1 | //===- InputFiles.cpp -----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "InputFiles.h" |
10 | #include "COFFLinkerContext.h" |
11 | #include "Chunks.h" |
12 | #include "Config.h" |
13 | #include "DebugTypes.h" |
14 | #include "Driver.h" |
15 | #include "SymbolTable.h" |
16 | #include "Symbols.h" |
17 | #include "lld/Common/DWARF.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/Twine.h" |
20 | #include "llvm/BinaryFormat/COFF.h" |
21 | #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" |
22 | #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" |
23 | #include "llvm/DebugInfo/CodeView/SymbolRecord.h" |
24 | #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" |
25 | #include "llvm/DebugInfo/PDB/Native/NativeSession.h" |
26 | #include "llvm/DebugInfo/PDB/Native/PDBFile.h" |
27 | #include "llvm/IR/Mangler.h" |
28 | #include "llvm/LTO/LTO.h" |
29 | #include "llvm/Object/Binary.h" |
30 | #include "llvm/Object/COFF.h" |
31 | #include "llvm/Object/COFFImportFile.h" |
32 | #include "llvm/Support/Casting.h" |
33 | #include "llvm/Support/Endian.h" |
34 | #include "llvm/Support/Error.h" |
35 | #include "llvm/Support/FileSystem.h" |
36 | #include "llvm/Support/Path.h" |
37 | #include "llvm/TargetParser/Triple.h" |
38 | #include <cstring> |
39 | #include <optional> |
40 | #include <utility> |
41 | |
42 | using namespace llvm; |
43 | using namespace llvm::COFF; |
44 | using namespace llvm::codeview; |
45 | using namespace llvm::object; |
46 | using namespace llvm::support::endian; |
47 | using namespace lld; |
48 | using namespace lld::coff; |
49 | |
50 | using llvm::Triple; |
51 | using llvm::support::ulittle32_t; |
52 | |
53 | // Returns the last element of a path, which is supposed to be a filename. |
54 | static StringRef getBasename(StringRef path) { |
55 | return sys::path::filename(path, style: sys::path::Style::windows); |
56 | } |
57 | |
58 | // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". |
59 | std::string lld::toString(const coff::InputFile *file) { |
60 | if (!file) |
61 | return "<internal>" ; |
62 | if (file->parentName.empty()) |
63 | return std::string(file->getName()); |
64 | |
65 | return (getBasename(path: file->parentName) + "(" + getBasename(path: file->getName()) + |
66 | ")" ) |
67 | .str(); |
68 | } |
69 | |
70 | const COFFSyncStream &coff::operator<<(const COFFSyncStream &s, |
71 | const InputFile *f) { |
72 | return s << toString(file: f); |
73 | } |
74 | |
75 | /// Checks that Source is compatible with being a weak alias to Target. |
76 | /// If Source is Undefined and has no weak alias set, makes it a weak |
77 | /// alias to Target. |
78 | static void checkAndSetWeakAlias(SymbolTable &symtab, InputFile *f, |
79 | Symbol *source, Symbol *target, |
80 | bool isAntiDep) { |
81 | if (auto *u = dyn_cast<Undefined>(Val: source)) { |
82 | if (u->weakAlias && u->weakAlias != target) { |
83 | // Ignore duplicated anti-dependency symbols. |
84 | if (isAntiDep) |
85 | return; |
86 | if (!u->isAntiDep) { |
87 | // Weak aliases as produced by GCC are named in the form |
88 | // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name |
89 | // of another symbol emitted near the weak symbol. |
90 | // Just use the definition from the first object file that defined |
91 | // this weak symbol. |
92 | if (symtab.ctx.config.allowDuplicateWeak) |
93 | return; |
94 | symtab.reportDuplicate(existing: source, newFile: f); |
95 | } |
96 | } |
97 | u->setWeakAlias(sym: target, antiDep: isAntiDep); |
98 | } |
99 | } |
100 | |
101 | static bool ignoredSymbolName(StringRef name) { |
102 | return name == "@feat.00" || name == "@comp.id" ; |
103 | } |
104 | |
105 | static coff_symbol_generic *cloneSymbol(COFFSymbolRef sym) { |
106 | if (sym.isBigObj()) { |
107 | auto *copy = make<coff_symbol32>( |
108 | args: *reinterpret_cast<const coff_symbol32 *>(sym.getRawPtr())); |
109 | return reinterpret_cast<coff_symbol_generic *>(copy); |
110 | } else { |
111 | auto *copy = make<coff_symbol16>( |
112 | args: *reinterpret_cast<const coff_symbol16 *>(sym.getRawPtr())); |
113 | return reinterpret_cast<coff_symbol_generic *>(copy); |
114 | } |
115 | } |
116 | |
117 | // Skip importing DllMain thunks from import libraries. |
118 | static bool fixupDllMain(COFFLinkerContext &ctx, llvm::object::Archive *file, |
119 | const Archive::Symbol &sym, bool &skipDllMain) { |
120 | if (skipDllMain) |
121 | return true; |
122 | const Archive::Child &c = |
123 | CHECK(sym.getMember(), file->getFileName() + |
124 | ": could not get the member for symbol " + |
125 | toCOFFString(ctx, sym)); |
126 | MemoryBufferRef mb = |
127 | CHECK(c.getMemoryBufferRef(), |
128 | file->getFileName() + |
129 | ": could not get the buffer for a child buffer of the archive" ); |
130 | if (identify_magic(magic: mb.getBuffer()) == file_magic::coff_import_library) { |
131 | if (ctx.config.warnExportedDllMain) { |
132 | // We won't place DllMain symbols in the symbol table if they are |
133 | // coming from a import library. This message can be ignored with the flag |
134 | // '/ignore:exporteddllmain' |
135 | Warn(ctx) |
136 | << file->getFileName() |
137 | << ": skipping exported DllMain symbol [exporteddllmain]\nNOTE: this " |
138 | "might be a mistake when the DLL/library was produced." ; |
139 | } |
140 | skipDllMain = true; |
141 | return true; |
142 | } |
143 | return false; |
144 | } |
145 | |
146 | ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
147 | : InputFile(ctx.symtab, ArchiveKind, m) {} |
148 | |
149 | void ArchiveFile::parse() { |
150 | COFFLinkerContext &ctx = symtab.ctx; |
151 | SymbolTable *archiveSymtab = &symtab; |
152 | |
153 | // Parse a MemoryBufferRef as an archive file. |
154 | file = CHECK(Archive::create(mb), this); |
155 | |
156 | // Try to read symbols from ECSYMBOLS section on ARM64EC. |
157 | if (ctx.symtab.isEC()) { |
158 | iterator_range<Archive::symbol_iterator> symbols = |
159 | CHECK(file->ec_symbols(), this); |
160 | if (!symbols.empty()) { |
161 | for (const Archive::Symbol &sym : symbols) |
162 | ctx.symtab.addLazyArchive(f: this, sym); |
163 | |
164 | // Read both EC and native symbols on ARM64X. |
165 | archiveSymtab = &*ctx.hybridSymtab; |
166 | } else { |
167 | // If the ECSYMBOLS section is missing in the archive, the archive could |
168 | // be either a native-only ARM64 or x86_64 archive. Check the machine type |
169 | // of the object containing a symbol to determine which symbol table to |
170 | // use. |
171 | Archive::symbol_iterator sym = file->symbol_begin(); |
172 | if (sym != file->symbol_end()) { |
173 | MachineTypes machine = IMAGE_FILE_MACHINE_UNKNOWN; |
174 | Archive::Child child = |
175 | CHECK(sym->getMember(), |
176 | file->getFileName() + |
177 | ": could not get the buffer for a child of the archive" ); |
178 | MemoryBufferRef mb = CHECK( |
179 | child.getMemoryBufferRef(), |
180 | file->getFileName() + |
181 | ": could not get the buffer for a child buffer of the archive" ); |
182 | switch (identify_magic(magic: mb.getBuffer())) { |
183 | case file_magic::coff_object: { |
184 | std::unique_ptr<COFFObjectFile> obj = |
185 | CHECK(COFFObjectFile::create(mb), |
186 | check(child.getName()) + ":" + ": not a valid COFF file" ); |
187 | machine = MachineTypes(obj->getMachine()); |
188 | break; |
189 | } |
190 | case file_magic::coff_import_library: |
191 | machine = MachineTypes(COFFImportFile(mb).getMachine()); |
192 | break; |
193 | case file_magic::bitcode: { |
194 | std::unique_ptr<lto::InputFile> obj = |
195 | check(e: lto::InputFile::create(Object: mb)); |
196 | machine = BitcodeFile::getMachineType(obj: obj.get()); |
197 | break; |
198 | } |
199 | default: |
200 | break; |
201 | } |
202 | archiveSymtab = &ctx.getSymtab(machine); |
203 | } |
204 | } |
205 | } |
206 | |
207 | // Read the symbol table to construct Lazy objects. |
208 | bool skipDllMain = false; |
209 | for (const Archive::Symbol &sym : file->symbols()) { |
210 | // If the DllMain symbol was exported by mistake, skip importing it |
211 | // otherwise we might end up with a import thunk in the final binary which |
212 | // is wrong. |
213 | if (sym.getName() == "__imp_DllMain" || sym.getName() == "DllMain" ) { |
214 | if (fixupDllMain(ctx, file: file.get(), sym, skipDllMain)) |
215 | continue; |
216 | } |
217 | archiveSymtab->addLazyArchive(f: this, sym); |
218 | } |
219 | } |
220 | |
221 | // Returns a buffer pointing to a member file containing a given symbol. |
222 | void ArchiveFile::addMember(const Archive::Symbol &sym) { |
223 | const Archive::Child &c = |
224 | CHECK(sym.getMember(), "could not get the member for symbol " + |
225 | toCOFFString(symtab.ctx, sym)); |
226 | |
227 | // Return an empty buffer if we have already returned the same buffer. |
228 | // FIXME: Remove this once we resolve all defineds before all undefineds in |
229 | // ObjFile::initializeSymbols(). |
230 | if (!seen.insert(V: c.getChildOffset()).second) |
231 | return; |
232 | |
233 | symtab.ctx.driver.enqueueArchiveMember(c, sym, parentName: getName()); |
234 | } |
235 | |
236 | std::vector<MemoryBufferRef> |
237 | lld::coff::getArchiveMembers(COFFLinkerContext &ctx, Archive *file) { |
238 | std::vector<MemoryBufferRef> v; |
239 | Error err = Error::success(); |
240 | |
241 | // Thin archives refer to .o files, so --reproduces needs the .o files too. |
242 | bool addToTar = file->isThin() && ctx.driver.tar; |
243 | |
244 | for (const Archive::Child &c : file->children(Err&: err)) { |
245 | MemoryBufferRef mbref = |
246 | CHECK(c.getMemoryBufferRef(), |
247 | file->getFileName() + |
248 | ": could not get the buffer for a child of the archive" ); |
249 | if (addToTar) { |
250 | ctx.driver.tar->append(Path: relativeToRoot(path: check(e: c.getFullName())), |
251 | Data: mbref.getBuffer()); |
252 | } |
253 | v.push_back(x: mbref); |
254 | } |
255 | if (err) |
256 | Fatal(ctx) << file->getFileName() |
257 | << ": Archive::children failed: " << toString(E: std::move(err)); |
258 | return v; |
259 | } |
260 | |
261 | ObjFile::ObjFile(SymbolTable &symtab, COFFObjectFile *coffObj, bool lazy) |
262 | : InputFile(symtab, ObjectKind, coffObj->getMemoryBufferRef(), lazy), |
263 | coffObj(coffObj) {} |
264 | |
265 | ObjFile *ObjFile::create(COFFLinkerContext &ctx, MemoryBufferRef m, bool lazy) { |
266 | // Parse a memory buffer as a COFF file. |
267 | Expected<std::unique_ptr<Binary>> bin = createBinary(Source: m); |
268 | if (!bin) |
269 | Fatal(ctx) << "Could not parse " << m.getBufferIdentifier(); |
270 | |
271 | auto *obj = dyn_cast<COFFObjectFile>(Val: bin->get()); |
272 | if (!obj) |
273 | Fatal(ctx) << m.getBufferIdentifier() << " is not a COFF file" ; |
274 | |
275 | bin->release(); |
276 | return make<ObjFile>(args&: ctx.getSymtab(machine: MachineTypes(obj->getMachine())), args&: obj, |
277 | args&: lazy); |
278 | } |
279 | |
280 | void ObjFile::parseLazy() { |
281 | // Native object file. |
282 | uint32_t numSymbols = coffObj->getNumberOfSymbols(); |
283 | for (uint32_t i = 0; i < numSymbols; ++i) { |
284 | COFFSymbolRef coffSym = check(e: coffObj->getSymbol(index: i)); |
285 | if (coffSym.isUndefined() || !coffSym.isExternal() || |
286 | coffSym.isWeakExternal()) |
287 | continue; |
288 | StringRef name = check(e: coffObj->getSymbolName(Symbol: coffSym)); |
289 | if (coffSym.isAbsolute() && ignoredSymbolName(name)) |
290 | continue; |
291 | symtab.addLazyObject(f: this, n: name); |
292 | if (!lazy) |
293 | return; |
294 | i += coffSym.getNumberOfAuxSymbols(); |
295 | } |
296 | } |
297 | |
298 | struct ECMapEntry { |
299 | ulittle32_t src; |
300 | ulittle32_t dst; |
301 | ulittle32_t type; |
302 | }; |
303 | |
304 | void ObjFile::initializeECThunks() { |
305 | for (SectionChunk *chunk : hybmpChunks) { |
306 | if (chunk->getContents().size() % sizeof(ECMapEntry)) { |
307 | Err(ctx&: symtab.ctx) << "Invalid .hybmp chunk size " |
308 | << chunk->getContents().size(); |
309 | continue; |
310 | } |
311 | |
312 | const uint8_t *end = |
313 | chunk->getContents().data() + chunk->getContents().size(); |
314 | for (const uint8_t *iter = chunk->getContents().data(); iter != end; |
315 | iter += sizeof(ECMapEntry)) { |
316 | auto entry = reinterpret_cast<const ECMapEntry *>(iter); |
317 | switch (entry->type) { |
318 | case Arm64ECThunkType::Entry: |
319 | symtab.addEntryThunk(from: getSymbol(symbolIndex: entry->src), to: getSymbol(symbolIndex: entry->dst)); |
320 | break; |
321 | case Arm64ECThunkType::Exit: |
322 | symtab.addExitThunk(from: getSymbol(symbolIndex: entry->src), to: getSymbol(symbolIndex: entry->dst)); |
323 | break; |
324 | case Arm64ECThunkType::GuestExit: |
325 | break; |
326 | default: |
327 | Warn(ctx&: symtab.ctx) << "Ignoring unknown EC thunk type " << entry->type; |
328 | } |
329 | } |
330 | } |
331 | } |
332 | |
333 | void ObjFile::parse() { |
334 | // Read section and symbol tables. |
335 | initializeChunks(); |
336 | initializeSymbols(); |
337 | initializeFlags(); |
338 | initializeDependencies(); |
339 | initializeECThunks(); |
340 | } |
341 | |
342 | const coff_section *ObjFile::getSection(uint32_t i) { |
343 | auto sec = coffObj->getSection(index: i); |
344 | if (!sec) |
345 | Fatal(ctx&: symtab.ctx) << "getSection failed: #" << i << ": " << sec.takeError(); |
346 | return *sec; |
347 | } |
348 | |
349 | // We set SectionChunk pointers in the SparseChunks vector to this value |
350 | // temporarily to mark comdat sections as having an unknown resolution. As we |
351 | // walk the object file's symbol table, once we visit either a leader symbol or |
352 | // an associative section definition together with the parent comdat's leader, |
353 | // we set the pointer to either nullptr (to mark the section as discarded) or a |
354 | // valid SectionChunk for that section. |
355 | static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); |
356 | |
357 | void ObjFile::initializeChunks() { |
358 | uint32_t numSections = coffObj->getNumberOfSections(); |
359 | sparseChunks.resize(new_size: numSections + 1); |
360 | for (uint32_t i = 1; i < numSections + 1; ++i) { |
361 | const coff_section *sec = getSection(i); |
362 | if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) |
363 | sparseChunks[i] = pendingComdat; |
364 | else |
365 | sparseChunks[i] = readSection(sectionNumber: i, def: nullptr, leaderName: "" ); |
366 | } |
367 | } |
368 | |
369 | SectionChunk *ObjFile::readSection(uint32_t sectionNumber, |
370 | const coff_aux_section_definition *def, |
371 | StringRef leaderName) { |
372 | const coff_section *sec = getSection(i: sectionNumber); |
373 | |
374 | StringRef name; |
375 | if (Expected<StringRef> e = coffObj->getSectionName(Sec: sec)) |
376 | name = *e; |
377 | else |
378 | Fatal(ctx&: symtab.ctx) << "getSectionName failed: #" << sectionNumber << ": " |
379 | << e.takeError(); |
380 | |
381 | if (name == ".drectve" ) { |
382 | ArrayRef<uint8_t> data; |
383 | cantFail(Err: coffObj->getSectionContents(Sec: sec, Res&: data)); |
384 | directives = StringRef((const char *)data.data(), data.size()); |
385 | return nullptr; |
386 | } |
387 | |
388 | if (name == ".llvm_addrsig" ) { |
389 | addrsigSec = sec; |
390 | return nullptr; |
391 | } |
392 | |
393 | if (name == ".llvm.call-graph-profile" ) { |
394 | callgraphSec = sec; |
395 | return nullptr; |
396 | } |
397 | |
398 | // Object files may have DWARF debug info or MS CodeView debug info |
399 | // (or both). |
400 | // |
401 | // DWARF sections don't need any special handling from the perspective |
402 | // of the linker; they are just a data section containing relocations. |
403 | // We can just link them to complete debug info. |
404 | // |
405 | // CodeView needs linker support. We need to interpret debug info, |
406 | // and then write it to a separate .pdb file. |
407 | |
408 | // Ignore DWARF debug info unless requested to be included. |
409 | if (!symtab.ctx.config.includeDwarfChunks && name.starts_with(Prefix: ".debug_" )) |
410 | return nullptr; |
411 | |
412 | if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) |
413 | return nullptr; |
414 | SectionChunk *c; |
415 | if (isArm64EC(Machine: getMachineType())) |
416 | c = make<SectionChunkEC>(args: this, args&: sec); |
417 | else |
418 | c = make<SectionChunk>(args: this, args&: sec); |
419 | if (def) |
420 | c->checksum = def->CheckSum; |
421 | |
422 | // CodeView sections are stored to a different vector because they are not |
423 | // linked in the regular manner. |
424 | if (c->isCodeView()) |
425 | debugChunks.push_back(x: c); |
426 | else if (name == ".gfids$y" ) |
427 | guardFidChunks.push_back(x: c); |
428 | else if (name == ".giats$y" ) |
429 | guardIATChunks.push_back(x: c); |
430 | else if (name == ".gljmp$y" ) |
431 | guardLJmpChunks.push_back(x: c); |
432 | else if (name == ".gehcont$y" ) |
433 | guardEHContChunks.push_back(x: c); |
434 | else if (name == ".sxdata" ) |
435 | sxDataChunks.push_back(x: c); |
436 | else if (isArm64EC(Machine: getMachineType()) && name == ".hybmp$x" ) |
437 | hybmpChunks.push_back(x: c); |
438 | else if (symtab.ctx.config.tailMerge && sec->NumberOfRelocations == 0 && |
439 | name == ".rdata" && leaderName.starts_with(Prefix: "??_C@" )) |
440 | // COFF sections that look like string literal sections (i.e. no |
441 | // relocations, in .rdata, leader symbol name matches the MSVC name mangling |
442 | // for string literals) are subject to string tail merging. |
443 | MergeChunk::addSection(ctx&: symtab.ctx, c); |
444 | else if (name == ".rsrc" || name.starts_with(Prefix: ".rsrc$" )) |
445 | resourceChunks.push_back(x: c); |
446 | else if (!(sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_INFO)) |
447 | chunks.push_back(x: c); |
448 | |
449 | return c; |
450 | } |
451 | |
452 | void ObjFile::includeResourceChunks() { |
453 | chunks.insert(position: chunks.end(), first: resourceChunks.begin(), last: resourceChunks.end()); |
454 | } |
455 | |
456 | void ObjFile::readAssociativeDefinition( |
457 | COFFSymbolRef sym, const coff_aux_section_definition *def) { |
458 | readAssociativeDefinition(coffSym: sym, def, parentSection: def->getNumber(IsBigObj: sym.isBigObj())); |
459 | } |
460 | |
461 | void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, |
462 | const coff_aux_section_definition *def, |
463 | uint32_t parentIndex) { |
464 | SectionChunk *parent = sparseChunks[parentIndex]; |
465 | int32_t sectionNumber = sym.getSectionNumber(); |
466 | |
467 | auto diag = [&]() { |
468 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
469 | |
470 | StringRef parentName; |
471 | const coff_section *parentSec = getSection(i: parentIndex); |
472 | if (Expected<StringRef> e = coffObj->getSectionName(Sec: parentSec)) |
473 | parentName = *e; |
474 | Err(ctx&: symtab.ctx) << toString(file: this) << ": associative comdat " << name |
475 | << " (sec " << sectionNumber |
476 | << ") has invalid reference to section " << parentName |
477 | << " (sec " << parentIndex << ")" ; |
478 | }; |
479 | |
480 | if (parent == pendingComdat) { |
481 | // This can happen if an associative comdat refers to another associative |
482 | // comdat that appears after it (invalid per COFF spec) or to a section |
483 | // without any symbols. |
484 | diag(); |
485 | return; |
486 | } |
487 | |
488 | // Check whether the parent is prevailing. If it is, so are we, and we read |
489 | // the section; otherwise mark it as discarded. |
490 | if (parent) { |
491 | SectionChunk *c = readSection(sectionNumber, def, leaderName: "" ); |
492 | sparseChunks[sectionNumber] = c; |
493 | if (c) { |
494 | c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; |
495 | parent->addAssociative(child: c); |
496 | } |
497 | } else { |
498 | sparseChunks[sectionNumber] = nullptr; |
499 | } |
500 | } |
501 | |
502 | void ObjFile::recordPrevailingSymbolForMingw( |
503 | COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { |
504 | // For comdat symbols in executable sections, where this is the copy |
505 | // of the section chunk we actually include instead of discarding it, |
506 | // add the symbol to a map to allow using it for implicitly |
507 | // associating .[px]data$<func> sections to it. |
508 | // Use the suffix from the .text$<func> instead of the leader symbol |
509 | // name, for cases where the names differ (i386 mangling/decorations, |
510 | // cases where the leader is a weak symbol named .weak.func.default*). |
511 | int32_t sectionNumber = sym.getSectionNumber(); |
512 | SectionChunk *sc = sparseChunks[sectionNumber]; |
513 | if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { |
514 | StringRef name = sc->getSectionName().split(Separator: '$').second; |
515 | prevailingSectionMap[name] = sectionNumber; |
516 | } |
517 | } |
518 | |
519 | void ObjFile::maybeAssociateSEHForMingw( |
520 | COFFSymbolRef sym, const coff_aux_section_definition *def, |
521 | const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { |
522 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
523 | if (name.consume_front(Prefix: ".pdata$" ) || name.consume_front(Prefix: ".xdata$" ) || |
524 | name.consume_front(Prefix: ".eh_frame$" )) { |
525 | // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly |
526 | // associative to the symbol <func>. |
527 | auto parentSym = prevailingSectionMap.find(Val: name); |
528 | if (parentSym != prevailingSectionMap.end()) |
529 | readAssociativeDefinition(sym, def, parentIndex: parentSym->second); |
530 | } |
531 | } |
532 | |
533 | Symbol *ObjFile::createRegular(COFFSymbolRef sym) { |
534 | SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; |
535 | if (sym.isExternal()) { |
536 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
537 | if (sc) |
538 | return symtab.addRegular(f: this, n: name, s: sym.getGeneric(), c: sc, |
539 | sectionOffset: sym.getValue()); |
540 | // For MinGW symbols named .weak.* that point to a discarded section, |
541 | // don't create an Undefined symbol. If nothing ever refers to the symbol, |
542 | // everything should be fine. If something actually refers to the symbol |
543 | // (e.g. the undefined weak alias), linking will fail due to undefined |
544 | // references at the end. |
545 | if (symtab.ctx.config.mingw && name.starts_with(Prefix: ".weak." )) |
546 | return nullptr; |
547 | return symtab.addUndefined(name, f: this, overrideLazy: false); |
548 | } |
549 | if (sc) { |
550 | const coff_symbol_generic *symGen = sym.getGeneric(); |
551 | if (sym.isSection()) { |
552 | auto *customSymGen = cloneSymbol(sym); |
553 | customSymGen->Value = 0; |
554 | symGen = customSymGen; |
555 | } |
556 | return make<DefinedRegular>(args: this, /*Name*/ args: "" , /*IsCOMDAT*/ args: false, |
557 | /*IsExternal*/ args: false, args&: symGen, args&: sc); |
558 | } |
559 | return nullptr; |
560 | } |
561 | |
562 | void ObjFile::initializeSymbols() { |
563 | uint32_t numSymbols = coffObj->getNumberOfSymbols(); |
564 | symbols.resize(new_size: numSymbols); |
565 | |
566 | SmallVector<std::pair<Symbol *, const coff_aux_weak_external *>, 8> |
567 | weakAliases; |
568 | std::vector<uint32_t> pendingIndexes; |
569 | pendingIndexes.reserve(n: numSymbols); |
570 | |
571 | DenseMap<StringRef, uint32_t> prevailingSectionMap; |
572 | std::vector<const coff_aux_section_definition *> comdatDefs( |
573 | coffObj->getNumberOfSections() + 1); |
574 | COFFLinkerContext &ctx = symtab.ctx; |
575 | |
576 | for (uint32_t i = 0; i < numSymbols; ++i) { |
577 | COFFSymbolRef coffSym = check(e: coffObj->getSymbol(index: i)); |
578 | bool prevailingComdat; |
579 | if (coffSym.isUndefined()) { |
580 | symbols[i] = createUndefined(sym: coffSym, overrideLazy: false); |
581 | } else if (coffSym.isWeakExternal()) { |
582 | auto aux = coffSym.getAux<coff_aux_weak_external>(); |
583 | bool overrideLazy = true; |
584 | |
585 | // On ARM64EC, external function calls emit a pair of weak-dependency |
586 | // aliases: func to #func and #func to the func guess exit thunk |
587 | // (instead of a single undefined func symbol, which would be emitted on |
588 | // other targets). Allow such aliases to be overridden by lazy archive |
589 | // symbols, just as we would for undefined symbols. |
590 | if (isArm64EC(Machine: getMachineType()) && |
591 | aux->Characteristics == IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY) { |
592 | COFFSymbolRef targetSym = check(e: coffObj->getSymbol(index: aux->TagIndex)); |
593 | if (!targetSym.isAnyUndefined()) { |
594 | // If the target is defined, it may be either a guess exit thunk or |
595 | // the actual implementation. If it's the latter, consider the alias |
596 | // to be part of the implementation and override potential lazy |
597 | // archive symbols. |
598 | StringRef targetName = check(e: coffObj->getSymbolName(Symbol: targetSym)); |
599 | StringRef name = check(e: coffObj->getSymbolName(Symbol: coffSym)); |
600 | std::optional<std::string> mangledName = |
601 | getArm64ECMangledFunctionName(Name: name); |
602 | overrideLazy = mangledName == targetName; |
603 | } else { |
604 | overrideLazy = false; |
605 | } |
606 | } |
607 | symbols[i] = createUndefined(sym: coffSym, overrideLazy); |
608 | weakAliases.emplace_back(Args&: symbols[i], Args&: aux); |
609 | } else if (std::optional<Symbol *> optSym = |
610 | createDefined(sym: coffSym, comdatDefs, prevailingComdat)) { |
611 | symbols[i] = *optSym; |
612 | if (ctx.config.mingw && prevailingComdat) |
613 | recordPrevailingSymbolForMingw(sym: coffSym, prevailingSectionMap); |
614 | } else { |
615 | // createDefined() returns std::nullopt if a symbol belongs to a section |
616 | // that was pending at the point when the symbol was read. This can happen |
617 | // in two cases: |
618 | // 1) section definition symbol for a comdat leader; |
619 | // 2) symbol belongs to a comdat section associated with another section. |
620 | // In both of these cases, we can expect the section to be resolved by |
621 | // the time we finish visiting the remaining symbols in the symbol |
622 | // table. So we postpone the handling of this symbol until that time. |
623 | pendingIndexes.push_back(x: i); |
624 | } |
625 | i += coffSym.getNumberOfAuxSymbols(); |
626 | } |
627 | |
628 | for (uint32_t i : pendingIndexes) { |
629 | COFFSymbolRef sym = check(e: coffObj->getSymbol(index: i)); |
630 | if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { |
631 | if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) |
632 | readAssociativeDefinition(sym, def); |
633 | else if (ctx.config.mingw) |
634 | maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); |
635 | } |
636 | if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { |
637 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
638 | Log(ctx) << "comdat section " << name |
639 | << " without leader and unassociated, discarding" ; |
640 | continue; |
641 | } |
642 | symbols[i] = createRegular(sym); |
643 | } |
644 | |
645 | for (auto &kv : weakAliases) { |
646 | Symbol *sym = kv.first; |
647 | const coff_aux_weak_external *aux = kv.second; |
648 | checkAndSetWeakAlias(symtab, f: this, source: sym, target: symbols[aux->TagIndex], |
649 | isAntiDep: aux->Characteristics == |
650 | IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY); |
651 | } |
652 | |
653 | // Free the memory used by sparseChunks now that symbol loading is finished. |
654 | decltype(sparseChunks)().swap(x&: sparseChunks); |
655 | } |
656 | |
657 | Symbol *ObjFile::createUndefined(COFFSymbolRef sym, bool overrideLazy) { |
658 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
659 | Symbol *s = symtab.addUndefined(name, f: this, overrideLazy); |
660 | |
661 | // Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC |
662 | // target. |
663 | if (symtab.isEC() && getMachineType() == AMD64) { |
664 | auto u = dyn_cast<Undefined>(Val: s); |
665 | if (u && !u->weakAlias) { |
666 | if (std::optional<std::string> mangledName = |
667 | getArm64ECMangledFunctionName(Name: name)) { |
668 | Symbol *m = symtab.addUndefined(name: saver().save(S: *mangledName), f: this, |
669 | /*overrideLazy=*/false); |
670 | u->setWeakAlias(sym: m, /*antiDep=*/true); |
671 | } |
672 | } |
673 | } |
674 | return s; |
675 | } |
676 | |
677 | static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, |
678 | int32_t section) { |
679 | uint32_t numSymbols = obj->getNumberOfSymbols(); |
680 | for (uint32_t i = 0; i < numSymbols; ++i) { |
681 | COFFSymbolRef sym = check(e: obj->getSymbol(index: i)); |
682 | if (sym.getSectionNumber() != section) |
683 | continue; |
684 | if (const coff_aux_section_definition *def = sym.getSectionDefinition()) |
685 | return def; |
686 | } |
687 | return nullptr; |
688 | } |
689 | |
690 | void ObjFile::handleComdatSelection( |
691 | COFFSymbolRef sym, COMDATType &selection, bool &prevailing, |
692 | DefinedRegular *leader, |
693 | const llvm::object::coff_aux_section_definition *def) { |
694 | if (prevailing) |
695 | return; |
696 | // There's already an existing comdat for this symbol: `Leader`. |
697 | // Use the comdats's selection field to determine if the new |
698 | // symbol in `Sym` should be discarded, produce a duplicate symbol |
699 | // error, etc. |
700 | |
701 | SectionChunk *leaderChunk = leader->getChunk(); |
702 | COMDATType leaderSelection = leaderChunk->selection; |
703 | COFFLinkerContext &ctx = symtab.ctx; |
704 | |
705 | assert(leader->data && "Comdat leader without SectionChunk?" ); |
706 | if (isa<BitcodeFile>(Val: leader->file)) { |
707 | // If the leader is only a LTO symbol, we don't know e.g. its final size |
708 | // yet, so we can't do the full strict comdat selection checking yet. |
709 | selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; |
710 | } |
711 | |
712 | if ((selection == IMAGE_COMDAT_SELECT_ANY && |
713 | leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || |
714 | (selection == IMAGE_COMDAT_SELECT_LARGEST && |
715 | leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { |
716 | // cl.exe picks "any" for vftables when building with /GR- and |
717 | // "largest" when building with /GR. To be able to link object files |
718 | // compiled with each flag, "any" and "largest" are merged as "largest". |
719 | leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; |
720 | } |
721 | |
722 | // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". |
723 | // Clang on the other hand picks "any". To be able to link two object files |
724 | // with a __declspec(selectany) declaration, one compiled with gcc and the |
725 | // other with clang, we merge them as proper "same size as" |
726 | if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && |
727 | leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || |
728 | (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && |
729 | leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { |
730 | leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; |
731 | } |
732 | |
733 | // Other than that, comdat selections must match. This is a bit more |
734 | // strict than link.exe which allows merging "any" and "largest" if "any" |
735 | // is the first symbol the linker sees, and it allows merging "largest" |
736 | // with everything (!) if "largest" is the first symbol the linker sees. |
737 | // Making this symmetric independent of which selection is seen first |
738 | // seems better though. |
739 | // (This behavior matches ModuleLinker::getComdatResult().) |
740 | if (selection != leaderSelection) { |
741 | Log(ctx) << "conflicting comdat type for " << symtab.printSymbol(sym: leader) |
742 | << ": " << (int)leaderSelection << " in " << leader->getFile() |
743 | << " and " << (int)selection << " in " << this; |
744 | symtab.reportDuplicate(existing: leader, newFile: this); |
745 | return; |
746 | } |
747 | |
748 | switch (selection) { |
749 | case IMAGE_COMDAT_SELECT_NODUPLICATES: |
750 | symtab.reportDuplicate(existing: leader, newFile: this); |
751 | break; |
752 | |
753 | case IMAGE_COMDAT_SELECT_ANY: |
754 | // Nothing to do. |
755 | break; |
756 | |
757 | case IMAGE_COMDAT_SELECT_SAME_SIZE: |
758 | if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { |
759 | if (!ctx.config.mingw) { |
760 | symtab.reportDuplicate(existing: leader, newFile: this); |
761 | } else { |
762 | const coff_aux_section_definition *leaderDef = nullptr; |
763 | if (leaderChunk->file) |
764 | leaderDef = findSectionDef(obj: leaderChunk->file->getCOFFObj(), |
765 | section: leaderChunk->getSectionNumber()); |
766 | if (!leaderDef || leaderDef->Length != def->Length) |
767 | symtab.reportDuplicate(existing: leader, newFile: this); |
768 | } |
769 | } |
770 | break; |
771 | |
772 | case IMAGE_COMDAT_SELECT_EXACT_MATCH: { |
773 | SectionChunk newChunk(this, getSection(sym)); |
774 | // link.exe only compares section contents here and doesn't complain |
775 | // if the two comdat sections have e.g. different alignment. |
776 | // Match that. |
777 | if (leaderChunk->getContents() != newChunk.getContents()) |
778 | symtab.reportDuplicate(existing: leader, newFile: this, newSc: &newChunk, newSectionOffset: sym.getValue()); |
779 | break; |
780 | } |
781 | |
782 | case IMAGE_COMDAT_SELECT_ASSOCIATIVE: |
783 | // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. |
784 | // (This means lld-link doesn't produce duplicate symbol errors for |
785 | // associative comdats while link.exe does, but associate comdats |
786 | // are never extern in practice.) |
787 | llvm_unreachable("createDefined not called for associative comdats" ); |
788 | |
789 | case IMAGE_COMDAT_SELECT_LARGEST: |
790 | if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { |
791 | // Replace the existing comdat symbol with the new one. |
792 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
793 | // FIXME: This is incorrect: With /opt:noref, the previous sections |
794 | // make it into the final executable as well. Correct handling would |
795 | // be to undo reading of the whole old section that's being replaced, |
796 | // or doing one pass that determines what the final largest comdat |
797 | // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading |
798 | // only the largest one. |
799 | replaceSymbol<DefinedRegular>(s: leader, arg: this, arg&: name, /*IsCOMDAT*/ arg: true, |
800 | /*IsExternal*/ arg: true, arg: sym.getGeneric(), |
801 | arg: nullptr); |
802 | prevailing = true; |
803 | } |
804 | break; |
805 | |
806 | case IMAGE_COMDAT_SELECT_NEWEST: |
807 | llvm_unreachable("should have been rejected earlier" ); |
808 | } |
809 | } |
810 | |
811 | std::optional<Symbol *> ObjFile::createDefined( |
812 | COFFSymbolRef sym, |
813 | std::vector<const coff_aux_section_definition *> &comdatDefs, |
814 | bool &prevailing) { |
815 | prevailing = false; |
816 | auto getName = [&]() { return check(e: coffObj->getSymbolName(Symbol: sym)); }; |
817 | |
818 | if (sym.isCommon()) { |
819 | auto *c = make<CommonChunk>(args&: sym); |
820 | chunks.push_back(x: c); |
821 | return symtab.addCommon(f: this, n: getName(), size: sym.getValue(), s: sym.getGeneric(), |
822 | c); |
823 | } |
824 | |
825 | COFFLinkerContext &ctx = symtab.ctx; |
826 | if (sym.isAbsolute()) { |
827 | StringRef name = getName(); |
828 | |
829 | if (name == "@feat.00" ) |
830 | feat00Flags = sym.getValue(); |
831 | // Skip special symbols. |
832 | if (ignoredSymbolName(name)) |
833 | return nullptr; |
834 | |
835 | if (sym.isExternal()) |
836 | return symtab.addAbsolute(n: name, s: sym); |
837 | return make<DefinedAbsolute>(args&: ctx, args&: name, args&: sym); |
838 | } |
839 | |
840 | int32_t sectionNumber = sym.getSectionNumber(); |
841 | if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) |
842 | return nullptr; |
843 | |
844 | if (sym.isEmptySectionDeclaration()) { |
845 | // As there is no coff_section in the object file for these, make a |
846 | // new virtual one, with everything zeroed out (i.e. an empty section), |
847 | // with only the name and characteristics set. |
848 | StringRef name = getName(); |
849 | auto *hdr = make<coff_section>(); |
850 | memset(s: hdr, c: 0, n: sizeof(*hdr)); |
851 | strncpy(dest: hdr->Name, src: name.data(), |
852 | n: std::min(a: name.size(), b: (size_t)COFF::NameSize)); |
853 | // The Value field in a section symbol may contain the characteristics, |
854 | // or it may be zero, where we make something up (that matches what is |
855 | // used in .idata sections in the regular object files in import libraries). |
856 | if (sym.getValue()) |
857 | hdr->Characteristics = sym.getValue() | IMAGE_SCN_ALIGN_4BYTES; |
858 | else |
859 | hdr->Characteristics = IMAGE_SCN_CNT_INITIALIZED_DATA | |
860 | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE | |
861 | IMAGE_SCN_ALIGN_4BYTES; |
862 | auto *sc = make<SectionChunk>(args: this, args&: hdr); |
863 | chunks.push_back(x: sc); |
864 | |
865 | auto *symGen = cloneSymbol(sym); |
866 | // Ignore the Value offset of these symbols, as it may be a bitmask. |
867 | symGen->Value = 0; |
868 | return make<DefinedRegular>(args: this, /*name=*/args: "" , /*isCOMDAT=*/args: false, |
869 | /*isExternal=*/args: false, args&: symGen, args&: sc); |
870 | } |
871 | |
872 | if (llvm::COFF::isReservedSectionNumber(SectionNumber: sectionNumber)) |
873 | Fatal(ctx) << toString(file: this) << ": " << getName() |
874 | << " should not refer to special section " |
875 | << Twine(sectionNumber); |
876 | |
877 | if ((uint32_t)sectionNumber >= sparseChunks.size()) |
878 | Fatal(ctx) << toString(file: this) << ": " << getName() |
879 | << " should not refer to non-existent section " |
880 | << Twine(sectionNumber); |
881 | |
882 | // Comdat handling. |
883 | // A comdat symbol consists of two symbol table entries. |
884 | // The first symbol entry has the name of the section (e.g. .text), fixed |
885 | // values for the other fields, and one auxiliary record. |
886 | // The second symbol entry has the name of the comdat symbol, called the |
887 | // "comdat leader". |
888 | // When this function is called for the first symbol entry of a comdat, |
889 | // it sets comdatDefs and returns std::nullopt, and when it's called for the |
890 | // second symbol entry it reads comdatDefs and then sets it back to nullptr. |
891 | |
892 | // Handle comdat leader. |
893 | if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { |
894 | comdatDefs[sectionNumber] = nullptr; |
895 | DefinedRegular *leader; |
896 | |
897 | if (sym.isExternal()) { |
898 | std::tie(args&: leader, args&: prevailing) = |
899 | symtab.addComdat(f: this, n: getName(), s: sym.getGeneric()); |
900 | } else { |
901 | leader = make<DefinedRegular>(args: this, /*Name*/ args: "" , /*IsCOMDAT*/ args: false, |
902 | /*IsExternal*/ args: false, args: sym.getGeneric()); |
903 | prevailing = true; |
904 | } |
905 | |
906 | if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || |
907 | // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe |
908 | // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. |
909 | def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { |
910 | Fatal(ctx) << "unknown comdat type " |
911 | << std::to_string(val: (int)def->Selection) << " for " << getName() |
912 | << " in " << toString(file: this); |
913 | } |
914 | COMDATType selection = (COMDATType)def->Selection; |
915 | |
916 | if (leader->isCOMDAT) |
917 | handleComdatSelection(sym, selection, prevailing, leader, def); |
918 | |
919 | if (prevailing) { |
920 | SectionChunk *c = readSection(sectionNumber, def, leaderName: getName()); |
921 | sparseChunks[sectionNumber] = c; |
922 | if (!c) |
923 | return nullptr; |
924 | c->sym = cast<DefinedRegular>(Val: leader); |
925 | c->selection = selection; |
926 | cast<DefinedRegular>(Val: leader)->data = &c->repl; |
927 | } else { |
928 | sparseChunks[sectionNumber] = nullptr; |
929 | } |
930 | return leader; |
931 | } |
932 | |
933 | // Prepare to handle the comdat leader symbol by setting the section's |
934 | // ComdatDefs pointer if we encounter a non-associative comdat. |
935 | if (sparseChunks[sectionNumber] == pendingComdat) { |
936 | if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { |
937 | if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) |
938 | comdatDefs[sectionNumber] = def; |
939 | } |
940 | return std::nullopt; |
941 | } |
942 | |
943 | return createRegular(sym); |
944 | } |
945 | |
946 | MachineTypes ObjFile::getMachineType() const { |
947 | return static_cast<MachineTypes>(coffObj->getMachine()); |
948 | } |
949 | |
950 | ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { |
951 | if (SectionChunk *sec = SectionChunk::findByName(sections: debugChunks, name: secName)) |
952 | return sec->consumeDebugMagic(); |
953 | return {}; |
954 | } |
955 | |
956 | // OBJ files systematically store critical information in a .debug$S stream, |
957 | // even if the TU was compiled with no debug info. At least two records are |
958 | // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the |
959 | // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is |
960 | // currently used to initialize the hotPatchable member. |
961 | void ObjFile::initializeFlags() { |
962 | ArrayRef<uint8_t> data = getDebugSection(secName: ".debug$S" ); |
963 | if (data.empty()) |
964 | return; |
965 | |
966 | DebugSubsectionArray subsections; |
967 | |
968 | BinaryStreamReader reader(data, llvm::endianness::little); |
969 | ExitOnError exitOnErr; |
970 | exitOnErr(reader.readArray(Array&: subsections, Size: data.size())); |
971 | |
972 | for (const DebugSubsectionRecord &ss : subsections) { |
973 | if (ss.kind() != DebugSubsectionKind::Symbols) |
974 | continue; |
975 | |
976 | unsigned offset = 0; |
977 | |
978 | // Only parse the first two records. We are only looking for S_OBJNAME |
979 | // and S_COMPILE3, and they usually appear at the beginning of the |
980 | // stream. |
981 | for (unsigned i = 0; i < 2; ++i) { |
982 | Expected<CVSymbol> sym = readSymbolFromStream(Stream: ss.getRecordData(), Offset: offset); |
983 | if (!sym) { |
984 | consumeError(Err: sym.takeError()); |
985 | return; |
986 | } |
987 | if (sym->kind() == SymbolKind::S_COMPILE3) { |
988 | auto cs = |
989 | cantFail(ValOrErr: SymbolDeserializer::deserializeAs<Compile3Sym>(Symbol: sym.get())); |
990 | hotPatchable = |
991 | (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; |
992 | } |
993 | if (sym->kind() == SymbolKind::S_OBJNAME) { |
994 | auto objName = cantFail(ValOrErr: SymbolDeserializer::deserializeAs<ObjNameSym>( |
995 | Symbol: sym.get())); |
996 | if (objName.Signature) |
997 | pchSignature = objName.Signature; |
998 | } |
999 | offset += sym->length(); |
1000 | } |
1001 | } |
1002 | } |
1003 | |
1004 | // Depending on the compilation flags, OBJs can refer to external files, |
1005 | // necessary to merge this OBJ into the final PDB. We currently support two |
1006 | // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. |
1007 | // And PDB type servers, when compiling with /Zi. This function extracts these |
1008 | // dependencies and makes them available as a TpiSource interface (see |
1009 | // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular |
1010 | // output even with /Yc and /Yu and with /Zi. |
1011 | void ObjFile::initializeDependencies() { |
1012 | COFFLinkerContext &ctx = symtab.ctx; |
1013 | if (!ctx.config.debug) |
1014 | return; |
1015 | |
1016 | bool isPCH = false; |
1017 | |
1018 | ArrayRef<uint8_t> data = getDebugSection(secName: ".debug$P" ); |
1019 | if (!data.empty()) |
1020 | isPCH = true; |
1021 | else |
1022 | data = getDebugSection(secName: ".debug$T" ); |
1023 | |
1024 | // symbols but no types, make a plain, empty TpiSource anyway, because it |
1025 | // simplifies adding the symbols later. |
1026 | if (data.empty()) { |
1027 | if (!debugChunks.empty()) |
1028 | debugTypesObj = makeTpiSource(ctx, f: this); |
1029 | return; |
1030 | } |
1031 | |
1032 | // Get the first type record. It will indicate if this object uses a type |
1033 | // server (/Zi) or a PCH file (/Yu). |
1034 | CVTypeArray types; |
1035 | BinaryStreamReader reader(data, llvm::endianness::little); |
1036 | cantFail(Err: reader.readArray(Array&: types, Size: reader.getLength())); |
1037 | CVTypeArray::Iterator firstType = types.begin(); |
1038 | if (firstType == types.end()) |
1039 | return; |
1040 | |
1041 | // Remember the .debug$T or .debug$P section. |
1042 | debugTypes = data; |
1043 | |
1044 | // This object file is a PCH file that others will depend on. |
1045 | if (isPCH) { |
1046 | debugTypesObj = makePrecompSource(ctx, file: this); |
1047 | return; |
1048 | } |
1049 | |
1050 | // This object file was compiled with /Zi. Enqueue the PDB dependency. |
1051 | if (firstType->kind() == LF_TYPESERVER2) { |
1052 | TypeServer2Record ts = cantFail( |
1053 | ValOrErr: TypeDeserializer::deserializeAs<TypeServer2Record>(Data: firstType->data())); |
1054 | debugTypesObj = makeUseTypeServerSource(ctx, file: this, ts); |
1055 | enqueuePdbFile(path: ts.getName(), fromFile: this); |
1056 | return; |
1057 | } |
1058 | |
1059 | // This object was compiled with /Yu. It uses types from another object file |
1060 | // with a matching signature. |
1061 | if (firstType->kind() == LF_PRECOMP) { |
1062 | PrecompRecord precomp = cantFail( |
1063 | ValOrErr: TypeDeserializer::deserializeAs<PrecompRecord>(Data: firstType->data())); |
1064 | // We're better off trusting the LF_PRECOMP signature. In some cases the |
1065 | // S_OBJNAME record doesn't contain a valid PCH signature. |
1066 | if (precomp.Signature) |
1067 | pchSignature = precomp.Signature; |
1068 | debugTypesObj = makeUsePrecompSource(ctx, file: this, ts: precomp); |
1069 | // Drop the LF_PRECOMP record from the input stream. |
1070 | debugTypes = debugTypes.drop_front(N: firstType->RecordData.size()); |
1071 | return; |
1072 | } |
1073 | |
1074 | // This is a plain old object file. |
1075 | debugTypesObj = makeTpiSource(ctx, f: this); |
1076 | } |
1077 | |
1078 | // The casing of the PDB path stamped in the OBJ can differ from the actual path |
1079 | // on disk. With this, we ensure to always use lowercase as a key for the |
1080 | // pdbInputFileInstances map, at least on Windows. |
1081 | static std::string normalizePdbPath(StringRef path) { |
1082 | #if defined(_WIN32) |
1083 | return path.lower(); |
1084 | #else // LINUX |
1085 | return std::string(path); |
1086 | #endif |
1087 | } |
1088 | |
1089 | // If existing, return the actual PDB path on disk. |
1090 | static std::optional<std::string> |
1091 | findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) { |
1092 | // Ensure the file exists before anything else. In some cases, if the path |
1093 | // points to a removable device, Driver::enqueuePath() would fail with an |
1094 | // error (EAGAIN, "resource unavailable try again") which we want to skip |
1095 | // silently. |
1096 | if (llvm::sys::fs::exists(Path: pdbPath)) |
1097 | return normalizePdbPath(path: pdbPath); |
1098 | |
1099 | StringRef objPath = !dependentFile->parentName.empty() |
1100 | ? dependentFile->parentName |
1101 | : dependentFile->getName(); |
1102 | |
1103 | // Currently, type server PDBs are only created by MSVC cl, which only runs |
1104 | // on Windows, so we can assume type server paths are Windows style. |
1105 | StringRef pdbName = sys::path::filename(path: pdbPath, style: sys::path::Style::windows); |
1106 | |
1107 | // Check if the PDB is in the same folder as the OBJ. |
1108 | SmallString<128> path; |
1109 | sys::path::append(path, a: sys::path::parent_path(path: objPath), b: pdbName); |
1110 | if (llvm::sys::fs::exists(Path: path)) |
1111 | return normalizePdbPath(path); |
1112 | |
1113 | // Check if the PDB is in the output folder. |
1114 | path.clear(); |
1115 | sys::path::append(path, a: sys::path::parent_path(path: outputPath), b: pdbName); |
1116 | if (llvm::sys::fs::exists(Path: path)) |
1117 | return normalizePdbPath(path); |
1118 | |
1119 | return std::nullopt; |
1120 | } |
1121 | |
1122 | PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
1123 | : InputFile(ctx.symtab, PDBKind, m) {} |
1124 | |
1125 | PDBInputFile::~PDBInputFile() = default; |
1126 | |
1127 | PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, |
1128 | StringRef path, |
1129 | ObjFile *fromFile) { |
1130 | auto p = findPdbPath(pdbPath: path.str(), dependentFile: fromFile, outputPath: ctx.config.outputFile); |
1131 | if (!p) |
1132 | return nullptr; |
1133 | auto it = ctx.pdbInputFileInstances.find(x: *p); |
1134 | if (it != ctx.pdbInputFileInstances.end()) |
1135 | return it->second; |
1136 | return nullptr; |
1137 | } |
1138 | |
1139 | void PDBInputFile::parse() { |
1140 | symtab.ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; |
1141 | |
1142 | std::unique_ptr<pdb::IPDBSession> thisSession; |
1143 | Error E = pdb::NativeSession::createFromPdb( |
1144 | MB: MemoryBuffer::getMemBuffer(Ref: mb, RequiresNullTerminator: false), Session&: thisSession); |
1145 | if (E) { |
1146 | loadErrorStr.emplace(args: toString(E: std::move(E))); |
1147 | return; // fail silently at this point - the error will be handled later, |
1148 | // when merging the debug type stream |
1149 | } |
1150 | |
1151 | session.reset(p: static_cast<pdb::NativeSession *>(thisSession.release())); |
1152 | |
1153 | pdb::PDBFile &pdbFile = session->getPDBFile(); |
1154 | auto expectedInfo = pdbFile.getPDBInfoStream(); |
1155 | // All PDB Files should have an Info stream. |
1156 | if (!expectedInfo) { |
1157 | loadErrorStr.emplace(args: toString(E: expectedInfo.takeError())); |
1158 | return; |
1159 | } |
1160 | debugTypesObj = makeTypeServerSource(ctx&: symtab.ctx, pdbInputFile: this); |
1161 | } |
1162 | |
1163 | // Used only for DWARF debug info, which is not common (except in MinGW |
1164 | // environments). This returns an optional pair of file name and line |
1165 | // number for where the variable was defined. |
1166 | std::optional<std::pair<StringRef, uint32_t>> |
1167 | ObjFile::getVariableLocation(StringRef var) { |
1168 | if (!dwarf) { |
1169 | dwarf = make<DWARFCache>(args: DWARFContext::create(Obj: *getCOFFObj())); |
1170 | if (!dwarf) |
1171 | return std::nullopt; |
1172 | } |
1173 | if (symtab.machine == I386) |
1174 | var.consume_front(Prefix: "_" ); |
1175 | std::optional<std::pair<std::string, unsigned>> ret = |
1176 | dwarf->getVariableLoc(name: var); |
1177 | if (!ret) |
1178 | return std::nullopt; |
1179 | return std::make_pair(x: saver().save(S: ret->first), y&: ret->second); |
1180 | } |
1181 | |
1182 | // Used only for DWARF debug info, which is not common (except in MinGW |
1183 | // environments). |
1184 | std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, |
1185 | uint32_t sectionIndex) { |
1186 | if (!dwarf) { |
1187 | dwarf = make<DWARFCache>(args: DWARFContext::create(Obj: *getCOFFObj())); |
1188 | if (!dwarf) |
1189 | return std::nullopt; |
1190 | } |
1191 | |
1192 | return dwarf->getDILineInfo(offset, sectionIndex); |
1193 | } |
1194 | |
1195 | void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { |
1196 | auto p = findPdbPath(pdbPath: path.str(), dependentFile: fromFile, outputPath: symtab.ctx.config.outputFile); |
1197 | if (!p) |
1198 | return; |
1199 | auto it = symtab.ctx.pdbInputFileInstances.emplace(args&: *p, args: nullptr); |
1200 | if (!it.second) |
1201 | return; // already scheduled for load |
1202 | symtab.ctx.driver.enqueuePDB(Path: *p); |
1203 | } |
1204 | |
1205 | ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
1206 | : InputFile(ctx.getSymtab(machine: getMachineType(m)), ImportKind, m), |
1207 | live(!ctx.config.doGC) {} |
1208 | |
1209 | MachineTypes ImportFile::getMachineType(MemoryBufferRef m) { |
1210 | uint16_t machine = |
1211 | reinterpret_cast<const coff_import_header *>(m.getBufferStart())->Machine; |
1212 | return MachineTypes(machine); |
1213 | } |
1214 | |
1215 | bool ImportFile::isSameImport(const ImportFile *other) const { |
1216 | if (!externalName.empty()) |
1217 | return other->externalName == externalName; |
1218 | return hdr->OrdinalHint == other->hdr->OrdinalHint; |
1219 | } |
1220 | |
1221 | ImportThunkChunk *ImportFile::makeImportThunk() { |
1222 | switch (hdr->Machine) { |
1223 | case AMD64: |
1224 | return make<ImportThunkChunkX64>(args&: symtab.ctx, args&: impSym); |
1225 | case I386: |
1226 | return make<ImportThunkChunkX86>(args&: symtab.ctx, args&: impSym); |
1227 | case ARM64: |
1228 | return make<ImportThunkChunkARM64>(args&: symtab.ctx, args&: impSym, args: ARM64); |
1229 | case ARMNT: |
1230 | return make<ImportThunkChunkARM>(args&: symtab.ctx, args&: impSym); |
1231 | } |
1232 | llvm_unreachable("unknown machine type" ); |
1233 | } |
1234 | |
1235 | void ImportFile::parse() { |
1236 | const auto *hdr = |
1237 | reinterpret_cast<const coff_import_header *>(mb.getBufferStart()); |
1238 | |
1239 | // Check if the total size is valid. |
1240 | if (mb.getBufferSize() < sizeof(*hdr) || |
1241 | mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) |
1242 | Fatal(ctx&: symtab.ctx) << "broken import library" ; |
1243 | |
1244 | // Read names and create an __imp_ symbol. |
1245 | StringRef buf = mb.getBuffer().substr(Start: sizeof(*hdr)); |
1246 | auto split = buf.split(Separator: '\0'); |
1247 | buf = split.second; |
1248 | StringRef name; |
1249 | if (isArm64EC(Machine: hdr->Machine)) { |
1250 | if (std::optional<std::string> demangledName = |
1251 | getArm64ECDemangledFunctionName(Name: split.first)) |
1252 | name = saver().save(S: *demangledName); |
1253 | } |
1254 | if (name.empty()) |
1255 | name = saver().save(S: split.first); |
1256 | StringRef impName = saver().save(S: "__imp_" + name); |
1257 | dllName = buf.split(Separator: '\0').first; |
1258 | StringRef extName; |
1259 | switch (hdr->getNameType()) { |
1260 | case IMPORT_ORDINAL: |
1261 | extName = "" ; |
1262 | break; |
1263 | case IMPORT_NAME: |
1264 | extName = name; |
1265 | break; |
1266 | case IMPORT_NAME_NOPREFIX: |
1267 | extName = ltrim1(s: name, chars: "?@_" ); |
1268 | break; |
1269 | case IMPORT_NAME_UNDECORATE: |
1270 | extName = ltrim1(s: name, chars: "?@_" ); |
1271 | extName = extName.substr(Start: 0, N: extName.find(C: '@')); |
1272 | break; |
1273 | case IMPORT_NAME_EXPORTAS: |
1274 | extName = buf.substr(Start: dllName.size() + 1).split(Separator: '\0').first; |
1275 | break; |
1276 | } |
1277 | |
1278 | this->hdr = hdr; |
1279 | externalName = extName; |
1280 | |
1281 | bool isCode = hdr->getType() == llvm::COFF::IMPORT_CODE; |
1282 | |
1283 | if (!symtab.isEC()) { |
1284 | impSym = symtab.addImportData(n: impName, f: this, location); |
1285 | } else { |
1286 | // In addition to the regular IAT, ARM64EC also contains an auxiliary IAT, |
1287 | // which holds addresses that are guaranteed to be callable directly from |
1288 | // ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to |
1289 | // the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For |
1290 | // data imports, the naming is reversed. |
1291 | StringRef auxImpName = saver().save(S: "__imp_aux_" + name); |
1292 | if (isCode) { |
1293 | impSym = symtab.addImportData(n: auxImpName, f: this, location); |
1294 | impECSym = symtab.addImportData(n: impName, f: this, location&: auxLocation); |
1295 | } else { |
1296 | impSym = symtab.addImportData(n: impName, f: this, location); |
1297 | impECSym = symtab.addImportData(n: auxImpName, f: this, location&: auxLocation); |
1298 | } |
1299 | if (!impECSym) |
1300 | return; |
1301 | |
1302 | StringRef auxImpCopyName = saver().save(S: "__auximpcopy_" + name); |
1303 | auxImpCopySym = symtab.addImportData(n: auxImpCopyName, f: this, location&: auxCopyLocation); |
1304 | if (!auxImpCopySym) |
1305 | return; |
1306 | } |
1307 | // If this was a duplicate, we logged an error but may continue; |
1308 | // in this case, impSym is nullptr. |
1309 | if (!impSym) |
1310 | return; |
1311 | |
1312 | if (hdr->getType() == llvm::COFF::IMPORT_CONST) |
1313 | static_cast<void>(symtab.addImportData(n: name, f: this, location)); |
1314 | |
1315 | // If type is function, we need to create a thunk which jump to an |
1316 | // address pointed by the __imp_ symbol. (This allows you to call |
1317 | // DLL functions just like regular non-DLL functions.) |
1318 | if (isCode) { |
1319 | if (!symtab.isEC()) { |
1320 | thunkSym = symtab.addImportThunk(name, s: impSym, chunk: makeImportThunk()); |
1321 | } else { |
1322 | thunkSym = symtab.addImportThunk( |
1323 | name, s: impSym, chunk: make<ImportThunkChunkX64>(args&: symtab.ctx, args&: impSym)); |
1324 | |
1325 | if (std::optional<std::string> mangledName = |
1326 | getArm64ECMangledFunctionName(Name: name)) { |
1327 | StringRef auxThunkName = saver().save(S: *mangledName); |
1328 | auxThunkSym = symtab.addImportThunk( |
1329 | name: auxThunkName, s: impECSym, |
1330 | chunk: make<ImportThunkChunkARM64>(args&: symtab.ctx, args&: impECSym, args: ARM64EC)); |
1331 | } |
1332 | |
1333 | StringRef impChkName = saver().save(S: "__impchk_" + name); |
1334 | impchkThunk = make<ImportThunkChunkARM64EC>(args: this); |
1335 | impchkThunk->sym = symtab.addImportThunk(name: impChkName, s: impSym, chunk: impchkThunk); |
1336 | symtab.ctx.driver.pullArm64ECIcallHelper(); |
1337 | } |
1338 | } |
1339 | } |
1340 | |
1341 | BitcodeFile::BitcodeFile(SymbolTable &symtab, MemoryBufferRef mb, |
1342 | std::unique_ptr<lto::InputFile> &o, bool lazy) |
1343 | : InputFile(symtab, BitcodeKind, mb, lazy) { |
1344 | obj.swap(u&: o); |
1345 | } |
1346 | |
1347 | BitcodeFile *BitcodeFile::create(COFFLinkerContext &ctx, MemoryBufferRef mb, |
1348 | StringRef archiveName, |
1349 | uint64_t offsetInArchive, bool lazy) { |
1350 | std::string path = mb.getBufferIdentifier().str(); |
1351 | if (ctx.config.thinLTOIndexOnly) |
1352 | path = replaceThinLTOSuffix(path: mb.getBufferIdentifier(), |
1353 | suffix: ctx.config.thinLTOObjectSuffixReplace.first, |
1354 | repl: ctx.config.thinLTOObjectSuffixReplace.second); |
1355 | |
1356 | // ThinLTO assumes that all MemoryBufferRefs given to it have a unique |
1357 | // name. If two archives define two members with the same name, this |
1358 | // causes a collision which result in only one of the objects being taken |
1359 | // into consideration at LTO time (which very likely causes undefined |
1360 | // symbols later in the link stage). So we append file offset to make |
1361 | // filename unique. |
1362 | MemoryBufferRef mbref(mb.getBuffer(), |
1363 | saver().save(S: archiveName.empty() |
1364 | ? path |
1365 | : archiveName + |
1366 | sys::path::filename(path) + |
1367 | utostr(X: offsetInArchive))); |
1368 | |
1369 | std::unique_ptr<lto::InputFile> obj = check(e: lto::InputFile::create(Object: mbref)); |
1370 | return make<BitcodeFile>(args&: ctx.getSymtab(machine: getMachineType(obj: obj.get())), args&: mb, args&: obj, |
1371 | args&: lazy); |
1372 | } |
1373 | |
1374 | BitcodeFile::~BitcodeFile() = default; |
1375 | |
1376 | void BitcodeFile::parse() { |
1377 | llvm::StringSaver &saver = lld::saver(); |
1378 | |
1379 | std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); |
1380 | for (size_t i = 0; i != obj->getComdatTable().size(); ++i) |
1381 | // FIXME: Check nodeduplicate |
1382 | comdat[i] = |
1383 | symtab.addComdat(f: this, n: saver.save(S: obj->getComdatTable()[i].first)); |
1384 | for (const lto::InputFile::Symbol &objSym : obj->symbols()) { |
1385 | StringRef symName = saver.save(S: objSym.getName()); |
1386 | int comdatIndex = objSym.getComdatIndex(); |
1387 | Symbol *sym; |
1388 | SectionChunk *fakeSC = nullptr; |
1389 | if (objSym.isExecutable()) |
1390 | fakeSC = &symtab.ctx.ltoTextSectionChunk.chunk; |
1391 | else |
1392 | fakeSC = &symtab.ctx.ltoDataSectionChunk.chunk; |
1393 | if (objSym.isUndefined()) { |
1394 | sym = symtab.addUndefined(name: symName, f: this, overrideLazy: false); |
1395 | if (objSym.isWeak()) |
1396 | sym->deferUndefined = true; |
1397 | // If one LTO object file references (i.e. has an undefined reference to) |
1398 | // a symbol with an __imp_ prefix, the LTO compilation itself sees it |
1399 | // as unprefixed but with a dllimport attribute instead, and doesn't |
1400 | // understand the relation to a concrete IR symbol with the __imp_ prefix. |
1401 | // |
1402 | // For such cases, mark the symbol as used in a regular object (i.e. the |
1403 | // symbol must be retained) so that the linker can associate the |
1404 | // references in the end. If the symbol is defined in an import library |
1405 | // or in a regular object file, this has no effect, but if it is defined |
1406 | // in another LTO object file, this makes sure it is kept, to fulfill |
1407 | // the reference when linking the output of the LTO compilation. |
1408 | if (symName.starts_with(Prefix: "__imp_" )) |
1409 | sym->isUsedInRegularObj = true; |
1410 | } else if (objSym.isCommon()) { |
1411 | sym = symtab.addCommon(f: this, n: symName, size: objSym.getCommonSize()); |
1412 | } else if (objSym.isWeak() && objSym.isIndirect()) { |
1413 | // Weak external. |
1414 | sym = symtab.addUndefined(name: symName, f: this, overrideLazy: true); |
1415 | std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); |
1416 | Symbol *alias = symtab.addUndefined(name: saver.save(S: fallback)); |
1417 | checkAndSetWeakAlias(symtab, f: this, source: sym, target: alias, isAntiDep: false); |
1418 | } else if (comdatIndex != -1) { |
1419 | if (symName == obj->getComdatTable()[comdatIndex].first) { |
1420 | sym = comdat[comdatIndex].first; |
1421 | if (cast<DefinedRegular>(Val: sym)->data == nullptr) |
1422 | cast<DefinedRegular>(Val: sym)->data = &fakeSC->repl; |
1423 | } else if (comdat[comdatIndex].second) { |
1424 | sym = symtab.addRegular(f: this, n: symName, s: nullptr, c: fakeSC); |
1425 | } else { |
1426 | sym = symtab.addUndefined(name: symName, f: this, overrideLazy: false); |
1427 | } |
1428 | } else { |
1429 | sym = |
1430 | symtab.addRegular(f: this, n: symName, s: nullptr, c: fakeSC, sectionOffset: 0, isWeak: objSym.isWeak()); |
1431 | } |
1432 | symbols.push_back(x: sym); |
1433 | if (objSym.isUsed()) |
1434 | symtab.ctx.config.gcroot.push_back(x: sym); |
1435 | } |
1436 | directives = saver.save(S: obj->getCOFFLinkerOpts()); |
1437 | } |
1438 | |
1439 | void BitcodeFile::parseLazy() { |
1440 | for (const lto::InputFile::Symbol &sym : obj->symbols()) |
1441 | if (!sym.isUndefined()) { |
1442 | symtab.addLazyObject(f: this, n: sym.getName()); |
1443 | if (!lazy) |
1444 | return; |
1445 | } |
1446 | } |
1447 | |
1448 | MachineTypes BitcodeFile::getMachineType(const llvm::lto::InputFile *obj) { |
1449 | Triple t(obj->getTargetTriple()); |
1450 | switch (t.getArch()) { |
1451 | case Triple::x86_64: |
1452 | return AMD64; |
1453 | case Triple::x86: |
1454 | return I386; |
1455 | case Triple::arm: |
1456 | case Triple::thumb: |
1457 | return ARMNT; |
1458 | case Triple::aarch64: |
1459 | return t.isWindowsArm64EC() ? ARM64EC : ARM64; |
1460 | default: |
1461 | return IMAGE_FILE_MACHINE_UNKNOWN; |
1462 | } |
1463 | } |
1464 | |
1465 | std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix, |
1466 | StringRef repl) { |
1467 | if (path.consume_back(Suffix: suffix)) |
1468 | return (path + repl).str(); |
1469 | return std::string(path); |
1470 | } |
1471 | |
1472 | static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { |
1473 | for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { |
1474 | const coff_section *sec = CHECK(coffObj->getSection(i), file); |
1475 | if (rva >= sec->VirtualAddress && |
1476 | rva <= sec->VirtualAddress + sec->VirtualSize) { |
1477 | return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; |
1478 | } |
1479 | } |
1480 | return false; |
1481 | } |
1482 | |
1483 | void DLLFile::parse() { |
1484 | // Parse a memory buffer as a PE-COFF executable. |
1485 | std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); |
1486 | |
1487 | if (auto *obj = dyn_cast<COFFObjectFile>(Val: bin.get())) { |
1488 | bin.release(); |
1489 | coffObj.reset(p: obj); |
1490 | } else { |
1491 | Err(ctx&: symtab.ctx) << toString(file: this) << " is not a COFF file" ; |
1492 | return; |
1493 | } |
1494 | |
1495 | if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { |
1496 | Err(ctx&: symtab.ctx) << toString(file: this) << " is not a PE-COFF executable" ; |
1497 | return; |
1498 | } |
1499 | |
1500 | for (const auto &exp : coffObj->export_directories()) { |
1501 | StringRef dllName, symbolName; |
1502 | uint32_t exportRVA; |
1503 | checkError(e: exp.getDllName(Result&: dllName)); |
1504 | checkError(e: exp.getSymbolName(Result&: symbolName)); |
1505 | checkError(e: exp.getExportRVA(Result&: exportRVA)); |
1506 | |
1507 | if (symbolName.empty()) |
1508 | continue; |
1509 | |
1510 | bool code = isRVACode(coffObj: coffObj.get(), rva: exportRVA, file: this); |
1511 | |
1512 | Symbol *s = make<Symbol>(); |
1513 | s->dllName = dllName; |
1514 | s->symbolName = symbolName; |
1515 | s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; |
1516 | s->nameType = ImportNameType::IMPORT_NAME; |
1517 | |
1518 | if (coffObj->getMachine() == I386) { |
1519 | s->symbolName = symbolName = saver().save(S: "_" + symbolName); |
1520 | s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; |
1521 | } |
1522 | |
1523 | StringRef impName = saver().save(S: "__imp_" + symbolName); |
1524 | symtab.addLazyDLLSymbol(f: this, sym: s, n: impName); |
1525 | if (code) |
1526 | symtab.addLazyDLLSymbol(f: this, sym: s, n: symbolName); |
1527 | if (symtab.isEC()) { |
1528 | StringRef impAuxName = saver().save(S: "__imp_aux_" + symbolName); |
1529 | symtab.addLazyDLLSymbol(f: this, sym: s, n: impAuxName); |
1530 | |
1531 | if (code) { |
1532 | std::optional<std::string> mangledName = |
1533 | getArm64ECMangledFunctionName(Name: symbolName); |
1534 | if (mangledName) |
1535 | symtab.addLazyDLLSymbol(f: this, sym: s, n: *mangledName); |
1536 | } |
1537 | } |
1538 | } |
1539 | } |
1540 | |
1541 | MachineTypes DLLFile::getMachineType() const { |
1542 | if (coffObj) |
1543 | return static_cast<MachineTypes>(coffObj->getMachine()); |
1544 | return IMAGE_FILE_MACHINE_UNKNOWN; |
1545 | } |
1546 | |
1547 | void DLLFile::makeImport(DLLFile::Symbol *s) { |
1548 | if (!seen.insert(key: s->symbolName).second) |
1549 | return; |
1550 | |
1551 | size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs |
1552 | size_t size = sizeof(coff_import_header) + impSize; |
1553 | char *buf = bAlloc().Allocate<char>(Num: size); |
1554 | memset(s: buf, c: 0, n: size); |
1555 | char *p = buf; |
1556 | auto *imp = reinterpret_cast<coff_import_header *>(p); |
1557 | p += sizeof(*imp); |
1558 | imp->Sig2 = 0xFFFF; |
1559 | imp->Machine = coffObj->getMachine(); |
1560 | imp->SizeOfData = impSize; |
1561 | imp->OrdinalHint = 0; // Only linking by name |
1562 | imp->TypeInfo = (s->nameType << 2) | s->importType; |
1563 | |
1564 | // Write symbol name and DLL name. |
1565 | memcpy(dest: p, src: s->symbolName.data(), n: s->symbolName.size()); |
1566 | p += s->symbolName.size() + 1; |
1567 | memcpy(dest: p, src: s->dllName.data(), n: s->dllName.size()); |
1568 | MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); |
1569 | ImportFile *impFile = make<ImportFile>(args&: symtab.ctx, args&: mbref); |
1570 | symtab.ctx.driver.addFile(file: impFile); |
1571 | } |
1572 | |