| 1 | //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements name lookup for C, C++, Objective-C, and |
| 10 | // Objective-C++. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/AST/ASTContext.h" |
| 15 | #include "clang/AST/CXXInheritance.h" |
| 16 | #include "clang/AST/Decl.h" |
| 17 | #include "clang/AST/DeclCXX.h" |
| 18 | #include "clang/AST/DeclLookups.h" |
| 19 | #include "clang/AST/DeclObjC.h" |
| 20 | #include "clang/AST/DeclTemplate.h" |
| 21 | #include "clang/AST/Expr.h" |
| 22 | #include "clang/AST/ExprCXX.h" |
| 23 | #include "clang/Basic/Builtins.h" |
| 24 | #include "clang/Basic/LangOptions.h" |
| 25 | #include "clang/Lex/HeaderSearch.h" |
| 26 | #include "clang/Lex/ModuleLoader.h" |
| 27 | #include "clang/Lex/Preprocessor.h" |
| 28 | #include "clang/Sema/DeclSpec.h" |
| 29 | #include "clang/Sema/Lookup.h" |
| 30 | #include "clang/Sema/Overload.h" |
| 31 | #include "clang/Sema/RISCVIntrinsicManager.h" |
| 32 | #include "clang/Sema/Scope.h" |
| 33 | #include "clang/Sema/ScopeInfo.h" |
| 34 | #include "clang/Sema/Sema.h" |
| 35 | #include "clang/Sema/SemaInternal.h" |
| 36 | #include "clang/Sema/SemaRISCV.h" |
| 37 | #include "clang/Sema/TemplateDeduction.h" |
| 38 | #include "clang/Sema/TypoCorrection.h" |
| 39 | #include "llvm/ADT/STLExtras.h" |
| 40 | #include "llvm/ADT/STLForwardCompat.h" |
| 41 | #include "llvm/ADT/SmallPtrSet.h" |
| 42 | #include "llvm/ADT/TinyPtrVector.h" |
| 43 | #include "llvm/ADT/edit_distance.h" |
| 44 | #include "llvm/Support/Casting.h" |
| 45 | #include "llvm/Support/ErrorHandling.h" |
| 46 | #include <algorithm> |
| 47 | #include <iterator> |
| 48 | #include <list> |
| 49 | #include <optional> |
| 50 | #include <set> |
| 51 | #include <utility> |
| 52 | #include <vector> |
| 53 | |
| 54 | #include "OpenCLBuiltins.inc" |
| 55 | |
| 56 | using namespace clang; |
| 57 | using namespace sema; |
| 58 | |
| 59 | namespace { |
| 60 | class UnqualUsingEntry { |
| 61 | const DeclContext *Nominated; |
| 62 | const DeclContext *CommonAncestor; |
| 63 | |
| 64 | public: |
| 65 | UnqualUsingEntry(const DeclContext *Nominated, |
| 66 | const DeclContext *CommonAncestor) |
| 67 | : Nominated(Nominated), CommonAncestor(CommonAncestor) { |
| 68 | } |
| 69 | |
| 70 | const DeclContext *getCommonAncestor() const { |
| 71 | return CommonAncestor; |
| 72 | } |
| 73 | |
| 74 | const DeclContext *getNominatedNamespace() const { |
| 75 | return Nominated; |
| 76 | } |
| 77 | |
| 78 | // Sort by the pointer value of the common ancestor. |
| 79 | struct Comparator { |
| 80 | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { |
| 81 | return L.getCommonAncestor() < R.getCommonAncestor(); |
| 82 | } |
| 83 | |
| 84 | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { |
| 85 | return E.getCommonAncestor() < DC; |
| 86 | } |
| 87 | |
| 88 | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { |
| 89 | return DC < E.getCommonAncestor(); |
| 90 | } |
| 91 | }; |
| 92 | }; |
| 93 | |
| 94 | /// A collection of using directives, as used by C++ unqualified |
| 95 | /// lookup. |
| 96 | class UnqualUsingDirectiveSet { |
| 97 | Sema &SemaRef; |
| 98 | |
| 99 | typedef SmallVector<UnqualUsingEntry, 8> ListTy; |
| 100 | |
| 101 | ListTy list; |
| 102 | llvm::SmallPtrSet<DeclContext*, 8> visited; |
| 103 | |
| 104 | public: |
| 105 | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} |
| 106 | |
| 107 | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { |
| 108 | // C++ [namespace.udir]p1: |
| 109 | // During unqualified name lookup, the names appear as if they |
| 110 | // were declared in the nearest enclosing namespace which contains |
| 111 | // both the using-directive and the nominated namespace. |
| 112 | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); |
| 113 | assert(InnermostFileDC && InnermostFileDC->isFileContext()); |
| 114 | |
| 115 | for (; S; S = S->getParent()) { |
| 116 | // C++ [namespace.udir]p1: |
| 117 | // A using-directive shall not appear in class scope, but may |
| 118 | // appear in namespace scope or in block scope. |
| 119 | DeclContext *Ctx = S->getEntity(); |
| 120 | if (Ctx && Ctx->isFileContext()) { |
| 121 | visit(DC: Ctx, EffectiveDC: Ctx); |
| 122 | } else if (!Ctx || Ctx->isFunctionOrMethod()) { |
| 123 | for (auto *I : S->using_directives()) |
| 124 | if (SemaRef.isVisible(D: I)) |
| 125 | visit(UD: I, EffectiveDC: InnermostFileDC); |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | // Visits a context and collect all of its using directives |
| 131 | // recursively. Treats all using directives as if they were |
| 132 | // declared in the context. |
| 133 | // |
| 134 | // A given context is only every visited once, so it is important |
| 135 | // that contexts be visited from the inside out in order to get |
| 136 | // the effective DCs right. |
| 137 | void visit(DeclContext *DC, DeclContext *EffectiveDC) { |
| 138 | if (!visited.insert(Ptr: DC).second) |
| 139 | return; |
| 140 | |
| 141 | addUsingDirectives(DC, EffectiveDC); |
| 142 | } |
| 143 | |
| 144 | // Visits a using directive and collects all of its using |
| 145 | // directives recursively. Treats all using directives as if they |
| 146 | // were declared in the effective DC. |
| 147 | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| 148 | DeclContext *NS = UD->getNominatedNamespace(); |
| 149 | if (!visited.insert(Ptr: NS).second) |
| 150 | return; |
| 151 | |
| 152 | addUsingDirective(UD, EffectiveDC); |
| 153 | addUsingDirectives(DC: NS, EffectiveDC); |
| 154 | } |
| 155 | |
| 156 | // Adds all the using directives in a context (and those nominated |
| 157 | // by its using directives, transitively) as if they appeared in |
| 158 | // the given effective context. |
| 159 | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { |
| 160 | SmallVector<DeclContext*, 4> queue; |
| 161 | while (true) { |
| 162 | for (auto *UD : DC->using_directives()) { |
| 163 | DeclContext *NS = UD->getNominatedNamespace(); |
| 164 | if (SemaRef.isVisible(D: UD) && visited.insert(Ptr: NS).second) { |
| 165 | addUsingDirective(UD, EffectiveDC); |
| 166 | queue.push_back(Elt: NS); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | if (queue.empty()) |
| 171 | return; |
| 172 | |
| 173 | DC = queue.pop_back_val(); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | // Add a using directive as if it had been declared in the given |
| 178 | // context. This helps implement C++ [namespace.udir]p3: |
| 179 | // The using-directive is transitive: if a scope contains a |
| 180 | // using-directive that nominates a second namespace that itself |
| 181 | // contains using-directives, the effect is as if the |
| 182 | // using-directives from the second namespace also appeared in |
| 183 | // the first. |
| 184 | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| 185 | // Find the common ancestor between the effective context and |
| 186 | // the nominated namespace. |
| 187 | DeclContext *Common = UD->getNominatedNamespace(); |
| 188 | while (!Common->Encloses(DC: EffectiveDC)) |
| 189 | Common = Common->getParent(); |
| 190 | Common = Common->getPrimaryContext(); |
| 191 | |
| 192 | list.push_back(Elt: UnqualUsingEntry(UD->getNominatedNamespace(), Common)); |
| 193 | } |
| 194 | |
| 195 | void done() { llvm::sort(C&: list, Comp: UnqualUsingEntry::Comparator()); } |
| 196 | |
| 197 | typedef ListTy::const_iterator const_iterator; |
| 198 | |
| 199 | const_iterator begin() const { return list.begin(); } |
| 200 | const_iterator end() const { return list.end(); } |
| 201 | |
| 202 | llvm::iterator_range<const_iterator> |
| 203 | getNamespacesFor(const DeclContext *DC) const { |
| 204 | return llvm::make_range(p: std::equal_range(first: begin(), last: end(), |
| 205 | val: DC->getPrimaryContext(), |
| 206 | comp: UnqualUsingEntry::Comparator())); |
| 207 | } |
| 208 | }; |
| 209 | } // end anonymous namespace |
| 210 | |
| 211 | // Retrieve the set of identifier namespaces that correspond to a |
| 212 | // specific kind of name lookup. |
| 213 | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, |
| 214 | bool CPlusPlus, |
| 215 | bool Redeclaration) { |
| 216 | unsigned IDNS = 0; |
| 217 | switch (NameKind) { |
| 218 | case Sema::LookupObjCImplicitSelfParam: |
| 219 | case Sema::LookupOrdinaryName: |
| 220 | case Sema::LookupRedeclarationWithLinkage: |
| 221 | case Sema::LookupLocalFriendName: |
| 222 | case Sema::LookupDestructorName: |
| 223 | IDNS = Decl::IDNS_Ordinary; |
| 224 | if (CPlusPlus) { |
| 225 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; |
| 226 | if (Redeclaration) |
| 227 | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; |
| 228 | } |
| 229 | if (Redeclaration) |
| 230 | IDNS |= Decl::IDNS_LocalExtern; |
| 231 | break; |
| 232 | |
| 233 | case Sema::LookupOperatorName: |
| 234 | // Operator lookup is its own crazy thing; it is not the same |
| 235 | // as (e.g.) looking up an operator name for redeclaration. |
| 236 | assert(!Redeclaration && "cannot do redeclaration operator lookup" ); |
| 237 | IDNS = Decl::IDNS_NonMemberOperator; |
| 238 | break; |
| 239 | |
| 240 | case Sema::LookupTagName: |
| 241 | if (CPlusPlus) { |
| 242 | IDNS = Decl::IDNS_Type; |
| 243 | |
| 244 | // When looking for a redeclaration of a tag name, we add: |
| 245 | // 1) TagFriend to find undeclared friend decls |
| 246 | // 2) Namespace because they can't "overload" with tag decls. |
| 247 | // 3) Tag because it includes class templates, which can't |
| 248 | // "overload" with tag decls. |
| 249 | if (Redeclaration) |
| 250 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; |
| 251 | } else { |
| 252 | IDNS = Decl::IDNS_Tag; |
| 253 | } |
| 254 | break; |
| 255 | |
| 256 | case Sema::LookupLabel: |
| 257 | IDNS = Decl::IDNS_Label; |
| 258 | break; |
| 259 | |
| 260 | case Sema::LookupMemberName: |
| 261 | IDNS = Decl::IDNS_Member; |
| 262 | if (CPlusPlus) |
| 263 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
| 264 | break; |
| 265 | |
| 266 | case Sema::LookupNestedNameSpecifierName: |
| 267 | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; |
| 268 | break; |
| 269 | |
| 270 | case Sema::LookupNamespaceName: |
| 271 | IDNS = Decl::IDNS_Namespace; |
| 272 | break; |
| 273 | |
| 274 | case Sema::LookupUsingDeclName: |
| 275 | assert(Redeclaration && "should only be used for redecl lookup" ); |
| 276 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | |
| 277 | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | |
| 278 | Decl::IDNS_LocalExtern; |
| 279 | break; |
| 280 | |
| 281 | case Sema::LookupObjCProtocolName: |
| 282 | IDNS = Decl::IDNS_ObjCProtocol; |
| 283 | break; |
| 284 | |
| 285 | case Sema::LookupOMPReductionName: |
| 286 | IDNS = Decl::IDNS_OMPReduction; |
| 287 | break; |
| 288 | |
| 289 | case Sema::LookupOMPMapperName: |
| 290 | IDNS = Decl::IDNS_OMPMapper; |
| 291 | break; |
| 292 | |
| 293 | case Sema::LookupAnyName: |
| 294 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
| 295 | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol |
| 296 | | Decl::IDNS_Type; |
| 297 | break; |
| 298 | } |
| 299 | return IDNS; |
| 300 | } |
| 301 | |
| 302 | void LookupResult::configure() { |
| 303 | IDNS = getIDNS(NameKind: LookupKind, CPlusPlus: getSema().getLangOpts().CPlusPlus, |
| 304 | Redeclaration: isForRedeclaration()); |
| 305 | |
| 306 | // If we're looking for one of the allocation or deallocation |
| 307 | // operators, make sure that the implicitly-declared new and delete |
| 308 | // operators can be found. |
| 309 | switch (NameInfo.getName().getCXXOverloadedOperator()) { |
| 310 | case OO_New: |
| 311 | case OO_Delete: |
| 312 | case OO_Array_New: |
| 313 | case OO_Array_Delete: |
| 314 | getSema().DeclareGlobalNewDelete(); |
| 315 | break; |
| 316 | |
| 317 | default: |
| 318 | break; |
| 319 | } |
| 320 | |
| 321 | // Compiler builtins are always visible, regardless of where they end |
| 322 | // up being declared. |
| 323 | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { |
| 324 | if (unsigned BuiltinID = Id->getBuiltinID()) { |
| 325 | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID)) |
| 326 | AllowHidden = true; |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | bool LookupResult::checkDebugAssumptions() const { |
| 332 | // This function is never called by NDEBUG builds. |
| 333 | assert(ResultKind != LookupResultKind::NotFound || Decls.size() == 0); |
| 334 | assert(ResultKind != LookupResultKind::Found || Decls.size() == 1); |
| 335 | assert(ResultKind != LookupResultKind::FoundOverloaded || Decls.size() > 1 || |
| 336 | (Decls.size() == 1 && |
| 337 | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); |
| 338 | assert(ResultKind != LookupResultKind::FoundUnresolvedValue || |
| 339 | checkUnresolved()); |
| 340 | assert(ResultKind != LookupResultKind::Ambiguous || Decls.size() > 1 || |
| 341 | (Decls.size() == 1 && |
| 342 | (Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjects || |
| 343 | Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjectTypes))); |
| 344 | assert((Paths != nullptr) == |
| 345 | (ResultKind == LookupResultKind::Ambiguous && |
| 346 | (Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjectTypes || |
| 347 | Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjects))); |
| 348 | return true; |
| 349 | } |
| 350 | |
| 351 | // Necessary because CXXBasePaths is not complete in Sema.h |
| 352 | void LookupResult::deletePaths(CXXBasePaths *Paths) { |
| 353 | delete Paths; |
| 354 | } |
| 355 | |
| 356 | /// Get a representative context for a declaration such that two declarations |
| 357 | /// will have the same context if they were found within the same scope. |
| 358 | static const DeclContext *getContextForScopeMatching(const Decl *D) { |
| 359 | // For function-local declarations, use that function as the context. This |
| 360 | // doesn't account for scopes within the function; the caller must deal with |
| 361 | // those. |
| 362 | if (const DeclContext *DC = D->getLexicalDeclContext(); |
| 363 | DC->isFunctionOrMethod()) |
| 364 | return DC; |
| 365 | |
| 366 | // Otherwise, look at the semantic context of the declaration. The |
| 367 | // declaration must have been found there. |
| 368 | return D->getDeclContext()->getRedeclContext(); |
| 369 | } |
| 370 | |
| 371 | /// Determine whether \p D is a better lookup result than \p Existing, |
| 372 | /// given that they declare the same entity. |
| 373 | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, |
| 374 | const NamedDecl *D, |
| 375 | const NamedDecl *Existing) { |
| 376 | // When looking up redeclarations of a using declaration, prefer a using |
| 377 | // shadow declaration over any other declaration of the same entity. |
| 378 | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(Val: D) && |
| 379 | !isa<UsingShadowDecl>(Val: Existing)) |
| 380 | return true; |
| 381 | |
| 382 | const auto *DUnderlying = D->getUnderlyingDecl(); |
| 383 | const auto *EUnderlying = Existing->getUnderlyingDecl(); |
| 384 | |
| 385 | // If they have different underlying declarations, prefer a typedef over the |
| 386 | // original type (this happens when two type declarations denote the same |
| 387 | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef |
| 388 | // might carry additional semantic information, such as an alignment override. |
| 389 | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag |
| 390 | // declaration over a typedef. Also prefer a tag over a typedef for |
| 391 | // destructor name lookup because in some contexts we only accept a |
| 392 | // class-name in a destructor declaration. |
| 393 | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { |
| 394 | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); |
| 395 | bool HaveTag = isa<TagDecl>(Val: EUnderlying); |
| 396 | bool WantTag = |
| 397 | Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; |
| 398 | return HaveTag != WantTag; |
| 399 | } |
| 400 | |
| 401 | // Pick the function with more default arguments. |
| 402 | // FIXME: In the presence of ambiguous default arguments, we should keep both, |
| 403 | // so we can diagnose the ambiguity if the default argument is needed. |
| 404 | // See C++ [over.match.best]p3. |
| 405 | if (const auto *DFD = dyn_cast<FunctionDecl>(Val: DUnderlying)) { |
| 406 | const auto *EFD = cast<FunctionDecl>(Val: EUnderlying); |
| 407 | unsigned DMin = DFD->getMinRequiredArguments(); |
| 408 | unsigned EMin = EFD->getMinRequiredArguments(); |
| 409 | // If D has more default arguments, it is preferred. |
| 410 | if (DMin != EMin) |
| 411 | return DMin < EMin; |
| 412 | // FIXME: When we track visibility for default function arguments, check |
| 413 | // that we pick the declaration with more visible default arguments. |
| 414 | } |
| 415 | |
| 416 | // Pick the template with more default template arguments. |
| 417 | if (const auto *DTD = dyn_cast<TemplateDecl>(Val: DUnderlying)) { |
| 418 | const auto *ETD = cast<TemplateDecl>(Val: EUnderlying); |
| 419 | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); |
| 420 | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); |
| 421 | // If D has more default arguments, it is preferred. Note that default |
| 422 | // arguments (and their visibility) is monotonically increasing across the |
| 423 | // redeclaration chain, so this is a quick proxy for "is more recent". |
| 424 | if (DMin != EMin) |
| 425 | return DMin < EMin; |
| 426 | // If D has more *visible* default arguments, it is preferred. Note, an |
| 427 | // earlier default argument being visible does not imply that a later |
| 428 | // default argument is visible, so we can't just check the first one. |
| 429 | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); |
| 430 | I != N; ++I) { |
| 431 | if (!S.hasVisibleDefaultArgument( |
| 432 | D: ETD->getTemplateParameters()->getParam(Idx: I)) && |
| 433 | S.hasVisibleDefaultArgument( |
| 434 | D: DTD->getTemplateParameters()->getParam(Idx: I))) |
| 435 | return true; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | // VarDecl can have incomplete array types, prefer the one with more complete |
| 440 | // array type. |
| 441 | if (const auto *DVD = dyn_cast<VarDecl>(Val: DUnderlying)) { |
| 442 | const auto *EVD = cast<VarDecl>(Val: EUnderlying); |
| 443 | if (EVD->getType()->isIncompleteType() && |
| 444 | !DVD->getType()->isIncompleteType()) { |
| 445 | // Prefer the decl with a more complete type if visible. |
| 446 | return S.isVisible(D: DVD); |
| 447 | } |
| 448 | return false; // Avoid picking up a newer decl, just because it was newer. |
| 449 | } |
| 450 | |
| 451 | // For most kinds of declaration, it doesn't really matter which one we pick. |
| 452 | if (!isa<FunctionDecl>(Val: DUnderlying) && !isa<VarDecl>(Val: DUnderlying)) { |
| 453 | // If the existing declaration is hidden, prefer the new one. Otherwise, |
| 454 | // keep what we've got. |
| 455 | return !S.isVisible(D: Existing); |
| 456 | } |
| 457 | |
| 458 | // Pick the newer declaration; it might have a more precise type. |
| 459 | for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; |
| 460 | Prev = Prev->getPreviousDecl()) |
| 461 | if (Prev == EUnderlying) |
| 462 | return true; |
| 463 | return false; |
| 464 | } |
| 465 | |
| 466 | /// Determine whether \p D can hide a tag declaration. |
| 467 | static bool canHideTag(const NamedDecl *D) { |
| 468 | // C++ [basic.scope.declarative]p4: |
| 469 | // Given a set of declarations in a single declarative region [...] |
| 470 | // exactly one declaration shall declare a class name or enumeration name |
| 471 | // that is not a typedef name and the other declarations shall all refer to |
| 472 | // the same variable, non-static data member, or enumerator, or all refer |
| 473 | // to functions and function templates; in this case the class name or |
| 474 | // enumeration name is hidden. |
| 475 | // C++ [basic.scope.hiding]p2: |
| 476 | // A class name or enumeration name can be hidden by the name of a |
| 477 | // variable, data member, function, or enumerator declared in the same |
| 478 | // scope. |
| 479 | // An UnresolvedUsingValueDecl always instantiates to one of these. |
| 480 | D = D->getUnderlyingDecl(); |
| 481 | return isa<VarDecl>(Val: D) || isa<EnumConstantDecl>(Val: D) || isa<FunctionDecl>(Val: D) || |
| 482 | isa<FunctionTemplateDecl>(Val: D) || isa<FieldDecl>(Val: D) || |
| 483 | isa<UnresolvedUsingValueDecl>(Val: D); |
| 484 | } |
| 485 | |
| 486 | /// Resolves the result kind of this lookup. |
| 487 | void LookupResult::resolveKind() { |
| 488 | unsigned N = Decls.size(); |
| 489 | |
| 490 | // Fast case: no possible ambiguity. |
| 491 | if (N == 0) { |
| 492 | assert(ResultKind == LookupResultKind::NotFound || |
| 493 | ResultKind == LookupResultKind::NotFoundInCurrentInstantiation); |
| 494 | return; |
| 495 | } |
| 496 | |
| 497 | // If there's a single decl, we need to examine it to decide what |
| 498 | // kind of lookup this is. |
| 499 | if (N == 1) { |
| 500 | const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); |
| 501 | if (isa<FunctionTemplateDecl>(Val: D)) |
| 502 | ResultKind = LookupResultKind::FoundOverloaded; |
| 503 | else if (isa<UnresolvedUsingValueDecl>(Val: D)) |
| 504 | ResultKind = LookupResultKind::FoundUnresolvedValue; |
| 505 | return; |
| 506 | } |
| 507 | |
| 508 | // Don't do any extra resolution if we've already resolved as ambiguous. |
| 509 | if (ResultKind == LookupResultKind::Ambiguous) |
| 510 | return; |
| 511 | |
| 512 | llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; |
| 513 | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; |
| 514 | |
| 515 | bool Ambiguous = false; |
| 516 | bool ReferenceToPlaceHolderVariable = false; |
| 517 | bool HasTag = false, HasFunction = false; |
| 518 | bool HasFunctionTemplate = false, HasUnresolved = false; |
| 519 | const NamedDecl *HasNonFunction = nullptr; |
| 520 | |
| 521 | llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; |
| 522 | llvm::BitVector RemovedDecls(N); |
| 523 | |
| 524 | for (unsigned I = 0; I < N; I++) { |
| 525 | const NamedDecl *D = Decls[I]->getUnderlyingDecl(); |
| 526 | D = cast<NamedDecl>(Val: D->getCanonicalDecl()); |
| 527 | |
| 528 | // Ignore an invalid declaration unless it's the only one left. |
| 529 | // Also ignore HLSLBufferDecl which not have name conflict with other Decls. |
| 530 | if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(Val: D)) && |
| 531 | N - RemovedDecls.count() > 1) { |
| 532 | RemovedDecls.set(I); |
| 533 | continue; |
| 534 | } |
| 535 | |
| 536 | // C++ [basic.scope.hiding]p2: |
| 537 | // A class name or enumeration name can be hidden by the name of |
| 538 | // an object, function, or enumerator declared in the same |
| 539 | // scope. If a class or enumeration name and an object, function, |
| 540 | // or enumerator are declared in the same scope (in any order) |
| 541 | // with the same name, the class or enumeration name is hidden |
| 542 | // wherever the object, function, or enumerator name is visible. |
| 543 | if (HideTags && isa<TagDecl>(Val: D)) { |
| 544 | bool Hidden = false; |
| 545 | for (auto *OtherDecl : Decls) { |
| 546 | if (canHideTag(D: OtherDecl) && !OtherDecl->isInvalidDecl() && |
| 547 | getContextForScopeMatching(D: OtherDecl)->Equals( |
| 548 | DC: getContextForScopeMatching(D: Decls[I]))) { |
| 549 | RemovedDecls.set(I); |
| 550 | Hidden = true; |
| 551 | break; |
| 552 | } |
| 553 | } |
| 554 | if (Hidden) |
| 555 | continue; |
| 556 | } |
| 557 | |
| 558 | std::optional<unsigned> ExistingI; |
| 559 | |
| 560 | // Redeclarations of types via typedef can occur both within a scope |
| 561 | // and, through using declarations and directives, across scopes. There is |
| 562 | // no ambiguity if they all refer to the same type, so unique based on the |
| 563 | // canonical type. |
| 564 | if (const auto *TD = dyn_cast<TypeDecl>(Val: D)) { |
| 565 | QualType T = getSema().Context.getTypeDeclType(Decl: TD); |
| 566 | auto UniqueResult = UniqueTypes.insert( |
| 567 | KV: std::make_pair(x: getSema().Context.getCanonicalType(T), y&: I)); |
| 568 | if (!UniqueResult.second) { |
| 569 | // The type is not unique. |
| 570 | ExistingI = UniqueResult.first->second; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | // For non-type declarations, check for a prior lookup result naming this |
| 575 | // canonical declaration. |
| 576 | if (!ExistingI) { |
| 577 | auto UniqueResult = Unique.insert(KV: std::make_pair(x&: D, y&: I)); |
| 578 | if (!UniqueResult.second) { |
| 579 | // We've seen this entity before. |
| 580 | ExistingI = UniqueResult.first->second; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | if (ExistingI) { |
| 585 | // This is not a unique lookup result. Pick one of the results and |
| 586 | // discard the other. |
| 587 | if (isPreferredLookupResult(S&: getSema(), Kind: getLookupKind(), D: Decls[I], |
| 588 | Existing: Decls[*ExistingI])) |
| 589 | Decls[*ExistingI] = Decls[I]; |
| 590 | RemovedDecls.set(I); |
| 591 | continue; |
| 592 | } |
| 593 | |
| 594 | // Otherwise, do some decl type analysis and then continue. |
| 595 | |
| 596 | if (isa<UnresolvedUsingValueDecl>(Val: D)) { |
| 597 | HasUnresolved = true; |
| 598 | } else if (isa<TagDecl>(Val: D)) { |
| 599 | if (HasTag) |
| 600 | Ambiguous = true; |
| 601 | HasTag = true; |
| 602 | } else if (isa<FunctionTemplateDecl>(Val: D)) { |
| 603 | HasFunction = true; |
| 604 | HasFunctionTemplate = true; |
| 605 | } else if (isa<FunctionDecl>(Val: D)) { |
| 606 | HasFunction = true; |
| 607 | } else { |
| 608 | if (HasNonFunction) { |
| 609 | // If we're about to create an ambiguity between two declarations that |
| 610 | // are equivalent, but one is an internal linkage declaration from one |
| 611 | // module and the other is an internal linkage declaration from another |
| 612 | // module, just skip it. |
| 613 | if (getSema().isEquivalentInternalLinkageDeclaration(A: HasNonFunction, |
| 614 | B: D)) { |
| 615 | EquivalentNonFunctions.push_back(Elt: D); |
| 616 | RemovedDecls.set(I); |
| 617 | continue; |
| 618 | } |
| 619 | if (D->isPlaceholderVar(LangOpts: getSema().getLangOpts()) && |
| 620 | getContextForScopeMatching(D) == |
| 621 | getContextForScopeMatching(D: Decls[I])) { |
| 622 | ReferenceToPlaceHolderVariable = true; |
| 623 | } |
| 624 | Ambiguous = true; |
| 625 | } |
| 626 | HasNonFunction = D; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | // FIXME: This diagnostic should really be delayed until we're done with |
| 631 | // the lookup result, in case the ambiguity is resolved by the caller. |
| 632 | if (!EquivalentNonFunctions.empty() && !Ambiguous) |
| 633 | getSema().diagnoseEquivalentInternalLinkageDeclarations( |
| 634 | Loc: getNameLoc(), D: HasNonFunction, Equiv: EquivalentNonFunctions); |
| 635 | |
| 636 | // Remove decls by replacing them with decls from the end (which |
| 637 | // means that we need to iterate from the end) and then truncating |
| 638 | // to the new size. |
| 639 | for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(PriorTo: I)) |
| 640 | Decls[I] = Decls[--N]; |
| 641 | Decls.truncate(N); |
| 642 | |
| 643 | if ((HasNonFunction && (HasFunction || HasUnresolved)) || |
| 644 | (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) |
| 645 | Ambiguous = true; |
| 646 | |
| 647 | if (Ambiguous && ReferenceToPlaceHolderVariable) |
| 648 | setAmbiguous(LookupAmbiguityKind::AmbiguousReferenceToPlaceholderVariable); |
| 649 | else if (Ambiguous) |
| 650 | setAmbiguous(LookupAmbiguityKind::AmbiguousReference); |
| 651 | else if (HasUnresolved) |
| 652 | ResultKind = LookupResultKind::FoundUnresolvedValue; |
| 653 | else if (N > 1 || HasFunctionTemplate) |
| 654 | ResultKind = LookupResultKind::FoundOverloaded; |
| 655 | else |
| 656 | ResultKind = LookupResultKind::Found; |
| 657 | } |
| 658 | |
| 659 | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { |
| 660 | CXXBasePaths::const_paths_iterator I, E; |
| 661 | for (I = P.begin(), E = P.end(); I != E; ++I) |
| 662 | for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; |
| 663 | ++DI) |
| 664 | addDecl(D: *DI); |
| 665 | } |
| 666 | |
| 667 | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { |
| 668 | Paths = new CXXBasePaths; |
| 669 | Paths->swap(Other&: P); |
| 670 | addDeclsFromBasePaths(P: *Paths); |
| 671 | resolveKind(); |
| 672 | setAmbiguous(LookupAmbiguityKind::AmbiguousBaseSubobjects); |
| 673 | } |
| 674 | |
| 675 | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { |
| 676 | Paths = new CXXBasePaths; |
| 677 | Paths->swap(Other&: P); |
| 678 | addDeclsFromBasePaths(P: *Paths); |
| 679 | resolveKind(); |
| 680 | setAmbiguous(LookupAmbiguityKind::AmbiguousBaseSubobjectTypes); |
| 681 | } |
| 682 | |
| 683 | void LookupResult::print(raw_ostream &Out) { |
| 684 | Out << Decls.size() << " result(s)" ; |
| 685 | if (isAmbiguous()) Out << ", ambiguous" ; |
| 686 | if (Paths) Out << ", base paths present" ; |
| 687 | |
| 688 | for (iterator I = begin(), E = end(); I != E; ++I) { |
| 689 | Out << "\n" ; |
| 690 | (*I)->print(Out, Indentation: 2); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | LLVM_DUMP_METHOD void LookupResult::dump() { |
| 695 | llvm::errs() << "lookup results for " << getLookupName().getAsString() |
| 696 | << ":\n" ; |
| 697 | for (NamedDecl *D : *this) |
| 698 | D->dump(); |
| 699 | } |
| 700 | |
| 701 | /// Diagnose a missing builtin type. |
| 702 | static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, |
| 703 | llvm::StringRef Name) { |
| 704 | S.Diag(Loc: SourceLocation(), DiagID: diag::err_opencl_type_not_found) |
| 705 | << TypeClass << Name; |
| 706 | return S.Context.VoidTy; |
| 707 | } |
| 708 | |
| 709 | /// Lookup an OpenCL enum type. |
| 710 | static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { |
| 711 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
| 712 | Sema::LookupTagName); |
| 713 | S.LookupName(R&: Result, S: S.TUScope); |
| 714 | if (Result.empty()) |
| 715 | return diagOpenCLBuiltinTypeError(S, TypeClass: "enum" , Name); |
| 716 | EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); |
| 717 | if (!Decl) |
| 718 | return diagOpenCLBuiltinTypeError(S, TypeClass: "enum" , Name); |
| 719 | return S.Context.getEnumType(Decl); |
| 720 | } |
| 721 | |
| 722 | /// Lookup an OpenCL typedef type. |
| 723 | static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { |
| 724 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
| 725 | Sema::LookupOrdinaryName); |
| 726 | S.LookupName(R&: Result, S: S.TUScope); |
| 727 | if (Result.empty()) |
| 728 | return diagOpenCLBuiltinTypeError(S, TypeClass: "typedef" , Name); |
| 729 | TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); |
| 730 | if (!Decl) |
| 731 | return diagOpenCLBuiltinTypeError(S, TypeClass: "typedef" , Name); |
| 732 | return S.Context.getTypedefType(Decl); |
| 733 | } |
| 734 | |
| 735 | /// Get the QualType instances of the return type and arguments for an OpenCL |
| 736 | /// builtin function signature. |
| 737 | /// \param S (in) The Sema instance. |
| 738 | /// \param OpenCLBuiltin (in) The signature currently handled. |
| 739 | /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic |
| 740 | /// type used as return type or as argument. |
| 741 | /// Only meaningful for generic types, otherwise equals 1. |
| 742 | /// \param RetTypes (out) List of the possible return types. |
| 743 | /// \param ArgTypes (out) List of the possible argument types. For each |
| 744 | /// argument, ArgTypes contains QualTypes for the Cartesian product |
| 745 | /// of (vector sizes) x (types) . |
| 746 | static void GetQualTypesForOpenCLBuiltin( |
| 747 | Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, |
| 748 | SmallVector<QualType, 1> &RetTypes, |
| 749 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
| 750 | // Get the QualType instances of the return types. |
| 751 | unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; |
| 752 | OCL2Qual(S, Ty: TypeTable[Sig], QT&: RetTypes); |
| 753 | GenTypeMaxCnt = RetTypes.size(); |
| 754 | |
| 755 | // Get the QualType instances of the arguments. |
| 756 | // First type is the return type, skip it. |
| 757 | for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { |
| 758 | SmallVector<QualType, 1> Ty; |
| 759 | OCL2Qual(S, Ty: TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], |
| 760 | QT&: Ty); |
| 761 | GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; |
| 762 | ArgTypes.push_back(Elt: std::move(Ty)); |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | /// Create a list of the candidate function overloads for an OpenCL builtin |
| 767 | /// function. |
| 768 | /// \param Context (in) The ASTContext instance. |
| 769 | /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic |
| 770 | /// type used as return type or as argument. |
| 771 | /// Only meaningful for generic types, otherwise equals 1. |
| 772 | /// \param FunctionList (out) List of FunctionTypes. |
| 773 | /// \param RetTypes (in) List of the possible return types. |
| 774 | /// \param ArgTypes (in) List of the possible types for the arguments. |
| 775 | static void GetOpenCLBuiltinFctOverloads( |
| 776 | ASTContext &Context, unsigned GenTypeMaxCnt, |
| 777 | std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, |
| 778 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
| 779 | FunctionProtoType::ExtProtoInfo PI( |
| 780 | Context.getDefaultCallingConvention(IsVariadic: false, IsCXXMethod: false, IsBuiltin: true)); |
| 781 | PI.Variadic = false; |
| 782 | |
| 783 | // Do not attempt to create any FunctionTypes if there are no return types, |
| 784 | // which happens when a type belongs to a disabled extension. |
| 785 | if (RetTypes.size() == 0) |
| 786 | return; |
| 787 | |
| 788 | // Create FunctionTypes for each (gen)type. |
| 789 | for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { |
| 790 | SmallVector<QualType, 5> ArgList; |
| 791 | |
| 792 | for (unsigned A = 0; A < ArgTypes.size(); A++) { |
| 793 | // Bail out if there is an argument that has no available types. |
| 794 | if (ArgTypes[A].size() == 0) |
| 795 | return; |
| 796 | |
| 797 | // Builtins such as "max" have an "sgentype" argument that represents |
| 798 | // the corresponding scalar type of a gentype. The number of gentypes |
| 799 | // must be a multiple of the number of sgentypes. |
| 800 | assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && |
| 801 | "argument type count not compatible with gentype type count" ); |
| 802 | unsigned Idx = IGenType % ArgTypes[A].size(); |
| 803 | ArgList.push_back(Elt: ArgTypes[A][Idx]); |
| 804 | } |
| 805 | |
| 806 | FunctionList.push_back(x: Context.getFunctionType( |
| 807 | ResultTy: RetTypes[(RetTypes.size() != 1) ? IGenType : 0], Args: ArgList, EPI: PI)); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | /// When trying to resolve a function name, if isOpenCLBuiltin() returns a |
| 812 | /// non-null <Index, Len> pair, then the name is referencing an OpenCL |
| 813 | /// builtin function. Add all candidate signatures to the LookUpResult. |
| 814 | /// |
| 815 | /// \param S (in) The Sema instance. |
| 816 | /// \param LR (inout) The LookupResult instance. |
| 817 | /// \param II (in) The identifier being resolved. |
| 818 | /// \param FctIndex (in) Starting index in the BuiltinTable. |
| 819 | /// \param Len (in) The signature list has Len elements. |
| 820 | static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, |
| 821 | IdentifierInfo *II, |
| 822 | const unsigned FctIndex, |
| 823 | const unsigned Len) { |
| 824 | // The builtin function declaration uses generic types (gentype). |
| 825 | bool HasGenType = false; |
| 826 | |
| 827 | // Maximum number of types contained in a generic type used as return type or |
| 828 | // as argument. Only meaningful for generic types, otherwise equals 1. |
| 829 | unsigned GenTypeMaxCnt; |
| 830 | |
| 831 | ASTContext &Context = S.Context; |
| 832 | |
| 833 | for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { |
| 834 | const OpenCLBuiltinStruct &OpenCLBuiltin = |
| 835 | BuiltinTable[FctIndex + SignatureIndex]; |
| 836 | |
| 837 | // Ignore this builtin function if it is not available in the currently |
| 838 | // selected language version. |
| 839 | if (!isOpenCLVersionContainedInMask(LO: Context.getLangOpts(), |
| 840 | Mask: OpenCLBuiltin.Versions)) |
| 841 | continue; |
| 842 | |
| 843 | // Ignore this builtin function if it carries an extension macro that is |
| 844 | // not defined. This indicates that the extension is not supported by the |
| 845 | // target, so the builtin function should not be available. |
| 846 | StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; |
| 847 | if (!Extensions.empty()) { |
| 848 | SmallVector<StringRef, 2> ExtVec; |
| 849 | Extensions.split(A&: ExtVec, Separator: " " ); |
| 850 | bool AllExtensionsDefined = true; |
| 851 | for (StringRef Ext : ExtVec) { |
| 852 | if (!S.getPreprocessor().isMacroDefined(Id: Ext)) { |
| 853 | AllExtensionsDefined = false; |
| 854 | break; |
| 855 | } |
| 856 | } |
| 857 | if (!AllExtensionsDefined) |
| 858 | continue; |
| 859 | } |
| 860 | |
| 861 | SmallVector<QualType, 1> RetTypes; |
| 862 | SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; |
| 863 | |
| 864 | // Obtain QualType lists for the function signature. |
| 865 | GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, |
| 866 | ArgTypes); |
| 867 | if (GenTypeMaxCnt > 1) { |
| 868 | HasGenType = true; |
| 869 | } |
| 870 | |
| 871 | // Create function overload for each type combination. |
| 872 | std::vector<QualType> FunctionList; |
| 873 | GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, |
| 874 | ArgTypes); |
| 875 | |
| 876 | SourceLocation Loc = LR.getNameLoc(); |
| 877 | DeclContext *Parent = Context.getTranslationUnitDecl(); |
| 878 | FunctionDecl *NewOpenCLBuiltin; |
| 879 | |
| 880 | for (const auto &FTy : FunctionList) { |
| 881 | NewOpenCLBuiltin = FunctionDecl::Create( |
| 882 | C&: Context, DC: Parent, StartLoc: Loc, NLoc: Loc, N: II, T: FTy, /*TInfo=*/nullptr, SC: SC_Extern, |
| 883 | UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(), isInlineSpecified: false, |
| 884 | hasWrittenPrototype: FTy->isFunctionProtoType()); |
| 885 | NewOpenCLBuiltin->setImplicit(); |
| 886 | |
| 887 | // Create Decl objects for each parameter, adding them to the |
| 888 | // FunctionDecl. |
| 889 | const auto *FP = cast<FunctionProtoType>(Val: FTy); |
| 890 | SmallVector<ParmVarDecl *, 4> ParmList; |
| 891 | for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { |
| 892 | ParmVarDecl *Parm = ParmVarDecl::Create( |
| 893 | C&: Context, DC: NewOpenCLBuiltin, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
| 894 | Id: nullptr, T: FP->getParamType(i: IParm), TInfo: nullptr, S: SC_None, DefArg: nullptr); |
| 895 | Parm->setScopeInfo(scopeDepth: 0, parameterIndex: IParm); |
| 896 | ParmList.push_back(Elt: Parm); |
| 897 | } |
| 898 | NewOpenCLBuiltin->setParams(ParmList); |
| 899 | |
| 900 | // Add function attributes. |
| 901 | if (OpenCLBuiltin.IsPure) |
| 902 | NewOpenCLBuiltin->addAttr(A: PureAttr::CreateImplicit(Ctx&: Context)); |
| 903 | if (OpenCLBuiltin.IsConst) |
| 904 | NewOpenCLBuiltin->addAttr(A: ConstAttr::CreateImplicit(Ctx&: Context)); |
| 905 | if (OpenCLBuiltin.IsConv) |
| 906 | NewOpenCLBuiltin->addAttr(A: ConvergentAttr::CreateImplicit(Ctx&: Context)); |
| 907 | |
| 908 | if (!S.getLangOpts().OpenCLCPlusPlus) |
| 909 | NewOpenCLBuiltin->addAttr(A: OverloadableAttr::CreateImplicit(Ctx&: Context)); |
| 910 | |
| 911 | LR.addDecl(D: NewOpenCLBuiltin); |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | // If we added overloads, need to resolve the lookup result. |
| 916 | if (Len > 1 || HasGenType) |
| 917 | LR.resolveKind(); |
| 918 | } |
| 919 | |
| 920 | bool Sema::LookupBuiltin(LookupResult &R) { |
| 921 | Sema::LookupNameKind NameKind = R.getLookupKind(); |
| 922 | |
| 923 | // If we didn't find a use of this identifier, and if the identifier |
| 924 | // corresponds to a compiler builtin, create the decl object for the builtin |
| 925 | // now, injecting it into translation unit scope, and return it. |
| 926 | if (NameKind == Sema::LookupOrdinaryName || |
| 927 | NameKind == Sema::LookupRedeclarationWithLinkage) { |
| 928 | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); |
| 929 | if (II) { |
| 930 | if (NameKind == Sema::LookupOrdinaryName) { |
| 931 | if (getLangOpts().CPlusPlus) { |
| 932 | #define BuiltinTemplate(BIName) |
| 933 | #define CPlusPlusBuiltinTemplate(BIName) \ |
| 934 | if (II == getASTContext().get##BIName##Name()) { \ |
| 935 | R.addDecl(getASTContext().get##BIName##Decl()); \ |
| 936 | return true; \ |
| 937 | } |
| 938 | #include "clang/Basic/BuiltinTemplates.inc" |
| 939 | } |
| 940 | if (getLangOpts().HLSL) { |
| 941 | #define BuiltinTemplate(BIName) |
| 942 | #define HLSLBuiltinTemplate(BIName) \ |
| 943 | if (II == getASTContext().get##BIName##Name()) { \ |
| 944 | R.addDecl(getASTContext().get##BIName##Decl()); \ |
| 945 | return true; \ |
| 946 | } |
| 947 | #include "clang/Basic/BuiltinTemplates.inc" |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | // Check if this is an OpenCL Builtin, and if so, insert its overloads. |
| 952 | if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { |
| 953 | auto Index = isOpenCLBuiltin(Name: II->getName()); |
| 954 | if (Index.first) { |
| 955 | InsertOCLBuiltinDeclarationsFromTable(S&: *this, LR&: R, II, FctIndex: Index.first - 1, |
| 956 | Len: Index.second); |
| 957 | return true; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins || |
| 962 | RISCV().DeclareAndesVectorBuiltins) { |
| 963 | if (!RISCV().IntrinsicManager) |
| 964 | RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(S&: *this); |
| 965 | |
| 966 | RISCV().IntrinsicManager->InitIntrinsicList(); |
| 967 | |
| 968 | if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(LR&: R, II, PP)) |
| 969 | return true; |
| 970 | } |
| 971 | |
| 972 | // If this is a builtin on this (or all) targets, create the decl. |
| 973 | if (unsigned BuiltinID = II->getBuiltinID()) { |
| 974 | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined |
| 975 | // library functions like 'malloc'. Instead, we'll just error. |
| 976 | if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && |
| 977 | Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID)) |
| 978 | return false; |
| 979 | |
| 980 | if (NamedDecl *D = |
| 981 | LazilyCreateBuiltin(II, ID: BuiltinID, S: TUScope, |
| 982 | ForRedeclaration: R.isForRedeclaration(), Loc: R.getNameLoc())) { |
| 983 | R.addDecl(D); |
| 984 | return true; |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | return false; |
| 991 | } |
| 992 | |
| 993 | /// Looks up the declaration of "struct objc_super" and |
| 994 | /// saves it for later use in building builtin declaration of |
| 995 | /// objc_msgSendSuper and objc_msgSendSuper_stret. |
| 996 | static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { |
| 997 | ASTContext &Context = Sema.Context; |
| 998 | LookupResult Result(Sema, &Context.Idents.get(Name: "objc_super" ), SourceLocation(), |
| 999 | Sema::LookupTagName); |
| 1000 | Sema.LookupName(R&: Result, S); |
| 1001 | if (Result.getResultKind() == LookupResultKind::Found) |
| 1002 | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) |
| 1003 | Context.setObjCSuperType(Context.getTagDeclType(Decl: TD)); |
| 1004 | } |
| 1005 | |
| 1006 | void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { |
| 1007 | if (ID == Builtin::BIobjc_msgSendSuper) |
| 1008 | LookupPredefedObjCSuperType(Sema&: *this, S); |
| 1009 | } |
| 1010 | |
| 1011 | /// Determine whether we can declare a special member function within |
| 1012 | /// the class at this point. |
| 1013 | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { |
| 1014 | // We need to have a definition for the class. |
| 1015 | if (!Class->getDefinition() || Class->isDependentContext()) |
| 1016 | return false; |
| 1017 | |
| 1018 | // We can't be in the middle of defining the class. |
| 1019 | return !Class->isBeingDefined(); |
| 1020 | } |
| 1021 | |
| 1022 | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { |
| 1023 | if (!CanDeclareSpecialMemberFunction(Class)) |
| 1024 | return; |
| 1025 | |
| 1026 | // If the default constructor has not yet been declared, do so now. |
| 1027 | if (Class->needsImplicitDefaultConstructor()) |
| 1028 | DeclareImplicitDefaultConstructor(ClassDecl: Class); |
| 1029 | |
| 1030 | // If the copy constructor has not yet been declared, do so now. |
| 1031 | if (Class->needsImplicitCopyConstructor()) |
| 1032 | DeclareImplicitCopyConstructor(ClassDecl: Class); |
| 1033 | |
| 1034 | // If the copy assignment operator has not yet been declared, do so now. |
| 1035 | if (Class->needsImplicitCopyAssignment()) |
| 1036 | DeclareImplicitCopyAssignment(ClassDecl: Class); |
| 1037 | |
| 1038 | if (getLangOpts().CPlusPlus11) { |
| 1039 | // If the move constructor has not yet been declared, do so now. |
| 1040 | if (Class->needsImplicitMoveConstructor()) |
| 1041 | DeclareImplicitMoveConstructor(ClassDecl: Class); |
| 1042 | |
| 1043 | // If the move assignment operator has not yet been declared, do so now. |
| 1044 | if (Class->needsImplicitMoveAssignment()) |
| 1045 | DeclareImplicitMoveAssignment(ClassDecl: Class); |
| 1046 | } |
| 1047 | |
| 1048 | // If the destructor has not yet been declared, do so now. |
| 1049 | if (Class->needsImplicitDestructor()) |
| 1050 | DeclareImplicitDestructor(ClassDecl: Class); |
| 1051 | } |
| 1052 | |
| 1053 | /// Determine whether this is the name of an implicitly-declared |
| 1054 | /// special member function. |
| 1055 | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { |
| 1056 | switch (Name.getNameKind()) { |
| 1057 | case DeclarationName::CXXConstructorName: |
| 1058 | case DeclarationName::CXXDestructorName: |
| 1059 | return true; |
| 1060 | |
| 1061 | case DeclarationName::CXXOperatorName: |
| 1062 | return Name.getCXXOverloadedOperator() == OO_Equal; |
| 1063 | |
| 1064 | default: |
| 1065 | break; |
| 1066 | } |
| 1067 | |
| 1068 | return false; |
| 1069 | } |
| 1070 | |
| 1071 | /// If there are any implicit member functions with the given name |
| 1072 | /// that need to be declared in the given declaration context, do so. |
| 1073 | static void DeclareImplicitMemberFunctionsWithName(Sema &S, |
| 1074 | DeclarationName Name, |
| 1075 | SourceLocation Loc, |
| 1076 | const DeclContext *DC) { |
| 1077 | if (!DC) |
| 1078 | return; |
| 1079 | |
| 1080 | switch (Name.getNameKind()) { |
| 1081 | case DeclarationName::CXXConstructorName: |
| 1082 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC)) |
| 1083 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Class: Record)) { |
| 1084 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
| 1085 | if (Record->needsImplicitDefaultConstructor()) |
| 1086 | S.DeclareImplicitDefaultConstructor(ClassDecl: Class); |
| 1087 | if (Record->needsImplicitCopyConstructor()) |
| 1088 | S.DeclareImplicitCopyConstructor(ClassDecl: Class); |
| 1089 | if (S.getLangOpts().CPlusPlus11 && |
| 1090 | Record->needsImplicitMoveConstructor()) |
| 1091 | S.DeclareImplicitMoveConstructor(ClassDecl: Class); |
| 1092 | } |
| 1093 | break; |
| 1094 | |
| 1095 | case DeclarationName::CXXDestructorName: |
| 1096 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC)) |
| 1097 | if (Record->getDefinition() && Record->needsImplicitDestructor() && |
| 1098 | CanDeclareSpecialMemberFunction(Class: Record)) |
| 1099 | S.DeclareImplicitDestructor(ClassDecl: const_cast<CXXRecordDecl *>(Record)); |
| 1100 | break; |
| 1101 | |
| 1102 | case DeclarationName::CXXOperatorName: |
| 1103 | if (Name.getCXXOverloadedOperator() != OO_Equal) |
| 1104 | break; |
| 1105 | |
| 1106 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC)) { |
| 1107 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Class: Record)) { |
| 1108 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
| 1109 | if (Record->needsImplicitCopyAssignment()) |
| 1110 | S.DeclareImplicitCopyAssignment(ClassDecl: Class); |
| 1111 | if (S.getLangOpts().CPlusPlus11 && |
| 1112 | Record->needsImplicitMoveAssignment()) |
| 1113 | S.DeclareImplicitMoveAssignment(ClassDecl: Class); |
| 1114 | } |
| 1115 | } |
| 1116 | break; |
| 1117 | |
| 1118 | case DeclarationName::CXXDeductionGuideName: |
| 1119 | S.DeclareImplicitDeductionGuides(Template: Name.getCXXDeductionGuideTemplate(), Loc); |
| 1120 | break; |
| 1121 | |
| 1122 | default: |
| 1123 | break; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | // Adds all qualifying matches for a name within a decl context to the |
| 1128 | // given lookup result. Returns true if any matches were found. |
| 1129 | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { |
| 1130 | bool Found = false; |
| 1131 | |
| 1132 | // Lazily declare C++ special member functions. |
| 1133 | if (S.getLangOpts().CPlusPlus) |
| 1134 | DeclareImplicitMemberFunctionsWithName(S, Name: R.getLookupName(), Loc: R.getNameLoc(), |
| 1135 | DC); |
| 1136 | |
| 1137 | // Perform lookup into this declaration context. |
| 1138 | DeclContext::lookup_result DR = DC->lookup(Name: R.getLookupName()); |
| 1139 | for (NamedDecl *D : DR) { |
| 1140 | if ((D = R.getAcceptableDecl(D))) { |
| 1141 | R.addDecl(D); |
| 1142 | Found = true; |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) |
| 1147 | return true; |
| 1148 | |
| 1149 | if (R.getLookupName().getNameKind() |
| 1150 | != DeclarationName::CXXConversionFunctionName || |
| 1151 | R.getLookupName().getCXXNameType()->isDependentType() || |
| 1152 | !isa<CXXRecordDecl>(Val: DC)) |
| 1153 | return Found; |
| 1154 | |
| 1155 | // C++ [temp.mem]p6: |
| 1156 | // A specialization of a conversion function template is not found by |
| 1157 | // name lookup. Instead, any conversion function templates visible in the |
| 1158 | // context of the use are considered. [...] |
| 1159 | const CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC); |
| 1160 | if (!Record->isCompleteDefinition()) |
| 1161 | return Found; |
| 1162 | |
| 1163 | // For conversion operators, 'operator auto' should only match |
| 1164 | // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered |
| 1165 | // as a candidate for template substitution. |
| 1166 | auto *ContainedDeducedType = |
| 1167 | R.getLookupName().getCXXNameType()->getContainedDeducedType(); |
| 1168 | if (R.getLookupName().getNameKind() == |
| 1169 | DeclarationName::CXXConversionFunctionName && |
| 1170 | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) |
| 1171 | return Found; |
| 1172 | |
| 1173 | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), |
| 1174 | UEnd = Record->conversion_end(); U != UEnd; ++U) { |
| 1175 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: *U); |
| 1176 | if (!ConvTemplate) |
| 1177 | continue; |
| 1178 | |
| 1179 | // When we're performing lookup for the purposes of redeclaration, just |
| 1180 | // add the conversion function template. When we deduce template |
| 1181 | // arguments for specializations, we'll end up unifying the return |
| 1182 | // type of the new declaration with the type of the function template. |
| 1183 | if (R.isForRedeclaration()) { |
| 1184 | R.addDecl(D: ConvTemplate); |
| 1185 | Found = true; |
| 1186 | continue; |
| 1187 | } |
| 1188 | |
| 1189 | // C++ [temp.mem]p6: |
| 1190 | // [...] For each such operator, if argument deduction succeeds |
| 1191 | // (14.9.2.3), the resulting specialization is used as if found by |
| 1192 | // name lookup. |
| 1193 | // |
| 1194 | // When referencing a conversion function for any purpose other than |
| 1195 | // a redeclaration (such that we'll be building an expression with the |
| 1196 | // result), perform template argument deduction and place the |
| 1197 | // specialization into the result set. We do this to avoid forcing all |
| 1198 | // callers to perform special deduction for conversion functions. |
| 1199 | TemplateDeductionInfo Info(R.getNameLoc()); |
| 1200 | FunctionDecl *Specialization = nullptr; |
| 1201 | |
| 1202 | const FunctionProtoType *ConvProto |
| 1203 | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); |
| 1204 | assert(ConvProto && "Nonsensical conversion function template type" ); |
| 1205 | |
| 1206 | // Compute the type of the function that we would expect the conversion |
| 1207 | // function to have, if it were to match the name given. |
| 1208 | // FIXME: Calling convention! |
| 1209 | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); |
| 1210 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(cc: CC_C); |
| 1211 | EPI.ExceptionSpec = EST_None; |
| 1212 | QualType ExpectedType = R.getSema().Context.getFunctionType( |
| 1213 | ResultTy: R.getLookupName().getCXXNameType(), Args: {}, EPI); |
| 1214 | |
| 1215 | // Perform template argument deduction against the type that we would |
| 1216 | // expect the function to have. |
| 1217 | if (R.getSema().DeduceTemplateArguments(FunctionTemplate: ConvTemplate, ExplicitTemplateArgs: nullptr, ArgFunctionType: ExpectedType, |
| 1218 | Specialization, Info) == |
| 1219 | TemplateDeductionResult::Success) { |
| 1220 | R.addDecl(D: Specialization); |
| 1221 | Found = true; |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | return Found; |
| 1226 | } |
| 1227 | |
| 1228 | // Performs C++ unqualified lookup into the given file context. |
| 1229 | static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, |
| 1230 | const DeclContext *NS, |
| 1231 | UnqualUsingDirectiveSet &UDirs) { |
| 1232 | |
| 1233 | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!" ); |
| 1234 | |
| 1235 | // Perform direct name lookup into the LookupCtx. |
| 1236 | bool Found = LookupDirect(S, R, DC: NS); |
| 1237 | |
| 1238 | // Perform direct name lookup into the namespaces nominated by the |
| 1239 | // using directives whose common ancestor is this namespace. |
| 1240 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(DC: NS)) |
| 1241 | if (LookupDirect(S, R, DC: UUE.getNominatedNamespace())) |
| 1242 | Found = true; |
| 1243 | |
| 1244 | R.resolveKind(); |
| 1245 | |
| 1246 | return Found; |
| 1247 | } |
| 1248 | |
| 1249 | static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
| 1250 | if (DeclContext *Ctx = S->getEntity()) |
| 1251 | return Ctx->isFileContext(); |
| 1252 | return false; |
| 1253 | } |
| 1254 | |
| 1255 | /// Find the outer declaration context from this scope. This indicates the |
| 1256 | /// context that we should search up to (exclusive) before considering the |
| 1257 | /// parent of the specified scope. |
| 1258 | static DeclContext *findOuterContext(Scope *S) { |
| 1259 | for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) |
| 1260 | if (DeclContext *DC = OuterS->getLookupEntity()) |
| 1261 | return DC; |
| 1262 | return nullptr; |
| 1263 | } |
| 1264 | |
| 1265 | namespace { |
| 1266 | /// An RAII object to specify that we want to find block scope extern |
| 1267 | /// declarations. |
| 1268 | struct FindLocalExternScope { |
| 1269 | FindLocalExternScope(LookupResult &R) |
| 1270 | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & |
| 1271 | Decl::IDNS_LocalExtern) { |
| 1272 | R.setFindLocalExtern(R.getIdentifierNamespace() & |
| 1273 | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); |
| 1274 | } |
| 1275 | void restore() { |
| 1276 | R.setFindLocalExtern(OldFindLocalExtern); |
| 1277 | } |
| 1278 | ~FindLocalExternScope() { |
| 1279 | restore(); |
| 1280 | } |
| 1281 | LookupResult &R; |
| 1282 | bool OldFindLocalExtern; |
| 1283 | }; |
| 1284 | } // end anonymous namespace |
| 1285 | |
| 1286 | bool Sema::CppLookupName(LookupResult &R, Scope *S) { |
| 1287 | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup" ); |
| 1288 | |
| 1289 | DeclarationName Name = R.getLookupName(); |
| 1290 | Sema::LookupNameKind NameKind = R.getLookupKind(); |
| 1291 | |
| 1292 | // If this is the name of an implicitly-declared special member function, |
| 1293 | // go through the scope stack to implicitly declare |
| 1294 | if (isImplicitlyDeclaredMemberFunctionName(Name)) { |
| 1295 | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) |
| 1296 | if (DeclContext *DC = PreS->getEntity()) |
| 1297 | DeclareImplicitMemberFunctionsWithName(S&: *this, Name, Loc: R.getNameLoc(), DC); |
| 1298 | } |
| 1299 | |
| 1300 | // C++23 [temp.dep.general]p2: |
| 1301 | // The component name of an unqualified-id is dependent if |
| 1302 | // - it is a conversion-function-id whose conversion-type-id |
| 1303 | // is dependent, or |
| 1304 | // - it is operator= and the current class is a templated entity, or |
| 1305 | // - the unqualified-id is the postfix-expression in a dependent call. |
| 1306 | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| 1307 | Name.getCXXNameType()->isDependentType()) { |
| 1308 | R.setNotFoundInCurrentInstantiation(); |
| 1309 | return false; |
| 1310 | } |
| 1311 | |
| 1312 | // Implicitly declare member functions with the name we're looking for, if in |
| 1313 | // fact we are in a scope where it matters. |
| 1314 | |
| 1315 | Scope *Initial = S; |
| 1316 | IdentifierResolver::iterator |
| 1317 | I = IdResolver.begin(Name), |
| 1318 | IEnd = IdResolver.end(); |
| 1319 | |
| 1320 | // First we lookup local scope. |
| 1321 | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
| 1322 | // ...During unqualified name lookup (3.4.1), the names appear as if |
| 1323 | // they were declared in the nearest enclosing namespace which contains |
| 1324 | // both the using-directive and the nominated namespace. |
| 1325 | // [Note: in this context, "contains" means "contains directly or |
| 1326 | // indirectly". |
| 1327 | // |
| 1328 | // For example: |
| 1329 | // namespace A { int i; } |
| 1330 | // void foo() { |
| 1331 | // int i; |
| 1332 | // { |
| 1333 | // using namespace A; |
| 1334 | // ++i; // finds local 'i', A::i appears at global scope |
| 1335 | // } |
| 1336 | // } |
| 1337 | // |
| 1338 | UnqualUsingDirectiveSet UDirs(*this); |
| 1339 | bool VisitedUsingDirectives = false; |
| 1340 | bool LeftStartingScope = false; |
| 1341 | |
| 1342 | // When performing a scope lookup, we want to find local extern decls. |
| 1343 | FindLocalExternScope FindLocals(R); |
| 1344 | |
| 1345 | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
| 1346 | bool SearchNamespaceScope = true; |
| 1347 | // Check whether the IdResolver has anything in this scope. |
| 1348 | for (; I != IEnd && S->isDeclScope(D: *I); ++I) { |
| 1349 | if (NamedDecl *ND = R.getAcceptableDecl(D: *I)) { |
| 1350 | if (NameKind == LookupRedeclarationWithLinkage && |
| 1351 | !(*I)->isTemplateParameter()) { |
| 1352 | // If it's a template parameter, we still find it, so we can diagnose |
| 1353 | // the invalid redeclaration. |
| 1354 | |
| 1355 | // Determine whether this (or a previous) declaration is |
| 1356 | // out-of-scope. |
| 1357 | if (!LeftStartingScope && !Initial->isDeclScope(D: *I)) |
| 1358 | LeftStartingScope = true; |
| 1359 | |
| 1360 | // If we found something outside of our starting scope that |
| 1361 | // does not have linkage, skip it. |
| 1362 | if (LeftStartingScope && !((*I)->hasLinkage())) { |
| 1363 | R.setShadowed(); |
| 1364 | continue; |
| 1365 | } |
| 1366 | } else { |
| 1367 | // We found something in this scope, we should not look at the |
| 1368 | // namespace scope |
| 1369 | SearchNamespaceScope = false; |
| 1370 | } |
| 1371 | R.addDecl(D: ND); |
| 1372 | } |
| 1373 | } |
| 1374 | if (!SearchNamespaceScope) { |
| 1375 | R.resolveKind(); |
| 1376 | if (S->isClassScope()) |
| 1377 | if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(Val: S->getEntity())) |
| 1378 | R.setNamingClass(Record); |
| 1379 | return true; |
| 1380 | } |
| 1381 | |
| 1382 | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { |
| 1383 | // C++11 [class.friend]p11: |
| 1384 | // If a friend declaration appears in a local class and the name |
| 1385 | // specified is an unqualified name, a prior declaration is |
| 1386 | // looked up without considering scopes that are outside the |
| 1387 | // innermost enclosing non-class scope. |
| 1388 | return false; |
| 1389 | } |
| 1390 | |
| 1391 | if (DeclContext *Ctx = S->getLookupEntity()) { |
| 1392 | DeclContext *OuterCtx = findOuterContext(S); |
| 1393 | for (; Ctx && !Ctx->Equals(DC: OuterCtx); Ctx = Ctx->getLookupParent()) { |
| 1394 | // We do not directly look into transparent contexts, since |
| 1395 | // those entities will be found in the nearest enclosing |
| 1396 | // non-transparent context. |
| 1397 | if (Ctx->isTransparentContext()) |
| 1398 | continue; |
| 1399 | |
| 1400 | // We do not look directly into function or method contexts, |
| 1401 | // since all of the local variables and parameters of the |
| 1402 | // function/method are present within the Scope. |
| 1403 | if (Ctx->isFunctionOrMethod()) { |
| 1404 | // If we have an Objective-C instance method, look for ivars |
| 1405 | // in the corresponding interface. |
| 1406 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: Ctx)) { |
| 1407 | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) |
| 1408 | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { |
| 1409 | ObjCInterfaceDecl *ClassDeclared; |
| 1410 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( |
| 1411 | IVarName: Name.getAsIdentifierInfo(), |
| 1412 | ClassDeclared)) { |
| 1413 | if (NamedDecl *ND = R.getAcceptableDecl(D: Ivar)) { |
| 1414 | R.addDecl(D: ND); |
| 1415 | R.resolveKind(); |
| 1416 | return true; |
| 1417 | } |
| 1418 | } |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | continue; |
| 1423 | } |
| 1424 | |
| 1425 | // If this is a file context, we need to perform unqualified name |
| 1426 | // lookup considering using directives. |
| 1427 | if (Ctx->isFileContext()) { |
| 1428 | // If we haven't handled using directives yet, do so now. |
| 1429 | if (!VisitedUsingDirectives) { |
| 1430 | // Add using directives from this context up to the top level. |
| 1431 | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { |
| 1432 | if (UCtx->isTransparentContext()) |
| 1433 | continue; |
| 1434 | |
| 1435 | UDirs.visit(DC: UCtx, EffectiveDC: UCtx); |
| 1436 | } |
| 1437 | |
| 1438 | // Find the innermost file scope, so we can add using directives |
| 1439 | // from local scopes. |
| 1440 | Scope *InnermostFileScope = S; |
| 1441 | while (InnermostFileScope && |
| 1442 | !isNamespaceOrTranslationUnitScope(S: InnermostFileScope)) |
| 1443 | InnermostFileScope = InnermostFileScope->getParent(); |
| 1444 | UDirs.visitScopeChain(S: Initial, InnermostFileScope); |
| 1445 | |
| 1446 | UDirs.done(); |
| 1447 | |
| 1448 | VisitedUsingDirectives = true; |
| 1449 | } |
| 1450 | |
| 1451 | if (CppNamespaceLookup(S&: *this, R, Context, NS: Ctx, UDirs)) { |
| 1452 | R.resolveKind(); |
| 1453 | return true; |
| 1454 | } |
| 1455 | |
| 1456 | continue; |
| 1457 | } |
| 1458 | |
| 1459 | // Perform qualified name lookup into this context. |
| 1460 | // FIXME: In some cases, we know that every name that could be found by |
| 1461 | // this qualified name lookup will also be on the identifier chain. For |
| 1462 | // example, inside a class without any base classes, we never need to |
| 1463 | // perform qualified lookup because all of the members are on top of the |
| 1464 | // identifier chain. |
| 1465 | if (LookupQualifiedName(R, LookupCtx: Ctx, /*InUnqualifiedLookup=*/true)) |
| 1466 | return true; |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | // Stop if we ran out of scopes. |
| 1472 | // FIXME: This really, really shouldn't be happening. |
| 1473 | if (!S) return false; |
| 1474 | |
| 1475 | // If we are looking for members, no need to look into global/namespace scope. |
| 1476 | if (NameKind == LookupMemberName) |
| 1477 | return false; |
| 1478 | |
| 1479 | // Collect UsingDirectiveDecls in all scopes, and recursively all |
| 1480 | // nominated namespaces by those using-directives. |
| 1481 | // |
| 1482 | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we |
| 1483 | // don't build it for each lookup! |
| 1484 | if (!VisitedUsingDirectives) { |
| 1485 | UDirs.visitScopeChain(S: Initial, InnermostFileScope: S); |
| 1486 | UDirs.done(); |
| 1487 | } |
| 1488 | |
| 1489 | // If we're not performing redeclaration lookup, do not look for local |
| 1490 | // extern declarations outside of a function scope. |
| 1491 | if (!R.isForRedeclaration()) |
| 1492 | FindLocals.restore(); |
| 1493 | |
| 1494 | // Lookup namespace scope, and global scope. |
| 1495 | // Unqualified name lookup in C++ requires looking into scopes |
| 1496 | // that aren't strictly lexical, and therefore we walk through the |
| 1497 | // context as well as walking through the scopes. |
| 1498 | for (; S; S = S->getParent()) { |
| 1499 | // Check whether the IdResolver has anything in this scope. |
| 1500 | bool Found = false; |
| 1501 | for (; I != IEnd && S->isDeclScope(D: *I); ++I) { |
| 1502 | if (NamedDecl *ND = R.getAcceptableDecl(D: *I)) { |
| 1503 | // We found something. Look for anything else in our scope |
| 1504 | // with this same name and in an acceptable identifier |
| 1505 | // namespace, so that we can construct an overload set if we |
| 1506 | // need to. |
| 1507 | Found = true; |
| 1508 | R.addDecl(D: ND); |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | if (Found && S->isTemplateParamScope()) { |
| 1513 | R.resolveKind(); |
| 1514 | return true; |
| 1515 | } |
| 1516 | |
| 1517 | DeclContext *Ctx = S->getLookupEntity(); |
| 1518 | if (Ctx) { |
| 1519 | DeclContext *OuterCtx = findOuterContext(S); |
| 1520 | for (; Ctx && !Ctx->Equals(DC: OuterCtx); Ctx = Ctx->getLookupParent()) { |
| 1521 | // We do not directly look into transparent contexts, since |
| 1522 | // those entities will be found in the nearest enclosing |
| 1523 | // non-transparent context. |
| 1524 | if (Ctx->isTransparentContext()) |
| 1525 | continue; |
| 1526 | |
| 1527 | // If we have a context, and it's not a context stashed in the |
| 1528 | // template parameter scope for an out-of-line definition, also |
| 1529 | // look into that context. |
| 1530 | if (!(Found && S->isTemplateParamScope())) { |
| 1531 | assert(Ctx->isFileContext() && |
| 1532 | "We should have been looking only at file context here already." ); |
| 1533 | |
| 1534 | // Look into context considering using-directives. |
| 1535 | if (CppNamespaceLookup(S&: *this, R, Context, NS: Ctx, UDirs)) |
| 1536 | Found = true; |
| 1537 | } |
| 1538 | |
| 1539 | if (Found) { |
| 1540 | R.resolveKind(); |
| 1541 | return true; |
| 1542 | } |
| 1543 | |
| 1544 | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) |
| 1545 | return false; |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) |
| 1550 | return false; |
| 1551 | } |
| 1552 | |
| 1553 | return !R.empty(); |
| 1554 | } |
| 1555 | |
| 1556 | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { |
| 1557 | if (auto *M = getCurrentModule()) |
| 1558 | Context.mergeDefinitionIntoModule(ND, M); |
| 1559 | else |
| 1560 | // We're not building a module; just make the definition visible. |
| 1561 | ND->setVisibleDespiteOwningModule(); |
| 1562 | |
| 1563 | // If ND is a template declaration, make the template parameters |
| 1564 | // visible too. They're not (necessarily) within a mergeable DeclContext. |
| 1565 | if (auto *TD = dyn_cast<TemplateDecl>(Val: ND)) |
| 1566 | for (auto *Param : *TD->getTemplateParameters()) |
| 1567 | makeMergedDefinitionVisible(ND: Param); |
| 1568 | |
| 1569 | // If we import a named module which contains a header, and then we include a |
| 1570 | // header which contains a definition of enums, we will skip parsing the enums |
| 1571 | // in the current TU. But we need to ensure the visibility of the enum |
| 1572 | // contants, since they are able to be found with the parents of their |
| 1573 | // parents. |
| 1574 | if (auto *ED = dyn_cast<EnumDecl>(Val: ND); |
| 1575 | ED && ED->isFromGlobalModule() && !ED->isScoped()) { |
| 1576 | for (auto *ECD : ED->enumerators()) { |
| 1577 | ECD->setVisibleDespiteOwningModule(); |
| 1578 | DeclContext *RedeclCtx = ED->getDeclContext()->getRedeclContext(); |
| 1579 | if (RedeclCtx->lookup(Name: ECD->getDeclName()).empty()) |
| 1580 | RedeclCtx->makeDeclVisibleInContext(D: ECD); |
| 1581 | } |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | /// Find the module in which the given declaration was defined. |
| 1586 | static Module *getDefiningModule(Sema &S, Decl *Entity) { |
| 1587 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Entity)) { |
| 1588 | // If this function was instantiated from a template, the defining module is |
| 1589 | // the module containing the pattern. |
| 1590 | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) |
| 1591 | Entity = Pattern; |
| 1592 | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Entity)) { |
| 1593 | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) |
| 1594 | Entity = Pattern; |
| 1595 | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Val: Entity)) { |
| 1596 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) |
| 1597 | Entity = Pattern; |
| 1598 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Val: Entity)) { |
| 1599 | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) |
| 1600 | Entity = Pattern; |
| 1601 | } |
| 1602 | |
| 1603 | // Walk up to the containing context. That might also have been instantiated |
| 1604 | // from a template. |
| 1605 | DeclContext *Context = Entity->getLexicalDeclContext(); |
| 1606 | if (Context->isFileContext()) |
| 1607 | return S.getOwningModule(Entity); |
| 1608 | return getDefiningModule(S, Entity: cast<Decl>(Val: Context)); |
| 1609 | } |
| 1610 | |
| 1611 | llvm::DenseSet<Module*> &Sema::getLookupModules() { |
| 1612 | unsigned N = CodeSynthesisContexts.size(); |
| 1613 | for (unsigned I = CodeSynthesisContextLookupModules.size(); |
| 1614 | I != N; ++I) { |
| 1615 | Module *M = CodeSynthesisContexts[I].Entity ? |
| 1616 | getDefiningModule(S&: *this, Entity: CodeSynthesisContexts[I].Entity) : |
| 1617 | nullptr; |
| 1618 | if (M && !LookupModulesCache.insert(V: M).second) |
| 1619 | M = nullptr; |
| 1620 | CodeSynthesisContextLookupModules.push_back(Elt: M); |
| 1621 | } |
| 1622 | return LookupModulesCache; |
| 1623 | } |
| 1624 | |
| 1625 | bool Sema::isUsableModule(const Module *M) { |
| 1626 | assert(M && "We shouldn't check nullness for module here" ); |
| 1627 | // Return quickly if we cached the result. |
| 1628 | if (UsableModuleUnitsCache.count(V: M)) |
| 1629 | return true; |
| 1630 | |
| 1631 | // If M is the global module fragment of the current translation unit. So it |
| 1632 | // should be usable. |
| 1633 | // [module.global.frag]p1: |
| 1634 | // The global module fragment can be used to provide declarations that are |
| 1635 | // attached to the global module and usable within the module unit. |
| 1636 | if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { |
| 1637 | UsableModuleUnitsCache.insert(V: M); |
| 1638 | return true; |
| 1639 | } |
| 1640 | |
| 1641 | // Otherwise, the global module fragment from other translation unit is not |
| 1642 | // directly usable. |
| 1643 | if (M->isExplicitGlobalModule()) |
| 1644 | return false; |
| 1645 | |
| 1646 | Module *Current = getCurrentModule(); |
| 1647 | |
| 1648 | // If we're not parsing a module, we can't use all the declarations from |
| 1649 | // another module easily. |
| 1650 | if (!Current) |
| 1651 | return false; |
| 1652 | |
| 1653 | // For implicit global module, the decls in the same modules with the parent |
| 1654 | // module should be visible to the decls in the implicit global module. |
| 1655 | if (Current->isImplicitGlobalModule()) |
| 1656 | Current = Current->getTopLevelModule(); |
| 1657 | if (M->isImplicitGlobalModule()) |
| 1658 | M = M->getTopLevelModule(); |
| 1659 | |
| 1660 | // If M is the module we're parsing or M and the current module unit lives in |
| 1661 | // the same module, M should be usable. |
| 1662 | // |
| 1663 | // Note: It should be fine to search the vector `ModuleScopes` linearly since |
| 1664 | // it should be generally small enough. There should be rare module fragments |
| 1665 | // in a named module unit. |
| 1666 | if (llvm::count_if(Range&: ModuleScopes, |
| 1667 | P: [&M](const ModuleScope &MS) { return MS.Module == M; }) || |
| 1668 | getASTContext().isInSameModule(M1: M, M2: Current)) { |
| 1669 | UsableModuleUnitsCache.insert(V: M); |
| 1670 | return true; |
| 1671 | } |
| 1672 | |
| 1673 | return false; |
| 1674 | } |
| 1675 | |
| 1676 | bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { |
| 1677 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
| 1678 | if (isModuleVisible(M: Merged)) |
| 1679 | return true; |
| 1680 | return false; |
| 1681 | } |
| 1682 | |
| 1683 | bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { |
| 1684 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
| 1685 | if (isUsableModule(M: Merged)) |
| 1686 | return true; |
| 1687 | return false; |
| 1688 | } |
| 1689 | |
| 1690 | template <typename ParmDecl> |
| 1691 | static bool |
| 1692 | hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, |
| 1693 | llvm::SmallVectorImpl<Module *> *Modules, |
| 1694 | Sema::AcceptableKind Kind) { |
| 1695 | if (!D->hasDefaultArgument()) |
| 1696 | return false; |
| 1697 | |
| 1698 | llvm::SmallPtrSet<const ParmDecl *, 4> Visited; |
| 1699 | while (D && Visited.insert(D).second) { |
| 1700 | auto &DefaultArg = D->getDefaultArgStorage(); |
| 1701 | if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) |
| 1702 | return true; |
| 1703 | |
| 1704 | if (!DefaultArg.isInherited() && Modules) { |
| 1705 | auto *NonConstD = const_cast<ParmDecl*>(D); |
| 1706 | Modules->push_back(Elt: S.getOwningModule(Entity: NonConstD)); |
| 1707 | } |
| 1708 | |
| 1709 | // If there was a previous default argument, maybe its parameter is |
| 1710 | // acceptable. |
| 1711 | D = DefaultArg.getInheritedFrom(); |
| 1712 | } |
| 1713 | return false; |
| 1714 | } |
| 1715 | |
| 1716 | bool Sema::hasAcceptableDefaultArgument( |
| 1717 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, |
| 1718 | Sema::AcceptableKind Kind) { |
| 1719 | if (auto *P = dyn_cast<TemplateTypeParmDecl>(Val: D)) |
| 1720 | return ::hasAcceptableDefaultArgument(S&: *this, D: P, Modules, Kind); |
| 1721 | |
| 1722 | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
| 1723 | return ::hasAcceptableDefaultArgument(S&: *this, D: P, Modules, Kind); |
| 1724 | |
| 1725 | return ::hasAcceptableDefaultArgument( |
| 1726 | S&: *this, D: cast<TemplateTemplateParmDecl>(Val: D), Modules, Kind); |
| 1727 | } |
| 1728 | |
| 1729 | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, |
| 1730 | llvm::SmallVectorImpl<Module *> *Modules) { |
| 1731 | return hasAcceptableDefaultArgument(D, Modules, |
| 1732 | Kind: Sema::AcceptableKind::Visible); |
| 1733 | } |
| 1734 | |
| 1735 | bool Sema::hasReachableDefaultArgument( |
| 1736 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| 1737 | return hasAcceptableDefaultArgument(D, Modules, |
| 1738 | Kind: Sema::AcceptableKind::Reachable); |
| 1739 | } |
| 1740 | |
| 1741 | template <typename Filter> |
| 1742 | static bool |
| 1743 | hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, |
| 1744 | llvm::SmallVectorImpl<Module *> *Modules, Filter F, |
| 1745 | Sema::AcceptableKind Kind) { |
| 1746 | bool HasFilteredRedecls = false; |
| 1747 | |
| 1748 | for (auto *Redecl : D->redecls()) { |
| 1749 | auto *R = cast<NamedDecl>(Val: Redecl); |
| 1750 | if (!F(R)) |
| 1751 | continue; |
| 1752 | |
| 1753 | if (S.isAcceptable(D: R, Kind)) |
| 1754 | return true; |
| 1755 | |
| 1756 | HasFilteredRedecls = true; |
| 1757 | |
| 1758 | if (Modules) |
| 1759 | Modules->push_back(Elt: R->getOwningModule()); |
| 1760 | } |
| 1761 | |
| 1762 | // Only return false if there is at least one redecl that is not filtered out. |
| 1763 | if (HasFilteredRedecls) |
| 1764 | return false; |
| 1765 | |
| 1766 | return true; |
| 1767 | } |
| 1768 | |
| 1769 | static bool |
| 1770 | hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, |
| 1771 | llvm::SmallVectorImpl<Module *> *Modules, |
| 1772 | Sema::AcceptableKind Kind) { |
| 1773 | return hasAcceptableDeclarationImpl( |
| 1774 | S, D, Modules, |
| 1775 | F: [](const NamedDecl *D) { |
| 1776 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
| 1777 | return RD->getTemplateSpecializationKind() == |
| 1778 | TSK_ExplicitSpecialization; |
| 1779 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 1780 | return FD->getTemplateSpecializationKind() == |
| 1781 | TSK_ExplicitSpecialization; |
| 1782 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) |
| 1783 | return VD->getTemplateSpecializationKind() == |
| 1784 | TSK_ExplicitSpecialization; |
| 1785 | llvm_unreachable("unknown explicit specialization kind" ); |
| 1786 | }, |
| 1787 | Kind); |
| 1788 | } |
| 1789 | |
| 1790 | bool Sema::hasVisibleExplicitSpecialization( |
| 1791 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| 1792 | return ::hasAcceptableExplicitSpecialization(S&: *this, D, Modules, |
| 1793 | Kind: Sema::AcceptableKind::Visible); |
| 1794 | } |
| 1795 | |
| 1796 | bool Sema::hasReachableExplicitSpecialization( |
| 1797 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| 1798 | return ::hasAcceptableExplicitSpecialization(S&: *this, D, Modules, |
| 1799 | Kind: Sema::AcceptableKind::Reachable); |
| 1800 | } |
| 1801 | |
| 1802 | static bool |
| 1803 | hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, |
| 1804 | llvm::SmallVectorImpl<Module *> *Modules, |
| 1805 | Sema::AcceptableKind Kind) { |
| 1806 | assert(isa<CXXRecordDecl>(D->getDeclContext()) && |
| 1807 | "not a member specialization" ); |
| 1808 | return hasAcceptableDeclarationImpl( |
| 1809 | S, D, Modules, |
| 1810 | F: [](const NamedDecl *D) { |
| 1811 | // If the specialization is declared at namespace scope, then it's a |
| 1812 | // member specialization declaration. If it's lexically inside the class |
| 1813 | // definition then it was instantiated. |
| 1814 | // |
| 1815 | // FIXME: This is a hack. There should be a better way to determine |
| 1816 | // this. |
| 1817 | // FIXME: What about MS-style explicit specializations declared within a |
| 1818 | // class definition? |
| 1819 | return D->getLexicalDeclContext()->isFileContext(); |
| 1820 | }, |
| 1821 | Kind); |
| 1822 | } |
| 1823 | |
| 1824 | bool Sema::hasVisibleMemberSpecialization( |
| 1825 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| 1826 | return hasAcceptableMemberSpecialization(S&: *this, D, Modules, |
| 1827 | Kind: Sema::AcceptableKind::Visible); |
| 1828 | } |
| 1829 | |
| 1830 | bool Sema::hasReachableMemberSpecialization( |
| 1831 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| 1832 | return hasAcceptableMemberSpecialization(S&: *this, D, Modules, |
| 1833 | Kind: Sema::AcceptableKind::Reachable); |
| 1834 | } |
| 1835 | |
| 1836 | /// Determine whether a declaration is acceptable to name lookup. |
| 1837 | /// |
| 1838 | /// This routine determines whether the declaration D is acceptable in the |
| 1839 | /// current lookup context, taking into account the current template |
| 1840 | /// instantiation stack. During template instantiation, a declaration is |
| 1841 | /// acceptable if it is acceptable from a module containing any entity on the |
| 1842 | /// template instantiation path (by instantiating a template, you allow it to |
| 1843 | /// see the declarations that your module can see, including those later on in |
| 1844 | /// your module). |
| 1845 | bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, |
| 1846 | Sema::AcceptableKind Kind) { |
| 1847 | assert(!D->isUnconditionallyVisible() && |
| 1848 | "should not call this: not in slow case" ); |
| 1849 | |
| 1850 | Module *DeclModule = SemaRef.getOwningModule(Entity: D); |
| 1851 | assert(DeclModule && "hidden decl has no owning module" ); |
| 1852 | |
| 1853 | // If the owning module is visible, the decl is acceptable. |
| 1854 | if (SemaRef.isModuleVisible(M: DeclModule, |
| 1855 | ModulePrivate: D->isInvisibleOutsideTheOwningModule())) |
| 1856 | return true; |
| 1857 | |
| 1858 | // Determine whether a decl context is a file context for the purpose of |
| 1859 | // visibility/reachability. This looks through some (export and linkage spec) |
| 1860 | // transparent contexts, but not others (enums). |
| 1861 | auto IsEffectivelyFileContext = [](const DeclContext *DC) { |
| 1862 | return DC->isFileContext() || isa<LinkageSpecDecl>(Val: DC) || |
| 1863 | isa<ExportDecl>(Val: DC); |
| 1864 | }; |
| 1865 | |
| 1866 | // If this declaration is not at namespace scope |
| 1867 | // then it is acceptable if its lexical parent has a acceptable definition. |
| 1868 | DeclContext *DC = D->getLexicalDeclContext(); |
| 1869 | if (DC && !IsEffectivelyFileContext(DC)) { |
| 1870 | // For a parameter, check whether our current template declaration's |
| 1871 | // lexical context is acceptable, not whether there's some other acceptable |
| 1872 | // definition of it, because parameters aren't "within" the definition. |
| 1873 | // |
| 1874 | // In C++ we need to check for a acceptable definition due to ODR merging, |
| 1875 | // and in C we must not because each declaration of a function gets its own |
| 1876 | // set of declarations for tags in prototype scope. |
| 1877 | bool AcceptableWithinParent; |
| 1878 | if (D->isTemplateParameter()) { |
| 1879 | bool SearchDefinitions = true; |
| 1880 | if (const auto *DCD = dyn_cast<Decl>(Val: DC)) { |
| 1881 | if (const auto *TD = DCD->getDescribedTemplate()) { |
| 1882 | TemplateParameterList *TPL = TD->getTemplateParameters(); |
| 1883 | auto Index = getDepthAndIndex(ND: D).second; |
| 1884 | SearchDefinitions = Index >= TPL->size() || TPL->getParam(Idx: Index) != D; |
| 1885 | } |
| 1886 | } |
| 1887 | if (SearchDefinitions) |
| 1888 | AcceptableWithinParent = |
| 1889 | SemaRef.hasAcceptableDefinition(D: cast<NamedDecl>(Val: DC), Kind); |
| 1890 | else |
| 1891 | AcceptableWithinParent = |
| 1892 | isAcceptable(SemaRef, D: cast<NamedDecl>(Val: DC), Kind); |
| 1893 | } else if (isa<ParmVarDecl>(Val: D) || |
| 1894 | (isa<FunctionDecl>(Val: DC) && !SemaRef.getLangOpts().CPlusPlus)) |
| 1895 | AcceptableWithinParent = isAcceptable(SemaRef, D: cast<NamedDecl>(Val: DC), Kind); |
| 1896 | else if (D->isModulePrivate()) { |
| 1897 | // A module-private declaration is only acceptable if an enclosing lexical |
| 1898 | // parent was merged with another definition in the current module. |
| 1899 | AcceptableWithinParent = false; |
| 1900 | do { |
| 1901 | if (SemaRef.hasMergedDefinitionInCurrentModule(Def: cast<NamedDecl>(Val: DC))) { |
| 1902 | AcceptableWithinParent = true; |
| 1903 | break; |
| 1904 | } |
| 1905 | DC = DC->getLexicalParent(); |
| 1906 | } while (!IsEffectivelyFileContext(DC)); |
| 1907 | } else { |
| 1908 | AcceptableWithinParent = |
| 1909 | SemaRef.hasAcceptableDefinition(D: cast<NamedDecl>(Val: DC), Kind); |
| 1910 | } |
| 1911 | |
| 1912 | if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && |
| 1913 | Kind == Sema::AcceptableKind::Visible && |
| 1914 | // FIXME: Do something better in this case. |
| 1915 | !SemaRef.getLangOpts().ModulesLocalVisibility) { |
| 1916 | // Cache the fact that this declaration is implicitly visible because |
| 1917 | // its parent has a visible definition. |
| 1918 | D->setVisibleDespiteOwningModule(); |
| 1919 | } |
| 1920 | return AcceptableWithinParent; |
| 1921 | } |
| 1922 | |
| 1923 | if (Kind == Sema::AcceptableKind::Visible) |
| 1924 | return false; |
| 1925 | |
| 1926 | assert(Kind == Sema::AcceptableKind::Reachable && |
| 1927 | "Additional Sema::AcceptableKind?" ); |
| 1928 | return isReachableSlow(SemaRef, D); |
| 1929 | } |
| 1930 | |
| 1931 | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { |
| 1932 | // The module might be ordinarily visible. For a module-private query, that |
| 1933 | // means it is part of the current module. |
| 1934 | if (ModulePrivate && isUsableModule(M)) |
| 1935 | return true; |
| 1936 | |
| 1937 | // For a query which is not module-private, that means it is in our visible |
| 1938 | // module set. |
| 1939 | if (!ModulePrivate && VisibleModules.isVisible(M)) |
| 1940 | return true; |
| 1941 | |
| 1942 | // Otherwise, it might be visible by virtue of the query being within a |
| 1943 | // template instantiation or similar that is permitted to look inside M. |
| 1944 | |
| 1945 | // Find the extra places where we need to look. |
| 1946 | const auto &LookupModules = getLookupModules(); |
| 1947 | if (LookupModules.empty()) |
| 1948 | return false; |
| 1949 | |
| 1950 | // If our lookup set contains the module, it's visible. |
| 1951 | if (LookupModules.count(V: M)) |
| 1952 | return true; |
| 1953 | |
| 1954 | // The global module fragments are visible to its corresponding module unit. |
| 1955 | // So the global module fragment should be visible if the its corresponding |
| 1956 | // module unit is visible. |
| 1957 | if (M->isGlobalModule() && LookupModules.count(V: M->getTopLevelModule())) |
| 1958 | return true; |
| 1959 | |
| 1960 | // For a module-private query, that's everywhere we get to look. |
| 1961 | if (ModulePrivate) |
| 1962 | return false; |
| 1963 | |
| 1964 | // Check whether M is transitively exported to an import of the lookup set. |
| 1965 | return llvm::any_of(Range: LookupModules, P: [&](const Module *LookupM) { |
| 1966 | return LookupM->isModuleVisible(M); |
| 1967 | }); |
| 1968 | } |
| 1969 | |
| 1970 | // FIXME: Return false directly if we don't have an interface dependency on the |
| 1971 | // translation unit containing D. |
| 1972 | bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { |
| 1973 | assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n" ); |
| 1974 | |
| 1975 | Module *DeclModule = SemaRef.getOwningModule(Entity: D); |
| 1976 | assert(DeclModule && "hidden decl has no owning module" ); |
| 1977 | |
| 1978 | // Entities in header like modules are reachable only if they're visible. |
| 1979 | if (DeclModule->isHeaderLikeModule()) |
| 1980 | return false; |
| 1981 | |
| 1982 | if (!D->isInAnotherModuleUnit()) |
| 1983 | return true; |
| 1984 | |
| 1985 | // [module.reach]/p3: |
| 1986 | // A declaration D is reachable from a point P if: |
| 1987 | // ... |
| 1988 | // - D is not discarded ([module.global.frag]), appears in a translation unit |
| 1989 | // that is reachable from P, and does not appear within a private module |
| 1990 | // fragment. |
| 1991 | // |
| 1992 | // A declaration that's discarded in the GMF should be module-private. |
| 1993 | if (D->isModulePrivate()) |
| 1994 | return false; |
| 1995 | |
| 1996 | Module *DeclTopModule = DeclModule->getTopLevelModule(); |
| 1997 | |
| 1998 | // [module.reach]/p1 |
| 1999 | // A translation unit U is necessarily reachable from a point P if U is a |
| 2000 | // module interface unit on which the translation unit containing P has an |
| 2001 | // interface dependency, or the translation unit containing P imports U, in |
| 2002 | // either case prior to P ([module.import]). |
| 2003 | // |
| 2004 | // [module.import]/p10 |
| 2005 | // A translation unit has an interface dependency on a translation unit U if |
| 2006 | // it contains a declaration (possibly a module-declaration) that imports U |
| 2007 | // or if it has an interface dependency on a translation unit that has an |
| 2008 | // interface dependency on U. |
| 2009 | // |
| 2010 | // So we could conclude the module unit U is necessarily reachable if: |
| 2011 | // (1) The module unit U is module interface unit. |
| 2012 | // (2) The current unit has an interface dependency on the module unit U. |
| 2013 | // |
| 2014 | // Here we only check for the first condition. Since we couldn't see |
| 2015 | // DeclModule if it isn't (transitively) imported. |
| 2016 | if (DeclTopModule->isModuleInterfaceUnit()) |
| 2017 | return true; |
| 2018 | |
| 2019 | // [module.reach]/p1,2 |
| 2020 | // A translation unit U is necessarily reachable from a point P if U is a |
| 2021 | // module interface unit on which the translation unit containing P has an |
| 2022 | // interface dependency, or the translation unit containing P imports U, in |
| 2023 | // either case prior to P |
| 2024 | // |
| 2025 | // Additional translation units on |
| 2026 | // which the point within the program has an interface dependency may be |
| 2027 | // considered reachable, but it is unspecified which are and under what |
| 2028 | // circumstances. |
| 2029 | Module *CurrentM = SemaRef.getCurrentModule(); |
| 2030 | |
| 2031 | // Directly imported module are necessarily reachable. |
| 2032 | // Since we can't export import a module implementation partition unit, we |
| 2033 | // don't need to count for Exports here. |
| 2034 | if (CurrentM && CurrentM->getTopLevelModule()->Imports.count(key: DeclTopModule)) |
| 2035 | return true; |
| 2036 | |
| 2037 | // Then we treat all module implementation partition unit as unreachable. |
| 2038 | return false; |
| 2039 | } |
| 2040 | |
| 2041 | bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { |
| 2042 | return LookupResult::isAcceptable(SemaRef&: *this, D: const_cast<NamedDecl *>(D), Kind); |
| 2043 | } |
| 2044 | |
| 2045 | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { |
| 2046 | // FIXME: If there are both visible and hidden declarations, we need to take |
| 2047 | // into account whether redeclaration is possible. Example: |
| 2048 | // |
| 2049 | // Non-imported module: |
| 2050 | // int f(T); // #1 |
| 2051 | // Some TU: |
| 2052 | // static int f(U); // #2, not a redeclaration of #1 |
| 2053 | // int f(T); // #3, finds both, should link with #1 if T != U, but |
| 2054 | // // with #2 if T == U; neither should be ambiguous. |
| 2055 | for (auto *D : R) { |
| 2056 | if (isVisible(D)) |
| 2057 | return true; |
| 2058 | assert(D->isExternallyDeclarable() && |
| 2059 | "should not have hidden, non-externally-declarable result here" ); |
| 2060 | } |
| 2061 | |
| 2062 | // This function is called once "New" is essentially complete, but before a |
| 2063 | // previous declaration is attached. We can't query the linkage of "New" in |
| 2064 | // general, because attaching the previous declaration can change the |
| 2065 | // linkage of New to match the previous declaration. |
| 2066 | // |
| 2067 | // However, because we've just determined that there is no *visible* prior |
| 2068 | // declaration, we can compute the linkage here. There are two possibilities: |
| 2069 | // |
| 2070 | // * This is not a redeclaration; it's safe to compute the linkage now. |
| 2071 | // |
| 2072 | // * This is a redeclaration of a prior declaration that is externally |
| 2073 | // redeclarable. In that case, the linkage of the declaration is not |
| 2074 | // changed by attaching the prior declaration, because both are externally |
| 2075 | // declarable (and thus ExternalLinkage or VisibleNoLinkage). |
| 2076 | // |
| 2077 | // FIXME: This is subtle and fragile. |
| 2078 | return New->isExternallyDeclarable(); |
| 2079 | } |
| 2080 | |
| 2081 | /// Retrieve the visible declaration corresponding to D, if any. |
| 2082 | /// |
| 2083 | /// This routine determines whether the declaration D is visible in the current |
| 2084 | /// module, with the current imports. If not, it checks whether any |
| 2085 | /// redeclaration of D is visible, and if so, returns that declaration. |
| 2086 | /// |
| 2087 | /// \returns D, or a visible previous declaration of D, whichever is more recent |
| 2088 | /// and visible. If no declaration of D is visible, returns null. |
| 2089 | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, |
| 2090 | unsigned IDNS) { |
| 2091 | assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case" ); |
| 2092 | |
| 2093 | for (auto *RD : D->redecls()) { |
| 2094 | // Don't bother with extra checks if we already know this one isn't visible. |
| 2095 | if (RD == D) |
| 2096 | continue; |
| 2097 | |
| 2098 | auto ND = cast<NamedDecl>(Val: RD); |
| 2099 | // FIXME: This is wrong in the case where the previous declaration is not |
| 2100 | // visible in the same scope as D. This needs to be done much more |
| 2101 | // carefully. |
| 2102 | if (ND->isInIdentifierNamespace(NS: IDNS) && |
| 2103 | LookupResult::isAvailableForLookup(SemaRef, ND)) |
| 2104 | return ND; |
| 2105 | } |
| 2106 | |
| 2107 | return nullptr; |
| 2108 | } |
| 2109 | |
| 2110 | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, |
| 2111 | llvm::SmallVectorImpl<Module *> *Modules) { |
| 2112 | assert(!isVisible(D) && "not in slow case" ); |
| 2113 | return hasAcceptableDeclarationImpl( |
| 2114 | S&: *this, D, Modules, F: [](const NamedDecl *) { return true; }, |
| 2115 | Kind: Sema::AcceptableKind::Visible); |
| 2116 | } |
| 2117 | |
| 2118 | bool Sema::hasReachableDeclarationSlow( |
| 2119 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| 2120 | assert(!isReachable(D) && "not in slow case" ); |
| 2121 | return hasAcceptableDeclarationImpl( |
| 2122 | S&: *this, D, Modules, F: [](const NamedDecl *) { return true; }, |
| 2123 | Kind: Sema::AcceptableKind::Reachable); |
| 2124 | } |
| 2125 | |
| 2126 | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { |
| 2127 | if (auto *ND = dyn_cast<NamespaceDecl>(Val: D)) { |
| 2128 | // Namespaces are a bit of a special case: we expect there to be a lot of |
| 2129 | // redeclarations of some namespaces, all declarations of a namespace are |
| 2130 | // essentially interchangeable, all declarations are found by name lookup |
| 2131 | // if any is, and namespaces are never looked up during template |
| 2132 | // instantiation. So we benefit from caching the check in this case, and |
| 2133 | // it is correct to do so. |
| 2134 | auto *Key = ND->getCanonicalDecl(); |
| 2135 | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Val: Key)) |
| 2136 | return Acceptable; |
| 2137 | auto *Acceptable = isVisible(SemaRef&: getSema(), D: Key) |
| 2138 | ? Key |
| 2139 | : findAcceptableDecl(SemaRef&: getSema(), D: Key, IDNS); |
| 2140 | if (Acceptable) |
| 2141 | getSema().VisibleNamespaceCache.insert(KV: std::make_pair(x&: Key, y&: Acceptable)); |
| 2142 | return Acceptable; |
| 2143 | } |
| 2144 | |
| 2145 | return findAcceptableDecl(SemaRef&: getSema(), D, IDNS); |
| 2146 | } |
| 2147 | |
| 2148 | bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { |
| 2149 | // If this declaration is already visible, return it directly. |
| 2150 | if (D->isUnconditionallyVisible()) |
| 2151 | return true; |
| 2152 | |
| 2153 | // During template instantiation, we can refer to hidden declarations, if |
| 2154 | // they were visible in any module along the path of instantiation. |
| 2155 | return isAcceptableSlow(SemaRef, D, Kind: Sema::AcceptableKind::Visible); |
| 2156 | } |
| 2157 | |
| 2158 | bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { |
| 2159 | if (D->isUnconditionallyVisible()) |
| 2160 | return true; |
| 2161 | |
| 2162 | return isAcceptableSlow(SemaRef, D, Kind: Sema::AcceptableKind::Reachable); |
| 2163 | } |
| 2164 | |
| 2165 | bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { |
| 2166 | // We should check the visibility at the callsite already. |
| 2167 | if (isVisible(SemaRef, D: ND)) |
| 2168 | return true; |
| 2169 | |
| 2170 | // Deduction guide lives in namespace scope generally, but it is just a |
| 2171 | // hint to the compilers. What we actually lookup for is the generated member |
| 2172 | // of the corresponding template. So it is sufficient to check the |
| 2173 | // reachability of the template decl. |
| 2174 | if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) |
| 2175 | return SemaRef.hasReachableDefinition(D: DeductionGuide); |
| 2176 | |
| 2177 | // FIXME: The lookup for allocation function is a standalone process. |
| 2178 | // (We can find the logics in Sema::FindAllocationFunctions) |
| 2179 | // |
| 2180 | // Such structure makes it a problem when we instantiate a template |
| 2181 | // declaration using placement allocation function if the placement |
| 2182 | // allocation function is invisible. |
| 2183 | // (See https://github.com/llvm/llvm-project/issues/59601) |
| 2184 | // |
| 2185 | // Here we workaround it by making the placement allocation functions |
| 2186 | // always acceptable. The downside is that we can't diagnose the direct |
| 2187 | // use of the invisible placement allocation functions. (Although such uses |
| 2188 | // should be rare). |
| 2189 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
| 2190 | FD && FD->isReservedGlobalPlacementOperator()) |
| 2191 | return true; |
| 2192 | |
| 2193 | auto *DC = ND->getDeclContext(); |
| 2194 | // If ND is not visible and it is at namespace scope, it shouldn't be found |
| 2195 | // by name lookup. |
| 2196 | if (DC->isFileContext()) |
| 2197 | return false; |
| 2198 | |
| 2199 | // [module.interface]p7 |
| 2200 | // Class and enumeration member names can be found by name lookup in any |
| 2201 | // context in which a definition of the type is reachable. |
| 2202 | // |
| 2203 | // NOTE: The above wording may be problematic. See |
| 2204 | // https://github.com/llvm/llvm-project/issues/131058 But it is much complext |
| 2205 | // to adjust it in Sema's lookup process. Now we hacked it in ASTWriter. See |
| 2206 | // the comments in ASTDeclContextNameLookupTrait::getLookupVisibility. |
| 2207 | if (auto *TD = dyn_cast<TagDecl>(Val: DC)) |
| 2208 | return SemaRef.hasReachableDefinition(D: TD); |
| 2209 | |
| 2210 | return false; |
| 2211 | } |
| 2212 | |
| 2213 | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, |
| 2214 | bool ForceNoCPlusPlus) { |
| 2215 | DeclarationName Name = R.getLookupName(); |
| 2216 | if (!Name) return false; |
| 2217 | |
| 2218 | LookupNameKind NameKind = R.getLookupKind(); |
| 2219 | |
| 2220 | if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { |
| 2221 | // Unqualified name lookup in C/Objective-C is purely lexical, so |
| 2222 | // search in the declarations attached to the name. |
| 2223 | if (NameKind == Sema::LookupRedeclarationWithLinkage) { |
| 2224 | // Find the nearest non-transparent declaration scope. |
| 2225 | while (!(S->getFlags() & Scope::DeclScope) || |
| 2226 | (S->getEntity() && S->getEntity()->isTransparentContext())) |
| 2227 | S = S->getParent(); |
| 2228 | } |
| 2229 | |
| 2230 | // When performing a scope lookup, we want to find local extern decls. |
| 2231 | FindLocalExternScope FindLocals(R); |
| 2232 | |
| 2233 | // Scan up the scope chain looking for a decl that matches this |
| 2234 | // identifier that is in the appropriate namespace. This search |
| 2235 | // should not take long, as shadowing of names is uncommon, and |
| 2236 | // deep shadowing is extremely uncommon. |
| 2237 | bool LeftStartingScope = false; |
| 2238 | |
| 2239 | for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
| 2240 | IEnd = IdResolver.end(); |
| 2241 | I != IEnd; ++I) |
| 2242 | if (NamedDecl *D = R.getAcceptableDecl(D: *I)) { |
| 2243 | if (NameKind == LookupRedeclarationWithLinkage) { |
| 2244 | // Determine whether this (or a previous) declaration is |
| 2245 | // out-of-scope. |
| 2246 | if (!LeftStartingScope && !S->isDeclScope(D: *I)) |
| 2247 | LeftStartingScope = true; |
| 2248 | |
| 2249 | // If we found something outside of our starting scope that |
| 2250 | // does not have linkage, skip it. |
| 2251 | if (LeftStartingScope && !((*I)->hasLinkage())) { |
| 2252 | R.setShadowed(); |
| 2253 | continue; |
| 2254 | } |
| 2255 | } |
| 2256 | else if (NameKind == LookupObjCImplicitSelfParam && |
| 2257 | !isa<ImplicitParamDecl>(Val: *I)) |
| 2258 | continue; |
| 2259 | |
| 2260 | R.addDecl(D); |
| 2261 | |
| 2262 | // Check whether there are any other declarations with the same name |
| 2263 | // and in the same scope. |
| 2264 | if (I != IEnd) { |
| 2265 | // Find the scope in which this declaration was declared (if it |
| 2266 | // actually exists in a Scope). |
| 2267 | while (S && !S->isDeclScope(D)) |
| 2268 | S = S->getParent(); |
| 2269 | |
| 2270 | // If the scope containing the declaration is the translation unit, |
| 2271 | // then we'll need to perform our checks based on the matching |
| 2272 | // DeclContexts rather than matching scopes. |
| 2273 | if (S && isNamespaceOrTranslationUnitScope(S)) |
| 2274 | S = nullptr; |
| 2275 | |
| 2276 | // Compute the DeclContext, if we need it. |
| 2277 | DeclContext *DC = nullptr; |
| 2278 | if (!S) |
| 2279 | DC = (*I)->getDeclContext()->getRedeclContext(); |
| 2280 | |
| 2281 | IdentifierResolver::iterator LastI = I; |
| 2282 | for (++LastI; LastI != IEnd; ++LastI) { |
| 2283 | if (S) { |
| 2284 | // Match based on scope. |
| 2285 | if (!S->isDeclScope(D: *LastI)) |
| 2286 | break; |
| 2287 | } else { |
| 2288 | // Match based on DeclContext. |
| 2289 | DeclContext *LastDC |
| 2290 | = (*LastI)->getDeclContext()->getRedeclContext(); |
| 2291 | if (!LastDC->Equals(DC)) |
| 2292 | break; |
| 2293 | } |
| 2294 | |
| 2295 | // If the declaration is in the right namespace and visible, add it. |
| 2296 | if (NamedDecl *LastD = R.getAcceptableDecl(D: *LastI)) |
| 2297 | R.addDecl(D: LastD); |
| 2298 | } |
| 2299 | |
| 2300 | R.resolveKind(); |
| 2301 | } |
| 2302 | |
| 2303 | return true; |
| 2304 | } |
| 2305 | } else { |
| 2306 | // Perform C++ unqualified name lookup. |
| 2307 | if (CppLookupName(R, S)) |
| 2308 | return true; |
| 2309 | } |
| 2310 | |
| 2311 | // If we didn't find a use of this identifier, and if the identifier |
| 2312 | // corresponds to a compiler builtin, create the decl object for the builtin |
| 2313 | // now, injecting it into translation unit scope, and return it. |
| 2314 | if (AllowBuiltinCreation && LookupBuiltin(R)) |
| 2315 | return true; |
| 2316 | |
| 2317 | // If we didn't find a use of this identifier, the ExternalSource |
| 2318 | // may be able to handle the situation. |
| 2319 | // Note: some lookup failures are expected! |
| 2320 | // See e.g. R.isForRedeclaration(). |
| 2321 | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); |
| 2322 | } |
| 2323 | |
| 2324 | /// Perform qualified name lookup in the namespaces nominated by |
| 2325 | /// using directives by the given context. |
| 2326 | /// |
| 2327 | /// C++98 [namespace.qual]p2: |
| 2328 | /// Given X::m (where X is a user-declared namespace), or given \::m |
| 2329 | /// (where X is the global namespace), let S be the set of all |
| 2330 | /// declarations of m in X and in the transitive closure of all |
| 2331 | /// namespaces nominated by using-directives in X and its used |
| 2332 | /// namespaces, except that using-directives are ignored in any |
| 2333 | /// namespace, including X, directly containing one or more |
| 2334 | /// declarations of m. No namespace is searched more than once in |
| 2335 | /// the lookup of a name. If S is the empty set, the program is |
| 2336 | /// ill-formed. Otherwise, if S has exactly one member, or if the |
| 2337 | /// context of the reference is a using-declaration |
| 2338 | /// (namespace.udecl), S is the required set of declarations of |
| 2339 | /// m. Otherwise if the use of m is not one that allows a unique |
| 2340 | /// declaration to be chosen from S, the program is ill-formed. |
| 2341 | /// |
| 2342 | /// C++98 [namespace.qual]p5: |
| 2343 | /// During the lookup of a qualified namespace member name, if the |
| 2344 | /// lookup finds more than one declaration of the member, and if one |
| 2345 | /// declaration introduces a class name or enumeration name and the |
| 2346 | /// other declarations either introduce the same object, the same |
| 2347 | /// enumerator or a set of functions, the non-type name hides the |
| 2348 | /// class or enumeration name if and only if the declarations are |
| 2349 | /// from the same namespace; otherwise (the declarations are from |
| 2350 | /// different namespaces), the program is ill-formed. |
| 2351 | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, |
| 2352 | DeclContext *StartDC) { |
| 2353 | assert(StartDC->isFileContext() && "start context is not a file context" ); |
| 2354 | |
| 2355 | // We have not yet looked into these namespaces, much less added |
| 2356 | // their "using-children" to the queue. |
| 2357 | SmallVector<NamespaceDecl*, 8> Queue; |
| 2358 | |
| 2359 | // We have at least added all these contexts to the queue. |
| 2360 | llvm::SmallPtrSet<DeclContext*, 8> Visited; |
| 2361 | Visited.insert(Ptr: StartDC); |
| 2362 | |
| 2363 | // We have already looked into the initial namespace; seed the queue |
| 2364 | // with its using-children. |
| 2365 | for (auto *I : StartDC->using_directives()) { |
| 2366 | NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); |
| 2367 | if (S.isVisible(D: I) && Visited.insert(Ptr: ND).second) |
| 2368 | Queue.push_back(Elt: ND); |
| 2369 | } |
| 2370 | |
| 2371 | // The easiest way to implement the restriction in [namespace.qual]p5 |
| 2372 | // is to check whether any of the individual results found a tag |
| 2373 | // and, if so, to declare an ambiguity if the final result is not |
| 2374 | // a tag. |
| 2375 | bool FoundTag = false; |
| 2376 | bool FoundNonTag = false; |
| 2377 | |
| 2378 | LookupResult LocalR(LookupResult::Temporary, R); |
| 2379 | |
| 2380 | bool Found = false; |
| 2381 | while (!Queue.empty()) { |
| 2382 | NamespaceDecl *ND = Queue.pop_back_val(); |
| 2383 | |
| 2384 | // We go through some convolutions here to avoid copying results |
| 2385 | // between LookupResults. |
| 2386 | bool UseLocal = !R.empty(); |
| 2387 | LookupResult &DirectR = UseLocal ? LocalR : R; |
| 2388 | bool FoundDirect = LookupDirect(S, R&: DirectR, DC: ND); |
| 2389 | |
| 2390 | if (FoundDirect) { |
| 2391 | // First do any local hiding. |
| 2392 | DirectR.resolveKind(); |
| 2393 | |
| 2394 | // If the local result is a tag, remember that. |
| 2395 | if (DirectR.isSingleTagDecl()) |
| 2396 | FoundTag = true; |
| 2397 | else |
| 2398 | FoundNonTag = true; |
| 2399 | |
| 2400 | // Append the local results to the total results if necessary. |
| 2401 | if (UseLocal) { |
| 2402 | R.addAllDecls(Other: LocalR); |
| 2403 | LocalR.clear(); |
| 2404 | } |
| 2405 | } |
| 2406 | |
| 2407 | // If we find names in this namespace, ignore its using directives. |
| 2408 | if (FoundDirect) { |
| 2409 | Found = true; |
| 2410 | continue; |
| 2411 | } |
| 2412 | |
| 2413 | for (auto *I : ND->using_directives()) { |
| 2414 | NamespaceDecl *Nom = I->getNominatedNamespace(); |
| 2415 | if (S.isVisible(D: I) && Visited.insert(Ptr: Nom).second) |
| 2416 | Queue.push_back(Elt: Nom); |
| 2417 | } |
| 2418 | } |
| 2419 | |
| 2420 | if (Found) { |
| 2421 | if (FoundTag && FoundNonTag) |
| 2422 | R.setAmbiguousQualifiedTagHiding(); |
| 2423 | else |
| 2424 | R.resolveKind(); |
| 2425 | } |
| 2426 | |
| 2427 | return Found; |
| 2428 | } |
| 2429 | |
| 2430 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
| 2431 | bool InUnqualifiedLookup) { |
| 2432 | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context" ); |
| 2433 | |
| 2434 | if (!R.getLookupName()) |
| 2435 | return false; |
| 2436 | |
| 2437 | // Make sure that the declaration context is complete. |
| 2438 | assert((!isa<TagDecl>(LookupCtx) || |
| 2439 | LookupCtx->isDependentContext() || |
| 2440 | cast<TagDecl>(LookupCtx)->isCompleteDefinition() || |
| 2441 | cast<TagDecl>(LookupCtx)->isBeingDefined()) && |
| 2442 | "Declaration context must already be complete!" ); |
| 2443 | |
| 2444 | struct QualifiedLookupInScope { |
| 2445 | bool oldVal; |
| 2446 | DeclContext *Context; |
| 2447 | // Set flag in DeclContext informing debugger that we're looking for qualified name |
| 2448 | QualifiedLookupInScope(DeclContext *ctx) |
| 2449 | : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { |
| 2450 | ctx->setUseQualifiedLookup(); |
| 2451 | } |
| 2452 | ~QualifiedLookupInScope() { |
| 2453 | Context->setUseQualifiedLookup(oldVal); |
| 2454 | } |
| 2455 | } QL(LookupCtx); |
| 2456 | |
| 2457 | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(Val: LookupCtx); |
| 2458 | // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent |
| 2459 | // if it's a dependent conversion-function-id or operator= where the current |
| 2460 | // class is a templated entity. This should be handled in LookupName. |
| 2461 | if (!InUnqualifiedLookup && !R.isForRedeclaration()) { |
| 2462 | // C++23 [temp.dep.type]p5: |
| 2463 | // A qualified name is dependent if |
| 2464 | // - it is a conversion-function-id whose conversion-type-id |
| 2465 | // is dependent, or |
| 2466 | // - [...] |
| 2467 | // - its lookup context is the current instantiation and it |
| 2468 | // is operator=, or |
| 2469 | // - [...] |
| 2470 | if (DeclarationName Name = R.getLookupName(); |
| 2471 | Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| 2472 | Name.getCXXNameType()->isDependentType()) { |
| 2473 | R.setNotFoundInCurrentInstantiation(); |
| 2474 | return false; |
| 2475 | } |
| 2476 | } |
| 2477 | |
| 2478 | if (LookupDirect(S&: *this, R, DC: LookupCtx)) { |
| 2479 | R.resolveKind(); |
| 2480 | if (LookupRec) |
| 2481 | R.setNamingClass(LookupRec); |
| 2482 | return true; |
| 2483 | } |
| 2484 | |
| 2485 | // Don't descend into implied contexts for redeclarations. |
| 2486 | // C++98 [namespace.qual]p6: |
| 2487 | // In a declaration for a namespace member in which the |
| 2488 | // declarator-id is a qualified-id, given that the qualified-id |
| 2489 | // for the namespace member has the form |
| 2490 | // nested-name-specifier unqualified-id |
| 2491 | // the unqualified-id shall name a member of the namespace |
| 2492 | // designated by the nested-name-specifier. |
| 2493 | // See also [class.mfct]p5 and [class.static.data]p2. |
| 2494 | if (R.isForRedeclaration()) |
| 2495 | return false; |
| 2496 | |
| 2497 | // If this is a namespace, look it up in the implied namespaces. |
| 2498 | if (LookupCtx->isFileContext()) |
| 2499 | return LookupQualifiedNameInUsingDirectives(S&: *this, R, StartDC: LookupCtx); |
| 2500 | |
| 2501 | // If this isn't a C++ class, we aren't allowed to look into base |
| 2502 | // classes, we're done. |
| 2503 | if (!LookupRec || !LookupRec->getDefinition()) |
| 2504 | return false; |
| 2505 | |
| 2506 | // We're done for lookups that can never succeed for C++ classes. |
| 2507 | if (R.getLookupKind() == LookupOperatorName || |
| 2508 | R.getLookupKind() == LookupNamespaceName || |
| 2509 | R.getLookupKind() == LookupObjCProtocolName || |
| 2510 | R.getLookupKind() == LookupLabel) |
| 2511 | return false; |
| 2512 | |
| 2513 | // If we're performing qualified name lookup into a dependent class, |
| 2514 | // then we are actually looking into a current instantiation. If we have any |
| 2515 | // dependent base classes, then we either have to delay lookup until |
| 2516 | // template instantiation time (at which point all bases will be available) |
| 2517 | // or we have to fail. |
| 2518 | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && |
| 2519 | LookupRec->hasAnyDependentBases()) { |
| 2520 | R.setNotFoundInCurrentInstantiation(); |
| 2521 | return false; |
| 2522 | } |
| 2523 | |
| 2524 | // Perform lookup into our base classes. |
| 2525 | |
| 2526 | DeclarationName Name = R.getLookupName(); |
| 2527 | unsigned IDNS = R.getIdentifierNamespace(); |
| 2528 | |
| 2529 | // Look for this member in our base classes. |
| 2530 | auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, |
| 2531 | CXXBasePath &Path) -> bool { |
| 2532 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); |
| 2533 | // Drop leading non-matching lookup results from the declaration list so |
| 2534 | // we don't need to consider them again below. |
| 2535 | for (Path.Decls = BaseRecord->lookup(Name).begin(); |
| 2536 | Path.Decls != Path.Decls.end(); ++Path.Decls) { |
| 2537 | if ((*Path.Decls)->isInIdentifierNamespace(NS: IDNS)) |
| 2538 | return true; |
| 2539 | } |
| 2540 | return false; |
| 2541 | }; |
| 2542 | |
| 2543 | CXXBasePaths Paths; |
| 2544 | Paths.setOrigin(LookupRec); |
| 2545 | if (!LookupRec->lookupInBases(BaseMatches: BaseCallback, Paths)) |
| 2546 | return false; |
| 2547 | |
| 2548 | R.setNamingClass(LookupRec); |
| 2549 | |
| 2550 | // C++ [class.member.lookup]p2: |
| 2551 | // [...] If the resulting set of declarations are not all from |
| 2552 | // sub-objects of the same type, or the set has a nonstatic member |
| 2553 | // and includes members from distinct sub-objects, there is an |
| 2554 | // ambiguity and the program is ill-formed. Otherwise that set is |
| 2555 | // the result of the lookup. |
| 2556 | QualType SubobjectType; |
| 2557 | int SubobjectNumber = 0; |
| 2558 | AccessSpecifier SubobjectAccess = AS_none; |
| 2559 | |
| 2560 | // Check whether the given lookup result contains only static members. |
| 2561 | auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { |
| 2562 | for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) |
| 2563 | if ((*I)->isInIdentifierNamespace(NS: IDNS) && (*I)->isCXXInstanceMember()) |
| 2564 | return false; |
| 2565 | return true; |
| 2566 | }; |
| 2567 | |
| 2568 | bool TemplateNameLookup = R.isTemplateNameLookup(); |
| 2569 | |
| 2570 | // Determine whether two sets of members contain the same members, as |
| 2571 | // required by C++ [class.member.lookup]p6. |
| 2572 | auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, |
| 2573 | DeclContext::lookup_iterator B) { |
| 2574 | using Iterator = DeclContextLookupResult::iterator; |
| 2575 | using Result = const void *; |
| 2576 | |
| 2577 | auto Next = [&](Iterator &It, Iterator End) -> Result { |
| 2578 | while (It != End) { |
| 2579 | NamedDecl *ND = *It++; |
| 2580 | if (!ND->isInIdentifierNamespace(NS: IDNS)) |
| 2581 | continue; |
| 2582 | |
| 2583 | // C++ [temp.local]p3: |
| 2584 | // A lookup that finds an injected-class-name (10.2) can result in |
| 2585 | // an ambiguity in certain cases (for example, if it is found in |
| 2586 | // more than one base class). If all of the injected-class-names |
| 2587 | // that are found refer to specializations of the same class |
| 2588 | // template, and if the name is used as a template-name, the |
| 2589 | // reference refers to the class template itself and not a |
| 2590 | // specialization thereof, and is not ambiguous. |
| 2591 | if (TemplateNameLookup) |
| 2592 | if (auto *TD = getAsTemplateNameDecl(D: ND)) |
| 2593 | ND = TD; |
| 2594 | |
| 2595 | // C++ [class.member.lookup]p3: |
| 2596 | // type declarations (including injected-class-names) are replaced by |
| 2597 | // the types they designate |
| 2598 | if (const TypeDecl *TD = dyn_cast<TypeDecl>(Val: ND->getUnderlyingDecl())) { |
| 2599 | QualType T = Context.getTypeDeclType(Decl: TD); |
| 2600 | return T.getCanonicalType().getAsOpaquePtr(); |
| 2601 | } |
| 2602 | |
| 2603 | return ND->getUnderlyingDecl()->getCanonicalDecl(); |
| 2604 | } |
| 2605 | return nullptr; |
| 2606 | }; |
| 2607 | |
| 2608 | // We'll often find the declarations are in the same order. Handle this |
| 2609 | // case (and the special case of only one declaration) efficiently. |
| 2610 | Iterator AIt = A, BIt = B, AEnd, BEnd; |
| 2611 | while (true) { |
| 2612 | Result AResult = Next(AIt, AEnd); |
| 2613 | Result BResult = Next(BIt, BEnd); |
| 2614 | if (!AResult && !BResult) |
| 2615 | return true; |
| 2616 | if (!AResult || !BResult) |
| 2617 | return false; |
| 2618 | if (AResult != BResult) { |
| 2619 | // Found a mismatch; carefully check both lists, accounting for the |
| 2620 | // possibility of declarations appearing more than once. |
| 2621 | llvm::SmallDenseMap<Result, bool, 32> AResults; |
| 2622 | for (; AResult; AResult = Next(AIt, AEnd)) |
| 2623 | AResults.insert(KV: {AResult, /*FoundInB*/false}); |
| 2624 | unsigned Found = 0; |
| 2625 | for (; BResult; BResult = Next(BIt, BEnd)) { |
| 2626 | auto It = AResults.find(Val: BResult); |
| 2627 | if (It == AResults.end()) |
| 2628 | return false; |
| 2629 | if (!It->second) { |
| 2630 | It->second = true; |
| 2631 | ++Found; |
| 2632 | } |
| 2633 | } |
| 2634 | return AResults.size() == Found; |
| 2635 | } |
| 2636 | } |
| 2637 | }; |
| 2638 | |
| 2639 | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
| 2640 | Path != PathEnd; ++Path) { |
| 2641 | const CXXBasePathElement &PathElement = Path->back(); |
| 2642 | |
| 2643 | // Pick the best (i.e. most permissive i.e. numerically lowest) access |
| 2644 | // across all paths. |
| 2645 | SubobjectAccess = std::min(a: SubobjectAccess, b: Path->Access); |
| 2646 | |
| 2647 | // Determine whether we're looking at a distinct sub-object or not. |
| 2648 | if (SubobjectType.isNull()) { |
| 2649 | // This is the first subobject we've looked at. Record its type. |
| 2650 | SubobjectType = Context.getCanonicalType(T: PathElement.Base->getType()); |
| 2651 | SubobjectNumber = PathElement.SubobjectNumber; |
| 2652 | continue; |
| 2653 | } |
| 2654 | |
| 2655 | if (SubobjectType != |
| 2656 | Context.getCanonicalType(T: PathElement.Base->getType())) { |
| 2657 | // We found members of the given name in two subobjects of |
| 2658 | // different types. If the declaration sets aren't the same, this |
| 2659 | // lookup is ambiguous. |
| 2660 | // |
| 2661 | // FIXME: The language rule says that this applies irrespective of |
| 2662 | // whether the sets contain only static members. |
| 2663 | if (HasOnlyStaticMembers(Path->Decls) && |
| 2664 | HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) |
| 2665 | continue; |
| 2666 | |
| 2667 | R.setAmbiguousBaseSubobjectTypes(Paths); |
| 2668 | return true; |
| 2669 | } |
| 2670 | |
| 2671 | // FIXME: This language rule no longer exists. Checking for ambiguous base |
| 2672 | // subobjects should be done as part of formation of a class member access |
| 2673 | // expression (when converting the object parameter to the member's type). |
| 2674 | if (SubobjectNumber != PathElement.SubobjectNumber) { |
| 2675 | // We have a different subobject of the same type. |
| 2676 | |
| 2677 | // C++ [class.member.lookup]p5: |
| 2678 | // A static member, a nested type or an enumerator defined in |
| 2679 | // a base class T can unambiguously be found even if an object |
| 2680 | // has more than one base class subobject of type T. |
| 2681 | if (HasOnlyStaticMembers(Path->Decls)) |
| 2682 | continue; |
| 2683 | |
| 2684 | // We have found a nonstatic member name in multiple, distinct |
| 2685 | // subobjects. Name lookup is ambiguous. |
| 2686 | R.setAmbiguousBaseSubobjects(Paths); |
| 2687 | return true; |
| 2688 | } |
| 2689 | } |
| 2690 | |
| 2691 | // Lookup in a base class succeeded; return these results. |
| 2692 | |
| 2693 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); |
| 2694 | I != E; ++I) { |
| 2695 | AccessSpecifier AS = CXXRecordDecl::MergeAccess(PathAccess: SubobjectAccess, |
| 2696 | DeclAccess: (*I)->getAccess()); |
| 2697 | if (NamedDecl *ND = R.getAcceptableDecl(D: *I)) |
| 2698 | R.addDecl(D: ND, AS); |
| 2699 | } |
| 2700 | R.resolveKind(); |
| 2701 | return true; |
| 2702 | } |
| 2703 | |
| 2704 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
| 2705 | CXXScopeSpec &SS) { |
| 2706 | auto *NNS = SS.getScopeRep(); |
| 2707 | if (NNS && NNS->getKind() == NestedNameSpecifier::Super) |
| 2708 | return LookupInSuper(R, Class: NNS->getAsRecordDecl()); |
| 2709 | else |
| 2710 | |
| 2711 | return LookupQualifiedName(R, LookupCtx); |
| 2712 | } |
| 2713 | |
| 2714 | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, |
| 2715 | QualType ObjectType, bool AllowBuiltinCreation, |
| 2716 | bool EnteringContext) { |
| 2717 | // When the scope specifier is invalid, don't even look for anything. |
| 2718 | if (SS && SS->isInvalid()) |
| 2719 | return false; |
| 2720 | |
| 2721 | // Determine where to perform name lookup |
| 2722 | DeclContext *DC = nullptr; |
| 2723 | bool IsDependent = false; |
| 2724 | if (!ObjectType.isNull()) { |
| 2725 | // This nested-name-specifier occurs in a member access expression, e.g., |
| 2726 | // x->B::f, and we are looking into the type of the object. |
| 2727 | assert((!SS || SS->isEmpty()) && |
| 2728 | "ObjectType and scope specifier cannot coexist" ); |
| 2729 | DC = computeDeclContext(T: ObjectType); |
| 2730 | IsDependent = !DC && ObjectType->isDependentType(); |
| 2731 | assert(((!DC && ObjectType->isDependentType()) || |
| 2732 | !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || |
| 2733 | ObjectType->castAs<TagType>()->isBeingDefined()) && |
| 2734 | "Caller should have completed object type" ); |
| 2735 | } else if (SS && SS->isNotEmpty()) { |
| 2736 | // This nested-name-specifier occurs after another nested-name-specifier, |
| 2737 | // so long into the context associated with the prior nested-name-specifier. |
| 2738 | if ((DC = computeDeclContext(SS: *SS, EnteringContext))) { |
| 2739 | // The declaration context must be complete. |
| 2740 | if (!DC->isDependentContext() && RequireCompleteDeclContext(SS&: *SS, DC)) |
| 2741 | return false; |
| 2742 | R.setContextRange(SS->getRange()); |
| 2743 | // FIXME: '__super' lookup semantics could be implemented by a |
| 2744 | // LookupResult::isSuperLookup flag which skips the initial search of |
| 2745 | // the lookup context in LookupQualified. |
| 2746 | if (NestedNameSpecifier *NNS = SS->getScopeRep(); |
| 2747 | NNS->getKind() == NestedNameSpecifier::Super) |
| 2748 | return LookupInSuper(R, Class: NNS->getAsRecordDecl()); |
| 2749 | } |
| 2750 | IsDependent = !DC && isDependentScopeSpecifier(SS: *SS); |
| 2751 | } else { |
| 2752 | // Perform unqualified name lookup starting in the given scope. |
| 2753 | return LookupName(R, S, AllowBuiltinCreation); |
| 2754 | } |
| 2755 | |
| 2756 | // If we were able to compute a declaration context, perform qualified name |
| 2757 | // lookup in that context. |
| 2758 | if (DC) |
| 2759 | return LookupQualifiedName(R, LookupCtx: DC); |
| 2760 | else if (IsDependent) |
| 2761 | // We could not resolve the scope specified to a specific declaration |
| 2762 | // context, which means that SS refers to an unknown specialization. |
| 2763 | // Name lookup can't find anything in this case. |
| 2764 | R.setNotFoundInCurrentInstantiation(); |
| 2765 | return false; |
| 2766 | } |
| 2767 | |
| 2768 | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { |
| 2769 | // The access-control rules we use here are essentially the rules for |
| 2770 | // doing a lookup in Class that just magically skipped the direct |
| 2771 | // members of Class itself. That is, the naming class is Class, and the |
| 2772 | // access includes the access of the base. |
| 2773 | for (const auto &BaseSpec : Class->bases()) { |
| 2774 | CXXRecordDecl *RD = cast<CXXRecordDecl>( |
| 2775 | Val: BaseSpec.getType()->castAs<RecordType>()->getDecl()); |
| 2776 | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); |
| 2777 | Result.setBaseObjectType(Context.getRecordType(Decl: Class)); |
| 2778 | LookupQualifiedName(R&: Result, LookupCtx: RD); |
| 2779 | |
| 2780 | // Copy the lookup results into the target, merging the base's access into |
| 2781 | // the path access. |
| 2782 | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { |
| 2783 | R.addDecl(D: I.getDecl(), |
| 2784 | AS: CXXRecordDecl::MergeAccess(PathAccess: BaseSpec.getAccessSpecifier(), |
| 2785 | DeclAccess: I.getAccess())); |
| 2786 | } |
| 2787 | |
| 2788 | Result.suppressDiagnostics(); |
| 2789 | } |
| 2790 | |
| 2791 | R.resolveKind(); |
| 2792 | R.setNamingClass(Class); |
| 2793 | |
| 2794 | return !R.empty(); |
| 2795 | } |
| 2796 | |
| 2797 | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { |
| 2798 | assert(Result.isAmbiguous() && "Lookup result must be ambiguous" ); |
| 2799 | |
| 2800 | DeclarationName Name = Result.getLookupName(); |
| 2801 | SourceLocation NameLoc = Result.getNameLoc(); |
| 2802 | SourceRange LookupRange = Result.getContextRange(); |
| 2803 | |
| 2804 | switch (Result.getAmbiguityKind()) { |
| 2805 | case LookupAmbiguityKind::AmbiguousBaseSubobjects: { |
| 2806 | CXXBasePaths *Paths = Result.getBasePaths(); |
| 2807 | QualType SubobjectType = Paths->front().back().Base->getType(); |
| 2808 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_member_multiple_subobjects) |
| 2809 | << Name << SubobjectType << getAmbiguousPathsDisplayString(Paths&: *Paths) |
| 2810 | << LookupRange; |
| 2811 | |
| 2812 | DeclContext::lookup_iterator Found = Paths->front().Decls; |
| 2813 | while (isa<CXXMethodDecl>(Val: *Found) && |
| 2814 | cast<CXXMethodDecl>(Val: *Found)->isStatic()) |
| 2815 | ++Found; |
| 2816 | |
| 2817 | Diag(Loc: (*Found)->getLocation(), DiagID: diag::note_ambiguous_member_found); |
| 2818 | break; |
| 2819 | } |
| 2820 | |
| 2821 | case LookupAmbiguityKind::AmbiguousBaseSubobjectTypes: { |
| 2822 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_member_multiple_subobject_types) |
| 2823 | << Name << LookupRange; |
| 2824 | |
| 2825 | CXXBasePaths *Paths = Result.getBasePaths(); |
| 2826 | std::set<const NamedDecl *> DeclsPrinted; |
| 2827 | for (CXXBasePaths::paths_iterator Path = Paths->begin(), |
| 2828 | PathEnd = Paths->end(); |
| 2829 | Path != PathEnd; ++Path) { |
| 2830 | const NamedDecl *D = *Path->Decls; |
| 2831 | if (!D->isInIdentifierNamespace(NS: Result.getIdentifierNamespace())) |
| 2832 | continue; |
| 2833 | if (DeclsPrinted.insert(x: D).second) { |
| 2834 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D->getUnderlyingDecl())) |
| 2835 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_member_type_found) |
| 2836 | << TD->getUnderlyingType(); |
| 2837 | else if (const auto *TD = dyn_cast<TypeDecl>(Val: D->getUnderlyingDecl())) |
| 2838 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_member_type_found) |
| 2839 | << Context.getTypeDeclType(Decl: TD); |
| 2840 | else |
| 2841 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_member_found); |
| 2842 | } |
| 2843 | } |
| 2844 | break; |
| 2845 | } |
| 2846 | |
| 2847 | case LookupAmbiguityKind::AmbiguousTagHiding: { |
| 2848 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_tag_hiding) << Name << LookupRange; |
| 2849 | |
| 2850 | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; |
| 2851 | |
| 2852 | for (auto *D : Result) |
| 2853 | if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) { |
| 2854 | TagDecls.insert(Ptr: TD); |
| 2855 | Diag(Loc: TD->getLocation(), DiagID: diag::note_hidden_tag); |
| 2856 | } |
| 2857 | |
| 2858 | for (auto *D : Result) |
| 2859 | if (!isa<TagDecl>(Val: D)) |
| 2860 | Diag(Loc: D->getLocation(), DiagID: diag::note_hiding_object); |
| 2861 | |
| 2862 | // For recovery purposes, go ahead and implement the hiding. |
| 2863 | LookupResult::Filter F = Result.makeFilter(); |
| 2864 | while (F.hasNext()) { |
| 2865 | if (TagDecls.count(Ptr: F.next())) |
| 2866 | F.erase(); |
| 2867 | } |
| 2868 | F.done(); |
| 2869 | break; |
| 2870 | } |
| 2871 | |
| 2872 | case LookupAmbiguityKind::AmbiguousReferenceToPlaceholderVariable: { |
| 2873 | Diag(Loc: NameLoc, DiagID: diag::err_using_placeholder_variable) << Name << LookupRange; |
| 2874 | DeclContext *DC = nullptr; |
| 2875 | for (auto *D : Result) { |
| 2876 | Diag(Loc: D->getLocation(), DiagID: diag::note_reference_placeholder) << D; |
| 2877 | if (DC != nullptr && DC != D->getDeclContext()) |
| 2878 | break; |
| 2879 | DC = D->getDeclContext(); |
| 2880 | } |
| 2881 | break; |
| 2882 | } |
| 2883 | |
| 2884 | case LookupAmbiguityKind::AmbiguousReference: { |
| 2885 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_reference) << Name << LookupRange; |
| 2886 | |
| 2887 | for (auto *D : Result) |
| 2888 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_candidate) << D; |
| 2889 | break; |
| 2890 | } |
| 2891 | } |
| 2892 | } |
| 2893 | |
| 2894 | namespace { |
| 2895 | struct AssociatedLookup { |
| 2896 | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, |
| 2897 | Sema::AssociatedNamespaceSet &Namespaces, |
| 2898 | Sema::AssociatedClassSet &Classes) |
| 2899 | : S(S), Namespaces(Namespaces), Classes(Classes), |
| 2900 | InstantiationLoc(InstantiationLoc) { |
| 2901 | } |
| 2902 | |
| 2903 | bool addClassTransitive(CXXRecordDecl *RD) { |
| 2904 | Classes.insert(X: RD); |
| 2905 | return ClassesTransitive.insert(X: RD); |
| 2906 | } |
| 2907 | |
| 2908 | Sema &S; |
| 2909 | Sema::AssociatedNamespaceSet &Namespaces; |
| 2910 | Sema::AssociatedClassSet &Classes; |
| 2911 | SourceLocation InstantiationLoc; |
| 2912 | |
| 2913 | private: |
| 2914 | Sema::AssociatedClassSet ClassesTransitive; |
| 2915 | }; |
| 2916 | } // end anonymous namespace |
| 2917 | |
| 2918 | static void |
| 2919 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); |
| 2920 | |
| 2921 | // Given the declaration context \param Ctx of a class, class template or |
| 2922 | // enumeration, add the associated namespaces to \param Namespaces as described |
| 2923 | // in [basic.lookup.argdep]p2. |
| 2924 | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, |
| 2925 | DeclContext *Ctx) { |
| 2926 | // The exact wording has been changed in C++14 as a result of |
| 2927 | // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally |
| 2928 | // to all language versions since it is possible to return a local type |
| 2929 | // from a lambda in C++11. |
| 2930 | // |
| 2931 | // C++14 [basic.lookup.argdep]p2: |
| 2932 | // If T is a class type [...]. Its associated namespaces are the innermost |
| 2933 | // enclosing namespaces of its associated classes. [...] |
| 2934 | // |
| 2935 | // If T is an enumeration type, its associated namespace is the innermost |
| 2936 | // enclosing namespace of its declaration. [...] |
| 2937 | |
| 2938 | // We additionally skip inline namespaces. The innermost non-inline namespace |
| 2939 | // contains all names of all its nested inline namespaces anyway, so we can |
| 2940 | // replace the entire inline namespace tree with its root. |
| 2941 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
| 2942 | Ctx = Ctx->getParent(); |
| 2943 | |
| 2944 | // Actually it is fine to always do `Namespaces.insert(Ctx);` simply. But it |
| 2945 | // may cause more allocations in Namespaces and more unnecessary lookups. So |
| 2946 | // we'd like to insert the representative namespace only. |
| 2947 | DeclContext *PrimaryCtx = Ctx->getPrimaryContext(); |
| 2948 | Decl *PrimaryD = cast<Decl>(Val: PrimaryCtx); |
| 2949 | Decl *D = cast<Decl>(Val: Ctx); |
| 2950 | ASTContext &AST = D->getASTContext(); |
| 2951 | |
| 2952 | // TODO: Technically it is better to insert one namespace per module. e.g., |
| 2953 | // |
| 2954 | // ``` |
| 2955 | // //--- first.cppm |
| 2956 | // export module first; |
| 2957 | // namespace ns { ... } // first namespace |
| 2958 | // |
| 2959 | // //--- m-partA.cppm |
| 2960 | // export module m:partA; |
| 2961 | // import first; |
| 2962 | // |
| 2963 | // namespace ns { ... } |
| 2964 | // namespace ns { ... } |
| 2965 | // |
| 2966 | // //--- m-partB.cppm |
| 2967 | // export module m:partB; |
| 2968 | // import first; |
| 2969 | // import :partA; |
| 2970 | // |
| 2971 | // namespace ns { ... } |
| 2972 | // namespace ns { ... } |
| 2973 | // |
| 2974 | // ... |
| 2975 | // |
| 2976 | // //--- m-partN.cppm |
| 2977 | // export module m:partN; |
| 2978 | // import first; |
| 2979 | // import :partA; |
| 2980 | // ... |
| 2981 | // import :part$(N-1); |
| 2982 | // |
| 2983 | // namespace ns { ... } |
| 2984 | // namespace ns { ... } |
| 2985 | // |
| 2986 | // consume(ns::any_decl); // the lookup |
| 2987 | // ``` |
| 2988 | // |
| 2989 | // We should only insert once for all namespaces in module m. |
| 2990 | if (D->isInNamedModule() && |
| 2991 | !AST.isInSameModule(M1: D->getOwningModule(), M2: PrimaryD->getOwningModule())) |
| 2992 | Namespaces.insert(X: Ctx); |
| 2993 | else |
| 2994 | Namespaces.insert(X: PrimaryCtx); |
| 2995 | } |
| 2996 | |
| 2997 | // Add the associated classes and namespaces for argument-dependent |
| 2998 | // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). |
| 2999 | static void |
| 3000 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
| 3001 | const TemplateArgument &Arg) { |
| 3002 | // C++ [basic.lookup.argdep]p2, last bullet: |
| 3003 | // -- [...] ; |
| 3004 | switch (Arg.getKind()) { |
| 3005 | case TemplateArgument::Null: |
| 3006 | break; |
| 3007 | |
| 3008 | case TemplateArgument::Type: |
| 3009 | // [...] the namespaces and classes associated with the types of the |
| 3010 | // template arguments provided for template type parameters (excluding |
| 3011 | // template template parameters) |
| 3012 | addAssociatedClassesAndNamespaces(Result, T: Arg.getAsType()); |
| 3013 | break; |
| 3014 | |
| 3015 | case TemplateArgument::Template: |
| 3016 | case TemplateArgument::TemplateExpansion: { |
| 3017 | // [...] the namespaces in which any template template arguments are |
| 3018 | // defined; and the classes in which any member templates used as |
| 3019 | // template template arguments are defined. |
| 3020 | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
| 3021 | if (ClassTemplateDecl *ClassTemplate |
| 3022 | = dyn_cast<ClassTemplateDecl>(Val: Template.getAsTemplateDecl())) { |
| 3023 | DeclContext *Ctx = ClassTemplate->getDeclContext(); |
| 3024 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
| 3025 | Result.Classes.insert(X: EnclosingClass); |
| 3026 | // Add the associated namespace for this class. |
| 3027 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
| 3028 | } |
| 3029 | break; |
| 3030 | } |
| 3031 | |
| 3032 | case TemplateArgument::Declaration: |
| 3033 | case TemplateArgument::Integral: |
| 3034 | case TemplateArgument::Expression: |
| 3035 | case TemplateArgument::NullPtr: |
| 3036 | case TemplateArgument::StructuralValue: |
| 3037 | // [Note: non-type template arguments do not contribute to the set of |
| 3038 | // associated namespaces. ] |
| 3039 | break; |
| 3040 | |
| 3041 | case TemplateArgument::Pack: |
| 3042 | for (const auto &P : Arg.pack_elements()) |
| 3043 | addAssociatedClassesAndNamespaces(Result, Arg: P); |
| 3044 | break; |
| 3045 | } |
| 3046 | } |
| 3047 | |
| 3048 | // Add the associated classes and namespaces for argument-dependent lookup |
| 3049 | // with an argument of class type (C++ [basic.lookup.argdep]p2). |
| 3050 | static void |
| 3051 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
| 3052 | CXXRecordDecl *Class) { |
| 3053 | |
| 3054 | // Just silently ignore anything whose name is __va_list_tag. |
| 3055 | if (Class->getDeclName() == Result.S.VAListTagName) |
| 3056 | return; |
| 3057 | |
| 3058 | // C++ [basic.lookup.argdep]p2: |
| 3059 | // [...] |
| 3060 | // -- If T is a class type (including unions), its associated |
| 3061 | // classes are: the class itself; the class of which it is a |
| 3062 | // member, if any; and its direct and indirect base classes. |
| 3063 | // Its associated namespaces are the innermost enclosing |
| 3064 | // namespaces of its associated classes. |
| 3065 | |
| 3066 | // Add the class of which it is a member, if any. |
| 3067 | DeclContext *Ctx = Class->getDeclContext(); |
| 3068 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
| 3069 | Result.Classes.insert(X: EnclosingClass); |
| 3070 | |
| 3071 | // Add the associated namespace for this class. |
| 3072 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
| 3073 | |
| 3074 | // -- If T is a template-id, its associated namespaces and classes are |
| 3075 | // the namespace in which the template is defined; for member |
| 3076 | // templates, the member template's class; the namespaces and classes |
| 3077 | // associated with the types of the template arguments provided for |
| 3078 | // template type parameters (excluding template template parameters); the |
| 3079 | // namespaces in which any template template arguments are defined; and |
| 3080 | // the classes in which any member templates used as template template |
| 3081 | // arguments are defined. [Note: non-type template arguments do not |
| 3082 | // contribute to the set of associated namespaces. ] |
| 3083 | if (ClassTemplateSpecializationDecl *Spec |
| 3084 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class)) { |
| 3085 | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); |
| 3086 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
| 3087 | Result.Classes.insert(X: EnclosingClass); |
| 3088 | // Add the associated namespace for this class. |
| 3089 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
| 3090 | |
| 3091 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| 3092 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| 3093 | addAssociatedClassesAndNamespaces(Result, Arg: TemplateArgs[I]); |
| 3094 | } |
| 3095 | |
| 3096 | // Add the class itself. If we've already transitively visited this class, |
| 3097 | // we don't need to visit base classes. |
| 3098 | if (!Result.addClassTransitive(RD: Class)) |
| 3099 | return; |
| 3100 | |
| 3101 | // Only recurse into base classes for complete types. |
| 3102 | if (!Result.S.isCompleteType(Loc: Result.InstantiationLoc, |
| 3103 | T: Result.S.Context.getRecordType(Decl: Class))) |
| 3104 | return; |
| 3105 | |
| 3106 | // Add direct and indirect base classes along with their associated |
| 3107 | // namespaces. |
| 3108 | SmallVector<CXXRecordDecl *, 32> Bases; |
| 3109 | Bases.push_back(Elt: Class); |
| 3110 | while (!Bases.empty()) { |
| 3111 | // Pop this class off the stack. |
| 3112 | Class = Bases.pop_back_val(); |
| 3113 | |
| 3114 | // Visit the base classes. |
| 3115 | for (const auto &Base : Class->bases()) { |
| 3116 | const RecordType *BaseType = Base.getType()->getAs<RecordType>(); |
| 3117 | // In dependent contexts, we do ADL twice, and the first time around, |
| 3118 | // the base type might be a dependent TemplateSpecializationType, or a |
| 3119 | // TemplateTypeParmType. If that happens, simply ignore it. |
| 3120 | // FIXME: If we want to support export, we probably need to add the |
| 3121 | // namespace of the template in a TemplateSpecializationType, or even |
| 3122 | // the classes and namespaces of known non-dependent arguments. |
| 3123 | if (!BaseType) |
| 3124 | continue; |
| 3125 | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Val: BaseType->getDecl()); |
| 3126 | if (Result.addClassTransitive(RD: BaseDecl)) { |
| 3127 | // Find the associated namespace for this base class. |
| 3128 | DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
| 3129 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx: BaseCtx); |
| 3130 | |
| 3131 | // Make sure we visit the bases of this base class. |
| 3132 | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
| 3133 | Bases.push_back(Elt: BaseDecl); |
| 3134 | } |
| 3135 | } |
| 3136 | } |
| 3137 | } |
| 3138 | |
| 3139 | // Add the associated classes and namespaces for |
| 3140 | // argument-dependent lookup with an argument of type T |
| 3141 | // (C++ [basic.lookup.koenig]p2). |
| 3142 | static void |
| 3143 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { |
| 3144 | // C++ [basic.lookup.koenig]p2: |
| 3145 | // |
| 3146 | // For each argument type T in the function call, there is a set |
| 3147 | // of zero or more associated namespaces and a set of zero or more |
| 3148 | // associated classes to be considered. The sets of namespaces and |
| 3149 | // classes is determined entirely by the types of the function |
| 3150 | // arguments (and the namespace of any template template |
| 3151 | // argument). Typedef names and using-declarations used to specify |
| 3152 | // the types do not contribute to this set. The sets of namespaces |
| 3153 | // and classes are determined in the following way: |
| 3154 | |
| 3155 | SmallVector<const Type *, 16> Queue; |
| 3156 | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); |
| 3157 | |
| 3158 | while (true) { |
| 3159 | switch (T->getTypeClass()) { |
| 3160 | |
| 3161 | #define TYPE(Class, Base) |
| 3162 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 3163 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 3164 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 3165 | #define ABSTRACT_TYPE(Class, Base) |
| 3166 | #include "clang/AST/TypeNodes.inc" |
| 3167 | // T is canonical. We can also ignore dependent types because |
| 3168 | // we don't need to do ADL at the definition point, but if we |
| 3169 | // wanted to implement template export (or if we find some other |
| 3170 | // use for associated classes and namespaces...) this would be |
| 3171 | // wrong. |
| 3172 | break; |
| 3173 | |
| 3174 | // -- If T is a pointer to U or an array of U, its associated |
| 3175 | // namespaces and classes are those associated with U. |
| 3176 | case Type::Pointer: |
| 3177 | T = cast<PointerType>(Val: T)->getPointeeType().getTypePtr(); |
| 3178 | continue; |
| 3179 | case Type::ConstantArray: |
| 3180 | case Type::IncompleteArray: |
| 3181 | case Type::VariableArray: |
| 3182 | T = cast<ArrayType>(Val: T)->getElementType().getTypePtr(); |
| 3183 | continue; |
| 3184 | |
| 3185 | // -- If T is a fundamental type, its associated sets of |
| 3186 | // namespaces and classes are both empty. |
| 3187 | case Type::Builtin: |
| 3188 | break; |
| 3189 | |
| 3190 | // -- If T is a class type (including unions), its associated |
| 3191 | // classes are: the class itself; the class of which it is |
| 3192 | // a member, if any; and its direct and indirect base classes. |
| 3193 | // Its associated namespaces are the innermost enclosing |
| 3194 | // namespaces of its associated classes. |
| 3195 | case Type::Record: { |
| 3196 | CXXRecordDecl *Class = |
| 3197 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val: T)->getDecl()); |
| 3198 | addAssociatedClassesAndNamespaces(Result, Class); |
| 3199 | break; |
| 3200 | } |
| 3201 | |
| 3202 | // -- If T is an enumeration type, its associated namespace |
| 3203 | // is the innermost enclosing namespace of its declaration. |
| 3204 | // If it is a class member, its associated class is the |
| 3205 | // member’s class; else it has no associated class. |
| 3206 | case Type::Enum: { |
| 3207 | EnumDecl *Enum = cast<EnumType>(Val: T)->getDecl(); |
| 3208 | |
| 3209 | DeclContext *Ctx = Enum->getDeclContext(); |
| 3210 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
| 3211 | Result.Classes.insert(X: EnclosingClass); |
| 3212 | |
| 3213 | // Add the associated namespace for this enumeration. |
| 3214 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
| 3215 | |
| 3216 | break; |
| 3217 | } |
| 3218 | |
| 3219 | // -- If T is a function type, its associated namespaces and |
| 3220 | // classes are those associated with the function parameter |
| 3221 | // types and those associated with the return type. |
| 3222 | case Type::FunctionProto: { |
| 3223 | const FunctionProtoType *Proto = cast<FunctionProtoType>(Val: T); |
| 3224 | for (const auto &Arg : Proto->param_types()) |
| 3225 | Queue.push_back(Elt: Arg.getTypePtr()); |
| 3226 | // fallthrough |
| 3227 | [[fallthrough]]; |
| 3228 | } |
| 3229 | case Type::FunctionNoProto: { |
| 3230 | const FunctionType *FnType = cast<FunctionType>(Val: T); |
| 3231 | T = FnType->getReturnType().getTypePtr(); |
| 3232 | continue; |
| 3233 | } |
| 3234 | |
| 3235 | // -- If T is a pointer to a member function of a class X, its |
| 3236 | // associated namespaces and classes are those associated |
| 3237 | // with the function parameter types and return type, |
| 3238 | // together with those associated with X. |
| 3239 | // |
| 3240 | // -- If T is a pointer to a data member of class X, its |
| 3241 | // associated namespaces and classes are those associated |
| 3242 | // with the member type together with those associated with |
| 3243 | // X. |
| 3244 | case Type::MemberPointer: { |
| 3245 | const MemberPointerType *MemberPtr = cast<MemberPointerType>(Val: T); |
| 3246 | if (CXXRecordDecl *Class = MemberPtr->getMostRecentCXXRecordDecl()) |
| 3247 | addAssociatedClassesAndNamespaces(Result, Class); |
| 3248 | T = MemberPtr->getPointeeType().getTypePtr(); |
| 3249 | continue; |
| 3250 | } |
| 3251 | |
| 3252 | // As an extension, treat this like a normal pointer. |
| 3253 | case Type::BlockPointer: |
| 3254 | T = cast<BlockPointerType>(Val: T)->getPointeeType().getTypePtr(); |
| 3255 | continue; |
| 3256 | |
| 3257 | // References aren't covered by the standard, but that's such an |
| 3258 | // obvious defect that we cover them anyway. |
| 3259 | case Type::LValueReference: |
| 3260 | case Type::RValueReference: |
| 3261 | T = cast<ReferenceType>(Val: T)->getPointeeType().getTypePtr(); |
| 3262 | continue; |
| 3263 | |
| 3264 | // These are fundamental types. |
| 3265 | case Type::Vector: |
| 3266 | case Type::ExtVector: |
| 3267 | case Type::ConstantMatrix: |
| 3268 | case Type::Complex: |
| 3269 | case Type::BitInt: |
| 3270 | break; |
| 3271 | |
| 3272 | // Non-deduced auto types only get here for error cases. |
| 3273 | case Type::Auto: |
| 3274 | case Type::DeducedTemplateSpecialization: |
| 3275 | break; |
| 3276 | |
| 3277 | // If T is an Objective-C object or interface type, or a pointer to an |
| 3278 | // object or interface type, the associated namespace is the global |
| 3279 | // namespace. |
| 3280 | case Type::ObjCObject: |
| 3281 | case Type::ObjCInterface: |
| 3282 | case Type::ObjCObjectPointer: |
| 3283 | Result.Namespaces.insert(X: Result.S.Context.getTranslationUnitDecl()); |
| 3284 | break; |
| 3285 | |
| 3286 | // Atomic types are just wrappers; use the associations of the |
| 3287 | // contained type. |
| 3288 | case Type::Atomic: |
| 3289 | T = cast<AtomicType>(Val: T)->getValueType().getTypePtr(); |
| 3290 | continue; |
| 3291 | case Type::Pipe: |
| 3292 | T = cast<PipeType>(Val: T)->getElementType().getTypePtr(); |
| 3293 | continue; |
| 3294 | |
| 3295 | // Array parameter types are treated as fundamental types. |
| 3296 | case Type::ArrayParameter: |
| 3297 | break; |
| 3298 | |
| 3299 | case Type::HLSLAttributedResource: |
| 3300 | T = cast<HLSLAttributedResourceType>(Val: T)->getWrappedType().getTypePtr(); |
| 3301 | break; |
| 3302 | |
| 3303 | // Inline SPIR-V types are treated as fundamental types. |
| 3304 | case Type::HLSLInlineSpirv: |
| 3305 | break; |
| 3306 | } |
| 3307 | |
| 3308 | if (Queue.empty()) |
| 3309 | break; |
| 3310 | T = Queue.pop_back_val(); |
| 3311 | } |
| 3312 | } |
| 3313 | |
| 3314 | void Sema::FindAssociatedClassesAndNamespaces( |
| 3315 | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, |
| 3316 | AssociatedNamespaceSet &AssociatedNamespaces, |
| 3317 | AssociatedClassSet &AssociatedClasses) { |
| 3318 | AssociatedNamespaces.clear(); |
| 3319 | AssociatedClasses.clear(); |
| 3320 | |
| 3321 | AssociatedLookup Result(*this, InstantiationLoc, |
| 3322 | AssociatedNamespaces, AssociatedClasses); |
| 3323 | |
| 3324 | // C++ [basic.lookup.koenig]p2: |
| 3325 | // For each argument type T in the function call, there is a set |
| 3326 | // of zero or more associated namespaces and a set of zero or more |
| 3327 | // associated classes to be considered. The sets of namespaces and |
| 3328 | // classes is determined entirely by the types of the function |
| 3329 | // arguments (and the namespace of any template template |
| 3330 | // argument). |
| 3331 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
| 3332 | Expr *Arg = Args[ArgIdx]; |
| 3333 | |
| 3334 | if (Arg->getType() != Context.OverloadTy) { |
| 3335 | addAssociatedClassesAndNamespaces(Result, Ty: Arg->getType()); |
| 3336 | continue; |
| 3337 | } |
| 3338 | |
| 3339 | // [...] In addition, if the argument is the name or address of a |
| 3340 | // set of overloaded functions and/or function templates, its |
| 3341 | // associated classes and namespaces are the union of those |
| 3342 | // associated with each of the members of the set: the namespace |
| 3343 | // in which the function or function template is defined and the |
| 3344 | // classes and namespaces associated with its (non-dependent) |
| 3345 | // parameter types and return type. |
| 3346 | OverloadExpr *OE = OverloadExpr::find(E: Arg).Expression; |
| 3347 | |
| 3348 | for (const NamedDecl *D : OE->decls()) { |
| 3349 | // Look through any using declarations to find the underlying function. |
| 3350 | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); |
| 3351 | |
| 3352 | // Add the classes and namespaces associated with the parameter |
| 3353 | // types and return type of this function. |
| 3354 | addAssociatedClassesAndNamespaces(Result, Ty: FDecl->getType()); |
| 3355 | } |
| 3356 | } |
| 3357 | } |
| 3358 | |
| 3359 | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, |
| 3360 | SourceLocation Loc, |
| 3361 | LookupNameKind NameKind, |
| 3362 | RedeclarationKind Redecl) { |
| 3363 | LookupResult R(*this, Name, Loc, NameKind, Redecl); |
| 3364 | LookupName(R, S); |
| 3365 | return R.getAsSingle<NamedDecl>(); |
| 3366 | } |
| 3367 | |
| 3368 | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
| 3369 | UnresolvedSetImpl &Functions) { |
| 3370 | // C++ [over.match.oper]p3: |
| 3371 | // -- The set of non-member candidates is the result of the |
| 3372 | // unqualified lookup of operator@ in the context of the |
| 3373 | // expression according to the usual rules for name lookup in |
| 3374 | // unqualified function calls (3.4.2) except that all member |
| 3375 | // functions are ignored. |
| 3376 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 3377 | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); |
| 3378 | LookupName(R&: Operators, S); |
| 3379 | |
| 3380 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous" ); |
| 3381 | Functions.append(I: Operators.begin(), E: Operators.end()); |
| 3382 | } |
| 3383 | |
| 3384 | Sema::SpecialMemberOverloadResult |
| 3385 | Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, |
| 3386 | bool ConstArg, bool VolatileArg, bool RValueThis, |
| 3387 | bool ConstThis, bool VolatileThis) { |
| 3388 | assert(CanDeclareSpecialMemberFunction(RD) && |
| 3389 | "doing special member lookup into record that isn't fully complete" ); |
| 3390 | RD = RD->getDefinition(); |
| 3391 | if (RValueThis || ConstThis || VolatileThis) |
| 3392 | assert((SM == CXXSpecialMemberKind::CopyAssignment || |
| 3393 | SM == CXXSpecialMemberKind::MoveAssignment) && |
| 3394 | "constructors and destructors always have unqualified lvalue this" ); |
| 3395 | if (ConstArg || VolatileArg) |
| 3396 | assert((SM != CXXSpecialMemberKind::DefaultConstructor && |
| 3397 | SM != CXXSpecialMemberKind::Destructor) && |
| 3398 | "parameter-less special members can't have qualified arguments" ); |
| 3399 | |
| 3400 | // FIXME: Get the caller to pass in a location for the lookup. |
| 3401 | SourceLocation LookupLoc = RD->getLocation(); |
| 3402 | |
| 3403 | llvm::FoldingSetNodeID ID; |
| 3404 | ID.AddPointer(Ptr: RD); |
| 3405 | ID.AddInteger(I: llvm::to_underlying(E: SM)); |
| 3406 | ID.AddInteger(I: ConstArg); |
| 3407 | ID.AddInteger(I: VolatileArg); |
| 3408 | ID.AddInteger(I: RValueThis); |
| 3409 | ID.AddInteger(I: ConstThis); |
| 3410 | ID.AddInteger(I: VolatileThis); |
| 3411 | |
| 3412 | void *InsertPoint; |
| 3413 | SpecialMemberOverloadResultEntry *Result = |
| 3414 | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPos&: InsertPoint); |
| 3415 | |
| 3416 | // This was already cached |
| 3417 | if (Result) |
| 3418 | return *Result; |
| 3419 | |
| 3420 | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); |
| 3421 | Result = new (Result) SpecialMemberOverloadResultEntry(ID); |
| 3422 | SpecialMemberCache.InsertNode(N: Result, InsertPos: InsertPoint); |
| 3423 | |
| 3424 | if (SM == CXXSpecialMemberKind::Destructor) { |
| 3425 | if (RD->needsImplicitDestructor()) { |
| 3426 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
| 3427 | DeclareImplicitDestructor(ClassDecl: RD); |
| 3428 | }); |
| 3429 | } |
| 3430 | CXXDestructorDecl *DD = RD->getDestructor(); |
| 3431 | Result->setMethod(DD); |
| 3432 | Result->setKind(DD && !DD->isDeleted() |
| 3433 | ? SpecialMemberOverloadResult::Success |
| 3434 | : SpecialMemberOverloadResult::NoMemberOrDeleted); |
| 3435 | return *Result; |
| 3436 | } |
| 3437 | |
| 3438 | // Prepare for overload resolution. Here we construct a synthetic argument |
| 3439 | // if necessary and make sure that implicit functions are declared. |
| 3440 | CanQualType CanTy = Context.getCanonicalType(T: Context.getTagDeclType(Decl: RD)); |
| 3441 | DeclarationName Name; |
| 3442 | Expr *Arg = nullptr; |
| 3443 | unsigned NumArgs; |
| 3444 | |
| 3445 | QualType ArgType = CanTy; |
| 3446 | ExprValueKind VK = VK_LValue; |
| 3447 | |
| 3448 | if (SM == CXXSpecialMemberKind::DefaultConstructor) { |
| 3449 | Name = Context.DeclarationNames.getCXXConstructorName(Ty: CanTy); |
| 3450 | NumArgs = 0; |
| 3451 | if (RD->needsImplicitDefaultConstructor()) { |
| 3452 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
| 3453 | DeclareImplicitDefaultConstructor(ClassDecl: RD); |
| 3454 | }); |
| 3455 | } |
| 3456 | } else { |
| 3457 | if (SM == CXXSpecialMemberKind::CopyConstructor || |
| 3458 | SM == CXXSpecialMemberKind::MoveConstructor) { |
| 3459 | Name = Context.DeclarationNames.getCXXConstructorName(Ty: CanTy); |
| 3460 | if (RD->needsImplicitCopyConstructor()) { |
| 3461 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
| 3462 | DeclareImplicitCopyConstructor(ClassDecl: RD); |
| 3463 | }); |
| 3464 | } |
| 3465 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { |
| 3466 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
| 3467 | DeclareImplicitMoveConstructor(ClassDecl: RD); |
| 3468 | }); |
| 3469 | } |
| 3470 | } else { |
| 3471 | Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
| 3472 | if (RD->needsImplicitCopyAssignment()) { |
| 3473 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
| 3474 | DeclareImplicitCopyAssignment(ClassDecl: RD); |
| 3475 | }); |
| 3476 | } |
| 3477 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { |
| 3478 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
| 3479 | DeclareImplicitMoveAssignment(ClassDecl: RD); |
| 3480 | }); |
| 3481 | } |
| 3482 | } |
| 3483 | |
| 3484 | if (ConstArg) |
| 3485 | ArgType.addConst(); |
| 3486 | if (VolatileArg) |
| 3487 | ArgType.addVolatile(); |
| 3488 | |
| 3489 | // This isn't /really/ specified by the standard, but it's implied |
| 3490 | // we should be working from a PRValue in the case of move to ensure |
| 3491 | // that we prefer to bind to rvalue references, and an LValue in the |
| 3492 | // case of copy to ensure we don't bind to rvalue references. |
| 3493 | // Possibly an XValue is actually correct in the case of move, but |
| 3494 | // there is no semantic difference for class types in this restricted |
| 3495 | // case. |
| 3496 | if (SM == CXXSpecialMemberKind::CopyConstructor || |
| 3497 | SM == CXXSpecialMemberKind::CopyAssignment) |
| 3498 | VK = VK_LValue; |
| 3499 | else |
| 3500 | VK = VK_PRValue; |
| 3501 | } |
| 3502 | |
| 3503 | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); |
| 3504 | |
| 3505 | if (SM != CXXSpecialMemberKind::DefaultConstructor) { |
| 3506 | NumArgs = 1; |
| 3507 | Arg = &FakeArg; |
| 3508 | } |
| 3509 | |
| 3510 | // Create the object argument |
| 3511 | QualType ThisTy = CanTy; |
| 3512 | if (ConstThis) |
| 3513 | ThisTy.addConst(); |
| 3514 | if (VolatileThis) |
| 3515 | ThisTy.addVolatile(); |
| 3516 | Expr::Classification Classification = |
| 3517 | OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) |
| 3518 | .Classify(Ctx&: Context); |
| 3519 | |
| 3520 | // Now we perform lookup on the name we computed earlier and do overload |
| 3521 | // resolution. Lookup is only performed directly into the class since there |
| 3522 | // will always be a (possibly implicit) declaration to shadow any others. |
| 3523 | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); |
| 3524 | DeclContext::lookup_result R = RD->lookup(Name); |
| 3525 | |
| 3526 | if (R.empty()) { |
| 3527 | // We might have no default constructor because we have a lambda's closure |
| 3528 | // type, rather than because there's some other declared constructor. |
| 3529 | // Every class has a copy/move constructor, copy/move assignment, and |
| 3530 | // destructor. |
| 3531 | assert(SM == CXXSpecialMemberKind::DefaultConstructor && |
| 3532 | "lookup for a constructor or assignment operator was empty" ); |
| 3533 | Result->setMethod(nullptr); |
| 3534 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
| 3535 | return *Result; |
| 3536 | } |
| 3537 | |
| 3538 | // Copy the candidates as our processing of them may load new declarations |
| 3539 | // from an external source and invalidate lookup_result. |
| 3540 | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); |
| 3541 | |
| 3542 | for (NamedDecl *CandDecl : Candidates) { |
| 3543 | if (CandDecl->isInvalidDecl()) |
| 3544 | continue; |
| 3545 | |
| 3546 | DeclAccessPair Cand = DeclAccessPair::make(D: CandDecl, AS: AS_public); |
| 3547 | auto CtorInfo = getConstructorInfo(ND: Cand); |
| 3548 | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Val: Cand->getUnderlyingDecl())) { |
| 3549 | if (SM == CXXSpecialMemberKind::CopyAssignment || |
| 3550 | SM == CXXSpecialMemberKind::MoveAssignment) |
| 3551 | AddMethodCandidate(Method: M, FoundDecl: Cand, ActingContext: RD, ObjectType: ThisTy, ObjectClassification: Classification, |
| 3552 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 3553 | else if (CtorInfo) |
| 3554 | AddOverloadCandidate(Function: CtorInfo.Constructor, FoundDecl: CtorInfo.FoundDecl, |
| 3555 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, |
| 3556 | /*SuppressUserConversions*/ true); |
| 3557 | else |
| 3558 | AddOverloadCandidate(Function: M, FoundDecl: Cand, Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, |
| 3559 | /*SuppressUserConversions*/ true); |
| 3560 | } else if (FunctionTemplateDecl *Tmpl = |
| 3561 | dyn_cast<FunctionTemplateDecl>(Val: Cand->getUnderlyingDecl())) { |
| 3562 | if (SM == CXXSpecialMemberKind::CopyAssignment || |
| 3563 | SM == CXXSpecialMemberKind::MoveAssignment) |
| 3564 | AddMethodTemplateCandidate(MethodTmpl: Tmpl, FoundDecl: Cand, ActingContext: RD, ExplicitTemplateArgs: nullptr, ObjectType: ThisTy, |
| 3565 | ObjectClassification: Classification, |
| 3566 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 3567 | else if (CtorInfo) |
| 3568 | AddTemplateOverloadCandidate(FunctionTemplate: CtorInfo.ConstructorTmpl, |
| 3569 | FoundDecl: CtorInfo.FoundDecl, ExplicitTemplateArgs: nullptr, |
| 3570 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 3571 | else |
| 3572 | AddTemplateOverloadCandidate(FunctionTemplate: Tmpl, FoundDecl: Cand, ExplicitTemplateArgs: nullptr, |
| 3573 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 3574 | } else { |
| 3575 | assert(isa<UsingDecl>(Cand.getDecl()) && |
| 3576 | "illegal Kind of operator = Decl" ); |
| 3577 | } |
| 3578 | } |
| 3579 | |
| 3580 | OverloadCandidateSet::iterator Best; |
| 3581 | switch (OCS.BestViableFunction(S&: *this, Loc: LookupLoc, Best)) { |
| 3582 | case OR_Success: |
| 3583 | Result->setMethod(cast<CXXMethodDecl>(Val: Best->Function)); |
| 3584 | Result->setKind(SpecialMemberOverloadResult::Success); |
| 3585 | break; |
| 3586 | |
| 3587 | case OR_Deleted: |
| 3588 | Result->setMethod(cast<CXXMethodDecl>(Val: Best->Function)); |
| 3589 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
| 3590 | break; |
| 3591 | |
| 3592 | case OR_Ambiguous: |
| 3593 | Result->setMethod(nullptr); |
| 3594 | Result->setKind(SpecialMemberOverloadResult::Ambiguous); |
| 3595 | break; |
| 3596 | |
| 3597 | case OR_No_Viable_Function: |
| 3598 | Result->setMethod(nullptr); |
| 3599 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
| 3600 | break; |
| 3601 | } |
| 3602 | |
| 3603 | return *Result; |
| 3604 | } |
| 3605 | |
| 3606 | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { |
| 3607 | SpecialMemberOverloadResult Result = |
| 3608 | LookupSpecialMember(RD: Class, SM: CXXSpecialMemberKind::DefaultConstructor, |
| 3609 | ConstArg: false, VolatileArg: false, RValueThis: false, ConstThis: false, VolatileThis: false); |
| 3610 | |
| 3611 | return cast_or_null<CXXConstructorDecl>(Val: Result.getMethod()); |
| 3612 | } |
| 3613 | |
| 3614 | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, |
| 3615 | unsigned Quals) { |
| 3616 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| 3617 | "non-const, non-volatile qualifiers for copy ctor arg" ); |
| 3618 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
| 3619 | RD: Class, SM: CXXSpecialMemberKind::CopyConstructor, ConstArg: Quals & Qualifiers::Const, |
| 3620 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis: false, ConstThis: false, VolatileThis: false); |
| 3621 | |
| 3622 | return cast_or_null<CXXConstructorDecl>(Val: Result.getMethod()); |
| 3623 | } |
| 3624 | |
| 3625 | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, |
| 3626 | unsigned Quals) { |
| 3627 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
| 3628 | RD: Class, SM: CXXSpecialMemberKind::MoveConstructor, ConstArg: Quals & Qualifiers::Const, |
| 3629 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis: false, ConstThis: false, VolatileThis: false); |
| 3630 | |
| 3631 | return cast_or_null<CXXConstructorDecl>(Val: Result.getMethod()); |
| 3632 | } |
| 3633 | |
| 3634 | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { |
| 3635 | // If the implicit constructors have not yet been declared, do so now. |
| 3636 | if (CanDeclareSpecialMemberFunction(Class)) { |
| 3637 | runWithSufficientStackSpace(Loc: Class->getLocation(), Fn: [&] { |
| 3638 | if (Class->needsImplicitDefaultConstructor()) |
| 3639 | DeclareImplicitDefaultConstructor(ClassDecl: Class); |
| 3640 | if (Class->needsImplicitCopyConstructor()) |
| 3641 | DeclareImplicitCopyConstructor(ClassDecl: Class); |
| 3642 | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) |
| 3643 | DeclareImplicitMoveConstructor(ClassDecl: Class); |
| 3644 | }); |
| 3645 | } |
| 3646 | |
| 3647 | CanQualType T = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: Class)); |
| 3648 | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(Ty: T); |
| 3649 | return Class->lookup(Name); |
| 3650 | } |
| 3651 | |
| 3652 | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, |
| 3653 | unsigned Quals, bool RValueThis, |
| 3654 | unsigned ThisQuals) { |
| 3655 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| 3656 | "non-const, non-volatile qualifiers for copy assignment arg" ); |
| 3657 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| 3658 | "non-const, non-volatile qualifiers for copy assignment this" ); |
| 3659 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
| 3660 | RD: Class, SM: CXXSpecialMemberKind::CopyAssignment, ConstArg: Quals & Qualifiers::Const, |
| 3661 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis, ConstThis: ThisQuals & Qualifiers::Const, |
| 3662 | VolatileThis: ThisQuals & Qualifiers::Volatile); |
| 3663 | |
| 3664 | return Result.getMethod(); |
| 3665 | } |
| 3666 | |
| 3667 | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, |
| 3668 | unsigned Quals, |
| 3669 | bool RValueThis, |
| 3670 | unsigned ThisQuals) { |
| 3671 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| 3672 | "non-const, non-volatile qualifiers for copy assignment this" ); |
| 3673 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
| 3674 | RD: Class, SM: CXXSpecialMemberKind::MoveAssignment, ConstArg: Quals & Qualifiers::Const, |
| 3675 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis, ConstThis: ThisQuals & Qualifiers::Const, |
| 3676 | VolatileThis: ThisQuals & Qualifiers::Volatile); |
| 3677 | |
| 3678 | return Result.getMethod(); |
| 3679 | } |
| 3680 | |
| 3681 | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { |
| 3682 | return cast_or_null<CXXDestructorDecl>( |
| 3683 | Val: LookupSpecialMember(RD: Class, SM: CXXSpecialMemberKind::Destructor, ConstArg: false, VolatileArg: false, |
| 3684 | RValueThis: false, ConstThis: false, VolatileThis: false) |
| 3685 | .getMethod()); |
| 3686 | } |
| 3687 | |
| 3688 | Sema::LiteralOperatorLookupResult |
| 3689 | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, |
| 3690 | ArrayRef<QualType> ArgTys, bool AllowRaw, |
| 3691 | bool AllowTemplate, bool AllowStringTemplatePack, |
| 3692 | bool DiagnoseMissing, StringLiteral *StringLit) { |
| 3693 | LookupName(R, S); |
| 3694 | assert(R.getResultKind() != LookupResultKind::Ambiguous && |
| 3695 | "literal operator lookup can't be ambiguous" ); |
| 3696 | |
| 3697 | // Filter the lookup results appropriately. |
| 3698 | LookupResult::Filter F = R.makeFilter(); |
| 3699 | |
| 3700 | bool AllowCooked = true; |
| 3701 | bool FoundRaw = false; |
| 3702 | bool FoundTemplate = false; |
| 3703 | bool FoundStringTemplatePack = false; |
| 3704 | bool FoundCooked = false; |
| 3705 | |
| 3706 | while (F.hasNext()) { |
| 3707 | Decl *D = F.next(); |
| 3708 | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(Val: D)) |
| 3709 | D = USD->getTargetDecl(); |
| 3710 | |
| 3711 | // If the declaration we found is invalid, skip it. |
| 3712 | if (D->isInvalidDecl()) { |
| 3713 | F.erase(); |
| 3714 | continue; |
| 3715 | } |
| 3716 | |
| 3717 | bool IsRaw = false; |
| 3718 | bool IsTemplate = false; |
| 3719 | bool IsStringTemplatePack = false; |
| 3720 | bool IsCooked = false; |
| 3721 | |
| 3722 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 3723 | if (FD->getNumParams() == 1 && |
| 3724 | FD->getParamDecl(i: 0)->getType()->getAs<PointerType>()) |
| 3725 | IsRaw = true; |
| 3726 | else if (FD->getNumParams() == ArgTys.size()) { |
| 3727 | IsCooked = true; |
| 3728 | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { |
| 3729 | QualType ParamTy = FD->getParamDecl(i: ArgIdx)->getType(); |
| 3730 | if (!Context.hasSameUnqualifiedType(T1: ArgTys[ArgIdx], T2: ParamTy)) { |
| 3731 | IsCooked = false; |
| 3732 | break; |
| 3733 | } |
| 3734 | } |
| 3735 | } |
| 3736 | } |
| 3737 | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
| 3738 | TemplateParameterList *Params = FD->getTemplateParameters(); |
| 3739 | if (Params->size() == 1) { |
| 3740 | IsTemplate = true; |
| 3741 | if (!Params->getParam(Idx: 0)->isTemplateParameterPack() && !StringLit) { |
| 3742 | // Implied but not stated: user-defined integer and floating literals |
| 3743 | // only ever use numeric literal operator templates, not templates |
| 3744 | // taking a parameter of class type. |
| 3745 | F.erase(); |
| 3746 | continue; |
| 3747 | } |
| 3748 | |
| 3749 | // A string literal template is only considered if the string literal |
| 3750 | // is a well-formed template argument for the template parameter. |
| 3751 | if (StringLit) { |
| 3752 | SFINAETrap Trap(*this); |
| 3753 | CheckTemplateArgumentInfo CTAI; |
| 3754 | TemplateArgumentLoc Arg( |
| 3755 | TemplateArgument(StringLit, /*IsCanonical=*/false), StringLit); |
| 3756 | if (CheckTemplateArgument( |
| 3757 | Param: Params->getParam(Idx: 0), Arg, Template: FD, TemplateLoc: R.getNameLoc(), RAngleLoc: R.getNameLoc(), |
| 3758 | /*ArgumentPackIndex=*/0, CTAI, CTAK: CTAK_Specified) || |
| 3759 | Trap.hasErrorOccurred()) |
| 3760 | IsTemplate = false; |
| 3761 | } |
| 3762 | } else { |
| 3763 | IsStringTemplatePack = true; |
| 3764 | } |
| 3765 | } |
| 3766 | |
| 3767 | if (AllowTemplate && StringLit && IsTemplate) { |
| 3768 | FoundTemplate = true; |
| 3769 | AllowRaw = false; |
| 3770 | AllowCooked = false; |
| 3771 | AllowStringTemplatePack = false; |
| 3772 | if (FoundRaw || FoundCooked || FoundStringTemplatePack) { |
| 3773 | F.restart(); |
| 3774 | FoundRaw = FoundCooked = FoundStringTemplatePack = false; |
| 3775 | } |
| 3776 | } else if (AllowCooked && IsCooked) { |
| 3777 | FoundCooked = true; |
| 3778 | AllowRaw = false; |
| 3779 | AllowTemplate = StringLit; |
| 3780 | AllowStringTemplatePack = false; |
| 3781 | if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { |
| 3782 | // Go through again and remove the raw and template decls we've |
| 3783 | // already found. |
| 3784 | F.restart(); |
| 3785 | FoundRaw = FoundTemplate = FoundStringTemplatePack = false; |
| 3786 | } |
| 3787 | } else if (AllowRaw && IsRaw) { |
| 3788 | FoundRaw = true; |
| 3789 | } else if (AllowTemplate && IsTemplate) { |
| 3790 | FoundTemplate = true; |
| 3791 | } else if (AllowStringTemplatePack && IsStringTemplatePack) { |
| 3792 | FoundStringTemplatePack = true; |
| 3793 | } else { |
| 3794 | F.erase(); |
| 3795 | } |
| 3796 | } |
| 3797 | |
| 3798 | F.done(); |
| 3799 | |
| 3800 | // Per C++20 [lex.ext]p5, we prefer the template form over the non-template |
| 3801 | // form for string literal operator templates. |
| 3802 | if (StringLit && FoundTemplate) |
| 3803 | return LOLR_Template; |
| 3804 | |
| 3805 | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching |
| 3806 | // parameter type, that is used in preference to a raw literal operator |
| 3807 | // or literal operator template. |
| 3808 | if (FoundCooked) |
| 3809 | return LOLR_Cooked; |
| 3810 | |
| 3811 | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal |
| 3812 | // operator template, but not both. |
| 3813 | if (FoundRaw && FoundTemplate) { |
| 3814 | Diag(Loc: R.getNameLoc(), DiagID: diag::err_ovl_ambiguous_call) << R.getLookupName(); |
| 3815 | for (const NamedDecl *D : R) |
| 3816 | NoteOverloadCandidate(Found: D, Fn: D->getUnderlyingDecl()->getAsFunction()); |
| 3817 | return LOLR_Error; |
| 3818 | } |
| 3819 | |
| 3820 | if (FoundRaw) |
| 3821 | return LOLR_Raw; |
| 3822 | |
| 3823 | if (FoundTemplate) |
| 3824 | return LOLR_Template; |
| 3825 | |
| 3826 | if (FoundStringTemplatePack) |
| 3827 | return LOLR_StringTemplatePack; |
| 3828 | |
| 3829 | // Didn't find anything we could use. |
| 3830 | if (DiagnoseMissing) { |
| 3831 | Diag(Loc: R.getNameLoc(), DiagID: diag::err_ovl_no_viable_literal_operator) |
| 3832 | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] |
| 3833 | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw |
| 3834 | << (AllowTemplate || AllowStringTemplatePack); |
| 3835 | return LOLR_Error; |
| 3836 | } |
| 3837 | |
| 3838 | return LOLR_ErrorNoDiagnostic; |
| 3839 | } |
| 3840 | |
| 3841 | void ADLResult::insert(NamedDecl *New) { |
| 3842 | NamedDecl *&Old = Decls[cast<NamedDecl>(Val: New->getCanonicalDecl())]; |
| 3843 | |
| 3844 | // If we haven't yet seen a decl for this key, or the last decl |
| 3845 | // was exactly this one, we're done. |
| 3846 | if (Old == nullptr || Old == New) { |
| 3847 | Old = New; |
| 3848 | return; |
| 3849 | } |
| 3850 | |
| 3851 | // Otherwise, decide which is a more recent redeclaration. |
| 3852 | FunctionDecl *OldFD = Old->getAsFunction(); |
| 3853 | FunctionDecl *NewFD = New->getAsFunction(); |
| 3854 | |
| 3855 | FunctionDecl *Cursor = NewFD; |
| 3856 | while (true) { |
| 3857 | Cursor = Cursor->getPreviousDecl(); |
| 3858 | |
| 3859 | // If we got to the end without finding OldFD, OldFD is the newer |
| 3860 | // declaration; leave things as they are. |
| 3861 | if (!Cursor) return; |
| 3862 | |
| 3863 | // If we do find OldFD, then NewFD is newer. |
| 3864 | if (Cursor == OldFD) break; |
| 3865 | |
| 3866 | // Otherwise, keep looking. |
| 3867 | } |
| 3868 | |
| 3869 | Old = New; |
| 3870 | } |
| 3871 | |
| 3872 | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, |
| 3873 | ArrayRef<Expr *> Args, ADLResult &Result) { |
| 3874 | // Find all of the associated namespaces and classes based on the |
| 3875 | // arguments we have. |
| 3876 | AssociatedNamespaceSet AssociatedNamespaces; |
| 3877 | AssociatedClassSet AssociatedClasses; |
| 3878 | FindAssociatedClassesAndNamespaces(InstantiationLoc: Loc, Args, |
| 3879 | AssociatedNamespaces, |
| 3880 | AssociatedClasses); |
| 3881 | |
| 3882 | // C++ [basic.lookup.argdep]p3: |
| 3883 | // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| 3884 | // and let Y be the lookup set produced by argument dependent |
| 3885 | // lookup (defined as follows). If X contains [...] then Y is |
| 3886 | // empty. Otherwise Y is the set of declarations found in the |
| 3887 | // namespaces associated with the argument types as described |
| 3888 | // below. The set of declarations found by the lookup of the name |
| 3889 | // is the union of X and Y. |
| 3890 | // |
| 3891 | // Here, we compute Y and add its members to the overloaded |
| 3892 | // candidate set. |
| 3893 | for (auto *NS : AssociatedNamespaces) { |
| 3894 | // When considering an associated namespace, the lookup is the |
| 3895 | // same as the lookup performed when the associated namespace is |
| 3896 | // used as a qualifier (3.4.3.2) except that: |
| 3897 | // |
| 3898 | // -- Any using-directives in the associated namespace are |
| 3899 | // ignored. |
| 3900 | // |
| 3901 | // -- Any namespace-scope friend functions declared in |
| 3902 | // associated classes are visible within their respective |
| 3903 | // namespaces even if they are not visible during an ordinary |
| 3904 | // lookup (11.4). |
| 3905 | // |
| 3906 | // C++20 [basic.lookup.argdep] p4.3 |
| 3907 | // -- are exported, are attached to a named module M, do not appear |
| 3908 | // in the translation unit containing the point of the lookup, and |
| 3909 | // have the same innermost enclosing non-inline namespace scope as |
| 3910 | // a declaration of an associated entity attached to M. |
| 3911 | DeclContext::lookup_result R = NS->lookup(Name); |
| 3912 | for (auto *D : R) { |
| 3913 | auto *Underlying = D; |
| 3914 | if (auto *USD = dyn_cast<UsingShadowDecl>(Val: D)) |
| 3915 | Underlying = USD->getTargetDecl(); |
| 3916 | |
| 3917 | if (!isa<FunctionDecl>(Val: Underlying) && |
| 3918 | !isa<FunctionTemplateDecl>(Val: Underlying)) |
| 3919 | continue; |
| 3920 | |
| 3921 | // The declaration is visible to argument-dependent lookup if either |
| 3922 | // it's ordinarily visible or declared as a friend in an associated |
| 3923 | // class. |
| 3924 | bool Visible = false; |
| 3925 | for (D = D->getMostRecentDecl(); D; |
| 3926 | D = cast_or_null<NamedDecl>(Val: D->getPreviousDecl())) { |
| 3927 | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { |
| 3928 | if (isVisible(D)) { |
| 3929 | Visible = true; |
| 3930 | break; |
| 3931 | } |
| 3932 | |
| 3933 | if (!getLangOpts().CPlusPlusModules) |
| 3934 | continue; |
| 3935 | |
| 3936 | if (D->isInExportDeclContext()) { |
| 3937 | Module *FM = D->getOwningModule(); |
| 3938 | // C++20 [basic.lookup.argdep] p4.3 .. are exported ... |
| 3939 | // exports are only valid in module purview and outside of any |
| 3940 | // PMF (although a PMF should not even be present in a module |
| 3941 | // with an import). |
| 3942 | assert(FM && |
| 3943 | (FM->isNamedModule() || FM->isImplicitGlobalModule()) && |
| 3944 | !FM->isPrivateModule() && "bad export context" ); |
| 3945 | // .. are attached to a named module M, do not appear in the |
| 3946 | // translation unit containing the point of the lookup.. |
| 3947 | if (D->isInAnotherModuleUnit() && |
| 3948 | llvm::any_of(Range&: AssociatedClasses, P: [&](auto *E) { |
| 3949 | // ... and have the same innermost enclosing non-inline |
| 3950 | // namespace scope as a declaration of an associated entity |
| 3951 | // attached to M |
| 3952 | if (E->getOwningModule() != FM) |
| 3953 | return false; |
| 3954 | // TODO: maybe this could be cached when generating the |
| 3955 | // associated namespaces / entities. |
| 3956 | DeclContext *Ctx = E->getDeclContext(); |
| 3957 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
| 3958 | Ctx = Ctx->getParent(); |
| 3959 | return Ctx == NS; |
| 3960 | })) { |
| 3961 | Visible = true; |
| 3962 | break; |
| 3963 | } |
| 3964 | } |
| 3965 | } else if (D->getFriendObjectKind()) { |
| 3966 | auto *RD = cast<CXXRecordDecl>(Val: D->getLexicalDeclContext()); |
| 3967 | // [basic.lookup.argdep]p4: |
| 3968 | // Argument-dependent lookup finds all declarations of functions and |
| 3969 | // function templates that |
| 3970 | // - ... |
| 3971 | // - are declared as a friend ([class.friend]) of any class with a |
| 3972 | // reachable definition in the set of associated entities, |
| 3973 | // |
| 3974 | // FIXME: If there's a merged definition of D that is reachable, then |
| 3975 | // the friend declaration should be considered. |
| 3976 | if (AssociatedClasses.count(key: RD) && isReachable(D)) { |
| 3977 | Visible = true; |
| 3978 | break; |
| 3979 | } |
| 3980 | } |
| 3981 | } |
| 3982 | |
| 3983 | // FIXME: Preserve D as the FoundDecl. |
| 3984 | if (Visible) |
| 3985 | Result.insert(New: Underlying); |
| 3986 | } |
| 3987 | } |
| 3988 | } |
| 3989 | |
| 3990 | //---------------------------------------------------------------------------- |
| 3991 | // Search for all visible declarations. |
| 3992 | //---------------------------------------------------------------------------- |
| 3993 | VisibleDeclConsumer::~VisibleDeclConsumer() { } |
| 3994 | |
| 3995 | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } |
| 3996 | |
| 3997 | namespace { |
| 3998 | |
| 3999 | class ShadowContextRAII; |
| 4000 | |
| 4001 | class VisibleDeclsRecord { |
| 4002 | public: |
| 4003 | /// An entry in the shadow map, which is optimized to store a |
| 4004 | /// single declaration (the common case) but can also store a list |
| 4005 | /// of declarations. |
| 4006 | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; |
| 4007 | |
| 4008 | private: |
| 4009 | /// A mapping from declaration names to the declarations that have |
| 4010 | /// this name within a particular scope. |
| 4011 | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; |
| 4012 | |
| 4013 | /// A list of shadow maps, which is used to model name hiding. |
| 4014 | std::list<ShadowMap> ShadowMaps; |
| 4015 | |
| 4016 | /// The declaration contexts we have already visited. |
| 4017 | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; |
| 4018 | |
| 4019 | friend class ShadowContextRAII; |
| 4020 | |
| 4021 | public: |
| 4022 | /// Determine whether we have already visited this context |
| 4023 | /// (and, if not, note that we are going to visit that context now). |
| 4024 | bool visitedContext(DeclContext *Ctx) { |
| 4025 | return !VisitedContexts.insert(Ptr: Ctx).second; |
| 4026 | } |
| 4027 | |
| 4028 | bool alreadyVisitedContext(DeclContext *Ctx) { |
| 4029 | return VisitedContexts.count(Ptr: Ctx); |
| 4030 | } |
| 4031 | |
| 4032 | /// Determine whether the given declaration is hidden in the |
| 4033 | /// current scope. |
| 4034 | /// |
| 4035 | /// \returns the declaration that hides the given declaration, or |
| 4036 | /// NULL if no such declaration exists. |
| 4037 | NamedDecl *checkHidden(NamedDecl *ND); |
| 4038 | |
| 4039 | /// Add a declaration to the current shadow map. |
| 4040 | void add(NamedDecl *ND) { |
| 4041 | ShadowMaps.back()[ND->getDeclName()].push_back(NewVal: ND); |
| 4042 | } |
| 4043 | }; |
| 4044 | |
| 4045 | /// RAII object that records when we've entered a shadow context. |
| 4046 | class ShadowContextRAII { |
| 4047 | VisibleDeclsRecord &Visible; |
| 4048 | |
| 4049 | typedef VisibleDeclsRecord::ShadowMap ShadowMap; |
| 4050 | |
| 4051 | public: |
| 4052 | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { |
| 4053 | Visible.ShadowMaps.emplace_back(); |
| 4054 | } |
| 4055 | |
| 4056 | ~ShadowContextRAII() { |
| 4057 | Visible.ShadowMaps.pop_back(); |
| 4058 | } |
| 4059 | }; |
| 4060 | |
| 4061 | } // end anonymous namespace |
| 4062 | |
| 4063 | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { |
| 4064 | unsigned IDNS = ND->getIdentifierNamespace(); |
| 4065 | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); |
| 4066 | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); |
| 4067 | SM != SMEnd; ++SM) { |
| 4068 | ShadowMap::iterator Pos = SM->find(Val: ND->getDeclName()); |
| 4069 | if (Pos == SM->end()) |
| 4070 | continue; |
| 4071 | |
| 4072 | for (auto *D : Pos->second) { |
| 4073 | // A tag declaration does not hide a non-tag declaration. |
| 4074 | if (D->hasTagIdentifierNamespace() && |
| 4075 | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
| 4076 | Decl::IDNS_ObjCProtocol))) |
| 4077 | continue; |
| 4078 | |
| 4079 | // Protocols are in distinct namespaces from everything else. |
| 4080 | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
| 4081 | || (IDNS & Decl::IDNS_ObjCProtocol)) && |
| 4082 | D->getIdentifierNamespace() != IDNS) |
| 4083 | continue; |
| 4084 | |
| 4085 | // Functions and function templates in the same scope overload |
| 4086 | // rather than hide. FIXME: Look for hiding based on function |
| 4087 | // signatures! |
| 4088 | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
| 4089 | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
| 4090 | SM == ShadowMaps.rbegin()) |
| 4091 | continue; |
| 4092 | |
| 4093 | // A shadow declaration that's created by a resolved using declaration |
| 4094 | // is not hidden by the same using declaration. |
| 4095 | if (isa<UsingShadowDecl>(Val: ND) && isa<UsingDecl>(Val: D) && |
| 4096 | cast<UsingShadowDecl>(Val: ND)->getIntroducer() == D) |
| 4097 | continue; |
| 4098 | |
| 4099 | // We've found a declaration that hides this one. |
| 4100 | return D; |
| 4101 | } |
| 4102 | } |
| 4103 | |
| 4104 | return nullptr; |
| 4105 | } |
| 4106 | |
| 4107 | namespace { |
| 4108 | class LookupVisibleHelper { |
| 4109 | public: |
| 4110 | LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, |
| 4111 | bool LoadExternal) |
| 4112 | : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), |
| 4113 | LoadExternal(LoadExternal) {} |
| 4114 | |
| 4115 | void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, |
| 4116 | bool IncludeGlobalScope) { |
| 4117 | // Determine the set of using directives available during |
| 4118 | // unqualified name lookup. |
| 4119 | Scope *Initial = S; |
| 4120 | UnqualUsingDirectiveSet UDirs(SemaRef); |
| 4121 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 4122 | // Find the first namespace or translation-unit scope. |
| 4123 | while (S && !isNamespaceOrTranslationUnitScope(S)) |
| 4124 | S = S->getParent(); |
| 4125 | |
| 4126 | UDirs.visitScopeChain(S: Initial, InnermostFileScope: S); |
| 4127 | } |
| 4128 | UDirs.done(); |
| 4129 | |
| 4130 | // Look for visible declarations. |
| 4131 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
| 4132 | Result.setAllowHidden(Consumer.includeHiddenDecls()); |
| 4133 | if (!IncludeGlobalScope) |
| 4134 | Visited.visitedContext(Ctx: SemaRef.getASTContext().getTranslationUnitDecl()); |
| 4135 | ShadowContextRAII Shadow(Visited); |
| 4136 | lookupInScope(S: Initial, Result, UDirs); |
| 4137 | } |
| 4138 | |
| 4139 | void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, |
| 4140 | Sema::LookupNameKind Kind, bool IncludeGlobalScope) { |
| 4141 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
| 4142 | Result.setAllowHidden(Consumer.includeHiddenDecls()); |
| 4143 | if (!IncludeGlobalScope) |
| 4144 | Visited.visitedContext(Ctx: SemaRef.getASTContext().getTranslationUnitDecl()); |
| 4145 | |
| 4146 | ShadowContextRAII Shadow(Visited); |
| 4147 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, |
| 4148 | /*InBaseClass=*/false); |
| 4149 | } |
| 4150 | |
| 4151 | private: |
| 4152 | void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, |
| 4153 | bool QualifiedNameLookup, bool InBaseClass) { |
| 4154 | if (!Ctx) |
| 4155 | return; |
| 4156 | |
| 4157 | // Make sure we don't visit the same context twice. |
| 4158 | if (Visited.visitedContext(Ctx: Ctx->getPrimaryContext())) |
| 4159 | return; |
| 4160 | |
| 4161 | Consumer.EnteredContext(Ctx); |
| 4162 | |
| 4163 | // Outside C++, lookup results for the TU live on identifiers. |
| 4164 | if (isa<TranslationUnitDecl>(Val: Ctx) && |
| 4165 | !Result.getSema().getLangOpts().CPlusPlus) { |
| 4166 | auto &S = Result.getSema(); |
| 4167 | auto &Idents = S.Context.Idents; |
| 4168 | |
| 4169 | // Ensure all external identifiers are in the identifier table. |
| 4170 | if (LoadExternal) |
| 4171 | if (IdentifierInfoLookup *External = |
| 4172 | Idents.getExternalIdentifierLookup()) { |
| 4173 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
| 4174 | for (StringRef Name = Iter->Next(); !Name.empty(); |
| 4175 | Name = Iter->Next()) |
| 4176 | Idents.get(Name); |
| 4177 | } |
| 4178 | |
| 4179 | // Walk all lookup results in the TU for each identifier. |
| 4180 | for (const auto &Ident : Idents) { |
| 4181 | for (auto I = S.IdResolver.begin(Name: Ident.getValue()), |
| 4182 | E = S.IdResolver.end(); |
| 4183 | I != E; ++I) { |
| 4184 | if (S.IdResolver.isDeclInScope(D: *I, Ctx)) { |
| 4185 | if (NamedDecl *ND = Result.getAcceptableDecl(D: *I)) { |
| 4186 | Consumer.FoundDecl(ND, Hiding: Visited.checkHidden(ND), Ctx, InBaseClass); |
| 4187 | Visited.add(ND); |
| 4188 | } |
| 4189 | } |
| 4190 | } |
| 4191 | } |
| 4192 | |
| 4193 | return; |
| 4194 | } |
| 4195 | |
| 4196 | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
| 4197 | Result.getSema().ForceDeclarationOfImplicitMembers(Class); |
| 4198 | |
| 4199 | llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; |
| 4200 | // We sometimes skip loading namespace-level results (they tend to be huge). |
| 4201 | bool Load = LoadExternal || |
| 4202 | !(isa<TranslationUnitDecl>(Val: Ctx) || isa<NamespaceDecl>(Val: Ctx)); |
| 4203 | // Enumerate all of the results in this context. |
| 4204 | for (DeclContextLookupResult R : |
| 4205 | Load ? Ctx->lookups() |
| 4206 | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) |
| 4207 | for (auto *D : R) |
| 4208 | // Rather than visit immediately, we put ND into a vector and visit |
| 4209 | // all decls, in order, outside of this loop. The reason is that |
| 4210 | // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) |
| 4211 | // may invalidate the iterators used in the two |
| 4212 | // loops above. |
| 4213 | DeclsToVisit.push_back(Elt: D); |
| 4214 | |
| 4215 | for (auto *D : DeclsToVisit) |
| 4216 | if (auto *ND = Result.getAcceptableDecl(D)) { |
| 4217 | Consumer.FoundDecl(ND, Hiding: Visited.checkHidden(ND), Ctx, InBaseClass); |
| 4218 | Visited.add(ND); |
| 4219 | } |
| 4220 | |
| 4221 | DeclsToVisit.clear(); |
| 4222 | |
| 4223 | // Traverse using directives for qualified name lookup. |
| 4224 | if (QualifiedNameLookup) { |
| 4225 | ShadowContextRAII Shadow(Visited); |
| 4226 | for (auto *I : Ctx->using_directives()) { |
| 4227 | if (!Result.getSema().isVisible(D: I)) |
| 4228 | continue; |
| 4229 | lookupInDeclContext(Ctx: I->getNominatedNamespace(), Result, |
| 4230 | QualifiedNameLookup, InBaseClass); |
| 4231 | } |
| 4232 | } |
| 4233 | |
| 4234 | // Traverse the contexts of inherited C++ classes. |
| 4235 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Ctx)) { |
| 4236 | if (!Record->hasDefinition()) |
| 4237 | return; |
| 4238 | |
| 4239 | for (const auto &B : Record->bases()) { |
| 4240 | QualType BaseType = B.getType(); |
| 4241 | |
| 4242 | RecordDecl *RD; |
| 4243 | if (BaseType->isDependentType()) { |
| 4244 | if (!IncludeDependentBases) { |
| 4245 | // Don't look into dependent bases, because name lookup can't look |
| 4246 | // there anyway. |
| 4247 | continue; |
| 4248 | } |
| 4249 | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); |
| 4250 | if (!TST) |
| 4251 | continue; |
| 4252 | TemplateName TN = TST->getTemplateName(); |
| 4253 | const auto *TD = |
| 4254 | dyn_cast_or_null<ClassTemplateDecl>(Val: TN.getAsTemplateDecl()); |
| 4255 | if (!TD) |
| 4256 | continue; |
| 4257 | RD = TD->getTemplatedDecl(); |
| 4258 | } else { |
| 4259 | const auto *Record = BaseType->getAs<RecordType>(); |
| 4260 | if (!Record) |
| 4261 | continue; |
| 4262 | RD = Record->getDecl(); |
| 4263 | } |
| 4264 | |
| 4265 | // FIXME: It would be nice to be able to determine whether referencing |
| 4266 | // a particular member would be ambiguous. For example, given |
| 4267 | // |
| 4268 | // struct A { int member; }; |
| 4269 | // struct B { int member; }; |
| 4270 | // struct C : A, B { }; |
| 4271 | // |
| 4272 | // void f(C *c) { c->### } |
| 4273 | // |
| 4274 | // accessing 'member' would result in an ambiguity. However, we |
| 4275 | // could be smart enough to qualify the member with the base |
| 4276 | // class, e.g., |
| 4277 | // |
| 4278 | // c->B::member |
| 4279 | // |
| 4280 | // or |
| 4281 | // |
| 4282 | // c->A::member |
| 4283 | |
| 4284 | // Find results in this base class (and its bases). |
| 4285 | ShadowContextRAII Shadow(Visited); |
| 4286 | lookupInDeclContext(Ctx: RD, Result, QualifiedNameLookup, |
| 4287 | /*InBaseClass=*/true); |
| 4288 | } |
| 4289 | } |
| 4290 | |
| 4291 | // Traverse the contexts of Objective-C classes. |
| 4292 | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Val: Ctx)) { |
| 4293 | // Traverse categories. |
| 4294 | for (auto *Cat : IFace->visible_categories()) { |
| 4295 | ShadowContextRAII Shadow(Visited); |
| 4296 | lookupInDeclContext(Ctx: Cat, Result, QualifiedNameLookup, |
| 4297 | /*InBaseClass=*/false); |
| 4298 | } |
| 4299 | |
| 4300 | // Traverse protocols. |
| 4301 | for (auto *I : IFace->all_referenced_protocols()) { |
| 4302 | ShadowContextRAII Shadow(Visited); |
| 4303 | lookupInDeclContext(Ctx: I, Result, QualifiedNameLookup, |
| 4304 | /*InBaseClass=*/false); |
| 4305 | } |
| 4306 | |
| 4307 | // Traverse the superclass. |
| 4308 | if (IFace->getSuperClass()) { |
| 4309 | ShadowContextRAII Shadow(Visited); |
| 4310 | lookupInDeclContext(Ctx: IFace->getSuperClass(), Result, QualifiedNameLookup, |
| 4311 | /*InBaseClass=*/true); |
| 4312 | } |
| 4313 | |
| 4314 | // If there is an implementation, traverse it. We do this to find |
| 4315 | // synthesized ivars. |
| 4316 | if (IFace->getImplementation()) { |
| 4317 | ShadowContextRAII Shadow(Visited); |
| 4318 | lookupInDeclContext(Ctx: IFace->getImplementation(), Result, |
| 4319 | QualifiedNameLookup, InBaseClass); |
| 4320 | } |
| 4321 | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Val: Ctx)) { |
| 4322 | for (auto *I : Protocol->protocols()) { |
| 4323 | ShadowContextRAII Shadow(Visited); |
| 4324 | lookupInDeclContext(Ctx: I, Result, QualifiedNameLookup, |
| 4325 | /*InBaseClass=*/false); |
| 4326 | } |
| 4327 | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Val: Ctx)) { |
| 4328 | for (auto *I : Category->protocols()) { |
| 4329 | ShadowContextRAII Shadow(Visited); |
| 4330 | lookupInDeclContext(Ctx: I, Result, QualifiedNameLookup, |
| 4331 | /*InBaseClass=*/false); |
| 4332 | } |
| 4333 | |
| 4334 | // If there is an implementation, traverse it. |
| 4335 | if (Category->getImplementation()) { |
| 4336 | ShadowContextRAII Shadow(Visited); |
| 4337 | lookupInDeclContext(Ctx: Category->getImplementation(), Result, |
| 4338 | QualifiedNameLookup, /*InBaseClass=*/true); |
| 4339 | } |
| 4340 | } |
| 4341 | } |
| 4342 | |
| 4343 | void lookupInScope(Scope *S, LookupResult &Result, |
| 4344 | UnqualUsingDirectiveSet &UDirs) { |
| 4345 | // No clients run in this mode and it's not supported. Please add tests and |
| 4346 | // remove the assertion if you start relying on it. |
| 4347 | assert(!IncludeDependentBases && "Unsupported flag for lookupInScope" ); |
| 4348 | |
| 4349 | if (!S) |
| 4350 | return; |
| 4351 | |
| 4352 | if (!S->getEntity() || |
| 4353 | (!S->getParent() && !Visited.alreadyVisitedContext(Ctx: S->getEntity())) || |
| 4354 | (S->getEntity())->isFunctionOrMethod()) { |
| 4355 | FindLocalExternScope FindLocals(Result); |
| 4356 | // Walk through the declarations in this Scope. The consumer might add new |
| 4357 | // decls to the scope as part of deserialization, so make a copy first. |
| 4358 | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); |
| 4359 | for (Decl *D : ScopeDecls) { |
| 4360 | if (NamedDecl *ND = dyn_cast<NamedDecl>(Val: D)) |
| 4361 | if ((ND = Result.getAcceptableDecl(D: ND))) { |
| 4362 | Consumer.FoundDecl(ND, Hiding: Visited.checkHidden(ND), Ctx: nullptr, InBaseClass: false); |
| 4363 | Visited.add(ND); |
| 4364 | } |
| 4365 | } |
| 4366 | } |
| 4367 | |
| 4368 | DeclContext *Entity = S->getLookupEntity(); |
| 4369 | if (Entity) { |
| 4370 | // Look into this scope's declaration context, along with any of its |
| 4371 | // parent lookup contexts (e.g., enclosing classes), up to the point |
| 4372 | // where we hit the context stored in the next outer scope. |
| 4373 | DeclContext *OuterCtx = findOuterContext(S); |
| 4374 | |
| 4375 | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(DC: OuterCtx); |
| 4376 | Ctx = Ctx->getLookupParent()) { |
| 4377 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: Ctx)) { |
| 4378 | if (Method->isInstanceMethod()) { |
| 4379 | // For instance methods, look for ivars in the method's interface. |
| 4380 | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), |
| 4381 | Result.getNameLoc(), |
| 4382 | Sema::LookupMemberName); |
| 4383 | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { |
| 4384 | lookupInDeclContext(Ctx: IFace, Result&: IvarResult, |
| 4385 | /*QualifiedNameLookup=*/false, |
| 4386 | /*InBaseClass=*/false); |
| 4387 | } |
| 4388 | } |
| 4389 | |
| 4390 | // We've already performed all of the name lookup that we need |
| 4391 | // to for Objective-C methods; the next context will be the |
| 4392 | // outer scope. |
| 4393 | break; |
| 4394 | } |
| 4395 | |
| 4396 | if (Ctx->isFunctionOrMethod()) |
| 4397 | continue; |
| 4398 | |
| 4399 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, |
| 4400 | /*InBaseClass=*/false); |
| 4401 | } |
| 4402 | } else if (!S->getParent()) { |
| 4403 | // Look into the translation unit scope. We walk through the translation |
| 4404 | // unit's declaration context, because the Scope itself won't have all of |
| 4405 | // the declarations if we loaded a precompiled header. |
| 4406 | // FIXME: We would like the translation unit's Scope object to point to |
| 4407 | // the translation unit, so we don't need this special "if" branch. |
| 4408 | // However, doing so would force the normal C++ name-lookup code to look |
| 4409 | // into the translation unit decl when the IdentifierInfo chains would |
| 4410 | // suffice. Once we fix that problem (which is part of a more general |
| 4411 | // "don't look in DeclContexts unless we have to" optimization), we can |
| 4412 | // eliminate this. |
| 4413 | Entity = Result.getSema().Context.getTranslationUnitDecl(); |
| 4414 | lookupInDeclContext(Ctx: Entity, Result, /*QualifiedNameLookup=*/false, |
| 4415 | /*InBaseClass=*/false); |
| 4416 | } |
| 4417 | |
| 4418 | if (Entity) { |
| 4419 | // Lookup visible declarations in any namespaces found by using |
| 4420 | // directives. |
| 4421 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(DC: Entity)) |
| 4422 | lookupInDeclContext( |
| 4423 | Ctx: const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, |
| 4424 | /*QualifiedNameLookup=*/false, |
| 4425 | /*InBaseClass=*/false); |
| 4426 | } |
| 4427 | |
| 4428 | // Lookup names in the parent scope. |
| 4429 | ShadowContextRAII Shadow(Visited); |
| 4430 | lookupInScope(S: S->getParent(), Result, UDirs); |
| 4431 | } |
| 4432 | |
| 4433 | private: |
| 4434 | VisibleDeclsRecord Visited; |
| 4435 | VisibleDeclConsumer &Consumer; |
| 4436 | bool IncludeDependentBases; |
| 4437 | bool LoadExternal; |
| 4438 | }; |
| 4439 | } // namespace |
| 4440 | |
| 4441 | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, |
| 4442 | VisibleDeclConsumer &Consumer, |
| 4443 | bool IncludeGlobalScope, bool LoadExternal) { |
| 4444 | LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, |
| 4445 | LoadExternal); |
| 4446 | H.lookupVisibleDecls(SemaRef&: *this, S, Kind, IncludeGlobalScope); |
| 4447 | } |
| 4448 | |
| 4449 | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, |
| 4450 | VisibleDeclConsumer &Consumer, |
| 4451 | bool IncludeGlobalScope, |
| 4452 | bool IncludeDependentBases, bool LoadExternal) { |
| 4453 | LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); |
| 4454 | H.lookupVisibleDecls(SemaRef&: *this, Ctx, Kind, IncludeGlobalScope); |
| 4455 | } |
| 4456 | |
| 4457 | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, |
| 4458 | SourceLocation GnuLabelLoc) { |
| 4459 | // Do a lookup to see if we have a label with this name already. |
| 4460 | NamedDecl *Res = nullptr; |
| 4461 | |
| 4462 | if (GnuLabelLoc.isValid()) { |
| 4463 | // Local label definitions always shadow existing labels. |
| 4464 | Res = LabelDecl::Create(C&: Context, DC: CurContext, IdentL: Loc, II, GnuLabelL: GnuLabelLoc); |
| 4465 | Scope *S = CurScope; |
| 4466 | PushOnScopeChains(D: Res, S, AddToContext: true); |
| 4467 | return cast<LabelDecl>(Val: Res); |
| 4468 | } |
| 4469 | |
| 4470 | // Not a GNU local label. |
| 4471 | Res = LookupSingleName(S: CurScope, Name: II, Loc, NameKind: LookupLabel, |
| 4472 | Redecl: RedeclarationKind::NotForRedeclaration); |
| 4473 | // If we found a label, check to see if it is in the same context as us. |
| 4474 | // When in a Block, we don't want to reuse a label in an enclosing function. |
| 4475 | if (Res && Res->getDeclContext() != CurContext) |
| 4476 | Res = nullptr; |
| 4477 | if (!Res) { |
| 4478 | // If not forward referenced or defined already, create the backing decl. |
| 4479 | Res = LabelDecl::Create(C&: Context, DC: CurContext, IdentL: Loc, II); |
| 4480 | Scope *S = CurScope->getFnParent(); |
| 4481 | assert(S && "Not in a function?" ); |
| 4482 | PushOnScopeChains(D: Res, S, AddToContext: true); |
| 4483 | } |
| 4484 | return cast<LabelDecl>(Val: Res); |
| 4485 | } |
| 4486 | |
| 4487 | //===----------------------------------------------------------------------===// |
| 4488 | // Typo correction |
| 4489 | //===----------------------------------------------------------------------===// |
| 4490 | |
| 4491 | static bool isCandidateViable(CorrectionCandidateCallback &CCC, |
| 4492 | TypoCorrection &Candidate) { |
| 4493 | Candidate.setCallbackDistance(CCC.RankCandidate(candidate: Candidate)); |
| 4494 | return Candidate.getEditDistance(Normalized: false) != TypoCorrection::InvalidDistance; |
| 4495 | } |
| 4496 | |
| 4497 | static void LookupPotentialTypoResult(Sema &SemaRef, |
| 4498 | LookupResult &Res, |
| 4499 | IdentifierInfo *Name, |
| 4500 | Scope *S, CXXScopeSpec *SS, |
| 4501 | DeclContext *MemberContext, |
| 4502 | bool EnteringContext, |
| 4503 | bool isObjCIvarLookup, |
| 4504 | bool FindHidden); |
| 4505 | |
| 4506 | /// Check whether the declarations found for a typo correction are |
| 4507 | /// visible. Set the correction's RequiresImport flag to true if none of the |
| 4508 | /// declarations are visible, false otherwise. |
| 4509 | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { |
| 4510 | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); |
| 4511 | |
| 4512 | for (/**/; DI != DE; ++DI) |
| 4513 | if (!LookupResult::isVisible(SemaRef, D: *DI)) |
| 4514 | break; |
| 4515 | // No filtering needed if all decls are visible. |
| 4516 | if (DI == DE) { |
| 4517 | TC.setRequiresImport(false); |
| 4518 | return; |
| 4519 | } |
| 4520 | |
| 4521 | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); |
| 4522 | bool AnyVisibleDecls = !NewDecls.empty(); |
| 4523 | |
| 4524 | for (/**/; DI != DE; ++DI) { |
| 4525 | if (LookupResult::isVisible(SemaRef, D: *DI)) { |
| 4526 | if (!AnyVisibleDecls) { |
| 4527 | // Found a visible decl, discard all hidden ones. |
| 4528 | AnyVisibleDecls = true; |
| 4529 | NewDecls.clear(); |
| 4530 | } |
| 4531 | NewDecls.push_back(Elt: *DI); |
| 4532 | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) |
| 4533 | NewDecls.push_back(Elt: *DI); |
| 4534 | } |
| 4535 | |
| 4536 | if (NewDecls.empty()) |
| 4537 | TC = TypoCorrection(); |
| 4538 | else { |
| 4539 | TC.setCorrectionDecls(NewDecls); |
| 4540 | TC.setRequiresImport(!AnyVisibleDecls); |
| 4541 | } |
| 4542 | } |
| 4543 | |
| 4544 | // Fill the supplied vector with the IdentifierInfo pointers for each piece of |
| 4545 | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", |
| 4546 | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). |
| 4547 | static void getNestedNameSpecifierIdentifiers( |
| 4548 | NestedNameSpecifier *NNS, |
| 4549 | SmallVectorImpl<const IdentifierInfo*> &Identifiers) { |
| 4550 | if (NestedNameSpecifier *Prefix = NNS->getPrefix()) |
| 4551 | getNestedNameSpecifierIdentifiers(NNS: Prefix, Identifiers); |
| 4552 | else |
| 4553 | Identifiers.clear(); |
| 4554 | |
| 4555 | const IdentifierInfo *II = nullptr; |
| 4556 | |
| 4557 | switch (NNS->getKind()) { |
| 4558 | case NestedNameSpecifier::Identifier: |
| 4559 | II = NNS->getAsIdentifier(); |
| 4560 | break; |
| 4561 | |
| 4562 | case NestedNameSpecifier::Namespace: |
| 4563 | if (NNS->getAsNamespace()->isAnonymousNamespace()) |
| 4564 | return; |
| 4565 | II = NNS->getAsNamespace()->getIdentifier(); |
| 4566 | break; |
| 4567 | |
| 4568 | case NestedNameSpecifier::NamespaceAlias: |
| 4569 | II = NNS->getAsNamespaceAlias()->getIdentifier(); |
| 4570 | break; |
| 4571 | |
| 4572 | case NestedNameSpecifier::TypeSpec: |
| 4573 | II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); |
| 4574 | break; |
| 4575 | |
| 4576 | case NestedNameSpecifier::Global: |
| 4577 | case NestedNameSpecifier::Super: |
| 4578 | return; |
| 4579 | } |
| 4580 | |
| 4581 | if (II) |
| 4582 | Identifiers.push_back(Elt: II); |
| 4583 | } |
| 4584 | |
| 4585 | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, |
| 4586 | DeclContext *Ctx, bool InBaseClass) { |
| 4587 | // Don't consider hidden names for typo correction. |
| 4588 | if (Hiding) |
| 4589 | return; |
| 4590 | |
| 4591 | // Only consider entities with identifiers for names, ignoring |
| 4592 | // special names (constructors, overloaded operators, selectors, |
| 4593 | // etc.). |
| 4594 | IdentifierInfo *Name = ND->getIdentifier(); |
| 4595 | if (!Name) |
| 4596 | return; |
| 4597 | |
| 4598 | // Only consider visible declarations and declarations from modules with |
| 4599 | // names that exactly match. |
| 4600 | if (!LookupResult::isVisible(SemaRef, D: ND) && Name != Typo) |
| 4601 | return; |
| 4602 | |
| 4603 | FoundName(Name: Name->getName()); |
| 4604 | } |
| 4605 | |
| 4606 | void TypoCorrectionConsumer::FoundName(StringRef Name) { |
| 4607 | // Compute the edit distance between the typo and the name of this |
| 4608 | // entity, and add the identifier to the list of results. |
| 4609 | addName(Name, ND: nullptr); |
| 4610 | } |
| 4611 | |
| 4612 | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { |
| 4613 | // Compute the edit distance between the typo and this keyword, |
| 4614 | // and add the keyword to the list of results. |
| 4615 | addName(Name: Keyword, ND: nullptr, NNS: nullptr, isKeyword: true); |
| 4616 | } |
| 4617 | |
| 4618 | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, |
| 4619 | NestedNameSpecifier *NNS, bool isKeyword) { |
| 4620 | // Use a simple length-based heuristic to determine the minimum possible |
| 4621 | // edit distance. If the minimum isn't good enough, bail out early. |
| 4622 | StringRef TypoStr = Typo->getName(); |
| 4623 | unsigned MinED = abs(x: (int)Name.size() - (int)TypoStr.size()); |
| 4624 | if (MinED && TypoStr.size() / MinED < 3) |
| 4625 | return; |
| 4626 | |
| 4627 | // Compute an upper bound on the allowable edit distance, so that the |
| 4628 | // edit-distance algorithm can short-circuit. |
| 4629 | unsigned UpperBound = (TypoStr.size() + 2) / 3; |
| 4630 | unsigned ED = TypoStr.edit_distance(Other: Name, AllowReplacements: true, MaxEditDistance: UpperBound); |
| 4631 | if (ED > UpperBound) return; |
| 4632 | |
| 4633 | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); |
| 4634 | if (isKeyword) TC.makeKeyword(); |
| 4635 | TC.setCorrectionRange(SS: nullptr, TypoName: Result.getLookupNameInfo()); |
| 4636 | addCorrection(Correction: TC); |
| 4637 | } |
| 4638 | |
| 4639 | static const unsigned MaxTypoDistanceResultSets = 5; |
| 4640 | |
| 4641 | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { |
| 4642 | StringRef TypoStr = Typo->getName(); |
| 4643 | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); |
| 4644 | |
| 4645 | // For very short typos, ignore potential corrections that have a different |
| 4646 | // base identifier from the typo or which have a normalized edit distance |
| 4647 | // longer than the typo itself. |
| 4648 | if (TypoStr.size() < 3 && |
| 4649 | (Name != TypoStr || Correction.getEditDistance(Normalized: true) > TypoStr.size())) |
| 4650 | return; |
| 4651 | |
| 4652 | // If the correction is resolved but is not viable, ignore it. |
| 4653 | if (Correction.isResolved()) { |
| 4654 | checkCorrectionVisibility(SemaRef, TC&: Correction); |
| 4655 | if (!Correction || !isCandidateViable(CCC&: *CorrectionValidator, Candidate&: Correction)) |
| 4656 | return; |
| 4657 | } |
| 4658 | |
| 4659 | TypoResultList &CList = |
| 4660 | CorrectionResults[Correction.getEditDistance(Normalized: false)][Name]; |
| 4661 | |
| 4662 | if (!CList.empty() && !CList.back().isResolved()) |
| 4663 | CList.pop_back(); |
| 4664 | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { |
| 4665 | auto RI = llvm::find_if(Range&: CList, P: [NewND](const TypoCorrection &TypoCorr) { |
| 4666 | return TypoCorr.getCorrectionDecl() == NewND; |
| 4667 | }); |
| 4668 | if (RI != CList.end()) { |
| 4669 | // The Correction refers to a decl already in the list. No insertion is |
| 4670 | // necessary and all further cases will return. |
| 4671 | |
| 4672 | auto IsDeprecated = [](Decl *D) { |
| 4673 | while (D) { |
| 4674 | if (D->isDeprecated()) |
| 4675 | return true; |
| 4676 | D = llvm::dyn_cast_or_null<NamespaceDecl>(Val: D->getDeclContext()); |
| 4677 | } |
| 4678 | return false; |
| 4679 | }; |
| 4680 | |
| 4681 | // Prefer non deprecated Corrections over deprecated and only then |
| 4682 | // sort using an alphabetical order. |
| 4683 | std::pair<bool, std::string> NewKey = { |
| 4684 | IsDeprecated(Correction.getFoundDecl()), |
| 4685 | Correction.getAsString(LO: SemaRef.getLangOpts())}; |
| 4686 | |
| 4687 | std::pair<bool, std::string> PrevKey = { |
| 4688 | IsDeprecated(RI->getFoundDecl()), |
| 4689 | RI->getAsString(LO: SemaRef.getLangOpts())}; |
| 4690 | |
| 4691 | if (NewKey < PrevKey) |
| 4692 | *RI = Correction; |
| 4693 | return; |
| 4694 | } |
| 4695 | } |
| 4696 | if (CList.empty() || Correction.isResolved()) |
| 4697 | CList.push_back(Elt: Correction); |
| 4698 | |
| 4699 | while (CorrectionResults.size() > MaxTypoDistanceResultSets) |
| 4700 | CorrectionResults.erase(position: std::prev(x: CorrectionResults.end())); |
| 4701 | } |
| 4702 | |
| 4703 | void TypoCorrectionConsumer::addNamespaces( |
| 4704 | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { |
| 4705 | SearchNamespaces = true; |
| 4706 | |
| 4707 | for (auto KNPair : KnownNamespaces) |
| 4708 | Namespaces.addNameSpecifier(Ctx: KNPair.first); |
| 4709 | |
| 4710 | bool SSIsTemplate = false; |
| 4711 | if (NestedNameSpecifier *NNS = |
| 4712 | (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { |
| 4713 | if (const Type *T = NNS->getAsType()) |
| 4714 | SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; |
| 4715 | } |
| 4716 | // Do not transform this into an iterator-based loop. The loop body can |
| 4717 | // trigger the creation of further types (through lazy deserialization) and |
| 4718 | // invalid iterators into this list. |
| 4719 | auto &Types = SemaRef.getASTContext().getTypes(); |
| 4720 | for (unsigned I = 0; I != Types.size(); ++I) { |
| 4721 | const auto *TI = Types[I]; |
| 4722 | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { |
| 4723 | CD = CD->getCanonicalDecl(); |
| 4724 | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && |
| 4725 | !CD->isUnion() && CD->getIdentifier() && |
| 4726 | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(Val: CD)) && |
| 4727 | (CD->isBeingDefined() || CD->isCompleteDefinition())) |
| 4728 | Namespaces.addNameSpecifier(Ctx: CD); |
| 4729 | } |
| 4730 | } |
| 4731 | } |
| 4732 | |
| 4733 | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { |
| 4734 | if (++CurrentTCIndex < ValidatedCorrections.size()) |
| 4735 | return ValidatedCorrections[CurrentTCIndex]; |
| 4736 | |
| 4737 | CurrentTCIndex = ValidatedCorrections.size(); |
| 4738 | while (!CorrectionResults.empty()) { |
| 4739 | auto DI = CorrectionResults.begin(); |
| 4740 | if (DI->second.empty()) { |
| 4741 | CorrectionResults.erase(position: DI); |
| 4742 | continue; |
| 4743 | } |
| 4744 | |
| 4745 | auto RI = DI->second.begin(); |
| 4746 | if (RI->second.empty()) { |
| 4747 | DI->second.erase(I: RI); |
| 4748 | performQualifiedLookups(); |
| 4749 | continue; |
| 4750 | } |
| 4751 | |
| 4752 | TypoCorrection TC = RI->second.pop_back_val(); |
| 4753 | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(Candidate&: TC)) { |
| 4754 | ValidatedCorrections.push_back(Elt: TC); |
| 4755 | return ValidatedCorrections[CurrentTCIndex]; |
| 4756 | } |
| 4757 | } |
| 4758 | return ValidatedCorrections[0]; // The empty correction. |
| 4759 | } |
| 4760 | |
| 4761 | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { |
| 4762 | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); |
| 4763 | DeclContext *TempMemberContext = MemberContext; |
| 4764 | CXXScopeSpec *TempSS = SS.get(); |
| 4765 | retry_lookup: |
| 4766 | LookupPotentialTypoResult(SemaRef, Res&: Result, Name, S, SS: TempSS, MemberContext: TempMemberContext, |
| 4767 | EnteringContext, |
| 4768 | isObjCIvarLookup: CorrectionValidator->IsObjCIvarLookup, |
| 4769 | FindHidden: Name == Typo && !Candidate.WillReplaceSpecifier()); |
| 4770 | switch (Result.getResultKind()) { |
| 4771 | case LookupResultKind::NotFound: |
| 4772 | case LookupResultKind::NotFoundInCurrentInstantiation: |
| 4773 | case LookupResultKind::FoundUnresolvedValue: |
| 4774 | if (TempSS) { |
| 4775 | // Immediately retry the lookup without the given CXXScopeSpec |
| 4776 | TempSS = nullptr; |
| 4777 | Candidate.WillReplaceSpecifier(ForceReplacement: true); |
| 4778 | goto retry_lookup; |
| 4779 | } |
| 4780 | if (TempMemberContext) { |
| 4781 | if (SS && !TempSS) |
| 4782 | TempSS = SS.get(); |
| 4783 | TempMemberContext = nullptr; |
| 4784 | goto retry_lookup; |
| 4785 | } |
| 4786 | if (SearchNamespaces) |
| 4787 | QualifiedResults.push_back(Elt: Candidate); |
| 4788 | break; |
| 4789 | |
| 4790 | case LookupResultKind::Ambiguous: |
| 4791 | // We don't deal with ambiguities. |
| 4792 | break; |
| 4793 | |
| 4794 | case LookupResultKind::Found: |
| 4795 | case LookupResultKind::FoundOverloaded: |
| 4796 | // Store all of the Decls for overloaded symbols |
| 4797 | for (auto *TRD : Result) |
| 4798 | Candidate.addCorrectionDecl(CDecl: TRD); |
| 4799 | checkCorrectionVisibility(SemaRef, TC&: Candidate); |
| 4800 | if (!isCandidateViable(CCC&: *CorrectionValidator, Candidate)) { |
| 4801 | if (SearchNamespaces) |
| 4802 | QualifiedResults.push_back(Elt: Candidate); |
| 4803 | break; |
| 4804 | } |
| 4805 | Candidate.setCorrectionRange(SS: SS.get(), TypoName: Result.getLookupNameInfo()); |
| 4806 | return true; |
| 4807 | } |
| 4808 | return false; |
| 4809 | } |
| 4810 | |
| 4811 | void TypoCorrectionConsumer::performQualifiedLookups() { |
| 4812 | unsigned TypoLen = Typo->getName().size(); |
| 4813 | for (const TypoCorrection &QR : QualifiedResults) { |
| 4814 | for (const auto &NSI : Namespaces) { |
| 4815 | DeclContext *Ctx = NSI.DeclCtx; |
| 4816 | const Type *NSType = NSI.NameSpecifier->getAsType(); |
| 4817 | |
| 4818 | // If the current NestedNameSpecifier refers to a class and the |
| 4819 | // current correction candidate is the name of that class, then skip |
| 4820 | // it as it is unlikely a qualified version of the class' constructor |
| 4821 | // is an appropriate correction. |
| 4822 | if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : |
| 4823 | nullptr) { |
| 4824 | if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) |
| 4825 | continue; |
| 4826 | } |
| 4827 | |
| 4828 | TypoCorrection TC(QR); |
| 4829 | TC.ClearCorrectionDecls(); |
| 4830 | TC.setCorrectionSpecifier(NSI.NameSpecifier); |
| 4831 | TC.setQualifierDistance(NSI.EditDistance); |
| 4832 | TC.setCallbackDistance(0); // Reset the callback distance |
| 4833 | |
| 4834 | // If the current correction candidate and namespace combination are |
| 4835 | // too far away from the original typo based on the normalized edit |
| 4836 | // distance, then skip performing a qualified name lookup. |
| 4837 | unsigned TmpED = TC.getEditDistance(Normalized: true); |
| 4838 | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && |
| 4839 | TypoLen / TmpED < 3) |
| 4840 | continue; |
| 4841 | |
| 4842 | Result.clear(); |
| 4843 | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); |
| 4844 | if (!SemaRef.LookupQualifiedName(R&: Result, LookupCtx: Ctx)) |
| 4845 | continue; |
| 4846 | |
| 4847 | // Any corrections added below will be validated in subsequent |
| 4848 | // iterations of the main while() loop over the Consumer's contents. |
| 4849 | switch (Result.getResultKind()) { |
| 4850 | case LookupResultKind::Found: |
| 4851 | case LookupResultKind::FoundOverloaded: { |
| 4852 | if (SS && SS->isValid()) { |
| 4853 | std::string NewQualified = TC.getAsString(LO: SemaRef.getLangOpts()); |
| 4854 | std::string OldQualified; |
| 4855 | llvm::raw_string_ostream OldOStream(OldQualified); |
| 4856 | SS->getScopeRep()->print(OS&: OldOStream, Policy: SemaRef.getPrintingPolicy()); |
| 4857 | OldOStream << Typo->getName(); |
| 4858 | // If correction candidate would be an identical written qualified |
| 4859 | // identifier, then the existing CXXScopeSpec probably included a |
| 4860 | // typedef that didn't get accounted for properly. |
| 4861 | if (OldOStream.str() == NewQualified) |
| 4862 | break; |
| 4863 | } |
| 4864 | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); |
| 4865 | TRD != TRDEnd; ++TRD) { |
| 4866 | if (SemaRef.CheckMemberAccess(UseLoc: TC.getCorrectionRange().getBegin(), |
| 4867 | NamingClass: NSType ? NSType->getAsCXXRecordDecl() |
| 4868 | : nullptr, |
| 4869 | Found: TRD.getPair()) == Sema::AR_accessible) |
| 4870 | TC.addCorrectionDecl(CDecl: *TRD); |
| 4871 | } |
| 4872 | if (TC.isResolved()) { |
| 4873 | TC.setCorrectionRange(SS: SS.get(), TypoName: Result.getLookupNameInfo()); |
| 4874 | addCorrection(Correction: TC); |
| 4875 | } |
| 4876 | break; |
| 4877 | } |
| 4878 | case LookupResultKind::NotFound: |
| 4879 | case LookupResultKind::NotFoundInCurrentInstantiation: |
| 4880 | case LookupResultKind::Ambiguous: |
| 4881 | case LookupResultKind::FoundUnresolvedValue: |
| 4882 | break; |
| 4883 | } |
| 4884 | } |
| 4885 | } |
| 4886 | QualifiedResults.clear(); |
| 4887 | } |
| 4888 | |
| 4889 | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( |
| 4890 | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) |
| 4891 | : Context(Context), CurContextChain(buildContextChain(Start: CurContext)) { |
| 4892 | if (NestedNameSpecifier *NNS = |
| 4893 | CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { |
| 4894 | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); |
| 4895 | NNS->print(OS&: SpecifierOStream, Policy: Context.getPrintingPolicy()); |
| 4896 | |
| 4897 | getNestedNameSpecifierIdentifiers(NNS, Identifiers&: CurNameSpecifierIdentifiers); |
| 4898 | } |
| 4899 | // Build the list of identifiers that would be used for an absolute |
| 4900 | // (from the global context) NestedNameSpecifier referring to the current |
| 4901 | // context. |
| 4902 | for (DeclContext *C : llvm::reverse(C&: CurContextChain)) { |
| 4903 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(Val: C)) |
| 4904 | CurContextIdentifiers.push_back(Elt: ND->getIdentifier()); |
| 4905 | } |
| 4906 | |
| 4907 | // Add the global context as a NestedNameSpecifier |
| 4908 | SpecifierInfo SI = {.DeclCtx: cast<DeclContext>(Val: Context.getTranslationUnitDecl()), |
| 4909 | .NameSpecifier: NestedNameSpecifier::GlobalSpecifier(Context), .EditDistance: 1}; |
| 4910 | DistanceMap[1].push_back(Elt: SI); |
| 4911 | } |
| 4912 | |
| 4913 | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( |
| 4914 | DeclContext *Start) -> DeclContextList { |
| 4915 | assert(Start && "Building a context chain from a null context" ); |
| 4916 | DeclContextList Chain; |
| 4917 | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; |
| 4918 | DC = DC->getLookupParent()) { |
| 4919 | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(Val: DC); |
| 4920 | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && |
| 4921 | !(ND && ND->isAnonymousNamespace())) |
| 4922 | Chain.push_back(Elt: DC->getPrimaryContext()); |
| 4923 | } |
| 4924 | return Chain; |
| 4925 | } |
| 4926 | |
| 4927 | unsigned |
| 4928 | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( |
| 4929 | DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { |
| 4930 | unsigned NumSpecifiers = 0; |
| 4931 | for (DeclContext *C : llvm::reverse(C&: DeclChain)) { |
| 4932 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(Val: C)) { |
| 4933 | NNS = NestedNameSpecifier::Create(Context, Prefix: NNS, NS: ND); |
| 4934 | ++NumSpecifiers; |
| 4935 | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(Val: C)) { |
| 4936 | NNS = NestedNameSpecifier::Create(Context, Prefix: NNS, T: RD->getTypeForDecl()); |
| 4937 | ++NumSpecifiers; |
| 4938 | } |
| 4939 | } |
| 4940 | return NumSpecifiers; |
| 4941 | } |
| 4942 | |
| 4943 | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( |
| 4944 | DeclContext *Ctx) { |
| 4945 | NestedNameSpecifier *NNS = nullptr; |
| 4946 | unsigned NumSpecifiers = 0; |
| 4947 | DeclContextList NamespaceDeclChain(buildContextChain(Start: Ctx)); |
| 4948 | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); |
| 4949 | |
| 4950 | // Eliminate common elements from the two DeclContext chains. |
| 4951 | for (DeclContext *C : llvm::reverse(C&: CurContextChain)) { |
| 4952 | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) |
| 4953 | break; |
| 4954 | NamespaceDeclChain.pop_back(); |
| 4955 | } |
| 4956 | |
| 4957 | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain |
| 4958 | NumSpecifiers = buildNestedNameSpecifier(DeclChain&: NamespaceDeclChain, NNS); |
| 4959 | |
| 4960 | // Add an explicit leading '::' specifier if needed. |
| 4961 | if (NamespaceDeclChain.empty()) { |
| 4962 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
| 4963 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
| 4964 | NumSpecifiers = |
| 4965 | buildNestedNameSpecifier(DeclChain&: FullNamespaceDeclChain, NNS); |
| 4966 | } else if (NamedDecl *ND = |
| 4967 | dyn_cast_or_null<NamedDecl>(Val: NamespaceDeclChain.back())) { |
| 4968 | IdentifierInfo *Name = ND->getIdentifier(); |
| 4969 | bool SameNameSpecifier = false; |
| 4970 | if (llvm::is_contained(Range&: CurNameSpecifierIdentifiers, Element: Name)) { |
| 4971 | std::string NewNameSpecifier; |
| 4972 | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); |
| 4973 | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; |
| 4974 | getNestedNameSpecifierIdentifiers(NNS, Identifiers&: NewNameSpecifierIdentifiers); |
| 4975 | NNS->print(OS&: SpecifierOStream, Policy: Context.getPrintingPolicy()); |
| 4976 | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; |
| 4977 | } |
| 4978 | if (SameNameSpecifier || llvm::is_contained(Range&: CurContextIdentifiers, Element: Name)) { |
| 4979 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
| 4980 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
| 4981 | NumSpecifiers = |
| 4982 | buildNestedNameSpecifier(DeclChain&: FullNamespaceDeclChain, NNS); |
| 4983 | } |
| 4984 | } |
| 4985 | |
| 4986 | // If the built NestedNameSpecifier would be replacing an existing |
| 4987 | // NestedNameSpecifier, use the number of component identifiers that |
| 4988 | // would need to be changed as the edit distance instead of the number |
| 4989 | // of components in the built NestedNameSpecifier. |
| 4990 | if (NNS && !CurNameSpecifierIdentifiers.empty()) { |
| 4991 | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; |
| 4992 | getNestedNameSpecifierIdentifiers(NNS, Identifiers&: NewNameSpecifierIdentifiers); |
| 4993 | NumSpecifiers = |
| 4994 | llvm::ComputeEditDistance(FromArray: llvm::ArrayRef(CurNameSpecifierIdentifiers), |
| 4995 | ToArray: llvm::ArrayRef(NewNameSpecifierIdentifiers)); |
| 4996 | } |
| 4997 | |
| 4998 | SpecifierInfo SI = {.DeclCtx: Ctx, .NameSpecifier: NNS, .EditDistance: NumSpecifiers}; |
| 4999 | DistanceMap[NumSpecifiers].push_back(Elt: SI); |
| 5000 | } |
| 5001 | |
| 5002 | /// Perform name lookup for a possible result for typo correction. |
| 5003 | static void LookupPotentialTypoResult(Sema &SemaRef, |
| 5004 | LookupResult &Res, |
| 5005 | IdentifierInfo *Name, |
| 5006 | Scope *S, CXXScopeSpec *SS, |
| 5007 | DeclContext *MemberContext, |
| 5008 | bool EnteringContext, |
| 5009 | bool isObjCIvarLookup, |
| 5010 | bool FindHidden) { |
| 5011 | Res.suppressDiagnostics(); |
| 5012 | Res.clear(); |
| 5013 | Res.setLookupName(Name); |
| 5014 | Res.setAllowHidden(FindHidden); |
| 5015 | if (MemberContext) { |
| 5016 | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(Val: MemberContext)) { |
| 5017 | if (isObjCIvarLookup) { |
| 5018 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(IVarName: Name)) { |
| 5019 | Res.addDecl(D: Ivar); |
| 5020 | Res.resolveKind(); |
| 5021 | return; |
| 5022 | } |
| 5023 | } |
| 5024 | |
| 5025 | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( |
| 5026 | PropertyId: Name, QueryKind: ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
| 5027 | Res.addDecl(D: Prop); |
| 5028 | Res.resolveKind(); |
| 5029 | return; |
| 5030 | } |
| 5031 | } |
| 5032 | |
| 5033 | SemaRef.LookupQualifiedName(R&: Res, LookupCtx: MemberContext); |
| 5034 | return; |
| 5035 | } |
| 5036 | |
| 5037 | SemaRef.LookupParsedName(R&: Res, S, SS, |
| 5038 | /*ObjectType=*/QualType(), |
| 5039 | /*AllowBuiltinCreation=*/false, EnteringContext); |
| 5040 | |
| 5041 | // Fake ivar lookup; this should really be part of |
| 5042 | // LookupParsedName. |
| 5043 | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { |
| 5044 | if (Method->isInstanceMethod() && Method->getClassInterface() && |
| 5045 | (Res.empty() || |
| 5046 | (Res.isSingleResult() && |
| 5047 | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { |
| 5048 | if (ObjCIvarDecl *IV |
| 5049 | = Method->getClassInterface()->lookupInstanceVariable(IVarName: Name)) { |
| 5050 | Res.addDecl(D: IV); |
| 5051 | Res.resolveKind(); |
| 5052 | } |
| 5053 | } |
| 5054 | } |
| 5055 | } |
| 5056 | |
| 5057 | /// Add keywords to the consumer as possible typo corrections. |
| 5058 | static void AddKeywordsToConsumer(Sema &SemaRef, |
| 5059 | TypoCorrectionConsumer &Consumer, |
| 5060 | Scope *S, CorrectionCandidateCallback &CCC, |
| 5061 | bool AfterNestedNameSpecifier) { |
| 5062 | if (AfterNestedNameSpecifier) { |
| 5063 | // For 'X::', we know exactly which keywords can appear next. |
| 5064 | Consumer.addKeywordResult(Keyword: "template" ); |
| 5065 | if (CCC.WantExpressionKeywords) |
| 5066 | Consumer.addKeywordResult(Keyword: "operator" ); |
| 5067 | return; |
| 5068 | } |
| 5069 | |
| 5070 | if (CCC.WantObjCSuper) |
| 5071 | Consumer.addKeywordResult(Keyword: "super" ); |
| 5072 | |
| 5073 | if (CCC.WantTypeSpecifiers) { |
| 5074 | // Add type-specifier keywords to the set of results. |
| 5075 | static const char *const CTypeSpecs[] = { |
| 5076 | "char" , "const" , "double" , "enum" , "float" , "int" , "long" , "short" , |
| 5077 | "signed" , "struct" , "union" , "unsigned" , "void" , "volatile" , |
| 5078 | "_Complex" , |
| 5079 | // storage-specifiers as well |
| 5080 | "extern" , "inline" , "static" , "typedef" |
| 5081 | }; |
| 5082 | |
| 5083 | for (const auto *CTS : CTypeSpecs) |
| 5084 | Consumer.addKeywordResult(Keyword: CTS); |
| 5085 | |
| 5086 | if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) |
| 5087 | Consumer.addKeywordResult(Keyword: "_Imaginary" ); |
| 5088 | |
| 5089 | if (SemaRef.getLangOpts().C99) |
| 5090 | Consumer.addKeywordResult(Keyword: "restrict" ); |
| 5091 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) |
| 5092 | Consumer.addKeywordResult(Keyword: "bool" ); |
| 5093 | else if (SemaRef.getLangOpts().C99) |
| 5094 | Consumer.addKeywordResult(Keyword: "_Bool" ); |
| 5095 | |
| 5096 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 5097 | Consumer.addKeywordResult(Keyword: "class" ); |
| 5098 | Consumer.addKeywordResult(Keyword: "typename" ); |
| 5099 | Consumer.addKeywordResult(Keyword: "wchar_t" ); |
| 5100 | |
| 5101 | if (SemaRef.getLangOpts().CPlusPlus11) { |
| 5102 | Consumer.addKeywordResult(Keyword: "char16_t" ); |
| 5103 | Consumer.addKeywordResult(Keyword: "char32_t" ); |
| 5104 | Consumer.addKeywordResult(Keyword: "constexpr" ); |
| 5105 | Consumer.addKeywordResult(Keyword: "decltype" ); |
| 5106 | Consumer.addKeywordResult(Keyword: "thread_local" ); |
| 5107 | } |
| 5108 | } |
| 5109 | |
| 5110 | if (SemaRef.getLangOpts().GNUKeywords) |
| 5111 | Consumer.addKeywordResult(Keyword: "typeof" ); |
| 5112 | } else if (CCC.WantFunctionLikeCasts) { |
| 5113 | static const char *const CastableTypeSpecs[] = { |
| 5114 | "char" , "double" , "float" , "int" , "long" , "short" , |
| 5115 | "signed" , "unsigned" , "void" |
| 5116 | }; |
| 5117 | for (auto *kw : CastableTypeSpecs) |
| 5118 | Consumer.addKeywordResult(Keyword: kw); |
| 5119 | } |
| 5120 | |
| 5121 | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { |
| 5122 | Consumer.addKeywordResult(Keyword: "const_cast" ); |
| 5123 | Consumer.addKeywordResult(Keyword: "dynamic_cast" ); |
| 5124 | Consumer.addKeywordResult(Keyword: "reinterpret_cast" ); |
| 5125 | Consumer.addKeywordResult(Keyword: "static_cast" ); |
| 5126 | } |
| 5127 | |
| 5128 | if (CCC.WantExpressionKeywords) { |
| 5129 | Consumer.addKeywordResult(Keyword: "sizeof" ); |
| 5130 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { |
| 5131 | Consumer.addKeywordResult(Keyword: "false" ); |
| 5132 | Consumer.addKeywordResult(Keyword: "true" ); |
| 5133 | } |
| 5134 | |
| 5135 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 5136 | static const char *const CXXExprs[] = { |
| 5137 | "delete" , "new" , "operator" , "throw" , "typeid" |
| 5138 | }; |
| 5139 | for (const auto *CE : CXXExprs) |
| 5140 | Consumer.addKeywordResult(Keyword: CE); |
| 5141 | |
| 5142 | if (isa<CXXMethodDecl>(Val: SemaRef.CurContext) && |
| 5143 | cast<CXXMethodDecl>(Val: SemaRef.CurContext)->isInstance()) |
| 5144 | Consumer.addKeywordResult(Keyword: "this" ); |
| 5145 | |
| 5146 | if (SemaRef.getLangOpts().CPlusPlus11) { |
| 5147 | Consumer.addKeywordResult(Keyword: "alignof" ); |
| 5148 | Consumer.addKeywordResult(Keyword: "nullptr" ); |
| 5149 | } |
| 5150 | } |
| 5151 | |
| 5152 | if (SemaRef.getLangOpts().C11) { |
| 5153 | // FIXME: We should not suggest _Alignof if the alignof macro |
| 5154 | // is present. |
| 5155 | Consumer.addKeywordResult(Keyword: "_Alignof" ); |
| 5156 | } |
| 5157 | } |
| 5158 | |
| 5159 | if (CCC.WantRemainingKeywords) { |
| 5160 | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { |
| 5161 | // Statements. |
| 5162 | static const char *const CStmts[] = { |
| 5163 | "do" , "else" , "for" , "goto" , "if" , "return" , "switch" , "while" }; |
| 5164 | for (const auto *CS : CStmts) |
| 5165 | Consumer.addKeywordResult(Keyword: CS); |
| 5166 | |
| 5167 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 5168 | Consumer.addKeywordResult(Keyword: "catch" ); |
| 5169 | Consumer.addKeywordResult(Keyword: "try" ); |
| 5170 | } |
| 5171 | |
| 5172 | if (S && S->getBreakParent()) |
| 5173 | Consumer.addKeywordResult(Keyword: "break" ); |
| 5174 | |
| 5175 | if (S && S->getContinueParent()) |
| 5176 | Consumer.addKeywordResult(Keyword: "continue" ); |
| 5177 | |
| 5178 | if (SemaRef.getCurFunction() && |
| 5179 | !SemaRef.getCurFunction()->SwitchStack.empty()) { |
| 5180 | Consumer.addKeywordResult(Keyword: "case" ); |
| 5181 | Consumer.addKeywordResult(Keyword: "default" ); |
| 5182 | } |
| 5183 | } else { |
| 5184 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 5185 | Consumer.addKeywordResult(Keyword: "namespace" ); |
| 5186 | Consumer.addKeywordResult(Keyword: "template" ); |
| 5187 | } |
| 5188 | |
| 5189 | if (S && S->isClassScope()) { |
| 5190 | Consumer.addKeywordResult(Keyword: "explicit" ); |
| 5191 | Consumer.addKeywordResult(Keyword: "friend" ); |
| 5192 | Consumer.addKeywordResult(Keyword: "mutable" ); |
| 5193 | Consumer.addKeywordResult(Keyword: "private" ); |
| 5194 | Consumer.addKeywordResult(Keyword: "protected" ); |
| 5195 | Consumer.addKeywordResult(Keyword: "public" ); |
| 5196 | Consumer.addKeywordResult(Keyword: "virtual" ); |
| 5197 | } |
| 5198 | } |
| 5199 | |
| 5200 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 5201 | Consumer.addKeywordResult(Keyword: "using" ); |
| 5202 | |
| 5203 | if (SemaRef.getLangOpts().CPlusPlus11) |
| 5204 | Consumer.addKeywordResult(Keyword: "static_assert" ); |
| 5205 | } |
| 5206 | } |
| 5207 | } |
| 5208 | |
| 5209 | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( |
| 5210 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
| 5211 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
| 5212 | DeclContext *MemberContext, bool EnteringContext, |
| 5213 | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { |
| 5214 | |
| 5215 | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || |
| 5216 | DisableTypoCorrection) |
| 5217 | return nullptr; |
| 5218 | |
| 5219 | // In Microsoft mode, don't perform typo correction in a template member |
| 5220 | // function dependent context because it interferes with the "lookup into |
| 5221 | // dependent bases of class templates" feature. |
| 5222 | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && |
| 5223 | isa<CXXMethodDecl>(Val: CurContext)) |
| 5224 | return nullptr; |
| 5225 | |
| 5226 | // We only attempt to correct typos for identifiers. |
| 5227 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
| 5228 | if (!Typo) |
| 5229 | return nullptr; |
| 5230 | |
| 5231 | // If the scope specifier itself was invalid, don't try to correct |
| 5232 | // typos. |
| 5233 | if (SS && SS->isInvalid()) |
| 5234 | return nullptr; |
| 5235 | |
| 5236 | // Never try to correct typos during any kind of code synthesis. |
| 5237 | if (!CodeSynthesisContexts.empty()) |
| 5238 | return nullptr; |
| 5239 | |
| 5240 | // Don't try to correct 'super'. |
| 5241 | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) |
| 5242 | return nullptr; |
| 5243 | |
| 5244 | // Abort if typo correction already failed for this specific typo. |
| 5245 | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Val: Typo); |
| 5246 | if (locs != TypoCorrectionFailures.end() && |
| 5247 | locs->second.count(V: TypoName.getLoc())) |
| 5248 | return nullptr; |
| 5249 | |
| 5250 | // Don't try to correct the identifier "vector" when in AltiVec mode. |
| 5251 | // TODO: Figure out why typo correction misbehaves in this case, fix it, and |
| 5252 | // remove this workaround. |
| 5253 | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr(Str: "vector" )) |
| 5254 | return nullptr; |
| 5255 | |
| 5256 | // Provide a stop gap for files that are just seriously broken. Trying |
| 5257 | // to correct all typos can turn into a HUGE performance penalty, causing |
| 5258 | // some files to take minutes to get rejected by the parser. |
| 5259 | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; |
| 5260 | if (Limit && TyposCorrected >= Limit) |
| 5261 | return nullptr; |
| 5262 | ++TyposCorrected; |
| 5263 | |
| 5264 | // If we're handling a missing symbol error, using modules, and the |
| 5265 | // special search all modules option is used, look for a missing import. |
| 5266 | if (ErrorRecovery && getLangOpts().Modules && |
| 5267 | getLangOpts().ModulesSearchAll) { |
| 5268 | // The following has the side effect of loading the missing module. |
| 5269 | getModuleLoader().lookupMissingImports(Name: Typo->getName(), |
| 5270 | TriggerLoc: TypoName.getBeginLoc()); |
| 5271 | } |
| 5272 | |
| 5273 | // Extend the lifetime of the callback. We delayed this until here |
| 5274 | // to avoid allocations in the hot path (which is where no typo correction |
| 5275 | // occurs). Note that CorrectionCandidateCallback is polymorphic and |
| 5276 | // initially stack-allocated. |
| 5277 | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); |
| 5278 | auto Consumer = std::make_unique<TypoCorrectionConsumer>( |
| 5279 | args&: *this, args: TypoName, args&: LookupKind, args&: S, args&: SS, args: std::move(ClonedCCC), args&: MemberContext, |
| 5280 | args&: EnteringContext); |
| 5281 | |
| 5282 | // Perform name lookup to find visible, similarly-named entities. |
| 5283 | bool IsUnqualifiedLookup = false; |
| 5284 | DeclContext *QualifiedDC = MemberContext; |
| 5285 | if (MemberContext) { |
| 5286 | LookupVisibleDecls(Ctx: MemberContext, Kind: LookupKind, Consumer&: *Consumer); |
| 5287 | |
| 5288 | // Look in qualified interfaces. |
| 5289 | if (OPT) { |
| 5290 | for (auto *I : OPT->quals()) |
| 5291 | LookupVisibleDecls(Ctx: I, Kind: LookupKind, Consumer&: *Consumer); |
| 5292 | } |
| 5293 | } else if (SS && SS->isSet()) { |
| 5294 | QualifiedDC = computeDeclContext(SS: *SS, EnteringContext); |
| 5295 | if (!QualifiedDC) |
| 5296 | return nullptr; |
| 5297 | |
| 5298 | LookupVisibleDecls(Ctx: QualifiedDC, Kind: LookupKind, Consumer&: *Consumer); |
| 5299 | } else { |
| 5300 | IsUnqualifiedLookup = true; |
| 5301 | } |
| 5302 | |
| 5303 | // Determine whether we are going to search in the various namespaces for |
| 5304 | // corrections. |
| 5305 | bool SearchNamespaces |
| 5306 | = getLangOpts().CPlusPlus && |
| 5307 | (IsUnqualifiedLookup || (SS && SS->isSet())); |
| 5308 | |
| 5309 | if (IsUnqualifiedLookup || SearchNamespaces) { |
| 5310 | // For unqualified lookup, look through all of the names that we have |
| 5311 | // seen in this translation unit. |
| 5312 | // FIXME: Re-add the ability to skip very unlikely potential corrections. |
| 5313 | for (const auto &I : Context.Idents) |
| 5314 | Consumer->FoundName(Name: I.getKey()); |
| 5315 | |
| 5316 | // Walk through identifiers in external identifier sources. |
| 5317 | // FIXME: Re-add the ability to skip very unlikely potential corrections. |
| 5318 | if (IdentifierInfoLookup *External |
| 5319 | = Context.Idents.getExternalIdentifierLookup()) { |
| 5320 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
| 5321 | do { |
| 5322 | StringRef Name = Iter->Next(); |
| 5323 | if (Name.empty()) |
| 5324 | break; |
| 5325 | |
| 5326 | Consumer->FoundName(Name); |
| 5327 | } while (true); |
| 5328 | } |
| 5329 | } |
| 5330 | |
| 5331 | AddKeywordsToConsumer(SemaRef&: *this, Consumer&: *Consumer, S, |
| 5332 | CCC&: *Consumer->getCorrectionValidator(), |
| 5333 | AfterNestedNameSpecifier: SS && SS->isNotEmpty()); |
| 5334 | |
| 5335 | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going |
| 5336 | // to search those namespaces. |
| 5337 | if (SearchNamespaces) { |
| 5338 | // Load any externally-known namespaces. |
| 5339 | if (ExternalSource && !LoadedExternalKnownNamespaces) { |
| 5340 | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; |
| 5341 | LoadedExternalKnownNamespaces = true; |
| 5342 | ExternalSource->ReadKnownNamespaces(Namespaces&: ExternalKnownNamespaces); |
| 5343 | for (auto *N : ExternalKnownNamespaces) |
| 5344 | KnownNamespaces[N] = true; |
| 5345 | } |
| 5346 | |
| 5347 | Consumer->addNamespaces(KnownNamespaces); |
| 5348 | } |
| 5349 | |
| 5350 | return Consumer; |
| 5351 | } |
| 5352 | |
| 5353 | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, |
| 5354 | Sema::LookupNameKind LookupKind, |
| 5355 | Scope *S, CXXScopeSpec *SS, |
| 5356 | CorrectionCandidateCallback &CCC, |
| 5357 | CorrectTypoKind Mode, |
| 5358 | DeclContext *MemberContext, |
| 5359 | bool EnteringContext, |
| 5360 | const ObjCObjectPointerType *OPT, |
| 5361 | bool RecordFailure) { |
| 5362 | // Always let the ExternalSource have the first chance at correction, even |
| 5363 | // if we would otherwise have given up. |
| 5364 | if (ExternalSource) { |
| 5365 | if (TypoCorrection Correction = |
| 5366 | ExternalSource->CorrectTypo(Typo: TypoName, LookupKind, S, SS, CCC, |
| 5367 | MemberContext, EnteringContext, OPT)) |
| 5368 | return Correction; |
| 5369 | } |
| 5370 | |
| 5371 | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; |
| 5372 | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for |
| 5373 | // some instances of CTC_Unknown, while WantRemainingKeywords is true |
| 5374 | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. |
| 5375 | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; |
| 5376 | |
| 5377 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
| 5378 | auto Consumer = makeTypoCorrectionConsumer( |
| 5379 | TypoName, LookupKind, S, SS, CCC, MemberContext, EnteringContext, OPT, |
| 5380 | ErrorRecovery: Mode == CorrectTypoKind::ErrorRecovery); |
| 5381 | |
| 5382 | if (!Consumer) |
| 5383 | return TypoCorrection(); |
| 5384 | |
| 5385 | // If we haven't found anything, we're done. |
| 5386 | if (Consumer->empty()) |
| 5387 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
| 5388 | |
| 5389 | // Make sure the best edit distance (prior to adding any namespace qualifiers) |
| 5390 | // is not more that about a third of the length of the typo's identifier. |
| 5391 | unsigned ED = Consumer->getBestEditDistance(Normalized: true); |
| 5392 | unsigned TypoLen = Typo->getName().size(); |
| 5393 | if (ED > 0 && TypoLen / ED < 3) |
| 5394 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
| 5395 | |
| 5396 | TypoCorrection BestTC = Consumer->getNextCorrection(); |
| 5397 | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); |
| 5398 | if (!BestTC) |
| 5399 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
| 5400 | |
| 5401 | ED = BestTC.getEditDistance(); |
| 5402 | |
| 5403 | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { |
| 5404 | // If this was an unqualified lookup and we believe the callback |
| 5405 | // object wouldn't have filtered out possible corrections, note |
| 5406 | // that no correction was found. |
| 5407 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
| 5408 | } |
| 5409 | |
| 5410 | // If only a single name remains, return that result. |
| 5411 | if (!SecondBestTC || |
| 5412 | SecondBestTC.getEditDistance(Normalized: false) > BestTC.getEditDistance(Normalized: false)) { |
| 5413 | const TypoCorrection &Result = BestTC; |
| 5414 | |
| 5415 | // Don't correct to a keyword that's the same as the typo; the keyword |
| 5416 | // wasn't actually in scope. |
| 5417 | if (ED == 0 && Result.isKeyword()) |
| 5418 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
| 5419 | |
| 5420 | TypoCorrection TC = Result; |
| 5421 | TC.setCorrectionRange(SS, TypoName); |
| 5422 | checkCorrectionVisibility(SemaRef&: *this, TC); |
| 5423 | return TC; |
| 5424 | } else if (SecondBestTC && ObjCMessageReceiver) { |
| 5425 | // Prefer 'super' when we're completing in a message-receiver |
| 5426 | // context. |
| 5427 | |
| 5428 | if (BestTC.getCorrection().getAsString() != "super" ) { |
| 5429 | if (SecondBestTC.getCorrection().getAsString() == "super" ) |
| 5430 | BestTC = SecondBestTC; |
| 5431 | else if ((*Consumer)["super" ].front().isKeyword()) |
| 5432 | BestTC = (*Consumer)["super" ].front(); |
| 5433 | } |
| 5434 | // Don't correct to a keyword that's the same as the typo; the keyword |
| 5435 | // wasn't actually in scope. |
| 5436 | if (BestTC.getEditDistance() == 0 || |
| 5437 | BestTC.getCorrection().getAsString() != "super" ) |
| 5438 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
| 5439 | |
| 5440 | BestTC.setCorrectionRange(SS, TypoName); |
| 5441 | return BestTC; |
| 5442 | } |
| 5443 | |
| 5444 | // Record the failure's location if needed and return an empty correction. If |
| 5445 | // this was an unqualified lookup and we believe the callback object did not |
| 5446 | // filter out possible corrections, also cache the failure for the typo. |
| 5447 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure: RecordFailure && !SecondBestTC); |
| 5448 | } |
| 5449 | |
| 5450 | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { |
| 5451 | if (!CDecl) return; |
| 5452 | |
| 5453 | if (isKeyword()) |
| 5454 | CorrectionDecls.clear(); |
| 5455 | |
| 5456 | CorrectionDecls.push_back(Elt: CDecl); |
| 5457 | |
| 5458 | if (!CorrectionName) |
| 5459 | CorrectionName = CDecl->getDeclName(); |
| 5460 | } |
| 5461 | |
| 5462 | std::string TypoCorrection::getAsString(const LangOptions &LO) const { |
| 5463 | if (CorrectionNameSpec) { |
| 5464 | std::string tmpBuffer; |
| 5465 | llvm::raw_string_ostream PrefixOStream(tmpBuffer); |
| 5466 | CorrectionNameSpec->print(OS&: PrefixOStream, Policy: PrintingPolicy(LO)); |
| 5467 | PrefixOStream << CorrectionName; |
| 5468 | return PrefixOStream.str(); |
| 5469 | } |
| 5470 | |
| 5471 | return CorrectionName.getAsString(); |
| 5472 | } |
| 5473 | |
| 5474 | bool CorrectionCandidateCallback::ValidateCandidate( |
| 5475 | const TypoCorrection &candidate) { |
| 5476 | if (!candidate.isResolved()) |
| 5477 | return true; |
| 5478 | |
| 5479 | if (candidate.isKeyword()) |
| 5480 | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || |
| 5481 | WantRemainingKeywords || WantObjCSuper; |
| 5482 | |
| 5483 | bool HasNonType = false; |
| 5484 | bool HasStaticMethod = false; |
| 5485 | bool HasNonStaticMethod = false; |
| 5486 | for (Decl *D : candidate) { |
| 5487 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
| 5488 | D = FTD->getTemplatedDecl(); |
| 5489 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 5490 | if (Method->isStatic()) |
| 5491 | HasStaticMethod = true; |
| 5492 | else |
| 5493 | HasNonStaticMethod = true; |
| 5494 | } |
| 5495 | if (!isa<TypeDecl>(Val: D)) |
| 5496 | HasNonType = true; |
| 5497 | } |
| 5498 | |
| 5499 | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && |
| 5500 | !candidate.getCorrectionSpecifier()) |
| 5501 | return false; |
| 5502 | |
| 5503 | return WantTypeSpecifiers || HasNonType; |
| 5504 | } |
| 5505 | |
| 5506 | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, |
| 5507 | bool HasExplicitTemplateArgs, |
| 5508 | MemberExpr *ME) |
| 5509 | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), |
| 5510 | CurContext(SemaRef.CurContext), MemberFn(ME) { |
| 5511 | WantTypeSpecifiers = false; |
| 5512 | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && |
| 5513 | !HasExplicitTemplateArgs && NumArgs == 1; |
| 5514 | WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; |
| 5515 | WantRemainingKeywords = false; |
| 5516 | } |
| 5517 | |
| 5518 | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { |
| 5519 | if (!candidate.getCorrectionDecl()) |
| 5520 | return candidate.isKeyword(); |
| 5521 | |
| 5522 | for (auto *C : candidate) { |
| 5523 | FunctionDecl *FD = nullptr; |
| 5524 | NamedDecl *ND = C->getUnderlyingDecl(); |
| 5525 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
| 5526 | FD = FTD->getTemplatedDecl(); |
| 5527 | if (!HasExplicitTemplateArgs && !FD) { |
| 5528 | if (!(FD = dyn_cast<FunctionDecl>(Val: ND)) && isa<ValueDecl>(Val: ND)) { |
| 5529 | // If the Decl is neither a function nor a template function, |
| 5530 | // determine if it is a pointer or reference to a function. If so, |
| 5531 | // check against the number of arguments expected for the pointee. |
| 5532 | QualType ValType = cast<ValueDecl>(Val: ND)->getType(); |
| 5533 | if (ValType.isNull()) |
| 5534 | continue; |
| 5535 | if (ValType->isAnyPointerType() || ValType->isReferenceType()) |
| 5536 | ValType = ValType->getPointeeType(); |
| 5537 | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) |
| 5538 | if (FPT->getNumParams() == NumArgs) |
| 5539 | return true; |
| 5540 | } |
| 5541 | } |
| 5542 | |
| 5543 | // A typo for a function-style cast can look like a function call in C++. |
| 5544 | if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(D: ND) != nullptr |
| 5545 | : isa<TypeDecl>(Val: ND)) && |
| 5546 | CurContext->getParentASTContext().getLangOpts().CPlusPlus) |
| 5547 | // Only a class or class template can take two or more arguments. |
| 5548 | return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(Val: ND); |
| 5549 | |
| 5550 | // Skip the current candidate if it is not a FunctionDecl or does not accept |
| 5551 | // the current number of arguments. |
| 5552 | if (!FD || !(FD->getNumParams() >= NumArgs && |
| 5553 | FD->getMinRequiredArguments() <= NumArgs)) |
| 5554 | continue; |
| 5555 | |
| 5556 | // If the current candidate is a non-static C++ method, skip the candidate |
| 5557 | // unless the method being corrected--or the current DeclContext, if the |
| 5558 | // function being corrected is not a method--is a method in the same class |
| 5559 | // or a descendent class of the candidate's parent class. |
| 5560 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 5561 | if (MemberFn || !MD->isStatic()) { |
| 5562 | const auto *CurMD = |
| 5563 | MemberFn |
| 5564 | ? dyn_cast_if_present<CXXMethodDecl>(Val: MemberFn->getMemberDecl()) |
| 5565 | : dyn_cast_if_present<CXXMethodDecl>(Val: CurContext); |
| 5566 | const CXXRecordDecl *CurRD = |
| 5567 | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; |
| 5568 | const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); |
| 5569 | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(Base: RD))) |
| 5570 | continue; |
| 5571 | } |
| 5572 | } |
| 5573 | return true; |
| 5574 | } |
| 5575 | return false; |
| 5576 | } |
| 5577 | |
| 5578 | void Sema::diagnoseTypo(const TypoCorrection &Correction, |
| 5579 | const PartialDiagnostic &TypoDiag, |
| 5580 | bool ErrorRecovery) { |
| 5581 | diagnoseTypo(Correction, TypoDiag, PrevNote: PDiag(DiagID: diag::note_previous_decl), |
| 5582 | ErrorRecovery); |
| 5583 | } |
| 5584 | |
| 5585 | /// Find which declaration we should import to provide the definition of |
| 5586 | /// the given declaration. |
| 5587 | static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { |
| 5588 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
| 5589 | return VD->getDefinition(); |
| 5590 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 5591 | return FD->getDefinition(); |
| 5592 | if (const auto *TD = dyn_cast<TagDecl>(Val: D)) |
| 5593 | return TD->getDefinition(); |
| 5594 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(Val: D)) |
| 5595 | return ID->getDefinition(); |
| 5596 | if (const auto *PD = dyn_cast<ObjCProtocolDecl>(Val: D)) |
| 5597 | return PD->getDefinition(); |
| 5598 | if (const auto *TD = dyn_cast<TemplateDecl>(Val: D)) |
| 5599 | if (const NamedDecl *TTD = TD->getTemplatedDecl()) |
| 5600 | return getDefinitionToImport(D: TTD); |
| 5601 | return nullptr; |
| 5602 | } |
| 5603 | |
| 5604 | void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, |
| 5605 | MissingImportKind MIK, bool Recover) { |
| 5606 | // Suggest importing a module providing the definition of this entity, if |
| 5607 | // possible. |
| 5608 | const NamedDecl *Def = getDefinitionToImport(D: Decl); |
| 5609 | if (!Def) |
| 5610 | Def = Decl; |
| 5611 | |
| 5612 | Module *Owner = getOwningModule(Entity: Def); |
| 5613 | assert(Owner && "definition of hidden declaration is not in a module" ); |
| 5614 | |
| 5615 | llvm::SmallVector<Module*, 8> OwningModules; |
| 5616 | OwningModules.push_back(Elt: Owner); |
| 5617 | auto Merged = Context.getModulesWithMergedDefinition(Def); |
| 5618 | llvm::append_range(C&: OwningModules, R&: Merged); |
| 5619 | |
| 5620 | diagnoseMissingImport(Loc, Decl: Def, DeclLoc: Def->getLocation(), Modules: OwningModules, MIK, |
| 5621 | Recover); |
| 5622 | } |
| 5623 | |
| 5624 | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic |
| 5625 | /// suggesting the addition of a #include of the specified file. |
| 5626 | static std::string (Preprocessor &PP, FileEntryRef E, |
| 5627 | llvm::StringRef IncludingFile) { |
| 5628 | bool IsAngled = false; |
| 5629 | auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( |
| 5630 | File: E, MainFile: IncludingFile, IsAngled: &IsAngled); |
| 5631 | return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); |
| 5632 | } |
| 5633 | |
| 5634 | void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, |
| 5635 | SourceLocation DeclLoc, |
| 5636 | ArrayRef<Module *> Modules, |
| 5637 | MissingImportKind MIK, bool Recover) { |
| 5638 | assert(!Modules.empty()); |
| 5639 | |
| 5640 | // See https://github.com/llvm/llvm-project/issues/73893. It is generally |
| 5641 | // confusing than helpful to show the namespace is not visible. |
| 5642 | if (isa<NamespaceDecl>(Val: Decl)) |
| 5643 | return; |
| 5644 | |
| 5645 | auto NotePrevious = [&] { |
| 5646 | // FIXME: Suppress the note backtrace even under |
| 5647 | // -fdiagnostics-show-note-include-stack. We don't care how this |
| 5648 | // declaration was previously reached. |
| 5649 | Diag(Loc: DeclLoc, DiagID: diag::note_unreachable_entity) << (int)MIK; |
| 5650 | }; |
| 5651 | |
| 5652 | // Weed out duplicates from module list. |
| 5653 | llvm::SmallVector<Module*, 8> UniqueModules; |
| 5654 | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; |
| 5655 | for (auto *M : Modules) { |
| 5656 | if (M->isExplicitGlobalModule() || M->isPrivateModule()) |
| 5657 | continue; |
| 5658 | if (UniqueModuleSet.insert(V: M).second) |
| 5659 | UniqueModules.push_back(Elt: M); |
| 5660 | } |
| 5661 | |
| 5662 | // Try to find a suitable header-name to #include. |
| 5663 | std::string ; |
| 5664 | if (OptionalFileEntryRef = |
| 5665 | PP.getHeaderToIncludeForDiagnostics(IncLoc: UseLoc, MLoc: DeclLoc)) { |
| 5666 | if (const FileEntry *FE = |
| 5667 | SourceMgr.getFileEntryForID(FID: SourceMgr.getFileID(SpellingLoc: UseLoc))) |
| 5668 | HeaderName = |
| 5669 | getHeaderNameForHeader(PP, E: *Header, IncludingFile: FE->tryGetRealPathName()); |
| 5670 | } |
| 5671 | |
| 5672 | // If we have a #include we should suggest, or if all definition locations |
| 5673 | // were in global module fragments, don't suggest an import. |
| 5674 | if (!HeaderName.empty() || UniqueModules.empty()) { |
| 5675 | // FIXME: Find a smart place to suggest inserting a #include, and add |
| 5676 | // a FixItHint there. |
| 5677 | Diag(Loc: UseLoc, DiagID: diag::err_module_unimported_use_header) |
| 5678 | << (int)MIK << Decl << !HeaderName.empty() << HeaderName; |
| 5679 | // Produce a note showing where the entity was declared. |
| 5680 | NotePrevious(); |
| 5681 | if (Recover) |
| 5682 | createImplicitModuleImportForErrorRecovery(Loc: UseLoc, Mod: Modules[0]); |
| 5683 | return; |
| 5684 | } |
| 5685 | |
| 5686 | Modules = UniqueModules; |
| 5687 | |
| 5688 | auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { |
| 5689 | if (M->isModuleMapModule()) |
| 5690 | return M->getFullModuleName(); |
| 5691 | |
| 5692 | if (M->isImplicitGlobalModule()) |
| 5693 | M = M->getTopLevelModule(); |
| 5694 | |
| 5695 | // If the current module unit is in the same module with M, it is OK to show |
| 5696 | // the partition name. Otherwise, it'll be sufficient to show the primary |
| 5697 | // module name. |
| 5698 | if (getASTContext().isInSameModule(M1: M, M2: getCurrentModule())) |
| 5699 | return M->getTopLevelModuleName().str(); |
| 5700 | else |
| 5701 | return M->getPrimaryModuleInterfaceName().str(); |
| 5702 | }; |
| 5703 | |
| 5704 | if (Modules.size() > 1) { |
| 5705 | std::string ModuleList; |
| 5706 | unsigned N = 0; |
| 5707 | for (const auto *M : Modules) { |
| 5708 | ModuleList += "\n " ; |
| 5709 | if (++N == 5 && N != Modules.size()) { |
| 5710 | ModuleList += "[...]" ; |
| 5711 | break; |
| 5712 | } |
| 5713 | ModuleList += GetModuleNameForDiagnostic(M); |
| 5714 | } |
| 5715 | |
| 5716 | Diag(Loc: UseLoc, DiagID: diag::err_module_unimported_use_multiple) |
| 5717 | << (int)MIK << Decl << ModuleList; |
| 5718 | } else { |
| 5719 | // FIXME: Add a FixItHint that imports the corresponding module. |
| 5720 | Diag(Loc: UseLoc, DiagID: diag::err_module_unimported_use) |
| 5721 | << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); |
| 5722 | } |
| 5723 | |
| 5724 | NotePrevious(); |
| 5725 | |
| 5726 | // Try to recover by implicitly importing this module. |
| 5727 | if (Recover) |
| 5728 | createImplicitModuleImportForErrorRecovery(Loc: UseLoc, Mod: Modules[0]); |
| 5729 | } |
| 5730 | |
| 5731 | void Sema::diagnoseTypo(const TypoCorrection &Correction, |
| 5732 | const PartialDiagnostic &TypoDiag, |
| 5733 | const PartialDiagnostic &PrevNote, |
| 5734 | bool ErrorRecovery) { |
| 5735 | std::string CorrectedStr = Correction.getAsString(LO: getLangOpts()); |
| 5736 | std::string CorrectedQuotedStr = Correction.getQuoted(LO: getLangOpts()); |
| 5737 | FixItHint FixTypo = FixItHint::CreateReplacement( |
| 5738 | RemoveRange: Correction.getCorrectionRange(), Code: CorrectedStr); |
| 5739 | |
| 5740 | // Maybe we're just missing a module import. |
| 5741 | if (Correction.requiresImport()) { |
| 5742 | NamedDecl *Decl = Correction.getFoundDecl(); |
| 5743 | assert(Decl && "import required but no declaration to import" ); |
| 5744 | |
| 5745 | diagnoseMissingImport(Loc: Correction.getCorrectionRange().getBegin(), Decl, |
| 5746 | MIK: MissingImportKind::Declaration, Recover: ErrorRecovery); |
| 5747 | return; |
| 5748 | } |
| 5749 | |
| 5750 | Diag(Loc: Correction.getCorrectionRange().getBegin(), PD: TypoDiag) |
| 5751 | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); |
| 5752 | |
| 5753 | NamedDecl *ChosenDecl = |
| 5754 | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); |
| 5755 | |
| 5756 | // For builtin functions which aren't declared anywhere in source, |
| 5757 | // don't emit the "declared here" note. |
| 5758 | if (const auto *FD = dyn_cast_if_present<FunctionDecl>(Val: ChosenDecl); |
| 5759 | FD && FD->getBuiltinID() && |
| 5760 | PrevNote.getDiagID() == diag::note_previous_decl && |
| 5761 | Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { |
| 5762 | ChosenDecl = nullptr; |
| 5763 | } |
| 5764 | |
| 5765 | if (PrevNote.getDiagID() && ChosenDecl) |
| 5766 | Diag(Loc: ChosenDecl->getLocation(), PD: PrevNote) |
| 5767 | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); |
| 5768 | |
| 5769 | // Add any extra diagnostics. |
| 5770 | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) |
| 5771 | Diag(Loc: Correction.getCorrectionRange().getBegin(), PD); |
| 5772 | } |
| 5773 | |
| 5774 | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { |
| 5775 | DeclarationNameInfo Name(II, IILoc); |
| 5776 | LookupResult R(*this, Name, LookupAnyName, |
| 5777 | RedeclarationKind::NotForRedeclaration); |
| 5778 | R.suppressDiagnostics(); |
| 5779 | R.setHideTags(false); |
| 5780 | LookupName(R, S); |
| 5781 | R.dump(); |
| 5782 | } |
| 5783 | |
| 5784 | void Sema::ActOnPragmaDump(Expr *E) { |
| 5785 | E->dump(); |
| 5786 | } |
| 5787 | |
| 5788 | RedeclarationKind Sema::forRedeclarationInCurContext() const { |
| 5789 | // A declaration with an owning module for linkage can never link against |
| 5790 | // anything that is not visible. We don't need to check linkage here; if |
| 5791 | // the context has internal linkage, redeclaration lookup won't find things |
| 5792 | // from other TUs, and we can't safely compute linkage yet in general. |
| 5793 | if (cast<Decl>(Val: CurContext)->getOwningModuleForLinkage()) |
| 5794 | return RedeclarationKind::ForVisibleRedeclaration; |
| 5795 | return RedeclarationKind::ForExternalRedeclaration; |
| 5796 | } |
| 5797 | |