1 | //===-- OpDescriptor.h ------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Provides the fuzzerop::Descriptor class and related tools for describing |
10 | // operations an IR fuzzer can work with. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
15 | #define LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
16 | |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/IR/Constants.h" |
20 | #include "llvm/IR/DerivedTypes.h" |
21 | #include "llvm/IR/InstrTypes.h" |
22 | #include "llvm/IR/Type.h" |
23 | #include "llvm/IR/Value.h" |
24 | #include "llvm/Support/Compiler.h" |
25 | #include <functional> |
26 | |
27 | namespace llvm { |
28 | class Instruction; |
29 | namespace fuzzerop { |
30 | |
31 | /// @{ |
32 | /// Populate a small list of potentially interesting constants of a given type. |
33 | LLVM_ABI void makeConstantsWithType(Type *T, std::vector<Constant *> &Cs); |
34 | LLVM_ABI std::vector<Constant *> makeConstantsWithType(Type *T); |
35 | /// @} |
36 | |
37 | /// A matcher/generator for finding suitable values for the next source in an |
38 | /// operation's partially completed argument list. |
39 | /// |
40 | /// Given that we're building some operation X and may have already filled some |
41 | /// subset of its operands, this predicate determines if some value New is |
42 | /// suitable for the next operand or generates a set of values that are |
43 | /// suitable. |
44 | class SourcePred { |
45 | public: |
46 | /// Given a list of already selected operands, returns whether a given new |
47 | /// operand is suitable for the next operand. |
48 | using PredT = std::function<bool(ArrayRef<Value *> Cur, const Value *New)>; |
49 | /// Given a list of already selected operands and a set of valid base types |
50 | /// for a fuzzer, generates a list of constants that could be used for the |
51 | /// next operand. |
52 | using MakeT = std::function<std::vector<Constant *>( |
53 | ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes)>; |
54 | |
55 | private: |
56 | PredT Pred; |
57 | MakeT Make; |
58 | |
59 | public: |
60 | /// Create a fully general source predicate. |
61 | SourcePred(PredT Pred, MakeT Make) : Pred(Pred), Make(Make) {} |
62 | SourcePred(PredT Pred, std::nullopt_t) : Pred(Pred) { |
63 | Make = [Pred](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) { |
64 | // Default filter just calls Pred on each of the base types. |
65 | std::vector<Constant *> Result; |
66 | for (Type *T : BaseTypes) { |
67 | Constant *V = PoisonValue::get(T); |
68 | if (Pred(Cur, V)) |
69 | makeConstantsWithType(T, Cs&: Result); |
70 | } |
71 | if (Result.empty()) |
72 | report_fatal_error(reason: "Predicate does not match for base types" ); |
73 | return Result; |
74 | }; |
75 | } |
76 | |
77 | /// Returns true if \c New is compatible for the argument after \c Cur |
78 | bool matches(ArrayRef<Value *> Cur, const Value *New) { |
79 | return Pred(Cur, New); |
80 | } |
81 | |
82 | /// Generates a list of potential values for the argument after \c Cur. |
83 | std::vector<Constant *> generate(ArrayRef<Value *> Cur, |
84 | ArrayRef<Type *> BaseTypes) { |
85 | return Make(Cur, BaseTypes); |
86 | } |
87 | }; |
88 | |
89 | /// A description of some operation we can build while fuzzing IR. |
90 | struct OpDescriptor { |
91 | unsigned Weight; |
92 | SmallVector<SourcePred, 2> SourcePreds; |
93 | std::function<Value *(ArrayRef<Value *>, BasicBlock::iterator)> BuilderFunc; |
94 | }; |
95 | |
96 | static inline SourcePred onlyType(Type *Only) { |
97 | auto Pred = [Only](ArrayRef<Value *>, const Value *V) { |
98 | return V->getType() == Only; |
99 | }; |
100 | auto Make = [Only](ArrayRef<Value *>, ArrayRef<Type *>) { |
101 | return makeConstantsWithType(T: Only); |
102 | }; |
103 | return {Pred, Make}; |
104 | } |
105 | |
106 | static inline SourcePred anyType() { |
107 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
108 | return !V->getType()->isVoidTy(); |
109 | }; |
110 | auto Make = std::nullopt; |
111 | return {Pred, Make}; |
112 | } |
113 | |
114 | static inline SourcePred anyIntType() { |
115 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
116 | return V->getType()->isIntegerTy(); |
117 | }; |
118 | auto Make = std::nullopt; |
119 | return {Pred, Make}; |
120 | } |
121 | |
122 | static inline SourcePred anyIntOrVecIntType() { |
123 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
124 | return V->getType()->isIntOrIntVectorTy(); |
125 | }; |
126 | return {Pred, std::nullopt}; |
127 | } |
128 | |
129 | static inline SourcePred boolOrVecBoolType() { |
130 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
131 | return V->getType()->isIntOrIntVectorTy(BitWidth: 1); |
132 | }; |
133 | return {Pred, std::nullopt}; |
134 | } |
135 | |
136 | static inline SourcePred anyFloatType() { |
137 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
138 | return V->getType()->isFloatingPointTy(); |
139 | }; |
140 | auto Make = std::nullopt; |
141 | return {Pred, Make}; |
142 | } |
143 | |
144 | static inline SourcePred anyFloatOrVecFloatType() { |
145 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
146 | return V->getType()->isFPOrFPVectorTy(); |
147 | }; |
148 | return {Pred, std::nullopt}; |
149 | } |
150 | |
151 | static inline SourcePred anyPtrType() { |
152 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
153 | return V->getType()->isPointerTy() && !V->isSwiftError(); |
154 | }; |
155 | auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) { |
156 | std::vector<Constant *> Result; |
157 | // TODO: Should these point at something? |
158 | for (Type *T : Ts) |
159 | Result.push_back( |
160 | x: PoisonValue::get(T: PointerType::getUnqual(C&: T->getContext()))); |
161 | return Result; |
162 | }; |
163 | return {Pred, Make}; |
164 | } |
165 | |
166 | static inline SourcePred sizedPtrType() { |
167 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
168 | if (V->isSwiftError()) |
169 | return false; |
170 | |
171 | return V->getType()->isPointerTy(); |
172 | }; |
173 | auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) { |
174 | std::vector<Constant *> Result; |
175 | |
176 | // TODO: This doesn't really make sense with opaque pointers, |
177 | // as the pointer type will always be the same. |
178 | for (Type *T : Ts) |
179 | if (T->isSized()) |
180 | Result.push_back( |
181 | x: PoisonValue::get(T: PointerType::getUnqual(C&: T->getContext()))); |
182 | |
183 | return Result; |
184 | }; |
185 | return {Pred, Make}; |
186 | } |
187 | |
188 | static inline SourcePred matchFirstLengthWAnyType() { |
189 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
190 | assert(!Cur.empty() && "No first source yet" ); |
191 | Type *This = V->getType(), *First = Cur[0]->getType(); |
192 | VectorType *ThisVec = dyn_cast<VectorType>(Val: This); |
193 | VectorType *FirstVec = dyn_cast<VectorType>(Val: First); |
194 | if (ThisVec && FirstVec) { |
195 | return ThisVec->getElementCount() == FirstVec->getElementCount(); |
196 | } |
197 | return (ThisVec == nullptr) && (FirstVec == nullptr) && (!This->isVoidTy()); |
198 | }; |
199 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) { |
200 | assert(!Cur.empty() && "No first source yet" ); |
201 | std::vector<Constant *> Result; |
202 | ElementCount EC; |
203 | bool isVec = false; |
204 | if (VectorType *VecTy = dyn_cast<VectorType>(Val: Cur[0]->getType())) { |
205 | EC = VecTy->getElementCount(); |
206 | isVec = true; |
207 | } |
208 | for (Type *T : BaseTypes) { |
209 | if (VectorType::isValidElementType(ElemTy: T)) { |
210 | if (isVec) |
211 | // If the first pred is <i1 x N>, make the result <T x N> |
212 | makeConstantsWithType(T: VectorType::get(ElementType: T, EC), Cs&: Result); |
213 | else |
214 | makeConstantsWithType(T, Cs&: Result); |
215 | } |
216 | } |
217 | assert(!Result.empty() && "No potential constants." ); |
218 | return Result; |
219 | }; |
220 | return {Pred, Make}; |
221 | } |
222 | |
223 | /// Match values that have the same type as the first source. |
224 | static inline SourcePred matchSecondType() { |
225 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
226 | assert((Cur.size() > 1) && "No second source yet" ); |
227 | return V->getType() == Cur[1]->getType(); |
228 | }; |
229 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
230 | assert((Cur.size() > 1) && "No second source yet" ); |
231 | return makeConstantsWithType(T: Cur[1]->getType()); |
232 | }; |
233 | return {Pred, Make}; |
234 | } |
235 | |
236 | static inline SourcePred anyAggregateType() { |
237 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
238 | // We can't index zero sized arrays. |
239 | if (isa<ArrayType>(Val: V->getType())) |
240 | return V->getType()->getArrayNumElements() > 0; |
241 | |
242 | // Structs can also be zero sized. I.e opaque types. |
243 | if (isa<StructType>(Val: V->getType())) |
244 | return V->getType()->getStructNumElements() > 0; |
245 | |
246 | return V->getType()->isAggregateType(); |
247 | }; |
248 | // TODO: For now we only find aggregates in BaseTypes. It might be better to |
249 | // manufacture them out of the base types in some cases. |
250 | auto Find = std::nullopt; |
251 | return {Pred, Find}; |
252 | } |
253 | |
254 | static inline SourcePred anyVectorType() { |
255 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
256 | return V->getType()->isVectorTy(); |
257 | }; |
258 | // TODO: For now we only find vectors in BaseTypes. It might be better to |
259 | // manufacture vectors out of the base types, but it's tricky to be sure |
260 | // that's actually a reasonable type. |
261 | auto Make = std::nullopt; |
262 | return {Pred, Make}; |
263 | } |
264 | |
265 | /// Match values that have the same type as the first source. |
266 | static inline SourcePred matchFirstType() { |
267 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
268 | assert(!Cur.empty() && "No first source yet" ); |
269 | return V->getType() == Cur[0]->getType(); |
270 | }; |
271 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
272 | assert(!Cur.empty() && "No first source yet" ); |
273 | return makeConstantsWithType(T: Cur[0]->getType()); |
274 | }; |
275 | return {Pred, Make}; |
276 | } |
277 | |
278 | /// Match values that have the first source's scalar type. |
279 | static inline SourcePred matchScalarOfFirstType() { |
280 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
281 | assert(!Cur.empty() && "No first source yet" ); |
282 | return V->getType() == Cur[0]->getType()->getScalarType(); |
283 | }; |
284 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
285 | assert(!Cur.empty() && "No first source yet" ); |
286 | return makeConstantsWithType(T: Cur[0]->getType()->getScalarType()); |
287 | }; |
288 | return {Pred, Make}; |
289 | } |
290 | |
291 | } // namespace fuzzerop |
292 | } // namespace llvm |
293 | |
294 | #endif // LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
295 | |