1//===- AVR.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// AVR is a Harvard-architecture 8-bit microcontroller designed for small
10// baremetal programs. All AVR-family processors have 32 8-bit registers.
11// The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
12// one supports up to 2^24 data address space and 2^22 code address space.
13//
14// Since it is a baremetal programming, there's usually no loader to load
15// ELF files on AVRs. You are expected to link your program against address
16// 0 and pull out a .text section from the result using objcopy, so that you
17// can write the linked code to on-chip flush memory. You can do that with
18// the following commands:
19//
20// ld.lld -Ttext=0 -o foo foo.o
21// objcopy -O binary --only-section=.text foo output.bin
22//
23// Note that the current AVR support is very preliminary so you can't
24// link any useful program yet, though.
25//
26//===----------------------------------------------------------------------===//
27
28#include "InputFiles.h"
29#include "Symbols.h"
30#include "Target.h"
31#include "Thunks.h"
32#include "llvm/BinaryFormat/ELF.h"
33#include "llvm/Support/Endian.h"
34
35using namespace llvm;
36using namespace llvm::object;
37using namespace llvm::support::endian;
38using namespace llvm::ELF;
39using namespace lld;
40using namespace lld::elf;
41
42namespace {
43class AVR final : public TargetInfo {
44public:
45 AVR(Ctx &ctx) : TargetInfo(ctx) { needsThunks = true; }
46 uint32_t calcEFlags() const override;
47 RelExpr getRelExpr(RelType type, const Symbol &s,
48 const uint8_t *loc) const override;
49 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
50 uint64_t branchAddr, const Symbol &s,
51 int64_t a) const override;
52 void relocate(uint8_t *loc, const Relocation &rel,
53 uint64_t val) const override;
54};
55} // namespace
56
57RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
58 const uint8_t *loc) const {
59 switch (type) {
60 case R_AVR_6:
61 case R_AVR_6_ADIW:
62 case R_AVR_8:
63 case R_AVR_8_LO8:
64 case R_AVR_8_HI8:
65 case R_AVR_8_HLO8:
66 case R_AVR_16:
67 case R_AVR_16_PM:
68 case R_AVR_32:
69 case R_AVR_LDI:
70 case R_AVR_LO8_LDI:
71 case R_AVR_LO8_LDI_NEG:
72 case R_AVR_HI8_LDI:
73 case R_AVR_HI8_LDI_NEG:
74 case R_AVR_HH8_LDI_NEG:
75 case R_AVR_HH8_LDI:
76 case R_AVR_MS8_LDI_NEG:
77 case R_AVR_MS8_LDI:
78 case R_AVR_LO8_LDI_GS:
79 case R_AVR_LO8_LDI_PM:
80 case R_AVR_LO8_LDI_PM_NEG:
81 case R_AVR_HI8_LDI_GS:
82 case R_AVR_HI8_LDI_PM:
83 case R_AVR_HI8_LDI_PM_NEG:
84 case R_AVR_HH8_LDI_PM:
85 case R_AVR_HH8_LDI_PM_NEG:
86 case R_AVR_LDS_STS_16:
87 case R_AVR_PORT5:
88 case R_AVR_PORT6:
89 case R_AVR_CALL:
90 return R_ABS;
91 case R_AVR_7_PCREL:
92 case R_AVR_13_PCREL:
93 return R_PC;
94 default:
95 Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v
96 << ") against symbol " << &s;
97 return R_NONE;
98 }
99}
100
101static void writeLDI(uint8_t *loc, uint64_t val) {
102 write16le(P: loc, V: (read16le(P: loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f));
103}
104
105bool AVR::needsThunk(RelExpr expr, RelType type, const InputFile *file,
106 uint64_t branchAddr, const Symbol &s, int64_t a) const {
107 switch (type) {
108 case R_AVR_LO8_LDI_GS:
109 case R_AVR_HI8_LDI_GS:
110 // A thunk is needed if the symbol's virtual address is out of range
111 // [0, 0x1ffff].
112 return s.getVA(ctx) >= 0x20000;
113 default:
114 return false;
115 }
116}
117
118void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
119 switch (rel.type) {
120 case R_AVR_8:
121 checkUInt(ctx, loc, v: val, n: 8, rel);
122 *loc = val;
123 break;
124 case R_AVR_8_LO8:
125 checkUInt(ctx, loc, v: val, n: 32, rel);
126 *loc = val & 0xff;
127 break;
128 case R_AVR_8_HI8:
129 checkUInt(ctx, loc, v: val, n: 32, rel);
130 *loc = (val >> 8) & 0xff;
131 break;
132 case R_AVR_8_HLO8:
133 checkUInt(ctx, loc, v: val, n: 32, rel);
134 *loc = (val >> 16) & 0xff;
135 break;
136 case R_AVR_16:
137 // Note: this relocation is often used between code and data space, which
138 // are 0x800000 apart in the output ELF file. The bitmask cuts off the high
139 // bit.
140 write16le(P: loc, V: val & 0xffff);
141 break;
142 case R_AVR_16_PM:
143 checkAlignment(ctx, loc, v: val, n: 2, rel);
144 checkUInt(ctx, loc, v: val >> 1, n: 16, rel);
145 write16le(P: loc, V: val >> 1);
146 break;
147 case R_AVR_32:
148 checkUInt(ctx, loc, v: val, n: 32, rel);
149 write32le(P: loc, V: val);
150 break;
151
152 case R_AVR_LDI:
153 checkUInt(ctx, loc, v: val, n: 8, rel);
154 writeLDI(loc, val: val & 0xff);
155 break;
156
157 case R_AVR_LO8_LDI_NEG:
158 writeLDI(loc, val: -val & 0xff);
159 break;
160 case R_AVR_LO8_LDI:
161 writeLDI(loc, val: val & 0xff);
162 break;
163 case R_AVR_HI8_LDI_NEG:
164 writeLDI(loc, val: (-val >> 8) & 0xff);
165 break;
166 case R_AVR_HI8_LDI:
167 writeLDI(loc, val: (val >> 8) & 0xff);
168 break;
169 case R_AVR_HH8_LDI_NEG:
170 writeLDI(loc, val: (-val >> 16) & 0xff);
171 break;
172 case R_AVR_HH8_LDI:
173 writeLDI(loc, val: (val >> 16) & 0xff);
174 break;
175 case R_AVR_MS8_LDI_NEG:
176 writeLDI(loc, val: (-val >> 24) & 0xff);
177 break;
178 case R_AVR_MS8_LDI:
179 writeLDI(loc, val: (val >> 24) & 0xff);
180 break;
181
182 case R_AVR_LO8_LDI_GS:
183 checkUInt(ctx, loc, v: val, n: 17, rel);
184 [[fallthrough]];
185 case R_AVR_LO8_LDI_PM:
186 checkAlignment(ctx, loc, v: val, n: 2, rel);
187 writeLDI(loc, val: (val >> 1) & 0xff);
188 break;
189 case R_AVR_HI8_LDI_GS:
190 checkUInt(ctx, loc, v: val, n: 17, rel);
191 [[fallthrough]];
192 case R_AVR_HI8_LDI_PM:
193 checkAlignment(ctx, loc, v: val, n: 2, rel);
194 writeLDI(loc, val: (val >> 9) & 0xff);
195 break;
196 case R_AVR_HH8_LDI_PM:
197 checkAlignment(ctx, loc, v: val, n: 2, rel);
198 writeLDI(loc, val: (val >> 17) & 0xff);
199 break;
200
201 case R_AVR_LO8_LDI_PM_NEG:
202 checkAlignment(ctx, loc, v: val, n: 2, rel);
203 writeLDI(loc, val: (-val >> 1) & 0xff);
204 break;
205 case R_AVR_HI8_LDI_PM_NEG:
206 checkAlignment(ctx, loc, v: val, n: 2, rel);
207 writeLDI(loc, val: (-val >> 9) & 0xff);
208 break;
209 case R_AVR_HH8_LDI_PM_NEG:
210 checkAlignment(ctx, loc, v: val, n: 2, rel);
211 writeLDI(loc, val: (-val >> 17) & 0xff);
212 break;
213
214 case R_AVR_LDS_STS_16: {
215 checkUInt(ctx, loc, v: val, n: 7, rel);
216 const uint16_t hi = val >> 4;
217 const uint16_t lo = val & 0xf;
218 write16le(P: loc, V: (read16le(P: loc) & 0xf8f0) | ((hi << 8) | lo));
219 break;
220 }
221
222 case R_AVR_PORT5:
223 checkUInt(ctx, loc, v: val, n: 5, rel);
224 write16le(P: loc, V: (read16le(P: loc) & 0xff07) | (val << 3));
225 break;
226 case R_AVR_PORT6:
227 checkUInt(ctx, loc, v: val, n: 6, rel);
228 write16le(P: loc, V: (read16le(P: loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f));
229 break;
230
231 // Since every jump destination is word aligned we gain an extra bit
232 case R_AVR_7_PCREL: {
233 checkInt(ctx, loc, v: val - 2, n: 8, rel);
234 checkAlignment(ctx, loc, v: val, n: 2, rel);
235 const uint16_t target = (val - 2) >> 1;
236 write16le(P: loc, V: (read16le(P: loc) & 0xfc07) | ((target & 0x7f) << 3));
237 break;
238 }
239 case R_AVR_13_PCREL: {
240 checkAlignment(ctx, loc, v: val, n: 2, rel);
241 const uint16_t target = (val - 2) >> 1;
242 write16le(P: loc, V: (read16le(P: loc) & 0xf000) | (target & 0xfff));
243 break;
244 }
245
246 case R_AVR_6:
247 checkInt(ctx, loc, v: val, n: 6, rel);
248 write16le(P: loc, V: (read16le(P: loc) & 0xd3f8) | (val & 0x20) << 8 |
249 (val & 0x18) << 7 | (val & 0x07));
250 break;
251 case R_AVR_6_ADIW:
252 checkInt(ctx, loc, v: val, n: 6, rel);
253 write16le(P: loc, V: (read16le(P: loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F));
254 break;
255
256 case R_AVR_CALL: {
257 checkAlignment(ctx, loc, v: val, n: 2, rel);
258 uint16_t hi = val >> 17;
259 uint16_t lo = val >> 1;
260 write16le(P: loc, V: read16le(P: loc) | ((hi >> 1) << 4) | (hi & 1));
261 write16le(P: loc + 2, V: lo);
262 break;
263 }
264 default:
265 llvm_unreachable("unknown relocation");
266 }
267}
268
269void elf::setAVRTargetInfo(Ctx &ctx) { ctx.target.reset(p: new AVR(ctx)); }
270
271static uint32_t getEFlags(InputFile *file) {
272 return cast<ObjFile<ELF32LE>>(Val: file)->getObj().getHeader().e_flags;
273}
274
275uint32_t AVR::calcEFlags() const {
276 assert(!ctx.objectFiles.empty());
277
278 uint32_t flags = getEFlags(file: ctx.objectFiles[0]);
279 bool hasLinkRelaxFlag = flags & EF_AVR_LINKRELAX_PREPARED;
280
281 for (InputFile *f : ArrayRef(ctx.objectFiles).slice(N: 1)) {
282 uint32_t objFlags = getEFlags(file: f);
283 if ((objFlags & EF_AVR_ARCH_MASK) != (flags & EF_AVR_ARCH_MASK))
284 ErrAlways(ctx)
285 << f << ": cannot link object files with incompatible target ISA";
286 if (!(objFlags & EF_AVR_LINKRELAX_PREPARED))
287 hasLinkRelaxFlag = false;
288 }
289
290 if (!hasLinkRelaxFlag)
291 flags &= ~EF_AVR_LINKRELAX_PREPARED;
292
293 return flags;
294}
295