| 1 | //===- X86_64.cpp ---------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "OutputSections.h" |
| 10 | #include "Relocations.h" |
| 11 | #include "Symbols.h" |
| 12 | #include "SyntheticSections.h" |
| 13 | #include "Target.h" |
| 14 | #include "TargetImpl.h" |
| 15 | #include "llvm/BinaryFormat/ELF.h" |
| 16 | #include "llvm/Support/Endian.h" |
| 17 | #include "llvm/Support/MathExtras.h" |
| 18 | |
| 19 | using namespace llvm; |
| 20 | using namespace llvm::object; |
| 21 | using namespace llvm::support::endian; |
| 22 | using namespace llvm::ELF; |
| 23 | using namespace lld; |
| 24 | using namespace lld::elf; |
| 25 | |
| 26 | namespace { |
| 27 | class X86_64 : public TargetInfo { |
| 28 | public: |
| 29 | X86_64(Ctx &); |
| 30 | int getTlsGdRelaxSkip(RelType type) const override; |
| 31 | RelExpr getRelExpr(RelType type, const Symbol &s, |
| 32 | const uint8_t *loc) const override; |
| 33 | RelType getDynRel(RelType type) const override; |
| 34 | void writeGotPltHeader(uint8_t *buf) const override; |
| 35 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 36 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| 37 | void writePltHeader(uint8_t *buf) const override; |
| 38 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 39 | uint64_t pltEntryAddr) const override; |
| 40 | void relocate(uint8_t *loc, const Relocation &rel, |
| 41 | uint64_t val) const override; |
| 42 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| 43 | void applyJumpInstrMod(uint8_t *loc, JumpModType type, |
| 44 | unsigned size) const override; |
| 45 | RelExpr adjustGotPcExpr(RelType type, int64_t addend, |
| 46 | const uint8_t *loc) const override; |
| 47 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| 48 | bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
| 49 | uint8_t stOther) const override; |
| 50 | bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
| 51 | InputSection *nextIS) const override; |
| 52 | bool relaxOnce(int pass) const override; |
| 53 | void applyBranchToBranchOpt() const override; |
| 54 | |
| 55 | private: |
| 56 | void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 57 | void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 58 | void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 59 | void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 60 | }; |
| 61 | } // namespace |
| 62 | |
| 63 | // This is vector of NOP instructions of sizes from 1 to 8 bytes. The |
| 64 | // appropriately sized instructions are used to fill the gaps between sections |
| 65 | // which are executed during fall through. |
| 66 | static const std::vector<std::vector<uint8_t>> nopInstructions = { |
| 67 | {0x90}, |
| 68 | {0x66, 0x90}, |
| 69 | {0x0f, 0x1f, 0x00}, |
| 70 | {0x0f, 0x1f, 0x40, 0x00}, |
| 71 | {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| 72 | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| 73 | {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, |
| 74 | {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| 75 | {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; |
| 76 | |
| 77 | X86_64::X86_64(Ctx &ctx) : TargetInfo(ctx) { |
| 78 | copyRel = R_X86_64_COPY; |
| 79 | gotRel = R_X86_64_GLOB_DAT; |
| 80 | pltRel = R_X86_64_JUMP_SLOT; |
| 81 | relativeRel = R_X86_64_RELATIVE; |
| 82 | iRelativeRel = R_X86_64_IRELATIVE; |
| 83 | symbolicRel = R_X86_64_64; |
| 84 | tlsDescRel = R_X86_64_TLSDESC; |
| 85 | tlsGotRel = R_X86_64_TPOFF64; |
| 86 | tlsModuleIndexRel = R_X86_64_DTPMOD64; |
| 87 | tlsOffsetRel = R_X86_64_DTPOFF64; |
| 88 | gotBaseSymInGotPlt = true; |
| 89 | gotEntrySize = 8; |
| 90 | pltHeaderSize = 16; |
| 91 | pltEntrySize = 16; |
| 92 | ipltEntrySize = 16; |
| 93 | trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 |
| 94 | nopInstrs = nopInstructions; |
| 95 | |
| 96 | // Align to the large page size (known as a superpage or huge page). |
| 97 | // FreeBSD automatically promotes large, superpage-aligned allocations. |
| 98 | defaultImageBase = 0x200000; |
| 99 | } |
| 100 | |
| 101 | int X86_64::getTlsGdRelaxSkip(RelType type) const { |
| 102 | // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. |
| 103 | return type == R_X86_64_GOTPC32_TLSDESC || |
| 104 | type == R_X86_64_CODE_4_GOTPC32_TLSDESC || |
| 105 | type == R_X86_64_TLSDESC_CALL |
| 106 | ? 1 |
| 107 | : 2; |
| 108 | } |
| 109 | |
| 110 | // Opcodes for the different X86_64 jmp instructions. |
| 111 | enum JmpInsnOpcode : uint32_t { |
| 112 | J_JMP_32, |
| 113 | J_JNE_32, |
| 114 | J_JE_32, |
| 115 | J_JG_32, |
| 116 | J_JGE_32, |
| 117 | J_JB_32, |
| 118 | J_JBE_32, |
| 119 | J_JL_32, |
| 120 | J_JLE_32, |
| 121 | J_JA_32, |
| 122 | J_JAE_32, |
| 123 | J_UNKNOWN, |
| 124 | }; |
| 125 | |
| 126 | // Given the first (optional) and second byte of the insn's opcode, this |
| 127 | // returns the corresponding enum value. |
| 128 | static JmpInsnOpcode getJmpInsnType(const uint8_t *first, |
| 129 | const uint8_t *second) { |
| 130 | if (*second == 0xe9) |
| 131 | return J_JMP_32; |
| 132 | |
| 133 | if (first == nullptr) |
| 134 | return J_UNKNOWN; |
| 135 | |
| 136 | if (*first == 0x0f) { |
| 137 | switch (*second) { |
| 138 | case 0x84: |
| 139 | return J_JE_32; |
| 140 | case 0x85: |
| 141 | return J_JNE_32; |
| 142 | case 0x8f: |
| 143 | return J_JG_32; |
| 144 | case 0x8d: |
| 145 | return J_JGE_32; |
| 146 | case 0x82: |
| 147 | return J_JB_32; |
| 148 | case 0x86: |
| 149 | return J_JBE_32; |
| 150 | case 0x8c: |
| 151 | return J_JL_32; |
| 152 | case 0x8e: |
| 153 | return J_JLE_32; |
| 154 | case 0x87: |
| 155 | return J_JA_32; |
| 156 | case 0x83: |
| 157 | return J_JAE_32; |
| 158 | } |
| 159 | } |
| 160 | return J_UNKNOWN; |
| 161 | } |
| 162 | |
| 163 | // Return the relocation index for input section IS with a specific Offset. |
| 164 | // Returns the maximum size of the vector if no such relocation is found. |
| 165 | static unsigned getRelocationWithOffset(const InputSection &is, |
| 166 | uint64_t offset) { |
| 167 | unsigned size = is.relocs().size(); |
| 168 | for (unsigned i = size - 1; i + 1 > 0; --i) { |
| 169 | if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE) |
| 170 | return i; |
| 171 | } |
| 172 | return size; |
| 173 | } |
| 174 | |
| 175 | // Returns true if R corresponds to a relocation used for a jump instruction. |
| 176 | // TODO: Once special relocations for relaxable jump instructions are available, |
| 177 | // this should be modified to use those relocations. |
| 178 | static bool isRelocationForJmpInsn(Relocation &R) { |
| 179 | return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || |
| 180 | R.type == R_X86_64_PC8; |
| 181 | } |
| 182 | |
| 183 | // Return true if Relocation R points to the first instruction in the |
| 184 | // next section. |
| 185 | // TODO: Delete this once psABI reserves a new relocation type for fall thru |
| 186 | // jumps. |
| 187 | static bool isFallThruRelocation(InputSection &is, InputFile *file, |
| 188 | InputSection *nextIS, Relocation &r) { |
| 189 | if (!isRelocationForJmpInsn(R&: r)) |
| 190 | return false; |
| 191 | |
| 192 | uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; |
| 193 | uint64_t targetOffset = is.getRelocTargetVA(is.getCtx(), r, p: addrLoc); |
| 194 | |
| 195 | // If this jmp is a fall thru, the target offset is the beginning of the |
| 196 | // next section. |
| 197 | uint64_t nextSectionOffset = |
| 198 | nextIS->getOutputSection()->addr + nextIS->outSecOff; |
| 199 | return (addrLoc + 4 + targetOffset) == nextSectionOffset; |
| 200 | } |
| 201 | |
| 202 | // Return the jmp instruction opcode that is the inverse of the given |
| 203 | // opcode. For example, JE inverted is JNE. |
| 204 | static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { |
| 205 | switch (opcode) { |
| 206 | case J_JE_32: |
| 207 | return J_JNE_32; |
| 208 | case J_JNE_32: |
| 209 | return J_JE_32; |
| 210 | case J_JG_32: |
| 211 | return J_JLE_32; |
| 212 | case J_JGE_32: |
| 213 | return J_JL_32; |
| 214 | case J_JB_32: |
| 215 | return J_JAE_32; |
| 216 | case J_JBE_32: |
| 217 | return J_JA_32; |
| 218 | case J_JL_32: |
| 219 | return J_JGE_32; |
| 220 | case J_JLE_32: |
| 221 | return J_JG_32; |
| 222 | case J_JA_32: |
| 223 | return J_JBE_32; |
| 224 | case J_JAE_32: |
| 225 | return J_JB_32; |
| 226 | default: |
| 227 | return J_UNKNOWN; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // Deletes direct jump instruction in input sections that jumps to the |
| 232 | // following section as it is not required. If there are two consecutive jump |
| 233 | // instructions, it checks if they can be flipped and one can be deleted. |
| 234 | // For example: |
| 235 | // .section .text |
| 236 | // a.BB.foo: |
| 237 | // ... |
| 238 | // 10: jne aa.BB.foo |
| 239 | // 16: jmp bar |
| 240 | // aa.BB.foo: |
| 241 | // ... |
| 242 | // |
| 243 | // can be converted to: |
| 244 | // a.BB.foo: |
| 245 | // ... |
| 246 | // 10: je bar #jne flipped to je and the jmp is deleted. |
| 247 | // aa.BB.foo: |
| 248 | // ... |
| 249 | bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
| 250 | InputSection *nextIS) const { |
| 251 | const unsigned sizeOfDirectJmpInsn = 5; |
| 252 | |
| 253 | if (nextIS == nullptr) |
| 254 | return false; |
| 255 | |
| 256 | if (is.getSize() < sizeOfDirectJmpInsn) |
| 257 | return false; |
| 258 | |
| 259 | // If this jmp insn can be removed, it is the last insn and the |
| 260 | // relocation is 4 bytes before the end. |
| 261 | unsigned rIndex = getRelocationWithOffset(is, offset: is.getSize() - 4); |
| 262 | if (rIndex == is.relocs().size()) |
| 263 | return false; |
| 264 | |
| 265 | Relocation &r = is.relocs()[rIndex]; |
| 266 | |
| 267 | // Check if the relocation corresponds to a direct jmp. |
| 268 | const uint8_t *secContents = is.content().data(); |
| 269 | // If it is not a direct jmp instruction, there is nothing to do here. |
| 270 | if (*(secContents + r.offset - 1) != 0xe9) |
| 271 | return false; |
| 272 | |
| 273 | if (isFallThruRelocation(is, file, nextIS, r)) { |
| 274 | // This is a fall thru and can be deleted. |
| 275 | r.expr = R_NONE; |
| 276 | r.offset = 0; |
| 277 | is.drop_back(num: sizeOfDirectJmpInsn); |
| 278 | is.nopFiller = true; |
| 279 | return true; |
| 280 | } |
| 281 | |
| 282 | // Now, check if flip and delete is possible. |
| 283 | const unsigned sizeOfJmpCCInsn = 6; |
| 284 | // To flip, there must be at least one JmpCC and one direct jmp. |
| 285 | if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) |
| 286 | return false; |
| 287 | |
| 288 | unsigned rbIndex = |
| 289 | getRelocationWithOffset(is, offset: (is.getSize() - sizeOfDirectJmpInsn - 4)); |
| 290 | if (rbIndex == is.relocs().size()) |
| 291 | return false; |
| 292 | |
| 293 | Relocation &rB = is.relocs()[rbIndex]; |
| 294 | |
| 295 | const uint8_t *jmpInsnB = secContents + rB.offset - 1; |
| 296 | JmpInsnOpcode jmpOpcodeB = getJmpInsnType(first: jmpInsnB - 1, second: jmpInsnB); |
| 297 | if (jmpOpcodeB == J_UNKNOWN) |
| 298 | return false; |
| 299 | |
| 300 | if (!isFallThruRelocation(is, file, nextIS, r&: rB)) |
| 301 | return false; |
| 302 | |
| 303 | // jmpCC jumps to the fall thru block, the branch can be flipped and the |
| 304 | // jmp can be deleted. |
| 305 | JmpInsnOpcode jInvert = invertJmpOpcode(opcode: jmpOpcodeB); |
| 306 | if (jInvert == J_UNKNOWN) |
| 307 | return false; |
| 308 | is.jumpInstrMod = make<JumpInstrMod>(); |
| 309 | *is.jumpInstrMod = {.offset: rB.offset - 1, .original: jInvert, .size: 4}; |
| 310 | // Move R's values to rB except the offset. |
| 311 | rB = {.expr: r.expr, .type: r.type, .offset: rB.offset, .addend: r.addend, .sym: r.sym}; |
| 312 | // Cancel R |
| 313 | r.expr = R_NONE; |
| 314 | r.offset = 0; |
| 315 | is.drop_back(num: sizeOfDirectJmpInsn); |
| 316 | is.nopFiller = true; |
| 317 | return true; |
| 318 | } |
| 319 | |
| 320 | bool X86_64::relaxOnce(int pass) const { |
| 321 | uint64_t minVA = UINT64_MAX, maxVA = 0; |
| 322 | for (OutputSection *osec : ctx.outputSections) { |
| 323 | if (!(osec->flags & SHF_ALLOC)) |
| 324 | continue; |
| 325 | minVA = std::min(a: minVA, b: osec->addr); |
| 326 | maxVA = std::max(a: maxVA, b: osec->addr + osec->size); |
| 327 | } |
| 328 | // If the max VA is under 2^31, GOTPCRELX relocations cannot overfow. In |
| 329 | // -pie/-shared, the condition can be relaxed to test the max VA difference as |
| 330 | // there is no R_RELAX_GOT_PC_NOPIC. |
| 331 | if (isUInt<31>(x: maxVA) || (isUInt<31>(x: maxVA - minVA) && ctx.arg.isPic)) |
| 332 | return false; |
| 333 | |
| 334 | SmallVector<InputSection *, 0> storage; |
| 335 | bool changed = false; |
| 336 | for (OutputSection *osec : ctx.outputSections) { |
| 337 | if (!(osec->flags & SHF_EXECINSTR)) |
| 338 | continue; |
| 339 | for (InputSection *sec : getInputSections(os: *osec, storage)) { |
| 340 | for (Relocation &rel : sec->relocs()) { |
| 341 | if (rel.expr != R_RELAX_GOT_PC && rel.expr != R_RELAX_GOT_PC_NOPIC) |
| 342 | continue; |
| 343 | assert(rel.addend == -4); |
| 344 | |
| 345 | Relocation rel1 = rel; |
| 346 | rel1.addend = rel.expr == R_RELAX_GOT_PC_NOPIC ? 0 : -4; |
| 347 | uint64_t v = sec->getRelocTargetVA(ctx, r: rel1, |
| 348 | p: sec->getOutputSection()->addr + |
| 349 | sec->outSecOff + rel.offset); |
| 350 | if (isInt<32>(x: v)) |
| 351 | continue; |
| 352 | if (rel.sym->auxIdx == 0) { |
| 353 | rel.sym->allocateAux(ctx); |
| 354 | addGotEntry(ctx, sym&: *rel.sym); |
| 355 | changed = true; |
| 356 | } |
| 357 | rel.expr = R_GOT_PC; |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | return changed; |
| 362 | } |
| 363 | |
| 364 | RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, |
| 365 | const uint8_t *loc) const { |
| 366 | switch (type) { |
| 367 | case R_X86_64_8: |
| 368 | case R_X86_64_16: |
| 369 | case R_X86_64_32: |
| 370 | case R_X86_64_32S: |
| 371 | case R_X86_64_64: |
| 372 | return R_ABS; |
| 373 | case R_X86_64_DTPOFF32: |
| 374 | case R_X86_64_DTPOFF64: |
| 375 | return R_DTPREL; |
| 376 | case R_X86_64_TPOFF32: |
| 377 | case R_X86_64_TPOFF64: |
| 378 | return R_TPREL; |
| 379 | case R_X86_64_TLSDESC_CALL: |
| 380 | return R_TLSDESC_CALL; |
| 381 | case R_X86_64_TLSLD: |
| 382 | return R_TLSLD_PC; |
| 383 | case R_X86_64_TLSGD: |
| 384 | return R_TLSGD_PC; |
| 385 | case R_X86_64_SIZE32: |
| 386 | case R_X86_64_SIZE64: |
| 387 | return R_SIZE; |
| 388 | case R_X86_64_PLT32: |
| 389 | return R_PLT_PC; |
| 390 | case R_X86_64_PC8: |
| 391 | case R_X86_64_PC16: |
| 392 | case R_X86_64_PC32: |
| 393 | case R_X86_64_PC64: |
| 394 | return R_PC; |
| 395 | case R_X86_64_GOT32: |
| 396 | case R_X86_64_GOT64: |
| 397 | return R_GOTPLT; |
| 398 | case R_X86_64_GOTPC32_TLSDESC: |
| 399 | case R_X86_64_CODE_4_GOTPC32_TLSDESC: |
| 400 | return R_TLSDESC_PC; |
| 401 | case R_X86_64_GOTPCREL: |
| 402 | case R_X86_64_GOTPCRELX: |
| 403 | case R_X86_64_REX_GOTPCRELX: |
| 404 | case R_X86_64_CODE_4_GOTPCRELX: |
| 405 | case R_X86_64_GOTTPOFF: |
| 406 | case R_X86_64_CODE_4_GOTTPOFF: |
| 407 | case R_X86_64_CODE_6_GOTTPOFF: |
| 408 | return R_GOT_PC; |
| 409 | case R_X86_64_GOTOFF64: |
| 410 | return R_GOTPLTREL; |
| 411 | case R_X86_64_PLTOFF64: |
| 412 | return R_PLT_GOTPLT; |
| 413 | case R_X86_64_GOTPC32: |
| 414 | case R_X86_64_GOTPC64: |
| 415 | return R_GOTPLTONLY_PC; |
| 416 | case R_X86_64_NONE: |
| 417 | return R_NONE; |
| 418 | default: |
| 419 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
| 420 | << ") against symbol " << &s; |
| 421 | return R_NONE; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | void X86_64::(uint8_t *buf) const { |
| 426 | // The first entry holds the link-time address of _DYNAMIC. It is documented |
| 427 | // in the psABI and glibc before Aug 2021 used the entry to compute run-time |
| 428 | // load address of the shared object (note that this is relevant for linking |
| 429 | // ld.so, not any other program). |
| 430 | write64le(P: buf, V: ctx.mainPart->dynamic->getVA()); |
| 431 | } |
| 432 | |
| 433 | void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 434 | // See comments in X86::writeGotPlt. |
| 435 | write64le(P: buf, V: s.getPltVA(ctx) + 6); |
| 436 | } |
| 437 | |
| 438 | void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| 439 | // An x86 entry is the address of the ifunc resolver function (for -z rel). |
| 440 | if (ctx.arg.writeAddends) |
| 441 | write64le(P: buf, V: s.getVA(ctx)); |
| 442 | } |
| 443 | |
| 444 | void X86_64::(uint8_t *buf) const { |
| 445 | const uint8_t pltData[] = { |
| 446 | 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) |
| 447 | 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) |
| 448 | 0x0f, 0x1f, 0x40, 0x00, // nop |
| 449 | }; |
| 450 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
| 451 | uint64_t gotPlt = ctx.in.gotPlt->getVA(); |
| 452 | uint64_t plt = ctx.in.ibtPlt ? ctx.in.ibtPlt->getVA() : ctx.in.plt->getVA(); |
| 453 | write32le(P: buf + 2, V: gotPlt - plt + 2); // GOTPLT+8 |
| 454 | write32le(P: buf + 8, V: gotPlt - plt + 4); // GOTPLT+16 |
| 455 | } |
| 456 | |
| 457 | void X86_64::writePlt(uint8_t *buf, const Symbol &sym, |
| 458 | uint64_t pltEntryAddr) const { |
| 459 | const uint8_t inst[] = { |
| 460 | 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
| 461 | 0x68, 0, 0, 0, 0, // pushq <relocation index> |
| 462 | 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
| 463 | }; |
| 464 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 465 | |
| 466 | write32le(P: buf + 2, V: sym.getGotPltVA(ctx) - pltEntryAddr - 6); |
| 467 | write32le(P: buf + 7, V: sym.getPltIdx(ctx)); |
| 468 | write32le(P: buf + 12, V: ctx.in.plt->getVA() - pltEntryAddr - 16); |
| 469 | } |
| 470 | |
| 471 | RelType X86_64::getDynRel(RelType type) const { |
| 472 | if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || |
| 473 | type == R_X86_64_SIZE64) |
| 474 | return type; |
| 475 | return R_X86_64_NONE; |
| 476 | } |
| 477 | |
| 478 | void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| 479 | uint64_t val) const { |
| 480 | if (rel.type == R_X86_64_TLSGD) { |
| 481 | // Convert |
| 482 | // .byte 0x66 |
| 483 | // leaq x@tlsgd(%rip), %rdi |
| 484 | // .word 0x6666 |
| 485 | // rex64 |
| 486 | // call __tls_get_addr@plt |
| 487 | // to the following two instructions. |
| 488 | const uint8_t inst[] = { |
| 489 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
| 490 | 0x00, 0x00, // mov %fs:0x0,%rax |
| 491 | 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax |
| 492 | }; |
| 493 | memcpy(dest: loc - 4, src: inst, n: sizeof(inst)); |
| 494 | |
| 495 | // The original code used a pc relative relocation and so we have to |
| 496 | // compensate for the -4 in had in the addend. |
| 497 | write32le(P: loc + 8, V: val + 4); |
| 498 | } else if (rel.type == R_X86_64_GOTPC32_TLSDESC || |
| 499 | rel.type == R_X86_64_CODE_4_GOTPC32_TLSDESC) { |
| 500 | // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. |
| 501 | if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
| 502 | (loc[-1] & 0xc7) != 0x05) { |
| 503 | Err(ctx) << getErrorLoc(ctx, loc: (rel.type == R_X86_64_GOTPC32_TLSDESC) |
| 504 | ? loc - 3 |
| 505 | : loc - 4) |
| 506 | << "R_X86_64_GOTPC32_TLSDESC/R_X86_64_CODE_4_GOTPC32_TLSDESC " |
| 507 | "must be used in leaq x@tlsdesc(%rip), %REG" ; |
| 508 | return; |
| 509 | } |
| 510 | if (rel.type == R_X86_64_GOTPC32_TLSDESC) { |
| 511 | loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); |
| 512 | } else { |
| 513 | loc[-3] = (loc[-3] & ~0x44) | ((loc[-3] & 0x44) >> 2); |
| 514 | } |
| 515 | loc[-2] = 0xc7; |
| 516 | loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); |
| 517 | |
| 518 | write32le(P: loc, V: val + 4); |
| 519 | } else { |
| 520 | // Convert call *x@tlsdesc(%REG) to xchg ax, ax. |
| 521 | assert(rel.type == R_X86_64_TLSDESC_CALL); |
| 522 | loc[0] = 0x66; |
| 523 | loc[1] = 0x90; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| 528 | uint64_t val) const { |
| 529 | if (rel.type == R_X86_64_TLSGD) { |
| 530 | // Convert |
| 531 | // .byte 0x66 |
| 532 | // leaq x@tlsgd(%rip), %rdi |
| 533 | // .word 0x6666 |
| 534 | // rex64 |
| 535 | // call __tls_get_addr@plt |
| 536 | // to the following two instructions. |
| 537 | const uint8_t inst[] = { |
| 538 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
| 539 | 0x00, 0x00, // mov %fs:0x0,%rax |
| 540 | 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax |
| 541 | }; |
| 542 | memcpy(dest: loc - 4, src: inst, n: sizeof(inst)); |
| 543 | |
| 544 | // Both code sequences are PC relatives, but since we are moving the |
| 545 | // constant forward by 8 bytes we have to subtract the value by 8. |
| 546 | write32le(P: loc + 8, V: val - 8); |
| 547 | } else if (rel.type == R_X86_64_GOTPC32_TLSDESC || |
| 548 | rel.type == R_X86_64_CODE_4_GOTPC32_TLSDESC) { |
| 549 | // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. |
| 550 | if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
| 551 | (loc[-1] & 0xc7) != 0x05) { |
| 552 | Err(ctx) << getErrorLoc(ctx, loc: (rel.type == R_X86_64_GOTPC32_TLSDESC) |
| 553 | ? loc - 3 |
| 554 | : loc - 4) |
| 555 | << "R_X86_64_GOTPC32_TLSDESC/R_X86_64_CODE_4_GOTPC32_TLSDESC " |
| 556 | "must be used in leaq x@tlsdesc(%rip), %REG" ; |
| 557 | return; |
| 558 | } |
| 559 | loc[-2] = 0x8b; |
| 560 | write32le(P: loc, V: val); |
| 561 | } else { |
| 562 | // Convert call *x@tlsdesc(%rax) to xchg ax, ax. |
| 563 | assert(rel.type == R_X86_64_TLSDESC_CALL); |
| 564 | loc[0] = 0x66; |
| 565 | loc[1] = 0x90; |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | // In some conditions, |
| 570 | // R_X86_64_GOTTPOFF/R_X86_64_CODE_4_GOTTPOFF/R_X86_64_CODE_6_GOTTPOFF |
| 571 | // relocation can be optimized to R_X86_64_TPOFF32 so that it does not use GOT. |
| 572 | void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
| 573 | uint64_t val) const { |
| 574 | uint8_t *inst = loc - 3; |
| 575 | uint8_t reg = loc[-1] >> 3; |
| 576 | uint8_t *regSlot = loc - 1; |
| 577 | |
| 578 | if (rel.type == R_X86_64_GOTTPOFF) { |
| 579 | // Note that ADD with RSP or R12 is converted to ADD instead of LEA |
| 580 | // because LEA with these registers needs 4 bytes to encode and thus |
| 581 | // wouldn't fit the space. |
| 582 | |
| 583 | if (memcmp(s1: inst, s2: "\x48\x03\x25" , n: 3) == 0) { |
| 584 | // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" |
| 585 | memcpy(dest: inst, src: "\x48\x81\xc4" , n: 3); |
| 586 | } else if (memcmp(s1: inst, s2: "\x4c\x03\x25" , n: 3) == 0) { |
| 587 | // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" |
| 588 | memcpy(dest: inst, src: "\x49\x81\xc4" , n: 3); |
| 589 | } else if (memcmp(s1: inst, s2: "\x4c\x03" , n: 2) == 0) { |
| 590 | // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" |
| 591 | memcpy(dest: inst, src: "\x4d\x8d" , n: 2); |
| 592 | *regSlot = 0x80 | (reg << 3) | reg; |
| 593 | } else if (memcmp(s1: inst, s2: "\x48\x03" , n: 2) == 0) { |
| 594 | // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" |
| 595 | memcpy(dest: inst, src: "\x48\x8d" , n: 2); |
| 596 | *regSlot = 0x80 | (reg << 3) | reg; |
| 597 | } else if (memcmp(s1: inst, s2: "\x4c\x8b" , n: 2) == 0) { |
| 598 | // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" |
| 599 | memcpy(dest: inst, src: "\x49\xc7" , n: 2); |
| 600 | *regSlot = 0xc0 | reg; |
| 601 | } else if (memcmp(s1: inst, s2: "\x48\x8b" , n: 2) == 0) { |
| 602 | // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" |
| 603 | memcpy(dest: inst, src: "\x48\xc7" , n: 2); |
| 604 | *regSlot = 0xc0 | reg; |
| 605 | } else { |
| 606 | Err(ctx) |
| 607 | << getErrorLoc(ctx, loc: loc - 3) |
| 608 | << "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only" ; |
| 609 | } |
| 610 | } else if (rel.type == R_X86_64_CODE_4_GOTTPOFF) { |
| 611 | if (loc[-4] != 0xd5) { |
| 612 | Err(ctx) << getErrorLoc(ctx, loc: loc - 4) |
| 613 | << "invalid prefix with R_X86_64_CODE_4_GOTTPOFF!" ; |
| 614 | return; |
| 615 | } |
| 616 | const uint8_t rex = loc[-3]; |
| 617 | loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2; |
| 618 | *regSlot = 0xc0 | reg; |
| 619 | |
| 620 | if (loc[-2] == 0x8b) { |
| 621 | // "movq foo@gottpoff(%rip),%r[16-31]" -> "movq $foo,%r[16-31]" |
| 622 | loc[-2] = 0xc7; |
| 623 | } else if (loc[-2] == 0x03) { |
| 624 | // "addq foo@gottpoff(%rip),%r[16-31]" -> "addq $foo,%r[16-31]" |
| 625 | loc[-2] = 0x81; |
| 626 | } else { |
| 627 | Err(ctx) << getErrorLoc(ctx, loc: loc - 4) |
| 628 | << "R_X86_64_CODE_4_GOTTPOFF must be used in MOVQ or ADDQ " |
| 629 | "instructions only" ; |
| 630 | } |
| 631 | } else if (rel.type == R_X86_64_CODE_6_GOTTPOFF) { |
| 632 | if (loc[-6] != 0x62) { |
| 633 | Err(ctx) << getErrorLoc(ctx, loc: loc - 6) |
| 634 | << "invalid prefix with R_X86_64_CODE_6_GOTTPOFF!" ; |
| 635 | return; |
| 636 | } |
| 637 | // Check bits are satisfied: |
| 638 | // loc[-5]: X==1 (inverted polarity), (loc[-5] & 0x7) == 0x4 |
| 639 | // loc[-4]: W==1, X2==1 (inverted polarity), pp==0b00(NP) |
| 640 | // loc[-3]: NF==1 or ND==1 |
| 641 | // loc[-2]: opcode==0x1 or opcode==0x3 |
| 642 | // loc[-1]: Mod==0b00, RM==0b101 |
| 643 | if (((loc[-5] & 0x47) == 0x44) && ((loc[-4] & 0x87) == 0x84) && |
| 644 | ((loc[-3] & 0x14) != 0) && (loc[-2] == 0x1 || loc[-2] == 0x3) && |
| 645 | ((loc[-1] & 0xc7) == 0x5)) { |
| 646 | // "addq %reg1, foo@GOTTPOFF(%rip), %reg2" -> "addq $foo, %reg1, %reg2" |
| 647 | // "addq foo@GOTTPOFF(%rip), %reg1, %reg2" -> "addq $foo, %reg1, %reg2" |
| 648 | // "{nf} addq %reg1, foo@GOTTPOFF(%rip), %reg2" |
| 649 | // -> "{nf} addq $foo, %reg1, %reg2" |
| 650 | // "{nf} addq name@GOTTPOFF(%rip), %reg1, %reg2" |
| 651 | // -> "{nf} addq $foo, %reg1, %reg2" |
| 652 | // "{nf} addq name@GOTTPOFF(%rip), %reg" -> "{nf} addq $foo, %reg" |
| 653 | loc[-2] = 0x81; |
| 654 | // Move R bits to B bits in EVEX payloads and ModRM byte. |
| 655 | const uint8_t evexPayload0 = loc[-5]; |
| 656 | if ((evexPayload0 & (1 << 7)) == 0) |
| 657 | loc[-5] = (evexPayload0 | (1 << 7)) & ~(1 << 5); |
| 658 | if ((evexPayload0 & (1 << 4)) == 0) |
| 659 | loc[-5] = evexPayload0 | (1 << 4) | (1 << 3); |
| 660 | *regSlot = 0xc0 | reg; |
| 661 | } else { |
| 662 | Err(ctx) << getErrorLoc(ctx, loc: loc - 6) |
| 663 | << "R_X86_64_CODE_6_GOTTPOFF must be used in ADDQ instructions " |
| 664 | "with NDD/NF/NDD+NF only" ; |
| 665 | } |
| 666 | } else { |
| 667 | llvm_unreachable("Unsupported relocation type!" ); |
| 668 | } |
| 669 | |
| 670 | // The original code used a PC relative relocation. |
| 671 | // Need to compensate for the -4 it had in the addend. |
| 672 | write32le(P: loc, V: val + 4); |
| 673 | } |
| 674 | |
| 675 | void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, |
| 676 | uint64_t val) const { |
| 677 | const uint8_t inst[] = { |
| 678 | 0x66, 0x66, // .word 0x6666 |
| 679 | 0x66, // .byte 0x66 |
| 680 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax |
| 681 | }; |
| 682 | |
| 683 | if (loc[4] == 0xe8) { |
| 684 | // Convert |
| 685 | // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> |
| 686 | // callq __tls_get_addr@PLT # e8 <disp32> |
| 687 | // leaq bar@dtpoff(%rax), %rcx |
| 688 | // to |
| 689 | // .word 0x6666 |
| 690 | // .byte 0x66 |
| 691 | // mov %fs:0,%rax |
| 692 | // leaq bar@tpoff(%rax), %rcx |
| 693 | memcpy(dest: loc - 3, src: inst, n: sizeof(inst)); |
| 694 | return; |
| 695 | } |
| 696 | |
| 697 | if (loc[4] == 0xff && loc[5] == 0x15) { |
| 698 | // Convert |
| 699 | // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> |
| 700 | // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> |
| 701 | // to |
| 702 | // .long 0x66666666 |
| 703 | // movq %fs:0,%rax |
| 704 | // See "Table 11.9: LD -> LE Code Transition (LP64)" in |
| 705 | // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf |
| 706 | loc[-3] = 0x66; |
| 707 | memcpy(dest: loc - 2, src: inst, n: sizeof(inst)); |
| 708 | return; |
| 709 | } |
| 710 | |
| 711 | ErrAlways(ctx) |
| 712 | << getErrorLoc(ctx, loc: loc - 3) |
| 713 | << "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD" ; |
| 714 | } |
| 715 | |
| 716 | // A JumpInstrMod at a specific offset indicates that the jump instruction |
| 717 | // opcode at that offset must be modified. This is specifically used to relax |
| 718 | // jump instructions with basic block sections. This function looks at the |
| 719 | // JumpMod and effects the change. |
| 720 | void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, |
| 721 | unsigned size) const { |
| 722 | switch (type) { |
| 723 | case J_JMP_32: |
| 724 | if (size == 4) |
| 725 | *loc = 0xe9; |
| 726 | else |
| 727 | *loc = 0xeb; |
| 728 | break; |
| 729 | case J_JE_32: |
| 730 | if (size == 4) { |
| 731 | loc[-1] = 0x0f; |
| 732 | *loc = 0x84; |
| 733 | } else |
| 734 | *loc = 0x74; |
| 735 | break; |
| 736 | case J_JNE_32: |
| 737 | if (size == 4) { |
| 738 | loc[-1] = 0x0f; |
| 739 | *loc = 0x85; |
| 740 | } else |
| 741 | *loc = 0x75; |
| 742 | break; |
| 743 | case J_JG_32: |
| 744 | if (size == 4) { |
| 745 | loc[-1] = 0x0f; |
| 746 | *loc = 0x8f; |
| 747 | } else |
| 748 | *loc = 0x7f; |
| 749 | break; |
| 750 | case J_JGE_32: |
| 751 | if (size == 4) { |
| 752 | loc[-1] = 0x0f; |
| 753 | *loc = 0x8d; |
| 754 | } else |
| 755 | *loc = 0x7d; |
| 756 | break; |
| 757 | case J_JB_32: |
| 758 | if (size == 4) { |
| 759 | loc[-1] = 0x0f; |
| 760 | *loc = 0x82; |
| 761 | } else |
| 762 | *loc = 0x72; |
| 763 | break; |
| 764 | case J_JBE_32: |
| 765 | if (size == 4) { |
| 766 | loc[-1] = 0x0f; |
| 767 | *loc = 0x86; |
| 768 | } else |
| 769 | *loc = 0x76; |
| 770 | break; |
| 771 | case J_JL_32: |
| 772 | if (size == 4) { |
| 773 | loc[-1] = 0x0f; |
| 774 | *loc = 0x8c; |
| 775 | } else |
| 776 | *loc = 0x7c; |
| 777 | break; |
| 778 | case J_JLE_32: |
| 779 | if (size == 4) { |
| 780 | loc[-1] = 0x0f; |
| 781 | *loc = 0x8e; |
| 782 | } else |
| 783 | *loc = 0x7e; |
| 784 | break; |
| 785 | case J_JA_32: |
| 786 | if (size == 4) { |
| 787 | loc[-1] = 0x0f; |
| 788 | *loc = 0x87; |
| 789 | } else |
| 790 | *loc = 0x77; |
| 791 | break; |
| 792 | case J_JAE_32: |
| 793 | if (size == 4) { |
| 794 | loc[-1] = 0x0f; |
| 795 | *loc = 0x83; |
| 796 | } else |
| 797 | *loc = 0x73; |
| 798 | break; |
| 799 | case J_UNKNOWN: |
| 800 | llvm_unreachable("Unknown Jump Relocation" ); |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| 805 | switch (type) { |
| 806 | case R_X86_64_8: |
| 807 | case R_X86_64_PC8: |
| 808 | return SignExtend64<8>(x: *buf); |
| 809 | case R_X86_64_16: |
| 810 | case R_X86_64_PC16: |
| 811 | return SignExtend64<16>(x: read16le(P: buf)); |
| 812 | case R_X86_64_32: |
| 813 | case R_X86_64_32S: |
| 814 | case R_X86_64_TPOFF32: |
| 815 | case R_X86_64_GOT32: |
| 816 | case R_X86_64_GOTPC32: |
| 817 | case R_X86_64_GOTPC32_TLSDESC: |
| 818 | case R_X86_64_GOTPCREL: |
| 819 | case R_X86_64_GOTPCRELX: |
| 820 | case R_X86_64_REX_GOTPCRELX: |
| 821 | case R_X86_64_CODE_4_GOTPCRELX: |
| 822 | case R_X86_64_PC32: |
| 823 | case R_X86_64_GOTTPOFF: |
| 824 | case R_X86_64_CODE_4_GOTTPOFF: |
| 825 | case R_X86_64_CODE_6_GOTTPOFF: |
| 826 | case R_X86_64_PLT32: |
| 827 | case R_X86_64_TLSGD: |
| 828 | case R_X86_64_TLSLD: |
| 829 | case R_X86_64_DTPOFF32: |
| 830 | case R_X86_64_SIZE32: |
| 831 | return SignExtend64<32>(x: read32le(P: buf)); |
| 832 | case R_X86_64_64: |
| 833 | case R_X86_64_TPOFF64: |
| 834 | case R_X86_64_DTPOFF64: |
| 835 | case R_X86_64_DTPMOD64: |
| 836 | case R_X86_64_PC64: |
| 837 | case R_X86_64_SIZE64: |
| 838 | case R_X86_64_GLOB_DAT: |
| 839 | case R_X86_64_GOT64: |
| 840 | case R_X86_64_GOTOFF64: |
| 841 | case R_X86_64_GOTPC64: |
| 842 | case R_X86_64_PLTOFF64: |
| 843 | case R_X86_64_IRELATIVE: |
| 844 | case R_X86_64_RELATIVE: |
| 845 | return read64le(P: buf); |
| 846 | case R_X86_64_TLSDESC: |
| 847 | return read64le(P: buf + 8); |
| 848 | case R_X86_64_JUMP_SLOT: |
| 849 | case R_X86_64_NONE: |
| 850 | // These relocations are defined as not having an implicit addend. |
| 851 | return 0; |
| 852 | default: |
| 853 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
| 854 | return 0; |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val); |
| 859 | |
| 860 | void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| 861 | switch (rel.type) { |
| 862 | case R_X86_64_8: |
| 863 | checkIntUInt(ctx, loc, v: val, n: 8, rel); |
| 864 | *loc = val; |
| 865 | break; |
| 866 | case R_X86_64_PC8: |
| 867 | checkInt(ctx, loc, v: val, n: 8, rel); |
| 868 | *loc = val; |
| 869 | break; |
| 870 | case R_X86_64_16: |
| 871 | checkIntUInt(ctx, loc, v: val, n: 16, rel); |
| 872 | write16le(P: loc, V: val); |
| 873 | break; |
| 874 | case R_X86_64_PC16: |
| 875 | checkInt(ctx, loc, v: val, n: 16, rel); |
| 876 | write16le(P: loc, V: val); |
| 877 | break; |
| 878 | case R_X86_64_32: |
| 879 | checkUInt(ctx, loc, v: val, n: 32, rel); |
| 880 | write32le(P: loc, V: val); |
| 881 | break; |
| 882 | case R_X86_64_32S: |
| 883 | case R_X86_64_GOT32: |
| 884 | case R_X86_64_GOTPC32: |
| 885 | case R_X86_64_GOTPCREL: |
| 886 | case R_X86_64_PC32: |
| 887 | case R_X86_64_PLT32: |
| 888 | case R_X86_64_DTPOFF32: |
| 889 | case R_X86_64_SIZE32: |
| 890 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 891 | write32le(P: loc, V: val); |
| 892 | break; |
| 893 | case R_X86_64_64: |
| 894 | case R_X86_64_TPOFF64: |
| 895 | case R_X86_64_DTPOFF64: |
| 896 | case R_X86_64_PC64: |
| 897 | case R_X86_64_SIZE64: |
| 898 | case R_X86_64_GOT64: |
| 899 | case R_X86_64_GOTOFF64: |
| 900 | case R_X86_64_GOTPC64: |
| 901 | case R_X86_64_PLTOFF64: |
| 902 | write64le(P: loc, V: val); |
| 903 | break; |
| 904 | case R_X86_64_GOTPCRELX: |
| 905 | case R_X86_64_REX_GOTPCRELX: |
| 906 | case R_X86_64_CODE_4_GOTPCRELX: |
| 907 | if (rel.expr != R_GOT_PC) { |
| 908 | relaxGot(loc, rel, val); |
| 909 | } else { |
| 910 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 911 | write32le(P: loc, V: val); |
| 912 | } |
| 913 | break; |
| 914 | case R_X86_64_GOTPC32_TLSDESC: |
| 915 | case R_X86_64_CODE_4_GOTPC32_TLSDESC: |
| 916 | case R_X86_64_TLSDESC_CALL: |
| 917 | case R_X86_64_TLSGD: |
| 918 | if (rel.expr == R_RELAX_TLS_GD_TO_LE) { |
| 919 | relaxTlsGdToLe(loc, rel, val); |
| 920 | } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) { |
| 921 | relaxTlsGdToIe(loc, rel, val); |
| 922 | } else { |
| 923 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 924 | write32le(P: loc, V: val); |
| 925 | } |
| 926 | break; |
| 927 | case R_X86_64_TLSLD: |
| 928 | if (rel.expr == R_RELAX_TLS_LD_TO_LE) { |
| 929 | relaxTlsLdToLe(loc, rel, val); |
| 930 | } else { |
| 931 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 932 | write32le(P: loc, V: val); |
| 933 | } |
| 934 | break; |
| 935 | case R_X86_64_GOTTPOFF: |
| 936 | case R_X86_64_CODE_4_GOTTPOFF: |
| 937 | case R_X86_64_CODE_6_GOTTPOFF: |
| 938 | if (rel.expr == R_RELAX_TLS_IE_TO_LE) { |
| 939 | relaxTlsIeToLe(loc, rel, val); |
| 940 | } else { |
| 941 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 942 | write32le(P: loc, V: val); |
| 943 | } |
| 944 | break; |
| 945 | case R_X86_64_TPOFF32: |
| 946 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 947 | write32le(P: loc, V: val); |
| 948 | break; |
| 949 | |
| 950 | case R_X86_64_TLSDESC: |
| 951 | // The addend is stored in the second 64-bit word. |
| 952 | write64le(P: loc + 8, V: val); |
| 953 | break; |
| 954 | default: |
| 955 | llvm_unreachable("unknown relocation" ); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, |
| 960 | const uint8_t *loc) const { |
| 961 | // Only R_X86_64_[REX_]|[CODE_4_]GOTPCRELX can be relaxed. GNU as may emit |
| 962 | // GOTPCRELX with addend != -4. Such an instruction does not load the full GOT |
| 963 | // entry, so we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), |
| 964 | // %rax (addend=0) loads the high 32 bits of the GOT entry. |
| 965 | if (!ctx.arg.relax || addend != -4 || |
| 966 | (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX && |
| 967 | type != R_X86_64_CODE_4_GOTPCRELX)) |
| 968 | return R_GOT_PC; |
| 969 | const uint8_t op = loc[-2]; |
| 970 | const uint8_t modRm = loc[-1]; |
| 971 | |
| 972 | // FIXME: When PIC is disabled and foo is defined locally in the |
| 973 | // lower 32 bit address space, memory operand in mov can be converted into |
| 974 | // immediate operand. Otherwise, mov must be changed to lea. We support only |
| 975 | // latter relaxation at this moment. |
| 976 | if (op == 0x8b) |
| 977 | return R_RELAX_GOT_PC; |
| 978 | |
| 979 | // Relax call and jmp. |
| 980 | if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) |
| 981 | return R_RELAX_GOT_PC; |
| 982 | |
| 983 | // We don't support test/binop instructions without a REX/REX2 prefix. |
| 984 | if (type == R_X86_64_GOTPCRELX) |
| 985 | return R_GOT_PC; |
| 986 | |
| 987 | // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. |
| 988 | // If PIC then no relaxation is available. |
| 989 | return ctx.arg.isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; |
| 990 | } |
| 991 | |
| 992 | // A subset of relaxations can only be applied for no-PIC. This method |
| 993 | // handles such relaxations. Instructions encoding information was taken from: |
| 994 | // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" |
| 995 | // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ |
| 996 | // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) |
| 997 | static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, uint8_t modRm, |
| 998 | bool isRex2) { |
| 999 | const uint8_t rex = loc[-3]; |
| 1000 | // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". |
| 1001 | if (op == 0x85) { |
| 1002 | // See "TEST-Logical Compare" (4-428 Vol. 2B), |
| 1003 | // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). |
| 1004 | |
| 1005 | // ModR/M byte has form XX YYY ZZZ, where |
| 1006 | // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). |
| 1007 | // XX has different meanings: |
| 1008 | // 00: The operand's memory address is in reg1. |
| 1009 | // 01: The operand's memory address is reg1 + a byte-sized displacement. |
| 1010 | // 10: The operand's memory address is reg1 + a word-sized displacement. |
| 1011 | // 11: The operand is reg1 itself. |
| 1012 | // If an instruction requires only one operand, the unused reg2 field |
| 1013 | // holds extra opcode bits rather than a register code |
| 1014 | // 0xC0 == 11 000 000 binary. |
| 1015 | // 0x38 == 00 111 000 binary. |
| 1016 | // We transfer reg2 to reg1 here as operand. |
| 1017 | // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). |
| 1018 | loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. |
| 1019 | |
| 1020 | // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 |
| 1021 | // See "TEST-Logical Compare" (4-428 Vol. 2B). |
| 1022 | loc[-2] = 0xf7; |
| 1023 | |
| 1024 | // Move R bit to the B bit in REX/REX2 byte. |
| 1025 | // REX byte is encoded as 0100WRXB, where |
| 1026 | // 0100 is 4bit fixed pattern. |
| 1027 | // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the |
| 1028 | // default operand size is used (which is 32-bit for most but not all |
| 1029 | // instructions). |
| 1030 | // REX.R This 1-bit value is an extension to the MODRM.reg field. |
| 1031 | // REX.X This 1-bit value is an extension to the SIB.index field. |
| 1032 | // REX.B This 1-bit value is an extension to the MODRM.rm field or the |
| 1033 | // SIB.base field. |
| 1034 | // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). |
| 1035 | // |
| 1036 | // REX2 prefix is encoded as 0xd5|M|R2|X2|B2|WRXB, where |
| 1037 | // 0xd5 is 1byte fixed pattern. |
| 1038 | // REX2's [W,R,X,B] have the same meanings as REX's. |
| 1039 | // REX2.M encodes the map id. |
| 1040 | // R2/X2/B2 provides the fifth and most siginicant bits of the R/X/B |
| 1041 | // register identifiers, each of which can now address all 32 GPRs. |
| 1042 | if (isRex2) |
| 1043 | loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2; |
| 1044 | else |
| 1045 | loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
| 1046 | write32le(P: loc, V: val); |
| 1047 | return; |
| 1048 | } |
| 1049 | |
| 1050 | // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub |
| 1051 | // or xor operations. |
| 1052 | |
| 1053 | // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". |
| 1054 | // Logic is close to one for test instruction above, but we also |
| 1055 | // write opcode extension here, see below for details. |
| 1056 | loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. |
| 1057 | |
| 1058 | // Primary opcode is 0x81, opcode extension is one of: |
| 1059 | // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, |
| 1060 | // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. |
| 1061 | // This value was wrote to MODRM.reg in a line above. |
| 1062 | // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), |
| 1063 | // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for |
| 1064 | // descriptions about each operation. |
| 1065 | loc[-2] = 0x81; |
| 1066 | if (isRex2) |
| 1067 | loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2; |
| 1068 | else |
| 1069 | loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
| 1070 | write32le(P: loc, V: val); |
| 1071 | } |
| 1072 | |
| 1073 | static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) { |
| 1074 | assert(isInt<32>(val) && |
| 1075 | "GOTPCRELX should not have been relaxed if it overflows" ); |
| 1076 | const uint8_t op = loc[-2]; |
| 1077 | const uint8_t modRm = loc[-1]; |
| 1078 | |
| 1079 | // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". |
| 1080 | if (op == 0x8b) { |
| 1081 | loc[-2] = 0x8d; |
| 1082 | write32le(P: loc, V: val); |
| 1083 | return; |
| 1084 | } |
| 1085 | |
| 1086 | if (op != 0xff) { |
| 1087 | // We are relaxing a rip relative to an absolute, so compensate |
| 1088 | // for the old -4 addend. |
| 1089 | assert(!rel.sym->file->ctx.arg.isPic); |
| 1090 | relaxGotNoPic(loc, val: val + 4, op, modRm, |
| 1091 | isRex2: rel.type == R_X86_64_CODE_4_GOTPCRELX); |
| 1092 | return; |
| 1093 | } |
| 1094 | |
| 1095 | // Convert call/jmp instructions. |
| 1096 | if (modRm == 0x15) { |
| 1097 | // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". |
| 1098 | // Instead we convert to "addr32 call foo" where addr32 is an instruction |
| 1099 | // prefix. That makes result expression to be a single instruction. |
| 1100 | loc[-2] = 0x67; // addr32 prefix |
| 1101 | loc[-1] = 0xe8; // call |
| 1102 | write32le(P: loc, V: val); |
| 1103 | return; |
| 1104 | } |
| 1105 | |
| 1106 | // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". |
| 1107 | // jmp doesn't return, so it is fine to use nop here, it is just a stub. |
| 1108 | assert(modRm == 0x25); |
| 1109 | loc[-2] = 0xe9; // jmp |
| 1110 | loc[3] = 0x90; // nop |
| 1111 | write32le(P: loc - 1, V: val + 1); |
| 1112 | } |
| 1113 | |
| 1114 | // A split-stack prologue starts by checking the amount of stack remaining |
| 1115 | // in one of two ways: |
| 1116 | // A) Comparing of the stack pointer to a field in the tcb. |
| 1117 | // B) Or a load of a stack pointer offset with an lea to r10 or r11. |
| 1118 | bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
| 1119 | uint8_t stOther) const { |
| 1120 | if (!ctx.arg.is64) { |
| 1121 | ErrAlways(ctx) << "target doesn't support split stacks" ; |
| 1122 | return false; |
| 1123 | } |
| 1124 | |
| 1125 | if (loc + 8 >= end) |
| 1126 | return false; |
| 1127 | |
| 1128 | // Replace "cmp %fs:0x70,%rsp" and subsequent branch |
| 1129 | // with "stc, nopl 0x0(%rax,%rax,1)" |
| 1130 | if (memcmp(s1: loc, s2: "\x64\x48\x3b\x24\x25" , n: 5) == 0) { |
| 1131 | memcpy(dest: loc, src: "\xf9\x0f\x1f\x84\x00\x00\x00\x00" , n: 8); |
| 1132 | return true; |
| 1133 | } |
| 1134 | |
| 1135 | // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could |
| 1136 | // be r10 or r11. The lea instruction feeds a subsequent compare which checks |
| 1137 | // if there is X available stack space. Making X larger effectively reserves |
| 1138 | // that much additional space. The stack grows downward so subtract the value. |
| 1139 | if (memcmp(s1: loc, s2: "\x4c\x8d\x94\x24" , n: 4) == 0 || |
| 1140 | memcmp(s1: loc, s2: "\x4c\x8d\x9c\x24" , n: 4) == 0) { |
| 1141 | // The offset bytes are encoded four bytes after the start of the |
| 1142 | // instruction. |
| 1143 | write32le(P: loc + 4, V: read32le(P: loc + 4) - 0x4000); |
| 1144 | return true; |
| 1145 | } |
| 1146 | return false; |
| 1147 | } |
| 1148 | |
| 1149 | void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| 1150 | uint64_t secAddr = sec.getOutputSection()->addr; |
| 1151 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
| 1152 | secAddr += s->outSecOff; |
| 1153 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
| 1154 | secAddr += ehIn->getParent()->outSecOff; |
| 1155 | for (const Relocation &rel : sec.relocs()) { |
| 1156 | if (rel.expr == R_NONE) // See deleteFallThruJmpInsn |
| 1157 | continue; |
| 1158 | uint8_t *loc = buf + rel.offset; |
| 1159 | const uint64_t val = sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset); |
| 1160 | relocate(loc, rel, val); |
| 1161 | } |
| 1162 | if (sec.jumpInstrMod) { |
| 1163 | applyJumpInstrMod(loc: buf + sec.jumpInstrMod->offset, |
| 1164 | type: sec.jumpInstrMod->original, size: sec.jumpInstrMod->size); |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | static std::optional<uint64_t> getControlTransferAddend(InputSection &is, |
| 1169 | Relocation &r) { |
| 1170 | // Identify a control transfer relocation for the branch-to-branch |
| 1171 | // optimization. A "control transfer relocation" usually means a CALL or JMP |
| 1172 | // target but it also includes relative vtable relocations for example. |
| 1173 | // |
| 1174 | // We require the relocation type to be PLT32. With a relocation type of PLT32 |
| 1175 | // the value may be assumed to be used for branching directly to the symbol |
| 1176 | // and the addend is only used to produce the relocated value (hence the |
| 1177 | // effective addend is always 0). This is because if a PLT is needed the |
| 1178 | // addend will be added to the address of the PLT, and it doesn't make sense |
| 1179 | // to branch into the middle of a PLT. For example, relative vtable |
| 1180 | // relocations use PLT32 and 0 or a positive value as the addend but still are |
| 1181 | // used to branch to the symbol. |
| 1182 | // |
| 1183 | // STT_SECTION symbols are a special case on x86 because the LLVM assembler |
| 1184 | // uses them for branches to local symbols which are assembled as referring to |
| 1185 | // the section symbol with the addend equal to the symbol value - 4. |
| 1186 | if (r.type == R_X86_64_PLT32) { |
| 1187 | if (r.sym->isSection()) |
| 1188 | return r.addend + 4; |
| 1189 | return 0; |
| 1190 | } |
| 1191 | return std::nullopt; |
| 1192 | } |
| 1193 | |
| 1194 | static std::pair<Relocation *, uint64_t> |
| 1195 | getBranchInfoAtTarget(InputSection &is, uint64_t offset) { |
| 1196 | auto content = is.contentMaybeDecompress(); |
| 1197 | if (content.size() > offset && content[offset] == 0xe9) { // JMP immediate |
| 1198 | auto *i = llvm::partition_point( |
| 1199 | Range&: is.relocations, P: [&](Relocation &r) { return r.offset < offset + 1; }); |
| 1200 | // Unlike with getControlTransferAddend() it is valid to accept a PC32 |
| 1201 | // relocation here because we know that this is actually a JMP and not some |
| 1202 | // other reference, so the interpretation is that we add 4 to the addend and |
| 1203 | // use that as the effective addend. |
| 1204 | if (i != is.relocations.end() && i->offset == offset + 1 && |
| 1205 | (i->type == R_X86_64_PC32 || i->type == R_X86_64_PLT32)) { |
| 1206 | return {i, i->addend + 4}; |
| 1207 | } |
| 1208 | } |
| 1209 | return {nullptr, 0}; |
| 1210 | } |
| 1211 | |
| 1212 | static void redirectControlTransferRelocations(Relocation &r1, |
| 1213 | const Relocation &r2) { |
| 1214 | // The isSection() check handles the STT_SECTION case described above. |
| 1215 | // In that case the original addend is irrelevant because it referred to an |
| 1216 | // offset within the original target section so we overwrite it. |
| 1217 | // |
| 1218 | // The +4 is here to compensate for r2.addend which will likely be -4, |
| 1219 | // but may also be addend-4 in case of a PC32 branch to symbol+addend. |
| 1220 | if (r1.sym->isSection()) |
| 1221 | r1.addend = r2.addend; |
| 1222 | else |
| 1223 | r1.addend += r2.addend + 4; |
| 1224 | r1.expr = r2.expr; |
| 1225 | r1.sym = r2.sym; |
| 1226 | } |
| 1227 | |
| 1228 | void X86_64::applyBranchToBranchOpt() const { |
| 1229 | applyBranchToBranchOptImpl(ctx, getControlTransferAddend, |
| 1230 | getBranchInfoAtTarget, |
| 1231 | redirectControlTransferRelocations); |
| 1232 | } |
| 1233 | |
| 1234 | // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT |
| 1235 | // entries containing endbr64 instructions. A PLT entry will be split into two |
| 1236 | // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). |
| 1237 | namespace { |
| 1238 | class IntelIBT : public X86_64 { |
| 1239 | public: |
| 1240 | IntelIBT(Ctx &ctx) : X86_64(ctx) { pltHeaderSize = 0; }; |
| 1241 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 1242 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 1243 | uint64_t pltEntryAddr) const override; |
| 1244 | void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; |
| 1245 | |
| 1246 | static const unsigned = 16; |
| 1247 | }; |
| 1248 | } // namespace |
| 1249 | |
| 1250 | void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 1251 | uint64_t va = ctx.in.ibtPlt->getVA() + IBTPltHeaderSize + |
| 1252 | s.getPltIdx(ctx) * pltEntrySize; |
| 1253 | write64le(P: buf, V: va); |
| 1254 | } |
| 1255 | |
| 1256 | void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, |
| 1257 | uint64_t pltEntryAddr) const { |
| 1258 | const uint8_t Inst[] = { |
| 1259 | 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
| 1260 | 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
| 1261 | 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop |
| 1262 | }; |
| 1263 | memcpy(dest: buf, src: Inst, n: sizeof(Inst)); |
| 1264 | write32le(P: buf + 6, V: sym.getGotPltVA(ctx) - pltEntryAddr - 10); |
| 1265 | } |
| 1266 | |
| 1267 | void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { |
| 1268 | writePltHeader(buf); |
| 1269 | buf += IBTPltHeaderSize; |
| 1270 | |
| 1271 | const uint8_t inst[] = { |
| 1272 | 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
| 1273 | 0x68, 0, 0, 0, 0, // pushq <relocation index> |
| 1274 | 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
| 1275 | 0x66, 0x90, // nop |
| 1276 | }; |
| 1277 | |
| 1278 | for (size_t i = 0; i < numEntries; ++i) { |
| 1279 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 1280 | write32le(P: buf + 5, V: i); |
| 1281 | write32le(P: buf + 10, V: -pltHeaderSize - sizeof(inst) * i - 30); |
| 1282 | buf += sizeof(inst); |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | // These nonstandard PLT entries are to migtigate Spectre v2 security |
| 1287 | // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect |
| 1288 | // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT |
| 1289 | // entries, we use a CALL followed by MOV and RET to do the same thing as an |
| 1290 | // indirect jump. That instruction sequence is so-called "retpoline". |
| 1291 | // |
| 1292 | // We have two types of retpoline PLTs as a size optimization. If `-z now` |
| 1293 | // is specified, all dynamic symbols are resolved at load-time. Thus, when |
| 1294 | // that option is given, we can omit code for symbol lazy resolution. |
| 1295 | namespace { |
| 1296 | class Retpoline : public X86_64 { |
| 1297 | public: |
| 1298 | Retpoline(Ctx &); |
| 1299 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 1300 | void writePltHeader(uint8_t *buf) const override; |
| 1301 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 1302 | uint64_t pltEntryAddr) const override; |
| 1303 | }; |
| 1304 | |
| 1305 | class RetpolineZNow : public X86_64 { |
| 1306 | public: |
| 1307 | RetpolineZNow(Ctx &); |
| 1308 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} |
| 1309 | void writePltHeader(uint8_t *buf) const override; |
| 1310 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 1311 | uint64_t pltEntryAddr) const override; |
| 1312 | }; |
| 1313 | } // namespace |
| 1314 | |
| 1315 | Retpoline::Retpoline(Ctx &ctx) : X86_64(ctx) { |
| 1316 | pltHeaderSize = 48; |
| 1317 | pltEntrySize = 32; |
| 1318 | ipltEntrySize = 32; |
| 1319 | } |
| 1320 | |
| 1321 | void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 1322 | write64le(P: buf, V: s.getPltVA(ctx) + 17); |
| 1323 | } |
| 1324 | |
| 1325 | void Retpoline::(uint8_t *buf) const { |
| 1326 | const uint8_t insn[] = { |
| 1327 | 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) |
| 1328 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 |
| 1329 | 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next |
| 1330 | 0xf3, 0x90, // 12: loop: pause |
| 1331 | 0x0f, 0xae, 0xe8, // 14: lfence |
| 1332 | 0xeb, 0xf9, // 17: jmp loop |
| 1333 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 |
| 1334 | 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) |
| 1335 | 0xc3, // 24: ret |
| 1336 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding |
| 1337 | 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding |
| 1338 | }; |
| 1339 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 1340 | |
| 1341 | uint64_t gotPlt = ctx.in.gotPlt->getVA(); |
| 1342 | uint64_t plt = ctx.in.plt->getVA(); |
| 1343 | write32le(P: buf + 2, V: gotPlt - plt - 6 + 8); |
| 1344 | write32le(P: buf + 9, V: gotPlt - plt - 13 + 16); |
| 1345 | } |
| 1346 | |
| 1347 | void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, |
| 1348 | uint64_t pltEntryAddr) const { |
| 1349 | const uint8_t insn[] = { |
| 1350 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 |
| 1351 | 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 |
| 1352 | 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 |
| 1353 | 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> |
| 1354 | 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 |
| 1355 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding |
| 1356 | }; |
| 1357 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 1358 | |
| 1359 | uint64_t off = pltEntryAddr - ctx.in.plt->getVA(); |
| 1360 | |
| 1361 | write32le(P: buf + 3, V: sym.getGotPltVA(ctx) - pltEntryAddr - 7); |
| 1362 | write32le(P: buf + 8, V: -off - 12 + 32); |
| 1363 | write32le(P: buf + 13, V: -off - 17 + 18); |
| 1364 | write32le(P: buf + 18, V: sym.getPltIdx(ctx)); |
| 1365 | write32le(P: buf + 23, V: -off - 27); |
| 1366 | } |
| 1367 | |
| 1368 | RetpolineZNow::RetpolineZNow(Ctx &ctx) : X86_64(ctx) { |
| 1369 | pltHeaderSize = 32; |
| 1370 | pltEntrySize = 16; |
| 1371 | ipltEntrySize = 16; |
| 1372 | } |
| 1373 | |
| 1374 | void RetpolineZNow::(uint8_t *buf) const { |
| 1375 | const uint8_t insn[] = { |
| 1376 | 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next |
| 1377 | 0xf3, 0x90, // 5: loop: pause |
| 1378 | 0x0f, 0xae, 0xe8, // 7: lfence |
| 1379 | 0xeb, 0xf9, // a: jmp loop |
| 1380 | 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 |
| 1381 | 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) |
| 1382 | 0xc3, // 14: ret |
| 1383 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding |
| 1384 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding |
| 1385 | 0xcc, // 1f: int3; padding |
| 1386 | }; |
| 1387 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 1388 | } |
| 1389 | |
| 1390 | void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, |
| 1391 | uint64_t pltEntryAddr) const { |
| 1392 | const uint8_t insn[] = { |
| 1393 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 |
| 1394 | 0xe9, 0, 0, 0, 0, // jmp plt+0 |
| 1395 | 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding |
| 1396 | }; |
| 1397 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
| 1398 | |
| 1399 | write32le(P: buf + 3, V: sym.getGotPltVA(ctx) - pltEntryAddr - 7); |
| 1400 | write32le(P: buf + 8, V: ctx.in.plt->getVA() - pltEntryAddr - 12); |
| 1401 | } |
| 1402 | |
| 1403 | void elf::setX86_64TargetInfo(Ctx &ctx) { |
| 1404 | if (ctx.arg.zRetpolineplt) { |
| 1405 | if (ctx.arg.zNow) |
| 1406 | ctx.target.reset(p: new RetpolineZNow(ctx)); |
| 1407 | else |
| 1408 | ctx.target.reset(p: new Retpoline(ctx)); |
| 1409 | return; |
| 1410 | } |
| 1411 | |
| 1412 | if (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) |
| 1413 | ctx.target.reset(p: new IntelIBT(ctx)); |
| 1414 | else |
| 1415 | ctx.target.reset(p: new X86_64(ctx)); |
| 1416 | } |
| 1417 | |