| 1 | //===-- String to float conversion utils ------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // ----------------------------------------------------------------------------- |
| 10 | // **** WARNING **** |
| 11 | // This file is shared with libc++. You should also be careful when adding |
| 12 | // dependencies to this file, since it needs to build for all libc++ targets. |
| 13 | // ----------------------------------------------------------------------------- |
| 14 | |
| 15 | #ifndef LLVM_LIBC_SRC___SUPPORT_STR_TO_FLOAT_H |
| 16 | #define LLVM_LIBC_SRC___SUPPORT_STR_TO_FLOAT_H |
| 17 | |
| 18 | #include "hdr/errno_macros.h" // For ERANGE |
| 19 | #include "src/__support/CPP/bit.h" |
| 20 | #include "src/__support/CPP/limits.h" |
| 21 | #include "src/__support/CPP/optional.h" |
| 22 | #include "src/__support/CPP/string_view.h" |
| 23 | #include "src/__support/FPUtil/FPBits.h" |
| 24 | #include "src/__support/FPUtil/rounding_mode.h" |
| 25 | #include "src/__support/common.h" |
| 26 | #include "src/__support/ctype_utils.h" |
| 27 | #include "src/__support/detailed_powers_of_ten.h" |
| 28 | #include "src/__support/high_precision_decimal.h" |
| 29 | #include "src/__support/macros/config.h" |
| 30 | #include "src/__support/macros/null_check.h" |
| 31 | #include "src/__support/macros/optimization.h" |
| 32 | #include "src/__support/str_to_integer.h" |
| 33 | #include "src/__support/str_to_num_result.h" |
| 34 | #include "src/__support/uint128.h" |
| 35 | |
| 36 | #include <stdint.h> |
| 37 | |
| 38 | namespace LIBC_NAMESPACE_DECL { |
| 39 | namespace internal { |
| 40 | |
| 41 | // ----------------------------------------------------------------------------- |
| 42 | // **** WARNING **** |
| 43 | // This interface is shared with libc++, if you change this interface you need |
| 44 | // to update it in both libc and libc++. |
| 45 | // ----------------------------------------------------------------------------- |
| 46 | template <class T> struct ExpandedFloat { |
| 47 | typename fputil::FPBits<T>::StorageType mantissa; |
| 48 | int32_t exponent; |
| 49 | }; |
| 50 | |
| 51 | // ----------------------------------------------------------------------------- |
| 52 | // **** WARNING **** |
| 53 | // This interface is shared with libc++, if you change this interface you need |
| 54 | // to update it in both libc and libc++. |
| 55 | // ----------------------------------------------------------------------------- |
| 56 | template <class T> struct FloatConvertReturn { |
| 57 | ExpandedFloat<T> num = {0, 0}; |
| 58 | int error = 0; |
| 59 | }; |
| 60 | |
| 61 | LIBC_INLINE uint64_t low64(const UInt128 &num) { |
| 62 | return static_cast<uint64_t>(num & 0xffffffffffffffff); |
| 63 | } |
| 64 | |
| 65 | LIBC_INLINE uint64_t high64(const UInt128 &num) { |
| 66 | return static_cast<uint64_t>(num >> 64); |
| 67 | } |
| 68 | |
| 69 | template <class T> LIBC_INLINE void set_implicit_bit(fputil::FPBits<T> &) { |
| 70 | return; |
| 71 | } |
| 72 | |
| 73 | #if defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
| 74 | template <> |
| 75 | LIBC_INLINE void |
| 76 | set_implicit_bit<long double>(fputil::FPBits<long double> &result) { |
| 77 | result.set_implicit_bit(result.get_biased_exponent() != 0); |
| 78 | } |
| 79 | #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| 80 | |
| 81 | // This Eisel-Lemire implementation is based on the algorithm described in the |
| 82 | // paper Number Parsing at a Gigabyte per Second, Software: Practice and |
| 83 | // Experience 51 (8), 2021 (https://arxiv.org/abs/2101.11408), as well as the |
| 84 | // description by Nigel Tao |
| 85 | // (https://nigeltao.github.io/blog/2020/eisel-lemire.html) and the golang |
| 86 | // implementation, also by Nigel Tao |
| 87 | // (https://github.com/golang/go/blob/release-branch.go1.16/src/strconv/eisel_lemire.go#L25) |
| 88 | // for some optimizations as well as handling 32 bit floats. |
| 89 | template <class T> |
| 90 | LIBC_INLINE cpp::optional<ExpandedFloat<T>> |
| 91 | eisel_lemire(ExpandedFloat<T> init_num, |
| 92 | RoundDirection round = RoundDirection::Nearest) { |
| 93 | using FPBits = typename fputil::FPBits<T>; |
| 94 | using StorageType = typename FPBits::StorageType; |
| 95 | |
| 96 | StorageType mantissa = init_num.mantissa; |
| 97 | int32_t exp10 = init_num.exponent; |
| 98 | |
| 99 | if (sizeof(T) > 8) { // This algorithm cannot handle anything longer than a |
| 100 | // double, so we skip straight to the fallback. |
| 101 | return cpp::nullopt; |
| 102 | } |
| 103 | |
| 104 | // Exp10 Range |
| 105 | if (exp10 < DETAILED_POWERS_OF_TEN_MIN_EXP_10 || |
| 106 | exp10 > DETAILED_POWERS_OF_TEN_MAX_EXP_10) { |
| 107 | return cpp::nullopt; |
| 108 | } |
| 109 | |
| 110 | // Normalization |
| 111 | uint32_t clz = static_cast<uint32_t>(cpp::countl_zero<StorageType>(mantissa)); |
| 112 | mantissa <<= clz; |
| 113 | |
| 114 | int32_t exp2 = exp10_to_exp2(exp10) + FPBits::STORAGE_LEN + FPBits::EXP_BIAS - |
| 115 | static_cast<int32_t>(clz); |
| 116 | |
| 117 | // Multiplication |
| 118 | const uint64_t *power_of_ten = |
| 119 | DETAILED_POWERS_OF_TEN[exp10 - DETAILED_POWERS_OF_TEN_MIN_EXP_10]; |
| 120 | |
| 121 | UInt128 first_approx = |
| 122 | static_cast<UInt128>(mantissa) * static_cast<UInt128>(power_of_ten[1]); |
| 123 | |
| 124 | // Wider Approximation |
| 125 | UInt128 final_approx; |
| 126 | // The halfway constant is used to check if the bits that will be shifted away |
| 127 | // intially are all 1. For doubles this is 64 (bitstype size) - 52 (final |
| 128 | // mantissa size) - 3 (we shift away the last two bits separately for |
| 129 | // accuracy, and the most significant bit is ignored.) = 9 bits. Similarly, |
| 130 | // it's 6 bits for floats in this case. |
| 131 | const uint64_t halfway_constant = |
| 132 | (uint64_t(1) << (FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3))) - 1; |
| 133 | if ((high64(num: first_approx) & halfway_constant) == halfway_constant && |
| 134 | low64(num: first_approx) + mantissa < mantissa) { |
| 135 | UInt128 low_bits = |
| 136 | static_cast<UInt128>(mantissa) * static_cast<UInt128>(power_of_ten[0]); |
| 137 | UInt128 second_approx = |
| 138 | first_approx + static_cast<UInt128>(high64(num: low_bits)); |
| 139 | |
| 140 | if ((high64(num: second_approx) & halfway_constant) == halfway_constant && |
| 141 | low64(num: second_approx) + 1 == 0 && |
| 142 | low64(num: low_bits) + mantissa < mantissa) { |
| 143 | return cpp::nullopt; |
| 144 | } |
| 145 | final_approx = second_approx; |
| 146 | } else { |
| 147 | final_approx = first_approx; |
| 148 | } |
| 149 | |
| 150 | // Shifting to 54 bits for doubles and 25 bits for floats |
| 151 | StorageType msb = static_cast<StorageType>(high64(num: final_approx) >> |
| 152 | (FPBits::STORAGE_LEN - 1)); |
| 153 | StorageType final_mantissa = static_cast<StorageType>( |
| 154 | high64(num: final_approx) >> |
| 155 | (msb + FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3))); |
| 156 | exp2 -= static_cast<uint32_t>(1 ^ msb); // same as !msb |
| 157 | |
| 158 | if (round == RoundDirection::Nearest) { |
| 159 | // Half-way ambiguity |
| 160 | if (low64(num: final_approx) == 0 && |
| 161 | (high64(num: final_approx) & halfway_constant) == 0 && |
| 162 | (final_mantissa & 3) == 1) { |
| 163 | return cpp::nullopt; |
| 164 | } |
| 165 | |
| 166 | // Round to even. |
| 167 | final_mantissa += final_mantissa & 1; |
| 168 | |
| 169 | } else if (round == RoundDirection::Up) { |
| 170 | // If any of the bits being rounded away are non-zero, then round up. |
| 171 | if (low64(num: final_approx) > 0 || |
| 172 | (high64(num: final_approx) & halfway_constant) > 0) { |
| 173 | // Add two since the last current lowest bit is about to be shifted away. |
| 174 | final_mantissa += 2; |
| 175 | } |
| 176 | } |
| 177 | // else round down, which has no effect. |
| 178 | |
| 179 | // From 54 to 53 bits for doubles and 25 to 24 bits for floats |
| 180 | final_mantissa >>= 1; |
| 181 | if ((final_mantissa >> (FPBits::FRACTION_LEN + 1)) > 0) { |
| 182 | final_mantissa >>= 1; |
| 183 | ++exp2; |
| 184 | } |
| 185 | |
| 186 | // The if block is equivalent to (but has fewer branches than): |
| 187 | // if exp2 <= 0 || exp2 >= 0x7FF { etc } |
| 188 | if (static_cast<uint32_t>(exp2) - 1 >= (1 << FPBits::EXP_LEN) - 2) { |
| 189 | return cpp::nullopt; |
| 190 | } |
| 191 | |
| 192 | ExpandedFloat<T> output; |
| 193 | output.mantissa = final_mantissa; |
| 194 | output.exponent = exp2; |
| 195 | return output; |
| 196 | } |
| 197 | |
| 198 | // TODO: Re-enable eisel-lemire for long double is double double once it's |
| 199 | // properly supported. |
| 200 | #if !defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) && \ |
| 201 | !defined(LIBC_TYPES_LONG_DOUBLE_IS_DOUBLE_DOUBLE) |
| 202 | template <> |
| 203 | LIBC_INLINE cpp::optional<ExpandedFloat<long double>> |
| 204 | eisel_lemire<long double>(ExpandedFloat<long double> init_num, |
| 205 | RoundDirection round) { |
| 206 | using FPBits = typename fputil::FPBits<long double>; |
| 207 | using StorageType = typename FPBits::StorageType; |
| 208 | |
| 209 | UInt128 mantissa = init_num.mantissa; |
| 210 | int32_t exp10 = init_num.exponent; |
| 211 | |
| 212 | // Exp10 Range |
| 213 | // This doesn't reach very far into the range for long doubles, since it's |
| 214 | // sized for doubles and their 11 exponent bits, and not for long doubles and |
| 215 | // their 15 exponent bits (max exponent of ~300 for double vs ~5000 for long |
| 216 | // double). This is a known tradeoff, and was made because a proper long |
| 217 | // double table would be approximately 16 times larger. This would have |
| 218 | // significant memory and storage costs all the time to speed up a relatively |
| 219 | // uncommon path. In addition the exp10_to_exp2 function only approximates |
| 220 | // multiplying by log(10)/log(2), and that approximation may not be accurate |
| 221 | // out to the full long double range. |
| 222 | if (exp10 < DETAILED_POWERS_OF_TEN_MIN_EXP_10 || |
| 223 | exp10 > DETAILED_POWERS_OF_TEN_MAX_EXP_10) { |
| 224 | return cpp::nullopt; |
| 225 | } |
| 226 | |
| 227 | // Normalization |
| 228 | int32_t clz = static_cast<int32_t>(cpp::countl_zero(value: mantissa)) - |
| 229 | ((sizeof(UInt128) - sizeof(StorageType)) * CHAR_BIT); |
| 230 | mantissa <<= clz; |
| 231 | |
| 232 | int32_t exp2 = |
| 233 | exp10_to_exp2(exp10) + FPBits::STORAGE_LEN + FPBits::EXP_BIAS - clz; |
| 234 | |
| 235 | // Multiplication |
| 236 | const uint64_t *power_of_ten = |
| 237 | DETAILED_POWERS_OF_TEN[exp10 - DETAILED_POWERS_OF_TEN_MIN_EXP_10]; |
| 238 | |
| 239 | // Since the input mantissa is more than 64 bits, we have to multiply with the |
| 240 | // full 128 bits of the power of ten to get an approximation with the same |
| 241 | // number of significant bits. This means that we only get the one |
| 242 | // approximation, and that approximation is 256 bits long. |
| 243 | UInt128 approx_upper = static_cast<UInt128>(high64(num: mantissa)) * |
| 244 | static_cast<UInt128>(power_of_ten[1]); |
| 245 | |
| 246 | UInt128 approx_middle_a = static_cast<UInt128>(high64(num: mantissa)) * |
| 247 | static_cast<UInt128>(power_of_ten[0]); |
| 248 | UInt128 approx_middle_b = static_cast<UInt128>(low64(num: mantissa)) * |
| 249 | static_cast<UInt128>(power_of_ten[1]); |
| 250 | |
| 251 | UInt128 approx_middle = approx_middle_a + approx_middle_b; |
| 252 | |
| 253 | // Handle overflow in the middle |
| 254 | approx_upper += (approx_middle < approx_middle_a) ? UInt128(1) << 64 : 0; |
| 255 | |
| 256 | UInt128 approx_lower = static_cast<UInt128>(low64(num: mantissa)) * |
| 257 | static_cast<UInt128>(power_of_ten[0]); |
| 258 | |
| 259 | UInt128 final_approx_lower = |
| 260 | approx_lower + (static_cast<UInt128>(low64(num: approx_middle)) << 64); |
| 261 | UInt128 final_approx_upper = approx_upper + high64(num: approx_middle) + |
| 262 | (final_approx_lower < approx_lower ? 1 : 0); |
| 263 | |
| 264 | // The halfway constant is used to check if the bits that will be shifted away |
| 265 | // intially are all 1. For 80 bit floats this is 128 (bitstype size) - 64 |
| 266 | // (final mantissa size) - 3 (we shift away the last two bits separately for |
| 267 | // accuracy, and the most significant bit is ignored.) = 61 bits. Similarly, |
| 268 | // it's 12 bits for 128 bit floats in this case. |
| 269 | constexpr UInt128 HALFWAY_CONSTANT = |
| 270 | (UInt128(1) << (FPBits::STORAGE_LEN - (FPBits::FRACTION_LEN + 3))) - 1; |
| 271 | |
| 272 | if ((final_approx_upper & HALFWAY_CONSTANT) == HALFWAY_CONSTANT && |
| 273 | final_approx_lower + mantissa < mantissa) { |
| 274 | return cpp::nullopt; |
| 275 | } |
| 276 | |
| 277 | // Shifting to 65 bits for 80 bit floats and 113 bits for 128 bit floats |
| 278 | uint32_t msb = |
| 279 | static_cast<uint32_t>(final_approx_upper >> (FPBits::STORAGE_LEN - 1)); |
| 280 | UInt128 final_mantissa = final_approx_upper >> (msb + FPBits::STORAGE_LEN - |
| 281 | (FPBits::FRACTION_LEN + 3)); |
| 282 | exp2 -= static_cast<uint32_t>(1 ^ msb); // same as !msb |
| 283 | |
| 284 | if (round == RoundDirection::Nearest) { |
| 285 | // Half-way ambiguity |
| 286 | if (final_approx_lower == 0 && |
| 287 | (final_approx_upper & HALFWAY_CONSTANT) == 0 && |
| 288 | (final_mantissa & 3) == 1) { |
| 289 | return cpp::nullopt; |
| 290 | } |
| 291 | // Round to even. |
| 292 | final_mantissa += final_mantissa & 1; |
| 293 | |
| 294 | } else if (round == RoundDirection::Up) { |
| 295 | // If any of the bits being rounded away are non-zero, then round up. |
| 296 | if (final_approx_lower > 0 || (final_approx_upper & HALFWAY_CONSTANT) > 0) { |
| 297 | // Add two since the last current lowest bit is about to be shifted away. |
| 298 | final_mantissa += 2; |
| 299 | } |
| 300 | } |
| 301 | // else round down, which has no effect. |
| 302 | |
| 303 | // From 65 to 64 bits for 80 bit floats and 113 to 112 bits for 128 bit |
| 304 | // floats |
| 305 | final_mantissa >>= 1; |
| 306 | if ((final_mantissa >> (FPBits::FRACTION_LEN + 1)) > 0) { |
| 307 | final_mantissa >>= 1; |
| 308 | ++exp2; |
| 309 | } |
| 310 | |
| 311 | // The if block is equivalent to (but has fewer branches than): |
| 312 | // if exp2 <= 0 || exp2 >= MANTISSA_MAX { etc } |
| 313 | if (exp2 - 1 >= (1 << FPBits::EXP_LEN) - 2) { |
| 314 | return cpp::nullopt; |
| 315 | } |
| 316 | |
| 317 | ExpandedFloat<long double> output; |
| 318 | output.mantissa = static_cast<StorageType>(final_mantissa); |
| 319 | output.exponent = exp2; |
| 320 | return output; |
| 321 | } |
| 322 | #endif // !defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) && |
| 323 | // !defined(LIBC_TYPES_LONG_DOUBLE_IS_DOUBLE_DOUBLE) |
| 324 | |
| 325 | // The nth item in POWERS_OF_TWO represents the greatest power of two less than |
| 326 | // 10^n. This tells us how much we can safely shift without overshooting. |
| 327 | constexpr uint8_t POWERS_OF_TWO[19] = { |
| 328 | 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59, |
| 329 | }; |
| 330 | constexpr int32_t NUM_POWERS_OF_TWO = |
| 331 | sizeof(POWERS_OF_TWO) / sizeof(POWERS_OF_TWO[0]); |
| 332 | |
| 333 | // Takes a mantissa and base 10 exponent and converts it into its closest |
| 334 | // floating point type T equivalent. This is the fallback algorithm used when |
| 335 | // the Eisel-Lemire algorithm fails, it's slower but more accurate. It's based |
| 336 | // on the Simple Decimal Conversion algorithm by Nigel Tao, described at this |
| 337 | // link: https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html |
| 338 | template <class T> |
| 339 | LIBC_INLINE FloatConvertReturn<T> simple_decimal_conversion( |
| 340 | const char *__restrict numStart, |
| 341 | const size_t num_len = cpp::numeric_limits<size_t>::max(), |
| 342 | RoundDirection round = RoundDirection::Nearest) { |
| 343 | using FPBits = typename fputil::FPBits<T>; |
| 344 | using StorageType = typename FPBits::StorageType; |
| 345 | |
| 346 | int32_t exp2 = 0; |
| 347 | HighPrecisionDecimal hpd = HighPrecisionDecimal(numStart, num_len); |
| 348 | |
| 349 | FloatConvertReturn<T> output; |
| 350 | |
| 351 | if (hpd.get_num_digits() == 0) { |
| 352 | output.num = {0, 0}; |
| 353 | return output; |
| 354 | } |
| 355 | |
| 356 | // If the exponent is too large and can't be represented in this size of |
| 357 | // float, return inf. |
| 358 | if (hpd.get_decimal_point() > 0 && |
| 359 | exp10_to_exp2(exp10: hpd.get_decimal_point() - 1) > FPBits::EXP_BIAS) { |
| 360 | output.num = {0, fputil::FPBits<T>::MAX_BIASED_EXPONENT}; |
| 361 | output.error = ERANGE; |
| 362 | return output; |
| 363 | } |
| 364 | // If the exponent is too small even for a subnormal, return 0. |
| 365 | if (hpd.get_decimal_point() < 0 && |
| 366 | exp10_to_exp2(exp10: -hpd.get_decimal_point()) > |
| 367 | (FPBits::EXP_BIAS + static_cast<int32_t>(FPBits::FRACTION_LEN))) { |
| 368 | output.num = {0, 0}; |
| 369 | output.error = ERANGE; |
| 370 | return output; |
| 371 | } |
| 372 | |
| 373 | // Right shift until the number is smaller than 1. |
| 374 | while (hpd.get_decimal_point() > 0) { |
| 375 | int32_t shift_amount = 0; |
| 376 | if (hpd.get_decimal_point() >= NUM_POWERS_OF_TWO) { |
| 377 | shift_amount = 60; |
| 378 | } else { |
| 379 | shift_amount = POWERS_OF_TWO[hpd.get_decimal_point()]; |
| 380 | } |
| 381 | exp2 += shift_amount; |
| 382 | hpd.shift(shift_amount: -shift_amount); |
| 383 | } |
| 384 | |
| 385 | // Left shift until the number is between 1/2 and 1 |
| 386 | while (hpd.get_decimal_point() < 0 || |
| 387 | (hpd.get_decimal_point() == 0 && hpd.get_digits()[0] < 5)) { |
| 388 | int32_t shift_amount = 0; |
| 389 | |
| 390 | if (-hpd.get_decimal_point() >= NUM_POWERS_OF_TWO) { |
| 391 | shift_amount = 60; |
| 392 | } else if (hpd.get_decimal_point() != 0) { |
| 393 | shift_amount = POWERS_OF_TWO[-hpd.get_decimal_point()]; |
| 394 | } else { // This handles the case of the number being between .1 and .5 |
| 395 | shift_amount = 1; |
| 396 | } |
| 397 | exp2 -= shift_amount; |
| 398 | hpd.shift(shift_amount); |
| 399 | } |
| 400 | |
| 401 | // Left shift once so that the number is between 1 and 2 |
| 402 | --exp2; |
| 403 | hpd.shift(shift_amount: 1); |
| 404 | |
| 405 | // Get the biased exponent |
| 406 | exp2 += FPBits::EXP_BIAS; |
| 407 | |
| 408 | // Handle the exponent being too large (and return inf). |
| 409 | if (exp2 >= FPBits::MAX_BIASED_EXPONENT) { |
| 410 | output.num = {0, FPBits::MAX_BIASED_EXPONENT}; |
| 411 | output.error = ERANGE; |
| 412 | return output; |
| 413 | } |
| 414 | |
| 415 | // Shift left to fill the mantissa |
| 416 | hpd.shift(shift_amount: FPBits::FRACTION_LEN); |
| 417 | StorageType final_mantissa = hpd.round_to_integer_type<StorageType>(); |
| 418 | |
| 419 | // Handle subnormals |
| 420 | if (exp2 <= 0) { |
| 421 | // Shift right until there is a valid exponent |
| 422 | while (exp2 < 0) { |
| 423 | hpd.shift(shift_amount: -1); |
| 424 | ++exp2; |
| 425 | } |
| 426 | // Shift right one more time to compensate for the left shift to get it |
| 427 | // between 1 and 2. |
| 428 | hpd.shift(shift_amount: -1); |
| 429 | final_mantissa = hpd.round_to_integer_type<StorageType>(round); |
| 430 | |
| 431 | // Check if by shifting right we've caused this to round to a normal number. |
| 432 | if ((final_mantissa >> FPBits::FRACTION_LEN) != 0) { |
| 433 | ++exp2; |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | // Check if rounding added a bit, and shift down if that's the case. |
| 438 | if (final_mantissa == StorageType(2) << FPBits::FRACTION_LEN) { |
| 439 | final_mantissa >>= 1; |
| 440 | ++exp2; |
| 441 | |
| 442 | // Check if this rounding causes exp2 to go out of range and make the result |
| 443 | // INF. If this is the case, then finalMantissa and exp2 are already the |
| 444 | // correct values for an INF result. |
| 445 | if (exp2 >= FPBits::MAX_BIASED_EXPONENT) { |
| 446 | output.error = ERANGE; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | if (exp2 == 0) { |
| 451 | output.error = ERANGE; |
| 452 | } |
| 453 | |
| 454 | output.num = {final_mantissa, exp2}; |
| 455 | return output; |
| 456 | } |
| 457 | |
| 458 | // This class is used for templating the constants for Clinger's Fast Path, |
| 459 | // described as a method of approximation in |
| 460 | // Clinger WD. How to Read Floating Point Numbers Accurately. SIGPLAN Not 1990 |
| 461 | // Jun;25(6):92–101. https://doi.org/10.1145/93548.93557. |
| 462 | // As well as the additions by Gay that extend the useful range by the number of |
| 463 | // exact digits stored by the float type, described in |
| 464 | // Gay DM, Correctly rounded binary-decimal and decimal-binary conversions; |
| 465 | // 1990. AT&T Bell Laboratories Numerical Analysis Manuscript 90-10. |
| 466 | template <class T> class ClingerConsts; |
| 467 | |
| 468 | template <> class ClingerConsts<float> { |
| 469 | public: |
| 470 | static constexpr float POWERS_OF_TEN_ARRAY[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, |
| 471 | 1e6, 1e7, 1e8, 1e9, 1e10}; |
| 472 | static constexpr int32_t EXACT_POWERS_OF_TEN = 10; |
| 473 | static constexpr int32_t DIGITS_IN_MANTISSA = 7; |
| 474 | static constexpr float MAX_EXACT_INT = 16777215.0; |
| 475 | }; |
| 476 | |
| 477 | template <> class ClingerConsts<double> { |
| 478 | public: |
| 479 | static constexpr double POWERS_OF_TEN_ARRAY[] = { |
| 480 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
| 481 | 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
| 482 | static constexpr int32_t EXACT_POWERS_OF_TEN = 22; |
| 483 | static constexpr int32_t DIGITS_IN_MANTISSA = 15; |
| 484 | static constexpr double MAX_EXACT_INT = 9007199254740991.0; |
| 485 | }; |
| 486 | |
| 487 | #if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) |
| 488 | template <> class ClingerConsts<long double> { |
| 489 | public: |
| 490 | static constexpr long double POWERS_OF_TEN_ARRAY[] = { |
| 491 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
| 492 | 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
| 493 | static constexpr int32_t EXACT_POWERS_OF_TEN = |
| 494 | ClingerConsts<double>::EXACT_POWERS_OF_TEN; |
| 495 | static constexpr int32_t DIGITS_IN_MANTISSA = |
| 496 | ClingerConsts<double>::DIGITS_IN_MANTISSA; |
| 497 | static constexpr long double MAX_EXACT_INT = |
| 498 | ClingerConsts<double>::MAX_EXACT_INT; |
| 499 | }; |
| 500 | #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
| 501 | template <> class ClingerConsts<long double> { |
| 502 | public: |
| 503 | static constexpr long double POWERS_OF_TEN_ARRAY[] = { |
| 504 | 1e0L, 1e1L, 1e2L, 1e3L, 1e4L, 1e5L, 1e6L, 1e7L, 1e8L, 1e9L, |
| 505 | 1e10L, 1e11L, 1e12L, 1e13L, 1e14L, 1e15L, 1e16L, 1e17L, 1e18L, 1e19L, |
| 506 | 1e20L, 1e21L, 1e22L, 1e23L, 1e24L, 1e25L, 1e26L, 1e27L}; |
| 507 | static constexpr int32_t EXACT_POWERS_OF_TEN = 27; |
| 508 | static constexpr int32_t DIGITS_IN_MANTISSA = 21; |
| 509 | static constexpr long double MAX_EXACT_INT = 18446744073709551615.0L; |
| 510 | }; |
| 511 | #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT128) |
| 512 | template <> class ClingerConsts<long double> { |
| 513 | public: |
| 514 | static constexpr long double POWERS_OF_TEN_ARRAY[] = { |
| 515 | 1e0L, 1e1L, 1e2L, 1e3L, 1e4L, 1e5L, 1e6L, 1e7L, 1e8L, 1e9L, |
| 516 | 1e10L, 1e11L, 1e12L, 1e13L, 1e14L, 1e15L, 1e16L, 1e17L, 1e18L, 1e19L, |
| 517 | 1e20L, 1e21L, 1e22L, 1e23L, 1e24L, 1e25L, 1e26L, 1e27L, 1e28L, 1e29L, |
| 518 | 1e30L, 1e31L, 1e32L, 1e33L, 1e34L, 1e35L, 1e36L, 1e37L, 1e38L, 1e39L, |
| 519 | 1e40L, 1e41L, 1e42L, 1e43L, 1e44L, 1e45L, 1e46L, 1e47L, 1e48L}; |
| 520 | static constexpr int32_t EXACT_POWERS_OF_TEN = 48; |
| 521 | static constexpr int32_t DIGITS_IN_MANTISSA = 33; |
| 522 | static constexpr long double MAX_EXACT_INT = |
| 523 | 10384593717069655257060992658440191.0L; |
| 524 | }; |
| 525 | #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_DOUBLE_DOUBLE) |
| 526 | // TODO: Add proper double double type support here, currently using constants |
| 527 | // for double since it should be safe. |
| 528 | template <> class ClingerConsts<long double> { |
| 529 | public: |
| 530 | static constexpr double POWERS_OF_TEN_ARRAY[] = { |
| 531 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
| 532 | 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
| 533 | static constexpr int32_t EXACT_POWERS_OF_TEN = 22; |
| 534 | static constexpr int32_t DIGITS_IN_MANTISSA = 15; |
| 535 | static constexpr double MAX_EXACT_INT = 9007199254740991.0; |
| 536 | }; |
| 537 | #else |
| 538 | #error "Unknown long double type" |
| 539 | #endif |
| 540 | |
| 541 | // Take an exact mantissa and exponent and attempt to convert it using only |
| 542 | // exact floating point arithmetic. This only handles numbers with low |
| 543 | // exponents, but handles them quickly. This is an implementation of Clinger's |
| 544 | // Fast Path, as described above. |
| 545 | template <class T> |
| 546 | LIBC_INLINE cpp::optional<ExpandedFloat<T>> |
| 547 | clinger_fast_path(ExpandedFloat<T> init_num, |
| 548 | RoundDirection round = RoundDirection::Nearest) { |
| 549 | using FPBits = typename fputil::FPBits<T>; |
| 550 | using StorageType = typename FPBits::StorageType; |
| 551 | |
| 552 | StorageType mantissa = init_num.mantissa; |
| 553 | int32_t exp10 = init_num.exponent; |
| 554 | |
| 555 | if ((mantissa >> FPBits::FRACTION_LEN) > 0) { |
| 556 | return cpp::nullopt; |
| 557 | } |
| 558 | |
| 559 | FPBits result; |
| 560 | T float_mantissa; |
| 561 | if constexpr (is_big_int_v<StorageType> || sizeof(T) > sizeof(uint64_t)) { |
| 562 | float_mantissa = |
| 563 | (static_cast<T>(uint64_t(mantissa >> 64)) * static_cast<T>(0x1.0p64)) + |
| 564 | static_cast<T>(uint64_t(mantissa)); |
| 565 | } else { |
| 566 | float_mantissa = static_cast<T>(mantissa); |
| 567 | } |
| 568 | |
| 569 | if (exp10 == 0) { |
| 570 | result = FPBits(float_mantissa); |
| 571 | } |
| 572 | if (exp10 > 0) { |
| 573 | if (exp10 > ClingerConsts<T>::EXACT_POWERS_OF_TEN + |
| 574 | ClingerConsts<T>::DIGITS_IN_MANTISSA) { |
| 575 | return cpp::nullopt; |
| 576 | } |
| 577 | if (exp10 > ClingerConsts<T>::EXACT_POWERS_OF_TEN) { |
| 578 | float_mantissa = float_mantissa * |
| 579 | ClingerConsts<T>::POWERS_OF_TEN_ARRAY |
| 580 | [exp10 - ClingerConsts<T>::EXACT_POWERS_OF_TEN]; |
| 581 | exp10 = ClingerConsts<T>::EXACT_POWERS_OF_TEN; |
| 582 | } |
| 583 | if (float_mantissa > ClingerConsts<T>::MAX_EXACT_INT) { |
| 584 | return cpp::nullopt; |
| 585 | } |
| 586 | result = |
| 587 | FPBits(float_mantissa * ClingerConsts<T>::POWERS_OF_TEN_ARRAY[exp10]); |
| 588 | } else if (exp10 < 0) { |
| 589 | if (-exp10 > ClingerConsts<T>::EXACT_POWERS_OF_TEN) { |
| 590 | return cpp::nullopt; |
| 591 | } |
| 592 | result = |
| 593 | FPBits(float_mantissa / ClingerConsts<T>::POWERS_OF_TEN_ARRAY[-exp10]); |
| 594 | } |
| 595 | |
| 596 | // If the rounding mode is not nearest, then the sign of the number may affect |
| 597 | // the result. To make sure the rounding mode is respected properly, the |
| 598 | // calculation is redone with a negative result, and the rounding mode is used |
| 599 | // to select the correct result. |
| 600 | if (round != RoundDirection::Nearest) { |
| 601 | FPBits negative_result; |
| 602 | // I'm 99% sure this will break under fast math optimizations. |
| 603 | negative_result = FPBits((-float_mantissa) * |
| 604 | ClingerConsts<T>::POWERS_OF_TEN_ARRAY[exp10]); |
| 605 | |
| 606 | // If the results are equal, then we don't need to use the rounding mode. |
| 607 | if (result.get_val() != -negative_result.get_val()) { |
| 608 | FPBits lower_result; |
| 609 | FPBits higher_result; |
| 610 | |
| 611 | if (result.get_val() < -negative_result.get_val()) { |
| 612 | lower_result = result; |
| 613 | higher_result = negative_result; |
| 614 | } else { |
| 615 | lower_result = negative_result; |
| 616 | higher_result = result; |
| 617 | } |
| 618 | |
| 619 | if (round == RoundDirection::Up) { |
| 620 | result = higher_result; |
| 621 | } else { |
| 622 | result = lower_result; |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | ExpandedFloat<T> output; |
| 628 | output.mantissa = result.get_explicit_mantissa(); |
| 629 | output.exponent = result.get_biased_exponent(); |
| 630 | return output; |
| 631 | } |
| 632 | |
| 633 | // The upper bound is the highest base-10 exponent that could possibly give a |
| 634 | // non-inf result for this size of float. The value is |
| 635 | // log10(2^(exponent bias)). |
| 636 | // The generic approximation uses the fact that log10(2^x) ~= x/3 |
| 637 | template <typename T> LIBC_INLINE constexpr int32_t get_upper_bound() { |
| 638 | return fputil::FPBits<T>::EXP_BIAS / 3; |
| 639 | } |
| 640 | |
| 641 | template <> LIBC_INLINE constexpr int32_t get_upper_bound<float>() { |
| 642 | return 39; |
| 643 | } |
| 644 | |
| 645 | template <> LIBC_INLINE constexpr int32_t get_upper_bound<double>() { |
| 646 | return 309; |
| 647 | } |
| 648 | |
| 649 | // The lower bound is the largest negative base-10 exponent that could possibly |
| 650 | // give a non-zero result for this size of float. The value is |
| 651 | // log10(2^(exponent bias + final mantissa width + intermediate mantissa width)) |
| 652 | // The intermediate mantissa is the integer that's been parsed from the string, |
| 653 | // and the final mantissa is the fractional part of the output number. A very |
| 654 | // low base 10 exponent with a very high intermediate mantissa can cancel each |
| 655 | // other out, and subnormal numbers allow for the result to be at the very low |
| 656 | // end of the final mantissa. |
| 657 | template <typename T> LIBC_INLINE constexpr int32_t get_lower_bound() { |
| 658 | using FPBits = typename fputil::FPBits<T>; |
| 659 | return -((FPBits::EXP_BIAS + |
| 660 | static_cast<int32_t>(FPBits::FRACTION_LEN + FPBits::STORAGE_LEN)) / |
| 661 | 3); |
| 662 | } |
| 663 | |
| 664 | template <> LIBC_INLINE constexpr int32_t get_lower_bound<float>() { |
| 665 | return -(39 + 6 + 10); |
| 666 | } |
| 667 | |
| 668 | template <> LIBC_INLINE constexpr int32_t get_lower_bound<double>() { |
| 669 | return -(309 + 15 + 20); |
| 670 | } |
| 671 | |
| 672 | // ----------------------------------------------------------------------------- |
| 673 | // **** WARNING **** |
| 674 | // This interface is shared with libc++, if you change this interface you need |
| 675 | // to update it in both libc and libc++. |
| 676 | // ----------------------------------------------------------------------------- |
| 677 | // Takes a mantissa and base 10 exponent and converts it into its closest |
| 678 | // floating point type T equivalient. First we try the Eisel-Lemire algorithm, |
| 679 | // then if that fails then we fall back to a more accurate algorithm for |
| 680 | // accuracy. The resulting mantissa and exponent are placed in outputMantissa |
| 681 | // and outputExp2. |
| 682 | template <class T> |
| 683 | LIBC_INLINE FloatConvertReturn<T> decimal_exp_to_float( |
| 684 | ExpandedFloat<T> init_num, bool truncated, RoundDirection round, |
| 685 | const char *__restrict numStart, |
| 686 | const size_t num_len = cpp::numeric_limits<size_t>::max()) { |
| 687 | using FPBits = typename fputil::FPBits<T>; |
| 688 | using StorageType = typename FPBits::StorageType; |
| 689 | |
| 690 | StorageType mantissa = init_num.mantissa; |
| 691 | int32_t exp10 = init_num.exponent; |
| 692 | |
| 693 | FloatConvertReturn<T> output; |
| 694 | cpp::optional<ExpandedFloat<T>> opt_output; |
| 695 | |
| 696 | // If the exponent is too large and can't be represented in this size of |
| 697 | // float, return inf. These bounds are relatively loose, but are mostly |
| 698 | // serving as a first pass. Some close numbers getting through is okay. |
| 699 | if (exp10 > get_upper_bound<T>()) { |
| 700 | output.num = {0, FPBits::MAX_BIASED_EXPONENT}; |
| 701 | output.error = ERANGE; |
| 702 | return output; |
| 703 | } |
| 704 | // If the exponent is too small even for a subnormal, return 0. |
| 705 | if (exp10 < get_lower_bound<T>()) { |
| 706 | output.num = {0, 0}; |
| 707 | output.error = ERANGE; |
| 708 | return output; |
| 709 | } |
| 710 | |
| 711 | // Clinger's Fast Path and Eisel-Lemire can't set errno, but they can fail. |
| 712 | // For this reason the "error" field in their return values is used to |
| 713 | // represent whether they've failed as opposed to the errno value. Any |
| 714 | // non-zero value represents a failure. |
| 715 | |
| 716 | #ifndef LIBC_COPT_STRTOFLOAT_DISABLE_CLINGER_FAST_PATH |
| 717 | if (!truncated) { |
| 718 | opt_output = clinger_fast_path<T>(init_num, round); |
| 719 | // If the algorithm succeeded the error will be 0, else it will be a |
| 720 | // non-zero number. |
| 721 | if (opt_output.has_value()) { |
| 722 | return {opt_output.value(), 0}; |
| 723 | } |
| 724 | } |
| 725 | #endif // LIBC_COPT_STRTOFLOAT_DISABLE_CLINGER_FAST_PATH |
| 726 | |
| 727 | #ifndef LIBC_COPT_STRTOFLOAT_DISABLE_EISEL_LEMIRE |
| 728 | // Try Eisel-Lemire |
| 729 | opt_output = eisel_lemire<T>(init_num, round); |
| 730 | if (opt_output.has_value()) { |
| 731 | if (!truncated) { |
| 732 | return {opt_output.value(), 0}; |
| 733 | } |
| 734 | // If the mantissa is truncated, then the result may be off by the LSB, so |
| 735 | // check if rounding the mantissa up changes the result. If not, then it's |
| 736 | // safe, else use the fallback. |
| 737 | auto second_output = eisel_lemire<T>({mantissa + 1, exp10}, round); |
| 738 | if (second_output.has_value()) { |
| 739 | if (opt_output->mantissa == second_output->mantissa && |
| 740 | opt_output->exponent == second_output->exponent) { |
| 741 | return {opt_output.value(), 0}; |
| 742 | } |
| 743 | } |
| 744 | } |
| 745 | #endif // LIBC_COPT_STRTOFLOAT_DISABLE_EISEL_LEMIRE |
| 746 | |
| 747 | #ifndef LIBC_COPT_STRTOFLOAT_DISABLE_SIMPLE_DECIMAL_CONVERSION |
| 748 | output = simple_decimal_conversion<T>(numStart, num_len, round); |
| 749 | #else |
| 750 | #warning "Simple decimal conversion is disabled, result may not be correct." |
| 751 | #endif // LIBC_COPT_STRTOFLOAT_DISABLE_SIMPLE_DECIMAL_CONVERSION |
| 752 | |
| 753 | return output; |
| 754 | } |
| 755 | |
| 756 | // ----------------------------------------------------------------------------- |
| 757 | // **** WARNING **** |
| 758 | // This interface is shared with libc++, if you change this interface you need |
| 759 | // to update it in both libc and libc++. |
| 760 | // ----------------------------------------------------------------------------- |
| 761 | // Takes a mantissa and base 2 exponent and converts it into its closest |
| 762 | // floating point type T equivalient. Since the exponent is already in the right |
| 763 | // form, this is mostly just shifting and rounding. This is used for hexadecimal |
| 764 | // numbers since a base 16 exponent multiplied by 4 is the base 2 exponent. |
| 765 | template <class T> |
| 766 | LIBC_INLINE FloatConvertReturn<T> binary_exp_to_float(ExpandedFloat<T> init_num, |
| 767 | bool truncated, |
| 768 | RoundDirection round) { |
| 769 | using FPBits = typename fputil::FPBits<T>; |
| 770 | using StorageType = typename FPBits::StorageType; |
| 771 | |
| 772 | StorageType mantissa = init_num.mantissa; |
| 773 | int32_t exp2 = init_num.exponent; |
| 774 | |
| 775 | FloatConvertReturn<T> output; |
| 776 | |
| 777 | // This is the number of leading zeroes a properly normalized float of type T |
| 778 | // should have. |
| 779 | constexpr int32_t INF_EXP = (1 << FPBits::EXP_LEN) - 1; |
| 780 | |
| 781 | // Normalization step 1: Bring the leading bit to the highest bit of |
| 782 | // StorageType. |
| 783 | uint32_t amount_to_shift_left = cpp::countl_zero<StorageType>(mantissa); |
| 784 | mantissa <<= amount_to_shift_left; |
| 785 | |
| 786 | // Keep exp2 representing the exponent of the lowest bit of StorageType. |
| 787 | exp2 -= amount_to_shift_left; |
| 788 | |
| 789 | // biased_exponent represents the biased exponent of the most significant bit. |
| 790 | int32_t biased_exponent = exp2 + FPBits::STORAGE_LEN + FPBits::EXP_BIAS - 1; |
| 791 | |
| 792 | // Handle numbers that're too large and get squashed to inf |
| 793 | if (biased_exponent >= INF_EXP) { |
| 794 | // This indicates an overflow, so we make the result INF and set errno. |
| 795 | output.num = {0, (1 << FPBits::EXP_LEN) - 1}; |
| 796 | output.error = ERANGE; |
| 797 | return output; |
| 798 | } |
| 799 | |
| 800 | uint32_t amount_to_shift_right = |
| 801 | FPBits::STORAGE_LEN - FPBits::FRACTION_LEN - 1; |
| 802 | |
| 803 | // Handle subnormals. |
| 804 | if (biased_exponent <= 0) { |
| 805 | amount_to_shift_right += static_cast<uint32_t>(1 - biased_exponent); |
| 806 | biased_exponent = 0; |
| 807 | |
| 808 | if (amount_to_shift_right > FPBits::STORAGE_LEN) { |
| 809 | // Return 0 if the exponent is too small. |
| 810 | output.num = {0, 0}; |
| 811 | output.error = ERANGE; |
| 812 | return output; |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | StorageType round_bit_mask = StorageType(1) << (amount_to_shift_right - 1); |
| 817 | StorageType sticky_mask = round_bit_mask - 1; |
| 818 | bool round_bit = static_cast<bool>(mantissa & round_bit_mask); |
| 819 | bool sticky_bit = static_cast<bool>(mantissa & sticky_mask) || truncated; |
| 820 | |
| 821 | if (amount_to_shift_right < FPBits::STORAGE_LEN) { |
| 822 | // Shift the mantissa and clear the implicit bit. |
| 823 | mantissa >>= amount_to_shift_right; |
| 824 | mantissa &= FPBits::FRACTION_MASK; |
| 825 | } else { |
| 826 | mantissa = 0; |
| 827 | } |
| 828 | bool least_significant_bit = static_cast<bool>(mantissa & StorageType(1)); |
| 829 | |
| 830 | // TODO: check that this rounding behavior is correct. |
| 831 | |
| 832 | if (round == RoundDirection::Nearest) { |
| 833 | // Perform rounding-to-nearest, tie-to-even. |
| 834 | if (round_bit && (least_significant_bit || sticky_bit)) { |
| 835 | ++mantissa; |
| 836 | } |
| 837 | } else if (round == RoundDirection::Up) { |
| 838 | if (round_bit || sticky_bit) { |
| 839 | ++mantissa; |
| 840 | } |
| 841 | } else /* (round == RoundDirection::Down)*/ { |
| 842 | if (round_bit && sticky_bit) { |
| 843 | ++mantissa; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | if (mantissa > FPBits::FRACTION_MASK) { |
| 848 | // Rounding causes the exponent to increase. |
| 849 | ++biased_exponent; |
| 850 | |
| 851 | if (biased_exponent == INF_EXP) { |
| 852 | output.error = ERANGE; |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | if (biased_exponent == 0) { |
| 857 | output.error = ERANGE; |
| 858 | } |
| 859 | |
| 860 | output.num = {mantissa & FPBits::FRACTION_MASK, biased_exponent}; |
| 861 | return output; |
| 862 | } |
| 863 | |
| 864 | // checks if the next 4 characters of the string pointer are the start of a |
| 865 | // hexadecimal floating point number. Does not advance the string pointer. |
| 866 | LIBC_INLINE bool is_float_hex_start(const char *__restrict src, |
| 867 | const char decimalPoint) { |
| 868 | if (!(src[0] == '0' && tolower(ch: src[1]) == 'x')) { |
| 869 | return false; |
| 870 | } |
| 871 | size_t first_digit = 2; |
| 872 | if (src[2] == decimalPoint) { |
| 873 | ++first_digit; |
| 874 | } |
| 875 | return isalnum(ch: src[first_digit]) && b36_char_to_int(ch: src[first_digit]) < 16; |
| 876 | } |
| 877 | |
| 878 | // Takes the start of a string representing a decimal float, as well as the |
| 879 | // local decimalPoint. It returns if it suceeded in parsing any digits, and if |
| 880 | // the return value is true then the outputs are pointer to the end of the |
| 881 | // number, and the mantissa and exponent for the closest float T representation. |
| 882 | // If the return value is false, then it is assumed that there is no number |
| 883 | // here. |
| 884 | template <class T> |
| 885 | LIBC_INLINE StrToNumResult<ExpandedFloat<T>> |
| 886 | decimal_string_to_float(const char *__restrict src, const char DECIMAL_POINT, |
| 887 | RoundDirection round) { |
| 888 | using FPBits = typename fputil::FPBits<T>; |
| 889 | using StorageType = typename FPBits::StorageType; |
| 890 | |
| 891 | constexpr uint32_t BASE = 10; |
| 892 | constexpr char EXPONENT_MARKER = 'e'; |
| 893 | |
| 894 | bool truncated = false; |
| 895 | bool seen_digit = false; |
| 896 | bool after_decimal = false; |
| 897 | StorageType mantissa = 0; |
| 898 | int32_t exponent = 0; |
| 899 | |
| 900 | size_t index = 0; |
| 901 | |
| 902 | StrToNumResult<ExpandedFloat<T>> output({0, 0}); |
| 903 | |
| 904 | // The goal for the first step of parsing is to convert the number in src to |
| 905 | // the format mantissa * (base ^ exponent) |
| 906 | |
| 907 | // The loop fills the mantissa with as many digits as it can hold |
| 908 | const StorageType bitstype_max_div_by_base = |
| 909 | cpp::numeric_limits<StorageType>::max() / BASE; |
| 910 | while (true) { |
| 911 | if (isdigit(ch: src[index])) { |
| 912 | uint32_t digit = static_cast<uint32_t>(b36_char_to_int(ch: src[index])); |
| 913 | seen_digit = true; |
| 914 | |
| 915 | if (mantissa < bitstype_max_div_by_base) { |
| 916 | mantissa = (mantissa * BASE) + digit; |
| 917 | if (after_decimal) { |
| 918 | --exponent; |
| 919 | } |
| 920 | } else { |
| 921 | if (digit > 0) |
| 922 | truncated = true; |
| 923 | if (!after_decimal) |
| 924 | ++exponent; |
| 925 | } |
| 926 | |
| 927 | ++index; |
| 928 | continue; |
| 929 | } |
| 930 | if (src[index] == DECIMAL_POINT) { |
| 931 | if (after_decimal) { |
| 932 | break; // this means that src[index] points to a second decimal point, |
| 933 | // ending the number. |
| 934 | } |
| 935 | after_decimal = true; |
| 936 | ++index; |
| 937 | continue; |
| 938 | } |
| 939 | // The character is neither a digit nor a decimal point. |
| 940 | break; |
| 941 | } |
| 942 | |
| 943 | if (!seen_digit) |
| 944 | return output; |
| 945 | |
| 946 | // TODO: When adding max length argument, handle the case of a trailing |
| 947 | // EXPONENT MARKER, see scanf for more details. |
| 948 | if (tolower(ch: src[index]) == EXPONENT_MARKER) { |
| 949 | bool has_sign = false; |
| 950 | if (src[index + 1] == '+' || src[index + 1] == '-') { |
| 951 | has_sign = true; |
| 952 | } |
| 953 | if (isdigit(ch: src[index + 1 + static_cast<size_t>(has_sign)])) { |
| 954 | ++index; |
| 955 | auto result = strtointeger<int32_t>(src: src + index, base: 10); |
| 956 | if (result.has_error()) |
| 957 | output.error = result.error; |
| 958 | int32_t add_to_exponent = result.value; |
| 959 | index += static_cast<size_t>(result.parsed_len); |
| 960 | |
| 961 | // Here we do this operation as int64 to avoid overflow. |
| 962 | int64_t temp_exponent = static_cast<int64_t>(exponent) + |
| 963 | static_cast<int64_t>(add_to_exponent); |
| 964 | |
| 965 | // If the result is in the valid range, then we use it. The valid range is |
| 966 | // also within the int32 range, so this prevents overflow issues. |
| 967 | if (temp_exponent > FPBits::MAX_BIASED_EXPONENT) { |
| 968 | exponent = FPBits::MAX_BIASED_EXPONENT; |
| 969 | } else if (temp_exponent < -FPBits::MAX_BIASED_EXPONENT) { |
| 970 | exponent = -FPBits::MAX_BIASED_EXPONENT; |
| 971 | } else { |
| 972 | exponent = static_cast<int32_t>(temp_exponent); |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | output.parsed_len = index; |
| 978 | if (mantissa == 0) { // if we have a 0, then also 0 the exponent. |
| 979 | output.value = {0, 0}; |
| 980 | } else { |
| 981 | auto temp = |
| 982 | decimal_exp_to_float<T>({mantissa, exponent}, truncated, round, src); |
| 983 | output.value = temp.num; |
| 984 | output.error = temp.error; |
| 985 | } |
| 986 | return output; |
| 987 | } |
| 988 | |
| 989 | // Takes the start of a string representing a hexadecimal float, as well as the |
| 990 | // local decimal point. It returns if it suceeded in parsing any digits, and if |
| 991 | // the return value is true then the outputs are pointer to the end of the |
| 992 | // number, and the mantissa and exponent for the closest float T representation. |
| 993 | // If the return value is false, then it is assumed that there is no number |
| 994 | // here. |
| 995 | template <class T> |
| 996 | LIBC_INLINE StrToNumResult<ExpandedFloat<T>> |
| 997 | hexadecimal_string_to_float(const char *__restrict src, |
| 998 | const char DECIMAL_POINT, RoundDirection round) { |
| 999 | using FPBits = typename fputil::FPBits<T>; |
| 1000 | using StorageType = typename FPBits::StorageType; |
| 1001 | |
| 1002 | constexpr uint32_t BASE = 16; |
| 1003 | constexpr char EXPONENT_MARKER = 'p'; |
| 1004 | |
| 1005 | bool truncated = false; |
| 1006 | bool seen_digit = false; |
| 1007 | bool after_decimal = false; |
| 1008 | StorageType mantissa = 0; |
| 1009 | int32_t exponent = 0; |
| 1010 | |
| 1011 | size_t index = 0; |
| 1012 | |
| 1013 | StrToNumResult<ExpandedFloat<T>> output({0, 0}); |
| 1014 | |
| 1015 | // The goal for the first step of parsing is to convert the number in src to |
| 1016 | // the format mantissa * (base ^ exponent) |
| 1017 | |
| 1018 | // The loop fills the mantissa with as many digits as it can hold |
| 1019 | const StorageType bitstype_max_div_by_base = |
| 1020 | cpp::numeric_limits<StorageType>::max() / BASE; |
| 1021 | while (true) { |
| 1022 | if (isalnum(ch: src[index])) { |
| 1023 | uint32_t digit = static_cast<uint32_t>(b36_char_to_int(ch: src[index])); |
| 1024 | if (digit < BASE) |
| 1025 | seen_digit = true; |
| 1026 | else |
| 1027 | break; |
| 1028 | |
| 1029 | if (mantissa < bitstype_max_div_by_base) { |
| 1030 | mantissa = (mantissa * BASE) + digit; |
| 1031 | if (after_decimal) |
| 1032 | --exponent; |
| 1033 | } else { |
| 1034 | if (digit > 0) |
| 1035 | truncated = true; |
| 1036 | if (!after_decimal) |
| 1037 | ++exponent; |
| 1038 | } |
| 1039 | ++index; |
| 1040 | continue; |
| 1041 | } |
| 1042 | if (src[index] == DECIMAL_POINT) { |
| 1043 | if (after_decimal) { |
| 1044 | break; // this means that src[index] points to a second decimal point, |
| 1045 | // ending the number. |
| 1046 | } |
| 1047 | after_decimal = true; |
| 1048 | ++index; |
| 1049 | continue; |
| 1050 | } |
| 1051 | // The character is neither a hexadecimal digit nor a decimal point. |
| 1052 | break; |
| 1053 | } |
| 1054 | |
| 1055 | if (!seen_digit) |
| 1056 | return output; |
| 1057 | |
| 1058 | // Convert the exponent from having a base of 16 to having a base of 2. |
| 1059 | exponent *= 4; |
| 1060 | |
| 1061 | if (tolower(ch: src[index]) == EXPONENT_MARKER) { |
| 1062 | bool has_sign = false; |
| 1063 | if (src[index + 1] == '+' || src[index + 1] == '-') { |
| 1064 | has_sign = true; |
| 1065 | } |
| 1066 | if (isdigit(ch: src[index + 1 + static_cast<size_t>(has_sign)])) { |
| 1067 | ++index; |
| 1068 | auto result = strtointeger<int32_t>(src: src + index, base: 10); |
| 1069 | if (result.has_error()) |
| 1070 | output.error = result.error; |
| 1071 | |
| 1072 | int32_t add_to_exponent = result.value; |
| 1073 | index += static_cast<size_t>(result.parsed_len); |
| 1074 | |
| 1075 | // Here we do this operation as int64 to avoid overflow. |
| 1076 | int64_t temp_exponent = static_cast<int64_t>(exponent) + |
| 1077 | static_cast<int64_t>(add_to_exponent); |
| 1078 | |
| 1079 | // If the result is in the valid range, then we use it. The valid range is |
| 1080 | // also within the int32 range, so this prevents overflow issues. |
| 1081 | if (temp_exponent > FPBits::MAX_BIASED_EXPONENT) { |
| 1082 | exponent = FPBits::MAX_BIASED_EXPONENT; |
| 1083 | } else if (temp_exponent < -FPBits::MAX_BIASED_EXPONENT) { |
| 1084 | exponent = -FPBits::MAX_BIASED_EXPONENT; |
| 1085 | } else { |
| 1086 | exponent = static_cast<int32_t>(temp_exponent); |
| 1087 | } |
| 1088 | } |
| 1089 | } |
| 1090 | output.parsed_len = index; |
| 1091 | if (mantissa == 0) { // if we have a 0, then also 0 the exponent. |
| 1092 | output.value.exponent = 0; |
| 1093 | output.value.mantissa = 0; |
| 1094 | } else { |
| 1095 | auto temp = binary_exp_to_float<T>({mantissa, exponent}, truncated, round); |
| 1096 | output.error = temp.error; |
| 1097 | output.value = temp.num; |
| 1098 | } |
| 1099 | return output; |
| 1100 | } |
| 1101 | |
| 1102 | template <class T> |
| 1103 | LIBC_INLINE typename fputil::FPBits<T>::StorageType |
| 1104 | nan_mantissa_from_ncharseq(const cpp::string_view ncharseq) { |
| 1105 | using FPBits = typename fputil::FPBits<T>; |
| 1106 | using StorageType = typename FPBits::StorageType; |
| 1107 | |
| 1108 | StorageType nan_mantissa = 0; |
| 1109 | |
| 1110 | if (ncharseq.data() != nullptr && isdigit(ch: ncharseq[0])) { |
| 1111 | StrToNumResult<StorageType> strtoint_result = |
| 1112 | strtointeger<StorageType>(ncharseq.data(), 0); |
| 1113 | if (!strtoint_result.has_error()) |
| 1114 | nan_mantissa = strtoint_result.value; |
| 1115 | |
| 1116 | if (strtoint_result.parsed_len != static_cast<ptrdiff_t>(ncharseq.size())) |
| 1117 | nan_mantissa = 0; |
| 1118 | } |
| 1119 | |
| 1120 | return nan_mantissa; |
| 1121 | } |
| 1122 | |
| 1123 | // Takes a pointer to a string and a pointer to a string pointer. This function |
| 1124 | // is used as the backend for all of the string to float functions. |
| 1125 | // TODO: Add src_len member to match strtointeger. |
| 1126 | // TODO: Next, move from char* and length to string_view |
| 1127 | template <class T> |
| 1128 | LIBC_INLINE StrToNumResult<T> strtofloatingpoint(const char *__restrict src) { |
| 1129 | using FPBits = typename fputil::FPBits<T>; |
| 1130 | using StorageType = typename FPBits::StorageType; |
| 1131 | |
| 1132 | FPBits result = FPBits(); |
| 1133 | bool seen_digit = false; |
| 1134 | char sign = '+'; |
| 1135 | |
| 1136 | int error = 0; |
| 1137 | |
| 1138 | size_t index = static_cast<size_t>(first_non_whitespace(src) - src); |
| 1139 | |
| 1140 | if (src[index] == '+' || src[index] == '-') { |
| 1141 | sign = src[index]; |
| 1142 | ++index; |
| 1143 | } |
| 1144 | |
| 1145 | if (sign == '-') { |
| 1146 | result.set_sign(Sign::NEG); |
| 1147 | } |
| 1148 | |
| 1149 | static constexpr char DECIMAL_POINT = '.'; |
| 1150 | static const char *inf_string = "infinity" ; |
| 1151 | static const char *nan_string = "nan" ; |
| 1152 | |
| 1153 | if (isdigit(ch: src[index]) || src[index] == DECIMAL_POINT) { // regular number |
| 1154 | int base = 10; |
| 1155 | if (is_float_hex_start(src: src + index, decimalPoint: DECIMAL_POINT)) { |
| 1156 | base = 16; |
| 1157 | index += 2; |
| 1158 | seen_digit = true; |
| 1159 | } |
| 1160 | |
| 1161 | RoundDirection round_direction = RoundDirection::Nearest; |
| 1162 | |
| 1163 | switch (fputil::quick_get_round()) { |
| 1164 | case FE_TONEAREST: |
| 1165 | round_direction = RoundDirection::Nearest; |
| 1166 | break; |
| 1167 | case FE_UPWARD: |
| 1168 | if (sign == '+') { |
| 1169 | round_direction = RoundDirection::Up; |
| 1170 | } else { |
| 1171 | round_direction = RoundDirection::Down; |
| 1172 | } |
| 1173 | break; |
| 1174 | case FE_DOWNWARD: |
| 1175 | if (sign == '+') { |
| 1176 | round_direction = RoundDirection::Down; |
| 1177 | } else { |
| 1178 | round_direction = RoundDirection::Up; |
| 1179 | } |
| 1180 | break; |
| 1181 | case FE_TOWARDZERO: |
| 1182 | round_direction = RoundDirection::Down; |
| 1183 | break; |
| 1184 | } |
| 1185 | |
| 1186 | StrToNumResult<ExpandedFloat<T>> parse_result({0, 0}); |
| 1187 | if (base == 16) { |
| 1188 | parse_result = hexadecimal_string_to_float<T>(src + index, DECIMAL_POINT, |
| 1189 | round_direction); |
| 1190 | } else { // base is 10 |
| 1191 | parse_result = decimal_string_to_float<T>(src + index, DECIMAL_POINT, |
| 1192 | round_direction); |
| 1193 | } |
| 1194 | seen_digit = parse_result.parsed_len != 0; |
| 1195 | result.set_mantissa(parse_result.value.mantissa); |
| 1196 | result.set_biased_exponent(parse_result.value.exponent); |
| 1197 | index += parse_result.parsed_len; |
| 1198 | error = parse_result.error; |
| 1199 | } else if (tolower(ch: src[index]) == 'n') { // NaN |
| 1200 | if (tolower(ch: src[index + 1]) == nan_string[1] && |
| 1201 | tolower(ch: src[index + 2]) == nan_string[2]) { |
| 1202 | seen_digit = true; |
| 1203 | index += 3; |
| 1204 | StorageType nan_mantissa = 0; |
| 1205 | // this handles the case of `NaN(n-character-sequence)`, where the |
| 1206 | // n-character-sequence is made of 0 or more letters, numbers, or |
| 1207 | // underscore characters in any order. |
| 1208 | if (src[index] == '(') { |
| 1209 | size_t left_paren = index; |
| 1210 | ++index; |
| 1211 | while (isalnum(ch: src[index]) || src[index] == '_') |
| 1212 | ++index; |
| 1213 | if (src[index] == ')') { |
| 1214 | ++index; |
| 1215 | nan_mantissa = nan_mantissa_from_ncharseq<T>( |
| 1216 | cpp::string_view(src + (left_paren + 1), index - left_paren - 2)); |
| 1217 | } else { |
| 1218 | index = left_paren; |
| 1219 | } |
| 1220 | } |
| 1221 | result = FPBits(result.quiet_nan(result.sign(), nan_mantissa)); |
| 1222 | } |
| 1223 | } else if (tolower(ch: src[index]) == 'i') { // INF |
| 1224 | if (tolower(ch: src[index + 1]) == inf_string[1] && |
| 1225 | tolower(ch: src[index + 2]) == inf_string[2]) { |
| 1226 | seen_digit = true; |
| 1227 | result = FPBits(result.inf(result.sign())); |
| 1228 | if (tolower(ch: src[index + 3]) == inf_string[3] && |
| 1229 | tolower(ch: src[index + 4]) == inf_string[4] && |
| 1230 | tolower(ch: src[index + 5]) == inf_string[5] && |
| 1231 | tolower(ch: src[index + 6]) == inf_string[6] && |
| 1232 | tolower(ch: src[index + 7]) == inf_string[7]) { |
| 1233 | // if the string is "INFINITY" then consume 8 characters. |
| 1234 | index += 8; |
| 1235 | } else { |
| 1236 | index += 3; |
| 1237 | } |
| 1238 | } |
| 1239 | } |
| 1240 | if (!seen_digit) { // If there is nothing to actually parse, then return 0. |
| 1241 | return {T(0), 0, error}; |
| 1242 | } |
| 1243 | |
| 1244 | // This function only does something if T is long double and the platform uses |
| 1245 | // special 80 bit long doubles. Otherwise it should be inlined out. |
| 1246 | set_implicit_bit<T>(result); |
| 1247 | |
| 1248 | return {result.get_val(), static_cast<ptrdiff_t>(index), error}; |
| 1249 | } |
| 1250 | |
| 1251 | template <class T> LIBC_INLINE StrToNumResult<T> strtonan(const char *arg) { |
| 1252 | using FPBits = typename fputil::FPBits<T>; |
| 1253 | using StorageType = typename FPBits::StorageType; |
| 1254 | |
| 1255 | LIBC_CRASH_ON_NULLPTR(arg); |
| 1256 | |
| 1257 | FPBits result; |
| 1258 | int error = 0; |
| 1259 | StorageType nan_mantissa = 0; |
| 1260 | |
| 1261 | ptrdiff_t index = 0; |
| 1262 | while (isalnum(ch: arg[index]) || arg[index] == '_') |
| 1263 | ++index; |
| 1264 | |
| 1265 | if (arg[index] == '\0') |
| 1266 | nan_mantissa = nan_mantissa_from_ncharseq<T>(cpp::string_view(arg, index)); |
| 1267 | |
| 1268 | result = FPBits::quiet_nan(Sign::POS, nan_mantissa); |
| 1269 | return {result.get_val(), 0, error}; |
| 1270 | } |
| 1271 | |
| 1272 | } // namespace internal |
| 1273 | } // namespace LIBC_NAMESPACE_DECL |
| 1274 | |
| 1275 | #endif // LLVM_LIBC_SRC___SUPPORT_STR_TO_FLOAT_H |
| 1276 | |