| 1 | //===- SyntheticSections.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "SyntheticSections.h" |
| 10 | #include "ConcatOutputSection.h" |
| 11 | #include "Config.h" |
| 12 | #include "ExportTrie.h" |
| 13 | #include "ICF.h" |
| 14 | #include "InputFiles.h" |
| 15 | #include "ObjC.h" |
| 16 | #include "OutputSegment.h" |
| 17 | #include "SectionPriorities.h" |
| 18 | #include "SymbolTable.h" |
| 19 | #include "Symbols.h" |
| 20 | |
| 21 | #include "lld/Common/CommonLinkerContext.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/Config/llvm-config.h" |
| 24 | #include "llvm/Support/FileSystem.h" |
| 25 | #include "llvm/Support/LEB128.h" |
| 26 | #include "llvm/Support/Parallel.h" |
| 27 | #include "llvm/Support/xxhash.h" |
| 28 | |
| 29 | #if defined(__APPLE__) |
| 30 | #include <sys/mman.h> |
| 31 | |
| 32 | #define COMMON_DIGEST_FOR_OPENSSL |
| 33 | #include <CommonCrypto/CommonDigest.h> |
| 34 | #else |
| 35 | #include "llvm/Support/SHA256.h" |
| 36 | #endif |
| 37 | |
| 38 | using namespace llvm; |
| 39 | using namespace llvm::MachO; |
| 40 | using namespace llvm::support; |
| 41 | using namespace llvm::support::endian; |
| 42 | using namespace lld; |
| 43 | using namespace lld::macho; |
| 44 | |
| 45 | // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. |
| 46 | static void sha256(const uint8_t *data, size_t len, uint8_t *output) { |
| 47 | #if defined(__APPLE__) |
| 48 | // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 |
| 49 | // for some notes on this. |
| 50 | CC_SHA256(data, len, output); |
| 51 | #else |
| 52 | ArrayRef<uint8_t> block(data, len); |
| 53 | std::array<uint8_t, 32> hash = SHA256::hash(Data: block); |
| 54 | static_assert(hash.size() == CodeSignatureSection::hashSize); |
| 55 | memcpy(dest: output, src: hash.data(), n: hash.size()); |
| 56 | #endif |
| 57 | } |
| 58 | |
| 59 | InStruct macho::in; |
| 60 | std::vector<SyntheticSection *> macho::syntheticSections; |
| 61 | |
| 62 | SyntheticSection::SyntheticSection(const char *segname, const char *name) |
| 63 | : OutputSection(SyntheticKind, name) { |
| 64 | std::tie(args&: this->segname, args&: this->name) = maybeRenameSection(key: {segname, name}); |
| 65 | isec = makeSyntheticInputSection(segName: segname, sectName: name); |
| 66 | isec->parent = this; |
| 67 | syntheticSections.push_back(x: this); |
| 68 | } |
| 69 | |
| 70 | // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts |
| 71 | // from the beginning of the file (i.e. the header). |
| 72 | MachHeaderSection::() |
| 73 | : SyntheticSection(segment_names::text, section_names::header) { |
| 74 | // XXX: This is a hack. (See D97007) |
| 75 | // Setting the index to 1 to pretend that this section is the text |
| 76 | // section. |
| 77 | index = 1; |
| 78 | isec->isFinal = true; |
| 79 | } |
| 80 | |
| 81 | void MachHeaderSection::addLoadCommand(LoadCommand *lc) { |
| 82 | loadCommands.push_back(x: lc); |
| 83 | sizeOfCmds += lc->getSize(); |
| 84 | } |
| 85 | |
| 86 | uint64_t MachHeaderSection::() const { |
| 87 | uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; |
| 88 | // If we are emitting an encryptable binary, our load commands must have a |
| 89 | // separate (non-encrypted) page to themselves. |
| 90 | if (config->emitEncryptionInfo) |
| 91 | size = alignToPowerOf2(Value: size, Align: target->getPageSize()); |
| 92 | return size; |
| 93 | } |
| 94 | |
| 95 | static uint32_t cpuSubtype() { |
| 96 | uint32_t subtype = target->cpuSubtype; |
| 97 | |
| 98 | if (config->outputType == MH_EXECUTE && !config->staticLink && |
| 99 | target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && |
| 100 | config->platform() == PLATFORM_MACOS && |
| 101 | config->platformInfo.target.MinDeployment >= VersionTuple(10, 5)) |
| 102 | subtype |= CPU_SUBTYPE_LIB64; |
| 103 | |
| 104 | return subtype; |
| 105 | } |
| 106 | |
| 107 | static bool hasWeakBinding() { |
| 108 | return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() |
| 109 | : in.weakBinding->hasEntry(); |
| 110 | } |
| 111 | |
| 112 | static bool hasNonWeakDefinition() { |
| 113 | return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() |
| 114 | : in.weakBinding->hasNonWeakDefinition(); |
| 115 | } |
| 116 | |
| 117 | void MachHeaderSection::(uint8_t *buf) const { |
| 118 | auto *hdr = reinterpret_cast<mach_header *>(buf); |
| 119 | hdr->magic = target->magic; |
| 120 | hdr->cputype = target->cpuType; |
| 121 | hdr->cpusubtype = cpuSubtype(); |
| 122 | hdr->filetype = config->outputType; |
| 123 | hdr->ncmds = loadCommands.size(); |
| 124 | hdr->sizeofcmds = sizeOfCmds; |
| 125 | hdr->flags = MH_DYLDLINK; |
| 126 | |
| 127 | if (config->namespaceKind == NamespaceKind::twolevel) |
| 128 | hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; |
| 129 | |
| 130 | if (config->outputType == MH_DYLIB && !config->hasReexports) |
| 131 | hdr->flags |= MH_NO_REEXPORTED_DYLIBS; |
| 132 | |
| 133 | if (config->markDeadStrippableDylib) |
| 134 | hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; |
| 135 | |
| 136 | if (config->outputType == MH_EXECUTE && config->isPic) |
| 137 | hdr->flags |= MH_PIE; |
| 138 | |
| 139 | if (config->outputType == MH_DYLIB && config->applicationExtension) |
| 140 | hdr->flags |= MH_APP_EXTENSION_SAFE; |
| 141 | |
| 142 | if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) |
| 143 | hdr->flags |= MH_WEAK_DEFINES; |
| 144 | |
| 145 | if (in.exports->hasWeakSymbol || hasWeakBinding()) |
| 146 | hdr->flags |= MH_BINDS_TO_WEAK; |
| 147 | |
| 148 | for (const OutputSegment *seg : outputSegments) { |
| 149 | for (const OutputSection *osec : seg->getSections()) { |
| 150 | if (isThreadLocalVariables(flags: osec->flags)) { |
| 151 | hdr->flags |= MH_HAS_TLV_DESCRIPTORS; |
| 152 | break; |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; |
| 158 | for (const LoadCommand *lc : loadCommands) { |
| 159 | lc->writeTo(buf: p); |
| 160 | p += lc->getSize(); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | PageZeroSection::PageZeroSection() |
| 165 | : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} |
| 166 | |
| 167 | RebaseSection::RebaseSection() |
| 168 | : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} |
| 169 | |
| 170 | namespace { |
| 171 | struct RebaseState { |
| 172 | uint64_t sequenceLength; |
| 173 | uint64_t skipLength; |
| 174 | }; |
| 175 | } // namespace |
| 176 | |
| 177 | static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { |
| 178 | assert(incr != 0); |
| 179 | |
| 180 | if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && |
| 181 | (incr % target->wordSize) == 0) { |
| 182 | os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | |
| 183 | (incr >> target->p2WordSize)); |
| 184 | } else { |
| 185 | os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); |
| 186 | encodeULEB128(Value: incr, OS&: os); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { |
| 191 | assert(state.sequenceLength > 0); |
| 192 | |
| 193 | if (state.skipLength == target->wordSize) { |
| 194 | if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { |
| 195 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | |
| 196 | state.sequenceLength); |
| 197 | } else { |
| 198 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); |
| 199 | encodeULEB128(Value: state.sequenceLength, OS&: os); |
| 200 | } |
| 201 | } else if (state.sequenceLength == 1) { |
| 202 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); |
| 203 | encodeULEB128(Value: state.skipLength - target->wordSize, OS&: os); |
| 204 | } else { |
| 205 | os << static_cast<uint8_t>( |
| 206 | REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); |
| 207 | encodeULEB128(Value: state.sequenceLength, OS&: os); |
| 208 | encodeULEB128(Value: state.skipLength - target->wordSize, OS&: os); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | // Rebases are communicated to dyld using a bytecode, whose opcodes cause the |
| 213 | // memory location at a specific address to be rebased and/or the address to be |
| 214 | // incremented. |
| 215 | // |
| 216 | // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic |
| 217 | // one, encoding a series of evenly spaced addresses. This algorithm works by |
| 218 | // splitting up the sorted list of addresses into such chunks. If the locations |
| 219 | // are consecutive or the sequence consists of a single location, flushRebase |
| 220 | // will use a smaller, more specialized encoding. |
| 221 | static void encodeRebases(const OutputSegment *seg, |
| 222 | MutableArrayRef<Location> locations, |
| 223 | raw_svector_ostream &os) { |
| 224 | // dyld operates on segments. Translate section offsets into segment offsets. |
| 225 | for (Location &loc : locations) |
| 226 | loc.offset = |
| 227 | loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(off: loc.offset); |
| 228 | // The algorithm assumes that locations are unique. |
| 229 | Location *end = |
| 230 | llvm::unique(R&: locations, P: [](const Location &a, const Location &b) { |
| 231 | return a.offset == b.offset; |
| 232 | }); |
| 233 | size_t count = end - locations.begin(); |
| 234 | |
| 235 | os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
| 236 | seg->index); |
| 237 | assert(!locations.empty()); |
| 238 | uint64_t offset = locations[0].offset; |
| 239 | encodeULEB128(Value: offset, OS&: os); |
| 240 | |
| 241 | RebaseState state{.sequenceLength: 1, .skipLength: target->wordSize}; |
| 242 | |
| 243 | for (size_t i = 1; i < count; ++i) { |
| 244 | offset = locations[i].offset; |
| 245 | |
| 246 | uint64_t skip = offset - locations[i - 1].offset; |
| 247 | assert(skip != 0 && "duplicate locations should have been weeded out" ); |
| 248 | |
| 249 | if (skip == state.skipLength) { |
| 250 | ++state.sequenceLength; |
| 251 | } else if (state.sequenceLength == 1) { |
| 252 | ++state.sequenceLength; |
| 253 | state.skipLength = skip; |
| 254 | } else if (skip < state.skipLength) { |
| 255 | // The address is lower than what the rebase pointer would be if the last |
| 256 | // location would be part of a sequence. We start a new sequence from the |
| 257 | // previous location. |
| 258 | --state.sequenceLength; |
| 259 | flushRebase(state, os); |
| 260 | |
| 261 | state.sequenceLength = 2; |
| 262 | state.skipLength = skip; |
| 263 | } else { |
| 264 | // The address is at some positive offset from the rebase pointer. We |
| 265 | // start a new sequence which begins with the current location. |
| 266 | flushRebase(state, os); |
| 267 | emitIncrement(incr: skip - state.skipLength, os); |
| 268 | state.sequenceLength = 1; |
| 269 | state.skipLength = target->wordSize; |
| 270 | } |
| 271 | } |
| 272 | flushRebase(state, os); |
| 273 | } |
| 274 | |
| 275 | void RebaseSection::finalizeContents() { |
| 276 | if (locations.empty()) |
| 277 | return; |
| 278 | |
| 279 | raw_svector_ostream os{contents}; |
| 280 | os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); |
| 281 | |
| 282 | llvm::sort(C&: locations, Comp: [](const Location &a, const Location &b) { |
| 283 | return a.isec->getVA(off: a.offset) < b.isec->getVA(off: b.offset); |
| 284 | }); |
| 285 | |
| 286 | for (size_t i = 0, count = locations.size(); i < count;) { |
| 287 | const OutputSegment *seg = locations[i].isec->parent->parent; |
| 288 | size_t j = i + 1; |
| 289 | while (j < count && locations[j].isec->parent->parent == seg) |
| 290 | ++j; |
| 291 | encodeRebases(seg, locations: {locations.data() + i, locations.data() + j}, os); |
| 292 | i = j; |
| 293 | } |
| 294 | os << static_cast<uint8_t>(REBASE_OPCODE_DONE); |
| 295 | } |
| 296 | |
| 297 | void RebaseSection::writeTo(uint8_t *buf) const { |
| 298 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
| 299 | } |
| 300 | |
| 301 | NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, |
| 302 | const char *name) |
| 303 | : SyntheticSection(segname, name) { |
| 304 | align = target->wordSize; |
| 305 | } |
| 306 | |
| 307 | void macho::addNonLazyBindingEntries(const Symbol *sym, |
| 308 | const InputSection *isec, uint64_t offset, |
| 309 | int64_t addend) { |
| 310 | if (config->emitChainedFixups) { |
| 311 | if (needsBinding(sym)) |
| 312 | in.chainedFixups->addBinding(dysym: sym, isec, offset, addend); |
| 313 | else if (isa<Defined>(Val: sym)) |
| 314 | in.chainedFixups->addRebase(isec, offset); |
| 315 | else |
| 316 | llvm_unreachable("cannot bind to an undefined symbol" ); |
| 317 | return; |
| 318 | } |
| 319 | |
| 320 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
| 321 | in.binding->addEntry(dysym, isec, offset, addend); |
| 322 | if (dysym->isWeakDef()) |
| 323 | in.weakBinding->addEntry(symbol: sym, isec, offset, addend); |
| 324 | } else if (const auto *defined = dyn_cast<Defined>(Val: sym)) { |
| 325 | in.rebase->addEntry(isec, offset); |
| 326 | if (defined->isExternalWeakDef()) |
| 327 | in.weakBinding->addEntry(symbol: sym, isec, offset, addend); |
| 328 | else if (defined->interposable) |
| 329 | in.binding->addEntry(dysym: sym, isec, offset, addend); |
| 330 | } else { |
| 331 | // Undefined symbols are filtered out in scanRelocations(); we should never |
| 332 | // get here |
| 333 | llvm_unreachable("cannot bind to an undefined symbol" ); |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | void NonLazyPointerSectionBase::addEntry(Symbol *sym) { |
| 338 | if (entries.insert(X: sym)) { |
| 339 | assert(!sym->isInGot()); |
| 340 | sym->gotIndex = entries.size() - 1; |
| 341 | |
| 342 | addNonLazyBindingEntries(sym, isec, offset: sym->gotIndex * target->wordSize); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { |
| 347 | assert(config->emitChainedFixups); |
| 348 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported" ); |
| 349 | auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf); |
| 350 | rebase->target = targetVA & 0xf'ffff'ffff; |
| 351 | rebase->high8 = (targetVA >> 56); |
| 352 | rebase->reserved = 0; |
| 353 | rebase->next = 0; |
| 354 | rebase->bind = 0; |
| 355 | |
| 356 | // The fixup format places a 64 GiB limit on the output's size. |
| 357 | // Should we handle this gracefully? |
| 358 | uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); |
| 359 | if (encodedVA != targetVA) |
| 360 | error(msg: "rebase target address 0x" + Twine::utohexstr(Val: targetVA) + |
| 361 | " does not fit into chained fixup. Re-link with -no_fixup_chains" ); |
| 362 | } |
| 363 | |
| 364 | static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { |
| 365 | assert(config->emitChainedFixups); |
| 366 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported" ); |
| 367 | auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf); |
| 368 | auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); |
| 369 | bind->ordinal = ordinal; |
| 370 | bind->addend = inlineAddend; |
| 371 | bind->reserved = 0; |
| 372 | bind->next = 0; |
| 373 | bind->bind = 1; |
| 374 | } |
| 375 | |
| 376 | void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { |
| 377 | if (needsBinding(sym)) |
| 378 | writeChainedBind(buf, sym, addend); |
| 379 | else |
| 380 | writeChainedRebase(buf, targetVA: sym->getVA() + addend); |
| 381 | } |
| 382 | |
| 383 | void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { |
| 384 | if (config->emitChainedFixups) { |
| 385 | for (const auto &[i, entry] : llvm::enumerate(First: entries)) |
| 386 | writeChainedFixup(buf: &buf[i * target->wordSize], sym: entry, addend: 0); |
| 387 | } else { |
| 388 | for (const auto &[i, entry] : llvm::enumerate(First: entries)) |
| 389 | if (auto *defined = dyn_cast<Defined>(Val: entry)) |
| 390 | write64le(P: &buf[i * target->wordSize], V: defined->getVA()); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | GotSection::GotSection() |
| 395 | : NonLazyPointerSectionBase(segment_names::data, section_names::got) { |
| 396 | flags = S_NON_LAZY_SYMBOL_POINTERS; |
| 397 | } |
| 398 | |
| 399 | TlvPointerSection::TlvPointerSection() |
| 400 | : NonLazyPointerSectionBase(segment_names::data, |
| 401 | section_names::threadPtrs) { |
| 402 | flags = S_THREAD_LOCAL_VARIABLE_POINTERS; |
| 403 | } |
| 404 | |
| 405 | BindingSection::BindingSection() |
| 406 | : LinkEditSection(segment_names::linkEdit, section_names::binding) {} |
| 407 | |
| 408 | namespace { |
| 409 | struct Binding { |
| 410 | OutputSegment *segment = nullptr; |
| 411 | uint64_t offset = 0; |
| 412 | int64_t addend = 0; |
| 413 | }; |
| 414 | struct BindIR { |
| 415 | // Default value of 0xF0 is not valid opcode and should make the program |
| 416 | // scream instead of accidentally writing "valid" values. |
| 417 | uint8_t opcode = 0xF0; |
| 418 | uint64_t data = 0; |
| 419 | uint64_t consecutiveCount = 0; |
| 420 | }; |
| 421 | } // namespace |
| 422 | |
| 423 | // Encode a sequence of opcodes that tell dyld to write the address of symbol + |
| 424 | // addend at osec->addr + outSecOff. |
| 425 | // |
| 426 | // The bind opcode "interpreter" remembers the values of each binding field, so |
| 427 | // we only need to encode the differences between bindings. Hence the use of |
| 428 | // lastBinding. |
| 429 | static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, |
| 430 | int64_t addend, Binding &lastBinding, |
| 431 | std::vector<BindIR> &opcodes) { |
| 432 | OutputSegment *seg = osec->parent; |
| 433 | uint64_t offset = osec->getSegmentOffset() + outSecOff; |
| 434 | if (lastBinding.segment != seg) { |
| 435 | opcodes.push_back( |
| 436 | x: {.opcode: static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
| 437 | seg->index), |
| 438 | .data: offset}); |
| 439 | lastBinding.segment = seg; |
| 440 | lastBinding.offset = offset; |
| 441 | } else if (lastBinding.offset != offset) { |
| 442 | opcodes.push_back(x: {.opcode: BIND_OPCODE_ADD_ADDR_ULEB, .data: offset - lastBinding.offset}); |
| 443 | lastBinding.offset = offset; |
| 444 | } |
| 445 | |
| 446 | if (lastBinding.addend != addend) { |
| 447 | opcodes.push_back( |
| 448 | x: {.opcode: BIND_OPCODE_SET_ADDEND_SLEB, .data: static_cast<uint64_t>(addend)}); |
| 449 | lastBinding.addend = addend; |
| 450 | } |
| 451 | |
| 452 | opcodes.push_back(x: {.opcode: BIND_OPCODE_DO_BIND, .data: 0}); |
| 453 | // DO_BIND causes dyld to both perform the binding and increment the offset |
| 454 | lastBinding.offset += target->wordSize; |
| 455 | } |
| 456 | |
| 457 | static void optimizeOpcodes(std::vector<BindIR> &opcodes) { |
| 458 | // Pass 1: Combine bind/add pairs |
| 459 | size_t i; |
| 460 | int pWrite = 0; |
| 461 | for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
| 462 | if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && |
| 463 | (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { |
| 464 | opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; |
| 465 | opcodes[pWrite].data = opcodes[i].data; |
| 466 | ++i; |
| 467 | } else { |
| 468 | opcodes[pWrite] = opcodes[i - 1]; |
| 469 | } |
| 470 | } |
| 471 | if (i == opcodes.size()) |
| 472 | opcodes[pWrite] = opcodes[i - 1]; |
| 473 | opcodes.resize(new_size: pWrite + 1); |
| 474 | |
| 475 | // Pass 2: Compress two or more bind_add opcodes |
| 476 | pWrite = 0; |
| 477 | for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
| 478 | if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| 479 | (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| 480 | (opcodes[i].data == opcodes[i - 1].data)) { |
| 481 | opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; |
| 482 | opcodes[pWrite].consecutiveCount = 2; |
| 483 | opcodes[pWrite].data = opcodes[i].data; |
| 484 | ++i; |
| 485 | while (i < opcodes.size() && |
| 486 | (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| 487 | (opcodes[i].data == opcodes[i - 1].data)) { |
| 488 | opcodes[pWrite].consecutiveCount++; |
| 489 | ++i; |
| 490 | } |
| 491 | } else { |
| 492 | opcodes[pWrite] = opcodes[i - 1]; |
| 493 | } |
| 494 | } |
| 495 | if (i == opcodes.size()) |
| 496 | opcodes[pWrite] = opcodes[i - 1]; |
| 497 | opcodes.resize(new_size: pWrite + 1); |
| 498 | |
| 499 | // Pass 3: Use immediate encodings |
| 500 | // Every binding is the size of one pointer. If the next binding is a |
| 501 | // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the |
| 502 | // opcode can be scaled by wordSize into a single byte and dyld will |
| 503 | // expand it to the correct address. |
| 504 | for (auto &p : opcodes) { |
| 505 | // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, |
| 506 | // but ld64 currently does this. This could be a potential bug, but |
| 507 | // for now, perform the same behavior to prevent mysterious bugs. |
| 508 | if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
| 509 | ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && |
| 510 | ((p.data % target->wordSize) == 0)) { |
| 511 | p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; |
| 512 | p.data /= target->wordSize; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { |
| 518 | uint8_t opcode = op.opcode & BIND_OPCODE_MASK; |
| 519 | switch (opcode) { |
| 520 | case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: |
| 521 | case BIND_OPCODE_ADD_ADDR_ULEB: |
| 522 | case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: |
| 523 | os << op.opcode; |
| 524 | encodeULEB128(Value: op.data, OS&: os); |
| 525 | break; |
| 526 | case BIND_OPCODE_SET_ADDEND_SLEB: |
| 527 | os << op.opcode; |
| 528 | encodeSLEB128(Value: static_cast<int64_t>(op.data), OS&: os); |
| 529 | break; |
| 530 | case BIND_OPCODE_DO_BIND: |
| 531 | os << op.opcode; |
| 532 | break; |
| 533 | case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: |
| 534 | os << op.opcode; |
| 535 | encodeULEB128(Value: op.consecutiveCount, OS&: os); |
| 536 | encodeULEB128(Value: op.data, OS&: os); |
| 537 | break; |
| 538 | case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: |
| 539 | os << static_cast<uint8_t>(op.opcode | op.data); |
| 540 | break; |
| 541 | default: |
| 542 | llvm_unreachable("cannot bind to an unrecognized symbol" ); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | static bool needsWeakBind(const Symbol &sym) { |
| 547 | if (auto *dysym = dyn_cast<DylibSymbol>(Val: &sym)) |
| 548 | return dysym->isWeakDef(); |
| 549 | if (auto *defined = dyn_cast<Defined>(Val: &sym)) |
| 550 | return defined->isExternalWeakDef(); |
| 551 | return false; |
| 552 | } |
| 553 | |
| 554 | // Non-weak bindings need to have their dylib ordinal encoded as well. |
| 555 | static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { |
| 556 | if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) |
| 557 | return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); |
| 558 | assert(dysym.getFile()->isReferenced()); |
| 559 | return dysym.getFile()->ordinal; |
| 560 | } |
| 561 | |
| 562 | static int16_t ordinalForSymbol(const Symbol &sym) { |
| 563 | if (config->emitChainedFixups && needsWeakBind(sym)) |
| 564 | return BIND_SPECIAL_DYLIB_WEAK_LOOKUP; |
| 565 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: &sym)) |
| 566 | return ordinalForDylibSymbol(dysym: *dysym); |
| 567 | assert(cast<Defined>(&sym)->interposable); |
| 568 | return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; |
| 569 | } |
| 570 | |
| 571 | static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { |
| 572 | if (ordinal <= 0) { |
| 573 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | |
| 574 | (ordinal & BIND_IMMEDIATE_MASK)); |
| 575 | } else if (ordinal <= BIND_IMMEDIATE_MASK) { |
| 576 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); |
| 577 | } else { |
| 578 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); |
| 579 | encodeULEB128(Value: ordinal, OS&: os); |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | static void encodeWeakOverride(const Defined *defined, |
| 584 | raw_svector_ostream &os) { |
| 585 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | |
| 586 | BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) |
| 587 | << defined->getName() << '\0'; |
| 588 | } |
| 589 | |
| 590 | // Organize the bindings so we can encoded them with fewer opcodes. |
| 591 | // |
| 592 | // First, all bindings for a given symbol should be grouped together. |
| 593 | // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it |
| 594 | // has an associated symbol string), so we only want to emit it once per symbol. |
| 595 | // |
| 596 | // Within each group, we sort the bindings by address. Since bindings are |
| 597 | // delta-encoded, sorting them allows for a more compact result. Note that |
| 598 | // sorting by address alone ensures that bindings for the same segment / section |
| 599 | // are located together, minimizing the number of times we have to emit |
| 600 | // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. |
| 601 | // |
| 602 | // Finally, we sort the symbols by the address of their first binding, again |
| 603 | // to facilitate the delta-encoding process. |
| 604 | template <class Sym> |
| 605 | std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> |
| 606 | sortBindings(const BindingsMap<const Sym *> &bindingsMap) { |
| 607 | std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( |
| 608 | bindingsMap.begin(), bindingsMap.end()); |
| 609 | for (auto &p : bindingsVec) { |
| 610 | std::vector<BindingEntry> &bindings = p.second; |
| 611 | llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { |
| 612 | return a.target.getVA() < b.target.getVA(); |
| 613 | }); |
| 614 | } |
| 615 | llvm::sort(bindingsVec, [](const auto &a, const auto &b) { |
| 616 | return a.second[0].target.getVA() < b.second[0].target.getVA(); |
| 617 | }); |
| 618 | return bindingsVec; |
| 619 | } |
| 620 | |
| 621 | // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld |
| 622 | // interprets to update a record with the following fields: |
| 623 | // * segment index (of the segment to write the symbol addresses to, typically |
| 624 | // the __DATA_CONST segment which contains the GOT) |
| 625 | // * offset within the segment, indicating the next location to write a binding |
| 626 | // * symbol type |
| 627 | // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) |
| 628 | // * symbol name |
| 629 | // * addend |
| 630 | // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind |
| 631 | // a symbol in the GOT, and increments the segment offset to point to the next |
| 632 | // entry. It does *not* clear the record state after doing the bind, so |
| 633 | // subsequent opcodes only need to encode the differences between bindings. |
| 634 | void BindingSection::finalizeContents() { |
| 635 | raw_svector_ostream os{contents}; |
| 636 | Binding lastBinding; |
| 637 | int16_t lastOrdinal = 0; |
| 638 | |
| 639 | for (auto &p : sortBindings(bindingsMap)) { |
| 640 | const Symbol *sym = p.first; |
| 641 | std::vector<BindingEntry> &bindings = p.second; |
| 642 | uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
| 643 | if (sym->isWeakRef()) |
| 644 | flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
| 645 | os << flags << sym->getName() << '\0' |
| 646 | << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
| 647 | int16_t ordinal = ordinalForSymbol(sym: *sym); |
| 648 | if (ordinal != lastOrdinal) { |
| 649 | encodeDylibOrdinal(ordinal, os); |
| 650 | lastOrdinal = ordinal; |
| 651 | } |
| 652 | std::vector<BindIR> opcodes; |
| 653 | for (const BindingEntry &b : bindings) |
| 654 | encodeBinding(osec: b.target.isec->parent, |
| 655 | outSecOff: b.target.isec->getOffset(off: b.target.offset), addend: b.addend, |
| 656 | lastBinding, opcodes); |
| 657 | if (config->optimize > 1) |
| 658 | optimizeOpcodes(opcodes); |
| 659 | for (const auto &op : opcodes) |
| 660 | flushOpcodes(op, os); |
| 661 | } |
| 662 | if (!bindingsMap.empty()) |
| 663 | os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
| 664 | } |
| 665 | |
| 666 | void BindingSection::writeTo(uint8_t *buf) const { |
| 667 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
| 668 | } |
| 669 | |
| 670 | WeakBindingSection::WeakBindingSection() |
| 671 | : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} |
| 672 | |
| 673 | void WeakBindingSection::finalizeContents() { |
| 674 | raw_svector_ostream os{contents}; |
| 675 | Binding lastBinding; |
| 676 | |
| 677 | for (const Defined *defined : definitions) |
| 678 | encodeWeakOverride(defined, os); |
| 679 | |
| 680 | for (auto &p : sortBindings(bindingsMap)) { |
| 681 | const Symbol *sym = p.first; |
| 682 | std::vector<BindingEntry> &bindings = p.second; |
| 683 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) |
| 684 | << sym->getName() << '\0' |
| 685 | << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
| 686 | std::vector<BindIR> opcodes; |
| 687 | for (const BindingEntry &b : bindings) |
| 688 | encodeBinding(osec: b.target.isec->parent, |
| 689 | outSecOff: b.target.isec->getOffset(off: b.target.offset), addend: b.addend, |
| 690 | lastBinding, opcodes); |
| 691 | if (config->optimize > 1) |
| 692 | optimizeOpcodes(opcodes); |
| 693 | for (const auto &op : opcodes) |
| 694 | flushOpcodes(op, os); |
| 695 | } |
| 696 | if (!bindingsMap.empty() || !definitions.empty()) |
| 697 | os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
| 698 | } |
| 699 | |
| 700 | void WeakBindingSection::writeTo(uint8_t *buf) const { |
| 701 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
| 702 | } |
| 703 | |
| 704 | StubsSection::StubsSection() |
| 705 | : SyntheticSection(segment_names::text, section_names::stubs) { |
| 706 | flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
| 707 | // The stubs section comprises machine instructions, which are aligned to |
| 708 | // 4 bytes on the archs we care about. |
| 709 | align = 4; |
| 710 | reserved2 = target->stubSize; |
| 711 | } |
| 712 | |
| 713 | uint64_t StubsSection::getSize() const { |
| 714 | return entries.size() * target->stubSize; |
| 715 | } |
| 716 | |
| 717 | void StubsSection::writeTo(uint8_t *buf) const { |
| 718 | size_t off = 0; |
| 719 | for (const Symbol *sym : entries) { |
| 720 | uint64_t pointerVA = |
| 721 | config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); |
| 722 | target->writeStub(buf: buf + off, *sym, pointerVA); |
| 723 | off += target->stubSize; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | void StubsSection::finalize() { isFinal = true; } |
| 728 | |
| 729 | static void addBindingsForStub(Symbol *sym) { |
| 730 | assert(!config->emitChainedFixups); |
| 731 | if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
| 732 | if (sym->isWeakDef()) { |
| 733 | in.binding->addEntry(dysym, isec: in.lazyPointers->isec, |
| 734 | offset: sym->stubsIndex * target->wordSize); |
| 735 | in.weakBinding->addEntry(symbol: sym, isec: in.lazyPointers->isec, |
| 736 | offset: sym->stubsIndex * target->wordSize); |
| 737 | } else { |
| 738 | in.lazyBinding->addEntry(dysym); |
| 739 | } |
| 740 | } else if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
| 741 | if (defined->isExternalWeakDef()) { |
| 742 | in.rebase->addEntry(isec: in.lazyPointers->isec, |
| 743 | offset: sym->stubsIndex * target->wordSize); |
| 744 | in.weakBinding->addEntry(symbol: sym, isec: in.lazyPointers->isec, |
| 745 | offset: sym->stubsIndex * target->wordSize); |
| 746 | } else if (defined->interposable) { |
| 747 | in.lazyBinding->addEntry(dysym: sym); |
| 748 | } else { |
| 749 | llvm_unreachable("invalid stub target" ); |
| 750 | } |
| 751 | } else { |
| 752 | llvm_unreachable("invalid stub target symbol type" ); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | void StubsSection::addEntry(Symbol *sym) { |
| 757 | bool inserted = entries.insert(X: sym); |
| 758 | if (inserted) { |
| 759 | sym->stubsIndex = entries.size() - 1; |
| 760 | |
| 761 | if (config->emitChainedFixups) |
| 762 | in.got->addEntry(sym); |
| 763 | else |
| 764 | addBindingsForStub(sym); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | StubHelperSection::StubHelperSection() |
| 769 | : SyntheticSection(segment_names::text, section_names::stubHelper) { |
| 770 | flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
| 771 | align = 4; // This section comprises machine instructions |
| 772 | } |
| 773 | |
| 774 | uint64_t StubHelperSection::getSize() const { |
| 775 | return target->stubHelperHeaderSize + |
| 776 | in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; |
| 777 | } |
| 778 | |
| 779 | bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } |
| 780 | |
| 781 | void StubHelperSection::writeTo(uint8_t *buf) const { |
| 782 | target->writeStubHelperHeader(buf); |
| 783 | size_t off = target->stubHelperHeaderSize; |
| 784 | for (const Symbol *sym : in.lazyBinding->getEntries()) { |
| 785 | target->writeStubHelperEntry(buf: buf + off, *sym, entryAddr: addr + off); |
| 786 | off += target->stubHelperEntrySize; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | void StubHelperSection::setUp() { |
| 791 | Symbol *binder = symtab->addUndefined(name: "dyld_stub_binder" , /*file=*/nullptr, |
| 792 | /*isWeakRef=*/false); |
| 793 | if (auto *undefined = dyn_cast<Undefined>(Val: binder)) |
| 794 | treatUndefinedSymbol(*undefined, |
| 795 | source: "lazy binding (normally in libSystem.dylib)" ); |
| 796 | |
| 797 | // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. |
| 798 | stubBinder = dyn_cast_or_null<DylibSymbol>(Val: binder); |
| 799 | if (stubBinder == nullptr) |
| 800 | return; |
| 801 | |
| 802 | in.got->addEntry(sym: stubBinder); |
| 803 | |
| 804 | in.imageLoaderCache->parent = |
| 805 | ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); |
| 806 | addInputSection(inputSection: in.imageLoaderCache); |
| 807 | // Since this isn't in the symbol table or in any input file, the noDeadStrip |
| 808 | // argument doesn't matter. |
| 809 | dyldPrivate = |
| 810 | make<Defined>(args: "__dyld_private" , args: nullptr, args&: in.imageLoaderCache, args: 0, args: 0, |
| 811 | /*isWeakDef=*/args: false, |
| 812 | /*isExternal=*/args: false, /*isPrivateExtern=*/args: false, |
| 813 | /*includeInSymtab=*/args: true, |
| 814 | /*isReferencedDynamically=*/args: false, |
| 815 | /*noDeadStrip=*/args: false); |
| 816 | dyldPrivate->used = true; |
| 817 | } |
| 818 | |
| 819 | llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *> |
| 820 | ObjCSelRefsHelper::methnameToSelref; |
| 821 | void ObjCSelRefsHelper::initialize() { |
| 822 | // Do not fold selrefs without ICF. |
| 823 | if (config->icfLevel == ICFLevel::none) |
| 824 | return; |
| 825 | |
| 826 | // Search methnames already referenced in __objc_selrefs |
| 827 | // Map the name to the corresponding selref entry |
| 828 | // which we will reuse when creating objc stubs. |
| 829 | for (ConcatInputSection *isec : inputSections) { |
| 830 | if (isec->shouldOmitFromOutput()) |
| 831 | continue; |
| 832 | if (isec->getName() != section_names::objcSelrefs) |
| 833 | continue; |
| 834 | // We expect a single relocation per selref entry to __objc_methname that |
| 835 | // might be aggregated. |
| 836 | assert(isec->relocs.size() == 1); |
| 837 | auto Reloc = isec->relocs[0]; |
| 838 | if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) { |
| 839 | if (const auto *d = dyn_cast<Defined>(Val: sym)) { |
| 840 | auto *cisec = cast<CStringInputSection>(Val: d->isec()); |
| 841 | auto methname = cisec->getStringRefAtOffset(off: d->value); |
| 842 | methnameToSelref[CachedHashStringRef(methname)] = isec; |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); } |
| 849 | |
| 850 | ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) { |
| 851 | auto methnameOffset = |
| 852 | in.objcMethnameSection->getStringOffset(str: methname).outSecOff; |
| 853 | |
| 854 | size_t wordSize = target->wordSize; |
| 855 | uint8_t *selrefData = bAlloc().Allocate<uint8_t>(Num: wordSize); |
| 856 | write64le(P: selrefData, V: methnameOffset); |
| 857 | ConcatInputSection *objcSelref = |
| 858 | makeSyntheticInputSection(segName: segment_names::data, sectName: section_names::objcSelrefs, |
| 859 | flags: S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, |
| 860 | data: ArrayRef<uint8_t>{selrefData, wordSize}, |
| 861 | /*align=*/wordSize); |
| 862 | assert(objcSelref->live); |
| 863 | objcSelref->relocs.push_back(x: {/*type=*/target->unsignedRelocType, |
| 864 | /*pcrel=*/false, /*length=*/3, |
| 865 | /*offset=*/0, |
| 866 | /*addend=*/static_cast<int64_t>(methnameOffset), |
| 867 | /*referent=*/in.objcMethnameSection->isec}); |
| 868 | objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref); |
| 869 | addInputSection(inputSection: objcSelref); |
| 870 | objcSelref->isFinal = true; |
| 871 | methnameToSelref[CachedHashStringRef(methname)] = objcSelref; |
| 872 | return objcSelref; |
| 873 | } |
| 874 | |
| 875 | ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) { |
| 876 | auto it = methnameToSelref.find(Val: CachedHashStringRef(methname)); |
| 877 | if (it == methnameToSelref.end()) |
| 878 | return nullptr; |
| 879 | return it->second; |
| 880 | } |
| 881 | |
| 882 | ObjCStubsSection::ObjCStubsSection() |
| 883 | : SyntheticSection(segment_names::text, section_names::objcStubs) { |
| 884 | flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
| 885 | align = config->objcStubsMode == ObjCStubsMode::fast |
| 886 | ? target->objcStubsFastAlignment |
| 887 | : target->objcStubsSmallAlignment; |
| 888 | } |
| 889 | |
| 890 | bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) { |
| 891 | return sym->getName().starts_with(Prefix: symbolPrefix); |
| 892 | } |
| 893 | |
| 894 | StringRef ObjCStubsSection::getMethname(Symbol *sym) { |
| 895 | assert(isObjCStubSymbol(sym) && "not an objc stub" ); |
| 896 | auto name = sym->getName(); |
| 897 | StringRef methname = name.drop_front(N: symbolPrefix.size()); |
| 898 | return methname; |
| 899 | } |
| 900 | |
| 901 | void ObjCStubsSection::addEntry(Symbol *sym) { |
| 902 | StringRef methname = getMethname(sym); |
| 903 | // We create a selref entry for each unique methname. |
| 904 | if (!ObjCSelRefsHelper::getSelRef(methname)) |
| 905 | ObjCSelRefsHelper::makeSelRef(methname); |
| 906 | |
| 907 | auto stubSize = config->objcStubsMode == ObjCStubsMode::fast |
| 908 | ? target->objcStubsFastSize |
| 909 | : target->objcStubsSmallSize; |
| 910 | Defined *newSym = replaceSymbol<Defined>( |
| 911 | s: sym, arg: sym->getName(), arg: nullptr, arg&: isec, |
| 912 | /*value=*/arg: symbols.size() * stubSize, |
| 913 | /*size=*/arg&: stubSize, |
| 914 | /*isWeakDef=*/arg: false, /*isExternal=*/arg: true, /*isPrivateExtern=*/arg: true, |
| 915 | /*includeInSymtab=*/arg: true, /*isReferencedDynamically=*/arg: false, |
| 916 | /*noDeadStrip=*/arg: false); |
| 917 | symbols.push_back(x: newSym); |
| 918 | } |
| 919 | |
| 920 | void ObjCStubsSection::setUp() { |
| 921 | objcMsgSend = symtab->addUndefined(name: "_objc_msgSend" , /*file=*/nullptr, |
| 922 | /*isWeakRef=*/false); |
| 923 | if (auto *undefined = dyn_cast<Undefined>(Val: objcMsgSend)) |
| 924 | treatUndefinedSymbol(*undefined, |
| 925 | source: "lazy binding (normally in libobjc.dylib)" ); |
| 926 | objcMsgSend->used = true; |
| 927 | if (config->objcStubsMode == ObjCStubsMode::fast) { |
| 928 | in.got->addEntry(sym: objcMsgSend); |
| 929 | assert(objcMsgSend->isInGot()); |
| 930 | } else { |
| 931 | assert(config->objcStubsMode == ObjCStubsMode::small); |
| 932 | // In line with ld64's behavior, when objc_msgSend is a direct symbol, |
| 933 | // we directly reference it. |
| 934 | // In other cases, typically when binding in libobjc.dylib, |
| 935 | // we generate a stub to invoke objc_msgSend. |
| 936 | if (!isa<Defined>(Val: objcMsgSend)) |
| 937 | in.stubs->addEntry(sym: objcMsgSend); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | uint64_t ObjCStubsSection::getSize() const { |
| 942 | auto stubSize = config->objcStubsMode == ObjCStubsMode::fast |
| 943 | ? target->objcStubsFastSize |
| 944 | : target->objcStubsSmallSize; |
| 945 | return stubSize * symbols.size(); |
| 946 | } |
| 947 | |
| 948 | void ObjCStubsSection::writeTo(uint8_t *buf) const { |
| 949 | uint64_t stubOffset = 0; |
| 950 | for (Defined *sym : symbols) { |
| 951 | auto methname = getMethname(sym); |
| 952 | InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); |
| 953 | assert(selRef != nullptr && "no selref for methname" ); |
| 954 | auto selrefAddr = selRef->getVA(off: 0); |
| 955 | target->writeObjCMsgSendStub(buf: buf + stubOffset, sym, stubsAddr: in.objcStubs->addr, |
| 956 | stubOffset, selrefVA: selrefAddr, objcMsgSend); |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | LazyPointerSection::LazyPointerSection() |
| 961 | : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { |
| 962 | align = target->wordSize; |
| 963 | flags = S_LAZY_SYMBOL_POINTERS; |
| 964 | } |
| 965 | |
| 966 | uint64_t LazyPointerSection::getSize() const { |
| 967 | return in.stubs->getEntries().size() * target->wordSize; |
| 968 | } |
| 969 | |
| 970 | bool LazyPointerSection::isNeeded() const { |
| 971 | return !in.stubs->getEntries().empty(); |
| 972 | } |
| 973 | |
| 974 | void LazyPointerSection::writeTo(uint8_t *buf) const { |
| 975 | size_t off = 0; |
| 976 | for (const Symbol *sym : in.stubs->getEntries()) { |
| 977 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
| 978 | if (dysym->hasStubsHelper()) { |
| 979 | uint64_t stubHelperOffset = |
| 980 | target->stubHelperHeaderSize + |
| 981 | dysym->stubsHelperIndex * target->stubHelperEntrySize; |
| 982 | write64le(P: buf + off, V: in.stubHelper->addr + stubHelperOffset); |
| 983 | } |
| 984 | } else { |
| 985 | write64le(P: buf + off, V: sym->getVA()); |
| 986 | } |
| 987 | off += target->wordSize; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | LazyBindingSection::LazyBindingSection() |
| 992 | : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} |
| 993 | |
| 994 | void LazyBindingSection::finalizeContents() { |
| 995 | // TODO: Just precompute output size here instead of writing to a temporary |
| 996 | // buffer |
| 997 | for (Symbol *sym : entries) |
| 998 | sym->lazyBindOffset = encode(*sym); |
| 999 | } |
| 1000 | |
| 1001 | void LazyBindingSection::writeTo(uint8_t *buf) const { |
| 1002 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
| 1003 | } |
| 1004 | |
| 1005 | void LazyBindingSection::addEntry(Symbol *sym) { |
| 1006 | assert(!config->emitChainedFixups && "Chained fixups always bind eagerly" ); |
| 1007 | if (entries.insert(X: sym)) { |
| 1008 | sym->stubsHelperIndex = entries.size() - 1; |
| 1009 | in.rebase->addEntry(isec: in.lazyPointers->isec, |
| 1010 | offset: sym->stubsIndex * target->wordSize); |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | // Unlike the non-lazy binding section, the bind opcodes in this section aren't |
| 1015 | // interpreted all at once. Rather, dyld will start interpreting opcodes at a |
| 1016 | // given offset, typically only binding a single symbol before it finds a |
| 1017 | // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, |
| 1018 | // we cannot encode just the differences between symbols; we have to emit the |
| 1019 | // complete bind information for each symbol. |
| 1020 | uint32_t LazyBindingSection::encode(const Symbol &sym) { |
| 1021 | uint32_t opstreamOffset = contents.size(); |
| 1022 | OutputSegment *dataSeg = in.lazyPointers->parent; |
| 1023 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
| 1024 | dataSeg->index); |
| 1025 | uint64_t offset = |
| 1026 | in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; |
| 1027 | encodeULEB128(Value: offset, OS&: os); |
| 1028 | encodeDylibOrdinal(ordinal: ordinalForSymbol(sym), os); |
| 1029 | |
| 1030 | uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
| 1031 | if (sym.isWeakRef()) |
| 1032 | flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
| 1033 | |
| 1034 | os << flags << sym.getName() << '\0' |
| 1035 | << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) |
| 1036 | << static_cast<uint8_t>(BIND_OPCODE_DONE); |
| 1037 | return opstreamOffset; |
| 1038 | } |
| 1039 | |
| 1040 | ExportSection::ExportSection() |
| 1041 | : LinkEditSection(segment_names::linkEdit, section_names::export_) {} |
| 1042 | |
| 1043 | void ExportSection::finalizeContents() { |
| 1044 | trieBuilder.setImageBase(in.header->addr); |
| 1045 | for (const Symbol *sym : symtab->getSymbols()) { |
| 1046 | if (const auto *defined = dyn_cast<Defined>(Val: sym)) { |
| 1047 | if (defined->privateExtern || !defined->isLive()) |
| 1048 | continue; |
| 1049 | trieBuilder.addSymbol(sym: *defined); |
| 1050 | hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); |
| 1051 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
| 1052 | if (dysym->shouldReexport) |
| 1053 | trieBuilder.addSymbol(sym: *dysym); |
| 1054 | } |
| 1055 | } |
| 1056 | size = trieBuilder.build(); |
| 1057 | } |
| 1058 | |
| 1059 | void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } |
| 1060 | |
| 1061 | DataInCodeSection::DataInCodeSection() |
| 1062 | : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} |
| 1063 | |
| 1064 | template <class LP> |
| 1065 | static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { |
| 1066 | std::vector<MachO::data_in_code_entry> dataInCodeEntries; |
| 1067 | for (const InputFile *inputFile : inputFiles) { |
| 1068 | if (!isa<ObjFile>(Val: inputFile)) |
| 1069 | continue; |
| 1070 | const ObjFile *objFile = cast<ObjFile>(Val: inputFile); |
| 1071 | ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); |
| 1072 | if (entries.empty()) |
| 1073 | continue; |
| 1074 | |
| 1075 | std::vector<MachO::data_in_code_entry> sortedEntries; |
| 1076 | sortedEntries.assign(first: entries.begin(), last: entries.end()); |
| 1077 | llvm::sort(sortedEntries, [](const data_in_code_entry &lhs, |
| 1078 | const data_in_code_entry &rhs) { |
| 1079 | return lhs.offset < rhs.offset; |
| 1080 | }); |
| 1081 | |
| 1082 | // For each code subsection find 'data in code' entries residing in it. |
| 1083 | // Compute the new offset values as |
| 1084 | // <offset within subsection> + <subsection address> - <__TEXT address>. |
| 1085 | for (const Section *section : objFile->sections) { |
| 1086 | for (const Subsection &subsec : section->subsections) { |
| 1087 | const InputSection *isec = subsec.isec; |
| 1088 | if (!isCodeSection(isec)) |
| 1089 | continue; |
| 1090 | if (cast<ConcatInputSection>(Val: isec)->shouldOmitFromOutput()) |
| 1091 | continue; |
| 1092 | const uint64_t beginAddr = section->addr + subsec.offset; |
| 1093 | auto it = llvm::lower_bound( |
| 1094 | sortedEntries, beginAddr, |
| 1095 | [](const MachO::data_in_code_entry &entry, uint64_t addr) { |
| 1096 | return entry.offset < addr; |
| 1097 | }); |
| 1098 | const uint64_t endAddr = beginAddr + isec->getSize(); |
| 1099 | for (const auto end = sortedEntries.end(); |
| 1100 | it != end && it->offset + it->length <= endAddr; ++it) |
| 1101 | dataInCodeEntries.push_back( |
| 1102 | {static_cast<uint32_t>(isec->getVA(off: it->offset - beginAddr) - |
| 1103 | in.header->addr), |
| 1104 | it->length, it->kind}); |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | // ld64 emits the table in sorted order too. |
| 1110 | llvm::sort(dataInCodeEntries, |
| 1111 | [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { |
| 1112 | return lhs.offset < rhs.offset; |
| 1113 | }); |
| 1114 | return dataInCodeEntries; |
| 1115 | } |
| 1116 | |
| 1117 | void DataInCodeSection::finalizeContents() { |
| 1118 | entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() |
| 1119 | : collectDataInCodeEntries<ILP32>(); |
| 1120 | } |
| 1121 | |
| 1122 | void DataInCodeSection::writeTo(uint8_t *buf) const { |
| 1123 | if (!entries.empty()) |
| 1124 | memcpy(dest: buf, src: entries.data(), n: getRawSize()); |
| 1125 | } |
| 1126 | |
| 1127 | FunctionStartsSection::FunctionStartsSection() |
| 1128 | : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} |
| 1129 | |
| 1130 | void FunctionStartsSection::finalizeContents() { |
| 1131 | raw_svector_ostream os{contents}; |
| 1132 | std::vector<uint64_t> addrs; |
| 1133 | for (const InputFile *file : inputFiles) { |
| 1134 | if (auto *objFile = dyn_cast<ObjFile>(Val: file)) { |
| 1135 | for (const Symbol *sym : objFile->symbols) { |
| 1136 | if (const auto *defined = dyn_cast_or_null<Defined>(Val: sym)) { |
| 1137 | if (!defined->isec() || !isCodeSection(defined->isec()) || |
| 1138 | !defined->isLive()) |
| 1139 | continue; |
| 1140 | addrs.push_back(x: defined->getVA()); |
| 1141 | } |
| 1142 | } |
| 1143 | } |
| 1144 | } |
| 1145 | llvm::sort(C&: addrs); |
| 1146 | uint64_t addr = in.header->addr; |
| 1147 | for (uint64_t nextAddr : addrs) { |
| 1148 | uint64_t delta = nextAddr - addr; |
| 1149 | if (delta == 0) |
| 1150 | continue; |
| 1151 | encodeULEB128(Value: delta, OS&: os); |
| 1152 | addr = nextAddr; |
| 1153 | } |
| 1154 | os << '\0'; |
| 1155 | } |
| 1156 | |
| 1157 | void FunctionStartsSection::writeTo(uint8_t *buf) const { |
| 1158 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
| 1159 | } |
| 1160 | |
| 1161 | SymtabSection::SymtabSection(StringTableSection &stringTableSection) |
| 1162 | : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), |
| 1163 | stringTableSection(stringTableSection) {} |
| 1164 | |
| 1165 | void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { |
| 1166 | StabsEntry stab(N_SO); |
| 1167 | stab.strx = stringTableSection.addString(saver().save(S: sourceFile)); |
| 1168 | stabs.emplace_back(args: std::move(stab)); |
| 1169 | } |
| 1170 | |
| 1171 | void SymtabSection::emitEndSourceStab() { |
| 1172 | StabsEntry stab(N_SO); |
| 1173 | stab.sect = 1; |
| 1174 | stabs.emplace_back(args: std::move(stab)); |
| 1175 | } |
| 1176 | |
| 1177 | void SymtabSection::emitObjectFileStab(ObjFile *file) { |
| 1178 | StabsEntry stab(N_OSO); |
| 1179 | stab.sect = target->cpuSubtype; |
| 1180 | SmallString<261> path(!file->archiveName.empty() ? file->archiveName |
| 1181 | : file->getName()); |
| 1182 | std::error_code ec = sys::fs::make_absolute(path); |
| 1183 | if (ec) |
| 1184 | fatal(msg: "failed to get absolute path for " + path); |
| 1185 | |
| 1186 | if (!file->archiveName.empty()) |
| 1187 | path.append(Refs: {"(" , file->getName(), ")" }); |
| 1188 | |
| 1189 | StringRef adjustedPath = saver().save(S: path.str()); |
| 1190 | adjustedPath.consume_front(Prefix: config->osoPrefix); |
| 1191 | |
| 1192 | stab.strx = stringTableSection.addString(adjustedPath); |
| 1193 | stab.desc = 1; |
| 1194 | stab.value = file->modTime; |
| 1195 | stabs.emplace_back(args: std::move(stab)); |
| 1196 | } |
| 1197 | |
| 1198 | void SymtabSection::emitEndFunStab(Defined *defined) { |
| 1199 | StabsEntry stab(N_FUN); |
| 1200 | stab.value = defined->size; |
| 1201 | stabs.emplace_back(args: std::move(stab)); |
| 1202 | } |
| 1203 | |
| 1204 | void SymtabSection::emitStabs() { |
| 1205 | if (config->omitDebugInfo) |
| 1206 | return; |
| 1207 | |
| 1208 | for (const std::string &s : config->astPaths) { |
| 1209 | StabsEntry astStab(N_AST); |
| 1210 | astStab.strx = stringTableSection.addString(s); |
| 1211 | stabs.emplace_back(args: std::move(astStab)); |
| 1212 | } |
| 1213 | |
| 1214 | // Cache the file ID for each symbol in an std::pair for faster sorting. |
| 1215 | using SortingPair = std::pair<Defined *, int>; |
| 1216 | std::vector<SortingPair> symbolsNeedingStabs; |
| 1217 | for (const SymtabEntry &entry : |
| 1218 | concat<SymtabEntry>(Ranges&: localSymbols, Ranges&: externalSymbols)) { |
| 1219 | Symbol *sym = entry.sym; |
| 1220 | assert(sym->isLive() && |
| 1221 | "dead symbols should not be in localSymbols, externalSymbols" ); |
| 1222 | if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
| 1223 | // Excluded symbols should have been filtered out in finalizeContents(). |
| 1224 | assert(defined->includeInSymtab); |
| 1225 | |
| 1226 | if (defined->isAbsolute()) |
| 1227 | continue; |
| 1228 | |
| 1229 | // Constant-folded symbols go in the executable's symbol table, but don't |
| 1230 | // get a stabs entry unless --keep-icf-stabs flag is specified. |
| 1231 | if (!config->keepICFStabs && |
| 1232 | defined->identicalCodeFoldingKind != Symbol::ICFFoldKind::None) |
| 1233 | continue; |
| 1234 | |
| 1235 | ObjFile *file = defined->getObjectFile(); |
| 1236 | if (!file || !file->compileUnit) |
| 1237 | continue; |
| 1238 | |
| 1239 | // We use the symbol's original InputSection to get the file id, |
| 1240 | // even for ICF folded symbols, to ensure STABS entries point to the |
| 1241 | // correct object file where the symbol was originally defined |
| 1242 | symbolsNeedingStabs.emplace_back(args&: defined, |
| 1243 | args: defined->originalIsec->getFile()->id); |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | llvm::stable_sort(Range&: symbolsNeedingStabs, C: llvm::less_second()); |
| 1248 | |
| 1249 | // Emit STABS symbols so that dsymutil and/or the debugger can map address |
| 1250 | // regions in the final binary to the source and object files from which they |
| 1251 | // originated. |
| 1252 | InputFile *lastFile = nullptr; |
| 1253 | for (SortingPair &pair : symbolsNeedingStabs) { |
| 1254 | Defined *defined = pair.first; |
| 1255 | // When emitting STABS entries for a symbol, always use the original |
| 1256 | // InputSection of the defined symbol, not the section of the function body |
| 1257 | // (which might be a different function entirely if ICF folded this |
| 1258 | // function). This ensures STABS entries point back to the original object |
| 1259 | // file. |
| 1260 | InputSection *isec = defined->originalIsec; |
| 1261 | ObjFile *file = cast<ObjFile>(Val: isec->getFile()); |
| 1262 | |
| 1263 | if (lastFile == nullptr || lastFile != file) { |
| 1264 | if (lastFile != nullptr) |
| 1265 | emitEndSourceStab(); |
| 1266 | lastFile = file; |
| 1267 | |
| 1268 | emitBeginSourceStab(sourceFile: file->sourceFile()); |
| 1269 | emitObjectFileStab(file); |
| 1270 | } |
| 1271 | |
| 1272 | StabsEntry symStab; |
| 1273 | symStab.sect = isec->parent->index; |
| 1274 | symStab.strx = stringTableSection.addString(defined->getName()); |
| 1275 | |
| 1276 | // When using --keep-icf-stabs, we need to use the VA of the actual function |
| 1277 | // body that the linker will place in the binary. This is the function that |
| 1278 | // the symbol refers to after ICF folding. |
| 1279 | if (defined->identicalCodeFoldingKind == Symbol::ICFFoldKind::Thunk) { |
| 1280 | // For thunks, we need to get the function they point to |
| 1281 | Defined *target = getBodyForThunkFoldedSym(foldedSym: defined); |
| 1282 | symStab.value = target->getVA(); |
| 1283 | } else { |
| 1284 | symStab.value = defined->getVA(); |
| 1285 | } |
| 1286 | |
| 1287 | if (isCodeSection(isec)) { |
| 1288 | symStab.type = N_FUN; |
| 1289 | stabs.emplace_back(args: std::move(symStab)); |
| 1290 | // For the end function marker in STABS, we need to use the size of the |
| 1291 | // actual function body that exists in the output binary |
| 1292 | if (defined->identicalCodeFoldingKind == Symbol::ICFFoldKind::Thunk) { |
| 1293 | // For thunks, we use the target's size |
| 1294 | Defined *target = getBodyForThunkFoldedSym(foldedSym: defined); |
| 1295 | emitEndFunStab(defined: target); |
| 1296 | } else { |
| 1297 | emitEndFunStab(defined); |
| 1298 | } |
| 1299 | } else { |
| 1300 | symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; |
| 1301 | stabs.emplace_back(args: std::move(symStab)); |
| 1302 | } |
| 1303 | } |
| 1304 | |
| 1305 | if (!stabs.empty()) |
| 1306 | emitEndSourceStab(); |
| 1307 | } |
| 1308 | |
| 1309 | void SymtabSection::finalizeContents() { |
| 1310 | auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { |
| 1311 | uint32_t strx = stringTableSection.addString(sym->getName()); |
| 1312 | symbols.push_back(x: {.sym: sym, .strx: strx}); |
| 1313 | }; |
| 1314 | |
| 1315 | std::function<void(Symbol *)> localSymbolsHandler; |
| 1316 | switch (config->localSymbolsPresence) { |
| 1317 | case SymtabPresence::All: |
| 1318 | localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; |
| 1319 | break; |
| 1320 | case SymtabPresence::None: |
| 1321 | localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; |
| 1322 | break; |
| 1323 | case SymtabPresence::SelectivelyIncluded: |
| 1324 | localSymbolsHandler = [&](Symbol *sym) { |
| 1325 | if (config->localSymbolPatterns.match(symbolName: sym->getName())) |
| 1326 | addSymbol(localSymbols, sym); |
| 1327 | }; |
| 1328 | break; |
| 1329 | case SymtabPresence::SelectivelyExcluded: |
| 1330 | localSymbolsHandler = [&](Symbol *sym) { |
| 1331 | if (!config->localSymbolPatterns.match(symbolName: sym->getName())) |
| 1332 | addSymbol(localSymbols, sym); |
| 1333 | }; |
| 1334 | break; |
| 1335 | } |
| 1336 | |
| 1337 | // Local symbols aren't in the SymbolTable, so we walk the list of object |
| 1338 | // files to gather them. |
| 1339 | // But if `-x` is set, then we don't need to. localSymbolsHandler() will do |
| 1340 | // the right thing regardless, but this check is a perf optimization because |
| 1341 | // iterating through all the input files and their symbols is expensive. |
| 1342 | if (config->localSymbolsPresence != SymtabPresence::None) { |
| 1343 | for (const InputFile *file : inputFiles) { |
| 1344 | if (auto *objFile = dyn_cast<ObjFile>(Val: file)) { |
| 1345 | for (Symbol *sym : objFile->symbols) { |
| 1346 | if (auto *defined = dyn_cast_or_null<Defined>(Val: sym)) { |
| 1347 | if (defined->isExternal() || !defined->isLive() || |
| 1348 | !defined->includeInSymtab) |
| 1349 | continue; |
| 1350 | localSymbolsHandler(sym); |
| 1351 | } |
| 1352 | } |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | // __dyld_private is a local symbol too. It's linker-created and doesn't |
| 1358 | // exist in any object file. |
| 1359 | if (in.stubHelper && in.stubHelper->dyldPrivate) |
| 1360 | localSymbolsHandler(in.stubHelper->dyldPrivate); |
| 1361 | |
| 1362 | for (Symbol *sym : symtab->getSymbols()) { |
| 1363 | if (!sym->isLive()) |
| 1364 | continue; |
| 1365 | if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
| 1366 | if (!defined->includeInSymtab) |
| 1367 | continue; |
| 1368 | assert(defined->isExternal()); |
| 1369 | if (defined->privateExtern) |
| 1370 | localSymbolsHandler(defined); |
| 1371 | else |
| 1372 | addSymbol(externalSymbols, defined); |
| 1373 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
| 1374 | if (dysym->isReferenced()) |
| 1375 | addSymbol(undefinedSymbols, sym); |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | emitStabs(); |
| 1380 | uint32_t symtabIndex = stabs.size(); |
| 1381 | for (const SymtabEntry &entry : |
| 1382 | concat<SymtabEntry>(Ranges&: localSymbols, Ranges&: externalSymbols, Ranges&: undefinedSymbols)) { |
| 1383 | entry.sym->symtabIndex = symtabIndex++; |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | uint32_t SymtabSection::getNumSymbols() const { |
| 1388 | return stabs.size() + localSymbols.size() + externalSymbols.size() + |
| 1389 | undefinedSymbols.size(); |
| 1390 | } |
| 1391 | |
| 1392 | // This serves to hide (type-erase) the template parameter from SymtabSection. |
| 1393 | template <class LP> class SymtabSectionImpl final : public SymtabSection { |
| 1394 | public: |
| 1395 | SymtabSectionImpl(StringTableSection &stringTableSection) |
| 1396 | : SymtabSection(stringTableSection) {} |
| 1397 | uint64_t getRawSize() const override; |
| 1398 | void writeTo(uint8_t *buf) const override; |
| 1399 | }; |
| 1400 | |
| 1401 | template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { |
| 1402 | return getNumSymbols() * sizeof(typename LP::nlist); |
| 1403 | } |
| 1404 | |
| 1405 | template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { |
| 1406 | auto *nList = reinterpret_cast<typename LP::nlist *>(buf); |
| 1407 | // Emit the stabs entries before the "real" symbols. We cannot emit them |
| 1408 | // after as that would render Symbol::symtabIndex inaccurate. |
| 1409 | for (const StabsEntry &entry : stabs) { |
| 1410 | nList->n_strx = entry.strx; |
| 1411 | nList->n_type = entry.type; |
| 1412 | nList->n_sect = entry.sect; |
| 1413 | nList->n_desc = entry.desc; |
| 1414 | nList->n_value = entry.value; |
| 1415 | ++nList; |
| 1416 | } |
| 1417 | |
| 1418 | for (const SymtabEntry &entry : concat<const SymtabEntry>( |
| 1419 | localSymbols, externalSymbols, undefinedSymbols)) { |
| 1420 | nList->n_strx = entry.strx; |
| 1421 | // TODO populate n_desc with more flags |
| 1422 | if (auto *defined = dyn_cast<Defined>(Val: entry.sym)) { |
| 1423 | uint8_t scope = 0; |
| 1424 | if (defined->privateExtern) { |
| 1425 | // Private external -- dylib scoped symbol. |
| 1426 | // Promote to non-external at link time. |
| 1427 | scope = N_PEXT; |
| 1428 | } else if (defined->isExternal()) { |
| 1429 | // Normal global symbol. |
| 1430 | scope = N_EXT; |
| 1431 | } else { |
| 1432 | // TU-local symbol from localSymbols. |
| 1433 | scope = 0; |
| 1434 | } |
| 1435 | |
| 1436 | if (defined->isAbsolute()) { |
| 1437 | nList->n_type = scope | N_ABS; |
| 1438 | nList->n_sect = NO_SECT; |
| 1439 | nList->n_value = defined->value; |
| 1440 | } else { |
| 1441 | nList->n_type = scope | N_SECT; |
| 1442 | nList->n_sect = defined->isec()->parent->index; |
| 1443 | // For the N_SECT symbol type, n_value is the address of the symbol |
| 1444 | nList->n_value = defined->getVA(); |
| 1445 | } |
| 1446 | nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; |
| 1447 | nList->n_desc |= |
| 1448 | defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; |
| 1449 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: entry.sym)) { |
| 1450 | uint16_t n_desc = nList->n_desc; |
| 1451 | int16_t ordinal = ordinalForDylibSymbol(dysym: *dysym); |
| 1452 | if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) |
| 1453 | SET_LIBRARY_ORDINAL(n_desc, ordinal: DYNAMIC_LOOKUP_ORDINAL); |
| 1454 | else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) |
| 1455 | SET_LIBRARY_ORDINAL(n_desc, ordinal: EXECUTABLE_ORDINAL); |
| 1456 | else { |
| 1457 | assert(ordinal > 0); |
| 1458 | SET_LIBRARY_ORDINAL(n_desc, ordinal: static_cast<uint8_t>(ordinal)); |
| 1459 | } |
| 1460 | |
| 1461 | nList->n_type = N_EXT; |
| 1462 | n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; |
| 1463 | n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; |
| 1464 | nList->n_desc = n_desc; |
| 1465 | } |
| 1466 | ++nList; |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | template <class LP> |
| 1471 | SymtabSection * |
| 1472 | macho::makeSymtabSection(StringTableSection &stringTableSection) { |
| 1473 | return make<SymtabSectionImpl<LP>>(stringTableSection); |
| 1474 | } |
| 1475 | |
| 1476 | IndirectSymtabSection::IndirectSymtabSection() |
| 1477 | : LinkEditSection(segment_names::linkEdit, |
| 1478 | section_names::indirectSymbolTable) {} |
| 1479 | |
| 1480 | uint32_t IndirectSymtabSection::getNumSymbols() const { |
| 1481 | uint32_t size = in.got->getEntries().size() + |
| 1482 | in.tlvPointers->getEntries().size() + |
| 1483 | in.stubs->getEntries().size(); |
| 1484 | if (!config->emitChainedFixups) |
| 1485 | size += in.stubs->getEntries().size(); |
| 1486 | return size; |
| 1487 | } |
| 1488 | |
| 1489 | bool IndirectSymtabSection::isNeeded() const { |
| 1490 | return in.got->isNeeded() || in.tlvPointers->isNeeded() || |
| 1491 | in.stubs->isNeeded(); |
| 1492 | } |
| 1493 | |
| 1494 | void IndirectSymtabSection::finalizeContents() { |
| 1495 | uint32_t off = 0; |
| 1496 | in.got->reserved1 = off; |
| 1497 | off += in.got->getEntries().size(); |
| 1498 | in.tlvPointers->reserved1 = off; |
| 1499 | off += in.tlvPointers->getEntries().size(); |
| 1500 | in.stubs->reserved1 = off; |
| 1501 | if (in.lazyPointers) { |
| 1502 | off += in.stubs->getEntries().size(); |
| 1503 | in.lazyPointers->reserved1 = off; |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | static uint32_t indirectValue(const Symbol *sym) { |
| 1508 | if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym)) |
| 1509 | return INDIRECT_SYMBOL_LOCAL; |
| 1510 | return sym->symtabIndex; |
| 1511 | } |
| 1512 | |
| 1513 | void IndirectSymtabSection::writeTo(uint8_t *buf) const { |
| 1514 | uint32_t off = 0; |
| 1515 | for (const Symbol *sym : in.got->getEntries()) { |
| 1516 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
| 1517 | ++off; |
| 1518 | } |
| 1519 | for (const Symbol *sym : in.tlvPointers->getEntries()) { |
| 1520 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
| 1521 | ++off; |
| 1522 | } |
| 1523 | for (const Symbol *sym : in.stubs->getEntries()) { |
| 1524 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
| 1525 | ++off; |
| 1526 | } |
| 1527 | |
| 1528 | if (in.lazyPointers) { |
| 1529 | // There is a 1:1 correspondence between stubs and LazyPointerSection |
| 1530 | // entries. But giving __stubs and __la_symbol_ptr the same reserved1 |
| 1531 | // (the offset into the indirect symbol table) so that they both refer |
| 1532 | // to the same range of offsets confuses `strip`, so write the stubs |
| 1533 | // symbol table offsets a second time. |
| 1534 | for (const Symbol *sym : in.stubs->getEntries()) { |
| 1535 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
| 1536 | ++off; |
| 1537 | } |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | StringTableSection::StringTableSection() |
| 1542 | : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} |
| 1543 | |
| 1544 | uint32_t StringTableSection::addString(StringRef str) { |
| 1545 | uint32_t strx = size; |
| 1546 | if (config->dedupSymbolStrings) { |
| 1547 | llvm::CachedHashStringRef hashedStr(str); |
| 1548 | auto [it, inserted] = stringMap.try_emplace(Key: hashedStr, Args&: strx); |
| 1549 | if (!inserted) |
| 1550 | return it->second; |
| 1551 | } |
| 1552 | |
| 1553 | strings.push_back(x: str); |
| 1554 | size += str.size() + 1; // account for null terminator |
| 1555 | return strx; |
| 1556 | } |
| 1557 | |
| 1558 | void StringTableSection::writeTo(uint8_t *buf) const { |
| 1559 | uint32_t off = 0; |
| 1560 | for (StringRef str : strings) { |
| 1561 | memcpy(dest: buf + off, src: str.data(), n: str.size()); |
| 1562 | off += str.size() + 1; // account for null terminator |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); |
| 1567 | static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); |
| 1568 | |
| 1569 | CodeSignatureSection::CodeSignatureSection() |
| 1570 | : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { |
| 1571 | align = 16; // required by libstuff |
| 1572 | |
| 1573 | // XXX: This mimics LD64, where it uses the install-name as codesign |
| 1574 | // identifier, if available. |
| 1575 | if (!config->installName.empty()) |
| 1576 | fileName = config->installName; |
| 1577 | else |
| 1578 | // FIXME: Consider using finalOutput instead of outputFile. |
| 1579 | fileName = config->outputFile; |
| 1580 | |
| 1581 | size_t slashIndex = fileName.rfind(Str: "/" ); |
| 1582 | if (slashIndex != std::string::npos) |
| 1583 | fileName = fileName.drop_front(N: slashIndex + 1); |
| 1584 | |
| 1585 | // NOTE: Any changes to these calculations should be repeated |
| 1586 | // in llvm-objcopy's MachOLayoutBuilder::layoutTail. |
| 1587 | allHeadersSize = alignTo<16>(Value: fixedHeadersSize + fileName.size() + 1); |
| 1588 | fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); |
| 1589 | } |
| 1590 | |
| 1591 | uint32_t CodeSignatureSection::getBlockCount() const { |
| 1592 | return (fileOff + blockSize - 1) / blockSize; |
| 1593 | } |
| 1594 | |
| 1595 | uint64_t CodeSignatureSection::getRawSize() const { |
| 1596 | return allHeadersSize + getBlockCount() * hashSize; |
| 1597 | } |
| 1598 | |
| 1599 | void CodeSignatureSection::writeHashes(uint8_t *buf) const { |
| 1600 | // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
| 1601 | // MachOWriter::writeSignatureData. |
| 1602 | uint8_t *hashes = buf + fileOff + allHeadersSize; |
| 1603 | parallelFor(Begin: 0, End: getBlockCount(), Fn: [&](size_t i) { |
| 1604 | sha256(data: buf + i * blockSize, |
| 1605 | len: std::min(a: static_cast<size_t>(fileOff - i * blockSize), b: blockSize), |
| 1606 | output: hashes + i * hashSize); |
| 1607 | }); |
| 1608 | #if defined(__APPLE__) |
| 1609 | // This is macOS-specific work-around and makes no sense for any |
| 1610 | // other host OS. See https://openradar.appspot.com/FB8914231 |
| 1611 | // |
| 1612 | // The macOS kernel maintains a signature-verification cache to |
| 1613 | // quickly validate applications at time of execve(2). The trouble |
| 1614 | // is that for the kernel creates the cache entry at the time of the |
| 1615 | // mmap(2) call, before we have a chance to write either the code to |
| 1616 | // sign or the signature header+hashes. The fix is to invalidate |
| 1617 | // all cached data associated with the output file, thus discarding |
| 1618 | // the bogus prematurely-cached signature. |
| 1619 | msync(buf, fileOff + getSize(), MS_INVALIDATE); |
| 1620 | #endif |
| 1621 | } |
| 1622 | |
| 1623 | void CodeSignatureSection::writeTo(uint8_t *buf) const { |
| 1624 | // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
| 1625 | // MachOWriter::writeSignatureData. |
| 1626 | uint32_t signatureSize = static_cast<uint32_t>(getSize()); |
| 1627 | auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); |
| 1628 | write32be(P: &superBlob->magic, V: CSMAGIC_EMBEDDED_SIGNATURE); |
| 1629 | write32be(P: &superBlob->length, V: signatureSize); |
| 1630 | write32be(P: &superBlob->count, V: 1); |
| 1631 | auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); |
| 1632 | write32be(P: &blobIndex->type, V: CSSLOT_CODEDIRECTORY); |
| 1633 | write32be(P: &blobIndex->offset, V: blobHeadersSize); |
| 1634 | auto *codeDirectory = |
| 1635 | reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); |
| 1636 | write32be(P: &codeDirectory->magic, V: CSMAGIC_CODEDIRECTORY); |
| 1637 | write32be(P: &codeDirectory->length, V: signatureSize - blobHeadersSize); |
| 1638 | write32be(P: &codeDirectory->version, V: CS_SUPPORTSEXECSEG); |
| 1639 | write32be(P: &codeDirectory->flags, V: CS_ADHOC | CS_LINKER_SIGNED); |
| 1640 | write32be(P: &codeDirectory->hashOffset, |
| 1641 | V: sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); |
| 1642 | write32be(P: &codeDirectory->identOffset, V: sizeof(CS_CodeDirectory)); |
| 1643 | codeDirectory->nSpecialSlots = 0; |
| 1644 | write32be(P: &codeDirectory->nCodeSlots, V: getBlockCount()); |
| 1645 | write32be(P: &codeDirectory->codeLimit, V: fileOff); |
| 1646 | codeDirectory->hashSize = static_cast<uint8_t>(hashSize); |
| 1647 | codeDirectory->hashType = kSecCodeSignatureHashSHA256; |
| 1648 | codeDirectory->platform = 0; |
| 1649 | codeDirectory->pageSize = blockSizeShift; |
| 1650 | codeDirectory->spare2 = 0; |
| 1651 | codeDirectory->scatterOffset = 0; |
| 1652 | codeDirectory->teamOffset = 0; |
| 1653 | codeDirectory->spare3 = 0; |
| 1654 | codeDirectory->codeLimit64 = 0; |
| 1655 | OutputSegment *textSeg = getOrCreateOutputSegment(name: segment_names::text); |
| 1656 | write64be(P: &codeDirectory->execSegBase, V: textSeg->fileOff); |
| 1657 | write64be(P: &codeDirectory->execSegLimit, V: textSeg->fileSize); |
| 1658 | write64be(P: &codeDirectory->execSegFlags, |
| 1659 | V: config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); |
| 1660 | auto *id = reinterpret_cast<char *>(&codeDirectory[1]); |
| 1661 | memcpy(dest: id, src: fileName.begin(), n: fileName.size()); |
| 1662 | memset(s: id + fileName.size(), c: 0, n: fileNamePad); |
| 1663 | } |
| 1664 | |
| 1665 | CStringSection::CStringSection(const char *name) |
| 1666 | : SyntheticSection(segment_names::text, name) { |
| 1667 | flags = S_CSTRING_LITERALS; |
| 1668 | } |
| 1669 | |
| 1670 | void CStringSection::addInput(CStringInputSection *isec) { |
| 1671 | isec->parent = this; |
| 1672 | inputs.push_back(x: isec); |
| 1673 | if (isec->align > align) |
| 1674 | align = isec->align; |
| 1675 | } |
| 1676 | |
| 1677 | void CStringSection::writeTo(uint8_t *buf) const { |
| 1678 | for (const CStringInputSection *isec : inputs) { |
| 1679 | for (const auto &[i, piece] : llvm::enumerate(First: isec->pieces)) { |
| 1680 | if (!piece.live) |
| 1681 | continue; |
| 1682 | StringRef string = isec->getStringRef(i); |
| 1683 | memcpy(dest: buf + piece.outSecOff, src: string.data(), n: string.size()); |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | void CStringSection::finalizeContents() { |
| 1689 | uint64_t offset = 0; |
| 1690 | for (CStringInputSection *isec : inputs) { |
| 1691 | for (const auto &[i, piece] : llvm::enumerate(First&: isec->pieces)) { |
| 1692 | if (!piece.live) |
| 1693 | continue; |
| 1694 | // See comment above DeduplicatedCStringSection for how alignment is |
| 1695 | // handled. |
| 1696 | uint32_t pieceAlign = 1 |
| 1697 | << llvm::countr_zero(Val: isec->align | piece.inSecOff); |
| 1698 | offset = alignToPowerOf2(Value: offset, Align: pieceAlign); |
| 1699 | piece.outSecOff = offset; |
| 1700 | isec->isFinal = true; |
| 1701 | StringRef string = isec->getStringRef(i); |
| 1702 | offset += string.size() + 1; // account for null terminator |
| 1703 | } |
| 1704 | } |
| 1705 | size = offset; |
| 1706 | } |
| 1707 | |
| 1708 | // Mergeable cstring literals are found under the __TEXT,__cstring section. In |
| 1709 | // contrast to ELF, which puts strings that need different alignments into |
| 1710 | // different sections, clang's Mach-O backend puts them all in one section. |
| 1711 | // Strings that need to be aligned have the .p2align directive emitted before |
| 1712 | // them, which simply translates into zero padding in the object file. In other |
| 1713 | // words, we have to infer the desired alignment of these cstrings from their |
| 1714 | // addresses. |
| 1715 | // |
| 1716 | // We differ slightly from ld64 in how we've chosen to align these cstrings. |
| 1717 | // Both LLD and ld64 preserve the number of trailing zeros in each cstring's |
| 1718 | // address in the input object files. When deduplicating identical cstrings, |
| 1719 | // both linkers pick the cstring whose address has more trailing zeros, and |
| 1720 | // preserve the alignment of that address in the final binary. However, ld64 |
| 1721 | // goes a step further and also preserves the offset of the cstring from the |
| 1722 | // last section-aligned address. I.e. if a cstring is at offset 18 in the |
| 1723 | // input, with a section alignment of 16, then both LLD and ld64 will ensure the |
| 1724 | // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also |
| 1725 | // ensure that the final address is of the form 16 * k + 2 for some k. |
| 1726 | // |
| 1727 | // Note that ld64's heuristic means that a dedup'ed cstring's final address is |
| 1728 | // dependent on the order of the input object files. E.g. if in addition to the |
| 1729 | // cstring at offset 18 above, we have a duplicate one in another file with a |
| 1730 | // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick |
| 1731 | // the cstring from the object file earlier on the command line (since both have |
| 1732 | // the same number of trailing zeros in their address). So the final cstring may |
| 1733 | // either be at some address `16 * k + 2` or at some address `2 * k`. |
| 1734 | // |
| 1735 | // I've opted not to follow this behavior primarily for implementation |
| 1736 | // simplicity, and secondarily to save a few more bytes. It's not clear to me |
| 1737 | // that preserving the section alignment + offset is ever necessary, and there |
| 1738 | // are many cases that are clearly redundant. In particular, if an x86_64 object |
| 1739 | // file contains some strings that are accessed via SIMD instructions, then the |
| 1740 | // .cstring section in the object file will be 16-byte-aligned (since SIMD |
| 1741 | // requires its operand addresses to be 16-byte aligned). However, there will |
| 1742 | // typically also be other cstrings in the same file that aren't used via SIMD |
| 1743 | // and don't need this alignment. They will be emitted at some arbitrary address |
| 1744 | // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 |
| 1745 | // % A`. |
| 1746 | void DeduplicatedCStringSection::finalizeContents() { |
| 1747 | // Find the largest alignment required for each string. |
| 1748 | for (const CStringInputSection *isec : inputs) { |
| 1749 | for (const auto &[i, piece] : llvm::enumerate(First: isec->pieces)) { |
| 1750 | if (!piece.live) |
| 1751 | continue; |
| 1752 | auto s = isec->getCachedHashStringRef(i); |
| 1753 | assert(isec->align != 0); |
| 1754 | uint8_t trailingZeros = llvm::countr_zero(Val: isec->align | piece.inSecOff); |
| 1755 | auto it = stringOffsetMap.insert( |
| 1756 | KV: std::make_pair(x&: s, y: StringOffset(trailingZeros))); |
| 1757 | if (!it.second && it.first->second.trailingZeros < trailingZeros) |
| 1758 | it.first->second.trailingZeros = trailingZeros; |
| 1759 | } |
| 1760 | } |
| 1761 | |
| 1762 | // Sort the strings for performance and compression size win, and then |
| 1763 | // assign an offset for each string and save it to the corresponding |
| 1764 | // StringPieces for easy access. |
| 1765 | for (auto &[isec, i] : priorityBuilder.buildCStringPriorities(inputs)) { |
| 1766 | auto &piece = isec->pieces[i]; |
| 1767 | auto s = isec->getCachedHashStringRef(i); |
| 1768 | auto it = stringOffsetMap.find(Val: s); |
| 1769 | assert(it != stringOffsetMap.end()); |
| 1770 | lld::macho::DeduplicatedCStringSection::StringOffset &offsetInfo = |
| 1771 | it->second; |
| 1772 | if (offsetInfo.outSecOff == UINT64_MAX) { |
| 1773 | offsetInfo.outSecOff = |
| 1774 | alignToPowerOf2(Value: size, Align: 1ULL << offsetInfo.trailingZeros); |
| 1775 | size = offsetInfo.outSecOff + s.size() + 1; // account for null terminator |
| 1776 | } |
| 1777 | piece.outSecOff = offsetInfo.outSecOff; |
| 1778 | } |
| 1779 | for (CStringInputSection *isec : inputs) |
| 1780 | isec->isFinal = true; |
| 1781 | } |
| 1782 | |
| 1783 | void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { |
| 1784 | for (const auto &p : stringOffsetMap) { |
| 1785 | StringRef data = p.first.val(); |
| 1786 | uint64_t off = p.second.outSecOff; |
| 1787 | if (!data.empty()) |
| 1788 | memcpy(dest: buf + off, src: data.data(), n: data.size()); |
| 1789 | } |
| 1790 | } |
| 1791 | |
| 1792 | DeduplicatedCStringSection::StringOffset |
| 1793 | DeduplicatedCStringSection::getStringOffset(StringRef str) const { |
| 1794 | // StringPiece uses 31 bits to store the hashes, so we replicate that |
| 1795 | uint32_t hash = xxh3_64bits(data: str) & 0x7fffffff; |
| 1796 | auto offset = stringOffsetMap.find(Val: CachedHashStringRef(str, hash)); |
| 1797 | assert(offset != stringOffsetMap.end() && |
| 1798 | "Looked-up strings should always exist in section" ); |
| 1799 | return offset->second; |
| 1800 | } |
| 1801 | |
| 1802 | // This section is actually emitted as __TEXT,__const by ld64, but clang may |
| 1803 | // emit input sections of that name, and LLD doesn't currently support mixing |
| 1804 | // synthetic and concat-type OutputSections. To work around this, I've given |
| 1805 | // our merged-literals section a different name. |
| 1806 | WordLiteralSection::WordLiteralSection() |
| 1807 | : SyntheticSection(segment_names::text, section_names::literals) { |
| 1808 | align = 16; |
| 1809 | } |
| 1810 | |
| 1811 | void WordLiteralSection::addInput(WordLiteralInputSection *isec) { |
| 1812 | isec->parent = this; |
| 1813 | inputs.push_back(x: isec); |
| 1814 | } |
| 1815 | |
| 1816 | void WordLiteralSection::finalizeContents() { |
| 1817 | for (WordLiteralInputSection *isec : inputs) { |
| 1818 | // We do all processing of the InputSection here, so it will be effectively |
| 1819 | // finalized. |
| 1820 | isec->isFinal = true; |
| 1821 | const uint8_t *buf = isec->data.data(); |
| 1822 | switch (sectionType(flags: isec->getFlags())) { |
| 1823 | case S_4BYTE_LITERALS: { |
| 1824 | for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { |
| 1825 | if (!isec->isLive(off)) |
| 1826 | continue; |
| 1827 | uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); |
| 1828 | literal4Map.emplace(args&: value, args: literal4Map.size()); |
| 1829 | } |
| 1830 | break; |
| 1831 | } |
| 1832 | case S_8BYTE_LITERALS: { |
| 1833 | for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { |
| 1834 | if (!isec->isLive(off)) |
| 1835 | continue; |
| 1836 | uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); |
| 1837 | literal8Map.emplace(args&: value, args: literal8Map.size()); |
| 1838 | } |
| 1839 | break; |
| 1840 | } |
| 1841 | case S_16BYTE_LITERALS: { |
| 1842 | for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { |
| 1843 | if (!isec->isLive(off)) |
| 1844 | continue; |
| 1845 | UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); |
| 1846 | literal16Map.emplace(args&: value, args: literal16Map.size()); |
| 1847 | } |
| 1848 | break; |
| 1849 | } |
| 1850 | default: |
| 1851 | llvm_unreachable("invalid literal section type" ); |
| 1852 | } |
| 1853 | } |
| 1854 | } |
| 1855 | |
| 1856 | void WordLiteralSection::writeTo(uint8_t *buf) const { |
| 1857 | // Note that we don't attempt to do any endianness conversion in addInput(), |
| 1858 | // so we don't do it here either -- just write out the original value, |
| 1859 | // byte-for-byte. |
| 1860 | for (const auto &p : literal16Map) |
| 1861 | memcpy(dest: buf + p.second * 16, src: &p.first, n: 16); |
| 1862 | buf += literal16Map.size() * 16; |
| 1863 | |
| 1864 | for (const auto &p : literal8Map) |
| 1865 | memcpy(dest: buf + p.second * 8, src: &p.first, n: 8); |
| 1866 | buf += literal8Map.size() * 8; |
| 1867 | |
| 1868 | for (const auto &p : literal4Map) |
| 1869 | memcpy(dest: buf + p.second * 4, src: &p.first, n: 4); |
| 1870 | } |
| 1871 | |
| 1872 | ObjCImageInfoSection::ObjCImageInfoSection() |
| 1873 | : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} |
| 1874 | |
| 1875 | ObjCImageInfoSection::ImageInfo |
| 1876 | ObjCImageInfoSection::parseImageInfo(const InputFile *file) { |
| 1877 | ImageInfo info; |
| 1878 | ArrayRef<uint8_t> data = file->objCImageInfo; |
| 1879 | // The image info struct has the following layout: |
| 1880 | // struct { |
| 1881 | // uint32_t version; |
| 1882 | // uint32_t flags; |
| 1883 | // }; |
| 1884 | if (data.size() < 8) { |
| 1885 | warn(msg: toString(file) + ": invalid __objc_imageinfo size" ); |
| 1886 | return info; |
| 1887 | } |
| 1888 | |
| 1889 | auto *buf = reinterpret_cast<const uint32_t *>(data.data()); |
| 1890 | if (read32le(P: buf) != 0) { |
| 1891 | warn(msg: toString(file) + ": invalid __objc_imageinfo version" ); |
| 1892 | return info; |
| 1893 | } |
| 1894 | |
| 1895 | uint32_t flags = read32le(P: buf + 1); |
| 1896 | info.swiftVersion = (flags >> 8) & 0xff; |
| 1897 | info.hasCategoryClassProperties = flags & 0x40; |
| 1898 | return info; |
| 1899 | } |
| 1900 | |
| 1901 | static std::string swiftVersionString(uint8_t version) { |
| 1902 | switch (version) { |
| 1903 | case 1: |
| 1904 | return "1.0" ; |
| 1905 | case 2: |
| 1906 | return "1.1" ; |
| 1907 | case 3: |
| 1908 | return "2.0" ; |
| 1909 | case 4: |
| 1910 | return "3.0" ; |
| 1911 | case 5: |
| 1912 | return "4.0" ; |
| 1913 | default: |
| 1914 | return ("0x" + Twine::utohexstr(Val: version)).str(); |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | // Validate each object file's __objc_imageinfo and use them to generate the |
| 1919 | // image info for the output binary. Only two pieces of info are relevant: |
| 1920 | // 1. The Swift version (should be identical across inputs) |
| 1921 | // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) |
| 1922 | void ObjCImageInfoSection::finalizeContents() { |
| 1923 | assert(files.size() != 0); // should have already been checked via isNeeded() |
| 1924 | |
| 1925 | info.hasCategoryClassProperties = true; |
| 1926 | const InputFile *firstFile; |
| 1927 | for (const InputFile *file : files) { |
| 1928 | ImageInfo inputInfo = parseImageInfo(file); |
| 1929 | info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; |
| 1930 | |
| 1931 | // swiftVersion 0 means no Swift is present, so no version checking required |
| 1932 | if (inputInfo.swiftVersion == 0) |
| 1933 | continue; |
| 1934 | |
| 1935 | if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { |
| 1936 | error(msg: "Swift version mismatch: " + toString(file: firstFile) + " has version " + |
| 1937 | swiftVersionString(version: info.swiftVersion) + " but " + toString(file) + |
| 1938 | " has version " + swiftVersionString(version: inputInfo.swiftVersion)); |
| 1939 | } else { |
| 1940 | info.swiftVersion = inputInfo.swiftVersion; |
| 1941 | firstFile = file; |
| 1942 | } |
| 1943 | } |
| 1944 | } |
| 1945 | |
| 1946 | void ObjCImageInfoSection::writeTo(uint8_t *buf) const { |
| 1947 | uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; |
| 1948 | flags |= info.swiftVersion << 8; |
| 1949 | write32le(P: buf + 4, V: flags); |
| 1950 | } |
| 1951 | |
| 1952 | InitOffsetsSection::InitOffsetsSection() |
| 1953 | : SyntheticSection(segment_names::text, section_names::initOffsets) { |
| 1954 | flags = S_INIT_FUNC_OFFSETS; |
| 1955 | align = 4; // This section contains 32-bit integers. |
| 1956 | } |
| 1957 | |
| 1958 | uint64_t InitOffsetsSection::getSize() const { |
| 1959 | size_t count = 0; |
| 1960 | for (const ConcatInputSection *isec : sections) |
| 1961 | count += isec->relocs.size(); |
| 1962 | return count * sizeof(uint32_t); |
| 1963 | } |
| 1964 | |
| 1965 | void InitOffsetsSection::writeTo(uint8_t *buf) const { |
| 1966 | // FIXME: Add function specified by -init when that argument is implemented. |
| 1967 | for (ConcatInputSection *isec : sections) { |
| 1968 | for (const Reloc &rel : isec->relocs) { |
| 1969 | const Symbol *referent = cast<Symbol *>(Val: rel.referent); |
| 1970 | assert(referent && "section relocation should have been rejected" ); |
| 1971 | uint64_t offset = referent->getVA() - in.header->addr; |
| 1972 | // FIXME: Can we handle this gracefully? |
| 1973 | if (offset > UINT32_MAX) |
| 1974 | fatal(msg: isec->getLocation(off: rel.offset) + ": offset to initializer " + |
| 1975 | referent->getName() + " (" + utohexstr(X: offset) + |
| 1976 | ") does not fit in 32 bits" ); |
| 1977 | |
| 1978 | // Entries need to be added in the order they appear in the section, but |
| 1979 | // relocations aren't guaranteed to be sorted. |
| 1980 | size_t index = rel.offset >> target->p2WordSize; |
| 1981 | write32le(P: &buf[index * sizeof(uint32_t)], V: offset); |
| 1982 | } |
| 1983 | buf += isec->relocs.size() * sizeof(uint32_t); |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | // The inputs are __mod_init_func sections, which contain pointers to |
| 1988 | // initializer functions, therefore all relocations should be of the UNSIGNED |
| 1989 | // type. InitOffsetsSection stores offsets, so if the initializer's address is |
| 1990 | // not known at link time, stub-indirection has to be used. |
| 1991 | void InitOffsetsSection::setUp() { |
| 1992 | for (const ConcatInputSection *isec : sections) { |
| 1993 | for (const Reloc &rel : isec->relocs) { |
| 1994 | RelocAttrs attrs = target->getRelocAttrs(type: rel.type); |
| 1995 | if (!attrs.hasAttr(b: RelocAttrBits::UNSIGNED)) |
| 1996 | error(msg: isec->getLocation(off: rel.offset) + |
| 1997 | ": unsupported relocation type: " + attrs.name); |
| 1998 | if (rel.addend != 0) |
| 1999 | error(msg: isec->getLocation(off: rel.offset) + |
| 2000 | ": relocation addend is not representable in __init_offsets" ); |
| 2001 | if (isa<InputSection *>(Val: rel.referent)) |
| 2002 | error(msg: isec->getLocation(off: rel.offset) + |
| 2003 | ": unexpected section relocation" ); |
| 2004 | |
| 2005 | Symbol *sym = rel.referent.dyn_cast<Symbol *>(); |
| 2006 | if (auto *undefined = dyn_cast<Undefined>(Val: sym)) |
| 2007 | treatUndefinedSymbol(*undefined, isec, offset: rel.offset); |
| 2008 | if (needsBinding(sym)) |
| 2009 | in.stubs->addEntry(sym); |
| 2010 | } |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | ObjCMethListSection::ObjCMethListSection() |
| 2015 | : SyntheticSection(segment_names::text, section_names::objcMethList) { |
| 2016 | flags = S_ATTR_NO_DEAD_STRIP; |
| 2017 | align = relativeOffsetSize; |
| 2018 | } |
| 2019 | |
| 2020 | // Go through all input method lists and ensure that we have selrefs for all |
| 2021 | // their method names. The selrefs will be needed later by ::writeTo. We need to |
| 2022 | // create them early on here to ensure they are processed correctly by the lld |
| 2023 | // pipeline. |
| 2024 | void ObjCMethListSection::setUp() { |
| 2025 | for (const ConcatInputSection *isec : inputs) { |
| 2026 | uint32_t structSizeAndFlags = 0, structCount = 0; |
| 2027 | readMethodListHeader(buf: isec->data.data(), structSizeAndFlags, structCount); |
| 2028 | uint32_t originalStructSize = structSizeAndFlags & structSizeMask; |
| 2029 | // Method name is immediately after header |
| 2030 | uint32_t methodNameOff = methodListHeaderSize; |
| 2031 | |
| 2032 | // Loop through all methods, and ensure a selref for each of them exists. |
| 2033 | while (methodNameOff < isec->data.size()) { |
| 2034 | const Reloc *reloc = isec->getRelocAt(off: methodNameOff); |
| 2035 | assert(reloc && "Relocation expected at method list name slot" ); |
| 2036 | |
| 2037 | StringRef methname = reloc->getReferentString(); |
| 2038 | if (!ObjCSelRefsHelper::getSelRef(methname)) |
| 2039 | ObjCSelRefsHelper::makeSelRef(methname); |
| 2040 | |
| 2041 | // Jump to method name offset in next struct |
| 2042 | methodNameOff += originalStructSize; |
| 2043 | } |
| 2044 | } |
| 2045 | } |
| 2046 | |
| 2047 | // Calculate section size and final offsets for where InputSection's need to be |
| 2048 | // written. |
| 2049 | void ObjCMethListSection::finalize() { |
| 2050 | // sectionSize will be the total size of the __objc_methlist section |
| 2051 | sectionSize = 0; |
| 2052 | for (ConcatInputSection *isec : inputs) { |
| 2053 | // We can also use sectionSize as write offset for isec |
| 2054 | assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) && |
| 2055 | "expected __objc_methlist to be aligned by default with the " |
| 2056 | "required section alignment" ); |
| 2057 | isec->outSecOff = sectionSize; |
| 2058 | |
| 2059 | isec->isFinal = true; |
| 2060 | uint32_t relativeListSize = |
| 2061 | computeRelativeMethodListSize(absoluteMethodListSize: isec->data.size()); |
| 2062 | sectionSize += relativeListSize; |
| 2063 | |
| 2064 | // If encoding the method list in relative offset format shrinks the size, |
| 2065 | // then we also need to adjust symbol sizes to match the new size. Note that |
| 2066 | // on 32bit platforms the size of the method list will remain the same when |
| 2067 | // encoded in relative offset format. |
| 2068 | if (relativeListSize != isec->data.size()) { |
| 2069 | for (Symbol *sym : isec->symbols) { |
| 2070 | assert(isa<Defined>(sym) && |
| 2071 | "Unexpected undefined symbol in ObjC method list" ); |
| 2072 | auto *def = cast<Defined>(Val: sym); |
| 2073 | // There can be 0-size symbols, check if this is the case and ignore |
| 2074 | // them. |
| 2075 | if (def->size) { |
| 2076 | assert( |
| 2077 | def->size == isec->data.size() && |
| 2078 | "Invalid ObjC method list symbol size: expected symbol size to " |
| 2079 | "match isec size" ); |
| 2080 | def->size = relativeListSize; |
| 2081 | } |
| 2082 | } |
| 2083 | } |
| 2084 | } |
| 2085 | } |
| 2086 | |
| 2087 | void ObjCMethListSection::writeTo(uint8_t *bufStart) const { |
| 2088 | uint8_t *buf = bufStart; |
| 2089 | for (const ConcatInputSection *isec : inputs) { |
| 2090 | assert(buf - bufStart == std::ptrdiff_t(isec->outSecOff) && |
| 2091 | "Writing at unexpected offset" ); |
| 2092 | uint32_t writtenSize = writeRelativeMethodList(isec, buf); |
| 2093 | buf += writtenSize; |
| 2094 | } |
| 2095 | assert(buf - bufStart == std::ptrdiff_t(sectionSize) && |
| 2096 | "Written size does not match expected section size" ); |
| 2097 | } |
| 2098 | |
| 2099 | // Check if an InputSection is a method list. To do this we scan the |
| 2100 | // InputSection for any symbols who's names match the patterns we expect clang |
| 2101 | // to generate for method lists. |
| 2102 | bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) { |
| 2103 | const char *symPrefixes[] = {objc::symbol_names::classMethods, |
| 2104 | objc::symbol_names::instanceMethods, |
| 2105 | objc::symbol_names::categoryInstanceMethods, |
| 2106 | objc::symbol_names::categoryClassMethods}; |
| 2107 | if (!isec) |
| 2108 | return false; |
| 2109 | for (const Symbol *sym : isec->symbols) { |
| 2110 | auto *def = dyn_cast_or_null<Defined>(Val: sym); |
| 2111 | if (!def) |
| 2112 | continue; |
| 2113 | for (const char *prefix : symPrefixes) { |
| 2114 | if (def->getName().starts_with(Prefix: prefix)) { |
| 2115 | assert(def->size == isec->data.size() && |
| 2116 | "Invalid ObjC method list symbol size: expected symbol size to " |
| 2117 | "match isec size" ); |
| 2118 | assert(def->value == 0 && |
| 2119 | "Offset of ObjC method list symbol must be 0" ); |
| 2120 | return true; |
| 2121 | } |
| 2122 | } |
| 2123 | } |
| 2124 | |
| 2125 | return false; |
| 2126 | } |
| 2127 | |
| 2128 | // Encode a single relative offset value. The input is the data/symbol at |
| 2129 | // (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]). |
| 2130 | // 'createSelRef' indicates that we should not directly use the specified |
| 2131 | // symbol, but instead get the selRef for the symbol and use that instead. |
| 2132 | void ObjCMethListSection::writeRelativeOffsetForIsec( |
| 2133 | const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff, |
| 2134 | uint32_t &outSecOff, bool useSelRef) const { |
| 2135 | const Reloc *reloc = isec->getRelocAt(off: inSecOff); |
| 2136 | assert(reloc && "Relocation expected at __objc_methlist Offset" ); |
| 2137 | |
| 2138 | uint32_t symVA = 0; |
| 2139 | if (useSelRef) { |
| 2140 | StringRef methname = reloc->getReferentString(); |
| 2141 | ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); |
| 2142 | assert(selRef && "Expected all selector names to already be already be " |
| 2143 | "present in __objc_selrefs" ); |
| 2144 | symVA = selRef->getVA(); |
| 2145 | assert(selRef->data.size() == target->wordSize && |
| 2146 | "Expected one selref per ConcatInputSection" ); |
| 2147 | } else if (auto *sym = dyn_cast<Symbol *>(Val: reloc->referent)) { |
| 2148 | auto *def = dyn_cast_or_null<Defined>(Val: sym); |
| 2149 | assert(def && "Expected all syms in __objc_methlist to be defined" ); |
| 2150 | symVA = def->getVA(); |
| 2151 | } else { |
| 2152 | auto *isec = cast<InputSection *>(Val: reloc->referent); |
| 2153 | symVA = isec->getVA(off: reloc->addend); |
| 2154 | } |
| 2155 | |
| 2156 | uint32_t currentVA = isec->getVA() + outSecOff; |
| 2157 | uint32_t delta = symVA - currentVA; |
| 2158 | write32le(P: buf + outSecOff, V: delta); |
| 2159 | |
| 2160 | // Move one pointer forward in the absolute method list |
| 2161 | inSecOff += target->wordSize; |
| 2162 | // Move one relative offset forward in the relative method list (32 bits) |
| 2163 | outSecOff += relativeOffsetSize; |
| 2164 | } |
| 2165 | |
| 2166 | // Write a relative method list to buf, return the size of the written |
| 2167 | // information |
| 2168 | uint32_t |
| 2169 | ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec, |
| 2170 | uint8_t *buf) const { |
| 2171 | // Copy over the header, and add the "this is a relative method list" magic |
| 2172 | // value flag |
| 2173 | uint32_t structSizeAndFlags = 0, structCount = 0; |
| 2174 | readMethodListHeader(buf: isec->data.data(), structSizeAndFlags, structCount); |
| 2175 | // Set the struct size for the relative method list |
| 2176 | uint32_t relativeStructSizeAndFlags = |
| 2177 | (relativeOffsetSize * pointersPerStruct) & structSizeMask; |
| 2178 | // Carry over the old flags from the input struct |
| 2179 | relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask; |
| 2180 | // Set the relative method list flag |
| 2181 | relativeStructSizeAndFlags |= relMethodHeaderFlag; |
| 2182 | |
| 2183 | writeMethodListHeader(buf, structSizeAndFlags: relativeStructSizeAndFlags, structCount); |
| 2184 | |
| 2185 | assert(methodListHeaderSize + |
| 2186 | (structCount * pointersPerStruct * target->wordSize) == |
| 2187 | isec->data.size() && |
| 2188 | "Invalid computed ObjC method list size" ); |
| 2189 | |
| 2190 | uint32_t inSecOff = methodListHeaderSize; |
| 2191 | uint32_t outSecOff = methodListHeaderSize; |
| 2192 | |
| 2193 | // Go through the method list and encode input absolute pointers as relative |
| 2194 | // offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and |
| 2195 | // outSecOff |
| 2196 | for (uint32_t i = 0; i < structCount; i++) { |
| 2197 | // Write the name of the method |
| 2198 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: true); |
| 2199 | // Write the type of the method |
| 2200 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: false); |
| 2201 | // Write reference to the selector of the method |
| 2202 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: false); |
| 2203 | } |
| 2204 | |
| 2205 | // Expecting to have read all the data in the isec |
| 2206 | assert(inSecOff == isec->data.size() && |
| 2207 | "Invalid actual ObjC method list size" ); |
| 2208 | assert( |
| 2209 | outSecOff == computeRelativeMethodListSize(inSecOff) && |
| 2210 | "Mismatch between input & output size when writing relative method list" ); |
| 2211 | return outSecOff; |
| 2212 | } |
| 2213 | |
| 2214 | // Given the size of an ObjC method list InputSection, return the size of the |
| 2215 | // method list when encoded in relative offsets format. We can do this without |
| 2216 | // decoding the actual data, as it can be directly inferred from the size of the |
| 2217 | // isec. |
| 2218 | uint32_t ObjCMethListSection::computeRelativeMethodListSize( |
| 2219 | uint32_t absoluteMethodListSize) const { |
| 2220 | uint32_t = absoluteMethodListSize - methodListHeaderSize; |
| 2221 | uint32_t pointerCount = oldPointersSize / target->wordSize; |
| 2222 | assert(((pointerCount % pointersPerStruct) == 0) && |
| 2223 | "__objc_methlist expects method lists to have multiple-of-3 pointers" ); |
| 2224 | |
| 2225 | uint32_t = pointerCount * relativeOffsetSize; |
| 2226 | uint32_t newTotalSize = methodListHeaderSize + newPointersSize; |
| 2227 | |
| 2228 | assert((newTotalSize <= absoluteMethodListSize) && |
| 2229 | "Expected relative method list size to be smaller or equal than " |
| 2230 | "original size" ); |
| 2231 | return newTotalSize; |
| 2232 | } |
| 2233 | |
| 2234 | // Read a method list header from buf |
| 2235 | void ObjCMethListSection::(const uint8_t *buf, |
| 2236 | uint32_t &structSizeAndFlags, |
| 2237 | uint32_t &structCount) const { |
| 2238 | structSizeAndFlags = read32le(P: buf); |
| 2239 | structCount = read32le(P: buf + sizeof(uint32_t)); |
| 2240 | } |
| 2241 | |
| 2242 | // Write a method list header to buf |
| 2243 | void ObjCMethListSection::(uint8_t *buf, |
| 2244 | uint32_t structSizeAndFlags, |
| 2245 | uint32_t structCount) const { |
| 2246 | write32le(P: buf, V: structSizeAndFlags); |
| 2247 | write32le(P: buf + sizeof(structSizeAndFlags), V: structCount); |
| 2248 | } |
| 2249 | |
| 2250 | void macho::createSyntheticSymbols() { |
| 2251 | auto = [](const char *name) { |
| 2252 | symtab->addSynthetic(name, in.header->isec, /*value=*/0, |
| 2253 | /*isPrivateExtern=*/true, /*includeInSymtab=*/false, |
| 2254 | /*referencedDynamically=*/false); |
| 2255 | }; |
| 2256 | |
| 2257 | switch (config->outputType) { |
| 2258 | // FIXME: Assign the right address value for these symbols |
| 2259 | // (rather than 0). But we need to do that after assignAddresses(). |
| 2260 | case MH_EXECUTE: |
| 2261 | // If linking PIE, __mh_execute_header is a defined symbol in |
| 2262 | // __TEXT, __text) |
| 2263 | // Otherwise, it's an absolute symbol. |
| 2264 | if (config->isPic) |
| 2265 | symtab->addSynthetic(name: "__mh_execute_header" , in.header->isec, /*value=*/0, |
| 2266 | /*isPrivateExtern=*/false, /*includeInSymtab=*/true, |
| 2267 | /*referencedDynamically=*/true); |
| 2268 | else |
| 2269 | symtab->addSynthetic(name: "__mh_execute_header" , /*isec=*/nullptr, /*value=*/0, |
| 2270 | /*isPrivateExtern=*/false, /*includeInSymtab=*/true, |
| 2271 | /*referencedDynamically=*/true); |
| 2272 | break; |
| 2273 | |
| 2274 | // The following symbols are N_SECT symbols, even though the header is not |
| 2275 | // part of any section and that they are private to the bundle/dylib/object |
| 2276 | // they are part of. |
| 2277 | case MH_BUNDLE: |
| 2278 | addHeaderSymbol("__mh_bundle_header" ); |
| 2279 | break; |
| 2280 | case MH_DYLIB: |
| 2281 | addHeaderSymbol("__mh_dylib_header" ); |
| 2282 | break; |
| 2283 | case MH_DYLINKER: |
| 2284 | addHeaderSymbol("__mh_dylinker_header" ); |
| 2285 | break; |
| 2286 | case MH_OBJECT: |
| 2287 | addHeaderSymbol("__mh_object_header" ); |
| 2288 | break; |
| 2289 | default: |
| 2290 | llvm_unreachable("unexpected outputType" ); |
| 2291 | break; |
| 2292 | } |
| 2293 | |
| 2294 | // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit |
| 2295 | // which does e.g. cleanup of static global variables. The ABI document |
| 2296 | // says that the pointer can point to any address in one of the dylib's |
| 2297 | // segments, but in practice ld64 seems to set it to point to the header, |
| 2298 | // so that's what's implemented here. |
| 2299 | addHeaderSymbol("___dso_handle" ); |
| 2300 | } |
| 2301 | |
| 2302 | ChainedFixupsSection::ChainedFixupsSection() |
| 2303 | : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} |
| 2304 | |
| 2305 | bool ChainedFixupsSection::isNeeded() const { |
| 2306 | assert(config->emitChainedFixups); |
| 2307 | // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid |
| 2308 | // dyld_chained_fixups_header, so we create this section even if there aren't |
| 2309 | // any fixups. |
| 2310 | return true; |
| 2311 | } |
| 2312 | |
| 2313 | void ChainedFixupsSection::addBinding(const Symbol *sym, |
| 2314 | const InputSection *isec, uint64_t offset, |
| 2315 | int64_t addend) { |
| 2316 | locations.emplace_back(args&: isec, args&: offset); |
| 2317 | int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; |
| 2318 | auto [it, inserted] = bindings.insert( |
| 2319 | KV: {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())}); |
| 2320 | |
| 2321 | if (inserted) { |
| 2322 | symtabSize += sym->getName().size() + 1; |
| 2323 | hasWeakBind = hasWeakBind || needsWeakBind(sym: *sym); |
| 2324 | if (!isInt<23>(x: outlineAddend)) |
| 2325 | needsLargeAddend = true; |
| 2326 | else if (outlineAddend != 0) |
| 2327 | needsAddend = true; |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | std::pair<uint32_t, uint8_t> |
| 2332 | ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { |
| 2333 | int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; |
| 2334 | auto it = bindings.find(Key: {sym, outlineAddend}); |
| 2335 | assert(it != bindings.end() && "binding not found in the imports table" ); |
| 2336 | if (outlineAddend == 0) |
| 2337 | return {it->second, addend}; |
| 2338 | return {it->second, 0}; |
| 2339 | } |
| 2340 | |
| 2341 | static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal, |
| 2342 | bool weakRef, uint32_t nameOffset, int64_t addend) { |
| 2343 | switch (format) { |
| 2344 | case DYLD_CHAINED_IMPORT: { |
| 2345 | auto *import = reinterpret_cast<dyld_chained_import *>(buf); |
| 2346 | import->lib_ordinal = libOrdinal; |
| 2347 | import->weak_import = weakRef; |
| 2348 | import->name_offset = nameOffset; |
| 2349 | return sizeof(dyld_chained_import); |
| 2350 | } |
| 2351 | case DYLD_CHAINED_IMPORT_ADDEND: { |
| 2352 | auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf); |
| 2353 | import->lib_ordinal = libOrdinal; |
| 2354 | import->weak_import = weakRef; |
| 2355 | import->name_offset = nameOffset; |
| 2356 | import->addend = addend; |
| 2357 | return sizeof(dyld_chained_import_addend); |
| 2358 | } |
| 2359 | case DYLD_CHAINED_IMPORT_ADDEND64: { |
| 2360 | auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf); |
| 2361 | import->lib_ordinal = libOrdinal; |
| 2362 | import->weak_import = weakRef; |
| 2363 | import->name_offset = nameOffset; |
| 2364 | import->addend = addend; |
| 2365 | return sizeof(dyld_chained_import_addend64); |
| 2366 | } |
| 2367 | default: |
| 2368 | llvm_unreachable("Unknown import format" ); |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | size_t ChainedFixupsSection::SegmentInfo::getSize() const { |
| 2373 | assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?" ); |
| 2374 | return alignTo<8>(Value: sizeof(dyld_chained_starts_in_segment) + |
| 2375 | pageStarts.back().first * sizeof(uint16_t)); |
| 2376 | } |
| 2377 | |
| 2378 | size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { |
| 2379 | auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf); |
| 2380 | segInfo->size = getSize(); |
| 2381 | segInfo->page_size = target->getPageSize(); |
| 2382 | // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. |
| 2383 | segInfo->pointer_format = DYLD_CHAINED_PTR_64; |
| 2384 | segInfo->segment_offset = oseg->addr - in.header->addr; |
| 2385 | segInfo->max_valid_pointer = 0; // not used on 64-bit |
| 2386 | segInfo->page_count = pageStarts.back().first + 1; |
| 2387 | |
| 2388 | uint16_t *starts = segInfo->page_start; |
| 2389 | for (size_t i = 0; i < segInfo->page_count; ++i) |
| 2390 | starts[i] = DYLD_CHAINED_PTR_START_NONE; |
| 2391 | |
| 2392 | for (auto [pageIdx, startAddr] : pageStarts) |
| 2393 | starts[pageIdx] = startAddr; |
| 2394 | return segInfo->size; |
| 2395 | } |
| 2396 | |
| 2397 | static size_t importEntrySize(int format) { |
| 2398 | switch (format) { |
| 2399 | case DYLD_CHAINED_IMPORT: |
| 2400 | return sizeof(dyld_chained_import); |
| 2401 | case DYLD_CHAINED_IMPORT_ADDEND: |
| 2402 | return sizeof(dyld_chained_import_addend); |
| 2403 | case DYLD_CHAINED_IMPORT_ADDEND64: |
| 2404 | return sizeof(dyld_chained_import_addend64); |
| 2405 | default: |
| 2406 | llvm_unreachable("Unknown import format" ); |
| 2407 | } |
| 2408 | } |
| 2409 | |
| 2410 | // This is step 3 of the algorithm described in the class comment of |
| 2411 | // ChainedFixupsSection. |
| 2412 | // |
| 2413 | // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): |
| 2414 | // * A dyld_chained_fixups_header |
| 2415 | // * A dyld_chained_starts_in_image |
| 2416 | // * One dyld_chained_starts_in_segment per segment |
| 2417 | // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or |
| 2418 | // dyld_chained_import_addend64) |
| 2419 | // * Names of imported symbols |
| 2420 | void ChainedFixupsSection::writeTo(uint8_t *buf) const { |
| 2421 | auto * = reinterpret_cast<dyld_chained_fixups_header *>(buf); |
| 2422 | header->fixups_version = 0; |
| 2423 | header->imports_count = bindings.size(); |
| 2424 | header->imports_format = importFormat; |
| 2425 | header->symbols_format = 0; |
| 2426 | |
| 2427 | buf += alignTo<8>(Value: sizeof(*header)); |
| 2428 | |
| 2429 | auto curOffset = [&buf, &header]() -> uint32_t { |
| 2430 | return buf - reinterpret_cast<uint8_t *>(header); |
| 2431 | }; |
| 2432 | |
| 2433 | header->starts_offset = curOffset(); |
| 2434 | |
| 2435 | auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf); |
| 2436 | imageInfo->seg_count = outputSegments.size(); |
| 2437 | uint32_t *segStarts = imageInfo->seg_info_offset; |
| 2438 | |
| 2439 | // dyld_chained_starts_in_image ends in a flexible array member containing an |
| 2440 | // uint32_t for each segment. Leave room for it, and fill it via segStarts. |
| 2441 | buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + |
| 2442 | outputSegments.size() * sizeof(uint32_t)); |
| 2443 | |
| 2444 | // Initialize all offsets to 0, which indicates that the segment does not have |
| 2445 | // fixups. Those that do have them will be filled in below. |
| 2446 | for (size_t i = 0; i < outputSegments.size(); ++i) |
| 2447 | segStarts[i] = 0; |
| 2448 | |
| 2449 | for (const SegmentInfo &seg : fixupSegments) { |
| 2450 | segStarts[seg.oseg->index] = curOffset() - header->starts_offset; |
| 2451 | buf += seg.writeTo(buf); |
| 2452 | } |
| 2453 | |
| 2454 | // Write imports table. |
| 2455 | header->imports_offset = curOffset(); |
| 2456 | uint64_t nameOffset = 0; |
| 2457 | for (auto [import, idx] : bindings) { |
| 2458 | const Symbol &sym = *import.first; |
| 2459 | buf += writeImport(buf, format: importFormat, libOrdinal: ordinalForSymbol(sym), |
| 2460 | weakRef: sym.isWeakRef(), nameOffset, addend: import.second); |
| 2461 | nameOffset += sym.getName().size() + 1; |
| 2462 | } |
| 2463 | |
| 2464 | // Write imported symbol names. |
| 2465 | header->symbols_offset = curOffset(); |
| 2466 | for (auto [import, idx] : bindings) { |
| 2467 | StringRef name = import.first->getName(); |
| 2468 | memcpy(dest: buf, src: name.data(), n: name.size()); |
| 2469 | buf += name.size() + 1; // account for null terminator |
| 2470 | } |
| 2471 | |
| 2472 | assert(curOffset() == getRawSize()); |
| 2473 | } |
| 2474 | |
| 2475 | // This is step 2 of the algorithm described in the class comment of |
| 2476 | // ChainedFixupsSection. |
| 2477 | void ChainedFixupsSection::finalizeContents() { |
| 2478 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported" ); |
| 2479 | assert(config->emitChainedFixups); |
| 2480 | |
| 2481 | if (!isUInt<32>(x: symtabSize)) |
| 2482 | error(msg: "cannot encode chained fixups: imported symbols table size " + |
| 2483 | Twine(symtabSize) + " exceeds 4 GiB" ); |
| 2484 | |
| 2485 | bool needsLargeOrdinal = any_of(Range&: bindings, P: [](const auto &p) { |
| 2486 | // 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding. |
| 2487 | return ordinalForSymbol(*p.first.first) > 0xF0; |
| 2488 | }); |
| 2489 | |
| 2490 | if (needsLargeAddend || !isUInt<23>(x: symtabSize) || needsLargeOrdinal) |
| 2491 | importFormat = DYLD_CHAINED_IMPORT_ADDEND64; |
| 2492 | else if (needsAddend) |
| 2493 | importFormat = DYLD_CHAINED_IMPORT_ADDEND; |
| 2494 | else |
| 2495 | importFormat = DYLD_CHAINED_IMPORT; |
| 2496 | |
| 2497 | for (Location &loc : locations) |
| 2498 | loc.offset = |
| 2499 | loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(off: loc.offset); |
| 2500 | |
| 2501 | llvm::sort(C&: locations, Comp: [](const Location &a, const Location &b) { |
| 2502 | const OutputSegment *segA = a.isec->parent->parent; |
| 2503 | const OutputSegment *segB = b.isec->parent->parent; |
| 2504 | if (segA == segB) |
| 2505 | return a.offset < b.offset; |
| 2506 | return segA->addr < segB->addr; |
| 2507 | }); |
| 2508 | |
| 2509 | auto sameSegment = [](const Location &a, const Location &b) { |
| 2510 | return a.isec->parent->parent == b.isec->parent->parent; |
| 2511 | }; |
| 2512 | |
| 2513 | const uint64_t pageSize = target->getPageSize(); |
| 2514 | for (size_t i = 0, count = locations.size(); i < count;) { |
| 2515 | const Location &firstLoc = locations[i]; |
| 2516 | fixupSegments.emplace_back(Args&: firstLoc.isec->parent->parent); |
| 2517 | while (i < count && sameSegment(locations[i], firstLoc)) { |
| 2518 | uint32_t pageIdx = locations[i].offset / pageSize; |
| 2519 | fixupSegments.back().pageStarts.emplace_back( |
| 2520 | Args&: pageIdx, Args: locations[i].offset % pageSize); |
| 2521 | ++i; |
| 2522 | while (i < count && sameSegment(locations[i], firstLoc) && |
| 2523 | locations[i].offset / pageSize == pageIdx) |
| 2524 | ++i; |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | // Compute expected encoded size. |
| 2529 | size = alignTo<8>(Value: sizeof(dyld_chained_fixups_header)); |
| 2530 | size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + |
| 2531 | outputSegments.size() * sizeof(uint32_t)); |
| 2532 | for (const SegmentInfo &seg : fixupSegments) |
| 2533 | size += seg.getSize(); |
| 2534 | size += importEntrySize(format: importFormat) * bindings.size(); |
| 2535 | size += symtabSize; |
| 2536 | } |
| 2537 | |
| 2538 | template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); |
| 2539 | template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); |
| 2540 | |