1 | //===- X86_64.cpp ---------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "OutputSections.h" |
10 | #include "Relocations.h" |
11 | #include "Symbols.h" |
12 | #include "SyntheticSections.h" |
13 | #include "Target.h" |
14 | #include "TargetImpl.h" |
15 | #include "llvm/BinaryFormat/ELF.h" |
16 | #include "llvm/Support/Endian.h" |
17 | #include "llvm/Support/MathExtras.h" |
18 | |
19 | using namespace llvm; |
20 | using namespace llvm::object; |
21 | using namespace llvm::support::endian; |
22 | using namespace llvm::ELF; |
23 | using namespace lld; |
24 | using namespace lld::elf; |
25 | |
26 | namespace { |
27 | class X86_64 : public TargetInfo { |
28 | public: |
29 | X86_64(Ctx &); |
30 | int getTlsGdRelaxSkip(RelType type) const override; |
31 | RelExpr getRelExpr(RelType type, const Symbol &s, |
32 | const uint8_t *loc) const override; |
33 | RelType getDynRel(RelType type) const override; |
34 | void writeGotPltHeader(uint8_t *buf) const override; |
35 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
36 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
37 | void writePltHeader(uint8_t *buf) const override; |
38 | void writePlt(uint8_t *buf, const Symbol &sym, |
39 | uint64_t pltEntryAddr) const override; |
40 | void relocate(uint8_t *loc, const Relocation &rel, |
41 | uint64_t val) const override; |
42 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
43 | void applyJumpInstrMod(uint8_t *loc, JumpModType type, |
44 | unsigned size) const override; |
45 | RelExpr adjustGotPcExpr(RelType type, int64_t addend, |
46 | const uint8_t *loc) const override; |
47 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
48 | bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
49 | uint8_t stOther) const override; |
50 | bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
51 | InputSection *nextIS) const override; |
52 | bool relaxOnce(int pass) const override; |
53 | void applyBranchToBranchOpt() const override; |
54 | |
55 | private: |
56 | void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
57 | void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
58 | void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
59 | void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
60 | }; |
61 | } // namespace |
62 | |
63 | // This is vector of NOP instructions of sizes from 1 to 8 bytes. The |
64 | // appropriately sized instructions are used to fill the gaps between sections |
65 | // which are executed during fall through. |
66 | static const std::vector<std::vector<uint8_t>> nopInstructions = { |
67 | {0x90}, |
68 | {0x66, 0x90}, |
69 | {0x0f, 0x1f, 0x00}, |
70 | {0x0f, 0x1f, 0x40, 0x00}, |
71 | {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
72 | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
73 | {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, |
74 | {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
75 | {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; |
76 | |
77 | X86_64::X86_64(Ctx &ctx) : TargetInfo(ctx) { |
78 | copyRel = R_X86_64_COPY; |
79 | gotRel = R_X86_64_GLOB_DAT; |
80 | pltRel = R_X86_64_JUMP_SLOT; |
81 | relativeRel = R_X86_64_RELATIVE; |
82 | iRelativeRel = R_X86_64_IRELATIVE; |
83 | symbolicRel = R_X86_64_64; |
84 | tlsDescRel = R_X86_64_TLSDESC; |
85 | tlsGotRel = R_X86_64_TPOFF64; |
86 | tlsModuleIndexRel = R_X86_64_DTPMOD64; |
87 | tlsOffsetRel = R_X86_64_DTPOFF64; |
88 | gotBaseSymInGotPlt = true; |
89 | gotEntrySize = 8; |
90 | pltHeaderSize = 16; |
91 | pltEntrySize = 16; |
92 | ipltEntrySize = 16; |
93 | trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 |
94 | nopInstrs = nopInstructions; |
95 | |
96 | // Align to the large page size (known as a superpage or huge page). |
97 | // FreeBSD automatically promotes large, superpage-aligned allocations. |
98 | defaultImageBase = 0x200000; |
99 | } |
100 | |
101 | int X86_64::getTlsGdRelaxSkip(RelType type) const { |
102 | // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. |
103 | return type == R_X86_64_GOTPC32_TLSDESC || |
104 | type == R_X86_64_CODE_4_GOTPC32_TLSDESC || |
105 | type == R_X86_64_TLSDESC_CALL |
106 | ? 1 |
107 | : 2; |
108 | } |
109 | |
110 | // Opcodes for the different X86_64 jmp instructions. |
111 | enum JmpInsnOpcode : uint32_t { |
112 | J_JMP_32, |
113 | J_JNE_32, |
114 | J_JE_32, |
115 | J_JG_32, |
116 | J_JGE_32, |
117 | J_JB_32, |
118 | J_JBE_32, |
119 | J_JL_32, |
120 | J_JLE_32, |
121 | J_JA_32, |
122 | J_JAE_32, |
123 | J_UNKNOWN, |
124 | }; |
125 | |
126 | // Given the first (optional) and second byte of the insn's opcode, this |
127 | // returns the corresponding enum value. |
128 | static JmpInsnOpcode getJmpInsnType(const uint8_t *first, |
129 | const uint8_t *second) { |
130 | if (*second == 0xe9) |
131 | return J_JMP_32; |
132 | |
133 | if (first == nullptr) |
134 | return J_UNKNOWN; |
135 | |
136 | if (*first == 0x0f) { |
137 | switch (*second) { |
138 | case 0x84: |
139 | return J_JE_32; |
140 | case 0x85: |
141 | return J_JNE_32; |
142 | case 0x8f: |
143 | return J_JG_32; |
144 | case 0x8d: |
145 | return J_JGE_32; |
146 | case 0x82: |
147 | return J_JB_32; |
148 | case 0x86: |
149 | return J_JBE_32; |
150 | case 0x8c: |
151 | return J_JL_32; |
152 | case 0x8e: |
153 | return J_JLE_32; |
154 | case 0x87: |
155 | return J_JA_32; |
156 | case 0x83: |
157 | return J_JAE_32; |
158 | } |
159 | } |
160 | return J_UNKNOWN; |
161 | } |
162 | |
163 | // Return the relocation index for input section IS with a specific Offset. |
164 | // Returns the maximum size of the vector if no such relocation is found. |
165 | static unsigned getRelocationWithOffset(const InputSection &is, |
166 | uint64_t offset) { |
167 | unsigned size = is.relocs().size(); |
168 | for (unsigned i = size - 1; i + 1 > 0; --i) { |
169 | if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE) |
170 | return i; |
171 | } |
172 | return size; |
173 | } |
174 | |
175 | // Returns true if R corresponds to a relocation used for a jump instruction. |
176 | // TODO: Once special relocations for relaxable jump instructions are available, |
177 | // this should be modified to use those relocations. |
178 | static bool isRelocationForJmpInsn(Relocation &R) { |
179 | return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || |
180 | R.type == R_X86_64_PC8; |
181 | } |
182 | |
183 | // Return true if Relocation R points to the first instruction in the |
184 | // next section. |
185 | // TODO: Delete this once psABI reserves a new relocation type for fall thru |
186 | // jumps. |
187 | static bool isFallThruRelocation(InputSection &is, InputFile *file, |
188 | InputSection *nextIS, Relocation &r) { |
189 | if (!isRelocationForJmpInsn(R&: r)) |
190 | return false; |
191 | |
192 | uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; |
193 | uint64_t targetOffset = is.getRelocTargetVA(is.getCtx(), r, p: addrLoc); |
194 | |
195 | // If this jmp is a fall thru, the target offset is the beginning of the |
196 | // next section. |
197 | uint64_t nextSectionOffset = |
198 | nextIS->getOutputSection()->addr + nextIS->outSecOff; |
199 | return (addrLoc + 4 + targetOffset) == nextSectionOffset; |
200 | } |
201 | |
202 | // Return the jmp instruction opcode that is the inverse of the given |
203 | // opcode. For example, JE inverted is JNE. |
204 | static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { |
205 | switch (opcode) { |
206 | case J_JE_32: |
207 | return J_JNE_32; |
208 | case J_JNE_32: |
209 | return J_JE_32; |
210 | case J_JG_32: |
211 | return J_JLE_32; |
212 | case J_JGE_32: |
213 | return J_JL_32; |
214 | case J_JB_32: |
215 | return J_JAE_32; |
216 | case J_JBE_32: |
217 | return J_JA_32; |
218 | case J_JL_32: |
219 | return J_JGE_32; |
220 | case J_JLE_32: |
221 | return J_JG_32; |
222 | case J_JA_32: |
223 | return J_JBE_32; |
224 | case J_JAE_32: |
225 | return J_JB_32; |
226 | default: |
227 | return J_UNKNOWN; |
228 | } |
229 | } |
230 | |
231 | // Deletes direct jump instruction in input sections that jumps to the |
232 | // following section as it is not required. If there are two consecutive jump |
233 | // instructions, it checks if they can be flipped and one can be deleted. |
234 | // For example: |
235 | // .section .text |
236 | // a.BB.foo: |
237 | // ... |
238 | // 10: jne aa.BB.foo |
239 | // 16: jmp bar |
240 | // aa.BB.foo: |
241 | // ... |
242 | // |
243 | // can be converted to: |
244 | // a.BB.foo: |
245 | // ... |
246 | // 10: je bar #jne flipped to je and the jmp is deleted. |
247 | // aa.BB.foo: |
248 | // ... |
249 | bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
250 | InputSection *nextIS) const { |
251 | const unsigned sizeOfDirectJmpInsn = 5; |
252 | |
253 | if (nextIS == nullptr) |
254 | return false; |
255 | |
256 | if (is.getSize() < sizeOfDirectJmpInsn) |
257 | return false; |
258 | |
259 | // If this jmp insn can be removed, it is the last insn and the |
260 | // relocation is 4 bytes before the end. |
261 | unsigned rIndex = getRelocationWithOffset(is, offset: is.getSize() - 4); |
262 | if (rIndex == is.relocs().size()) |
263 | return false; |
264 | |
265 | Relocation &r = is.relocs()[rIndex]; |
266 | |
267 | // Check if the relocation corresponds to a direct jmp. |
268 | const uint8_t *secContents = is.content().data(); |
269 | // If it is not a direct jmp instruction, there is nothing to do here. |
270 | if (*(secContents + r.offset - 1) != 0xe9) |
271 | return false; |
272 | |
273 | if (isFallThruRelocation(is, file, nextIS, r)) { |
274 | // This is a fall thru and can be deleted. |
275 | r.expr = R_NONE; |
276 | r.offset = 0; |
277 | is.drop_back(num: sizeOfDirectJmpInsn); |
278 | is.nopFiller = true; |
279 | return true; |
280 | } |
281 | |
282 | // Now, check if flip and delete is possible. |
283 | const unsigned sizeOfJmpCCInsn = 6; |
284 | // To flip, there must be at least one JmpCC and one direct jmp. |
285 | if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) |
286 | return false; |
287 | |
288 | unsigned rbIndex = |
289 | getRelocationWithOffset(is, offset: (is.getSize() - sizeOfDirectJmpInsn - 4)); |
290 | if (rbIndex == is.relocs().size()) |
291 | return false; |
292 | |
293 | Relocation &rB = is.relocs()[rbIndex]; |
294 | |
295 | const uint8_t *jmpInsnB = secContents + rB.offset - 1; |
296 | JmpInsnOpcode jmpOpcodeB = getJmpInsnType(first: jmpInsnB - 1, second: jmpInsnB); |
297 | if (jmpOpcodeB == J_UNKNOWN) |
298 | return false; |
299 | |
300 | if (!isFallThruRelocation(is, file, nextIS, r&: rB)) |
301 | return false; |
302 | |
303 | // jmpCC jumps to the fall thru block, the branch can be flipped and the |
304 | // jmp can be deleted. |
305 | JmpInsnOpcode jInvert = invertJmpOpcode(opcode: jmpOpcodeB); |
306 | if (jInvert == J_UNKNOWN) |
307 | return false; |
308 | is.jumpInstrMod = make<JumpInstrMod>(); |
309 | *is.jumpInstrMod = {.offset: rB.offset - 1, .original: jInvert, .size: 4}; |
310 | // Move R's values to rB except the offset. |
311 | rB = {.expr: r.expr, .type: r.type, .offset: rB.offset, .addend: r.addend, .sym: r.sym}; |
312 | // Cancel R |
313 | r.expr = R_NONE; |
314 | r.offset = 0; |
315 | is.drop_back(num: sizeOfDirectJmpInsn); |
316 | is.nopFiller = true; |
317 | return true; |
318 | } |
319 | |
320 | bool X86_64::relaxOnce(int pass) const { |
321 | uint64_t minVA = UINT64_MAX, maxVA = 0; |
322 | for (OutputSection *osec : ctx.outputSections) { |
323 | if (!(osec->flags & SHF_ALLOC)) |
324 | continue; |
325 | minVA = std::min(a: minVA, b: osec->addr); |
326 | maxVA = std::max(a: maxVA, b: osec->addr + osec->size); |
327 | } |
328 | // If the max VA is under 2^31, GOTPCRELX relocations cannot overfow. In |
329 | // -pie/-shared, the condition can be relaxed to test the max VA difference as |
330 | // there is no R_RELAX_GOT_PC_NOPIC. |
331 | if (isUInt<31>(x: maxVA) || (isUInt<31>(x: maxVA - minVA) && ctx.arg.isPic)) |
332 | return false; |
333 | |
334 | SmallVector<InputSection *, 0> storage; |
335 | bool changed = false; |
336 | for (OutputSection *osec : ctx.outputSections) { |
337 | if (!(osec->flags & SHF_EXECINSTR)) |
338 | continue; |
339 | for (InputSection *sec : getInputSections(os: *osec, storage)) { |
340 | for (Relocation &rel : sec->relocs()) { |
341 | if (rel.expr != R_RELAX_GOT_PC && rel.expr != R_RELAX_GOT_PC_NOPIC) |
342 | continue; |
343 | assert(rel.addend == -4); |
344 | |
345 | Relocation rel1 = rel; |
346 | rel1.addend = rel.expr == R_RELAX_GOT_PC_NOPIC ? 0 : -4; |
347 | uint64_t v = sec->getRelocTargetVA(ctx, r: rel1, |
348 | p: sec->getOutputSection()->addr + |
349 | sec->outSecOff + rel.offset); |
350 | if (isInt<32>(x: v)) |
351 | continue; |
352 | if (rel.sym->auxIdx == 0) { |
353 | rel.sym->allocateAux(ctx); |
354 | addGotEntry(ctx, sym&: *rel.sym); |
355 | changed = true; |
356 | } |
357 | rel.expr = R_GOT_PC; |
358 | } |
359 | } |
360 | } |
361 | return changed; |
362 | } |
363 | |
364 | RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, |
365 | const uint8_t *loc) const { |
366 | switch (type) { |
367 | case R_X86_64_8: |
368 | case R_X86_64_16: |
369 | case R_X86_64_32: |
370 | case R_X86_64_32S: |
371 | case R_X86_64_64: |
372 | return R_ABS; |
373 | case R_X86_64_DTPOFF32: |
374 | case R_X86_64_DTPOFF64: |
375 | return R_DTPREL; |
376 | case R_X86_64_TPOFF32: |
377 | case R_X86_64_TPOFF64: |
378 | return R_TPREL; |
379 | case R_X86_64_TLSDESC_CALL: |
380 | return R_TLSDESC_CALL; |
381 | case R_X86_64_TLSLD: |
382 | return R_TLSLD_PC; |
383 | case R_X86_64_TLSGD: |
384 | return R_TLSGD_PC; |
385 | case R_X86_64_SIZE32: |
386 | case R_X86_64_SIZE64: |
387 | return R_SIZE; |
388 | case R_X86_64_PLT32: |
389 | return R_PLT_PC; |
390 | case R_X86_64_PC8: |
391 | case R_X86_64_PC16: |
392 | case R_X86_64_PC32: |
393 | case R_X86_64_PC64: |
394 | return R_PC; |
395 | case R_X86_64_GOT32: |
396 | case R_X86_64_GOT64: |
397 | return R_GOTPLT; |
398 | case R_X86_64_GOTPC32_TLSDESC: |
399 | case R_X86_64_CODE_4_GOTPC32_TLSDESC: |
400 | return R_TLSDESC_PC; |
401 | case R_X86_64_GOTPCREL: |
402 | case R_X86_64_GOTPCRELX: |
403 | case R_X86_64_REX_GOTPCRELX: |
404 | case R_X86_64_CODE_4_GOTPCRELX: |
405 | case R_X86_64_GOTTPOFF: |
406 | case R_X86_64_CODE_4_GOTTPOFF: |
407 | case R_X86_64_CODE_6_GOTTPOFF: |
408 | return R_GOT_PC; |
409 | case R_X86_64_GOTOFF64: |
410 | return R_GOTPLTREL; |
411 | case R_X86_64_PLTOFF64: |
412 | return R_PLT_GOTPLT; |
413 | case R_X86_64_GOTPC32: |
414 | case R_X86_64_GOTPC64: |
415 | return R_GOTPLTONLY_PC; |
416 | case R_X86_64_NONE: |
417 | return R_NONE; |
418 | default: |
419 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
420 | << ") against symbol " << &s; |
421 | return R_NONE; |
422 | } |
423 | } |
424 | |
425 | void X86_64::(uint8_t *buf) const { |
426 | // The first entry holds the link-time address of _DYNAMIC. It is documented |
427 | // in the psABI and glibc before Aug 2021 used the entry to compute run-time |
428 | // load address of the shared object (note that this is relevant for linking |
429 | // ld.so, not any other program). |
430 | write64le(P: buf, V: ctx.mainPart->dynamic->getVA()); |
431 | } |
432 | |
433 | void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
434 | // See comments in X86::writeGotPlt. |
435 | write64le(P: buf, V: s.getPltVA(ctx) + 6); |
436 | } |
437 | |
438 | void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
439 | // An x86 entry is the address of the ifunc resolver function (for -z rel). |
440 | if (ctx.arg.writeAddends) |
441 | write64le(P: buf, V: s.getVA(ctx)); |
442 | } |
443 | |
444 | void X86_64::(uint8_t *buf) const { |
445 | const uint8_t pltData[] = { |
446 | 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) |
447 | 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) |
448 | 0x0f, 0x1f, 0x40, 0x00, // nop |
449 | }; |
450 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
451 | uint64_t gotPlt = ctx.in.gotPlt->getVA(); |
452 | uint64_t plt = ctx.in.ibtPlt ? ctx.in.ibtPlt->getVA() : ctx.in.plt->getVA(); |
453 | write32le(P: buf + 2, V: gotPlt - plt + 2); // GOTPLT+8 |
454 | write32le(P: buf + 8, V: gotPlt - plt + 4); // GOTPLT+16 |
455 | } |
456 | |
457 | void X86_64::writePlt(uint8_t *buf, const Symbol &sym, |
458 | uint64_t pltEntryAddr) const { |
459 | const uint8_t inst[] = { |
460 | 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
461 | 0x68, 0, 0, 0, 0, // pushq <relocation index> |
462 | 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
463 | }; |
464 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
465 | |
466 | write32le(P: buf + 2, V: sym.getGotPltVA(ctx) - pltEntryAddr - 6); |
467 | write32le(P: buf + 7, V: sym.getPltIdx(ctx)); |
468 | write32le(P: buf + 12, V: ctx.in.plt->getVA() - pltEntryAddr - 16); |
469 | } |
470 | |
471 | RelType X86_64::getDynRel(RelType type) const { |
472 | if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || |
473 | type == R_X86_64_SIZE64) |
474 | return type; |
475 | return R_X86_64_NONE; |
476 | } |
477 | |
478 | void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
479 | uint64_t val) const { |
480 | if (rel.type == R_X86_64_TLSGD) { |
481 | // Convert |
482 | // .byte 0x66 |
483 | // leaq x@tlsgd(%rip), %rdi |
484 | // .word 0x6666 |
485 | // rex64 |
486 | // call __tls_get_addr@plt |
487 | // to the following two instructions. |
488 | const uint8_t inst[] = { |
489 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
490 | 0x00, 0x00, // mov %fs:0x0,%rax |
491 | 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax |
492 | }; |
493 | memcpy(dest: loc - 4, src: inst, n: sizeof(inst)); |
494 | |
495 | // The original code used a pc relative relocation and so we have to |
496 | // compensate for the -4 in had in the addend. |
497 | write32le(P: loc + 8, V: val + 4); |
498 | } else if (rel.type == R_X86_64_GOTPC32_TLSDESC || |
499 | rel.type == R_X86_64_CODE_4_GOTPC32_TLSDESC) { |
500 | // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. |
501 | if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
502 | (loc[-1] & 0xc7) != 0x05) { |
503 | Err(ctx) << getErrorLoc(ctx, loc: (rel.type == R_X86_64_GOTPC32_TLSDESC) |
504 | ? loc - 3 |
505 | : loc - 4) |
506 | << "R_X86_64_GOTPC32_TLSDESC/R_X86_64_CODE_4_GOTPC32_TLSDESC " |
507 | "must be used in leaq x@tlsdesc(%rip), %REG" ; |
508 | return; |
509 | } |
510 | if (rel.type == R_X86_64_GOTPC32_TLSDESC) { |
511 | loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); |
512 | } else { |
513 | loc[-3] = (loc[-3] & ~0x44) | ((loc[-3] & 0x44) >> 2); |
514 | } |
515 | loc[-2] = 0xc7; |
516 | loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); |
517 | |
518 | write32le(P: loc, V: val + 4); |
519 | } else { |
520 | // Convert call *x@tlsdesc(%REG) to xchg ax, ax. |
521 | assert(rel.type == R_X86_64_TLSDESC_CALL); |
522 | loc[0] = 0x66; |
523 | loc[1] = 0x90; |
524 | } |
525 | } |
526 | |
527 | void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
528 | uint64_t val) const { |
529 | if (rel.type == R_X86_64_TLSGD) { |
530 | // Convert |
531 | // .byte 0x66 |
532 | // leaq x@tlsgd(%rip), %rdi |
533 | // .word 0x6666 |
534 | // rex64 |
535 | // call __tls_get_addr@plt |
536 | // to the following two instructions. |
537 | const uint8_t inst[] = { |
538 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
539 | 0x00, 0x00, // mov %fs:0x0,%rax |
540 | 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax |
541 | }; |
542 | memcpy(dest: loc - 4, src: inst, n: sizeof(inst)); |
543 | |
544 | // Both code sequences are PC relatives, but since we are moving the |
545 | // constant forward by 8 bytes we have to subtract the value by 8. |
546 | write32le(P: loc + 8, V: val - 8); |
547 | } else if (rel.type == R_X86_64_GOTPC32_TLSDESC || |
548 | rel.type == R_X86_64_CODE_4_GOTPC32_TLSDESC) { |
549 | // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. |
550 | if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
551 | (loc[-1] & 0xc7) != 0x05) { |
552 | Err(ctx) << getErrorLoc(ctx, loc: (rel.type == R_X86_64_GOTPC32_TLSDESC) |
553 | ? loc - 3 |
554 | : loc - 4) |
555 | << "R_X86_64_GOTPC32_TLSDESC/R_X86_64_CODE_4_GOTPC32_TLSDESC " |
556 | "must be used in leaq x@tlsdesc(%rip), %REG" ; |
557 | return; |
558 | } |
559 | loc[-2] = 0x8b; |
560 | write32le(P: loc, V: val); |
561 | } else { |
562 | // Convert call *x@tlsdesc(%rax) to xchg ax, ax. |
563 | assert(rel.type == R_X86_64_TLSDESC_CALL); |
564 | loc[0] = 0x66; |
565 | loc[1] = 0x90; |
566 | } |
567 | } |
568 | |
569 | // In some conditions, |
570 | // R_X86_64_GOTTPOFF/R_X86_64_CODE_4_GOTTPOFF/R_X86_64_CODE_6_GOTTPOFF |
571 | // relocation can be optimized to R_X86_64_TPOFF32 so that it does not use GOT. |
572 | void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
573 | uint64_t val) const { |
574 | uint8_t *inst = loc - 3; |
575 | uint8_t reg = loc[-1] >> 3; |
576 | uint8_t *regSlot = loc - 1; |
577 | |
578 | if (rel.type == R_X86_64_GOTTPOFF) { |
579 | // Note that ADD with RSP or R12 is converted to ADD instead of LEA |
580 | // because LEA with these registers needs 4 bytes to encode and thus |
581 | // wouldn't fit the space. |
582 | |
583 | if (memcmp(s1: inst, s2: "\x48\x03\x25" , n: 3) == 0) { |
584 | // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" |
585 | memcpy(dest: inst, src: "\x48\x81\xc4" , n: 3); |
586 | } else if (memcmp(s1: inst, s2: "\x4c\x03\x25" , n: 3) == 0) { |
587 | // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" |
588 | memcpy(dest: inst, src: "\x49\x81\xc4" , n: 3); |
589 | } else if (memcmp(s1: inst, s2: "\x4c\x03" , n: 2) == 0) { |
590 | // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" |
591 | memcpy(dest: inst, src: "\x4d\x8d" , n: 2); |
592 | *regSlot = 0x80 | (reg << 3) | reg; |
593 | } else if (memcmp(s1: inst, s2: "\x48\x03" , n: 2) == 0) { |
594 | // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" |
595 | memcpy(dest: inst, src: "\x48\x8d" , n: 2); |
596 | *regSlot = 0x80 | (reg << 3) | reg; |
597 | } else if (memcmp(s1: inst, s2: "\x4c\x8b" , n: 2) == 0) { |
598 | // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" |
599 | memcpy(dest: inst, src: "\x49\xc7" , n: 2); |
600 | *regSlot = 0xc0 | reg; |
601 | } else if (memcmp(s1: inst, s2: "\x48\x8b" , n: 2) == 0) { |
602 | // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" |
603 | memcpy(dest: inst, src: "\x48\xc7" , n: 2); |
604 | *regSlot = 0xc0 | reg; |
605 | } else { |
606 | Err(ctx) |
607 | << getErrorLoc(ctx, loc: loc - 3) |
608 | << "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only" ; |
609 | } |
610 | } else if (rel.type == R_X86_64_CODE_4_GOTTPOFF) { |
611 | if (loc[-4] != 0xd5) { |
612 | Err(ctx) << getErrorLoc(ctx, loc: loc - 4) |
613 | << "invalid prefix with R_X86_64_CODE_4_GOTTPOFF!" ; |
614 | return; |
615 | } |
616 | const uint8_t rex = loc[-3]; |
617 | loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2; |
618 | *regSlot = 0xc0 | reg; |
619 | |
620 | if (loc[-2] == 0x8b) { |
621 | // "movq foo@gottpoff(%rip),%r[16-31]" -> "movq $foo,%r[16-31]" |
622 | loc[-2] = 0xc7; |
623 | } else if (loc[-2] == 0x03) { |
624 | // "addq foo@gottpoff(%rip),%r[16-31]" -> "addq $foo,%r[16-31]" |
625 | loc[-2] = 0x81; |
626 | } else { |
627 | Err(ctx) << getErrorLoc(ctx, loc: loc - 4) |
628 | << "R_X86_64_CODE_4_GOTTPOFF must be used in MOVQ or ADDQ " |
629 | "instructions only" ; |
630 | } |
631 | } else if (rel.type == R_X86_64_CODE_6_GOTTPOFF) { |
632 | if (loc[-6] != 0x62) { |
633 | Err(ctx) << getErrorLoc(ctx, loc: loc - 6) |
634 | << "invalid prefix with R_X86_64_CODE_6_GOTTPOFF!" ; |
635 | return; |
636 | } |
637 | // Check bits are satisfied: |
638 | // loc[-5]: X==1 (inverted polarity), (loc[-5] & 0x7) == 0x4 |
639 | // loc[-4]: W==1, X2==1 (inverted polarity), pp==0b00(NP) |
640 | // loc[-3]: NF==1 or ND==1 |
641 | // loc[-2]: opcode==0x1 or opcode==0x3 |
642 | // loc[-1]: Mod==0b00, RM==0b101 |
643 | if (((loc[-5] & 0x47) == 0x44) && ((loc[-4] & 0x87) == 0x84) && |
644 | ((loc[-3] & 0x14) != 0) && (loc[-2] == 0x1 || loc[-2] == 0x3) && |
645 | ((loc[-1] & 0xc7) == 0x5)) { |
646 | // "addq %reg1, foo@GOTTPOFF(%rip), %reg2" -> "addq $foo, %reg1, %reg2" |
647 | // "addq foo@GOTTPOFF(%rip), %reg1, %reg2" -> "addq $foo, %reg1, %reg2" |
648 | // "{nf} addq %reg1, foo@GOTTPOFF(%rip), %reg2" |
649 | // -> "{nf} addq $foo, %reg1, %reg2" |
650 | // "{nf} addq name@GOTTPOFF(%rip), %reg1, %reg2" |
651 | // -> "{nf} addq $foo, %reg1, %reg2" |
652 | // "{nf} addq name@GOTTPOFF(%rip), %reg" -> "{nf} addq $foo, %reg" |
653 | loc[-2] = 0x81; |
654 | // Move R bits to B bits in EVEX payloads and ModRM byte. |
655 | const uint8_t evexPayload0 = loc[-5]; |
656 | if ((evexPayload0 & (1 << 7)) == 0) |
657 | loc[-5] = (evexPayload0 | (1 << 7)) & ~(1 << 5); |
658 | if ((evexPayload0 & (1 << 4)) == 0) |
659 | loc[-5] = evexPayload0 | (1 << 4) | (1 << 3); |
660 | *regSlot = 0xc0 | reg; |
661 | } else { |
662 | Err(ctx) << getErrorLoc(ctx, loc: loc - 6) |
663 | << "R_X86_64_CODE_6_GOTTPOFF must be used in ADDQ instructions " |
664 | "with NDD/NF/NDD+NF only" ; |
665 | } |
666 | } else { |
667 | llvm_unreachable("Unsupported relocation type!" ); |
668 | } |
669 | |
670 | // The original code used a PC relative relocation. |
671 | // Need to compensate for the -4 it had in the addend. |
672 | write32le(P: loc, V: val + 4); |
673 | } |
674 | |
675 | void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, |
676 | uint64_t val) const { |
677 | const uint8_t inst[] = { |
678 | 0x66, 0x66, // .word 0x6666 |
679 | 0x66, // .byte 0x66 |
680 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax |
681 | }; |
682 | |
683 | if (loc[4] == 0xe8) { |
684 | // Convert |
685 | // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> |
686 | // callq __tls_get_addr@PLT # e8 <disp32> |
687 | // leaq bar@dtpoff(%rax), %rcx |
688 | // to |
689 | // .word 0x6666 |
690 | // .byte 0x66 |
691 | // mov %fs:0,%rax |
692 | // leaq bar@tpoff(%rax), %rcx |
693 | memcpy(dest: loc - 3, src: inst, n: sizeof(inst)); |
694 | return; |
695 | } |
696 | |
697 | if (loc[4] == 0xff && loc[5] == 0x15) { |
698 | // Convert |
699 | // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> |
700 | // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> |
701 | // to |
702 | // .long 0x66666666 |
703 | // movq %fs:0,%rax |
704 | // See "Table 11.9: LD -> LE Code Transition (LP64)" in |
705 | // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf |
706 | loc[-3] = 0x66; |
707 | memcpy(dest: loc - 2, src: inst, n: sizeof(inst)); |
708 | return; |
709 | } |
710 | |
711 | ErrAlways(ctx) |
712 | << getErrorLoc(ctx, loc: loc - 3) |
713 | << "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD" ; |
714 | } |
715 | |
716 | // A JumpInstrMod at a specific offset indicates that the jump instruction |
717 | // opcode at that offset must be modified. This is specifically used to relax |
718 | // jump instructions with basic block sections. This function looks at the |
719 | // JumpMod and effects the change. |
720 | void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, |
721 | unsigned size) const { |
722 | switch (type) { |
723 | case J_JMP_32: |
724 | if (size == 4) |
725 | *loc = 0xe9; |
726 | else |
727 | *loc = 0xeb; |
728 | break; |
729 | case J_JE_32: |
730 | if (size == 4) { |
731 | loc[-1] = 0x0f; |
732 | *loc = 0x84; |
733 | } else |
734 | *loc = 0x74; |
735 | break; |
736 | case J_JNE_32: |
737 | if (size == 4) { |
738 | loc[-1] = 0x0f; |
739 | *loc = 0x85; |
740 | } else |
741 | *loc = 0x75; |
742 | break; |
743 | case J_JG_32: |
744 | if (size == 4) { |
745 | loc[-1] = 0x0f; |
746 | *loc = 0x8f; |
747 | } else |
748 | *loc = 0x7f; |
749 | break; |
750 | case J_JGE_32: |
751 | if (size == 4) { |
752 | loc[-1] = 0x0f; |
753 | *loc = 0x8d; |
754 | } else |
755 | *loc = 0x7d; |
756 | break; |
757 | case J_JB_32: |
758 | if (size == 4) { |
759 | loc[-1] = 0x0f; |
760 | *loc = 0x82; |
761 | } else |
762 | *loc = 0x72; |
763 | break; |
764 | case J_JBE_32: |
765 | if (size == 4) { |
766 | loc[-1] = 0x0f; |
767 | *loc = 0x86; |
768 | } else |
769 | *loc = 0x76; |
770 | break; |
771 | case J_JL_32: |
772 | if (size == 4) { |
773 | loc[-1] = 0x0f; |
774 | *loc = 0x8c; |
775 | } else |
776 | *loc = 0x7c; |
777 | break; |
778 | case J_JLE_32: |
779 | if (size == 4) { |
780 | loc[-1] = 0x0f; |
781 | *loc = 0x8e; |
782 | } else |
783 | *loc = 0x7e; |
784 | break; |
785 | case J_JA_32: |
786 | if (size == 4) { |
787 | loc[-1] = 0x0f; |
788 | *loc = 0x87; |
789 | } else |
790 | *loc = 0x77; |
791 | break; |
792 | case J_JAE_32: |
793 | if (size == 4) { |
794 | loc[-1] = 0x0f; |
795 | *loc = 0x83; |
796 | } else |
797 | *loc = 0x73; |
798 | break; |
799 | case J_UNKNOWN: |
800 | llvm_unreachable("Unknown Jump Relocation" ); |
801 | } |
802 | } |
803 | |
804 | int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
805 | switch (type) { |
806 | case R_X86_64_8: |
807 | case R_X86_64_PC8: |
808 | return SignExtend64<8>(x: *buf); |
809 | case R_X86_64_16: |
810 | case R_X86_64_PC16: |
811 | return SignExtend64<16>(x: read16le(P: buf)); |
812 | case R_X86_64_32: |
813 | case R_X86_64_32S: |
814 | case R_X86_64_TPOFF32: |
815 | case R_X86_64_GOT32: |
816 | case R_X86_64_GOTPC32: |
817 | case R_X86_64_GOTPC32_TLSDESC: |
818 | case R_X86_64_GOTPCREL: |
819 | case R_X86_64_GOTPCRELX: |
820 | case R_X86_64_REX_GOTPCRELX: |
821 | case R_X86_64_CODE_4_GOTPCRELX: |
822 | case R_X86_64_PC32: |
823 | case R_X86_64_GOTTPOFF: |
824 | case R_X86_64_CODE_4_GOTTPOFF: |
825 | case R_X86_64_CODE_6_GOTTPOFF: |
826 | case R_X86_64_PLT32: |
827 | case R_X86_64_TLSGD: |
828 | case R_X86_64_TLSLD: |
829 | case R_X86_64_DTPOFF32: |
830 | case R_X86_64_SIZE32: |
831 | return SignExtend64<32>(x: read32le(P: buf)); |
832 | case R_X86_64_64: |
833 | case R_X86_64_TPOFF64: |
834 | case R_X86_64_DTPOFF64: |
835 | case R_X86_64_DTPMOD64: |
836 | case R_X86_64_PC64: |
837 | case R_X86_64_SIZE64: |
838 | case R_X86_64_GLOB_DAT: |
839 | case R_X86_64_GOT64: |
840 | case R_X86_64_GOTOFF64: |
841 | case R_X86_64_GOTPC64: |
842 | case R_X86_64_PLTOFF64: |
843 | case R_X86_64_IRELATIVE: |
844 | case R_X86_64_RELATIVE: |
845 | return read64le(P: buf); |
846 | case R_X86_64_TLSDESC: |
847 | return read64le(P: buf + 8); |
848 | case R_X86_64_JUMP_SLOT: |
849 | case R_X86_64_NONE: |
850 | // These relocations are defined as not having an implicit addend. |
851 | return 0; |
852 | default: |
853 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
854 | return 0; |
855 | } |
856 | } |
857 | |
858 | static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val); |
859 | |
860 | void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
861 | switch (rel.type) { |
862 | case R_X86_64_8: |
863 | checkIntUInt(ctx, loc, v: val, n: 8, rel); |
864 | *loc = val; |
865 | break; |
866 | case R_X86_64_PC8: |
867 | checkInt(ctx, loc, v: val, n: 8, rel); |
868 | *loc = val; |
869 | break; |
870 | case R_X86_64_16: |
871 | checkIntUInt(ctx, loc, v: val, n: 16, rel); |
872 | write16le(P: loc, V: val); |
873 | break; |
874 | case R_X86_64_PC16: |
875 | checkInt(ctx, loc, v: val, n: 16, rel); |
876 | write16le(P: loc, V: val); |
877 | break; |
878 | case R_X86_64_32: |
879 | checkUInt(ctx, loc, v: val, n: 32, rel); |
880 | write32le(P: loc, V: val); |
881 | break; |
882 | case R_X86_64_32S: |
883 | case R_X86_64_GOT32: |
884 | case R_X86_64_GOTPC32: |
885 | case R_X86_64_GOTPCREL: |
886 | case R_X86_64_PC32: |
887 | case R_X86_64_PLT32: |
888 | case R_X86_64_DTPOFF32: |
889 | case R_X86_64_SIZE32: |
890 | checkInt(ctx, loc, v: val, n: 32, rel); |
891 | write32le(P: loc, V: val); |
892 | break; |
893 | case R_X86_64_64: |
894 | case R_X86_64_TPOFF64: |
895 | case R_X86_64_DTPOFF64: |
896 | case R_X86_64_PC64: |
897 | case R_X86_64_SIZE64: |
898 | case R_X86_64_GOT64: |
899 | case R_X86_64_GOTOFF64: |
900 | case R_X86_64_GOTPC64: |
901 | case R_X86_64_PLTOFF64: |
902 | write64le(P: loc, V: val); |
903 | break; |
904 | case R_X86_64_GOTPCRELX: |
905 | case R_X86_64_REX_GOTPCRELX: |
906 | case R_X86_64_CODE_4_GOTPCRELX: |
907 | if (rel.expr != R_GOT_PC) { |
908 | relaxGot(loc, rel, val); |
909 | } else { |
910 | checkInt(ctx, loc, v: val, n: 32, rel); |
911 | write32le(P: loc, V: val); |
912 | } |
913 | break; |
914 | case R_X86_64_GOTPC32_TLSDESC: |
915 | case R_X86_64_CODE_4_GOTPC32_TLSDESC: |
916 | case R_X86_64_TLSDESC_CALL: |
917 | case R_X86_64_TLSGD: |
918 | if (rel.expr == R_RELAX_TLS_GD_TO_LE) { |
919 | relaxTlsGdToLe(loc, rel, val); |
920 | } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) { |
921 | relaxTlsGdToIe(loc, rel, val); |
922 | } else { |
923 | checkInt(ctx, loc, v: val, n: 32, rel); |
924 | write32le(P: loc, V: val); |
925 | } |
926 | break; |
927 | case R_X86_64_TLSLD: |
928 | if (rel.expr == R_RELAX_TLS_LD_TO_LE) { |
929 | relaxTlsLdToLe(loc, rel, val); |
930 | } else { |
931 | checkInt(ctx, loc, v: val, n: 32, rel); |
932 | write32le(P: loc, V: val); |
933 | } |
934 | break; |
935 | case R_X86_64_GOTTPOFF: |
936 | case R_X86_64_CODE_4_GOTTPOFF: |
937 | case R_X86_64_CODE_6_GOTTPOFF: |
938 | if (rel.expr == R_RELAX_TLS_IE_TO_LE) { |
939 | relaxTlsIeToLe(loc, rel, val); |
940 | } else { |
941 | checkInt(ctx, loc, v: val, n: 32, rel); |
942 | write32le(P: loc, V: val); |
943 | } |
944 | break; |
945 | case R_X86_64_TPOFF32: |
946 | checkInt(ctx, loc, v: val, n: 32, rel); |
947 | write32le(P: loc, V: val); |
948 | break; |
949 | |
950 | case R_X86_64_TLSDESC: |
951 | // The addend is stored in the second 64-bit word. |
952 | write64le(P: loc + 8, V: val); |
953 | break; |
954 | default: |
955 | llvm_unreachable("unknown relocation" ); |
956 | } |
957 | } |
958 | |
959 | RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, |
960 | const uint8_t *loc) const { |
961 | // Only R_X86_64_[REX_]|[CODE_4_]GOTPCRELX can be relaxed. GNU as may emit |
962 | // GOTPCRELX with addend != -4. Such an instruction does not load the full GOT |
963 | // entry, so we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), |
964 | // %rax (addend=0) loads the high 32 bits of the GOT entry. |
965 | if (!ctx.arg.relax || addend != -4 || |
966 | (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX && |
967 | type != R_X86_64_CODE_4_GOTPCRELX)) |
968 | return R_GOT_PC; |
969 | const uint8_t op = loc[-2]; |
970 | const uint8_t modRm = loc[-1]; |
971 | |
972 | // FIXME: When PIC is disabled and foo is defined locally in the |
973 | // lower 32 bit address space, memory operand in mov can be converted into |
974 | // immediate operand. Otherwise, mov must be changed to lea. We support only |
975 | // latter relaxation at this moment. |
976 | if (op == 0x8b) |
977 | return R_RELAX_GOT_PC; |
978 | |
979 | // Relax call and jmp. |
980 | if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) |
981 | return R_RELAX_GOT_PC; |
982 | |
983 | // We don't support test/binop instructions without a REX/REX2 prefix. |
984 | if (type == R_X86_64_GOTPCRELX) |
985 | return R_GOT_PC; |
986 | |
987 | // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. |
988 | // If PIC then no relaxation is available. |
989 | return ctx.arg.isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; |
990 | } |
991 | |
992 | // A subset of relaxations can only be applied for no-PIC. This method |
993 | // handles such relaxations. Instructions encoding information was taken from: |
994 | // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" |
995 | // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ |
996 | // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) |
997 | static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, uint8_t modRm, |
998 | bool isRex2) { |
999 | const uint8_t rex = loc[-3]; |
1000 | // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". |
1001 | if (op == 0x85) { |
1002 | // See "TEST-Logical Compare" (4-428 Vol. 2B), |
1003 | // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). |
1004 | |
1005 | // ModR/M byte has form XX YYY ZZZ, where |
1006 | // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). |
1007 | // XX has different meanings: |
1008 | // 00: The operand's memory address is in reg1. |
1009 | // 01: The operand's memory address is reg1 + a byte-sized displacement. |
1010 | // 10: The operand's memory address is reg1 + a word-sized displacement. |
1011 | // 11: The operand is reg1 itself. |
1012 | // If an instruction requires only one operand, the unused reg2 field |
1013 | // holds extra opcode bits rather than a register code |
1014 | // 0xC0 == 11 000 000 binary. |
1015 | // 0x38 == 00 111 000 binary. |
1016 | // We transfer reg2 to reg1 here as operand. |
1017 | // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). |
1018 | loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. |
1019 | |
1020 | // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 |
1021 | // See "TEST-Logical Compare" (4-428 Vol. 2B). |
1022 | loc[-2] = 0xf7; |
1023 | |
1024 | // Move R bit to the B bit in REX/REX2 byte. |
1025 | // REX byte is encoded as 0100WRXB, where |
1026 | // 0100 is 4bit fixed pattern. |
1027 | // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the |
1028 | // default operand size is used (which is 32-bit for most but not all |
1029 | // instructions). |
1030 | // REX.R This 1-bit value is an extension to the MODRM.reg field. |
1031 | // REX.X This 1-bit value is an extension to the SIB.index field. |
1032 | // REX.B This 1-bit value is an extension to the MODRM.rm field or the |
1033 | // SIB.base field. |
1034 | // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). |
1035 | // |
1036 | // REX2 prefix is encoded as 0xd5|M|R2|X2|B2|WRXB, where |
1037 | // 0xd5 is 1byte fixed pattern. |
1038 | // REX2's [W,R,X,B] have the same meanings as REX's. |
1039 | // REX2.M encodes the map id. |
1040 | // R2/X2/B2 provides the fifth and most siginicant bits of the R/X/B |
1041 | // register identifiers, each of which can now address all 32 GPRs. |
1042 | if (isRex2) |
1043 | loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2; |
1044 | else |
1045 | loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
1046 | write32le(P: loc, V: val); |
1047 | return; |
1048 | } |
1049 | |
1050 | // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub |
1051 | // or xor operations. |
1052 | |
1053 | // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". |
1054 | // Logic is close to one for test instruction above, but we also |
1055 | // write opcode extension here, see below for details. |
1056 | loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. |
1057 | |
1058 | // Primary opcode is 0x81, opcode extension is one of: |
1059 | // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, |
1060 | // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. |
1061 | // This value was wrote to MODRM.reg in a line above. |
1062 | // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), |
1063 | // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for |
1064 | // descriptions about each operation. |
1065 | loc[-2] = 0x81; |
1066 | if (isRex2) |
1067 | loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2; |
1068 | else |
1069 | loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
1070 | write32le(P: loc, V: val); |
1071 | } |
1072 | |
1073 | static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) { |
1074 | assert(isInt<32>(val) && |
1075 | "GOTPCRELX should not have been relaxed if it overflows" ); |
1076 | const uint8_t op = loc[-2]; |
1077 | const uint8_t modRm = loc[-1]; |
1078 | |
1079 | // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". |
1080 | if (op == 0x8b) { |
1081 | loc[-2] = 0x8d; |
1082 | write32le(P: loc, V: val); |
1083 | return; |
1084 | } |
1085 | |
1086 | if (op != 0xff) { |
1087 | // We are relaxing a rip relative to an absolute, so compensate |
1088 | // for the old -4 addend. |
1089 | assert(!rel.sym->file->ctx.arg.isPic); |
1090 | relaxGotNoPic(loc, val: val + 4, op, modRm, |
1091 | isRex2: rel.type == R_X86_64_CODE_4_GOTPCRELX); |
1092 | return; |
1093 | } |
1094 | |
1095 | // Convert call/jmp instructions. |
1096 | if (modRm == 0x15) { |
1097 | // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". |
1098 | // Instead we convert to "addr32 call foo" where addr32 is an instruction |
1099 | // prefix. That makes result expression to be a single instruction. |
1100 | loc[-2] = 0x67; // addr32 prefix |
1101 | loc[-1] = 0xe8; // call |
1102 | write32le(P: loc, V: val); |
1103 | return; |
1104 | } |
1105 | |
1106 | // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". |
1107 | // jmp doesn't return, so it is fine to use nop here, it is just a stub. |
1108 | assert(modRm == 0x25); |
1109 | loc[-2] = 0xe9; // jmp |
1110 | loc[3] = 0x90; // nop |
1111 | write32le(P: loc - 1, V: val + 1); |
1112 | } |
1113 | |
1114 | // A split-stack prologue starts by checking the amount of stack remaining |
1115 | // in one of two ways: |
1116 | // A) Comparing of the stack pointer to a field in the tcb. |
1117 | // B) Or a load of a stack pointer offset with an lea to r10 or r11. |
1118 | bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
1119 | uint8_t stOther) const { |
1120 | if (!ctx.arg.is64) { |
1121 | ErrAlways(ctx) << "target doesn't support split stacks" ; |
1122 | return false; |
1123 | } |
1124 | |
1125 | if (loc + 8 >= end) |
1126 | return false; |
1127 | |
1128 | // Replace "cmp %fs:0x70,%rsp" and subsequent branch |
1129 | // with "stc, nopl 0x0(%rax,%rax,1)" |
1130 | if (memcmp(s1: loc, s2: "\x64\x48\x3b\x24\x25" , n: 5) == 0) { |
1131 | memcpy(dest: loc, src: "\xf9\x0f\x1f\x84\x00\x00\x00\x00" , n: 8); |
1132 | return true; |
1133 | } |
1134 | |
1135 | // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could |
1136 | // be r10 or r11. The lea instruction feeds a subsequent compare which checks |
1137 | // if there is X available stack space. Making X larger effectively reserves |
1138 | // that much additional space. The stack grows downward so subtract the value. |
1139 | if (memcmp(s1: loc, s2: "\x4c\x8d\x94\x24" , n: 4) == 0 || |
1140 | memcmp(s1: loc, s2: "\x4c\x8d\x9c\x24" , n: 4) == 0) { |
1141 | // The offset bytes are encoded four bytes after the start of the |
1142 | // instruction. |
1143 | write32le(P: loc + 4, V: read32le(P: loc + 4) - 0x4000); |
1144 | return true; |
1145 | } |
1146 | return false; |
1147 | } |
1148 | |
1149 | void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
1150 | uint64_t secAddr = sec.getOutputSection()->addr; |
1151 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
1152 | secAddr += s->outSecOff; |
1153 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
1154 | secAddr += ehIn->getParent()->outSecOff; |
1155 | for (const Relocation &rel : sec.relocs()) { |
1156 | if (rel.expr == R_NONE) // See deleteFallThruJmpInsn |
1157 | continue; |
1158 | uint8_t *loc = buf + rel.offset; |
1159 | const uint64_t val = sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset); |
1160 | relocate(loc, rel, val); |
1161 | } |
1162 | if (sec.jumpInstrMod) { |
1163 | applyJumpInstrMod(loc: buf + sec.jumpInstrMod->offset, |
1164 | type: sec.jumpInstrMod->original, size: sec.jumpInstrMod->size); |
1165 | } |
1166 | } |
1167 | |
1168 | static std::optional<uint64_t> getControlTransferAddend(InputSection &is, |
1169 | Relocation &r) { |
1170 | // Identify a control transfer relocation for the branch-to-branch |
1171 | // optimization. A "control transfer relocation" usually means a CALL or JMP |
1172 | // target but it also includes relative vtable relocations for example. |
1173 | // |
1174 | // We require the relocation type to be PLT32. With a relocation type of PLT32 |
1175 | // the value may be assumed to be used for branching directly to the symbol |
1176 | // and the addend is only used to produce the relocated value (hence the |
1177 | // effective addend is always 0). This is because if a PLT is needed the |
1178 | // addend will be added to the address of the PLT, and it doesn't make sense |
1179 | // to branch into the middle of a PLT. For example, relative vtable |
1180 | // relocations use PLT32 and 0 or a positive value as the addend but still are |
1181 | // used to branch to the symbol. |
1182 | // |
1183 | // STT_SECTION symbols are a special case on x86 because the LLVM assembler |
1184 | // uses them for branches to local symbols which are assembled as referring to |
1185 | // the section symbol with the addend equal to the symbol value - 4. |
1186 | if (r.type == R_X86_64_PLT32) { |
1187 | if (r.sym->isSection()) |
1188 | return r.addend + 4; |
1189 | return 0; |
1190 | } |
1191 | return std::nullopt; |
1192 | } |
1193 | |
1194 | static std::pair<Relocation *, uint64_t> |
1195 | getBranchInfoAtTarget(InputSection &is, uint64_t offset) { |
1196 | auto content = is.contentMaybeDecompress(); |
1197 | if (content.size() > offset && content[offset] == 0xe9) { // JMP immediate |
1198 | auto *i = llvm::partition_point( |
1199 | Range&: is.relocations, P: [&](Relocation &r) { return r.offset < offset + 1; }); |
1200 | // Unlike with getControlTransferAddend() it is valid to accept a PC32 |
1201 | // relocation here because we know that this is actually a JMP and not some |
1202 | // other reference, so the interpretation is that we add 4 to the addend and |
1203 | // use that as the effective addend. |
1204 | if (i != is.relocations.end() && i->offset == offset + 1 && |
1205 | (i->type == R_X86_64_PC32 || i->type == R_X86_64_PLT32)) { |
1206 | return {i, i->addend + 4}; |
1207 | } |
1208 | } |
1209 | return {nullptr, 0}; |
1210 | } |
1211 | |
1212 | static void redirectControlTransferRelocations(Relocation &r1, |
1213 | const Relocation &r2) { |
1214 | // The isSection() check handles the STT_SECTION case described above. |
1215 | // In that case the original addend is irrelevant because it referred to an |
1216 | // offset within the original target section so we overwrite it. |
1217 | // |
1218 | // The +4 is here to compensate for r2.addend which will likely be -4, |
1219 | // but may also be addend-4 in case of a PC32 branch to symbol+addend. |
1220 | if (r1.sym->isSection()) |
1221 | r1.addend = r2.addend; |
1222 | else |
1223 | r1.addend += r2.addend + 4; |
1224 | r1.expr = r2.expr; |
1225 | r1.sym = r2.sym; |
1226 | } |
1227 | |
1228 | void X86_64::applyBranchToBranchOpt() const { |
1229 | applyBranchToBranchOptImpl(ctx, getControlTransferAddend, |
1230 | getBranchInfoAtTarget, |
1231 | redirectControlTransferRelocations); |
1232 | } |
1233 | |
1234 | // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT |
1235 | // entries containing endbr64 instructions. A PLT entry will be split into two |
1236 | // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). |
1237 | namespace { |
1238 | class IntelIBT : public X86_64 { |
1239 | public: |
1240 | IntelIBT(Ctx &ctx) : X86_64(ctx) { pltHeaderSize = 0; }; |
1241 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
1242 | void writePlt(uint8_t *buf, const Symbol &sym, |
1243 | uint64_t pltEntryAddr) const override; |
1244 | void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; |
1245 | |
1246 | static const unsigned = 16; |
1247 | }; |
1248 | } // namespace |
1249 | |
1250 | void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
1251 | uint64_t va = ctx.in.ibtPlt->getVA() + IBTPltHeaderSize + |
1252 | s.getPltIdx(ctx) * pltEntrySize; |
1253 | write64le(P: buf, V: va); |
1254 | } |
1255 | |
1256 | void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, |
1257 | uint64_t pltEntryAddr) const { |
1258 | const uint8_t Inst[] = { |
1259 | 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
1260 | 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
1261 | 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop |
1262 | }; |
1263 | memcpy(dest: buf, src: Inst, n: sizeof(Inst)); |
1264 | write32le(P: buf + 6, V: sym.getGotPltVA(ctx) - pltEntryAddr - 10); |
1265 | } |
1266 | |
1267 | void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { |
1268 | writePltHeader(buf); |
1269 | buf += IBTPltHeaderSize; |
1270 | |
1271 | const uint8_t inst[] = { |
1272 | 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
1273 | 0x68, 0, 0, 0, 0, // pushq <relocation index> |
1274 | 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
1275 | 0x66, 0x90, // nop |
1276 | }; |
1277 | |
1278 | for (size_t i = 0; i < numEntries; ++i) { |
1279 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
1280 | write32le(P: buf + 5, V: i); |
1281 | write32le(P: buf + 10, V: -pltHeaderSize - sizeof(inst) * i - 30); |
1282 | buf += sizeof(inst); |
1283 | } |
1284 | } |
1285 | |
1286 | // These nonstandard PLT entries are to migtigate Spectre v2 security |
1287 | // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect |
1288 | // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT |
1289 | // entries, we use a CALL followed by MOV and RET to do the same thing as an |
1290 | // indirect jump. That instruction sequence is so-called "retpoline". |
1291 | // |
1292 | // We have two types of retpoline PLTs as a size optimization. If `-z now` |
1293 | // is specified, all dynamic symbols are resolved at load-time. Thus, when |
1294 | // that option is given, we can omit code for symbol lazy resolution. |
1295 | namespace { |
1296 | class Retpoline : public X86_64 { |
1297 | public: |
1298 | Retpoline(Ctx &); |
1299 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
1300 | void writePltHeader(uint8_t *buf) const override; |
1301 | void writePlt(uint8_t *buf, const Symbol &sym, |
1302 | uint64_t pltEntryAddr) const override; |
1303 | }; |
1304 | |
1305 | class RetpolineZNow : public X86_64 { |
1306 | public: |
1307 | RetpolineZNow(Ctx &); |
1308 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} |
1309 | void writePltHeader(uint8_t *buf) const override; |
1310 | void writePlt(uint8_t *buf, const Symbol &sym, |
1311 | uint64_t pltEntryAddr) const override; |
1312 | }; |
1313 | } // namespace |
1314 | |
1315 | Retpoline::Retpoline(Ctx &ctx) : X86_64(ctx) { |
1316 | pltHeaderSize = 48; |
1317 | pltEntrySize = 32; |
1318 | ipltEntrySize = 32; |
1319 | } |
1320 | |
1321 | void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
1322 | write64le(P: buf, V: s.getPltVA(ctx) + 17); |
1323 | } |
1324 | |
1325 | void Retpoline::(uint8_t *buf) const { |
1326 | const uint8_t insn[] = { |
1327 | 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) |
1328 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 |
1329 | 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next |
1330 | 0xf3, 0x90, // 12: loop: pause |
1331 | 0x0f, 0xae, 0xe8, // 14: lfence |
1332 | 0xeb, 0xf9, // 17: jmp loop |
1333 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 |
1334 | 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) |
1335 | 0xc3, // 24: ret |
1336 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding |
1337 | 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding |
1338 | }; |
1339 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1340 | |
1341 | uint64_t gotPlt = ctx.in.gotPlt->getVA(); |
1342 | uint64_t plt = ctx.in.plt->getVA(); |
1343 | write32le(P: buf + 2, V: gotPlt - plt - 6 + 8); |
1344 | write32le(P: buf + 9, V: gotPlt - plt - 13 + 16); |
1345 | } |
1346 | |
1347 | void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, |
1348 | uint64_t pltEntryAddr) const { |
1349 | const uint8_t insn[] = { |
1350 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 |
1351 | 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 |
1352 | 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 |
1353 | 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> |
1354 | 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 |
1355 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding |
1356 | }; |
1357 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1358 | |
1359 | uint64_t off = pltEntryAddr - ctx.in.plt->getVA(); |
1360 | |
1361 | write32le(P: buf + 3, V: sym.getGotPltVA(ctx) - pltEntryAddr - 7); |
1362 | write32le(P: buf + 8, V: -off - 12 + 32); |
1363 | write32le(P: buf + 13, V: -off - 17 + 18); |
1364 | write32le(P: buf + 18, V: sym.getPltIdx(ctx)); |
1365 | write32le(P: buf + 23, V: -off - 27); |
1366 | } |
1367 | |
1368 | RetpolineZNow::RetpolineZNow(Ctx &ctx) : X86_64(ctx) { |
1369 | pltHeaderSize = 32; |
1370 | pltEntrySize = 16; |
1371 | ipltEntrySize = 16; |
1372 | } |
1373 | |
1374 | void RetpolineZNow::(uint8_t *buf) const { |
1375 | const uint8_t insn[] = { |
1376 | 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next |
1377 | 0xf3, 0x90, // 5: loop: pause |
1378 | 0x0f, 0xae, 0xe8, // 7: lfence |
1379 | 0xeb, 0xf9, // a: jmp loop |
1380 | 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 |
1381 | 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) |
1382 | 0xc3, // 14: ret |
1383 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding |
1384 | 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding |
1385 | 0xcc, // 1f: int3; padding |
1386 | }; |
1387 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1388 | } |
1389 | |
1390 | void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, |
1391 | uint64_t pltEntryAddr) const { |
1392 | const uint8_t insn[] = { |
1393 | 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 |
1394 | 0xe9, 0, 0, 0, 0, // jmp plt+0 |
1395 | 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding |
1396 | }; |
1397 | memcpy(dest: buf, src: insn, n: sizeof(insn)); |
1398 | |
1399 | write32le(P: buf + 3, V: sym.getGotPltVA(ctx) - pltEntryAddr - 7); |
1400 | write32le(P: buf + 8, V: ctx.in.plt->getVA() - pltEntryAddr - 12); |
1401 | } |
1402 | |
1403 | void elf::setX86_64TargetInfo(Ctx &ctx) { |
1404 | if (ctx.arg.zRetpolineplt) { |
1405 | if (ctx.arg.zNow) |
1406 | ctx.target.reset(p: new RetpolineZNow(ctx)); |
1407 | else |
1408 | ctx.target.reset(p: new Retpoline(ctx)); |
1409 | return; |
1410 | } |
1411 | |
1412 | if (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) |
1413 | ctx.target.reset(p: new IntelIBT(ctx)); |
1414 | else |
1415 | ctx.target.reset(p: new X86_64(ctx)); |
1416 | } |
1417 | |