| 1 | //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains definitons for the AST differencing interface. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/Tooling/ASTDiff/ASTDiff.h" |
| 14 | #include "clang/AST/ParentMapContext.h" |
| 15 | #include "clang/AST/RecursiveASTVisitor.h" |
| 16 | #include "clang/Basic/SourceManager.h" |
| 17 | #include "clang/Lex/Lexer.h" |
| 18 | #include "llvm/ADT/PriorityQueue.h" |
| 19 | |
| 20 | #include <limits> |
| 21 | #include <memory> |
| 22 | #include <optional> |
| 23 | #include <unordered_set> |
| 24 | |
| 25 | using namespace llvm; |
| 26 | using namespace clang; |
| 27 | |
| 28 | namespace clang { |
| 29 | namespace diff { |
| 30 | |
| 31 | namespace { |
| 32 | /// Maps nodes of the left tree to ones on the right, and vice versa. |
| 33 | class Mapping { |
| 34 | public: |
| 35 | Mapping() = default; |
| 36 | Mapping(Mapping &&Other) = default; |
| 37 | Mapping &operator=(Mapping &&Other) = default; |
| 38 | |
| 39 | Mapping(size_t Size) { |
| 40 | SrcToDst = std::make_unique<NodeId[]>(num: Size); |
| 41 | DstToSrc = std::make_unique<NodeId[]>(num: Size); |
| 42 | } |
| 43 | |
| 44 | void link(NodeId Src, NodeId Dst) { |
| 45 | SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; |
| 46 | } |
| 47 | |
| 48 | NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } |
| 49 | NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } |
| 50 | bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } |
| 51 | bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } |
| 52 | |
| 53 | private: |
| 54 | std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; |
| 55 | }; |
| 56 | } // end anonymous namespace |
| 57 | |
| 58 | class ASTDiff::Impl { |
| 59 | public: |
| 60 | SyntaxTree::Impl &T1, &T2; |
| 61 | Mapping TheMapping; |
| 62 | |
| 63 | Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, |
| 64 | const ComparisonOptions &Options); |
| 65 | |
| 66 | /// Matches nodes one-by-one based on their similarity. |
| 67 | void computeMapping(); |
| 68 | |
| 69 | // Compute Change for each node based on similarity. |
| 70 | void computeChangeKinds(Mapping &M); |
| 71 | |
| 72 | NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, |
| 73 | NodeId Id) const { |
| 74 | if (&*Tree == &T1) |
| 75 | return TheMapping.getDst(Src: Id); |
| 76 | assert(&*Tree == &T2 && "Invalid tree." ); |
| 77 | return TheMapping.getSrc(Dst: Id); |
| 78 | } |
| 79 | |
| 80 | private: |
| 81 | // Returns true if the two subtrees are identical. |
| 82 | bool identical(NodeId Id1, NodeId Id2) const; |
| 83 | |
| 84 | // Returns false if the nodes must not be mached. |
| 85 | bool isMatchingPossible(NodeId Id1, NodeId Id2) const; |
| 86 | |
| 87 | // Returns true if the nodes' parents are matched. |
| 88 | bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; |
| 89 | |
| 90 | // Uses an optimal albeit slow algorithm to compute a mapping between two |
| 91 | // subtrees, but only if both have fewer nodes than MaxSize. |
| 92 | void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; |
| 93 | |
| 94 | // Computes the ratio of common descendants between the two nodes. |
| 95 | // Descendants are only considered to be equal when they are mapped in M. |
| 96 | double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; |
| 97 | |
| 98 | // Returns the node that has the highest degree of similarity. |
| 99 | NodeId findCandidate(const Mapping &M, NodeId Id1) const; |
| 100 | |
| 101 | // Returns a mapping of identical subtrees. |
| 102 | Mapping matchTopDown() const; |
| 103 | |
| 104 | // Tries to match any yet unmapped nodes, in a bottom-up fashion. |
| 105 | void matchBottomUp(Mapping &M) const; |
| 106 | |
| 107 | const ComparisonOptions &Options; |
| 108 | |
| 109 | friend class ZhangShashaMatcher; |
| 110 | }; |
| 111 | |
| 112 | /// Represents the AST of a TranslationUnit. |
| 113 | class SyntaxTree::Impl { |
| 114 | public: |
| 115 | Impl(SyntaxTree *Parent, ASTContext &AST); |
| 116 | /// Constructs a tree from an AST node. |
| 117 | Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); |
| 118 | Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); |
| 119 | template <class T> |
| 120 | Impl(SyntaxTree *Parent, |
| 121 | std::enable_if_t<std::is_base_of_v<Stmt, T>, T> *Node, ASTContext &AST) |
| 122 | : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} |
| 123 | template <class T> |
| 124 | Impl(SyntaxTree *Parent, |
| 125 | std::enable_if_t<std::is_base_of_v<Decl, T>, T> *Node, ASTContext &AST) |
| 126 | : Impl(Parent, dyn_cast<Decl>(Node), AST) {} |
| 127 | |
| 128 | SyntaxTree *Parent; |
| 129 | ASTContext &AST; |
| 130 | PrintingPolicy TypePP; |
| 131 | /// Nodes in preorder. |
| 132 | std::vector<Node> Nodes; |
| 133 | std::vector<NodeId> Leaves; |
| 134 | // Maps preorder indices to postorder ones. |
| 135 | std::vector<int> PostorderIds; |
| 136 | std::vector<NodeId> NodesBfs; |
| 137 | |
| 138 | int getSize() const { return Nodes.size(); } |
| 139 | NodeId getRootId() const { return 0; } |
| 140 | PreorderIterator begin() const { return getRootId(); } |
| 141 | PreorderIterator end() const { return getSize(); } |
| 142 | |
| 143 | const Node &getNode(NodeId Id) const { return Nodes[Id]; } |
| 144 | Node &getMutableNode(NodeId Id) { return Nodes[Id]; } |
| 145 | bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } |
| 146 | void addNode(Node &N) { Nodes.push_back(x: N); } |
| 147 | int getNumberOfDescendants(NodeId Id) const; |
| 148 | bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; |
| 149 | int findPositionInParent(NodeId Id, bool Shifted = false) const; |
| 150 | |
| 151 | std::string getRelativeName(const NamedDecl *ND, |
| 152 | const DeclContext *Context) const; |
| 153 | std::string getRelativeName(const NamedDecl *ND) const; |
| 154 | |
| 155 | std::string getNodeValue(NodeId Id) const; |
| 156 | std::string getNodeValue(const Node &Node) const; |
| 157 | std::string getDeclValue(const Decl *D) const; |
| 158 | std::string getStmtValue(const Stmt *S) const; |
| 159 | |
| 160 | private: |
| 161 | void initTree(); |
| 162 | void setLeftMostDescendants(); |
| 163 | }; |
| 164 | |
| 165 | static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } |
| 166 | static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } |
| 167 | static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) { |
| 168 | return !I->isWritten(); |
| 169 | } |
| 170 | |
| 171 | template <class T> |
| 172 | static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { |
| 173 | if (!N) |
| 174 | return true; |
| 175 | SourceLocation SLoc = N->getSourceRange().getBegin(); |
| 176 | if (SLoc.isValid()) { |
| 177 | // Ignore everything from other files. |
| 178 | if (!SrcMgr.isInMainFile(Loc: SLoc)) |
| 179 | return true; |
| 180 | // Ignore macros. |
| 181 | if (SLoc != SrcMgr.getSpellingLoc(Loc: SLoc)) |
| 182 | return true; |
| 183 | } |
| 184 | return isSpecializedNodeExcluded(N); |
| 185 | } |
| 186 | |
| 187 | namespace { |
| 188 | // Sets Height, Parent and Children for each node. |
| 189 | struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { |
| 190 | int Id = 0, Depth = 0; |
| 191 | NodeId Parent; |
| 192 | SyntaxTree::Impl &Tree; |
| 193 | |
| 194 | PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} |
| 195 | |
| 196 | template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { |
| 197 | NodeId MyId = Id; |
| 198 | Tree.Nodes.emplace_back(); |
| 199 | Node &N = Tree.getMutableNode(Id: MyId); |
| 200 | N.Parent = Parent; |
| 201 | N.Depth = Depth; |
| 202 | N.ASTNode = DynTypedNode::create(*ASTNode); |
| 203 | assert(!N.ASTNode.getNodeKind().isNone() && |
| 204 | "Expected nodes to have a valid kind." ); |
| 205 | if (Parent.isValid()) { |
| 206 | Node &P = Tree.getMutableNode(Id: Parent); |
| 207 | P.Children.push_back(Elt: MyId); |
| 208 | } |
| 209 | Parent = MyId; |
| 210 | ++Id; |
| 211 | ++Depth; |
| 212 | return std::make_tuple(args&: MyId, args: Tree.getNode(Id: MyId).Parent); |
| 213 | } |
| 214 | void PostTraverse(std::tuple<NodeId, NodeId> State) { |
| 215 | NodeId MyId, PreviousParent; |
| 216 | std::tie(args&: MyId, args&: PreviousParent) = State; |
| 217 | assert(MyId.isValid() && "Expecting to only traverse valid nodes." ); |
| 218 | Parent = PreviousParent; |
| 219 | --Depth; |
| 220 | Node &N = Tree.getMutableNode(Id: MyId); |
| 221 | N.RightMostDescendant = Id - 1; |
| 222 | assert(N.RightMostDescendant >= 0 && |
| 223 | N.RightMostDescendant < Tree.getSize() && |
| 224 | "Rightmost descendant must be a valid tree node." ); |
| 225 | if (N.isLeaf()) |
| 226 | Tree.Leaves.push_back(x: MyId); |
| 227 | N.Height = 1; |
| 228 | for (NodeId Child : N.Children) |
| 229 | N.Height = std::max(a: N.Height, b: 1 + Tree.getNode(Id: Child).Height); |
| 230 | } |
| 231 | bool TraverseDecl(Decl *D) { |
| 232 | if (isNodeExcluded(SrcMgr: Tree.AST.getSourceManager(), N: D)) |
| 233 | return true; |
| 234 | auto SavedState = PreTraverse(ASTNode: D); |
| 235 | RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); |
| 236 | PostTraverse(State: SavedState); |
| 237 | return true; |
| 238 | } |
| 239 | bool TraverseStmt(Stmt *S) { |
| 240 | if (auto *E = dyn_cast_or_null<Expr>(Val: S)) |
| 241 | S = E->IgnoreImplicit(); |
| 242 | if (isNodeExcluded(SrcMgr: Tree.AST.getSourceManager(), N: S)) |
| 243 | return true; |
| 244 | auto SavedState = PreTraverse(ASTNode: S); |
| 245 | RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); |
| 246 | PostTraverse(State: SavedState); |
| 247 | return true; |
| 248 | } |
| 249 | bool TraverseType(QualType T) { return true; } |
| 250 | bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { |
| 251 | if (isNodeExcluded(SrcMgr: Tree.AST.getSourceManager(), N: Init)) |
| 252 | return true; |
| 253 | auto SavedState = PreTraverse(ASTNode: Init); |
| 254 | RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init); |
| 255 | PostTraverse(State: SavedState); |
| 256 | return true; |
| 257 | } |
| 258 | }; |
| 259 | } // end anonymous namespace |
| 260 | |
| 261 | SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST) |
| 262 | : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) { |
| 263 | TypePP.AnonymousTagLocations = false; |
| 264 | } |
| 265 | |
| 266 | SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) |
| 267 | : Impl(Parent, AST) { |
| 268 | PreorderVisitor PreorderWalker(*this); |
| 269 | PreorderWalker.TraverseDecl(D: N); |
| 270 | initTree(); |
| 271 | } |
| 272 | |
| 273 | SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) |
| 274 | : Impl(Parent, AST) { |
| 275 | PreorderVisitor PreorderWalker(*this); |
| 276 | PreorderWalker.TraverseStmt(S: N); |
| 277 | initTree(); |
| 278 | } |
| 279 | |
| 280 | static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, |
| 281 | NodeId Root) { |
| 282 | std::vector<NodeId> Postorder; |
| 283 | std::function<void(NodeId)> Traverse = [&](NodeId Id) { |
| 284 | const Node &N = Tree.getNode(Id); |
| 285 | for (NodeId Child : N.Children) |
| 286 | Traverse(Child); |
| 287 | Postorder.push_back(x: Id); |
| 288 | }; |
| 289 | Traverse(Root); |
| 290 | return Postorder; |
| 291 | } |
| 292 | |
| 293 | static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, |
| 294 | NodeId Root) { |
| 295 | std::vector<NodeId> Ids; |
| 296 | size_t Expanded = 0; |
| 297 | Ids.push_back(x: Root); |
| 298 | while (Expanded < Ids.size()) |
| 299 | for (NodeId Child : Tree.getNode(Id: Ids[Expanded++]).Children) |
| 300 | Ids.push_back(x: Child); |
| 301 | return Ids; |
| 302 | } |
| 303 | |
| 304 | void SyntaxTree::Impl::initTree() { |
| 305 | setLeftMostDescendants(); |
| 306 | int PostorderId = 0; |
| 307 | PostorderIds.resize(new_size: getSize()); |
| 308 | std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { |
| 309 | for (NodeId Child : getNode(Id).Children) |
| 310 | PostorderTraverse(Child); |
| 311 | PostorderIds[Id] = PostorderId; |
| 312 | ++PostorderId; |
| 313 | }; |
| 314 | PostorderTraverse(getRootId()); |
| 315 | NodesBfs = getSubtreeBfs(Tree: *this, Root: getRootId()); |
| 316 | } |
| 317 | |
| 318 | void SyntaxTree::Impl::setLeftMostDescendants() { |
| 319 | for (NodeId Leaf : Leaves) { |
| 320 | getMutableNode(Id: Leaf).LeftMostDescendant = Leaf; |
| 321 | NodeId Parent, Cur = Leaf; |
| 322 | while ((Parent = getNode(Id: Cur).Parent).isValid() && |
| 323 | getNode(Id: Parent).Children[0] == Cur) { |
| 324 | Cur = Parent; |
| 325 | getMutableNode(Id: Cur).LeftMostDescendant = Leaf; |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { |
| 331 | return getNode(Id).RightMostDescendant - Id + 1; |
| 332 | } |
| 333 | |
| 334 | bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { |
| 335 | return Id >= SubtreeRoot && Id <= getNode(Id: SubtreeRoot).RightMostDescendant; |
| 336 | } |
| 337 | |
| 338 | int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { |
| 339 | NodeId Parent = getNode(Id).Parent; |
| 340 | if (Parent.isInvalid()) |
| 341 | return 0; |
| 342 | const auto &Siblings = getNode(Id: Parent).Children; |
| 343 | int Position = 0; |
| 344 | for (size_t I = 0, E = Siblings.size(); I < E; ++I) { |
| 345 | if (Shifted) |
| 346 | Position += getNode(Id: Siblings[I]).Shift; |
| 347 | if (Siblings[I] == Id) { |
| 348 | Position += I; |
| 349 | return Position; |
| 350 | } |
| 351 | } |
| 352 | llvm_unreachable("Node not found in parent's children." ); |
| 353 | } |
| 354 | |
| 355 | // Returns the qualified name of ND. If it is subordinate to Context, |
| 356 | // then the prefix of the latter is removed from the returned value. |
| 357 | std::string |
| 358 | SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, |
| 359 | const DeclContext *Context) const { |
| 360 | std::string Val = ND->getQualifiedNameAsString(); |
| 361 | std::string ContextPrefix; |
| 362 | if (!Context) |
| 363 | return Val; |
| 364 | if (auto *Namespace = dyn_cast<NamespaceDecl>(Val: Context)) |
| 365 | ContextPrefix = Namespace->getQualifiedNameAsString(); |
| 366 | else if (auto *Record = dyn_cast<RecordDecl>(Val: Context)) |
| 367 | ContextPrefix = Record->getQualifiedNameAsString(); |
| 368 | else if (AST.getLangOpts().CPlusPlus11) |
| 369 | if (auto *Tag = dyn_cast<TagDecl>(Val: Context)) |
| 370 | ContextPrefix = Tag->getQualifiedNameAsString(); |
| 371 | // Strip the qualifier, if Val refers to something in the current scope. |
| 372 | // But leave one leading ':' in place, so that we know that this is a |
| 373 | // relative path. |
| 374 | if (!ContextPrefix.empty() && StringRef(Val).starts_with(Prefix: ContextPrefix)) |
| 375 | Val = Val.substr(pos: ContextPrefix.size() + 1); |
| 376 | return Val; |
| 377 | } |
| 378 | |
| 379 | std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { |
| 380 | return getRelativeName(ND, Context: ND->getDeclContext()); |
| 381 | } |
| 382 | |
| 383 | static const DeclContext *getEnclosingDeclContext(ASTContext &AST, |
| 384 | const Stmt *S) { |
| 385 | while (S) { |
| 386 | const auto &Parents = AST.getParents(Node: *S); |
| 387 | if (Parents.empty()) |
| 388 | return nullptr; |
| 389 | const auto &P = Parents[0]; |
| 390 | if (const auto *D = P.get<Decl>()) |
| 391 | return D->getDeclContext(); |
| 392 | S = P.get<Stmt>(); |
| 393 | } |
| 394 | return nullptr; |
| 395 | } |
| 396 | |
| 397 | static std::string getInitializerValue(const CXXCtorInitializer *Init, |
| 398 | const PrintingPolicy &TypePP) { |
| 399 | if (Init->isAnyMemberInitializer()) |
| 400 | return std::string(Init->getAnyMember()->getName()); |
| 401 | if (Init->isBaseInitializer()) |
| 402 | return QualType(Init->getBaseClass(), 0).getAsString(Policy: TypePP); |
| 403 | if (Init->isDelegatingInitializer()) |
| 404 | return Init->getTypeSourceInfo()->getType().getAsString(Policy: TypePP); |
| 405 | llvm_unreachable("Unknown initializer type" ); |
| 406 | } |
| 407 | |
| 408 | std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { |
| 409 | return getNodeValue(Node: getNode(Id)); |
| 410 | } |
| 411 | |
| 412 | std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { |
| 413 | const DynTypedNode &DTN = N.ASTNode; |
| 414 | if (auto *S = DTN.get<Stmt>()) |
| 415 | return getStmtValue(S); |
| 416 | if (auto *D = DTN.get<Decl>()) |
| 417 | return getDeclValue(D); |
| 418 | if (auto *Init = DTN.get<CXXCtorInitializer>()) |
| 419 | return getInitializerValue(Init, TypePP); |
| 420 | llvm_unreachable("Fatal: unhandled AST node.\n" ); |
| 421 | } |
| 422 | |
| 423 | std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { |
| 424 | std::string Value; |
| 425 | if (auto *V = dyn_cast<ValueDecl>(Val: D)) |
| 426 | return getRelativeName(ND: V) + "(" + V->getType().getAsString(Policy: TypePP) + ")" ; |
| 427 | if (auto *N = dyn_cast<NamedDecl>(Val: D)) |
| 428 | Value += getRelativeName(ND: N) + ";" ; |
| 429 | if (auto *T = dyn_cast<TypedefNameDecl>(Val: D)) |
| 430 | return Value + T->getUnderlyingType().getAsString(Policy: TypePP) + ";" ; |
| 431 | if (auto *T = dyn_cast<TypeDecl>(Val: D)) |
| 432 | if (T->getTypeForDecl()) |
| 433 | Value += |
| 434 | T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(Policy: TypePP) + |
| 435 | ";" ; |
| 436 | if (auto *U = dyn_cast<UsingDirectiveDecl>(Val: D)) |
| 437 | return std::string(U->getNominatedNamespace()->getName()); |
| 438 | if (auto *A = dyn_cast<AccessSpecDecl>(Val: D)) { |
| 439 | CharSourceRange Range(A->getSourceRange(), false); |
| 440 | return std::string( |
| 441 | Lexer::getSourceText(Range, SM: AST.getSourceManager(), LangOpts: AST.getLangOpts())); |
| 442 | } |
| 443 | return Value; |
| 444 | } |
| 445 | |
| 446 | std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { |
| 447 | if (auto *U = dyn_cast<UnaryOperator>(Val: S)) |
| 448 | return std::string(UnaryOperator::getOpcodeStr(Op: U->getOpcode())); |
| 449 | if (auto *B = dyn_cast<BinaryOperator>(Val: S)) |
| 450 | return std::string(B->getOpcodeStr()); |
| 451 | if (auto *M = dyn_cast<MemberExpr>(Val: S)) |
| 452 | return getRelativeName(ND: M->getMemberDecl()); |
| 453 | if (auto *I = dyn_cast<IntegerLiteral>(Val: S)) { |
| 454 | SmallString<256> Str; |
| 455 | I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); |
| 456 | return std::string(Str); |
| 457 | } |
| 458 | if (auto *F = dyn_cast<FloatingLiteral>(Val: S)) { |
| 459 | SmallString<256> Str; |
| 460 | F->getValue().toString(Str); |
| 461 | return std::string(Str); |
| 462 | } |
| 463 | if (auto *D = dyn_cast<DeclRefExpr>(Val: S)) |
| 464 | return getRelativeName(ND: D->getDecl(), Context: getEnclosingDeclContext(AST, S)); |
| 465 | if (auto *String = dyn_cast<StringLiteral>(Val: S)) |
| 466 | return std::string(String->getString()); |
| 467 | if (auto *B = dyn_cast<CXXBoolLiteralExpr>(Val: S)) |
| 468 | return B->getValue() ? "true" : "false" ; |
| 469 | return "" ; |
| 470 | } |
| 471 | |
| 472 | /// Identifies a node in a subtree by its postorder offset, starting at 1. |
| 473 | struct SNodeId { |
| 474 | int Id = 0; |
| 475 | |
| 476 | explicit SNodeId(int Id) : Id(Id) {} |
| 477 | explicit SNodeId() = default; |
| 478 | |
| 479 | operator int() const { return Id; } |
| 480 | SNodeId &operator++() { return ++Id, *this; } |
| 481 | SNodeId &operator--() { return --Id, *this; } |
| 482 | SNodeId operator+(int Other) const { return SNodeId(Id + Other); } |
| 483 | }; |
| 484 | |
| 485 | class Subtree { |
| 486 | private: |
| 487 | /// The parent tree. |
| 488 | const SyntaxTree::Impl &Tree; |
| 489 | /// Maps SNodeIds to original ids. |
| 490 | std::vector<NodeId> RootIds; |
| 491 | /// Maps subtree nodes to their leftmost descendants wtihin the subtree. |
| 492 | std::vector<SNodeId> LeftMostDescendants; |
| 493 | |
| 494 | public: |
| 495 | std::vector<SNodeId> KeyRoots; |
| 496 | |
| 497 | Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { |
| 498 | RootIds = getSubtreePostorder(Tree, Root: SubtreeRoot); |
| 499 | int NumLeaves = setLeftMostDescendants(); |
| 500 | computeKeyRoots(Leaves: NumLeaves); |
| 501 | } |
| 502 | int getSize() const { return RootIds.size(); } |
| 503 | NodeId getIdInRoot(SNodeId Id) const { |
| 504 | assert(Id > 0 && Id <= getSize() && "Invalid subtree node index." ); |
| 505 | return RootIds[Id - 1]; |
| 506 | } |
| 507 | const Node &getNode(SNodeId Id) const { |
| 508 | return Tree.getNode(Id: getIdInRoot(Id)); |
| 509 | } |
| 510 | SNodeId getLeftMostDescendant(SNodeId Id) const { |
| 511 | assert(Id > 0 && Id <= getSize() && "Invalid subtree node index." ); |
| 512 | return LeftMostDescendants[Id - 1]; |
| 513 | } |
| 514 | /// Returns the postorder index of the leftmost descendant in the subtree. |
| 515 | NodeId getPostorderOffset() const { |
| 516 | return Tree.PostorderIds[getIdInRoot(Id: SNodeId(1))]; |
| 517 | } |
| 518 | std::string getNodeValue(SNodeId Id) const { |
| 519 | return Tree.getNodeValue(Id: getIdInRoot(Id)); |
| 520 | } |
| 521 | |
| 522 | private: |
| 523 | /// Returns the number of leafs in the subtree. |
| 524 | int setLeftMostDescendants() { |
| 525 | int NumLeaves = 0; |
| 526 | LeftMostDescendants.resize(new_size: getSize()); |
| 527 | for (int I = 0; I < getSize(); ++I) { |
| 528 | SNodeId SI(I + 1); |
| 529 | const Node &N = getNode(Id: SI); |
| 530 | NumLeaves += N.isLeaf(); |
| 531 | assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && |
| 532 | "Postorder traversal in subtree should correspond to traversal in " |
| 533 | "the root tree by a constant offset." ); |
| 534 | LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - |
| 535 | getPostorderOffset()); |
| 536 | } |
| 537 | return NumLeaves; |
| 538 | } |
| 539 | void computeKeyRoots(int Leaves) { |
| 540 | KeyRoots.resize(new_size: Leaves); |
| 541 | std::unordered_set<int> Visited; |
| 542 | int K = Leaves - 1; |
| 543 | for (SNodeId I(getSize()); I > 0; --I) { |
| 544 | SNodeId LeftDesc = getLeftMostDescendant(Id: I); |
| 545 | if (Visited.count(x: LeftDesc)) |
| 546 | continue; |
| 547 | assert(K >= 0 && "K should be non-negative" ); |
| 548 | KeyRoots[K] = I; |
| 549 | Visited.insert(x: LeftDesc); |
| 550 | --K; |
| 551 | } |
| 552 | } |
| 553 | }; |
| 554 | |
| 555 | /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. |
| 556 | /// Computes an optimal mapping between two trees using only insertion, |
| 557 | /// deletion and update as edit actions (similar to the Levenshtein distance). |
| 558 | class ZhangShashaMatcher { |
| 559 | const ASTDiff::Impl &DiffImpl; |
| 560 | Subtree S1; |
| 561 | Subtree S2; |
| 562 | std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; |
| 563 | |
| 564 | public: |
| 565 | ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, |
| 566 | const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) |
| 567 | : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { |
| 568 | TreeDist = std::make_unique<std::unique_ptr<double[]>[]>( |
| 569 | num: size_t(S1.getSize()) + 1); |
| 570 | ForestDist = std::make_unique<std::unique_ptr<double[]>[]>( |
| 571 | num: size_t(S1.getSize()) + 1); |
| 572 | for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { |
| 573 | TreeDist[I] = std::make_unique<double[]>(num: size_t(S2.getSize()) + 1); |
| 574 | ForestDist[I] = std::make_unique<double[]>(num: size_t(S2.getSize()) + 1); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { |
| 579 | std::vector<std::pair<NodeId, NodeId>> Matches; |
| 580 | std::vector<std::pair<SNodeId, SNodeId>> TreePairs; |
| 581 | |
| 582 | computeTreeDist(); |
| 583 | |
| 584 | bool RootNodePair = true; |
| 585 | |
| 586 | TreePairs.emplace_back(args: SNodeId(S1.getSize()), args: SNodeId(S2.getSize())); |
| 587 | |
| 588 | while (!TreePairs.empty()) { |
| 589 | SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; |
| 590 | std::tie(args&: LastRow, args&: LastCol) = TreePairs.back(); |
| 591 | TreePairs.pop_back(); |
| 592 | |
| 593 | if (!RootNodePair) { |
| 594 | computeForestDist(Id1: LastRow, Id2: LastCol); |
| 595 | } |
| 596 | |
| 597 | RootNodePair = false; |
| 598 | |
| 599 | FirstRow = S1.getLeftMostDescendant(Id: LastRow); |
| 600 | FirstCol = S2.getLeftMostDescendant(Id: LastCol); |
| 601 | |
| 602 | Row = LastRow; |
| 603 | Col = LastCol; |
| 604 | |
| 605 | while (Row > FirstRow || Col > FirstCol) { |
| 606 | if (Row > FirstRow && |
| 607 | ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { |
| 608 | --Row; |
| 609 | } else if (Col > FirstCol && |
| 610 | ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { |
| 611 | --Col; |
| 612 | } else { |
| 613 | SNodeId LMD1 = S1.getLeftMostDescendant(Id: Row); |
| 614 | SNodeId LMD2 = S2.getLeftMostDescendant(Id: Col); |
| 615 | if (LMD1 == S1.getLeftMostDescendant(Id: LastRow) && |
| 616 | LMD2 == S2.getLeftMostDescendant(Id: LastCol)) { |
| 617 | NodeId Id1 = S1.getIdInRoot(Id: Row); |
| 618 | NodeId Id2 = S2.getIdInRoot(Id: Col); |
| 619 | assert(DiffImpl.isMatchingPossible(Id1, Id2) && |
| 620 | "These nodes must not be matched." ); |
| 621 | Matches.emplace_back(args&: Id1, args&: Id2); |
| 622 | --Row; |
| 623 | --Col; |
| 624 | } else { |
| 625 | TreePairs.emplace_back(args&: Row, args&: Col); |
| 626 | Row = LMD1; |
| 627 | Col = LMD2; |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | return Matches; |
| 633 | } |
| 634 | |
| 635 | private: |
| 636 | /// We use a simple cost model for edit actions, which seems good enough. |
| 637 | /// Simple cost model for edit actions. This seems to make the matching |
| 638 | /// algorithm perform reasonably well. |
| 639 | /// The values range between 0 and 1, or infinity if this edit action should |
| 640 | /// always be avoided. |
| 641 | static constexpr double DeletionCost = 1; |
| 642 | static constexpr double InsertionCost = 1; |
| 643 | |
| 644 | double getUpdateCost(SNodeId Id1, SNodeId Id2) { |
| 645 | if (!DiffImpl.isMatchingPossible(Id1: S1.getIdInRoot(Id: Id1), Id2: S2.getIdInRoot(Id: Id2))) |
| 646 | return std::numeric_limits<double>::max(); |
| 647 | return S1.getNodeValue(Id: Id1) != S2.getNodeValue(Id: Id2); |
| 648 | } |
| 649 | |
| 650 | void computeTreeDist() { |
| 651 | for (SNodeId Id1 : S1.KeyRoots) |
| 652 | for (SNodeId Id2 : S2.KeyRoots) |
| 653 | computeForestDist(Id1, Id2); |
| 654 | } |
| 655 | |
| 656 | void computeForestDist(SNodeId Id1, SNodeId Id2) { |
| 657 | assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0." ); |
| 658 | SNodeId LMD1 = S1.getLeftMostDescendant(Id: Id1); |
| 659 | SNodeId LMD2 = S2.getLeftMostDescendant(Id: Id2); |
| 660 | |
| 661 | ForestDist[LMD1][LMD2] = 0; |
| 662 | for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { |
| 663 | ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; |
| 664 | for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { |
| 665 | ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; |
| 666 | SNodeId DLMD1 = S1.getLeftMostDescendant(Id: D1); |
| 667 | SNodeId DLMD2 = S2.getLeftMostDescendant(Id: D2); |
| 668 | if (DLMD1 == LMD1 && DLMD2 == LMD2) { |
| 669 | double UpdateCost = getUpdateCost(Id1: D1, Id2: D2); |
| 670 | ForestDist[D1][D2] = |
| 671 | std::min(l: {ForestDist[D1 - 1][D2] + DeletionCost, |
| 672 | ForestDist[D1][D2 - 1] + InsertionCost, |
| 673 | ForestDist[D1 - 1][D2 - 1] + UpdateCost}); |
| 674 | TreeDist[D1][D2] = ForestDist[D1][D2]; |
| 675 | } else { |
| 676 | ForestDist[D1][D2] = |
| 677 | std::min(l: {ForestDist[D1 - 1][D2] + DeletionCost, |
| 678 | ForestDist[D1][D2 - 1] + InsertionCost, |
| 679 | ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | } |
| 684 | }; |
| 685 | |
| 686 | ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); } |
| 687 | |
| 688 | StringRef Node::getTypeLabel() const { return getType().asStringRef(); } |
| 689 | |
| 690 | std::optional<std::string> Node::getQualifiedIdentifier() const { |
| 691 | if (auto *ND = ASTNode.get<NamedDecl>()) { |
| 692 | if (ND->getDeclName().isIdentifier()) |
| 693 | return ND->getQualifiedNameAsString(); |
| 694 | } |
| 695 | return std::nullopt; |
| 696 | } |
| 697 | |
| 698 | std::optional<StringRef> Node::getIdentifier() const { |
| 699 | if (auto *ND = ASTNode.get<NamedDecl>()) { |
| 700 | if (ND->getDeclName().isIdentifier()) |
| 701 | return ND->getName(); |
| 702 | } |
| 703 | return std::nullopt; |
| 704 | } |
| 705 | |
| 706 | namespace { |
| 707 | // Compares nodes by their depth. |
| 708 | struct HeightLess { |
| 709 | const SyntaxTree::Impl &Tree; |
| 710 | HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} |
| 711 | bool operator()(NodeId Id1, NodeId Id2) const { |
| 712 | return Tree.getNode(Id: Id1).Height < Tree.getNode(Id: Id2).Height; |
| 713 | } |
| 714 | }; |
| 715 | } // end anonymous namespace |
| 716 | |
| 717 | namespace { |
| 718 | // Priority queue for nodes, sorted descendingly by their height. |
| 719 | class PriorityList { |
| 720 | const SyntaxTree::Impl &Tree; |
| 721 | HeightLess Cmp; |
| 722 | std::vector<NodeId> Container; |
| 723 | PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; |
| 724 | |
| 725 | public: |
| 726 | PriorityList(const SyntaxTree::Impl &Tree) |
| 727 | : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} |
| 728 | |
| 729 | void push(NodeId id) { List.push(x: id); } |
| 730 | |
| 731 | std::vector<NodeId> pop() { |
| 732 | int Max = peekMax(); |
| 733 | std::vector<NodeId> Result; |
| 734 | if (Max == 0) |
| 735 | return Result; |
| 736 | while (peekMax() == Max) { |
| 737 | Result.push_back(x: List.top()); |
| 738 | List.pop(); |
| 739 | } |
| 740 | // TODO this is here to get a stable output, not a good heuristic |
| 741 | llvm::sort(C&: Result); |
| 742 | return Result; |
| 743 | } |
| 744 | int peekMax() const { |
| 745 | if (List.empty()) |
| 746 | return 0; |
| 747 | return Tree.getNode(Id: List.top()).Height; |
| 748 | } |
| 749 | void open(NodeId Id) { |
| 750 | for (NodeId Child : Tree.getNode(Id).Children) |
| 751 | push(id: Child); |
| 752 | } |
| 753 | }; |
| 754 | } // end anonymous namespace |
| 755 | |
| 756 | bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { |
| 757 | const Node &N1 = T1.getNode(Id: Id1); |
| 758 | const Node &N2 = T2.getNode(Id: Id2); |
| 759 | if (N1.Children.size() != N2.Children.size() || |
| 760 | !isMatchingPossible(Id1, Id2) || |
| 761 | T1.getNodeValue(Id: Id1) != T2.getNodeValue(Id: Id2)) |
| 762 | return false; |
| 763 | for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) |
| 764 | if (!identical(Id1: N1.Children[Id], Id2: N2.Children[Id])) |
| 765 | return false; |
| 766 | return true; |
| 767 | } |
| 768 | |
| 769 | bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { |
| 770 | return Options.isMatchingAllowed(N1: T1.getNode(Id: Id1), N2: T2.getNode(Id: Id2)); |
| 771 | } |
| 772 | |
| 773 | bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, |
| 774 | NodeId Id2) const { |
| 775 | NodeId P1 = T1.getNode(Id: Id1).Parent; |
| 776 | NodeId P2 = T2.getNode(Id: Id2).Parent; |
| 777 | return (P1.isInvalid() && P2.isInvalid()) || |
| 778 | (P1.isValid() && P2.isValid() && M.getDst(Src: P1) == P2); |
| 779 | } |
| 780 | |
| 781 | void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, |
| 782 | NodeId Id2) const { |
| 783 | if (std::max(a: T1.getNumberOfDescendants(Id: Id1), b: T2.getNumberOfDescendants(Id: Id2)) > |
| 784 | Options.MaxSize) |
| 785 | return; |
| 786 | ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); |
| 787 | std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); |
| 788 | for (const auto &Tuple : R) { |
| 789 | NodeId Src = Tuple.first; |
| 790 | NodeId Dst = Tuple.second; |
| 791 | if (!M.hasSrc(Src) && !M.hasDst(Dst)) |
| 792 | M.link(Src, Dst); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, |
| 797 | NodeId Id2) const { |
| 798 | int CommonDescendants = 0; |
| 799 | const Node &N1 = T1.getNode(Id: Id1); |
| 800 | // Count the common descendants, excluding the subtree root. |
| 801 | for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { |
| 802 | NodeId Dst = M.getDst(Src); |
| 803 | CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Id: Dst, SubtreeRoot: Id2)); |
| 804 | } |
| 805 | // We need to subtract 1 to get the number of descendants excluding the root. |
| 806 | double Denominator = T1.getNumberOfDescendants(Id: Id1) - 1 + |
| 807 | T2.getNumberOfDescendants(Id: Id2) - 1 - CommonDescendants; |
| 808 | // CommonDescendants is less than the size of one subtree. |
| 809 | assert(Denominator >= 0 && "Expected non-negative denominator." ); |
| 810 | if (Denominator == 0) |
| 811 | return 0; |
| 812 | return CommonDescendants / Denominator; |
| 813 | } |
| 814 | |
| 815 | NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { |
| 816 | NodeId Candidate; |
| 817 | double HighestSimilarity = 0.0; |
| 818 | for (NodeId Id2 : T2) { |
| 819 | if (!isMatchingPossible(Id1, Id2)) |
| 820 | continue; |
| 821 | if (M.hasDst(Dst: Id2)) |
| 822 | continue; |
| 823 | double Similarity = getJaccardSimilarity(M, Id1, Id2); |
| 824 | if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { |
| 825 | HighestSimilarity = Similarity; |
| 826 | Candidate = Id2; |
| 827 | } |
| 828 | } |
| 829 | return Candidate; |
| 830 | } |
| 831 | |
| 832 | void ASTDiff::Impl::matchBottomUp(Mapping &M) const { |
| 833 | std::vector<NodeId> Postorder = getSubtreePostorder(Tree: T1, Root: T1.getRootId()); |
| 834 | for (NodeId Id1 : Postorder) { |
| 835 | if (Id1 == T1.getRootId() && !M.hasSrc(Src: T1.getRootId()) && |
| 836 | !M.hasDst(Dst: T2.getRootId())) { |
| 837 | if (isMatchingPossible(Id1: T1.getRootId(), Id2: T2.getRootId())) { |
| 838 | M.link(Src: T1.getRootId(), Dst: T2.getRootId()); |
| 839 | addOptimalMapping(M, Id1: T1.getRootId(), Id2: T2.getRootId()); |
| 840 | } |
| 841 | break; |
| 842 | } |
| 843 | bool Matched = M.hasSrc(Src: Id1); |
| 844 | const Node &N1 = T1.getNode(Id: Id1); |
| 845 | bool MatchedChildren = llvm::any_of( |
| 846 | Range: N1.Children, P: [&](NodeId Child) { return M.hasSrc(Src: Child); }); |
| 847 | if (Matched || !MatchedChildren) |
| 848 | continue; |
| 849 | NodeId Id2 = findCandidate(M, Id1); |
| 850 | if (Id2.isValid()) { |
| 851 | M.link(Src: Id1, Dst: Id2); |
| 852 | addOptimalMapping(M, Id1, Id2); |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | Mapping ASTDiff::Impl::matchTopDown() const { |
| 858 | PriorityList L1(T1); |
| 859 | PriorityList L2(T2); |
| 860 | |
| 861 | Mapping M(T1.getSize() + T2.getSize()); |
| 862 | |
| 863 | L1.push(id: T1.getRootId()); |
| 864 | L2.push(id: T2.getRootId()); |
| 865 | |
| 866 | int Max1, Max2; |
| 867 | while (std::min(a: Max1 = L1.peekMax(), b: Max2 = L2.peekMax()) > |
| 868 | Options.MinHeight) { |
| 869 | if (Max1 > Max2) { |
| 870 | for (NodeId Id : L1.pop()) |
| 871 | L1.open(Id); |
| 872 | continue; |
| 873 | } |
| 874 | if (Max2 > Max1) { |
| 875 | for (NodeId Id : L2.pop()) |
| 876 | L2.open(Id); |
| 877 | continue; |
| 878 | } |
| 879 | std::vector<NodeId> H1, H2; |
| 880 | H1 = L1.pop(); |
| 881 | H2 = L2.pop(); |
| 882 | for (NodeId Id1 : H1) { |
| 883 | for (NodeId Id2 : H2) { |
| 884 | if (identical(Id1, Id2) && !M.hasSrc(Src: Id1) && !M.hasDst(Dst: Id2)) { |
| 885 | for (int I = 0, E = T1.getNumberOfDescendants(Id: Id1); I < E; ++I) |
| 886 | M.link(Src: Id1 + I, Dst: Id2 + I); |
| 887 | } |
| 888 | } |
| 889 | } |
| 890 | for (NodeId Id1 : H1) { |
| 891 | if (!M.hasSrc(Src: Id1)) |
| 892 | L1.open(Id: Id1); |
| 893 | } |
| 894 | for (NodeId Id2 : H2) { |
| 895 | if (!M.hasDst(Dst: Id2)) |
| 896 | L2.open(Id: Id2); |
| 897 | } |
| 898 | } |
| 899 | return M; |
| 900 | } |
| 901 | |
| 902 | ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, |
| 903 | const ComparisonOptions &Options) |
| 904 | : T1(T1), T2(T2), Options(Options) { |
| 905 | computeMapping(); |
| 906 | computeChangeKinds(M&: TheMapping); |
| 907 | } |
| 908 | |
| 909 | void ASTDiff::Impl::computeMapping() { |
| 910 | TheMapping = matchTopDown(); |
| 911 | if (Options.StopAfterTopDown) |
| 912 | return; |
| 913 | matchBottomUp(M&: TheMapping); |
| 914 | } |
| 915 | |
| 916 | void ASTDiff::Impl::computeChangeKinds(Mapping &M) { |
| 917 | for (NodeId Id1 : T1) { |
| 918 | if (!M.hasSrc(Src: Id1)) { |
| 919 | T1.getMutableNode(Id: Id1).Change = Delete; |
| 920 | T1.getMutableNode(Id: Id1).Shift -= 1; |
| 921 | } |
| 922 | } |
| 923 | for (NodeId Id2 : T2) { |
| 924 | if (!M.hasDst(Dst: Id2)) { |
| 925 | T2.getMutableNode(Id: Id2).Change = Insert; |
| 926 | T2.getMutableNode(Id: Id2).Shift -= 1; |
| 927 | } |
| 928 | } |
| 929 | for (NodeId Id1 : T1.NodesBfs) { |
| 930 | NodeId Id2 = M.getDst(Src: Id1); |
| 931 | if (Id2.isInvalid()) |
| 932 | continue; |
| 933 | if (!haveSameParents(M, Id1, Id2) || |
| 934 | T1.findPositionInParent(Id: Id1, Shifted: true) != |
| 935 | T2.findPositionInParent(Id: Id2, Shifted: true)) { |
| 936 | T1.getMutableNode(Id: Id1).Shift -= 1; |
| 937 | T2.getMutableNode(Id: Id2).Shift -= 1; |
| 938 | } |
| 939 | } |
| 940 | for (NodeId Id2 : T2.NodesBfs) { |
| 941 | NodeId Id1 = M.getSrc(Dst: Id2); |
| 942 | if (Id1.isInvalid()) |
| 943 | continue; |
| 944 | Node &N1 = T1.getMutableNode(Id: Id1); |
| 945 | Node &N2 = T2.getMutableNode(Id: Id2); |
| 946 | if (Id1.isInvalid()) |
| 947 | continue; |
| 948 | if (!haveSameParents(M, Id1, Id2) || |
| 949 | T1.findPositionInParent(Id: Id1, Shifted: true) != |
| 950 | T2.findPositionInParent(Id: Id2, Shifted: true)) { |
| 951 | N1.Change = N2.Change = Move; |
| 952 | } |
| 953 | if (T1.getNodeValue(Id: Id1) != T2.getNodeValue(Id: Id2)) { |
| 954 | N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); |
| 955 | } |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, |
| 960 | const ComparisonOptions &Options) |
| 961 | : DiffImpl(std::make_unique<Impl>(args&: *T1.TreeImpl, args&: *T2.TreeImpl, args: Options)) {} |
| 962 | |
| 963 | ASTDiff::~ASTDiff() = default; |
| 964 | |
| 965 | NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { |
| 966 | return DiffImpl->getMapped(Tree: SourceTree.TreeImpl, Id); |
| 967 | } |
| 968 | |
| 969 | SyntaxTree::SyntaxTree(ASTContext &AST) |
| 970 | : TreeImpl(std::make_unique<SyntaxTree::Impl>( |
| 971 | args: this, args: AST.getTranslationUnitDecl(), args&: AST)) {} |
| 972 | |
| 973 | SyntaxTree::~SyntaxTree() = default; |
| 974 | |
| 975 | const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } |
| 976 | |
| 977 | const Node &SyntaxTree::getNode(NodeId Id) const { |
| 978 | return TreeImpl->getNode(Id); |
| 979 | } |
| 980 | |
| 981 | int SyntaxTree::getSize() const { return TreeImpl->getSize(); } |
| 982 | NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } |
| 983 | SyntaxTree::PreorderIterator SyntaxTree::begin() const { |
| 984 | return TreeImpl->begin(); |
| 985 | } |
| 986 | SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } |
| 987 | |
| 988 | int SyntaxTree::findPositionInParent(NodeId Id) const { |
| 989 | return TreeImpl->findPositionInParent(Id); |
| 990 | } |
| 991 | |
| 992 | std::pair<unsigned, unsigned> |
| 993 | SyntaxTree::getSourceRangeOffsets(const Node &N) const { |
| 994 | const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); |
| 995 | SourceRange Range = N.ASTNode.getSourceRange(); |
| 996 | SourceLocation BeginLoc = Range.getBegin(); |
| 997 | SourceLocation EndLoc = Lexer::getLocForEndOfToken( |
| 998 | Loc: Range.getEnd(), /*Offset=*/0, SM: SrcMgr, LangOpts: TreeImpl->AST.getLangOpts()); |
| 999 | if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { |
| 1000 | if (ThisExpr->isImplicit()) |
| 1001 | EndLoc = BeginLoc; |
| 1002 | } |
| 1003 | unsigned Begin = SrcMgr.getFileOffset(SpellingLoc: SrcMgr.getExpansionLoc(Loc: BeginLoc)); |
| 1004 | unsigned End = SrcMgr.getFileOffset(SpellingLoc: SrcMgr.getExpansionLoc(Loc: EndLoc)); |
| 1005 | return {Begin, End}; |
| 1006 | } |
| 1007 | |
| 1008 | std::string SyntaxTree::getNodeValue(NodeId Id) const { |
| 1009 | return TreeImpl->getNodeValue(Id); |
| 1010 | } |
| 1011 | |
| 1012 | std::string SyntaxTree::getNodeValue(const Node &N) const { |
| 1013 | return TreeImpl->getNodeValue(N); |
| 1014 | } |
| 1015 | |
| 1016 | } // end namespace diff |
| 1017 | } // end namespace clang |
| 1018 | |