| 1757 | // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) |
| 1758 | // - we can simply use the return type of the call operator, and |
| 1759 | // everything should work. |
| 1760 | SmallVector<ParmVarDecl *, 4> InvokerParams; |
| 1761 | for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { |
| 1762 | ParmVarDecl *From = CallOperator->getParamDecl(i: I); |
| 1763 | |
| 1764 | InvokerParams.push_back(Elt: ParmVarDecl::Create( |
| 1765 | C&: S.Context, |
| 1766 | // Temporarily add to the TU. This is set to the invoker below. |
| 1767 | DC: S.Context.getTranslationUnitDecl(), StartLoc: From->getBeginLoc(), |
| 1768 | IdLoc: From->getLocation(), Id: From->getIdentifier(), T: From->getType(), |
| 1769 | TInfo: From->getTypeSourceInfo(), S: From->getStorageClass(), |
| 1770 | /*DefArg=*/nullptr)); |
| 1771 | CallOpConvTL.setParam(i: I, VD: From); |
| 1772 | CallOpConvNameTL.setParam(i: I, VD: From); |
| 1773 | } |
| 1774 | |
| 1775 | CXXConversionDecl *Conversion = CXXConversionDecl::Create( |
| 1776 | C&: S.Context, RD: Class, StartLoc: Loc, |
| 1777 | NameInfo: DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), T: ConvTy, TInfo: ConvTSI, |
| 1778 | UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(), |
| 1779 | /*isInline=*/true, ES: ExplicitSpecifier(), |
| 1780 | ConstexprKind: S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr |
| 1781 | : ConstexprSpecKind::Unspecified, |
| 1782 | EndLocation: CallOperator->getBody()->getEndLoc()); |
| 1783 | Conversion->setAccess(AS_public); |
| 1784 | Conversion->setImplicit(true); |
| 1785 | |
| 1786 | // A non-generic lambda may still be a templated entity. We need to preserve |
| 1787 | // constraints when converting the lambda to a function pointer. See GH63181. |
| 1788 | if (const AssociatedConstraint &Requires = |
| 1789 | CallOperator->getTrailingRequiresClause()) |
| 1790 | Conversion->setTrailingRequiresClause(Requires); |
| 1791 | |
| 1792 | if (Class->isGenericLambda()) { |
| 1793 | // Create a template version of the conversion operator, using the template |
| 1794 | // parameter list of the function call operator. |
| 1795 | FunctionTemplateDecl *TemplateCallOperator = |
| 1796 | CallOperator->getDescribedFunctionTemplate(); |
| 1797 | FunctionTemplateDecl *ConversionTemplate = |
| 1798 | FunctionTemplateDecl::Create(C&: S.Context, DC: Class, |
| 1799 | L: Loc, Name: ConversionName, |
| 1800 | Params: TemplateCallOperator->getTemplateParameters(), |
| 1801 | Decl: Conversion); |
| 1802 | ConversionTemplate->setAccess(AS_public); |
| 1803 | ConversionTemplate->setImplicit(true); |
| 1804 | Conversion->setDescribedFunctionTemplate(ConversionTemplate); |
| 1805 | Class->addDecl(D: ConversionTemplate); |
| 1806 | } else |
| 1807 | Class->addDecl(D: Conversion); |
| 1808 | |
| 1809 | // If the lambda is not static, we need to add a static member |
| 1810 | // function that will be the result of the conversion with a |
| 1811 | // certain unique ID. |
| 1812 | // When it is static we just return the static call operator instead. |
| 1813 | if (CallOperator->isImplicitObjectMemberFunction()) { |
| 1814 | DeclarationName InvokerName = |
| 1815 | &S.Context.Idents.get(Name: getLambdaStaticInvokerName()); |
| 1816 | // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() |
| 1817 | // we should get a prebuilt TrivialTypeSourceInfo from Context |
| 1818 | // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc |
| 1819 | // then rewire the parameters accordingly, by hoisting up the InvokeParams |
| 1820 | // loop below and then use its Params to set Invoke->setParams(...) below. |
| 1821 | // This would avoid the 'const' qualifier of the calloperator from |
| 1822 | // contaminating the type of the invoker, which is currently adjusted |
| 1823 | // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the |
| 1824 | // trailing return type of the invoker would require a visitor to rebuild |
| 1825 | // the trailing return type and adjusting all back DeclRefExpr's to refer |
| 1826 | // to the new static invoker parameters - not the call operator's. |
| 1827 | CXXMethodDecl *Invoke = CXXMethodDecl::Create( |
| 1828 | C&: S.Context, RD: Class, StartLoc: Loc, NameInfo: DeclarationNameInfo(InvokerName, Loc), |
| 1829 | T: InvokerFunctionTy, TInfo: CallOperator->getTypeSourceInfo(), SC: SC_Static, |
| 1830 | UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(), |
| 1831 | /*isInline=*/true, ConstexprKind: CallOperator->getConstexprKind(), |
| 1832 | EndLocation: CallOperator->getBody()->getEndLoc()); |
| 1833 | for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) |
| 1834 | InvokerParams[I]->setOwningFunction(Invoke); |
| 1835 | Invoke->setParams(InvokerParams); |
| 1836 | Invoke->setAccess(AS_private); |
| 1837 | Invoke->setImplicit(true); |
| 1838 | if (Class->isGenericLambda()) { |
| 1839 | FunctionTemplateDecl *TemplateCallOperator = |
| 1840 | CallOperator->getDescribedFunctionTemplate(); |
| 1841 | FunctionTemplateDecl *StaticInvokerTemplate = |
| 1842 | FunctionTemplateDecl::Create( |
| 1843 | C&: S.Context, DC: Class, L: Loc, Name: InvokerName, |
| 1844 | Params: TemplateCallOperator->getTemplateParameters(), Decl: Invoke); |
| 1845 | StaticInvokerTemplate->setAccess(AS_private); |
| 1846 | StaticInvokerTemplate->setImplicit(true); |
| 1847 | Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); |
| 1848 | Class->addDecl(D: StaticInvokerTemplate); |
| 1849 | } else |
| 1850 | Class->addDecl(D: Invoke); |
| 1851 | } |
| 1852 | } |
| 1853 | |
| 1854 | /// Add a lambda's conversion to function pointers, as described in |
| 1855 | /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a |
| 1856 | /// single pointer conversion. In the event that the default calling convention |
| 1857 | /// for free and member functions is different, it will emit both conventions. |
| 1858 | static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, |
| 1859 | CXXRecordDecl *Class, |
| 1860 | CXXMethodDecl *CallOperator) { |
| 1861 | const FunctionProtoType *CallOpProto = |
| 1862 | CallOperator->getType()->castAs<FunctionProtoType>(); |
| 1863 | |
| 1864 | repeatForLambdaConversionFunctionCallingConvs( |
| 1865 | S, CallOpProto: *CallOpProto, F: [&](CallingConv CC) { |
| 1866 | QualType InvokerFunctionTy = |
| 1867 | S.getLambdaConversionFunctionResultType(CallOpProto, CC); |
| 1868 | addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, |
| 1869 | InvokerFunctionTy); |
| 1870 | }); |
| 1871 | } |
| 1872 | |
| 1873 | /// Add a lambda's conversion to block pointer. |
| 1874 | static void addBlockPointerConversion(Sema &S, |
| 1875 | SourceRange IntroducerRange, |
| 1876 | CXXRecordDecl *Class, |
| 1877 | CXXMethodDecl *CallOperator) { |
| 1878 | const FunctionProtoType *CallOpProto = |
| 1879 | CallOperator->getType()->castAs<FunctionProtoType>(); |
| 1880 | QualType FunctionTy = S.getLambdaConversionFunctionResultType( |
| 1881 | CallOpProto, CC: getLambdaConversionFunctionCallConv(S, CallOpProto)); |
| 1882 | QualType BlockPtrTy = S.Context.getBlockPointerType(T: FunctionTy); |
| 1883 | |
| 1884 | FunctionProtoType::ExtProtoInfo ConversionEPI( |
| 1885 | S.Context.getDefaultCallingConvention( |
| 1886 | /*IsVariadic=*/false, /*IsCXXMethod=*/true)); |
| 1887 | ConversionEPI.TypeQuals = Qualifiers(); |
| 1888 | ConversionEPI.TypeQuals.addConst(); |
| 1889 | QualType ConvTy = S.Context.getFunctionType(ResultTy: BlockPtrTy, Args: {}, EPI: ConversionEPI); |
| 1890 | |
| 1891 | SourceLocation Loc = IntroducerRange.getBegin(); |
| 1892 | DeclarationName Name |
| 1893 | = S.Context.DeclarationNames.getCXXConversionFunctionName( |
| 1894 | Ty: S.Context.getCanonicalType(T: BlockPtrTy)); |
| 1895 | DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( |
| 1896 | TInfo: S.Context.getTrivialTypeSourceInfo(T: BlockPtrTy, Loc)); |
| 1897 | CXXConversionDecl *Conversion = CXXConversionDecl::Create( |
| 1898 | C&: S.Context, RD: Class, StartLoc: Loc, NameInfo: DeclarationNameInfo(Name, Loc, NameLoc), T: ConvTy, |
| 1899 | TInfo: S.Context.getTrivialTypeSourceInfo(T: ConvTy, Loc), |
| 1900 | UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(), |
| 1901 | /*isInline=*/true, ES: ExplicitSpecifier(), ConstexprKind: ConstexprSpecKind::Unspecified, |
| 1902 | EndLocation: CallOperator->getBody()->getEndLoc()); |
| 1903 | Conversion->setAccess(AS_public); |
| 1904 | Conversion->setImplicit(true); |
| 1905 | Class->addDecl(D: Conversion); |
| 1906 | } |
| 1907 | |
| 1908 | ExprResult Sema::BuildCaptureInit(const Capture &Cap, |
| 1909 | SourceLocation ImplicitCaptureLoc, |
| 1910 | bool IsOpenMPMapping) { |
| 1911 | // VLA captures don't have a stored initialization expression. |
| 1912 | if (Cap.isVLATypeCapture()) |
| 1913 | return ExprResult(); |
| 1914 | |
| 1915 | // An init-capture is initialized directly from its stored initializer. |
| 1916 | if (Cap.isInitCapture()) |
| 1917 | return cast<VarDecl>(Val: Cap.getVariable())->getInit(); |
| 1918 | |
| 1919 | // For anything else, build an initialization expression. For an implicit |
| 1920 | // capture, the capture notionally happens at the capture-default, so use |
| 1921 | // that location here. |
| 1922 | SourceLocation Loc = |
| 1923 | ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); |
| 1924 | |
| 1925 | // C++11 [expr.prim.lambda]p21: |
| 1926 | // When the lambda-expression is evaluated, the entities that |
| 1927 | // are captured by copy are used to direct-initialize each |
| 1928 | // corresponding non-static data member of the resulting closure |
| 1929 | // object. (For array members, the array elements are |
| 1930 | // direct-initialized in increasing subscript order.) These |
| 1931 | // initializations are performed in the (unspecified) order in |
| 1932 | // which the non-static data members are declared. |
| 1933 | |
| 1934 | // C++ [expr.prim.lambda]p12: |
| 1935 | // An entity captured by a lambda-expression is odr-used (3.2) in |
| 1936 | // the scope containing the lambda-expression. |
| 1937 | ExprResult Init; |
| 1938 | IdentifierInfo *Name = nullptr; |
| 1939 | if (Cap.isThisCapture()) { |
| 1940 | QualType ThisTy = getCurrentThisType(); |
| 1941 | Expr *This = BuildCXXThisExpr(Loc, Type: ThisTy, IsImplicit: ImplicitCaptureLoc.isValid()); |
| 1942 | if (Cap.isCopyCapture()) |
| 1943 | Init = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: This); |
| 1944 | else |
| 1945 | Init = This; |
| 1946 | } else { |
| 1947 | assert(Cap.isVariableCapture() && "unknown kind of capture" ); |
| 1948 | ValueDecl *Var = Cap.getVariable(); |
| 1949 | Name = Var->getIdentifier(); |
| 1950 | Init = BuildDeclarationNameExpr( |
| 1951 | SS: CXXScopeSpec(), NameInfo: DeclarationNameInfo(Var->getDeclName(), Loc), D: Var); |
| 1952 | } |
| 1953 | |
| 1954 | // In OpenMP, the capture kind doesn't actually describe how to capture: |
| 1955 | // variables are "mapped" onto the device in a process that does not formally |
| 1956 | // make a copy, even for a "copy capture". |
| 1957 | if (IsOpenMPMapping) |
| 1958 | return Init; |
| 1959 | |
| 1960 | if (Init.isInvalid()) |
| 1961 | return ExprError(); |
| 1962 | |
| 1963 | Expr *InitExpr = Init.get(); |
| 1964 | InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( |
| 1965 | VarID: Name, FieldType: Cap.getCaptureType(), Loc); |
| 1966 | InitializationKind InitKind = |
| 1967 | InitializationKind::CreateDirect(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc); |
| 1968 | InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); |
| 1969 | return InitSeq.Perform(S&: *this, Entity, Kind: InitKind, Args: InitExpr); |
| 1970 | } |
| 1971 | |
| 1972 | ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body) { |
| 1973 | LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(Val: FunctionScopes.back()); |
| 1974 | |
| 1975 | if (LSI.CallOperator->hasAttr<SYCLKernelEntryPointAttr>()) |
| 1976 | SYCL().CheckSYCLEntryPointFunctionDecl(FD: LSI.CallOperator); |
| 1977 | |
| 1978 | ActOnFinishFunctionBody(Decl: LSI.CallOperator, Body); |
| 1979 | |
| 1980 | return BuildLambdaExpr(StartLoc, EndLoc: Body->getEndLoc(), LSI: &LSI); |
| 1981 | } |
| 1982 | |
| 1983 | static LambdaCaptureDefault |
| 1984 | mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { |
| 1985 | switch (ICS) { |
| 1986 | case CapturingScopeInfo::ImpCap_None: |
| 1987 | return LCD_None; |
| 1988 | case CapturingScopeInfo::ImpCap_LambdaByval: |
| 1989 | return LCD_ByCopy; |
| 1990 | case CapturingScopeInfo::ImpCap_CapturedRegion: |
| 1991 | case CapturingScopeInfo::ImpCap_LambdaByref: |
| 1992 | return LCD_ByRef; |
| 1993 | case CapturingScopeInfo::ImpCap_Block: |
| 1994 | llvm_unreachable("block capture in lambda" ); |
| 1995 | } |
| 1996 | llvm_unreachable("Unknown implicit capture style" ); |
| 1997 | } |
| 1998 | |
| 1999 | bool Sema::CaptureHasSideEffects(const Capture &From) { |
| 2000 | if (From.isInitCapture()) { |
| 2001 | Expr *Init = cast<VarDecl>(Val: From.getVariable())->getInit(); |
| 2002 | if (Init && Init->HasSideEffects(Ctx: Context)) |
| 2003 | return true; |
| 2004 | } |
| 2005 | |
| 2006 | if (!From.isCopyCapture()) |
| 2007 | return false; |
| 2008 | |
| 2009 | const QualType T = From.isThisCapture() |
| 2010 | ? getCurrentThisType()->getPointeeType() |
| 2011 | : From.getCaptureType(); |
| 2012 | |
| 2013 | if (T.isVolatileQualified()) |
| 2014 | return true; |
| 2015 | |
| 2016 | const Type *BaseT = T->getBaseElementTypeUnsafe(); |
| 2017 | if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) |
| 2018 | return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || |
| 2019 | !RD->hasTrivialDestructor(); |
| 2020 | |
| 2021 | return false; |
| 2022 | } |
| 2023 | |
| 2024 | bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, |
| 2025 | SourceRange FixItRange, |
| 2026 | const Capture &From) { |
| 2027 | if (CaptureHasSideEffects(From)) |
| 2028 | return false; |
| 2029 | |
| 2030 | if (From.isVLATypeCapture()) |
| 2031 | return false; |
| 2032 | |
| 2033 | // FIXME: maybe we should warn on these if we can find a sensible diagnostic |
| 2034 | // message |
| 2035 | if (From.isInitCapture() && |
| 2036 | From.getVariable()->isPlaceholderVar(LangOpts: getLangOpts())) |
| 2037 | return false; |
| 2038 | |
| 2039 | auto diag = Diag(Loc: From.getLocation(), DiagID: diag::warn_unused_lambda_capture); |
| 2040 | if (From.isThisCapture()) |
| 2041 | diag << "'this'" ; |
| 2042 | else |
| 2043 | diag << From.getVariable(); |
| 2044 | diag << From.isNonODRUsed(); |
| 2045 | // If we were able to resolve the fixit range we'll create a fixit, |
| 2046 | // otherwise we just use the raw capture range for the diagnostic. |
| 2047 | if (FixItRange.isValid()) |
| 2048 | diag << FixItHint::CreateRemoval(RemoveRange: FixItRange); |
| 2049 | else |
| 2050 | diag << CaptureRange; |
| 2051 | return true; |
| 2052 | } |
| 2053 | |
| 2054 | /// Create a field within the lambda class or captured statement record for the |
| 2055 | /// given capture. |
| 2056 | FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, |
| 2057 | const sema::Capture &Capture) { |
| 2058 | SourceLocation Loc = Capture.getLocation(); |
| 2059 | QualType FieldType = Capture.getCaptureType(); |
| 2060 | |
| 2061 | TypeSourceInfo *TSI = nullptr; |
| 2062 | if (Capture.isVariableCapture()) { |
| 2063 | const auto *Var = dyn_cast_or_null<VarDecl>(Val: Capture.getVariable()); |
| 2064 | if (Var && Var->isInitCapture()) |
| 2065 | TSI = Var->getTypeSourceInfo(); |
| 2066 | } |
| 2067 | |
| 2068 | // FIXME: Should we really be doing this? A null TypeSourceInfo seems more |
| 2069 | // appropriate, at least for an implicit capture. |
| 2070 | if (!TSI) |
| 2071 | TSI = Context.getTrivialTypeSourceInfo(T: FieldType, Loc); |
| 2072 | |
| 2073 | // Build the non-static data member. |
| 2074 | FieldDecl *Field = |
| 2075 | FieldDecl::Create(C: Context, DC: RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, |
| 2076 | /*Id=*/nullptr, T: FieldType, TInfo: TSI, /*BW=*/nullptr, |
| 2077 | /*Mutable=*/false, InitStyle: ICIS_NoInit); |
| 2078 | // If the variable being captured has an invalid type, mark the class as |
| 2079 | // invalid as well. |
| 2080 | if (!FieldType->isDependentType()) { |
| 2081 | if (RequireCompleteSizedType(Loc, T: FieldType, |
| 2082 | DiagID: diag::err_field_incomplete_or_sizeless)) { |
| 2083 | RD->setInvalidDecl(); |
| 2084 | Field->setInvalidDecl(); |
| 2085 | } else { |
| 2086 | NamedDecl *Def; |
| 2087 | FieldType->isIncompleteType(Def: &Def); |
| 2088 | if (Def && Def->isInvalidDecl()) { |
| 2089 | RD->setInvalidDecl(); |
| 2090 | Field->setInvalidDecl(); |
| 2091 | } |
| 2092 | } |
| 2093 | } |
| 2094 | Field->setImplicit(true); |
| 2095 | Field->setAccess(AS_private); |
| 2096 | RD->addDecl(D: Field); |
| 2097 | |
| 2098 | if (Capture.isVLATypeCapture()) |
| 2099 | Field->setCapturedVLAType(Capture.getCapturedVLAType()); |
| 2100 | |
| 2101 | return Field; |
| 2102 | } |
| 2103 | |
| 2104 | static SourceRange |
| 2105 | ConstructFixItRangeForUnusedCapture(Sema &S, SourceRange CaptureRange, |
| 2106 | SourceLocation PrevCaptureLoc, |
| 2107 | bool CurHasPreviousCapture, bool IsLast) { |
| 2108 | if (!CaptureRange.isValid()) |
| 2109 | return SourceRange(); |
| 2110 | |
| 2111 | auto GetTrailingEndLocation = [&](SourceLocation StartPoint) { |
| 2112 | SourceRange NextToken = S.getRangeForNextToken( |
| 2113 | Loc: StartPoint, /*IncludeMacros=*/false, /*IncludeComments=*/true); |
| 2114 | if (!NextToken.isValid()) |
| 2115 | return SourceLocation(); |
| 2116 | // Return the last location preceding the next token |
| 2117 | return NextToken.getBegin().getLocWithOffset(Offset: -1); |
| 2118 | }; |
| 2119 | |
| 2120 | if (!CurHasPreviousCapture && !IsLast) { |
| 2121 | // If there are no captures preceding this capture, remove the |
| 2122 | // trailing comma and anything up to the next token |
| 2123 | SourceRange CommaRange = |
| 2124 | S.getRangeForNextToken(Loc: CaptureRange.getEnd(), /*IncludeMacros=*/false, |
| 2125 | /*IncludeComments=*/false, ExpectedToken: tok::comma); |
| 2126 | SourceLocation FixItEnd = GetTrailingEndLocation(CommaRange.getBegin()); |
| 2127 | return SourceRange(CaptureRange.getBegin(), FixItEnd); |
| 2128 | } |
| 2129 | |
| 2130 | // Otherwise, remove the comma since the last used capture, and |
| 2131 | // anything up to the next token |
| 2132 | SourceLocation FixItStart = S.getLocForEndOfToken(Loc: PrevCaptureLoc); |
| 2133 | SourceLocation FixItEnd = GetTrailingEndLocation(CaptureRange.getEnd()); |
| 2134 | return SourceRange(FixItStart, FixItEnd); |
| 2135 | } |
| 2136 | |
| 2137 | ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, |
| 2138 | LambdaScopeInfo *LSI) { |
| 2139 | // Collect information from the lambda scope. |
| 2140 | SmallVector<LambdaCapture, 4> Captures; |
| 2141 | SmallVector<Expr *, 4> CaptureInits; |
| 2142 | SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; |
| 2143 | LambdaCaptureDefault CaptureDefault = |
| 2144 | mapImplicitCaptureStyle(ICS: LSI->ImpCaptureStyle); |
| 2145 | CXXRecordDecl *Class; |
| 2146 | CXXMethodDecl *CallOperator; |
| 2147 | SourceRange IntroducerRange; |
| 2148 | bool ExplicitParams; |
| 2149 | bool ExplicitResultType; |
| 2150 | CleanupInfo LambdaCleanup; |
| 2151 | bool ContainsUnexpandedParameterPack; |
| 2152 | bool IsGenericLambda; |
| 2153 | { |
| 2154 | CallOperator = LSI->CallOperator; |
| 2155 | Class = LSI->Lambda; |
| 2156 | IntroducerRange = LSI->IntroducerRange; |
| 2157 | ExplicitParams = LSI->ExplicitParams; |
| 2158 | ExplicitResultType = !LSI->HasImplicitReturnType; |
| 2159 | LambdaCleanup = LSI->Cleanup; |
| 2160 | ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; |
| 2161 | IsGenericLambda = Class->isGenericLambda(); |
| 2162 | |
| 2163 | CallOperator->setLexicalDeclContext(Class); |
| 2164 | Decl *TemplateOrNonTemplateCallOperatorDecl = |
| 2165 | CallOperator->getDescribedFunctionTemplate() |
| 2166 | ? CallOperator->getDescribedFunctionTemplate() |
| 2167 | : cast<Decl>(Val: CallOperator); |
| 2168 | |
| 2169 | // FIXME: Is this really the best choice? Keeping the lexical decl context |
| 2170 | // set as CurContext seems more faithful to the source. |
| 2171 | TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); |
| 2172 | |
| 2173 | PopExpressionEvaluationContext(); |
| 2174 | |
| 2175 | // True if the current capture has a used capture or default before it. |
| 2176 | bool CurHasPreviousCapture = CaptureDefault != LCD_None; |
| 2177 | SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? |
| 2178 | CaptureDefaultLoc : IntroducerRange.getBegin(); |
| 2179 | |
| 2180 | for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { |
| 2181 | const Capture &From = LSI->Captures[I]; |
| 2182 | |
| 2183 | if (From.isInvalid()) |
| 2184 | return ExprError(); |
| 2185 | |
| 2186 | assert(!From.isBlockCapture() && "Cannot capture __block variables" ); |
| 2187 | bool IsImplicit = I >= LSI->NumExplicitCaptures; |
| 2188 | SourceLocation ImplicitCaptureLoc = |
| 2189 | IsImplicit ? CaptureDefaultLoc : SourceLocation(); |
| 2190 | |
| 2191 | // Use source ranges of explicit captures for fixits where available. |
| 2192 | SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; |
| 2193 | |
| 2194 | // Warn about unused explicit captures. |
| 2195 | bool IsCaptureUsed = true; |
| 2196 | if (!CurContext->isDependentContext() && !IsImplicit && |
| 2197 | !From.isODRUsed()) { |
| 2198 | // Initialized captures that are non-ODR used may not be eliminated. |
| 2199 | // FIXME: Where did the IsGenericLambda here come from? |
| 2200 | bool NonODRUsedInitCapture = |
| 2201 | IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); |
| 2202 | if (!NonODRUsedInitCapture) { |
| 2203 | bool IsLast = (I + 1) == LSI->NumExplicitCaptures; |
| 2204 | SourceRange FixItRange = ConstructFixItRangeForUnusedCapture( |
| 2205 | S&: *this, CaptureRange, PrevCaptureLoc, CurHasPreviousCapture, |
| 2206 | IsLast); |
| 2207 | IsCaptureUsed = |
| 2208 | !DiagnoseUnusedLambdaCapture(CaptureRange, FixItRange, From); |
| 2209 | } |
| 2210 | } |
| 2211 | |
| 2212 | if (CaptureRange.isValid()) { |
| 2213 | CurHasPreviousCapture |= IsCaptureUsed; |
| 2214 | PrevCaptureLoc = CaptureRange.getEnd(); |
| 2215 | } |
| 2216 | |
| 2217 | // Map the capture to our AST representation. |
| 2218 | LambdaCapture Capture = [&] { |
| 2219 | if (From.isThisCapture()) { |
| 2220 | // Capturing 'this' implicitly with a default of '[=]' is deprecated, |
| 2221 | // because it results in a reference capture. Don't warn prior to |
| 2222 | // C++2a; there's nothing that can be done about it before then. |
| 2223 | if (getLangOpts().CPlusPlus20 && IsImplicit && |
| 2224 | CaptureDefault == LCD_ByCopy) { |
| 2225 | Diag(Loc: From.getLocation(), DiagID: diag::warn_deprecated_this_capture); |
| 2226 | Diag(Loc: CaptureDefaultLoc, DiagID: diag::note_deprecated_this_capture) |
| 2227 | << FixItHint::CreateInsertion( |
| 2228 | InsertionLoc: getLocForEndOfToken(Loc: CaptureDefaultLoc), Code: ", this" ); |
| 2229 | } |
| 2230 | return LambdaCapture(From.getLocation(), IsImplicit, |
| 2231 | From.isCopyCapture() ? LCK_StarThis : LCK_This); |
| 2232 | } else if (From.isVLATypeCapture()) { |
| 2233 | return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); |
| 2234 | } else { |
| 2235 | assert(From.isVariableCapture() && "unknown kind of capture" ); |
| 2236 | ValueDecl *Var = From.getVariable(); |
| 2237 | LambdaCaptureKind Kind = |
| 2238 | From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; |
| 2239 | return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, |
| 2240 | From.getEllipsisLoc()); |
| 2241 | } |
| 2242 | }(); |
| 2243 | |
| 2244 | // Form the initializer for the capture field. |
| 2245 | ExprResult Init = BuildCaptureInit(Cap: From, ImplicitCaptureLoc); |
| 2246 | |
| 2247 | // FIXME: Skip this capture if the capture is not used, the initializer |
| 2248 | // has no side-effects, the type of the capture is trivial, and the |
| 2249 | // lambda is not externally visible. |
| 2250 | |
| 2251 | // Add a FieldDecl for the capture and form its initializer. |
| 2252 | BuildCaptureField(RD: Class, Capture: From); |
| 2253 | Captures.push_back(Elt: Capture); |
| 2254 | CaptureInits.push_back(Elt: Init.get()); |
| 2255 | |
| 2256 | if (LangOpts.CUDA) |
| 2257 | CUDA().CheckLambdaCapture(D: CallOperator, Capture: From); |
| 2258 | } |
| 2259 | |
| 2260 | Class->setCaptures(Context, Captures); |
| 2261 | |
| 2262 | // C++11 [expr.prim.lambda]p6: |
| 2263 | // The closure type for a lambda-expression with no lambda-capture |
| 2264 | // has a public non-virtual non-explicit const conversion function |
| 2265 | // to pointer to function having the same parameter and return |
| 2266 | // types as the closure type's function call operator. |
| 2267 | if (Captures.empty() && CaptureDefault == LCD_None) |
| 2268 | addFunctionPointerConversions(S&: *this, IntroducerRange, Class, |
| 2269 | CallOperator); |
| 2270 | |
| 2271 | // Objective-C++: |
| 2272 | // The closure type for a lambda-expression has a public non-virtual |
| 2273 | // non-explicit const conversion function to a block pointer having the |
| 2274 | // same parameter and return types as the closure type's function call |
| 2275 | // operator. |
| 2276 | // FIXME: Fix generic lambda to block conversions. |
| 2277 | if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) |
| 2278 | addBlockPointerConversion(S&: *this, IntroducerRange, Class, CallOperator); |
| 2279 | |
| 2280 | // Finalize the lambda class. |
| 2281 | SmallVector<Decl*, 4> Fields(Class->fields()); |
| 2282 | ActOnFields(S: nullptr, RecLoc: Class->getLocation(), TagDecl: Class, Fields, LBrac: SourceLocation(), |
| 2283 | RBrac: SourceLocation(), AttrList: ParsedAttributesView()); |
| 2284 | CheckCompletedCXXClass(S: nullptr, Record: Class); |
| 2285 | } |
| 2286 | |
| 2287 | Cleanup.mergeFrom(Rhs: LambdaCleanup); |
| 2288 | |
| 2289 | LambdaExpr *Lambda = |
| 2290 | LambdaExpr::Create(C: Context, Class, IntroducerRange, CaptureDefault, |
| 2291 | CaptureDefaultLoc, ExplicitParams, ExplicitResultType, |
| 2292 | CaptureInits, ClosingBrace: EndLoc, ContainsUnexpandedParameterPack); |
| 2293 | |
| 2294 | // If the lambda expression's call operator is not explicitly marked constexpr |
| 2295 | // and is not dependent, analyze the call operator to infer |
| 2296 | // its constexpr-ness, suppressing diagnostics while doing so. |
| 2297 | if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && |
| 2298 | !CallOperator->isConstexpr() && |
| 2299 | !isa<CoroutineBodyStmt>(Val: CallOperator->getBody()) && |
| 2300 | !Class->isDependentContext()) { |
| 2301 | CallOperator->setConstexprKind( |
| 2302 | CheckConstexprFunctionDefinition(FD: CallOperator, |
| 2303 | Kind: CheckConstexprKind::CheckValid) |
| 2304 | ? ConstexprSpecKind::Constexpr |
| 2305 | : ConstexprSpecKind::Unspecified); |
| 2306 | } |
| 2307 | |
| 2308 | // Emit delayed shadowing warnings now that the full capture list is known. |
| 2309 | DiagnoseShadowingLambdaDecls(LSI); |
| 2310 | |
| 2311 | if (!CurContext->isDependentContext()) { |
| 2312 | switch (ExprEvalContexts.back().Context) { |
| 2313 | // C++11 [expr.prim.lambda]p2: |
| 2314 | // A lambda-expression shall not appear in an unevaluated operand |
| 2315 | // (Clause 5). |
| 2316 | case ExpressionEvaluationContext::Unevaluated: |
| 2317 | case ExpressionEvaluationContext::UnevaluatedList: |
| 2318 | case ExpressionEvaluationContext::UnevaluatedAbstract: |
| 2319 | // C++1y [expr.const]p2: |
| 2320 | // A conditional-expression e is a core constant expression unless the |
| 2321 | // evaluation of e, following the rules of the abstract machine, would |
| 2322 | // evaluate [...] a lambda-expression. |
| 2323 | // |
| 2324 | // This is technically incorrect, there are some constant evaluated contexts |
| 2325 | // where this should be allowed. We should probably fix this when DR1607 is |
| 2326 | // ratified, it lays out the exact set of conditions where we shouldn't |
| 2327 | // allow a lambda-expression. |
| 2328 | case ExpressionEvaluationContext::ConstantEvaluated: |
| 2329 | case ExpressionEvaluationContext::ImmediateFunctionContext: |
| 2330 | // We don't actually diagnose this case immediately, because we |
| 2331 | // could be within a context where we might find out later that |
| 2332 | // the expression is potentially evaluated (e.g., for typeid). |
| 2333 | ExprEvalContexts.back().Lambdas.push_back(Elt: Lambda); |
| 2334 | break; |
| 2335 | |
| 2336 | case ExpressionEvaluationContext::DiscardedStatement: |
| 2337 | case ExpressionEvaluationContext::PotentiallyEvaluated: |
| 2338 | case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: |
| 2339 | break; |
| 2340 | } |
| 2341 | maybeAddDeclWithEffects(D: LSI->CallOperator); |
| 2342 | } |
| 2343 | |
| 2344 | return MaybeBindToTemporary(E: Lambda); |
| 2345 | } |
| 2346 | |
| 2347 | ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, |
| 2348 | SourceLocation ConvLocation, |
| 2349 | CXXConversionDecl *Conv, |
| 2350 | Expr *Src) { |
| 2351 | // Make sure that the lambda call operator is marked used. |
| 2352 | CXXRecordDecl *Lambda = Conv->getParent(); |
| 2353 | CXXMethodDecl *CallOperator |
| 2354 | = cast<CXXMethodDecl>( |
| 2355 | Val: Lambda->lookup( |
| 2356 | Name: Context.DeclarationNames.getCXXOperatorName(Op: OO_Call)).front()); |
| 2357 | CallOperator->setReferenced(); |
| 2358 | CallOperator->markUsed(C&: Context); |
| 2359 | |
| 2360 | ExprResult Init = PerformCopyInitialization( |
| 2361 | Entity: InitializedEntity::InitializeLambdaToBlock(BlockVarLoc: ConvLocation, Type: Src->getType()), |
| 2362 | EqualLoc: CurrentLocation, Init: Src); |
| 2363 | if (!Init.isInvalid()) |
| 2364 | Init = ActOnFinishFullExpr(Expr: Init.get(), /*DiscardedValue*/ false); |
| 2365 | |
| 2366 | if (Init.isInvalid()) |
| 2367 | return ExprError(); |
| 2368 | |
| 2369 | // Create the new block to be returned. |
| 2370 | BlockDecl *Block = BlockDecl::Create(C&: Context, DC: CurContext, L: ConvLocation); |
| 2371 | |
| 2372 | // Set the type information. |
| 2373 | Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); |
| 2374 | Block->setIsVariadic(CallOperator->isVariadic()); |
| 2375 | Block->setBlockMissingReturnType(false); |
| 2376 | |
| 2377 | // Add parameters. |
| 2378 | SmallVector<ParmVarDecl *, 4> BlockParams; |
| 2379 | for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { |
| 2380 | ParmVarDecl *From = CallOperator->getParamDecl(i: I); |
| 2381 | BlockParams.push_back(Elt: ParmVarDecl::Create( |
| 2382 | C&: Context, DC: Block, StartLoc: From->getBeginLoc(), IdLoc: From->getLocation(), |
| 2383 | Id: From->getIdentifier(), T: From->getType(), TInfo: From->getTypeSourceInfo(), |
| 2384 | S: From->getStorageClass(), |
| 2385 | /*DefArg=*/nullptr)); |
| 2386 | } |
| 2387 | Block->setParams(BlockParams); |
| 2388 | |
| 2389 | Block->setIsConversionFromLambda(true); |
| 2390 | |
| 2391 | // Add capture. The capture uses a fake variable, which doesn't correspond |
| 2392 | // to any actual memory location. However, the initializer copy-initializes |
| 2393 | // the lambda object. |
| 2394 | TypeSourceInfo *CapVarTSI = |
| 2395 | Context.getTrivialTypeSourceInfo(T: Src->getType()); |
| 2396 | VarDecl *CapVar = VarDecl::Create(C&: Context, DC: Block, StartLoc: ConvLocation, |
| 2397 | IdLoc: ConvLocation, Id: nullptr, |
| 2398 | T: Src->getType(), TInfo: CapVarTSI, |
| 2399 | S: SC_None); |
| 2400 | BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, |
| 2401 | /*nested=*/false, /*copy=*/Init.get()); |
| 2402 | Block->setCaptures(Context, Captures: Capture, /*CapturesCXXThis=*/false); |
| 2403 | |
| 2404 | // Add a fake function body to the block. IR generation is responsible |
| 2405 | // for filling in the actual body, which cannot be expressed as an AST. |
| 2406 | Block->setBody(new (Context) CompoundStmt(ConvLocation)); |
| 2407 | |
| 2408 | // Create the block literal expression. |
| 2409 | // TODO: Do we ever get here if we have unexpanded packs in the lambda??? |
| 2410 | Expr *BuildBlock = |
| 2411 | new (Context) BlockExpr(Block, Conv->getConversionType(), |
| 2412 | /*ContainsUnexpandedParameterPack=*/false); |
| 2413 | ExprCleanupObjects.push_back(Elt: Block); |
| 2414 | Cleanup.setExprNeedsCleanups(true); |
| 2415 | |
| 2416 | return BuildBlock; |
| 2417 | } |
| 2418 | |
| 2419 | static FunctionDecl *getPatternFunctionDecl(FunctionDecl *FD) { |
| 2420 | if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization) { |
| 2421 | while (FD->getInstantiatedFromMemberFunction()) |
| 2422 | FD = FD->getInstantiatedFromMemberFunction(); |
| 2423 | return FD; |
| 2424 | } |
| 2425 | |
| 2426 | if (FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) |
| 2427 | return FD->getInstantiatedFromDecl(); |
| 2428 | |
| 2429 | FunctionTemplateDecl *FTD = FD->getPrimaryTemplate(); |
| 2430 | if (!FTD) |
| 2431 | return nullptr; |
| 2432 | |
| 2433 | while (FTD->getInstantiatedFromMemberTemplate()) |
| 2434 | FTD = FTD->getInstantiatedFromMemberTemplate(); |
| 2435 | |
| 2436 | return FTD->getTemplatedDecl(); |
| 2437 | } |
| 2438 | |
| 2439 | bool Sema::addInstantiatedCapturesToScope( |
| 2440 | FunctionDecl *Function, const FunctionDecl *PatternDecl, |
| 2441 | LocalInstantiationScope &Scope, |
| 2442 | const MultiLevelTemplateArgumentList &TemplateArgs) { |
| 2443 | const auto *LambdaClass = cast<CXXMethodDecl>(Val: Function)->getParent(); |
| 2444 | const auto *LambdaPattern = cast<CXXMethodDecl>(Val: PatternDecl)->getParent(); |
| 2445 | |
| 2446 | unsigned Instantiated = 0; |
| 2447 | |
| 2448 | // FIXME: This is a workaround for not having deferred lambda body |
| 2449 | // instantiation. |
| 2450 | // When transforming a lambda's body, if we encounter another call to a |
| 2451 | // nested lambda that contains a constraint expression, we add all of the |
| 2452 | // outer lambda's instantiated captures to the current instantiation scope to |
| 2453 | // facilitate constraint evaluation. However, these captures don't appear in |
| 2454 | // the CXXRecordDecl until after the lambda expression is rebuilt, so we |
| 2455 | // pull them out from the corresponding LSI. |
| 2456 | LambdaScopeInfo *InstantiatingScope = nullptr; |
| 2457 | if (LambdaPattern->capture_size() && !LambdaClass->capture_size()) { |
| 2458 | for (FunctionScopeInfo *Scope : llvm::reverse(C&: FunctionScopes)) { |
| 2459 | auto *LSI = dyn_cast<LambdaScopeInfo>(Val: Scope); |
| 2460 | if (!LSI || getPatternFunctionDecl(FD: LSI->CallOperator) != PatternDecl) |
| 2461 | continue; |
| 2462 | InstantiatingScope = LSI; |
| 2463 | break; |
| 2464 | } |
| 2465 | assert(InstantiatingScope); |
| 2466 | } |
| 2467 | |
| 2468 | auto AddSingleCapture = [&](const ValueDecl *CapturedPattern, |
| 2469 | unsigned Index) { |
| 2470 | ValueDecl *CapturedVar = |
| 2471 | InstantiatingScope ? InstantiatingScope->Captures[Index].getVariable() |
| 2472 | : LambdaClass->getCapture(I: Index)->getCapturedVar(); |
| 2473 | assert(CapturedVar->isInitCapture()); |
| 2474 | Scope.InstantiatedLocal(D: CapturedPattern, Inst: CapturedVar); |
| 2475 | }; |
| 2476 | |
| 2477 | for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) { |
| 2478 | if (!CapturePattern.capturesVariable()) { |
| 2479 | Instantiated++; |
| 2480 | continue; |
| 2481 | } |
| 2482 | ValueDecl *CapturedPattern = CapturePattern.getCapturedVar(); |
| 2483 | |
| 2484 | if (!CapturedPattern->isInitCapture()) { |
| 2485 | Instantiated++; |
| 2486 | continue; |
| 2487 | } |
| 2488 | |
| 2489 | if (!CapturedPattern->isParameterPack()) { |
| 2490 | AddSingleCapture(CapturedPattern, Instantiated++); |
| 2491 | } else { |
| 2492 | Scope.MakeInstantiatedLocalArgPack(D: CapturedPattern); |
| 2493 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 2494 | SemaRef.collectUnexpandedParameterPacks( |
| 2495 | E: dyn_cast<VarDecl>(Val: CapturedPattern)->getInit(), Unexpanded); |
| 2496 | auto NumArgumentsInExpansion = |
| 2497 | getNumArgumentsInExpansionFromUnexpanded(Unexpanded, TemplateArgs); |
| 2498 | if (!NumArgumentsInExpansion) |
| 2499 | continue; |
| 2500 | for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) |
| 2501 | AddSingleCapture(CapturedPattern, Instantiated++); |
| 2502 | } |
| 2503 | } |
| 2504 | return false; |
| 2505 | } |
| 2506 | |
| 2507 | Sema::LambdaScopeForCallOperatorInstantiationRAII:: |
| 2508 | LambdaScopeForCallOperatorInstantiationRAII( |
| 2509 | Sema &SemaRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL, |
| 2510 | LocalInstantiationScope &Scope, bool ShouldAddDeclsFromParentScope) |
| 2511 | : FunctionScopeRAII(SemaRef) { |
| 2512 | if (!isLambdaCallOperator(DC: FD)) { |
| 2513 | FunctionScopeRAII::disable(); |
| 2514 | return; |
| 2515 | } |
| 2516 | |
| 2517 | SemaRef.RebuildLambdaScopeInfo(CallOperator: cast<CXXMethodDecl>(Val: FD)); |
| 2518 | |
| 2519 | FunctionDecl *FDPattern = getPatternFunctionDecl(FD); |
| 2520 | if (!FDPattern) |
| 2521 | return; |
| 2522 | |
| 2523 | if (!ShouldAddDeclsFromParentScope) |
| 2524 | return; |
| 2525 | |
| 2526 | llvm::SmallVector<std::pair<FunctionDecl *, FunctionDecl *>, 4> |
| 2527 | InstantiationAndPatterns; |
| 2528 | while (FDPattern && FD) { |
| 2529 | InstantiationAndPatterns.emplace_back(Args&: FDPattern, Args&: FD); |
| 2530 | |
| 2531 | FDPattern = |
| 2532 | dyn_cast<FunctionDecl>(Val: getLambdaAwareParentOfDeclContext(DC: FDPattern)); |
| 2533 | FD = dyn_cast<FunctionDecl>(Val: getLambdaAwareParentOfDeclContext(DC: FD)); |
| 2534 | } |
| 2535 | |
| 2536 | // Add instantiated parameters and local vars to scopes, starting from the |
| 2537 | // outermost lambda to the innermost lambda. This ordering ensures that |
| 2538 | // the outer instantiations can be found when referenced from within inner |
| 2539 | // lambdas. |
| 2540 | // |
| 2541 | // auto L = [](auto... x) { |
| 2542 | // return [](decltype(x)... y) { }; // Instantiating y needs x |
| 2543 | // }; |
| 2544 | // |
| 2545 | |
| 2546 | for (auto [FDPattern, FD] : llvm::reverse(C&: InstantiationAndPatterns)) { |
| 2547 | SemaRef.addInstantiatedParametersToScope(Function: FD, PatternDecl: FDPattern, Scope, TemplateArgs: MLTAL); |
| 2548 | SemaRef.addInstantiatedLocalVarsToScope(Function: FD, PatternDecl: FDPattern, Scope); |
| 2549 | |
| 2550 | if (isLambdaCallOperator(DC: FD)) |
| 2551 | SemaRef.addInstantiatedCapturesToScope(Function: FD, PatternDecl: FDPattern, Scope, TemplateArgs: MLTAL); |
| 2552 | } |
| 2553 | } |
| 2554 | |