1 | //===-- IRMutator.cpp -----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/FuzzMutate/IRMutator.h" |
10 | #include "llvm/ADT/STLExtras.h" |
11 | #include "llvm/ADT/SmallSet.h" |
12 | #include "llvm/Analysis/TargetLibraryInfo.h" |
13 | #include "llvm/Bitcode/BitcodeReader.h" |
14 | #include "llvm/Bitcode/BitcodeWriter.h" |
15 | #include "llvm/FuzzMutate/Operations.h" |
16 | #include "llvm/FuzzMutate/Random.h" |
17 | #include "llvm/FuzzMutate/RandomIRBuilder.h" |
18 | #include "llvm/IR/BasicBlock.h" |
19 | #include "llvm/IR/FMF.h" |
20 | #include "llvm/IR/Function.h" |
21 | #include "llvm/IR/InstIterator.h" |
22 | #include "llvm/IR/Instructions.h" |
23 | #include "llvm/IR/IntrinsicInst.h" |
24 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
25 | #include "llvm/IR/Module.h" |
26 | #include "llvm/IR/Operator.h" |
27 | #include "llvm/IR/PassInstrumentation.h" |
28 | #include "llvm/IR/Verifier.h" |
29 | #include "llvm/Support/MemoryBuffer.h" |
30 | #include "llvm/Support/SourceMgr.h" |
31 | #include "llvm/Transforms/Scalar/DCE.h" |
32 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
33 | #include <map> |
34 | #include <optional> |
35 | |
36 | using namespace llvm; |
37 | |
38 | void IRMutationStrategy::mutate(Module &M, RandomIRBuilder &IB) { |
39 | auto RS = makeSampler<Function *>(RandGen&: IB.Rand); |
40 | for (Function &F : M) |
41 | if (!F.isDeclaration()) |
42 | RS.sample(Item: &F, /*Weight=*/1); |
43 | |
44 | while (RS.totalWeight() < IB.MinFunctionNum) { |
45 | Function *F = IB.createFunctionDefinition(M); |
46 | RS.sample(Item: F, /*Weight=*/1); |
47 | } |
48 | mutate(F&: *RS.getSelection(), IB); |
49 | } |
50 | |
51 | void IRMutationStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
52 | auto Range = make_filter_range(Range: make_pointer_range(Range&: F), |
53 | Pred: [](BasicBlock *BB) { return !BB->isEHPad(); }); |
54 | |
55 | mutate(BB&: *makeSampler(RandGen&: IB.Rand, Items&: Range).getSelection(), IB); |
56 | } |
57 | |
58 | void IRMutationStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
59 | mutate(I&: *makeSampler(RandGen&: IB.Rand, Items: make_pointer_range(Range&: BB)).getSelection(), IB); |
60 | } |
61 | |
62 | size_t llvm::IRMutator::getModuleSize(const Module &M) { |
63 | return M.getInstructionCount() + M.size() + M.global_size() + M.alias_size(); |
64 | } |
65 | |
66 | void IRMutator::mutateModule(Module &M, int Seed, size_t MaxSize) { |
67 | std::vector<Type *> Types; |
68 | for (const auto &Getter : AllowedTypes) |
69 | Types.push_back(x: Getter(M.getContext())); |
70 | RandomIRBuilder IB(Seed, Types); |
71 | |
72 | size_t CurSize = IRMutator::getModuleSize(M); |
73 | auto RS = makeSampler<IRMutationStrategy *>(RandGen&: IB.Rand); |
74 | for (const auto &Strategy : Strategies) |
75 | RS.sample(Item: Strategy.get(), |
76 | Weight: Strategy->getWeight(CurrentSize: CurSize, MaxSize, CurrentWeight: RS.totalWeight())); |
77 | if (RS.totalWeight() == 0) |
78 | return; |
79 | auto Strategy = RS.getSelection(); |
80 | |
81 | Strategy->mutate(M, IB); |
82 | } |
83 | |
84 | static void eliminateDeadCode(Function &F) { |
85 | FunctionPassManager FPM; |
86 | FPM.addPass(Pass: DCEPass()); |
87 | FunctionAnalysisManager FAM; |
88 | FAM.registerPass(PassBuilder: [&] { return TargetLibraryAnalysis(); }); |
89 | FAM.registerPass(PassBuilder: [&] { return PassInstrumentationAnalysis(); }); |
90 | FPM.run(IR&: F, AM&: FAM); |
91 | } |
92 | |
93 | void InjectorIRStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
94 | IRMutationStrategy::mutate(F, IB); |
95 | eliminateDeadCode(F); |
96 | } |
97 | |
98 | std::vector<fuzzerop::OpDescriptor> InjectorIRStrategy::getDefaultOps() { |
99 | std::vector<fuzzerop::OpDescriptor> Ops; |
100 | describeFuzzerIntOps(Ops); |
101 | describeFuzzerFloatOps(Ops); |
102 | describeFuzzerControlFlowOps(Ops); |
103 | describeFuzzerPointerOps(Ops); |
104 | describeFuzzerAggregateOps(Ops); |
105 | describeFuzzerVectorOps(Ops); |
106 | return Ops; |
107 | } |
108 | |
109 | std::optional<fuzzerop::OpDescriptor> |
110 | InjectorIRStrategy::chooseOperation(Value *Src, RandomIRBuilder &IB) { |
111 | auto OpMatchesPred = [&Src](fuzzerop::OpDescriptor &Op) { |
112 | return Op.SourcePreds[0].matches(Cur: {}, New: Src); |
113 | }; |
114 | auto RS = makeSampler(RandGen&: IB.Rand, Items: make_filter_range(Range&: Operations, Pred: OpMatchesPred)); |
115 | if (RS.isEmpty()) |
116 | return std::nullopt; |
117 | return *RS; |
118 | } |
119 | |
120 | static inline Instruction *getEffectiveTerminator(BasicBlock &BB) { |
121 | if (Instruction *I = BB.getTerminatingMustTailCall()) { |
122 | return I; |
123 | } else { |
124 | // Certain intrinsics, such as @llvm.amdgcn.cs.chain, must be immediately |
125 | // followed by an unreachable instruction.. |
126 | if (UnreachableInst *UI = dyn_cast<UnreachableInst>(Val: BB.getTerminator())) { |
127 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: UI->getPrevNode())) { |
128 | return II; |
129 | } |
130 | } |
131 | } |
132 | |
133 | return BB.getTerminator(); |
134 | } |
135 | |
136 | static inline BasicBlock::iterator getEndIterator(BasicBlock &BB) { |
137 | auto End = BB.end(); |
138 | |
139 | if (BB.empty()) { |
140 | return End; |
141 | } |
142 | |
143 | Instruction *EffectiveTerminator = getEffectiveTerminator(BB); |
144 | if (EffectiveTerminator != BB.getTerminator()) { |
145 | // Adjust range for special cases such as tail call. |
146 | End = std::prev(x: BB.end()); |
147 | } |
148 | |
149 | return End; |
150 | } |
151 | |
152 | static inline iterator_range<BasicBlock::iterator> |
153 | getInsertionRange(BasicBlock &BB) { |
154 | auto End = getEndIterator(BB); |
155 | return make_range(x: BB.getFirstInsertionPt(), y: End); |
156 | } |
157 | |
158 | void InjectorIRStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
159 | SmallVector<Instruction *, 32> Insts( |
160 | llvm::make_pointer_range(Range: getInsertionRange(BB))); |
161 | if (Insts.size() < 1) |
162 | return; |
163 | |
164 | // Choose an insertion point for our new instruction. |
165 | size_t IP = uniform<size_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
166 | |
167 | auto InstsBefore = ArrayRef(Insts).slice(N: 0, M: IP); |
168 | auto InstsAfter = ArrayRef(Insts).slice(N: IP); |
169 | |
170 | // Choose a source, which will be used to constrain the operation selection. |
171 | SmallVector<Value *, 2> Srcs; |
172 | Srcs.push_back(Elt: IB.findOrCreateSource(BB, Insts: InstsBefore)); |
173 | |
174 | // Choose an operation that's constrained to be valid for the type of the |
175 | // source, collect any other sources it needs, and then build it. |
176 | auto OpDesc = chooseOperation(Src: Srcs[0], IB); |
177 | // Bail if no operation was found |
178 | if (!OpDesc) |
179 | return; |
180 | |
181 | for (const auto &Pred : ArrayRef(OpDesc->SourcePreds).slice(N: 1)) |
182 | Srcs.push_back(Elt: IB.findOrCreateSource(BB, Insts: InstsBefore, Srcs, Pred)); |
183 | |
184 | if (Value *Op = OpDesc->BuilderFunc(Srcs, Insts[IP]->getIterator())) { |
185 | // Find a sink and wire up the results of the operation. |
186 | IB.connectToSink(BB, Insts: InstsAfter, V: Op); |
187 | } |
188 | } |
189 | |
190 | uint64_t InstDeleterIRStrategy::getWeight(size_t CurrentSize, size_t MaxSize, |
191 | uint64_t CurrentWeight) { |
192 | // If we have less than 200 bytes, panic and try to always delete. |
193 | if (CurrentSize > MaxSize - 200) |
194 | return CurrentWeight ? CurrentWeight * 100 : 1; |
195 | // Draw a line starting from when we only have 1k left and increasing linearly |
196 | // to double the current weight. |
197 | int64_t Line = (-2 * static_cast<int64_t>(CurrentWeight)) * |
198 | (static_cast<int64_t>(MaxSize) - |
199 | static_cast<int64_t>(CurrentSize) - 1000) / |
200 | 1000; |
201 | // Clamp negative weights to zero. |
202 | if (Line < 0) |
203 | return 0; |
204 | return Line; |
205 | } |
206 | |
207 | void InstDeleterIRStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
208 | auto RS = makeSampler<Instruction *>(RandGen&: IB.Rand); |
209 | for (Instruction &Inst : instructions(F)) { |
210 | // TODO: We can't handle these instructions. |
211 | if (Inst.isTerminator() || Inst.isEHPad() || Inst.isSwiftError() || |
212 | isa<PHINode>(Val: Inst)) |
213 | continue; |
214 | |
215 | RS.sample(Item: &Inst, /*Weight=*/1); |
216 | } |
217 | if (RS.isEmpty()) |
218 | return; |
219 | |
220 | // Delete the instruction. |
221 | mutate(Inst&: *RS.getSelection(), IB); |
222 | // Clean up any dead code that's left over after removing the instruction. |
223 | eliminateDeadCode(F); |
224 | } |
225 | |
226 | void InstDeleterIRStrategy::mutate(Instruction &Inst, RandomIRBuilder &IB) { |
227 | assert(!Inst.isTerminator() && "Deleting terminators invalidates CFG" ); |
228 | |
229 | if (Inst.getType()->isVoidTy()) { |
230 | // Instructions with void type (ie, store) have no uses to worry about. Just |
231 | // erase it and move on. |
232 | Inst.eraseFromParent(); |
233 | return; |
234 | } |
235 | |
236 | // Otherwise we need to find some other value with the right type to keep the |
237 | // users happy. |
238 | auto Pred = fuzzerop::onlyType(Only: Inst.getType()); |
239 | auto RS = makeSampler<Value *>(RandGen&: IB.Rand); |
240 | SmallVector<Instruction *, 32> InstsBefore; |
241 | BasicBlock *BB = Inst.getParent(); |
242 | for (auto I = BB->getFirstInsertionPt(), E = Inst.getIterator(); I != E; |
243 | ++I) { |
244 | if (Pred.matches(Cur: {}, New: &*I)) |
245 | RS.sample(Item: &*I, /*Weight=*/1); |
246 | InstsBefore.push_back(Elt: &*I); |
247 | } |
248 | if (!RS) |
249 | RS.sample(Item: IB.newSource(BB&: *BB, Insts: InstsBefore, Srcs: {}, Pred), /*Weight=*/1); |
250 | |
251 | Inst.replaceAllUsesWith(V: RS.getSelection()); |
252 | Inst.eraseFromParent(); |
253 | } |
254 | |
255 | void InstModificationIRStrategy::mutate(Instruction &Inst, |
256 | RandomIRBuilder &IB) { |
257 | SmallVector<std::function<void()>, 8> Modifications; |
258 | CmpInst *CI = nullptr; |
259 | GetElementPtrInst *GEP = nullptr; |
260 | switch (Inst.getOpcode()) { |
261 | default: |
262 | break; |
263 | // Add nsw, nuw flag |
264 | case Instruction::Add: |
265 | case Instruction::Mul: |
266 | case Instruction::Sub: |
267 | case Instruction::Shl: |
268 | Modifications.push_back( |
269 | Elt: [&Inst]() { Inst.setHasNoSignedWrap(!Inst.hasNoSignedWrap()); }); |
270 | Modifications.push_back( |
271 | Elt: [&Inst]() { Inst.setHasNoUnsignedWrap(!Inst.hasNoUnsignedWrap()); }); |
272 | break; |
273 | case Instruction::ICmp: |
274 | CI = cast<ICmpInst>(Val: &Inst); |
275 | for (unsigned p = CmpInst::FIRST_ICMP_PREDICATE; |
276 | p <= CmpInst::LAST_ICMP_PREDICATE; p++) { |
277 | Modifications.push_back( |
278 | Elt: [CI, p]() { CI->setPredicate(static_cast<CmpInst::Predicate>(p)); }); |
279 | } |
280 | break; |
281 | // Add inbound flag. |
282 | case Instruction::GetElementPtr: |
283 | GEP = cast<GetElementPtrInst>(Val: &Inst); |
284 | Modifications.push_back( |
285 | Elt: [GEP]() { GEP->setIsInBounds(!GEP->isInBounds()); }); |
286 | break; |
287 | // Add exact flag. |
288 | case Instruction::UDiv: |
289 | case Instruction::SDiv: |
290 | case Instruction::LShr: |
291 | case Instruction::AShr: |
292 | Modifications.push_back(Elt: [&Inst] { Inst.setIsExact(!Inst.isExact()); }); |
293 | break; |
294 | |
295 | case Instruction::FCmp: |
296 | CI = cast<FCmpInst>(Val: &Inst); |
297 | for (unsigned p = CmpInst::FIRST_FCMP_PREDICATE; |
298 | p <= CmpInst::LAST_FCMP_PREDICATE; p++) { |
299 | Modifications.push_back( |
300 | Elt: [CI, p]() { CI->setPredicate(static_cast<CmpInst::Predicate>(p)); }); |
301 | } |
302 | break; |
303 | } |
304 | |
305 | // Add fast math flag if possible. |
306 | if (isa<FPMathOperator>(Val: &Inst)) { |
307 | // Try setting everything unless they are already on. |
308 | Modifications.push_back( |
309 | Elt: [&Inst] { Inst.setFast(!Inst.getFastMathFlags().all()); }); |
310 | // Try unsetting everything unless they are already off. |
311 | Modifications.push_back( |
312 | Elt: [&Inst] { Inst.setFast(!Inst.getFastMathFlags().none()); }); |
313 | // Individual setting by flipping the bit |
314 | Modifications.push_back( |
315 | Elt: [&Inst] { Inst.setHasAllowReassoc(!Inst.hasAllowReassoc()); }); |
316 | Modifications.push_back(Elt: [&Inst] { Inst.setHasNoNaNs(!Inst.hasNoNaNs()); }); |
317 | Modifications.push_back(Elt: [&Inst] { Inst.setHasNoInfs(!Inst.hasNoInfs()); }); |
318 | Modifications.push_back( |
319 | Elt: [&Inst] { Inst.setHasNoSignedZeros(!Inst.hasNoSignedZeros()); }); |
320 | Modifications.push_back( |
321 | Elt: [&Inst] { Inst.setHasAllowReciprocal(!Inst.hasAllowReciprocal()); }); |
322 | Modifications.push_back( |
323 | Elt: [&Inst] { Inst.setHasAllowContract(!Inst.hasAllowContract()); }); |
324 | Modifications.push_back( |
325 | Elt: [&Inst] { Inst.setHasApproxFunc(!Inst.hasApproxFunc()); }); |
326 | } |
327 | |
328 | // Randomly switch operands of instructions |
329 | std::pair<int, int> NoneItem({-1, -1}), ShuffleItems(NoneItem); |
330 | switch (Inst.getOpcode()) { |
331 | case Instruction::SDiv: |
332 | case Instruction::UDiv: |
333 | case Instruction::SRem: |
334 | case Instruction::URem: |
335 | case Instruction::FDiv: |
336 | case Instruction::FRem: { |
337 | // Verify that the after shuffle the second operand is not |
338 | // constant 0. |
339 | Value *Operand = Inst.getOperand(i: 0); |
340 | if (Constant *C = dyn_cast<Constant>(Val: Operand)) { |
341 | if (!C->isZeroValue()) { |
342 | ShuffleItems = {0, 1}; |
343 | } |
344 | } |
345 | break; |
346 | } |
347 | case Instruction::Select: |
348 | ShuffleItems = {1, 2}; |
349 | break; |
350 | case Instruction::Add: |
351 | case Instruction::Sub: |
352 | case Instruction::Mul: |
353 | case Instruction::Shl: |
354 | case Instruction::LShr: |
355 | case Instruction::AShr: |
356 | case Instruction::And: |
357 | case Instruction::Or: |
358 | case Instruction::Xor: |
359 | case Instruction::FAdd: |
360 | case Instruction::FSub: |
361 | case Instruction::FMul: |
362 | case Instruction::ICmp: |
363 | case Instruction::FCmp: |
364 | case Instruction::ShuffleVector: |
365 | ShuffleItems = {0, 1}; |
366 | break; |
367 | } |
368 | if (ShuffleItems != NoneItem) { |
369 | Modifications.push_back(Elt: [&Inst, &ShuffleItems]() { |
370 | Value *Op0 = Inst.getOperand(i: ShuffleItems.first); |
371 | Inst.setOperand(i: ShuffleItems.first, Val: Inst.getOperand(i: ShuffleItems.second)); |
372 | Inst.setOperand(i: ShuffleItems.second, Val: Op0); |
373 | }); |
374 | } |
375 | |
376 | auto RS = makeSampler(RandGen&: IB.Rand, Items&: Modifications); |
377 | if (RS) |
378 | RS.getSelection()(); |
379 | } |
380 | |
381 | /// Return a case value that is not already taken to make sure we don't have two |
382 | /// cases with same value. |
383 | static uint64_t getUniqueCaseValue(SmallSet<uint64_t, 4> &CasesTaken, |
384 | uint64_t MaxValue, RandomIRBuilder &IB) { |
385 | uint64_t tmp; |
386 | do { |
387 | tmp = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: MaxValue); |
388 | } while (CasesTaken.count(V: tmp) != 0); |
389 | CasesTaken.insert(V: tmp); |
390 | return tmp; |
391 | } |
392 | |
393 | /// Determines whether a function is unsupported by the current mutator's |
394 | /// implementation. The function returns true if any of the following criteria |
395 | /// are met: |
396 | /// * The function accepts metadata or token types as arguments. |
397 | /// * The function has ABI attributes that could cause UB. |
398 | /// * The function uses a non-callable CC that may result in UB. |
399 | static bool isUnsupportedFunction(Function *F) { |
400 | // Some functions accept metadata type or token type as arguments. |
401 | // We don't call those functions for now. |
402 | // For example, `@llvm.dbg.declare(metadata, metadata, metadata)` |
403 | // https://llvm.org/docs/SourceLevelDebugging.html#llvm-dbg-declare |
404 | auto IsUnsupportedTy = [](Type *T) { |
405 | return T->isMetadataTy() || T->isTokenTy(); |
406 | }; |
407 | |
408 | if (IsUnsupportedTy(F->getReturnType()) || |
409 | any_of(Range: F->getFunctionType()->params(), P: IsUnsupportedTy)) { |
410 | return true; |
411 | } |
412 | |
413 | // ABI attributes must be specified both at the function |
414 | // declaration/definition and call-site, otherwise the |
415 | // behavior may be undefined. |
416 | // We don't call those functions for now to prevent UB from happening. |
417 | auto IsABIAttribute = [](AttributeSet A) { |
418 | static const Attribute::AttrKind ABIAttrs[] = { |
419 | Attribute::StructRet, Attribute::ByVal, |
420 | Attribute::InAlloca, Attribute::InReg, |
421 | Attribute::StackAlignment, Attribute::SwiftSelf, |
422 | Attribute::SwiftAsync, Attribute::SwiftError, |
423 | Attribute::Preallocated, Attribute::ByRef, |
424 | Attribute::ZExt, Attribute::SExt}; |
425 | |
426 | return llvm::any_of(Range: ABIAttrs, P: [&](Attribute::AttrKind kind) { |
427 | return A.hasAttribute(Kind: kind); |
428 | }); |
429 | }; |
430 | |
431 | auto FuncAttrs = F->getAttributes(); |
432 | if (IsABIAttribute(FuncAttrs.getRetAttrs())) { |
433 | return true; |
434 | } |
435 | for (size_t i = 0; i < F->arg_size(); i++) { |
436 | if (IsABIAttribute(FuncAttrs.getParamAttrs(ArgNo: i))) { |
437 | return true; |
438 | } |
439 | } |
440 | |
441 | // If it is not satisfied, the IR will be invalid. |
442 | if (!isCallableCC(CC: F->getCallingConv())) { |
443 | return true; |
444 | } |
445 | |
446 | // This intrinsic has specific requirements for its parameters and the caller |
447 | // must adhere to certain calling conventions. |
448 | if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain) { |
449 | return true; |
450 | } |
451 | |
452 | return false; |
453 | } |
454 | |
455 | void InsertFunctionStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
456 | Module *M = BB.getParent()->getParent(); |
457 | // If nullptr is selected, we will create a new function declaration. |
458 | SmallVector<Function *, 32> Functions({nullptr}); |
459 | for (Function &F : M->functions()) { |
460 | Functions.push_back(Elt: &F); |
461 | } |
462 | |
463 | auto RS = makeSampler(RandGen&: IB.Rand, Items&: Functions); |
464 | Function *F = RS.getSelection(); |
465 | |
466 | if (!F || isUnsupportedFunction(F)) { |
467 | F = IB.createFunctionDeclaration(M&: *M); |
468 | } |
469 | |
470 | FunctionType *FTy = F->getFunctionType(); |
471 | SmallVector<fuzzerop::SourcePred, 2> SourcePreds; |
472 | if (!F->arg_empty()) { |
473 | for (Type *ArgTy : FTy->params()) { |
474 | SourcePreds.push_back(Elt: fuzzerop::onlyType(Only: ArgTy)); |
475 | } |
476 | } |
477 | bool isRetVoid = (F->getReturnType() == Type::getVoidTy(C&: M->getContext())); |
478 | auto BuilderFunc = [FTy, F, isRetVoid](ArrayRef<Value *> Srcs, |
479 | BasicBlock::iterator InsertPt) { |
480 | StringRef Name = isRetVoid ? nullptr : "C" ; |
481 | CallInst *Call = CallInst::Create(Ty: FTy, Func: F, Args: Srcs, NameStr: Name, InsertBefore: InsertPt); |
482 | Call->setCallingConv(F->getCallingConv()); |
483 | // Don't return this call inst if it return void as it can't be sinked. |
484 | return isRetVoid ? nullptr : Call; |
485 | }; |
486 | |
487 | SmallVector<Instruction *, 32> Insts( |
488 | llvm::make_pointer_range(Range: getInsertionRange(BB))); |
489 | if (Insts.size() < 1) |
490 | return; |
491 | |
492 | // Choose an insertion point for our new call instruction. |
493 | uint64_t IP = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
494 | |
495 | auto InstsBefore = ArrayRef(Insts).slice(N: 0, M: IP); |
496 | auto InstsAfter = ArrayRef(Insts).slice(N: IP); |
497 | |
498 | // Choose a source, which will be used to constrain the operation selection. |
499 | SmallVector<Value *, 2> Srcs; |
500 | |
501 | for (const auto &Pred : ArrayRef(SourcePreds)) { |
502 | Srcs.push_back(Elt: IB.findOrCreateSource(BB, Insts: InstsBefore, Srcs, Pred)); |
503 | } |
504 | |
505 | if (Value *Op = BuilderFunc(Srcs, Insts[IP]->getIterator())) { |
506 | // Find a sink and wire up the results of the operation. |
507 | IB.connectToSink(BB, Insts: InstsAfter, V: Op); |
508 | } |
509 | } |
510 | |
511 | void InsertCFGStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
512 | SmallVector<Instruction *, 32> Insts( |
513 | llvm::make_pointer_range(Range: getInsertionRange(BB))); |
514 | if (Insts.size() < 1) |
515 | return; |
516 | |
517 | // Choose a point where we split the block. |
518 | uint64_t IP = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
519 | auto InstsBeforeSplit = ArrayRef(Insts).slice(N: 0, M: IP); |
520 | |
521 | // `Sink` inherits Blocks' terminator, `Source` will have a BranchInst |
522 | // directly jumps to `Sink`. Here, we have to create a new terminator for |
523 | // `Source`. |
524 | BasicBlock *Block = Insts[IP]->getParent(); |
525 | BasicBlock *Source = Block; |
526 | BasicBlock *Sink = Block->splitBasicBlock(I: Insts[IP], BBName: "BB" ); |
527 | |
528 | Function *F = BB.getParent(); |
529 | LLVMContext &C = F->getParent()->getContext(); |
530 | // A coin decides if it is branch or switch |
531 | if (uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: 1)) { |
532 | // Branch |
533 | BasicBlock *IfTrue = BasicBlock::Create(Context&: C, Name: "T" , Parent: F); |
534 | BasicBlock *IfFalse = BasicBlock::Create(Context&: C, Name: "F" , Parent: F); |
535 | Value *Cond = |
536 | IB.findOrCreateSource(BB&: *Source, Insts: InstsBeforeSplit, Srcs: {}, |
537 | Pred: fuzzerop::onlyType(Only: Type::getInt1Ty(C)), allowConstant: false); |
538 | BranchInst *Branch = BranchInst::Create(IfTrue, IfFalse, Cond); |
539 | // Remove the old terminator. |
540 | ReplaceInstWithInst(From: Source->getTerminator(), To: Branch); |
541 | // Connect these blocks to `Sink` |
542 | connectBlocksToSink(Blocks: {IfTrue, IfFalse}, Sink, IB); |
543 | } else { |
544 | // Switch |
545 | // Determine Integer type, it IS possible we use a boolean to switch. |
546 | auto RS = |
547 | makeSampler(RandGen&: IB.Rand, Items: make_filter_range(Range&: IB.KnownTypes, Pred: [](Type *Ty) { |
548 | return Ty->isIntegerTy(); |
549 | })); |
550 | assert(RS && "There is no integer type in all allowed types, is the " |
551 | "setting correct?" ); |
552 | Type *Ty = RS.getSelection(); |
553 | IntegerType *IntTy = cast<IntegerType>(Val: Ty); |
554 | |
555 | uint64_t BitSize = IntTy->getBitWidth(); |
556 | uint64_t MaxCaseVal = |
557 | (BitSize >= 64) ? (uint64_t)-1 : ((uint64_t)1 << BitSize) - 1; |
558 | // Create Switch inst in Block |
559 | Value *Cond = IB.findOrCreateSource(BB&: *Source, Insts: InstsBeforeSplit, Srcs: {}, |
560 | Pred: fuzzerop::onlyType(Only: IntTy), allowConstant: false); |
561 | BasicBlock *DefaultBlock = BasicBlock::Create(Context&: C, Name: "SW_D" , Parent: F); |
562 | uint64_t NumCases = uniform<uint64_t>(Gen&: IB.Rand, Min: 1, Max: MaxNumCases); |
563 | NumCases = (NumCases > MaxCaseVal) ? MaxCaseVal + 1 : NumCases; |
564 | SwitchInst *Switch = SwitchInst::Create(Value: Cond, Default: DefaultBlock, NumCases); |
565 | // Remove the old terminator. |
566 | ReplaceInstWithInst(From: Source->getTerminator(), To: Switch); |
567 | |
568 | // Create blocks, for each block assign a case value. |
569 | SmallVector<BasicBlock *, 4> Blocks({DefaultBlock}); |
570 | SmallSet<uint64_t, 4> CasesTaken; |
571 | for (uint64_t i = 0; i < NumCases; i++) { |
572 | uint64_t CaseVal = getUniqueCaseValue(CasesTaken, MaxValue: MaxCaseVal, IB); |
573 | BasicBlock *CaseBlock = BasicBlock::Create(Context&: C, Name: "SW_C" , Parent: F); |
574 | ConstantInt *OnValue = ConstantInt::get(Ty: IntTy, V: CaseVal); |
575 | Switch->addCase(OnVal: OnValue, Dest: CaseBlock); |
576 | Blocks.push_back(Elt: CaseBlock); |
577 | } |
578 | |
579 | // Connect these blocks to `Sink` |
580 | connectBlocksToSink(Blocks, Sink, IB); |
581 | } |
582 | } |
583 | |
584 | /// The caller has to guarantee that these blocks are "empty", i.e. it doesn't |
585 | /// even have terminator. |
586 | void InsertCFGStrategy::connectBlocksToSink(ArrayRef<BasicBlock *> Blocks, |
587 | BasicBlock *Sink, |
588 | RandomIRBuilder &IB) { |
589 | uint64_t DirectSinkIdx = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Blocks.size() - 1); |
590 | for (uint64_t i = 0; i < Blocks.size(); i++) { |
591 | // We have at least one block that directly goes to sink. |
592 | CFGToSink ToSink = (i == DirectSinkIdx) |
593 | ? CFGToSink::DirectSink |
594 | : static_cast<CFGToSink>(uniform<uint64_t>( |
595 | Gen&: IB.Rand, Min: 0, Max: CFGToSink::EndOfCFGToLink - 1)); |
596 | BasicBlock *BB = Blocks[i]; |
597 | Function *F = BB->getParent(); |
598 | LLVMContext &C = F->getParent()->getContext(); |
599 | switch (ToSink) { |
600 | case CFGToSink::Return: { |
601 | Type *RetTy = F->getReturnType(); |
602 | Value *RetValue = nullptr; |
603 | if (!RetTy->isVoidTy()) |
604 | RetValue = |
605 | IB.findOrCreateSource(BB&: *BB, Insts: {}, Srcs: {}, Pred: fuzzerop::onlyType(Only: RetTy)); |
606 | ReturnInst::Create(C, retVal: RetValue, InsertBefore: BB); |
607 | break; |
608 | } |
609 | case CFGToSink::DirectSink: { |
610 | BranchInst::Create(IfTrue: Sink, InsertBefore: BB); |
611 | break; |
612 | } |
613 | case CFGToSink::SinkOrSelfLoop: { |
614 | SmallVector<BasicBlock *, 2> Branches({Sink, BB}); |
615 | // A coin decides which block is true branch. |
616 | uint64_t coin = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: 1); |
617 | Value *Cond = IB.findOrCreateSource( |
618 | BB&: *BB, Insts: {}, Srcs: {}, Pred: fuzzerop::onlyType(Only: Type::getInt1Ty(C)), allowConstant: false); |
619 | BranchInst::Create(IfTrue: Branches[coin], IfFalse: Branches[1 - coin], Cond, InsertBefore: BB); |
620 | break; |
621 | } |
622 | case CFGToSink::EndOfCFGToLink: |
623 | llvm_unreachable("EndOfCFGToLink executed, something's wrong." ); |
624 | } |
625 | } |
626 | } |
627 | |
628 | void InsertPHIStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
629 | // Can't insert PHI node to entry node. |
630 | if (&BB == &BB.getParent()->getEntryBlock()) |
631 | return; |
632 | Type *Ty = IB.randomType(); |
633 | PHINode *PHI = PHINode::Create(Ty, NumReservedValues: llvm::pred_size(BB: &BB), NameStr: "" , InsertBefore: BB.begin()); |
634 | |
635 | // Use a map to make sure the same incoming basic block has the same value. |
636 | DenseMap<BasicBlock *, Value *> IncomingValues; |
637 | for (BasicBlock *Pred : predecessors(BB: &BB)) { |
638 | Value *Src = IncomingValues[Pred]; |
639 | // If `Pred` is not in the map yet, we'll get a nullptr. |
640 | if (!Src) { |
641 | SmallVector<Instruction *, 32> Insts; |
642 | for (auto I = Pred->begin(); I != Pred->end(); ++I) |
643 | Insts.push_back(Elt: &*I); |
644 | // There is no need to inform IB what previously used values are if we are |
645 | // using `onlyType` |
646 | Src = IB.findOrCreateSource(BB&: *Pred, Insts, Srcs: {}, Pred: fuzzerop::onlyType(Only: Ty)); |
647 | IncomingValues[Pred] = Src; |
648 | } |
649 | PHI->addIncoming(V: Src, BB: Pred); |
650 | } |
651 | SmallVector<Instruction *, 32> InstsAfter( |
652 | llvm::make_pointer_range(Range: getInsertionRange(BB))); |
653 | IB.connectToSink(BB, Insts: InstsAfter, V: PHI); |
654 | } |
655 | |
656 | void SinkInstructionStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
657 | for (BasicBlock &BB : F) { |
658 | this->mutate(BB, IB); |
659 | } |
660 | } |
661 | void SinkInstructionStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
662 | SmallVector<Instruction *, 32> Insts( |
663 | llvm::make_pointer_range(Range: getInsertionRange(BB))); |
664 | if (Insts.size() < 1) |
665 | return; |
666 | // Choose an Instruction to mutate. |
667 | uint64_t Idx = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
668 | Instruction *Inst = Insts[Idx]; |
669 | // `Idx + 1` so we don't sink to ourselves. |
670 | auto InstsAfter = ArrayRef(Insts).slice(N: Idx + 1); |
671 | Type *Ty = Inst->getType(); |
672 | // Don't sink terminators, void function calls, token, etc. |
673 | if (!Ty->isVoidTy() && !Ty->isTokenTy()) |
674 | // Find a new sink and wire up the results of the operation. |
675 | IB.connectToSink(BB, Insts: InstsAfter, V: Inst); |
676 | } |
677 | |
678 | void ShuffleBlockStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
679 | // A deterministic alternative to SmallPtrSet with the same lookup |
680 | // performance. |
681 | std::map<size_t, Instruction *> AliveInsts; |
682 | std::map<Instruction *, size_t> AliveInstsLookup; |
683 | size_t InsertIdx = 0; |
684 | for (auto &I : make_early_inc_range( |
685 | Range: make_range(x: BB.getFirstInsertionPt(), |
686 | y: getEffectiveTerminator(BB)->getIterator()))) { |
687 | // First gather all instructions that can be shuffled. Don't take |
688 | // terminator. |
689 | AliveInsts.insert(x: {InsertIdx, &I}); |
690 | AliveInstsLookup.insert(x: {&I, InsertIdx++}); |
691 | // Then remove these instructions from the block |
692 | I.removeFromParent(); |
693 | } |
694 | |
695 | // Shuffle these instructions using topological sort. |
696 | // Returns false if all current instruction's dependencies in this block have |
697 | // been shuffled. If so, this instruction can be shuffled too. |
698 | auto hasAliveParent = [&AliveInsts, &AliveInstsLookup](size_t Index) { |
699 | for (Value *O : AliveInsts[Index]->operands()) { |
700 | Instruction *P = dyn_cast<Instruction>(Val: O); |
701 | if (P && AliveInstsLookup.count(x: P)) |
702 | return true; |
703 | } |
704 | return false; |
705 | }; |
706 | // Get all alive instructions that depend on the current instruction. |
707 | // Takes Instruction* instead of index because the instruction is already |
708 | // shuffled. |
709 | auto getAliveChildren = [&AliveInstsLookup](Instruction *I) { |
710 | SmallSetVector<size_t, 8> Children; |
711 | for (Value *U : I->users()) { |
712 | if (Instruction *P = dyn_cast<Instruction>(Val: U)) { |
713 | auto It = AliveInstsLookup.find(x: P); |
714 | if (It != AliveInstsLookup.end()) |
715 | Children.insert(X: It->second); |
716 | } |
717 | } |
718 | return Children; |
719 | }; |
720 | SmallSet<size_t, 8> RootIndices; |
721 | SmallVector<Instruction *, 8> Insts; |
722 | for (const auto &[Index, Inst] : AliveInsts) { |
723 | if (!hasAliveParent(Index)) |
724 | RootIndices.insert(V: Index); |
725 | } |
726 | // Topological sort by randomly selecting a node without a parent, or root. |
727 | while (!RootIndices.empty()) { |
728 | auto RS = makeSampler<size_t>(RandGen&: IB.Rand); |
729 | for (size_t RootIdx : RootIndices) |
730 | RS.sample(Item: RootIdx, Weight: 1); |
731 | size_t RootIdx = RS.getSelection(); |
732 | |
733 | RootIndices.erase(V: RootIdx); |
734 | Instruction *Root = AliveInsts[RootIdx]; |
735 | AliveInsts.erase(x: RootIdx); |
736 | AliveInstsLookup.erase(x: Root); |
737 | Insts.push_back(Elt: Root); |
738 | |
739 | for (size_t Child : getAliveChildren(Root)) { |
740 | if (!hasAliveParent(Child)) { |
741 | RootIndices.insert(V: Child); |
742 | } |
743 | } |
744 | } |
745 | |
746 | Instruction *Terminator = getEffectiveTerminator(BB); |
747 | // Then put instructions back. |
748 | for (Instruction *I : Insts) { |
749 | I->insertBefore(InsertPos: Terminator->getIterator()); |
750 | } |
751 | } |
752 | |
753 | std::unique_ptr<Module> llvm::parseModule(const uint8_t *Data, size_t Size, |
754 | LLVMContext &Context) { |
755 | |
756 | if (Size <= 1) |
757 | // We get bogus data given an empty corpus - just create a new module. |
758 | return std::make_unique<Module>(args: "M" , args&: Context); |
759 | |
760 | auto Buffer = MemoryBuffer::getMemBuffer( |
761 | InputData: StringRef(reinterpret_cast<const char *>(Data), Size), BufferName: "Fuzzer input" , |
762 | /*RequiresNullTerminator=*/false); |
763 | |
764 | SMDiagnostic Err; |
765 | auto M = parseBitcodeFile(Buffer: Buffer->getMemBufferRef(), Context); |
766 | if (Error E = M.takeError()) { |
767 | errs() << toString(E: std::move(E)) << "\n" ; |
768 | return nullptr; |
769 | } |
770 | return std::move(M.get()); |
771 | } |
772 | |
773 | size_t llvm::writeModule(const Module &M, uint8_t *Dest, size_t MaxSize) { |
774 | std::string Buf; |
775 | { |
776 | raw_string_ostream OS(Buf); |
777 | WriteBitcodeToFile(M, Out&: OS); |
778 | } |
779 | if (Buf.size() > MaxSize) |
780 | return 0; |
781 | memcpy(dest: Dest, src: Buf.data(), n: Buf.size()); |
782 | return Buf.size(); |
783 | } |
784 | |
785 | std::unique_ptr<Module> llvm::parseAndVerify(const uint8_t *Data, size_t Size, |
786 | LLVMContext &Context) { |
787 | auto M = parseModule(Data, Size, Context); |
788 | if (!M || verifyModule(M: *M, OS: &errs())) |
789 | return nullptr; |
790 | |
791 | return M; |
792 | } |
793 | |