| 1 | //===-- OpDescriptor.h ------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Provides the fuzzerop::Descriptor class and related tools for describing |
| 10 | // operations an IR fuzzer can work with. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
| 15 | #define LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/IR/Constants.h" |
| 20 | #include "llvm/IR/DerivedTypes.h" |
| 21 | #include "llvm/IR/InstrTypes.h" |
| 22 | #include "llvm/IR/Type.h" |
| 23 | #include "llvm/IR/Value.h" |
| 24 | #include "llvm/Support/Compiler.h" |
| 25 | #include <functional> |
| 26 | |
| 27 | namespace llvm { |
| 28 | class Instruction; |
| 29 | namespace fuzzerop { |
| 30 | |
| 31 | /// @{ |
| 32 | /// Populate a small list of potentially interesting constants of a given type. |
| 33 | LLVM_ABI void makeConstantsWithType(Type *T, std::vector<Constant *> &Cs); |
| 34 | LLVM_ABI std::vector<Constant *> makeConstantsWithType(Type *T); |
| 35 | /// @} |
| 36 | |
| 37 | /// A matcher/generator for finding suitable values for the next source in an |
| 38 | /// operation's partially completed argument list. |
| 39 | /// |
| 40 | /// Given that we're building some operation X and may have already filled some |
| 41 | /// subset of its operands, this predicate determines if some value New is |
| 42 | /// suitable for the next operand or generates a set of values that are |
| 43 | /// suitable. |
| 44 | class SourcePred { |
| 45 | public: |
| 46 | /// Given a list of already selected operands, returns whether a given new |
| 47 | /// operand is suitable for the next operand. |
| 48 | using PredT = std::function<bool(ArrayRef<Value *> Cur, const Value *New)>; |
| 49 | /// Given a list of already selected operands and a set of valid base types |
| 50 | /// for a fuzzer, generates a list of constants that could be used for the |
| 51 | /// next operand. |
| 52 | using MakeT = std::function<std::vector<Constant *>( |
| 53 | ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes)>; |
| 54 | |
| 55 | private: |
| 56 | PredT Pred; |
| 57 | MakeT Make; |
| 58 | |
| 59 | public: |
| 60 | /// Create a fully general source predicate. |
| 61 | SourcePred(PredT Pred, MakeT Make) : Pred(Pred), Make(Make) {} |
| 62 | SourcePred(PredT Pred, std::nullopt_t) : Pred(Pred) { |
| 63 | Make = [Pred](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) { |
| 64 | // Default filter just calls Pred on each of the base types. |
| 65 | std::vector<Constant *> Result; |
| 66 | for (Type *T : BaseTypes) { |
| 67 | Constant *V = PoisonValue::get(T); |
| 68 | if (Pred(Cur, V)) |
| 69 | makeConstantsWithType(T, Cs&: Result); |
| 70 | } |
| 71 | if (Result.empty()) |
| 72 | report_fatal_error(reason: "Predicate does not match for base types" ); |
| 73 | return Result; |
| 74 | }; |
| 75 | } |
| 76 | |
| 77 | /// Returns true if \c New is compatible for the argument after \c Cur |
| 78 | bool matches(ArrayRef<Value *> Cur, const Value *New) { |
| 79 | return Pred(Cur, New); |
| 80 | } |
| 81 | |
| 82 | /// Generates a list of potential values for the argument after \c Cur. |
| 83 | std::vector<Constant *> generate(ArrayRef<Value *> Cur, |
| 84 | ArrayRef<Type *> BaseTypes) { |
| 85 | return Make(Cur, BaseTypes); |
| 86 | } |
| 87 | }; |
| 88 | |
| 89 | /// A description of some operation we can build while fuzzing IR. |
| 90 | struct OpDescriptor { |
| 91 | unsigned Weight; |
| 92 | SmallVector<SourcePred, 2> SourcePreds; |
| 93 | std::function<Value *(ArrayRef<Value *>, BasicBlock::iterator)> BuilderFunc; |
| 94 | }; |
| 95 | |
| 96 | static inline SourcePred onlyType(Type *Only) { |
| 97 | auto Pred = [Only](ArrayRef<Value *>, const Value *V) { |
| 98 | return V->getType() == Only; |
| 99 | }; |
| 100 | auto Make = [Only](ArrayRef<Value *>, ArrayRef<Type *>) { |
| 101 | return makeConstantsWithType(T: Only); |
| 102 | }; |
| 103 | return {Pred, Make}; |
| 104 | } |
| 105 | |
| 106 | static inline SourcePred anyType() { |
| 107 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 108 | return !V->getType()->isVoidTy(); |
| 109 | }; |
| 110 | auto Make = std::nullopt; |
| 111 | return {Pred, Make}; |
| 112 | } |
| 113 | |
| 114 | static inline SourcePred anyIntType() { |
| 115 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 116 | return V->getType()->isIntegerTy(); |
| 117 | }; |
| 118 | auto Make = std::nullopt; |
| 119 | return {Pred, Make}; |
| 120 | } |
| 121 | |
| 122 | static inline SourcePred anyIntOrVecIntType() { |
| 123 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 124 | return V->getType()->isIntOrIntVectorTy(); |
| 125 | }; |
| 126 | return {Pred, std::nullopt}; |
| 127 | } |
| 128 | |
| 129 | static inline SourcePred boolOrVecBoolType() { |
| 130 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 131 | return V->getType()->isIntOrIntVectorTy(BitWidth: 1); |
| 132 | }; |
| 133 | return {Pred, std::nullopt}; |
| 134 | } |
| 135 | |
| 136 | static inline SourcePred anyFloatType() { |
| 137 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 138 | return V->getType()->isFloatingPointTy(); |
| 139 | }; |
| 140 | auto Make = std::nullopt; |
| 141 | return {Pred, Make}; |
| 142 | } |
| 143 | |
| 144 | static inline SourcePred anyFloatOrVecFloatType() { |
| 145 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 146 | return V->getType()->isFPOrFPVectorTy(); |
| 147 | }; |
| 148 | return {Pred, std::nullopt}; |
| 149 | } |
| 150 | |
| 151 | static inline SourcePred anyPtrType() { |
| 152 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 153 | return V->getType()->isPointerTy() && !V->isSwiftError(); |
| 154 | }; |
| 155 | auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) { |
| 156 | std::vector<Constant *> Result; |
| 157 | // TODO: Should these point at something? |
| 158 | for (Type *T : Ts) |
| 159 | Result.push_back( |
| 160 | x: PoisonValue::get(T: PointerType::getUnqual(C&: T->getContext()))); |
| 161 | return Result; |
| 162 | }; |
| 163 | return {Pred, Make}; |
| 164 | } |
| 165 | |
| 166 | static inline SourcePred sizedPtrType() { |
| 167 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 168 | if (V->isSwiftError()) |
| 169 | return false; |
| 170 | |
| 171 | return V->getType()->isPointerTy(); |
| 172 | }; |
| 173 | auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) { |
| 174 | std::vector<Constant *> Result; |
| 175 | |
| 176 | // TODO: This doesn't really make sense with opaque pointers, |
| 177 | // as the pointer type will always be the same. |
| 178 | for (Type *T : Ts) |
| 179 | if (T->isSized()) |
| 180 | Result.push_back( |
| 181 | x: PoisonValue::get(T: PointerType::getUnqual(C&: T->getContext()))); |
| 182 | |
| 183 | return Result; |
| 184 | }; |
| 185 | return {Pred, Make}; |
| 186 | } |
| 187 | |
| 188 | static inline SourcePred matchFirstLengthWAnyType() { |
| 189 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
| 190 | assert(!Cur.empty() && "No first source yet" ); |
| 191 | Type *This = V->getType(), *First = Cur[0]->getType(); |
| 192 | VectorType *ThisVec = dyn_cast<VectorType>(Val: This); |
| 193 | VectorType *FirstVec = dyn_cast<VectorType>(Val: First); |
| 194 | if (ThisVec && FirstVec) { |
| 195 | return ThisVec->getElementCount() == FirstVec->getElementCount(); |
| 196 | } |
| 197 | return (ThisVec == nullptr) && (FirstVec == nullptr) && (!This->isVoidTy()); |
| 198 | }; |
| 199 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) { |
| 200 | assert(!Cur.empty() && "No first source yet" ); |
| 201 | std::vector<Constant *> Result; |
| 202 | ElementCount EC; |
| 203 | bool isVec = false; |
| 204 | if (VectorType *VecTy = dyn_cast<VectorType>(Val: Cur[0]->getType())) { |
| 205 | EC = VecTy->getElementCount(); |
| 206 | isVec = true; |
| 207 | } |
| 208 | for (Type *T : BaseTypes) { |
| 209 | if (VectorType::isValidElementType(ElemTy: T)) { |
| 210 | if (isVec) |
| 211 | // If the first pred is <i1 x N>, make the result <T x N> |
| 212 | makeConstantsWithType(T: VectorType::get(ElementType: T, EC), Cs&: Result); |
| 213 | else |
| 214 | makeConstantsWithType(T, Cs&: Result); |
| 215 | } |
| 216 | } |
| 217 | assert(!Result.empty() && "No potential constants." ); |
| 218 | return Result; |
| 219 | }; |
| 220 | return {Pred, Make}; |
| 221 | } |
| 222 | |
| 223 | /// Match values that have the same type as the first source. |
| 224 | static inline SourcePred matchSecondType() { |
| 225 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
| 226 | assert((Cur.size() > 1) && "No second source yet" ); |
| 227 | return V->getType() == Cur[1]->getType(); |
| 228 | }; |
| 229 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
| 230 | assert((Cur.size() > 1) && "No second source yet" ); |
| 231 | return makeConstantsWithType(T: Cur[1]->getType()); |
| 232 | }; |
| 233 | return {Pred, Make}; |
| 234 | } |
| 235 | |
| 236 | static inline SourcePred anyAggregateType() { |
| 237 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 238 | // We can't index zero sized arrays. |
| 239 | if (isa<ArrayType>(Val: V->getType())) |
| 240 | return V->getType()->getArrayNumElements() > 0; |
| 241 | |
| 242 | // Structs can also be zero sized. I.e opaque types. |
| 243 | if (isa<StructType>(Val: V->getType())) |
| 244 | return V->getType()->getStructNumElements() > 0; |
| 245 | |
| 246 | return V->getType()->isAggregateType(); |
| 247 | }; |
| 248 | // TODO: For now we only find aggregates in BaseTypes. It might be better to |
| 249 | // manufacture them out of the base types in some cases. |
| 250 | auto Find = std::nullopt; |
| 251 | return {Pred, Find}; |
| 252 | } |
| 253 | |
| 254 | static inline SourcePred anyVectorType() { |
| 255 | auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 256 | return V->getType()->isVectorTy(); |
| 257 | }; |
| 258 | // TODO: For now we only find vectors in BaseTypes. It might be better to |
| 259 | // manufacture vectors out of the base types, but it's tricky to be sure |
| 260 | // that's actually a reasonable type. |
| 261 | auto Make = std::nullopt; |
| 262 | return {Pred, Make}; |
| 263 | } |
| 264 | |
| 265 | /// Match values that have the same type as the first source. |
| 266 | static inline SourcePred matchFirstType() { |
| 267 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
| 268 | assert(!Cur.empty() && "No first source yet" ); |
| 269 | return V->getType() == Cur[0]->getType(); |
| 270 | }; |
| 271 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
| 272 | assert(!Cur.empty() && "No first source yet" ); |
| 273 | return makeConstantsWithType(T: Cur[0]->getType()); |
| 274 | }; |
| 275 | return {Pred, Make}; |
| 276 | } |
| 277 | |
| 278 | /// Match values that have the first source's scalar type. |
| 279 | static inline SourcePred matchScalarOfFirstType() { |
| 280 | auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
| 281 | assert(!Cur.empty() && "No first source yet" ); |
| 282 | return V->getType() == Cur[0]->getType()->getScalarType(); |
| 283 | }; |
| 284 | auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
| 285 | assert(!Cur.empty() && "No first source yet" ); |
| 286 | return makeConstantsWithType(T: Cur[0]->getType()->getScalarType()); |
| 287 | }; |
| 288 | return {Pred, Make}; |
| 289 | } |
| 290 | |
| 291 | } // namespace fuzzerop |
| 292 | } // namespace llvm |
| 293 | |
| 294 | #endif // LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
| 295 | |