1 | //===- LoongArch.cpp ------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "InputFiles.h" |
10 | #include "OutputSections.h" |
11 | #include "Symbols.h" |
12 | #include "SyntheticSections.h" |
13 | #include "Target.h" |
14 | #include "llvm/BinaryFormat/ELF.h" |
15 | #include "llvm/Support/LEB128.h" |
16 | |
17 | using namespace llvm; |
18 | using namespace llvm::object; |
19 | using namespace llvm::support::endian; |
20 | using namespace llvm::ELF; |
21 | using namespace lld; |
22 | using namespace lld::elf; |
23 | |
24 | namespace { |
25 | class LoongArch final : public TargetInfo { |
26 | public: |
27 | LoongArch(Ctx &); |
28 | uint32_t calcEFlags() const override; |
29 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
30 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
31 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
32 | void writePltHeader(uint8_t *buf) const override; |
33 | void writePlt(uint8_t *buf, const Symbol &sym, |
34 | uint64_t pltEntryAddr) const override; |
35 | RelType getDynRel(RelType type) const override; |
36 | RelExpr getRelExpr(RelType type, const Symbol &s, |
37 | const uint8_t *loc) const override; |
38 | bool usesOnlyLowPageBits(RelType type) const override; |
39 | void relocate(uint8_t *loc, const Relocation &rel, |
40 | uint64_t val) const override; |
41 | bool relaxOnce(int pass) const override; |
42 | RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; |
43 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
44 | void finalizeRelax(int passes) const override; |
45 | |
46 | private: |
47 | void tlsdescToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
48 | void tlsdescToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
49 | }; |
50 | } // end anonymous namespace |
51 | |
52 | namespace { |
53 | enum Op { |
54 | SUB_W = 0x00110000, |
55 | SUB_D = 0x00118000, |
56 | BREAK = 0x002a0000, |
57 | SRLI_W = 0x00448000, |
58 | SRLI_D = 0x00450000, |
59 | ADDI_W = 0x02800000, |
60 | ADDI_D = 0x02c00000, |
61 | ANDI = 0x03400000, |
62 | ORI = 0x03800000, |
63 | LU12I_W = 0x14000000, |
64 | PCADDI = 0x18000000, |
65 | PCADDU12I = 0x1c000000, |
66 | PCALAU12I = 0x1a000000, |
67 | LD_W = 0x28800000, |
68 | LD_D = 0x28c00000, |
69 | JIRL = 0x4c000000, |
70 | B = 0x50000000, |
71 | BL = 0x54000000, |
72 | }; |
73 | |
74 | enum Reg { |
75 | R_ZERO = 0, |
76 | R_RA = 1, |
77 | R_TP = 2, |
78 | R_A0 = 4, |
79 | R_T0 = 12, |
80 | R_T1 = 13, |
81 | R_T2 = 14, |
82 | R_T3 = 15, |
83 | }; |
84 | } // namespace |
85 | |
86 | // Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences |
87 | // like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i` |
88 | // produces a PC-relative intermediate value with the lowest 12 bits zeroed (the |
89 | // "page") for the next instruction to add in the "page offset". (`pcalau12i` |
90 | // stands for something like "PC ALigned Add Upper that starts from the 12th |
91 | // bit, Immediate".) |
92 | // |
93 | // Here a "page" is in fact just another way to refer to the 12-bit range |
94 | // allowed by the immediate field of the addi/ld/st instructions, and not |
95 | // related to the system or the kernel's actual page size. The semantics happen |
96 | // to match the AArch64 `adrp`, so the concept of "page" is borrowed here. |
97 | static uint64_t getLoongArchPage(uint64_t p) { |
98 | return p & ~static_cast<uint64_t>(0xfff); |
99 | } |
100 | |
101 | static uint32_t lo12(uint32_t val) { return val & 0xfff; } |
102 | |
103 | // Calculate the adjusted page delta between dest and PC. |
104 | uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) { |
105 | // Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d |
106 | // + lu52i.d`, they must be adjacent so that we can infer the PC of |
107 | // `pcalau12i` when calculating the page delta for the other two instructions |
108 | // (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit |
109 | // complicated. Just use psABI recommended algorithm. |
110 | uint64_t pcalau12i_pc; |
111 | switch (type) { |
112 | case R_LARCH_PCALA64_LO20: |
113 | case R_LARCH_GOT64_PC_LO20: |
114 | case R_LARCH_TLS_IE64_PC_LO20: |
115 | case R_LARCH_TLS_DESC64_PC_LO20: |
116 | pcalau12i_pc = pc - 8; |
117 | break; |
118 | case R_LARCH_PCALA64_HI12: |
119 | case R_LARCH_GOT64_PC_HI12: |
120 | case R_LARCH_TLS_IE64_PC_HI12: |
121 | case R_LARCH_TLS_DESC64_PC_HI12: |
122 | pcalau12i_pc = pc - 12; |
123 | break; |
124 | default: |
125 | pcalau12i_pc = pc; |
126 | break; |
127 | } |
128 | uint64_t result = getLoongArchPage(p: dest) - getLoongArchPage(p: pcalau12i_pc); |
129 | if (dest & 0x800) |
130 | result += 0x1000 - 0x1'0000'0000; |
131 | if (result & 0x8000'0000) |
132 | result += 0x1'0000'0000; |
133 | return result; |
134 | } |
135 | |
136 | static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; } |
137 | |
138 | static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) { |
139 | return op | d | (j << 5) | (k << 10); |
140 | } |
141 | |
142 | // Extract bits v[begin:end], where range is inclusive. |
143 | static uint32_t (uint64_t v, uint32_t begin, uint32_t end) { |
144 | return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end; |
145 | } |
146 | |
147 | static uint32_t getD5(uint64_t v) { return extractBits(v, begin: 4, end: 0); } |
148 | |
149 | static uint32_t getJ5(uint64_t v) { return extractBits(v, begin: 9, end: 5); } |
150 | |
151 | static uint32_t setD5k16(uint32_t insn, uint32_t imm) { |
152 | uint32_t immLo = extractBits(v: imm, begin: 15, end: 0); |
153 | uint32_t immHi = extractBits(v: imm, begin: 20, end: 16); |
154 | return (insn & 0xfc0003e0) | (immLo << 10) | immHi; |
155 | } |
156 | |
157 | static uint32_t setD10k16(uint32_t insn, uint32_t imm) { |
158 | uint32_t immLo = extractBits(v: imm, begin: 15, end: 0); |
159 | uint32_t immHi = extractBits(v: imm, begin: 25, end: 16); |
160 | return (insn & 0xfc000000) | (immLo << 10) | immHi; |
161 | } |
162 | |
163 | static uint32_t setJ20(uint32_t insn, uint32_t imm) { |
164 | return (insn & 0xfe00001f) | (extractBits(v: imm, begin: 19, end: 0) << 5); |
165 | } |
166 | |
167 | static uint32_t setJ5(uint32_t insn, uint32_t imm) { |
168 | return (insn & 0xfffffc1f) | (extractBits(v: imm, begin: 4, end: 0) << 5); |
169 | } |
170 | |
171 | static uint32_t setK12(uint32_t insn, uint32_t imm) { |
172 | return (insn & 0xffc003ff) | (extractBits(v: imm, begin: 11, end: 0) << 10); |
173 | } |
174 | |
175 | static uint32_t setK16(uint32_t insn, uint32_t imm) { |
176 | return (insn & 0xfc0003ff) | (extractBits(v: imm, begin: 15, end: 0) << 10); |
177 | } |
178 | |
179 | static bool isJirl(uint32_t insn) { |
180 | return (insn & 0xfc000000) == JIRL; |
181 | } |
182 | |
183 | static void handleUleb128(Ctx &ctx, uint8_t *loc, uint64_t val) { |
184 | const uint32_t maxcount = 1 + 64 / 7; |
185 | uint32_t count; |
186 | const char *error = nullptr; |
187 | uint64_t orig = decodeULEB128(p: loc, n: &count, end: nullptr, error: &error); |
188 | if (count > maxcount || (count == maxcount && error)) |
189 | Err(ctx) << getErrorLoc(ctx, loc) << "extra space for uleb128" ; |
190 | uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL; |
191 | encodeULEB128(Value: (orig + val) & mask, p: loc, PadTo: count); |
192 | } |
193 | |
194 | LoongArch::LoongArch(Ctx &ctx) : TargetInfo(ctx) { |
195 | // The LoongArch ISA itself does not have a limit on page sizes. According to |
196 | // the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is |
197 | // 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to |
198 | // "unlimited". |
199 | // However, practically the maximum usable page size is constrained by the |
200 | // kernel implementation, and 64KiB is the biggest non-huge page size |
201 | // supported by Linux as of v6.4. The most widespread page size in use, |
202 | // though, is 16KiB. |
203 | defaultCommonPageSize = 16384; |
204 | defaultMaxPageSize = 65536; |
205 | write32le(P: trapInstr.data(), V: BREAK); // break 0 |
206 | |
207 | copyRel = R_LARCH_COPY; |
208 | pltRel = R_LARCH_JUMP_SLOT; |
209 | relativeRel = R_LARCH_RELATIVE; |
210 | iRelativeRel = R_LARCH_IRELATIVE; |
211 | |
212 | if (ctx.arg.is64) { |
213 | symbolicRel = R_LARCH_64; |
214 | tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64; |
215 | tlsOffsetRel = R_LARCH_TLS_DTPREL64; |
216 | tlsGotRel = R_LARCH_TLS_TPREL64; |
217 | tlsDescRel = R_LARCH_TLS_DESC64; |
218 | } else { |
219 | symbolicRel = R_LARCH_32; |
220 | tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32; |
221 | tlsOffsetRel = R_LARCH_TLS_DTPREL32; |
222 | tlsGotRel = R_LARCH_TLS_TPREL32; |
223 | tlsDescRel = R_LARCH_TLS_DESC32; |
224 | } |
225 | |
226 | gotRel = symbolicRel; |
227 | |
228 | // .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map |
229 | gotPltHeaderEntriesNum = 2; |
230 | |
231 | pltHeaderSize = 32; |
232 | pltEntrySize = 16; |
233 | ipltEntrySize = 16; |
234 | } |
235 | |
236 | static uint32_t getEFlags(Ctx &ctx, const InputFile *f) { |
237 | if (ctx.arg.is64) |
238 | return cast<ObjFile<ELF64LE>>(Val: f)->getObj().getHeader().e_flags; |
239 | return cast<ObjFile<ELF32LE>>(Val: f)->getObj().getHeader().e_flags; |
240 | } |
241 | |
242 | static bool inputFileHasCode(const InputFile *f) { |
243 | for (const auto *sec : f->getSections()) |
244 | if (sec && sec->flags & SHF_EXECINSTR) |
245 | return true; |
246 | |
247 | return false; |
248 | } |
249 | |
250 | uint32_t LoongArch::calcEFlags() const { |
251 | // If there are only binary input files (from -b binary), use a |
252 | // value of 0 for the ELF header flags. |
253 | if (ctx.objectFiles.empty()) |
254 | return 0; |
255 | |
256 | uint32_t target = 0; |
257 | const InputFile *targetFile; |
258 | for (const InputFile *f : ctx.objectFiles) { |
259 | // Do not enforce ABI compatibility if the input file does not contain code. |
260 | // This is useful for allowing linkage with data-only object files produced |
261 | // with tools like objcopy, that have zero e_flags. |
262 | if (!inputFileHasCode(f)) |
263 | continue; |
264 | |
265 | // Take the first non-zero e_flags as the reference. |
266 | uint32_t flags = getEFlags(ctx, f); |
267 | if (target == 0 && flags != 0) { |
268 | target = flags; |
269 | targetFile = f; |
270 | } |
271 | |
272 | if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) != |
273 | (target & EF_LOONGARCH_ABI_MODIFIER_MASK)) |
274 | ErrAlways(ctx) << f |
275 | << ": cannot link object files with different ABI from " |
276 | << targetFile; |
277 | |
278 | // We cannot process psABI v1.x / object ABI v0 files (containing stack |
279 | // relocations), unlike ld.bfd. |
280 | // |
281 | // Instead of blindly accepting every v0 object and only failing at |
282 | // relocation processing time, just disallow interlink altogether. We |
283 | // don't expect significant usage of object ABI v0 in the wild (the old |
284 | // world may continue using object ABI v0 for a while, but as it's not |
285 | // binary-compatible with the upstream i.e. new-world ecosystem, it's not |
286 | // being considered here). |
287 | // |
288 | // There are briefly some new-world systems with object ABI v0 binaries too. |
289 | // It is because these systems were built before the new ABI was finalized. |
290 | // These are not supported either due to the extremely small number of them, |
291 | // and the few impacted users are advised to simply rebuild world or |
292 | // reinstall a recent system. |
293 | if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1) |
294 | ErrAlways(ctx) << f << ": unsupported object file ABI version" ; |
295 | } |
296 | |
297 | return target; |
298 | } |
299 | |
300 | int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const { |
301 | switch (type) { |
302 | default: |
303 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
304 | return 0; |
305 | case R_LARCH_32: |
306 | case R_LARCH_TLS_DTPMOD32: |
307 | case R_LARCH_TLS_DTPREL32: |
308 | case R_LARCH_TLS_TPREL32: |
309 | return SignExtend64<32>(x: read32le(P: buf)); |
310 | case R_LARCH_64: |
311 | case R_LARCH_TLS_DTPMOD64: |
312 | case R_LARCH_TLS_DTPREL64: |
313 | case R_LARCH_TLS_TPREL64: |
314 | return read64le(P: buf); |
315 | case R_LARCH_RELATIVE: |
316 | case R_LARCH_IRELATIVE: |
317 | return ctx.arg.is64 ? read64le(P: buf) : read32le(P: buf); |
318 | case R_LARCH_NONE: |
319 | case R_LARCH_JUMP_SLOT: |
320 | // These relocations are defined as not having an implicit addend. |
321 | return 0; |
322 | case R_LARCH_TLS_DESC32: |
323 | return read32le(P: buf + 4); |
324 | case R_LARCH_TLS_DESC64: |
325 | return read64le(P: buf + 8); |
326 | } |
327 | } |
328 | |
329 | void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
330 | if (ctx.arg.is64) |
331 | write64le(P: buf, V: ctx.in.plt->getVA()); |
332 | else |
333 | write32le(P: buf, V: ctx.in.plt->getVA()); |
334 | } |
335 | |
336 | void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
337 | if (ctx.arg.writeAddends) { |
338 | if (ctx.arg.is64) |
339 | write64le(P: buf, V: s.getVA(ctx)); |
340 | else |
341 | write32le(P: buf, V: s.getVA(ctx)); |
342 | } |
343 | } |
344 | |
345 | void LoongArch::(uint8_t *buf) const { |
346 | // The LoongArch PLT is currently structured just like that of RISCV. |
347 | // Annoyingly, this means the PLT is still using `pcaddu12i` to perform |
348 | // PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`), |
349 | // in contrast to the AArch64-like page-offset scheme with `pcalau12i` that |
350 | // is used everywhere else involving PC-relative operations in the LoongArch |
351 | // ELF psABI v2.00. |
352 | // |
353 | // The `pcrel_{hi20,lo12}` operators are illustrative only and not really |
354 | // supported by LoongArch assemblers. |
355 | // |
356 | // pcaddu12i $t2, %pcrel_hi20(.got.plt) |
357 | // sub.[wd] $t1, $t1, $t3 |
358 | // ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve |
359 | // addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0] |
360 | // addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt) |
361 | // srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0] |
362 | // ld.[wd] $t0, $t0, Wordsize ; t0 = link_map |
363 | // jr $t3 |
364 | uint32_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA(); |
365 | uint32_t sub = ctx.arg.is64 ? SUB_D : SUB_W; |
366 | uint32_t ld = ctx.arg.is64 ? LD_D : LD_W; |
367 | uint32_t addi = ctx.arg.is64 ? ADDI_D : ADDI_W; |
368 | uint32_t srli = ctx.arg.is64 ? SRLI_D : SRLI_W; |
369 | write32le(P: buf + 0, V: insn(op: PCADDU12I, d: R_T2, j: hi20(val: offset), k: 0)); |
370 | write32le(P: buf + 4, V: insn(op: sub, d: R_T1, j: R_T1, k: R_T3)); |
371 | write32le(P: buf + 8, V: insn(op: ld, d: R_T3, j: R_T2, k: lo12(val: offset))); |
372 | write32le(P: buf + 12, |
373 | V: insn(op: addi, d: R_T1, j: R_T1, k: lo12(val: -ctx.target->pltHeaderSize - 12))); |
374 | write32le(P: buf + 16, V: insn(op: addi, d: R_T0, j: R_T2, k: lo12(val: offset))); |
375 | write32le(P: buf + 20, V: insn(op: srli, d: R_T1, j: R_T1, k: ctx.arg.is64 ? 1 : 2)); |
376 | write32le(P: buf + 24, V: insn(op: ld, d: R_T0, j: R_T0, k: ctx.arg.wordsize)); |
377 | write32le(P: buf + 28, V: insn(op: JIRL, d: R_ZERO, j: R_T3, k: 0)); |
378 | } |
379 | |
380 | void LoongArch::writePlt(uint8_t *buf, const Symbol &sym, |
381 | uint64_t pltEntryAddr) const { |
382 | // See the comment in writePltHeader for reason why pcaddu12i is used instead |
383 | // of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days. |
384 | // |
385 | // pcaddu12i $t3, %pcrel_hi20(f@.got.plt) |
386 | // ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt) |
387 | // jirl $t1, $t3, 0 |
388 | // nop |
389 | uint32_t offset = sym.getGotPltVA(ctx) - pltEntryAddr; |
390 | write32le(P: buf + 0, V: insn(op: PCADDU12I, d: R_T3, j: hi20(val: offset), k: 0)); |
391 | write32le(P: buf + 4, |
392 | V: insn(op: ctx.arg.is64 ? LD_D : LD_W, d: R_T3, j: R_T3, k: lo12(val: offset))); |
393 | write32le(P: buf + 8, V: insn(op: JIRL, d: R_T1, j: R_T3, k: 0)); |
394 | write32le(P: buf + 12, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); |
395 | } |
396 | |
397 | RelType LoongArch::getDynRel(RelType type) const { |
398 | return type == ctx.target->symbolicRel ? type |
399 | : static_cast<RelType>(R_LARCH_NONE); |
400 | } |
401 | |
402 | RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s, |
403 | const uint8_t *loc) const { |
404 | switch (type) { |
405 | case R_LARCH_NONE: |
406 | case R_LARCH_MARK_LA: |
407 | case R_LARCH_MARK_PCREL: |
408 | return R_NONE; |
409 | case R_LARCH_32: |
410 | case R_LARCH_64: |
411 | case R_LARCH_ABS_HI20: |
412 | case R_LARCH_ABS_LO12: |
413 | case R_LARCH_ABS64_LO20: |
414 | case R_LARCH_ABS64_HI12: |
415 | return R_ABS; |
416 | case R_LARCH_PCALA_LO12: |
417 | // We could just R_ABS, but the JIRL instruction reuses the relocation type |
418 | // for a different purpose. The questionable usage is part of glibc 2.37 |
419 | // libc_nonshared.a [1], which is linked into user programs, so we have to |
420 | // work around it for a while, even if a new relocation type may be |
421 | // introduced in the future [2]. |
422 | // |
423 | // [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a |
424 | // [2]: https://github.com/loongson/la-abi-specs/pull/3 |
425 | return isJirl(insn: read32le(P: loc)) ? R_PLT : R_ABS; |
426 | case R_LARCH_TLS_DTPREL32: |
427 | case R_LARCH_TLS_DTPREL64: |
428 | return R_DTPREL; |
429 | case R_LARCH_TLS_TPREL32: |
430 | case R_LARCH_TLS_TPREL64: |
431 | case R_LARCH_TLS_LE_HI20: |
432 | case R_LARCH_TLS_LE_HI20_R: |
433 | case R_LARCH_TLS_LE_LO12: |
434 | case R_LARCH_TLS_LE_LO12_R: |
435 | case R_LARCH_TLS_LE64_LO20: |
436 | case R_LARCH_TLS_LE64_HI12: |
437 | return R_TPREL; |
438 | case R_LARCH_ADD6: |
439 | case R_LARCH_ADD8: |
440 | case R_LARCH_ADD16: |
441 | case R_LARCH_ADD32: |
442 | case R_LARCH_ADD64: |
443 | case R_LARCH_ADD_ULEB128: |
444 | case R_LARCH_SUB6: |
445 | case R_LARCH_SUB8: |
446 | case R_LARCH_SUB16: |
447 | case R_LARCH_SUB32: |
448 | case R_LARCH_SUB64: |
449 | case R_LARCH_SUB_ULEB128: |
450 | // The LoongArch add/sub relocs behave like the RISCV counterparts; reuse |
451 | // the RelExpr to avoid code duplication. |
452 | return RE_RISCV_ADD; |
453 | case R_LARCH_32_PCREL: |
454 | case R_LARCH_64_PCREL: |
455 | case R_LARCH_PCREL20_S2: |
456 | return R_PC; |
457 | case R_LARCH_B16: |
458 | case R_LARCH_B21: |
459 | case R_LARCH_B26: |
460 | case R_LARCH_CALL36: |
461 | return R_PLT_PC; |
462 | case R_LARCH_GOT_PC_HI20: |
463 | case R_LARCH_GOT64_PC_LO20: |
464 | case R_LARCH_GOT64_PC_HI12: |
465 | case R_LARCH_TLS_IE_PC_HI20: |
466 | case R_LARCH_TLS_IE64_PC_LO20: |
467 | case R_LARCH_TLS_IE64_PC_HI12: |
468 | return RE_LOONGARCH_GOT_PAGE_PC; |
469 | case R_LARCH_GOT_PC_LO12: |
470 | case R_LARCH_TLS_IE_PC_LO12: |
471 | return RE_LOONGARCH_GOT; |
472 | case R_LARCH_TLS_LD_PC_HI20: |
473 | case R_LARCH_TLS_GD_PC_HI20: |
474 | return RE_LOONGARCH_TLSGD_PAGE_PC; |
475 | case R_LARCH_PCALA_HI20: |
476 | // Why not RE_LOONGARCH_PAGE_PC, majority of references don't go through |
477 | // PLT anyway so why waste time checking only to get everything relaxed back |
478 | // to it? |
479 | // |
480 | // This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want |
481 | // both the HI20 and LO12 to potentially refer to the PLT. But in reality |
482 | // the HI20 reloc appears earlier, and the relocs don't contain enough |
483 | // information to let us properly resolve semantics per symbol. |
484 | // Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20 |
485 | // relocs, hence it is nearly impossible to 100% accurately determine each |
486 | // HI20's "flavor" without taking big performance hits, in the presence of |
487 | // edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far |
488 | // apart that relationship is not certain anymore), and programmer mistakes |
489 | // (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3). |
490 | // |
491 | // Ideally we would scan in an extra pass for all LO12s on JIRL, then mark |
492 | // every HI20 reloc referring to the same symbol differently; this is not |
493 | // feasible with the current function signature of getRelExpr that doesn't |
494 | // allow for such inter-pass state. |
495 | // |
496 | // So, unfortunately we have to again workaround this quirk the same way as |
497 | // BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only |
498 | // relaxing back to RE_LOONGARCH_PAGE_PC if it's known not so at a later |
499 | // stage. |
500 | return RE_LOONGARCH_PLT_PAGE_PC; |
501 | case R_LARCH_PCALA64_LO20: |
502 | case R_LARCH_PCALA64_HI12: |
503 | return RE_LOONGARCH_PAGE_PC; |
504 | case R_LARCH_GOT_HI20: |
505 | case R_LARCH_GOT_LO12: |
506 | case R_LARCH_GOT64_LO20: |
507 | case R_LARCH_GOT64_HI12: |
508 | case R_LARCH_TLS_IE_HI20: |
509 | case R_LARCH_TLS_IE_LO12: |
510 | case R_LARCH_TLS_IE64_LO20: |
511 | case R_LARCH_TLS_IE64_HI12: |
512 | return R_GOT; |
513 | case R_LARCH_TLS_LD_HI20: |
514 | return R_TLSLD_GOT; |
515 | case R_LARCH_TLS_GD_HI20: |
516 | return R_TLSGD_GOT; |
517 | case R_LARCH_TLS_LE_ADD_R: |
518 | case R_LARCH_RELAX: |
519 | return ctx.arg.relax ? R_RELAX_HINT : R_NONE; |
520 | case R_LARCH_ALIGN: |
521 | return R_RELAX_HINT; |
522 | case R_LARCH_TLS_DESC_PC_HI20: |
523 | case R_LARCH_TLS_DESC64_PC_LO20: |
524 | case R_LARCH_TLS_DESC64_PC_HI12: |
525 | return RE_LOONGARCH_TLSDESC_PAGE_PC; |
526 | case R_LARCH_TLS_DESC_PC_LO12: |
527 | case R_LARCH_TLS_DESC_LD: |
528 | case R_LARCH_TLS_DESC_HI20: |
529 | case R_LARCH_TLS_DESC_LO12: |
530 | case R_LARCH_TLS_DESC64_LO20: |
531 | case R_LARCH_TLS_DESC64_HI12: |
532 | return R_TLSDESC; |
533 | case R_LARCH_TLS_DESC_CALL: |
534 | return R_TLSDESC_CALL; |
535 | case R_LARCH_TLS_LD_PCREL20_S2: |
536 | return R_TLSLD_PC; |
537 | case R_LARCH_TLS_GD_PCREL20_S2: |
538 | return R_TLSGD_PC; |
539 | case R_LARCH_TLS_DESC_PCREL20_S2: |
540 | return R_TLSDESC_PC; |
541 | |
542 | // Other known relocs that are explicitly unimplemented: |
543 | // |
544 | // - psABI v1 relocs that need a stateful stack machine to work, and not |
545 | // required when implementing psABI v2; |
546 | // - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the |
547 | // two GNU vtable-related relocs). |
548 | // |
549 | // [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51 |
550 | default: |
551 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
552 | << ") against symbol " << &s; |
553 | return R_NONE; |
554 | } |
555 | } |
556 | |
557 | bool LoongArch::usesOnlyLowPageBits(RelType type) const { |
558 | switch (type) { |
559 | default: |
560 | return false; |
561 | case R_LARCH_PCALA_LO12: |
562 | case R_LARCH_GOT_LO12: |
563 | case R_LARCH_GOT_PC_LO12: |
564 | case R_LARCH_TLS_IE_PC_LO12: |
565 | case R_LARCH_TLS_DESC_LO12: |
566 | case R_LARCH_TLS_DESC_PC_LO12: |
567 | return true; |
568 | } |
569 | } |
570 | |
571 | void LoongArch::relocate(uint8_t *loc, const Relocation &rel, |
572 | uint64_t val) const { |
573 | switch (rel.type) { |
574 | case R_LARCH_32_PCREL: |
575 | checkInt(ctx, loc, v: val, n: 32, rel); |
576 | [[fallthrough]]; |
577 | case R_LARCH_32: |
578 | case R_LARCH_TLS_DTPREL32: |
579 | write32le(P: loc, V: val); |
580 | return; |
581 | case R_LARCH_64: |
582 | case R_LARCH_TLS_DTPREL64: |
583 | case R_LARCH_64_PCREL: |
584 | write64le(P: loc, V: val); |
585 | return; |
586 | |
587 | // Relocs intended for `pcaddi`. |
588 | case R_LARCH_PCREL20_S2: |
589 | case R_LARCH_TLS_LD_PCREL20_S2: |
590 | case R_LARCH_TLS_GD_PCREL20_S2: |
591 | case R_LARCH_TLS_DESC_PCREL20_S2: |
592 | checkInt(ctx, loc, v: val, n: 22, rel); |
593 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
594 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: val >> 2)); |
595 | return; |
596 | |
597 | case R_LARCH_B16: |
598 | checkInt(ctx, loc, v: val, n: 18, rel); |
599 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
600 | write32le(P: loc, V: setK16(insn: read32le(P: loc), imm: val >> 2)); |
601 | return; |
602 | |
603 | case R_LARCH_B21: |
604 | checkInt(ctx, loc, v: val, n: 23, rel); |
605 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
606 | write32le(P: loc, V: setD5k16(insn: read32le(P: loc), imm: val >> 2)); |
607 | return; |
608 | |
609 | case R_LARCH_B26: |
610 | checkInt(ctx, loc, v: val, n: 28, rel); |
611 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
612 | write32le(P: loc, V: setD10k16(insn: read32le(P: loc), imm: val >> 2)); |
613 | return; |
614 | |
615 | case R_LARCH_CALL36: { |
616 | // This relocation is designed for adjacent pcaddu18i+jirl pairs that |
617 | // are patched in one time. Because of sign extension of these insns' |
618 | // immediate fields, the relocation range is [-128G - 0x20000, +128G - |
619 | // 0x20000) (of course must be 4-byte aligned). |
620 | if (((int64_t)val + 0x20000) != llvm::SignExtend64(X: val + 0x20000, B: 38)) |
621 | reportRangeError(ctx, loc, rel, v: Twine(val), min: llvm::minIntN(N: 38) - 0x20000, |
622 | max: llvm::maxIntN(N: 38) - 0x20000); |
623 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
624 | // Since jirl performs sign extension on the offset immediate, adds (1<<17) |
625 | // to original val to get the correct hi20. |
626 | uint32_t hi20 = extractBits(v: val + (1 << 17), begin: 37, end: 18); |
627 | // Despite the name, the lower part is actually 18 bits with 4-byte aligned. |
628 | uint32_t lo16 = extractBits(v: val, begin: 17, end: 2); |
629 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: hi20)); |
630 | write32le(P: loc + 4, V: setK16(insn: read32le(P: loc + 4), imm: lo16)); |
631 | return; |
632 | } |
633 | |
634 | // Relocs intended for `addi`, `ld` or `st`. |
635 | case R_LARCH_PCALA_LO12: |
636 | // We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12 |
637 | // on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes |
638 | // removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly |
639 | // its immediate slot width is different too (16, not 12). |
640 | // In this case, process like an R_LARCH_B16, but without overflow checking |
641 | // and only taking the value's lowest 12 bits. |
642 | if (isJirl(insn: read32le(P: loc))) { |
643 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
644 | val = SignExtend64<12>(x: val); |
645 | write32le(P: loc, V: setK16(insn: read32le(P: loc), imm: val >> 2)); |
646 | return; |
647 | } |
648 | [[fallthrough]]; |
649 | case R_LARCH_ABS_LO12: |
650 | case R_LARCH_GOT_PC_LO12: |
651 | case R_LARCH_GOT_LO12: |
652 | case R_LARCH_TLS_LE_LO12: |
653 | case R_LARCH_TLS_IE_PC_LO12: |
654 | case R_LARCH_TLS_IE_LO12: |
655 | case R_LARCH_TLS_LE_LO12_R: |
656 | case R_LARCH_TLS_DESC_PC_LO12: |
657 | case R_LARCH_TLS_DESC_LO12: |
658 | write32le(P: loc, V: setK12(insn: read32le(P: loc), imm: extractBits(v: val, begin: 11, end: 0))); |
659 | return; |
660 | |
661 | // Relocs intended for `lu12i.w` or `pcalau12i`. |
662 | case R_LARCH_ABS_HI20: |
663 | case R_LARCH_PCALA_HI20: |
664 | case R_LARCH_GOT_PC_HI20: |
665 | case R_LARCH_GOT_HI20: |
666 | case R_LARCH_TLS_LE_HI20: |
667 | case R_LARCH_TLS_IE_PC_HI20: |
668 | case R_LARCH_TLS_IE_HI20: |
669 | case R_LARCH_TLS_LD_PC_HI20: |
670 | case R_LARCH_TLS_LD_HI20: |
671 | case R_LARCH_TLS_GD_PC_HI20: |
672 | case R_LARCH_TLS_GD_HI20: |
673 | case R_LARCH_TLS_DESC_PC_HI20: |
674 | case R_LARCH_TLS_DESC_HI20: |
675 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val, begin: 31, end: 12))); |
676 | return; |
677 | case R_LARCH_TLS_LE_HI20_R: |
678 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val + 0x800, begin: 31, end: 12))); |
679 | return; |
680 | |
681 | // Relocs intended for `lu32i.d`. |
682 | case R_LARCH_ABS64_LO20: |
683 | case R_LARCH_PCALA64_LO20: |
684 | case R_LARCH_GOT64_PC_LO20: |
685 | case R_LARCH_GOT64_LO20: |
686 | case R_LARCH_TLS_LE64_LO20: |
687 | case R_LARCH_TLS_IE64_PC_LO20: |
688 | case R_LARCH_TLS_IE64_LO20: |
689 | case R_LARCH_TLS_DESC64_PC_LO20: |
690 | case R_LARCH_TLS_DESC64_LO20: |
691 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val, begin: 51, end: 32))); |
692 | return; |
693 | |
694 | // Relocs intended for `lu52i.d`. |
695 | case R_LARCH_ABS64_HI12: |
696 | case R_LARCH_PCALA64_HI12: |
697 | case R_LARCH_GOT64_PC_HI12: |
698 | case R_LARCH_GOT64_HI12: |
699 | case R_LARCH_TLS_LE64_HI12: |
700 | case R_LARCH_TLS_IE64_PC_HI12: |
701 | case R_LARCH_TLS_IE64_HI12: |
702 | case R_LARCH_TLS_DESC64_PC_HI12: |
703 | case R_LARCH_TLS_DESC64_HI12: |
704 | write32le(P: loc, V: setK12(insn: read32le(P: loc), imm: extractBits(v: val, begin: 63, end: 52))); |
705 | return; |
706 | |
707 | case R_LARCH_ADD6: |
708 | *loc = (*loc & 0xc0) | ((*loc + val) & 0x3f); |
709 | return; |
710 | case R_LARCH_ADD8: |
711 | *loc += val; |
712 | return; |
713 | case R_LARCH_ADD16: |
714 | write16le(P: loc, V: read16le(P: loc) + val); |
715 | return; |
716 | case R_LARCH_ADD32: |
717 | write32le(P: loc, V: read32le(P: loc) + val); |
718 | return; |
719 | case R_LARCH_ADD64: |
720 | write64le(P: loc, V: read64le(P: loc) + val); |
721 | return; |
722 | case R_LARCH_ADD_ULEB128: |
723 | handleUleb128(ctx, loc, val); |
724 | return; |
725 | case R_LARCH_SUB6: |
726 | *loc = (*loc & 0xc0) | ((*loc - val) & 0x3f); |
727 | return; |
728 | case R_LARCH_SUB8: |
729 | *loc -= val; |
730 | return; |
731 | case R_LARCH_SUB16: |
732 | write16le(P: loc, V: read16le(P: loc) - val); |
733 | return; |
734 | case R_LARCH_SUB32: |
735 | write32le(P: loc, V: read32le(P: loc) - val); |
736 | return; |
737 | case R_LARCH_SUB64: |
738 | write64le(P: loc, V: read64le(P: loc) - val); |
739 | return; |
740 | case R_LARCH_SUB_ULEB128: |
741 | handleUleb128(ctx, loc, val: -val); |
742 | return; |
743 | |
744 | case R_LARCH_MARK_LA: |
745 | case R_LARCH_MARK_PCREL: |
746 | // no-op |
747 | return; |
748 | |
749 | case R_LARCH_TLS_LE_ADD_R: |
750 | case R_LARCH_RELAX: |
751 | return; // Ignored (for now) |
752 | |
753 | case R_LARCH_TLS_DESC_LD: |
754 | return; // nothing to do. |
755 | case R_LARCH_TLS_DESC32: |
756 | write32le(P: loc + 4, V: val); |
757 | return; |
758 | case R_LARCH_TLS_DESC64: |
759 | write64le(P: loc + 8, V: val); |
760 | return; |
761 | |
762 | default: |
763 | llvm_unreachable("unknown relocation" ); |
764 | } |
765 | } |
766 | |
767 | static bool relaxable(ArrayRef<Relocation> relocs, size_t i) { |
768 | return i + 1 < relocs.size() && relocs[i + 1].type == R_LARCH_RELAX; |
769 | } |
770 | |
771 | static bool isPairRelaxable(ArrayRef<Relocation> relocs, size_t i) { |
772 | return relaxable(relocs, i) && relaxable(relocs, i: i + 2) && |
773 | relocs[i].offset + 4 == relocs[i + 2].offset; |
774 | } |
775 | |
776 | // Relax code sequence. |
777 | // From: |
778 | // pcalau12i $a0, %pc_hi20(sym) | %ld_pc_hi20(sym) | %gd_pc_hi20(sym) |
779 | // | %desc_pc_hi20(sym) |
780 | // addi.w/d $a0, $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym) |
781 | // | %desc_pc_lo12(sym) |
782 | // To: |
783 | // pcaddi $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym) |
784 | // | %desc_pcrel_20(sym) |
785 | // |
786 | // From: |
787 | // pcalau12i $a0, %got_pc_hi20(sym_got) |
788 | // ld.w/d $a0, $a0, %got_pc_lo12(sym_got) |
789 | // To: |
790 | // pcaddi $a0, %got_pc_hi20(sym_got) |
791 | static void relaxPCHi20Lo12(Ctx &ctx, const InputSection &sec, size_t i, |
792 | uint64_t loc, Relocation &rHi20, Relocation &rLo12, |
793 | uint32_t &remove) { |
794 | // check if the relocations are relaxable sequences. |
795 | if (!((rHi20.type == R_LARCH_PCALA_HI20 && |
796 | rLo12.type == R_LARCH_PCALA_LO12) || |
797 | (rHi20.type == R_LARCH_GOT_PC_HI20 && |
798 | rLo12.type == R_LARCH_GOT_PC_LO12) || |
799 | (rHi20.type == R_LARCH_TLS_GD_PC_HI20 && |
800 | rLo12.type == R_LARCH_GOT_PC_LO12) || |
801 | (rHi20.type == R_LARCH_TLS_LD_PC_HI20 && |
802 | rLo12.type == R_LARCH_GOT_PC_LO12) || |
803 | (rHi20.type == R_LARCH_TLS_DESC_PC_HI20 && |
804 | rLo12.type == R_LARCH_TLS_DESC_PC_LO12))) |
805 | return; |
806 | |
807 | // GOT references to absolute symbols can't be relaxed to use pcaddi in |
808 | // position-independent code, because these instructions produce a relative |
809 | // address. |
810 | // Meanwhile skip undefined, preemptible and STT_GNU_IFUNC symbols, because |
811 | // these symbols may be resolve in runtime. |
812 | if (rHi20.type == R_LARCH_GOT_PC_HI20 && |
813 | (!rHi20.sym->isDefined() || rHi20.sym->isPreemptible || |
814 | rHi20.sym->isGnuIFunc() || |
815 | (ctx.arg.isPic && !cast<Defined>(Val&: *rHi20.sym).section))) |
816 | return; |
817 | |
818 | uint64_t dest = 0; |
819 | if (rHi20.expr == RE_LOONGARCH_PLT_PAGE_PC) |
820 | dest = rHi20.sym->getPltVA(ctx); |
821 | else if (rHi20.expr == RE_LOONGARCH_PAGE_PC || |
822 | rHi20.expr == RE_LOONGARCH_GOT_PAGE_PC) |
823 | dest = rHi20.sym->getVA(ctx); |
824 | else if (rHi20.expr == RE_LOONGARCH_TLSGD_PAGE_PC) |
825 | dest = ctx.in.got->getGlobalDynAddr(b: *rHi20.sym); |
826 | else if (rHi20.expr == RE_LOONGARCH_TLSDESC_PAGE_PC) |
827 | dest = ctx.in.got->getTlsDescAddr(sym: *rHi20.sym); |
828 | else { |
829 | Err(ctx) << getErrorLoc(ctx, loc: (const uint8_t *)loc) << "unknown expr (" |
830 | << rHi20.expr << ") against symbol " << rHi20.sym |
831 | << "in relaxPCHi20Lo12" ; |
832 | return; |
833 | } |
834 | dest += rHi20.addend; |
835 | |
836 | const int64_t displace = dest - loc; |
837 | // Check if the displace aligns 4 bytes or exceeds the range of pcaddi. |
838 | if ((displace & 0x3) != 0 || !isInt<22>(x: displace)) |
839 | return; |
840 | |
841 | // Note: If we can ensure that the .o files generated by LLVM only contain |
842 | // relaxable instruction sequences with R_LARCH_RELAX, then we do not need to |
843 | // decode instructions. The relaxable instruction sequences imply the |
844 | // following constraints: |
845 | // * For relocation pairs related to got_pc, the opcodes of instructions |
846 | // must be pcalau12i + ld.w/d. In other cases, the opcodes must be pcalau12i + |
847 | // addi.w/d. |
848 | // * The destination register of pcalau12i is guaranteed to be used only by |
849 | // the immediately following instruction. |
850 | const uint32_t currInsn = read32le(P: sec.content().data() + rHi20.offset); |
851 | const uint32_t nextInsn = read32le(P: sec.content().data() + rLo12.offset); |
852 | // Check if use the same register. |
853 | if (getD5(v: currInsn) != getJ5(v: nextInsn) || getJ5(v: nextInsn) != getD5(v: nextInsn)) |
854 | return; |
855 | |
856 | sec.relaxAux->relocTypes[i] = R_LARCH_RELAX; |
857 | if (rHi20.type == R_LARCH_TLS_GD_PC_HI20) |
858 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_GD_PCREL20_S2; |
859 | else if (rHi20.type == R_LARCH_TLS_LD_PC_HI20) |
860 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_LD_PCREL20_S2; |
861 | else if (rHi20.type == R_LARCH_TLS_DESC_PC_HI20) |
862 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_DESC_PCREL20_S2; |
863 | else |
864 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_PCREL20_S2; |
865 | sec.relaxAux->writes.push_back(Elt: insn(op: PCADDI, d: getD5(v: nextInsn), j: 0, k: 0)); |
866 | remove = 4; |
867 | } |
868 | |
869 | // Relax code sequence. |
870 | // From: |
871 | // pcaddu18i $ra, %call36(foo) |
872 | // jirl $ra, $ra, 0 |
873 | // To: |
874 | // b/bl foo |
875 | static void relaxCall36(Ctx &ctx, const InputSection &sec, size_t i, |
876 | uint64_t loc, Relocation &r, uint32_t &remove) { |
877 | const uint64_t dest = |
878 | (r.expr == R_PLT_PC ? r.sym->getPltVA(ctx) : r.sym->getVA(ctx)) + |
879 | r.addend; |
880 | |
881 | const int64_t displace = dest - loc; |
882 | // Check if the displace aligns 4 bytes or exceeds the range of b[l]. |
883 | if ((displace & 0x3) != 0 || !isInt<28>(x: displace)) |
884 | return; |
885 | |
886 | const uint32_t nextInsn = read32le(P: sec.content().data() + r.offset + 4); |
887 | if (getD5(v: nextInsn) == R_RA) { |
888 | // convert jirl to bl |
889 | sec.relaxAux->relocTypes[i] = R_LARCH_B26; |
890 | sec.relaxAux->writes.push_back(Elt: insn(op: BL, d: 0, j: 0, k: 0)); |
891 | remove = 4; |
892 | } else if (getD5(v: nextInsn) == R_ZERO) { |
893 | // convert jirl to b |
894 | sec.relaxAux->relocTypes[i] = R_LARCH_B26; |
895 | sec.relaxAux->writes.push_back(Elt: insn(op: B, d: 0, j: 0, k: 0)); |
896 | remove = 4; |
897 | } |
898 | } |
899 | |
900 | // Relax code sequence. |
901 | // From: |
902 | // lu12i.w $rd, %le_hi20_r(sym) |
903 | // add.w/d $rd, $rd, $tp, %le_add_r(sym) |
904 | // addi/ld/st.w/d $rd, $rd, %le_lo12_r(sym) |
905 | // To: |
906 | // addi/ld/st.w/d $rd, $tp, %le_lo12_r(sym) |
907 | static void relaxTlsLe(Ctx &ctx, const InputSection &sec, size_t i, |
908 | uint64_t loc, Relocation &r, uint32_t &remove) { |
909 | uint64_t val = r.sym->getVA(ctx, addend: r.addend); |
910 | // Check if the val exceeds the range of addi/ld/st. |
911 | if (!isInt<12>(x: val)) |
912 | return; |
913 | uint32_t currInsn = read32le(P: sec.content().data() + r.offset); |
914 | switch (r.type) { |
915 | case R_LARCH_TLS_LE_HI20_R: |
916 | case R_LARCH_TLS_LE_ADD_R: |
917 | sec.relaxAux->relocTypes[i] = R_LARCH_RELAX; |
918 | remove = 4; |
919 | break; |
920 | case R_LARCH_TLS_LE_LO12_R: |
921 | sec.relaxAux->writes.push_back(Elt: setJ5(insn: currInsn, imm: R_TP)); |
922 | sec.relaxAux->relocTypes[i] = R_LARCH_TLS_LE_LO12_R; |
923 | break; |
924 | } |
925 | } |
926 | |
927 | static bool relax(Ctx &ctx, InputSection &sec) { |
928 | const uint64_t secAddr = sec.getVA(); |
929 | const MutableArrayRef<Relocation> relocs = sec.relocs(); |
930 | auto &aux = *sec.relaxAux; |
931 | bool changed = false; |
932 | ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors); |
933 | uint64_t delta = 0; |
934 | |
935 | std::fill_n(first: aux.relocTypes.get(), n: relocs.size(), value: R_LARCH_NONE); |
936 | aux.writes.clear(); |
937 | for (auto [i, r] : llvm::enumerate(First: relocs)) { |
938 | const uint64_t loc = secAddr + r.offset - delta; |
939 | uint32_t &cur = aux.relocDeltas[i], remove = 0; |
940 | switch (r.type) { |
941 | case R_LARCH_ALIGN: { |
942 | const uint64_t addend = |
943 | r.sym->isUndefined() ? Log2_64(Value: r.addend) + 1 : r.addend; |
944 | const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4; |
945 | const uint64_t align = 1ULL << (addend & 0xff); |
946 | const uint64_t maxBytes = addend >> 8; |
947 | const uint64_t off = loc & (align - 1); |
948 | const uint64_t curBytes = off == 0 ? 0 : align - off; |
949 | // All bytes beyond the alignment boundary should be removed. |
950 | // If emit bytes more than max bytes to emit, remove all. |
951 | if (maxBytes != 0 && curBytes > maxBytes) |
952 | remove = allBytes; |
953 | else |
954 | remove = allBytes - curBytes; |
955 | // If we can't satisfy this alignment, we've found a bad input. |
956 | if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) { |
957 | Err(ctx) << getErrorLoc(ctx, loc: (const uint8_t *)loc) |
958 | << "insufficient padding bytes for " << r.type << ": " |
959 | << allBytes << " bytes available for " |
960 | << "requested alignment of " << align << " bytes" ; |
961 | remove = 0; |
962 | } |
963 | break; |
964 | } |
965 | case R_LARCH_PCALA_HI20: |
966 | case R_LARCH_GOT_PC_HI20: |
967 | case R_LARCH_TLS_GD_PC_HI20: |
968 | case R_LARCH_TLS_LD_PC_HI20: |
969 | case R_LARCH_TLS_DESC_PC_HI20: |
970 | // The overflow check for i+2 will be carried out in isPairRelaxable. |
971 | if (r.expr != RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC && |
972 | r.expr != R_RELAX_TLS_GD_TO_LE && isPairRelaxable(relocs, i)) |
973 | relaxPCHi20Lo12(ctx, sec, i, loc, rHi20&: r, rLo12&: relocs[i + 2], remove); |
974 | break; |
975 | case R_LARCH_CALL36: |
976 | if (relaxable(relocs, i)) |
977 | relaxCall36(ctx, sec, i, loc, r, remove); |
978 | break; |
979 | case R_LARCH_TLS_LE_HI20_R: |
980 | case R_LARCH_TLS_LE_ADD_R: |
981 | case R_LARCH_TLS_LE_LO12_R: |
982 | if (relaxable(relocs, i)) |
983 | relaxTlsLe(ctx, sec, i, loc, r, remove); |
984 | break; |
985 | case R_LARCH_TLS_IE_PC_HI20: |
986 | if (relaxable(relocs, i) && r.expr == R_RELAX_TLS_IE_TO_LE && |
987 | isUInt<12>(x: r.sym->getVA(ctx, addend: r.addend))) |
988 | remove = 4; |
989 | break; |
990 | } |
991 | |
992 | // For all anchors whose offsets are <= r.offset, they are preceded by |
993 | // the previous relocation whose `relocDeltas` value equals `delta`. |
994 | // Decrease their st_value and update their st_size. |
995 | for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(N: 1)) { |
996 | if (sa[0].end) |
997 | sa[0].d->size = sa[0].offset - delta - sa[0].d->value; |
998 | else |
999 | sa[0].d->value = sa[0].offset - delta; |
1000 | } |
1001 | delta += remove; |
1002 | if (delta != cur) { |
1003 | cur = delta; |
1004 | changed = true; |
1005 | } |
1006 | } |
1007 | |
1008 | for (const SymbolAnchor &a : sa) { |
1009 | if (a.end) |
1010 | a.d->size = a.offset - delta - a.d->value; |
1011 | else |
1012 | a.d->value = a.offset - delta; |
1013 | } |
1014 | // Inform assignAddresses that the size has changed. |
1015 | if (!isUInt<32>(x: delta)) |
1016 | Fatal(ctx) << "section size decrease is too large: " << delta; |
1017 | sec.bytesDropped = delta; |
1018 | return changed; |
1019 | } |
1020 | |
1021 | // Convert TLS IE to LE in the normal or medium code model. |
1022 | // Original code sequence: |
1023 | // * pcalau12i $a0, %ie_pc_hi20(sym) |
1024 | // * ld.d $a0, $a0, %ie_pc_lo12(sym) |
1025 | // |
1026 | // The code sequence converted is as follows: |
1027 | // * lu12i.w $a0, %le_hi20(sym) # le_hi20 != 0, otherwise NOP |
1028 | // * ori $a0, src, %le_lo12(sym) # le_hi20 != 0, src = $a0, |
1029 | // # otherwise, src = $zero |
1030 | // |
1031 | // When relaxation enables, redundant NOPs can be removed. |
1032 | static void tlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { |
1033 | assert(isInt<32>(val) && |
1034 | "val exceeds the range of medium code model in tlsIeToLe" ); |
1035 | |
1036 | bool isUInt12 = isUInt<12>(x: val); |
1037 | const uint32_t currInsn = read32le(P: loc); |
1038 | switch (rel.type) { |
1039 | case R_LARCH_TLS_IE_PC_HI20: |
1040 | if (isUInt12) |
1041 | write32le(P: loc, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); // nop |
1042 | else |
1043 | write32le(P: loc, V: insn(op: LU12I_W, d: getD5(v: currInsn), j: extractBits(v: val, begin: 31, end: 12), |
1044 | k: 0)); // lu12i.w $a0, %le_hi20 |
1045 | break; |
1046 | case R_LARCH_TLS_IE_PC_LO12: |
1047 | if (isUInt12) |
1048 | write32le(P: loc, V: insn(op: ORI, d: getD5(v: currInsn), j: R_ZERO, |
1049 | k: val)); // ori $a0, $zero, %le_lo12 |
1050 | else |
1051 | write32le(P: loc, V: insn(op: ORI, d: getD5(v: currInsn), j: getJ5(v: currInsn), |
1052 | k: lo12(val))); // ori $a0, $a0, %le_lo12 |
1053 | break; |
1054 | } |
1055 | } |
1056 | |
1057 | // Convert TLSDESC GD/LD to IE. |
1058 | // In normal or medium code model, there are two forms of code sequences: |
1059 | // * pcalau12i $a0, %desc_pc_hi20(sym_desc) |
1060 | // * addi.d $a0, $a0, %desc_pc_lo12(sym_desc) |
1061 | // * ld.d $ra, $a0, %desc_ld(sym_desc) |
1062 | // * jirl $ra, $ra, %desc_call(sym_desc) |
1063 | // ------ |
1064 | // * pcaddi $a0, %desc_pcrel_20(a) |
1065 | // * load $ra, $a0, %desc_ld(a) |
1066 | // * jirl $ra, $ra, %desc_call(a) |
1067 | // |
1068 | // The code sequence obtained is as follows: |
1069 | // * pcalau12i $a0, %ie_pc_hi20(sym_ie) |
1070 | // * ld.[wd] $a0, $a0, %ie_pc_lo12(sym_ie) |
1071 | // |
1072 | // Simplicity, whether tlsdescToIe or tlsdescToLe, we always tend to convert the |
1073 | // preceding instructions to NOPs, due to both forms of code sequence |
1074 | // (corresponding to relocation combinations: |
1075 | // R_LARCH_TLS_DESC_PC_HI20+R_LARCH_TLS_DESC_PC_LO12 and |
1076 | // R_LARCH_TLS_DESC_PCREL20_S2) have same process. |
1077 | // |
1078 | // When relaxation enables, redundant NOPs can be removed. |
1079 | void LoongArch::tlsdescToIe(uint8_t *loc, const Relocation &rel, |
1080 | uint64_t val) const { |
1081 | switch (rel.type) { |
1082 | case R_LARCH_TLS_DESC_PC_HI20: |
1083 | case R_LARCH_TLS_DESC_PC_LO12: |
1084 | case R_LARCH_TLS_DESC_PCREL20_S2: |
1085 | write32le(P: loc, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); // nop |
1086 | break; |
1087 | case R_LARCH_TLS_DESC_LD: |
1088 | write32le(P: loc, V: insn(op: PCALAU12I, d: R_A0, j: 0, k: 0)); // pcalau12i $a0, %ie_pc_hi20 |
1089 | relocateNoSym(loc, type: R_LARCH_TLS_IE_PC_HI20, val); |
1090 | break; |
1091 | case R_LARCH_TLS_DESC_CALL: |
1092 | write32le(P: loc, V: insn(op: ctx.arg.is64 ? LD_D : LD_W, d: R_A0, j: R_A0, |
1093 | k: 0)); // ld.[wd] $a0, $a0, %ie_pc_lo12 |
1094 | relocateNoSym(loc, type: R_LARCH_TLS_IE_PC_LO12, val); |
1095 | break; |
1096 | default: |
1097 | llvm_unreachable("unsupported relocation for TLSDESC to IE" ); |
1098 | } |
1099 | } |
1100 | |
1101 | // Convert TLSDESC GD/LD to LE. |
1102 | // The code sequence obtained in the normal or medium code model is as follows: |
1103 | // * lu12i.w $a0, %le_hi20(sym) # le_hi20 != 0, otherwise NOP |
1104 | // * ori $a0, src, %le_lo12(sym) # le_hi20 != 0, src = $a0, |
1105 | // # otherwise, src = $zero |
1106 | // See the comment in tlsdescToIe for detailed information. |
1107 | void LoongArch::tlsdescToLe(uint8_t *loc, const Relocation &rel, |
1108 | uint64_t val) const { |
1109 | assert(isInt<32>(val) && |
1110 | "val exceeds the range of medium code model in tlsdescToLe" ); |
1111 | |
1112 | bool isUInt12 = isUInt<12>(x: val); |
1113 | switch (rel.type) { |
1114 | case R_LARCH_TLS_DESC_PC_HI20: |
1115 | case R_LARCH_TLS_DESC_PC_LO12: |
1116 | case R_LARCH_TLS_DESC_PCREL20_S2: |
1117 | write32le(P: loc, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); // nop |
1118 | break; |
1119 | case R_LARCH_TLS_DESC_LD: |
1120 | if (isUInt12) |
1121 | write32le(P: loc, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); // nop |
1122 | else |
1123 | write32le(P: loc, V: insn(op: LU12I_W, d: R_A0, j: extractBits(v: val, begin: 31, end: 12), |
1124 | k: 0)); // lu12i.w $a0, %le_hi20 |
1125 | break; |
1126 | case R_LARCH_TLS_DESC_CALL: |
1127 | if (isUInt12) |
1128 | write32le(P: loc, V: insn(op: ORI, d: R_A0, j: R_ZERO, k: val)); // ori $a0, $zero, %le_lo12 |
1129 | else |
1130 | write32le(P: loc, |
1131 | V: insn(op: ORI, d: R_A0, j: R_A0, k: lo12(val))); // ori $a0, $a0, %le_lo12 |
1132 | break; |
1133 | default: |
1134 | llvm_unreachable("unsupported relocation for TLSDESC to LE" ); |
1135 | } |
1136 | } |
1137 | |
1138 | // During TLSDESC GD_TO_IE, the converted code sequence always includes an |
1139 | // instruction related to the Lo12 relocation (ld.[wd]). To obtain correct val |
1140 | // in `getRelocTargetVA`, expr of this instruction should be adjusted to |
1141 | // R_RELAX_TLS_GD_TO_IE_ABS, while expr of other instructions related to the |
1142 | // Hi20 relocation (pcalau12i) should be adjusted to |
1143 | // RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC. Specifically, in the normal or |
1144 | // medium code model, the instruction with relocation R_LARCH_TLS_DESC_CALL is |
1145 | // the candidate of Lo12 relocation. |
1146 | RelExpr LoongArch::adjustTlsExpr(RelType type, RelExpr expr) const { |
1147 | if (expr == R_RELAX_TLS_GD_TO_IE) { |
1148 | if (type != R_LARCH_TLS_DESC_CALL) |
1149 | return RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC; |
1150 | return R_RELAX_TLS_GD_TO_IE_ABS; |
1151 | } |
1152 | return expr; |
1153 | } |
1154 | |
1155 | void LoongArch::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
1156 | const unsigned bits = ctx.arg.is64 ? 64 : 32; |
1157 | uint64_t secAddr = sec.getOutputSection()->addr; |
1158 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
1159 | secAddr += s->outSecOff; |
1160 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
1161 | secAddr += ehIn->getParent()->outSecOff; |
1162 | bool isExtreme = false, isRelax = false; |
1163 | const MutableArrayRef<Relocation> relocs = sec.relocs(); |
1164 | for (size_t i = 0, size = relocs.size(); i != size; ++i) { |
1165 | Relocation &rel = relocs[i]; |
1166 | uint8_t *loc = buf + rel.offset; |
1167 | uint64_t val = SignExtend64( |
1168 | X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), B: bits); |
1169 | |
1170 | switch (rel.expr) { |
1171 | case R_RELAX_HINT: |
1172 | continue; |
1173 | case R_RELAX_TLS_IE_TO_LE: |
1174 | if (rel.type == R_LARCH_TLS_IE_PC_HI20) { |
1175 | // LoongArch does not support IE to LE optimization in the extreme code |
1176 | // model. In this case, the relocs are as follows: |
1177 | // |
1178 | // * i -- R_LARCH_TLS_IE_PC_HI20 |
1179 | // * i+1 -- R_LARCH_TLS_IE_PC_LO12 |
1180 | // * i+2 -- R_LARCH_TLS_IE64_PC_LO20 |
1181 | // * i+3 -- R_LARCH_TLS_IE64_PC_HI12 |
1182 | isExtreme = |
1183 | i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_IE64_PC_LO20; |
1184 | } |
1185 | if (isExtreme) { |
1186 | rel.expr = getRelExpr(type: rel.type, s: *rel.sym, loc); |
1187 | val = SignExtend64(X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), |
1188 | B: bits); |
1189 | relocateNoSym(loc, type: rel.type, val); |
1190 | } else { |
1191 | isRelax = relaxable(relocs, i); |
1192 | if (isRelax && rel.type == R_LARCH_TLS_IE_PC_HI20 && isUInt<12>(x: val)) |
1193 | continue; |
1194 | tlsIeToLe(loc, rel, val); |
1195 | } |
1196 | continue; |
1197 | case RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC: |
1198 | if (rel.type == R_LARCH_TLS_DESC_PC_HI20) { |
1199 | // LoongArch does not support TLSDESC GD/LD to LE/IE optimization in the |
1200 | // extreme code model. In these cases, the relocs are as follows: |
1201 | // |
1202 | // * i -- R_LARCH_TLS_DESC_PC_HI20 |
1203 | // * i+1 -- R_LARCH_TLS_DESC_PC_LO12 |
1204 | // * i+2 -- R_LARCH_TLS_DESC64_PC_LO20 |
1205 | // * i+3 -- R_LARCH_TLS_DESC64_PC_HI12 |
1206 | isExtreme = |
1207 | i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_DESC64_PC_LO20; |
1208 | } |
1209 | [[fallthrough]]; |
1210 | case R_RELAX_TLS_GD_TO_IE_ABS: |
1211 | if (isExtreme) { |
1212 | if (rel.type == R_LARCH_TLS_DESC_CALL) |
1213 | continue; |
1214 | rel.expr = getRelExpr(type: rel.type, s: *rel.sym, loc); |
1215 | val = SignExtend64(X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), |
1216 | B: bits); |
1217 | relocateNoSym(loc, type: rel.type, val); |
1218 | } else { |
1219 | tlsdescToIe(loc, rel, val); |
1220 | } |
1221 | continue; |
1222 | case R_RELAX_TLS_GD_TO_LE: |
1223 | if (rel.type == R_LARCH_TLS_DESC_PC_HI20) { |
1224 | isExtreme = |
1225 | i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_DESC64_PC_LO20; |
1226 | } |
1227 | if (isExtreme) { |
1228 | if (rel.type == R_LARCH_TLS_DESC_CALL) |
1229 | continue; |
1230 | rel.expr = getRelExpr(type: rel.type, s: *rel.sym, loc); |
1231 | val = SignExtend64(X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), |
1232 | B: bits); |
1233 | relocateNoSym(loc, type: rel.type, val); |
1234 | } else { |
1235 | tlsdescToLe(loc, rel, val); |
1236 | } |
1237 | continue; |
1238 | default: |
1239 | break; |
1240 | } |
1241 | relocate(loc, rel, val); |
1242 | } |
1243 | } |
1244 | |
1245 | // When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in |
1246 | // the absence of a linker script. For call and load/store R_LARCH_RELAX, code |
1247 | // shrinkage may reduce displacement and make more relocations eligible for |
1248 | // relaxation. Code shrinkage may increase displacement to a call/load/store |
1249 | // target at a higher fixed address, invalidating an earlier relaxation. Any |
1250 | // change in section sizes can have cascading effect and require another |
1251 | // relaxation pass. |
1252 | bool LoongArch::relaxOnce(int pass) const { |
1253 | if (ctx.arg.relocatable) |
1254 | return false; |
1255 | |
1256 | if (pass == 0) |
1257 | initSymbolAnchors(ctx); |
1258 | |
1259 | SmallVector<InputSection *, 0> storage; |
1260 | bool changed = false; |
1261 | for (OutputSection *osec : ctx.outputSections) { |
1262 | if (!(osec->flags & SHF_EXECINSTR)) |
1263 | continue; |
1264 | for (InputSection *sec : getInputSections(os: *osec, storage)) |
1265 | changed |= relax(ctx, sec&: *sec); |
1266 | } |
1267 | return changed; |
1268 | } |
1269 | |
1270 | void LoongArch::finalizeRelax(int passes) const { |
1271 | Log(ctx) << "relaxation passes: " << passes; |
1272 | SmallVector<InputSection *, 0> storage; |
1273 | for (OutputSection *osec : ctx.outputSections) { |
1274 | if (!(osec->flags & SHF_EXECINSTR)) |
1275 | continue; |
1276 | for (InputSection *sec : getInputSections(os: *osec, storage)) { |
1277 | RelaxAux &aux = *sec->relaxAux; |
1278 | if (!aux.relocDeltas) |
1279 | continue; |
1280 | |
1281 | MutableArrayRef<Relocation> rels = sec->relocs(); |
1282 | ArrayRef<uint8_t> old = sec->content(); |
1283 | size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1]; |
1284 | size_t writesIdx = 0; |
1285 | uint8_t *p = ctx.bAlloc.Allocate<uint8_t>(Num: newSize); |
1286 | uint64_t offset = 0; |
1287 | int64_t delta = 0; |
1288 | sec->content_ = p; |
1289 | sec->size = newSize; |
1290 | sec->bytesDropped = 0; |
1291 | |
1292 | // Update section content: remove NOPs for R_LARCH_ALIGN and rewrite |
1293 | // instructions for relaxed relocations. |
1294 | for (size_t i = 0, e = rels.size(); i != e; ++i) { |
1295 | uint32_t remove = aux.relocDeltas[i] - delta; |
1296 | delta = aux.relocDeltas[i]; |
1297 | if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE) |
1298 | continue; |
1299 | |
1300 | // Copy from last location to the current relocated location. |
1301 | Relocation &r = rels[i]; |
1302 | uint64_t size = r.offset - offset; |
1303 | memcpy(dest: p, src: old.data() + offset, n: size); |
1304 | p += size; |
1305 | |
1306 | int64_t skip = 0; |
1307 | if (RelType newType = aux.relocTypes[i]) { |
1308 | switch (newType) { |
1309 | case R_LARCH_RELAX: |
1310 | break; |
1311 | case R_LARCH_PCREL20_S2: |
1312 | skip = 4; |
1313 | write32le(P: p, V: aux.writes[writesIdx++]); |
1314 | // RelExpr is needed for relocating. |
1315 | r.expr = r.sym->hasFlag(bit: NEEDS_PLT) ? R_PLT_PC : R_PC; |
1316 | break; |
1317 | case R_LARCH_B26: |
1318 | case R_LARCH_TLS_LE_LO12_R: |
1319 | skip = 4; |
1320 | write32le(P: p, V: aux.writes[writesIdx++]); |
1321 | break; |
1322 | case R_LARCH_TLS_GD_PCREL20_S2: |
1323 | // Note: R_LARCH_TLS_LD_PCREL20_S2 must also use R_TLSGD_PC instead |
1324 | // of R_TLSLD_PC due to historical reasons. In fact, right now TLSLD |
1325 | // behaves exactly like TLSGD on LoongArch. |
1326 | // |
1327 | // This reason has also been mentioned in mold commit: |
1328 | // https://github.com/rui314/mold/commit/5dfa1cf07c03bd57cb3d493b652ef22441bcd71c |
1329 | case R_LARCH_TLS_LD_PCREL20_S2: |
1330 | skip = 4; |
1331 | write32le(P: p, V: aux.writes[writesIdx++]); |
1332 | r.expr = R_TLSGD_PC; |
1333 | break; |
1334 | case R_LARCH_TLS_DESC_PCREL20_S2: |
1335 | skip = 4; |
1336 | write32le(P: p, V: aux.writes[writesIdx++]); |
1337 | r.expr = R_TLSDESC_PC; |
1338 | break; |
1339 | default: |
1340 | llvm_unreachable("unsupported type" ); |
1341 | } |
1342 | } |
1343 | |
1344 | p += skip; |
1345 | offset = r.offset + skip + remove; |
1346 | } |
1347 | memcpy(dest: p, src: old.data() + offset, n: old.size() - offset); |
1348 | |
1349 | // Subtract the previous relocDeltas value from the relocation offset. |
1350 | // For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease |
1351 | // their r_offset by the same delta. |
1352 | delta = 0; |
1353 | for (size_t i = 0, e = rels.size(); i != e;) { |
1354 | uint64_t cur = rels[i].offset; |
1355 | do { |
1356 | rels[i].offset -= delta; |
1357 | if (aux.relocTypes[i] != R_LARCH_NONE) |
1358 | rels[i].type = aux.relocTypes[i]; |
1359 | } while (++i != e && rels[i].offset == cur); |
1360 | delta = aux.relocDeltas[i - 1]; |
1361 | } |
1362 | } |
1363 | } |
1364 | } |
1365 | |
1366 | void elf::setLoongArchTargetInfo(Ctx &ctx) { |
1367 | ctx.target.reset(p: new LoongArch(ctx)); |
1368 | } |
1369 | |