1 | //===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file Implements the ScheduleDAGInstrs class, which implements scheduling |
10 | /// for a MachineInstr-based dependency graph. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H |
15 | #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H |
16 | |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/PointerIntPair.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/SparseMultiSet.h" |
21 | #include "llvm/ADT/identity.h" |
22 | #include "llvm/Analysis/AliasAnalysis.h" |
23 | #include "llvm/CodeGen/LiveRegUnits.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/ScheduleDAG.h" |
26 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
27 | #include "llvm/CodeGen/TargetSchedule.h" |
28 | #include "llvm/MC/LaneBitmask.h" |
29 | #include "llvm/Support/Compiler.h" |
30 | #include <cassert> |
31 | #include <cstdint> |
32 | #include <list> |
33 | #include <string> |
34 | #include <utility> |
35 | #include <vector> |
36 | |
37 | namespace llvm { |
38 | |
39 | class AAResults; |
40 | class LiveIntervals; |
41 | class MachineFrameInfo; |
42 | class MachineFunction; |
43 | class MachineInstr; |
44 | class MachineLoopInfo; |
45 | class MachineOperand; |
46 | struct MCSchedClassDesc; |
47 | class PressureDiffs; |
48 | class PseudoSourceValue; |
49 | class RegPressureTracker; |
50 | class UndefValue; |
51 | class Value; |
52 | |
53 | /// An individual mapping from virtual register number to SUnit. |
54 | struct VReg2SUnit { |
55 | Register VirtReg; |
56 | LaneBitmask LaneMask; |
57 | SUnit *SU; |
58 | |
59 | VReg2SUnit(Register VReg, LaneBitmask LaneMask, SUnit *SU) |
60 | : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {} |
61 | |
62 | unsigned getSparseSetIndex() const { |
63 | return VirtReg.virtRegIndex(); |
64 | } |
65 | }; |
66 | |
67 | /// Mapping from virtual register to SUnit including an operand index. |
68 | struct VReg2SUnitOperIdx : public VReg2SUnit { |
69 | unsigned OperandIndex; |
70 | |
71 | VReg2SUnitOperIdx(Register VReg, LaneBitmask LaneMask, |
72 | unsigned OperandIndex, SUnit *SU) |
73 | : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {} |
74 | }; |
75 | |
76 | /// Record a physical register access. |
77 | /// For non-data-dependent uses, OpIdx == -1. |
78 | struct PhysRegSUOper { |
79 | SUnit *SU; |
80 | int OpIdx; |
81 | unsigned RegUnit; |
82 | |
83 | PhysRegSUOper(SUnit *su, int op, unsigned R) |
84 | : SU(su), OpIdx(op), RegUnit(R) {} |
85 | |
86 | unsigned getSparseSetIndex() const { return RegUnit; } |
87 | }; |
88 | |
89 | /// Use a SparseMultiSet to track physical registers. Storage is only |
90 | /// allocated once for the pass. It can be cleared in constant time and reused |
91 | /// without any frees. |
92 | using RegUnit2SUnitsMap = |
93 | SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>; |
94 | |
95 | /// Track local uses of virtual registers. These uses are gathered by the DAG |
96 | /// builder and may be consulted by the scheduler to avoid iterating an entire |
97 | /// vreg use list. |
98 | using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>; |
99 | |
100 | using VReg2SUnitOperIdxMultiMap = |
101 | SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>; |
102 | |
103 | using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>; |
104 | |
105 | struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> { |
106 | UnderlyingObject(ValueType V, bool MayAlias) |
107 | : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {} |
108 | |
109 | ValueType getValue() const { return getPointer(); } |
110 | bool mayAlias() const { return getInt(); } |
111 | }; |
112 | |
113 | using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>; |
114 | |
115 | /// A ScheduleDAG for scheduling lists of MachineInstr. |
116 | class LLVM_ABI ScheduleDAGInstrs : public ScheduleDAG { |
117 | protected: |
118 | const MachineLoopInfo *MLI = nullptr; |
119 | const MachineFrameInfo &MFI; |
120 | |
121 | /// TargetSchedModel provides an interface to the machine model. |
122 | TargetSchedModel SchedModel; |
123 | |
124 | /// True if the DAG builder should remove kill flags (in preparation for |
125 | /// rescheduling). |
126 | bool RemoveKillFlags; |
127 | |
128 | /// True if regions with a single MI should be scheduled. |
129 | bool ScheduleSingleMIRegions = false; |
130 | |
131 | /// The standard DAG builder does not normally include terminators as DAG |
132 | /// nodes because it does not create the necessary dependencies to prevent |
133 | /// reordering. A specialized scheduler can override |
134 | /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate |
135 | /// it has taken responsibility for scheduling the terminator correctly. |
136 | bool CanHandleTerminators = false; |
137 | |
138 | /// Whether lane masks should get tracked. |
139 | bool TrackLaneMasks = false; |
140 | |
141 | // State specific to the current scheduling region. |
142 | // ------------------------------------------------ |
143 | |
144 | /// The block in which to insert instructions |
145 | MachineBasicBlock *BB = nullptr; |
146 | |
147 | /// The beginning of the range to be scheduled. |
148 | MachineBasicBlock::iterator RegionBegin; |
149 | |
150 | /// The end of the range to be scheduled. |
151 | MachineBasicBlock::iterator RegionEnd; |
152 | |
153 | /// Instructions in this region (distance(RegionBegin, RegionEnd)). |
154 | unsigned NumRegionInstrs = 0; |
155 | |
156 | /// After calling BuildSchedGraph, each machine instruction in the current |
157 | /// scheduling region is mapped to an SUnit. |
158 | DenseMap<MachineInstr*, SUnit*> MISUnitMap; |
159 | |
160 | // State internal to DAG building. |
161 | // ------------------------------- |
162 | |
163 | /// Defs, Uses - Remember where defs and uses of each register are as we |
164 | /// iterate upward through the instructions. This is allocated here instead |
165 | /// of inside BuildSchedGraph to avoid the need for it to be initialized and |
166 | /// destructed for each block. |
167 | RegUnit2SUnitsMap Defs; |
168 | RegUnit2SUnitsMap Uses; |
169 | |
170 | /// Tracks the last instruction(s) in this region defining each virtual |
171 | /// register. There may be multiple current definitions for a register with |
172 | /// disjunct lanemasks. |
173 | VReg2SUnitMultiMap CurrentVRegDefs; |
174 | /// Tracks the last instructions in this region using each virtual register. |
175 | VReg2SUnitOperIdxMultiMap CurrentVRegUses; |
176 | |
177 | mutable std::optional<BatchAAResults> AAForDep; |
178 | |
179 | /// Remember a generic side-effecting instruction as we proceed. |
180 | /// No other SU ever gets scheduled around it (except in the special |
181 | /// case of a huge region that gets reduced). |
182 | SUnit *BarrierChain = nullptr; |
183 | |
184 | SmallVector<ClusterInfo> Clusters; |
185 | |
186 | public: |
187 | /// A list of SUnits, used in Value2SUsMap, during DAG construction. |
188 | /// Note: to gain speed it might be worth investigating an optimized |
189 | /// implementation of this data structure, such as a singly linked list |
190 | /// with a memory pool (SmallVector was tried but slow and SparseSet is not |
191 | /// applicable). |
192 | using SUList = std::list<SUnit *>; |
193 | |
194 | /// The direction that should be used to dump the scheduled Sequence. |
195 | enum DumpDirection { |
196 | TopDown, |
197 | BottomUp, |
198 | Bidirectional, |
199 | NotSet, |
200 | }; |
201 | |
202 | void setDumpDirection(DumpDirection D) { DumpDir = D; } |
203 | |
204 | protected: |
205 | DumpDirection DumpDir = NotSet; |
206 | |
207 | /// A map from ValueType to SUList, used during DAG construction, as |
208 | /// a means of remembering which SUs depend on which memory locations. |
209 | class Value2SUsMap; |
210 | |
211 | /// Returns a (possibly null) pointer to the current BatchAAResults. |
212 | BatchAAResults *getAAForDep() const { |
213 | if (AAForDep.has_value()) |
214 | return &AAForDep.value(); |
215 | return nullptr; |
216 | } |
217 | |
218 | /// Reduces maps in FIFO order, by N SUs. This is better than turning |
219 | /// every Nth memory SU into BarrierChain in buildSchedGraph(), since |
220 | /// it avoids unnecessary edges between seen SUs above the new BarrierChain, |
221 | /// and those below it. |
222 | void reduceHugeMemNodeMaps(Value2SUsMap &stores, |
223 | Value2SUsMap &loads, unsigned N); |
224 | |
225 | /// Adds a chain edge between SUa and SUb, but only if both |
226 | /// AAResults and Target fail to deny the dependency. |
227 | void addChainDependency(SUnit *SUa, SUnit *SUb, |
228 | unsigned Latency = 0); |
229 | |
230 | /// Adds dependencies as needed from all SUs in list to SU. |
231 | void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) { |
232 | for (SUnit *Entry : SUs) |
233 | addChainDependency(SUa: SU, SUb: Entry, Latency); |
234 | } |
235 | |
236 | /// Adds dependencies as needed from all SUs in map, to SU. |
237 | void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap); |
238 | |
239 | /// Adds dependencies as needed to SU, from all SUs mapped to V. |
240 | void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap, |
241 | ValueType V); |
242 | |
243 | /// Adds barrier chain edges from all SUs in map, and then clear the map. |
244 | /// This is equivalent to insertBarrierChain(), but optimized for the common |
245 | /// case where the new BarrierChain (a global memory object) has a higher |
246 | /// NodeNum than all SUs in map. It is assumed BarrierChain has been set |
247 | /// before calling this. |
248 | void addBarrierChain(Value2SUsMap &map); |
249 | |
250 | /// Inserts a barrier chain in a huge region, far below current SU. |
251 | /// Adds barrier chain edges from all SUs in map with higher NodeNums than |
252 | /// this new BarrierChain, and remove them from map. It is assumed |
253 | /// BarrierChain has been set before calling this. |
254 | void insertBarrierChain(Value2SUsMap &map); |
255 | |
256 | /// For an unanalyzable memory access, this Value is used in maps. |
257 | UndefValue *UnknownValue; |
258 | |
259 | |
260 | /// Topo - A topological ordering for SUnits which permits fast IsReachable |
261 | /// and similar queries. |
262 | ScheduleDAGTopologicalSort Topo; |
263 | |
264 | using DbgValueVector = |
265 | std::vector<std::pair<MachineInstr *, MachineInstr *>>; |
266 | /// Remember instruction that precedes DBG_VALUE. |
267 | /// These are generated by buildSchedGraph but persist so they can be |
268 | /// referenced when emitting the final schedule. |
269 | DbgValueVector DbgValues; |
270 | MachineInstr *FirstDbgValue = nullptr; |
271 | |
272 | /// Set of live physical registers for updating kill flags. |
273 | LiveRegUnits LiveRegs; |
274 | |
275 | public: |
276 | explicit ScheduleDAGInstrs(MachineFunction &mf, |
277 | const MachineLoopInfo *mli, |
278 | bool RemoveKillFlags = false); |
279 | |
280 | ~ScheduleDAGInstrs() override = default; |
281 | |
282 | /// Gets the machine model for instruction scheduling. |
283 | const TargetSchedModel *getSchedModel() const { return &SchedModel; } |
284 | |
285 | /// Resolves and cache a resolved scheduling class for an SUnit. |
286 | const MCSchedClassDesc *getSchedClass(SUnit *SU) const { |
287 | if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) |
288 | SU->SchedClass = SchedModel.resolveSchedClass(MI: SU->getInstr()); |
289 | return SU->SchedClass; |
290 | } |
291 | |
292 | /// IsReachable - Checks if SU is reachable from TargetSU. |
293 | bool IsReachable(SUnit *SU, SUnit *TargetSU) { |
294 | return Topo.IsReachable(SU, TargetSU); |
295 | } |
296 | |
297 | /// Whether regions with a single MI should be scheduled. |
298 | bool shouldScheduleSingleMIRegions() const { |
299 | return ScheduleSingleMIRegions; |
300 | } |
301 | |
302 | /// Returns an iterator to the top of the current scheduling region. |
303 | MachineBasicBlock::iterator begin() const { return RegionBegin; } |
304 | |
305 | /// Returns an iterator to the bottom of the current scheduling region. |
306 | MachineBasicBlock::iterator end() const { return RegionEnd; } |
307 | |
308 | /// Creates a new SUnit and return a ptr to it. |
309 | SUnit *newSUnit(MachineInstr *MI); |
310 | |
311 | /// Returns an existing SUnit for this MI, or nullptr. |
312 | SUnit *getSUnit(MachineInstr *MI) const; |
313 | |
314 | /// If this method returns true, handling of the scheduling regions |
315 | /// themselves (in case of a scheduling boundary in MBB) will be done |
316 | /// beginning with the topmost region of MBB. |
317 | virtual bool doMBBSchedRegionsTopDown() const { return false; } |
318 | |
319 | /// Prepares to perform scheduling in the given block. |
320 | virtual void startBlock(MachineBasicBlock *BB); |
321 | |
322 | /// Cleans up after scheduling in the given block. |
323 | virtual void finishBlock(); |
324 | |
325 | /// Initialize the DAG and common scheduler state for a new |
326 | /// scheduling region. This does not actually create the DAG, only clears |
327 | /// it. The scheduling driver may call BuildSchedGraph multiple times per |
328 | /// scheduling region. |
329 | virtual void enterRegion(MachineBasicBlock *bb, |
330 | MachineBasicBlock::iterator begin, |
331 | MachineBasicBlock::iterator end, |
332 | unsigned regioninstrs); |
333 | |
334 | /// Called when the scheduler has finished scheduling the current region. |
335 | virtual void exitRegion(); |
336 | |
337 | /// Builds SUnits for the current region. |
338 | /// If \p RPTracker is non-null, compute register pressure as a side effect. |
339 | /// The DAG builder is an efficient place to do it because it already visits |
340 | /// operands. |
341 | void buildSchedGraph(AAResults *AA, |
342 | RegPressureTracker *RPTracker = nullptr, |
343 | PressureDiffs *PDiffs = nullptr, |
344 | LiveIntervals *LIS = nullptr, |
345 | bool TrackLaneMasks = false); |
346 | |
347 | /// Adds dependencies from instructions in the current list of |
348 | /// instructions being scheduled to scheduling barrier. We want to make sure |
349 | /// instructions which define registers that are either used by the |
350 | /// terminator or are live-out are properly scheduled. This is especially |
351 | /// important when the definition latency of the return value(s) are too |
352 | /// high to be hidden by the branch or when the liveout registers used by |
353 | /// instructions in the fallthrough block. |
354 | void addSchedBarrierDeps(); |
355 | |
356 | /// Orders nodes according to selected style. |
357 | /// |
358 | /// Typically, a scheduling algorithm will implement schedule() without |
359 | /// overriding enterRegion() or exitRegion(). |
360 | virtual void schedule() = 0; |
361 | |
362 | /// Allow targets to perform final scheduling actions at the level of the |
363 | /// whole MachineFunction. By default does nothing. |
364 | virtual void finalizeSchedule() {} |
365 | |
366 | void dumpNode(const SUnit &SU) const override; |
367 | void dump() const override; |
368 | |
369 | /// Returns a label for a DAG node that points to an instruction. |
370 | std::string getGraphNodeLabel(const SUnit *SU) const override; |
371 | |
372 | /// Returns a label for the region of code covered by the DAG. |
373 | std::string getDAGName() const override; |
374 | |
375 | /// Fixes register kill flags that scheduling has made invalid. |
376 | void fixupKills(MachineBasicBlock &MBB); |
377 | |
378 | /// True if an edge can be added from PredSU to SuccSU without creating |
379 | /// a cycle. |
380 | bool canAddEdge(SUnit *SuccSU, SUnit *PredSU); |
381 | |
382 | /// Add a DAG edge to the given SU with the given predecessor |
383 | /// dependence data. |
384 | /// |
385 | /// \returns true if the edge may be added without creating a cycle OR if an |
386 | /// equivalent edge already existed (false indicates failure). |
387 | bool addEdge(SUnit *SuccSU, const SDep &PredDep); |
388 | |
389 | /// Returns the array of the clusters. |
390 | SmallVector<ClusterInfo> &getClusters() { return Clusters; } |
391 | |
392 | /// Get the specific cluster, return nullptr for InvalidClusterId. |
393 | ClusterInfo *getCluster(unsigned Idx) { |
394 | return Idx != InvalidClusterId ? &Clusters[Idx] : nullptr; |
395 | } |
396 | |
397 | protected: |
398 | void initSUnits(); |
399 | void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); |
400 | void addPhysRegDeps(SUnit *SU, unsigned OperIdx); |
401 | void addVRegDefDeps(SUnit *SU, unsigned OperIdx); |
402 | void addVRegUseDeps(SUnit *SU, unsigned OperIdx); |
403 | |
404 | /// Returns a mask for which lanes get read/written by the given (register) |
405 | /// machine operand. |
406 | LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const; |
407 | |
408 | /// Returns true if the def register in \p MO has no uses. |
409 | bool deadDefHasNoUse(const MachineOperand &MO); |
410 | }; |
411 | |
412 | /// Creates a new SUnit and return a ptr to it. |
413 | inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { |
414 | #ifndef NDEBUG |
415 | const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; |
416 | #endif |
417 | SUnits.emplace_back(args&: MI, args: (unsigned)SUnits.size()); |
418 | assert((Addr == nullptr || Addr == &SUnits[0]) && |
419 | "SUnits std::vector reallocated on the fly!" ); |
420 | return &SUnits.back(); |
421 | } |
422 | |
423 | /// Returns an existing SUnit for this MI, or nullptr. |
424 | inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { |
425 | return MISUnitMap.lookup(Val: MI); |
426 | } |
427 | |
428 | } // end namespace llvm |
429 | |
430 | #endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H |
431 | |